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Abstract

The phase diagram of globular proteins is studied both theoretically and experimen-
tally. Emphasis is placed on understanding how the microscopic interactions of the
proteins lead to the phase diagrams observed.

The theoretical part of this work uses a combined analytic and computational ap-
proach. The proteins are assumed to be hard spheres of diameter o. The interactions
between the proteins are modeled by a square-well potential with range A and depth
e. This model is used to show how the relative positions of the liquid-liquid and
liquid-solid phase boundaries in globular protein solutions are related to the short-
range nature of the protein interactions. The theory presented successfully describes
the features of the pllase diagrams observed in a wide variety of protein and colloidal
systems. The theoretical study is applied to the phase diagram of aqueous solutions
of 7-crystallins to gain insight into the microscopic interactions between these pro-
teins. Analysis of the experimental data for the critical volume fractions permits the
determination of the range of interaction appropriate for these proteins. A compari-
son of the experimental and calculated widths of the liquid-liquid coexistence curves
suggests a significant contribution from anisotropy in the real interaction potential of
the -- crystallins.

The experimental part of this work focuses on the role of small aggregates in
shaping the phase diagram. Oligomers of ,-crystallins are produced by crosslinking
native 7-crystallin proteins. Experimental results for the liquid-liquid coexistence
curves of the crosslinked dimers and trimers are presented. These results are analyzed
within the context of the model use to describe protein monomers. It is found that the

protein oligorners may be described as having longer effective ranges of interaction
than the monomer protein. The experimental findings are used to illustrate the
important connection between aggregation and phase separation in globular protein
solutions.
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Chapter 1

Introduction

1.1 The Phase Transitions of Globular Protein

Solutions

Globular proteins are folded polypeptide chains which have molecular weights rang-

ing from approximately six thousand to one million daltons and radii of twenty-five

to two hundred angstroms [1]. Globular proteins are given their name because they

all have compact structures in contrast to the filamentous structures of fibrous pro-

teins. Solutions of globular proteins undergo several types of changes of state. In

this thesis I will examine those transitions of globular proteins in which the physics,

rather than the biochemistry. of the globular proteins plays the dominant role, since

such transitions can provide very general information about the interactions of these

proteins. The phase transitions of globular proteins which are mostly governed by

physical interactions are crystallization and liquid-liquid phase separation.

The more common phase transition that is observed in these protein solutions is

crystallization. Upon a change of conditions (such as temperature, protein concentra-

tion or pH) the proteins condense from solution and form a crystal. In liquid-liquid

phase separation. a change of conditions causes an initially homogenous protein solu-

tion to form two separate coexisting liquid phases, one protein-rich, the other protein-

poor. Both of these transitions are general in nature and have counterparts in simple
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molecular fluids. The crystallization of proteins is equivalent to the fluid-solid transi-

tion while liquid-liquid phase separation corresponds to gas-liquid coexistence. There

is however one striking difference: when most simple fluids are cooled the order of

phases observed is gas to liquid to solid. In protein solutions the protein "gas" usually

transforms into a solid without passing through a liquid phase.

I illustrate this unusual order of phases by presenting in Fig. 1-1 the phase diagram

of ";I-crystallin protein [2, 3. 4]. This phase diagram is typical of the -- crystallins (a

family of monomeric eve lens proteins) and of other small globular proteins, such as

lysozyme [5, 6. 7]. The circles are points which represent the volume fractions (q)

of coexisting protein-rich and protein-poor liquid phases (liquid-liquid coexistence

curve). The squares (liquidus line and the triangle (solidus line) represent respec-

tively the volume fractions of protein in the liquid and solid phases in equilibrium

with each other. \Ve see that there is no triple point and the coexistence curve lies

below the liquidus line. It is important to note that liquid-liquid phase separation

may be observed in many globular protein solutions despite it being metastable with

respect to solidification. lFor comparison the phase diagram of argon is shown in

Fig. 1-2 [8, 9, 10]. \VWe see that for argon the critical point lies above the triple point

(i.e.. To > Tt) indicating the ipresence of a stable liquid phase. In addition the coex-

istence curve is narrower and the value of the critical volume fraction is smaller than

for globular protein solutions.

There is one additional difference between the phase behavior of globular protein

solutions and that of simple fluids which is not app; ent from a comparison of the

phase diagrams. In globular protein solutions both liquid-liquid phase separation

and crystallization may be obscilred or accompanied by protein aggregation. in which

the protein forms irregular solid structures. Simple fluids on the other hand do

not aggregate. It is well knmown that many simple fluids form clusters [11]. These

however are either alterations in the local order of the liquid phase or defects in

the arrangement of the solid. They are not aggregates. which exist as independent

structures and which form irreversibly. Although aggregation is governed by the same

molecular interactions that lead to liquid-liquid phase separation and crystallization,



CHAPTER 1. INTRODUCTION

1.15-

1.10-

1.05-

T/T o -

1.00 -

0.95 -
I

0.0

I
0.5

I
1.0

I I
1.5 2.0

/O
Figure 1-1: The phase diagram of ,,-crystallin [2. 3. 4]. The circles are points on the
liquid-liquid coexistence curve (CC). The squares are points on the liquidus line (L).
The triangle is a point on the solidus line (S). The lines are guides to the eye. The
critical temperature is T = 278.4K. The critical volume fraction is oc = 0.21.

CC

2
2.5

I
3.0

7I

CHAPTER 1. INTRODUCTION



1.1. THE PHASE TRANSITIONS OF GLOBULAR PROTEIN SOLUTIONS

1.0

CC

0.8 L S

0.6

T/Tc

T=T t

0.4-

0 .2 - I ", , , , , I I, I , , I ,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
C

Figure 1-2: The phase (liagram of argon [8. 9. 10] showing the coexistence curve
(CC) and the liquidus (L) and solidus (S) lines. The critical temperature is T, =
150.86K. The critical volume fraction is o,- = 0.133. assuming a hard core diameter

3 = 3.162A [12]. The triple point temperature is Tt = 83.78K= 0.56T,.



CHAPTER 1. INTRODUCTION

it is not strictly a phase transition. Aggregates are not in thermodynamic equilibrium

with another macroscopic phase; there is no aggregation phase boundary.

In this thesis I will address the following questions:

1. Why is the shape of the coexistence curve for protein solutions different from that

of simple fluids? Specifically, I will examine why the critical volume fraction

and the width of the coexistence curve are both larger for globular protein

solutions than for simple fluids.

2. Why is liquid-liquid coexistence metastable with respect to solidification in pro-

tein solutions? I will also discuss why liquid-liquid phase separation can be

observed despite it being metastable.

3. What is the effect of aggregation on the phase diagram of globular protein solu-

tions? I will discuss how aggregation affects both liquid-liquid phase separation

and solidification in these solutions.

I will argue that all of these questions can be tackled with a simple description of the

microscopic interactions of t he proteins. Such a description can help us understand

the many biophysical phenomena in which phase separation processes are involved. I

list a few examples of such phenomena below:

* The crvstallization of proteins [13]: In order to carry out the x-ray analysis

of protein structure ligh-quality protein crystals are needed. Often it is hard

to find adequate conditions for crystal formation. It is therefore essential to

understand how the microscopic protein interactions determine the location of

the phase boundaries for the crystallization transition.

Protein condensation diseases [14]: The phase transitions of proteins have been

implicated in several diseases e.g.. cataract. sickle cell disease and crvoim-

munoglobulinemia. The understanding of the location of the phase boundaries

and the strategies to shift them by modifying protein interactions are key ele-

ments in the search for the treatment of such diseases.
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* The industrial purification of proteins [15]: a prominent method for purifying

and concentrating protein solutions is "two-phase partitioning" or "membrane-

less osmosis". Here proteins are mixed with polymers, polysaccharides or other

proteins. Upon phase separation, two liquid phases form which differ greatly

in the concentrations of the macromolecular components. By an appropriate

choice of phase-forming polymer, a high yield of the target protein in the con-

centrated protein-rich phase can be obtained. This method has been applied

extensively to food colloids.

* Microcompartmentation of the cell cytoplasm [16]: It has been suggested that

the macromolecular diversity and concentration in the fluid phase of the cell

cytoplasm constitute conditions necessary and sufficient for aqueous phase sep-

aration. This phase separation would then be responsible for the partitioning

or "microcompartmentation" of materials (e.g., ions. mitocondria and proteins)

in the cytoplasm. It is still an unsolved question how much of the microcom-

partmentation of the cell cytoplasm is due to phase separation and how much

depends on biochemical factors.

In the next section I will outline the work I present in this doctoral thesis: using

the methods of physics. I explain how the microscopic interactions of globular proteins

govern their phase iransitions.

1.2 Overview of the Thesis

This thesis investigates hlow the microscopic interactions shape the phase diagram

of globular proteins. The simplest picture of a globular protein is of a hard sphere

of matter interacting with other hard spheres of matter. Though crude, this picture

captures an essential structural feature of globular proteins. for the hard sphere model

accounts for the repulsive interactions between proteins. However, to observe both

liquid-liquid phase separation and crystallization in a systems of spheres. these spheres

should also have attractive interactions. This way, at a sufficiently low temperature.
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the energy of attraction will overcome the entropy of the spheres leading to a phase

transition.

We know that globular proteins in solution have generally short ranges of inter-

action, because the proteins. which are at least fifty angstroms in diameter, can only

interact with each other through a few layers of water, a distance of approximately

ten angstroms [17]. In this respect globular proteins resemble colloids which also have

short ranges of interaction. In the short-range regime the thermodynamic properties

become universal. independent of the shape of the interaction potential. Therefore,

we can use a simple model for the protein interactions to describe the more com-

plex interactions real proteins exhibit. With such a simple model I will answer the

questions I stated in the previous section.

Why is the shape of the coexistence curve for protein solutions different from that

of simple fluids? In (Chapter 2. parts of which have already been published [18], we

study the liquid-liquid phase separation of globular proteins by performing Monte

Carlo simulations of spheres with isotropic attractive interactions. Since we under-

stood that the interactions of the proteins in solution are short-ranged. we wanted to

simulate short-range systems. Traditional Monte Carlo methods, however, become

computationally prohibitive when applied to short-range interactions. Dr. Aleksey

Lomakin has developed an innovative Monte Carlo scheme. which combines simula-

tions with analvtic techniques. to thoroughly explore short-range interactions between

the proteins. Using this scheme we calculate, for each range of interaction, the chem-

ical potential of a iiodel protein solution as a function of protein volume fraction and

temperature. From this we obtain the liquid-liquid coexistence curves by a method

analogous to the Maxwell equal area construction. The coexistence curves so obtained

allow us to make meaningful comparisons with the experimentally determined coex-

istence curves for solutions of globular proteins. Such a. comparison was not possible

with the results previously available in the literature. Our findings provide insight

into the central role played by the range of interaction in determining the shape and

the location of the phase boundaries. As expected, we find that there is much bet-

t.er agreement between our simulation results and the experimental results when we
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describe the proteins as having short-range interactions.

Our Monte Carlo study helped us understand the importance of the range of

interaction in the liquid-liquid phase separation of protein solutions. Since our model

gave a reasonable representation for the chemical potential of the liquid, we were able

to extend our microscopic model to address the other phase transition exhibited by

globular proteins, namely crystallization.

Why is liquid-liquid coexistence metastable with respect to solidification in protein

solutions? In Chapter 3. parts of which have also been published [19], we use a simple

analytic model of a colloidal solid to study the crystallization transition. Specifically,

we use the Lennard-Jones-Devonshire cell model to obtain an analytic expression for

the chemical potential of a solid with short-range interactions. By using this chemical

potential together with the chemical potential of the liquid phase we had obtained

previously, we are able to describe the principal features of the phase diagram in

a wide variety of colloidal systems. including globular proteins. In particular, we

explain how the "metastability gap" of colloidal solutions (i.e., the difference between

the temperature at which a stable solid phase appears and that at which coexisting

liquid phases are first stable) is related to the range of interaction and to the number

of contacts made by particles in the solid phase. VWe find good qualitative agreement

between our results and the experimental observations for several colloidal solutions,

not only for globular proteins but also systems such as colloid-polymer mixtures.

The two works discussed above use a very simplified model of protein interactions.

Nevertheless, by identifying the most import int elements required to describe the

phase transitions of globular proteins, we have been able to relate the phase behavior

of these proteins (1bothl liquid-liquid phase separation and crystallization) to their

microscopic interactions. Iii fact. the model used to characterize globular proteins

(a repulsive hard core with a short-range attractive interaction) is equally applicable

to various colloidal systems. stuch as silica spheres coated with stearyl alcohol [20] or

mixtures of polystyrene spheres and polymers [21].

Although they are both short-ranged, there is an important difference between

solutions of globular proteins and most colloidal systems. The interactions for simple
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colloids are expected to be isotropic and therefore should be well described by the

model presented in Chapters 2 and 3. In contrast, the surface of globular proteins

is not uniform, since the proteins are made up of many amino acids residues, each

of which interacts differently with the surrounding solution [22]. In particular, this

anisotropy in the interaction between proteins leads to the formation of small aggre-

gates which are held together by specific bonding between amino acid residues. Such

aggregates have been found to strongly affect the phase diagram of globular protein

solutions [23].

What is the effect of aggregation on the phase diagram of globular protein solu-

tions'? The role of small aggregates in shaping the phase diagram of globular protein

solutions is discussed in Chapter 4. Little is known about the phase behavior of

oligomers of proteins. where only a few monomers are connected to each other. It

is important to understand how to describe the effect of oligomers on the phase dia-

gram of globular protein solutions. for such oligomers often form naturally in protein

solutions because of aggregation.

As we discuss in Chapters 2 and 3, aggregation is in competition with both liquid-

liquid phase separation and crystallization in protein solutions. A major problem

in the growth of protein crystals for x-ray structure analysis is the formation of

amorphous aggregates [24]. In addition, there are several diseases, such as cataract,

where the pathology is caused both by aggregation and phase separation [25]. It is

therefore essential to understand what is the practical effect of small aggregates in a

solutions of globular proteins which can phase separate.

To address the questions outlined above. I have produced oligomers of globular

proteins by crosslinking native proteins. The protein used is a member of the -y-

crvstallin family. I present experimental results for the liquid-liquid coexistence curves

of the dimers and trimers of the protein. These results are analyzed within the

context of the model used to describe protein monomers. It is found that the protein

oligomers may be described as having longer effective ranges of interaction than the

monomer protein. The experimental findings are then used to illustrate the important

connection between aggregation and phase separation in globular protein solutions.



1.2. OVERVIEW OF THE THESIS

In Chapter 5, I summarize the results presented in this thesis and make suggestions

for further work.



Chapter 2

The Liquid Phase

Portions of this chapter have already been published in Ref. [18]: A. Lomakin,

N. Asherie, and G. B. Benedek. "Monte Carlo study of phase separation in aqueous

protein solutions." J. Chem. Phys. 104, 1646 (1996). The innovative Monte Carlo

scheme which we use was designed by Dr. Aleksev Lomakin.

2.1 Introduction

The liquid-liquid phase separation of protein solutions is of great interest because

the factors which govern the condensation of protein into coexisting protein-poor and

protein-rich phases are believed to play a central role in several human diseases [26,

27, 28]. The understanding of the location of the phase boundaries and the strategies

to shift them by modifying protein interactions are key elements in the search for

disease treatment. An important example of such a disease is cataract [26], where

opacification of the eye lens results from alterations in the spatial distribution of the

lens proteins [29]. These alterations are known to be produced, in part, by the phase

separation of the -3-crystallins. a family of monomeric lens proteins [30]. Several

studies [2, 3. 23. 31] have investigated the phase separation in aqueous solutions of

individual members of the calf lens 7-crystallin family. These experiments show that

the -- crystallins may be divided into two groups: "'high-T" proteins, such as IIIa (C)
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and -,Iva (TE), which exhibit high critical temperatures (To 38 0 C), and "low-T,"

proteins, such as 'II (ThB) and IInb (iVD)- which exhibit low critical temperatures

(To 50 C). The critical volume fractions of all the 7-crystallins are approximately

the same o. = 0.21 ± 0.02 [2]. The coexistence curves are found to be upper consolute

and very broad, as is observed in some colloidal dispersions [32. 33]. Mixtures of

7-crvstallins have also been studied [34, 35].

From a theoretical point of view, the phase transition in the protein-water solution

is analogous to that of the single component liquid-vapor system. Beginning with

the van der Waals equation of state [36], there has been a quest for an analytical

equation of state for simple liquids. The general approach is to assume a form for

the intermolecular potential. almost always central and pairwise additive. One of the

most common selections is the square-well potential, since it is the simplest model

which includes both attractive and repulsive forces. At this stage. either one of two

choices is made: (i) A "fundamental" statistical-mechanical equation. such as the

Percus-Yevick formula [37]. is invoked, from which a closed form solution for the

equation of state is obtained [38. 39. 40]; (ii) A statistical-mechanical perturbation

theory is used. Here, the main approach is to treat the attractive part of the potential

being studied as a perturbation to the hard sphere model, which has only repulsive

forces [41. 42].

Though these theories pIrovide a recipe for how to calculate quantities of interest

for phase separation,. their complexity limits their utility when interpreting experimen-

tal results. One way to overcome this difficulty,. is to begin with a phenomenological

thermodynamic expression for the Gibbs free energy of the system. A simple analytic

model. based on mean field I heory. has been proposed [3. 43] to describe the phase

separation phenomena of aqueous protein solutions. As we shall see in this chapter.

this model corresponds to a long-range square-well intermolecular potential.

Mlanv Monte Carlo simulations have been made of systems which undergo phase

separation [44, 45. 46]. The most recent of these [47, 48. 49] have employed the so-

called Gibbs ensemble Monte Carlo technique [50. 51]. The focus of many of these

studies is to examine the theory of critical phenomena for a variety of intermolecular
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potentials, including the square-well potential. In the recent study of Vega et al. [47],

the vapor-liquid phase equilibria of square-well systems with hard-sphere cores were

studied for the reduced ranges A=1.25, 1.375, 1.5, 1.75 and 2. The critical points and

the shapes of the coexistence curves (in terms of a critical exponent) were calculated.

This information indicates that the interactions between the 'i-crystallins are short-

ranged as expected. The results, however, are not detailed enough in the short-range

regime to interpret the phase diagram of these proteins.

Therefore, in order to gain insight into the microscopic interactions of the y-

crystallins, Dr. Aleksey Lomakin has developed a Monte Carlo method which we

use to analyze the experimental observations of Broide et al. [2]. We also explore

the applicability of mean field models. such as that proposed by Berland et al. [3]

and Taratuta et al. [43]. to aqueous y-crystallin solutions. To simplify the analysis,

as well as to save computational time, our Monte Carlo procedure uses theoretical

extrapolation techniques. in addition to simulation, to calculate the quantities of

interest, most importantly the chemical potential. To reconstruct the phase diagram

of our model aqueous protein solution, we fit the Monte Carlo results for the chemical

potential with an analytic expression. We then obtain the coexistence curve by a

method analogous to the Maxwell equal areas construction for the van der Waals

equation of state [52]. Since the use of an analytic form for the chemical potential

neglects the contributions of critical fluctuations to the free energy of the system,

our approach is unable to describe accurately the critical exponents. However, we

are interested in aspects of phase separation which are not strongly affected by the

fluctuations: the critical temperature T. the critical volume fraction o, and the shape

of the coexistence curve in regions relatively far from the critical point. To check the

accuracy of our method. especially near the critical point. where the reliability of the

method cannot be justified a priori, in Sec. 2.3.2 we compare our results with those

available from other Monte Carlo simulations.

To begin our analysis. let us consider a system containing Np protein molecules

and N, water molecules. We may write the microscopic free energy, E, of the protein-
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water solution as

E = Eit + V.wEo" + NpEo'". (2.1)

This form of the microscopic free energy represents a thermodynamic average of

the energy of the system over all the positions of the water molecules and over the

internal degrees of freedom of the proteins. Thus, E depends solely on the relative

positions of the proteins. Here Eow is the average free energy per water molecule in

a solution of pure water (i.e.. the chemical potential of one water molecule) and EOw

is the average free energy of one protein molecule, fixed in space, in solution of water.

The interaction energy Eint results from the direct and indirect (i.e., through water)

interactions between the proteins. The contribution of the water-water and protein-

water interactions is independent of the relative positions of the proteins. However,

Eit depends on the relative positions of the proteins and we will assume that it can

be represented by a central and pairwise interaction. For convenience, we will refer

to the microscopic free energy E as simply the energy of the proteins.

Now we proceed to make the model more specific. We consider the proteins to

be spheres. of diameter a. while the water is taken to be a continuous background

(that is. the size of the water molecules is taken to be small as compared to a). We

assume that the effective potential energy u(r) for a pair of proteins whose centers

are separated by a distance r. is of the form of a square-well plus a hard core as given

by Eq. (2.2) below.

+Dc. for r < a

(r) = -. for a < r < ,\ (2.2)

0. for r > Au

Here A is the reduced range of the potential well and c is its depth. With this

potential. we can calculate the interaction energy Eint. and hence the total energy

E. as a function of volume fraction and temperature. Note that for our particular

choice of potential. we can define the number of protein-protein contacts No,, as the

number of protein pairs whose centers are in the range a < r < Aor from each other.
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Thus we may write the interaction energy as

Eit = -Neone (2.3)

Of course Eq. (2.3) assumes that there are no overlapping hard cores in the configu-

ration. If there are overlaps then Eint = 00.

Once we have chosen an explicit form for the intermolecular potential of the sys-

tem, we may use the Monte Carlo simulation procedure described in Sec. 2.2 to obtain

the thermodynamic properties of our system. Thus we can reconstruct the phase di-

agram of our model aqueous protein solution and compare it with the experimental

results of Broide et al. [2]. This comparison is made in Sec. 2.3.4.

2.2 Computer Simulation

The conditions for phase equilibrium in the protein-water solution are

Lp(I) = tp(II) (2.4)

=(2.5)

where p, and /t,, are the chemical potentials of the protein and water respectively.

Here I and II denote the two coexisting phases. WVe also write a.s a shorthand

p,(I) = tp(O'. T) and p ,(II) - p,(o", T) and similarly for [L,,. We let 6' and 6" be

the protein volume fractions in the two phases and we take 0 < 6 I without loss of

generality. The temperature of the system is denoted by T. We may write Eqs. (2.4)

and (2.5) in an alternative form. namely

(I) = /I(II) (2.6)

(. T)do = [(I) + (II)]. (2.7)

Here p pp - 11,,. where , p,/Q,, is the ratio of the volume of one protein
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molecule (t,) to the volume of one water molecule (R,). The volume fraction is

defined as - Npf,/V. with V the total volume of the system. The quantity Y

represents the change in free energy (at constant volume) due to the replacement

of -y water molecules by one protein molecule. We will work with Yt for it is the

analog of the chemical potential in a one component system. This equivalence is

shown in Appendix A. Equation (2.6) follows directly from Eqs. (2.4) and (2.5).

Equation (2.7) is equivalent to the equal areas rule proposed by Maxwell [52] for

a pure fluid and can be derived by integrating by parts the Gibbs-Duhem relation,

(C9,p/8¢) + 7y( - )(i,,./D)) = 0, from ' to "II and using Eqs. (2.5) and (2.6),

together with the definition of pi. We will call p "the effective chemical potential" to

distinguish it from the protein or water chemical potentials.

We can see that in order to use Eqs. (2.6) and (2.7) to study the phase separation of

the system, we need to know the effective chemical potential as an analytic function of

volume fraction and temperature. We should note that below the critical temperature

TC the effective chemical potential. as an analytic function of the volume fraction, has

a region of negative slope. In this region. the system is unstable to microscopic

fluctuations. At the critical temperature, this region reduces to a point with critical

volume fraction o,.. At the critical point, both the first and second derivatives of the

effective chemical potential with respect to volume fraction are zero [53]. Thus, the

two equations

= 0 (2.8)

= 0 
(2.9)

determine the values of o, and T,. The spinodal. which marks the boundary between

areas of the phase diagram where the system is stable and unstable. is given by

= 0. (2.1.0)

According to Eqs. (2.6)-(2.10). if p is known as a function of o and T. then the

whole phase diagram may be constructed. By focusing our attention on it, we may
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simplify the study of the phase separation phenomena as follows:

(i) We obtain the effective chemical potential, M(¢, To), as a function of volume

fraction at a temperature To above T,, by using Widom's formula [54] (see also Ap-

pendix B):

= tlo + ln o - kTln < exp(-AEte"t/kT) > . (2.11)

Here, <> denotes a canonical ensemble average for the system at constant volume

and temperature and AEtest is the change is the microscopic free energy of the system

due to the addition of a test particle. As is shown in Appendix B, the standard part

of the chemical potential is given by go - -kTln(Q,/VF) (where VF is the Fermi

volume) and it is independent of volume fraction.

For our particular system

AE ~est = E(N , + 1, N - y) - E(Np, Nw). (2.12)

Using Eqs. (2.1) and (2.3) we obtain

_AEst = v + Eo" - Eo,". (2.13)

where v. the number of new contacts made by the test protein, is given by

=Von(NP + 1)- Ncon(Np). (2.14)

We note that Eq. (2.13) presupposes that the hard core of the test protein does not

overlap with any other hard core. In the case of an overlap AEte's = c00. Substituting

Eq. (2.13) into Eq. (2.11). we obtain the following form for the chemical potential

i = -o i E," - - Eow + kT[ln - In < exp(vi) >], (2.15)

where ~=/kT is the reduced energy.

In Eq. (2.15) the ensemble average, represented by <>. is to be taken over all
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attempts to add the test particle: both those for which there are no hard core overlaps

and those for which hard core overlaps do occur. In the latter case AEtest = o00 and

the corresponding exponential in Eq. (2.15) should be set to zero. For example, for

^ = 0, which is the hard sphere limit. the quantity < exp(v) > reduces to the ratio

of the number of successful attempts to add a test particle to the total number of

attempts.

We now introduce the reduced chemical potential i(6, T). defined as

i _- In o - In < exp(v^) > . (2.16)

We can see from Eq. (2.15) that p = kTi + Po + Ew" - EtEo:". Since the last three

terms of this expression will cancel in Eqs. (2.6) and (2.7). the phase diagram is

determined entirely by fi. In fact. we can replace p with ft in Eqs. (2.6) and (2.7).

As a shorthand. we will refer to fi as the chemical potential. We use Monte Carlo

simulations to calculate the (quantitv < exp(/i) >.

(ii) We assume that Ihe chemical potential may be represented by an analytic

form. which we use to explicitlv carry out the integration in Eq. (2.7). We will see

in the next section that t lie error introduced by this approach in the reconstruction

of the phase diagraii is smnall. whereas the savings in computational time are great.

We fit the Monte Carlo results Io thle following expression for fi(o, T)

n=l(0. T) - f^cs(o) + A,(T)061. (2.17)

Here

-s = In o - :3 +. (2.18)
(1 - c)

In Eq. (2.18). is.s is the (arnahan-Starling [55] approximation for the chemical

potential of an assembly of hlard spheres. The l ,(T) of Eq. (2.17) are temperature-

dependent coefficients to be deternmined. The parameter 0o is chosen so as to obtain

a smooth representatioii of the chemical potential. If o is too large, the fit tends

to follow in detail the statistical errors of the Monte Carlo silmulation. On the other
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hand, for small no the systematic deviation of the fit from the Monte Carlo results

becomes large. We typically choose no = 4. Note that for /( , T) to have the correct

high temperature behavior (i.e., to reduce to the hard sphere limit), A,(T) must,

to within the accuracy of the Carnahan-Starling approximation (Eq. (2.18)), tend to

zero as c/kT -+ 0. The form of the chemical potential, as given in Eq. (2.17), was

chosen not only because it has the correct high temperature limit, but also because

it properly reproduces the low 6 behavior and it conveniently reduces to the mean

field theory result if we set no = 1. This is discussed further in Sec. 2.3.3.

We estimate T, by extrapolating the chemical potential, as explained below, down-

ward in temperature until we find a point where both Eqs. (2.8) and (2.9) are satisfied.

We perform accurate Monte Carlo simulations at a temperature T, where T1 is within

one percent above our estimated T,, to find it(o, T1 ). Note that the simulations are

all performed in the single phase regime where the system is thermodynamically sta-

ble. We then use the extrapolation procedure described in the next paragraph to

obtain a series of chemical potential isotherms for temperatures below T,. Using

these isotherms we are able to find the locations of the phase boundaries without any

further time-consuming simulations.

To perform the temperature extrapolation. we expand the chemical potential at a

temperature T < T in powers of A = i2 - 1 with = /:kT and 2 -= c/kT2. Here

we take advantage of the fact that the chemical potential is a function of temperature

only through the reduced energy c. To first order we have

T2= Tf (2.19)

As is shown in Appendix C. the derivative O1̂/ai may be written as

a = ( -EiN) (2.20)O8 0 8N v xr
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where E,,t is the average interaction energy of the system. Using Eq. (2.3) we have

1
Eint = -Ncon= - Np E. (2.21)

Here N"on is the average number of protein-protein contacts and q is the average

number of contacts which each particle makes. Substituting Eq. (2.21) into Eq. (2.20),

we reexpress Eq. (2.19) as

t(6 T2) = 1(, T1 ) -2 [7(0 T)]. (2.22)

The quantity T(0, T1) is also calculated during the Monte Carlo simulation at tem-

perature T1 using a cell list [58] to keep track of the number of neighbors surrounding

each particle. Note that - is not equal to < v >. the ensemble average of the number

of contacts made by the test particle, for the test particle is not in thermodynamic

equilibrium with the other particles in the system.

Therefore. once we have performed the Monte Carlo simulation at temperature

T1, we construct fi(o, T2) by using Eq. (2.22). We have found empirically that we

may reliably employ our temperature expansion provided that Ac/E^ is less than ten

percent. At each temperature we fit the Monte Carlo results for the chemical potential

(both those obtained by direct simulation and those obtained from our extrapolation

procedure) by Eq. (2.17) with the appropriate values of the coefficients A,(T). Once

we have an analytic representation for the chemical potential we use Eqs. (2.6) and

(2.7) to calculate the coexisting phases at each temperature and hence obtain the

coexistence curve. In t his way. we have calculated the critical volume fraction 6, the

reduced critical energy ,. the spin odal and the coexistence curve, for a. large number

of square-well reduced ranges A between 1.05 and 2.40.

For the Monte Carlo simulation we randomly place our particles inside a cube

of unit volume with the usual periodic boundary conditions [56]. The hard core

diameter. o-. of the particles was chosen to be in the range 0.14-0.18. so that we have

N = 100-250 particles at the highest volume fractions o =0.3-0.4 for which we perform

the simulation. Note that here 0 - 17 -". To generate a statistical ensemble of
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configurations, the particles are displaced using a time-saving modification of the

well-established NVT Metropolis scheme [57]. In our scheme, as in the Metropolis

scheme, the displacement of a particle is accepted unconditionally if the change in

the total energy of the system, AE, due to the displacement, is negative and with

probability exp(-AE/kT) if AE is positive. From the ensemble so generated, we

may calculate the quantities 7 and < exp(vi) > which are needed in Eqs. (2.16) and

(2.22) to obtain chemical potential isotherms. The quantity < exp(vi) > is found

through the addition of test particles to the system. To accumulate statistically

significant information on the average value of exp(vi). we must continue testing

each configuration of the system until, on average, at least one successful attempt to

add a test particle is made. A successful attempt is one for which the core of the test

particle does not overlap with that of any other particle. Thus, the addition of test

particles not only enables us to calculate the quantity < exp(v) >, but also provides

information on acceptable new positions for the particles of the system. Using this

information, in our scheme we generate new members of the ensemble (as described

in the following paragraph) by moving particles to any acceptable position inside the

simulation volume. This should be contrasted with the standard choice for particle

displacement. Usually. the step size for particle displacement is chosen in such a

way that approximately half of the trial configurations are accepted [59]. This is the

rule of thumb to optimize the speed of evolution of the system. However. since we

are only interested in the chemical potential, we may use the same information for

chemical potential tests and particle repositioning. In this way the system evolves

several times faster than in the standard (small step size) algorithm. Naturally, the

results of the two methods are the same. The use of the same information for chemical

potential tests and particle repositioning in no way biases the results: if we refrain

from calculating the chemical potential we simply have a Metropolis equilibration

algorithm.

W\e describe below our Monte Carlo algorithm. A more detailed flowchart repre-

sentation is given in Appendix D.

The fundamental cycle in our Monte Carlo simulation consists of the following
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sequence of steps : (i) A particle is selected at random. (ii) An attempt is made

to add a new test particle at a randomly chosen position. (iii) If the attempt is

successful, the number of contacts made by the test particle is calculated. (iv) For a

successful attempt, or an unsuccessful one where the test particle only overlaps with

the single particle selected in step (i), the next configuration is created by moving

the particle chosen in step (i) to the position of the test particle. This last move

is accepted in the standard way i.e.. it is accepted unconditionally if the change in

energy due to the move. AE. is negative and with probability exp(-AE/kT) if AE

is positive.

We see that the test particle of step (ii) can be thought of as simply a label for

the position to which we are trying to move the particle chosen in step (i). By steps

(i), (ii). and (iv). we generate the members of the canonical ensemble. Furthermore,

during step (iii). the test particle is also used to calculate the chemical potential of

the system by means of VWidom's formula (see Eqs. (2.11) and (2.16)). The algorithm

we have outlined above is significantly faster than one in which the evolution of the

system, through small steps. is carried out independently of the calculation of the

chemical potential.

For a given reduced range A. we performed our main MIonte Carlo simulation at

a reduced energy. e/'TI. within one percent below the reduced critical energy,

. - r/kT,. as shown in Table 2.1. The reduced critical energy was estimated from

auxiliary simulations )vY using the temperature extrapolation method. Our main

simulation was continlued until the statistical errors in it were no greater than the

uncertainties associated with the analytic fit of jt (Eq. (2.17)). As usual, the system

was allowed to equilibrate before testing for the chemical potential [60]. Extrapolation

and fitting techniques were usedl. as explained previously. to obtain the phase diagram.

It should be noted that the final determination of o, and i,. (through Eqs. (2.8) and

(2.9)) is made by a small extrapolation of the results from the thorough simulation

carried out at 1. Thus. systematic errors in these quantities are very small. The

whole procedure was repeated for a large number of reduced ranges 1.05 < A < 2.40.

In the next section we present the results of our Monte Carlo study.
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2.3 Results and Discussion

2.3.1 Results of this Study

We begin our discussion by illustrating our temperature extrapolation method. In

Fig. 2-1 we compare the direct Monte Carlo results for the chemical potential with

those obtained by extrapolation. The open symbols represent the simulation results

of the chemical potential for A = 1.25 at three different values of the reduced energy

= 1.318 (triangles), 1.267 (circles), and 1.216 (squares). The dashed lines are the

chemical potentials obtained by extrapolating the chemical potential at g = 1.267 to

= 1.318 (coarse dashed line) and to 6 = 1.216 (fine dashed line) using Eq. (2.22).

The solid line is the analytic fit of Eq. (2.17) with no = 4 to the i = 1.267 Monte

Carlo results. We see that the chemical potentials obtained by extrapolating from

E = 1.267 to either e = 1.318 or i = 1.216 (i.e.. ±4% of the original temperature) are

in satisfactory agreement with those calculated directly at i = 1.318 and 6 = 1.216 by

Monte Carlo simulation. We find similar agreement between the simulation results

and the extrapolation method over the whole range of A studied: 1.05 < A < 2.40.

This gives us confidence to use the extrapolation procedure in place of the many

time-consuming simulations that would otherwise be required.

The coexisting volume fractions may then be determined from the chemical poten-

tial isotherms by applying Eqs. (2.6) and (2.7). The points which lie on the spinodal

are given by Eq. (2.10). An example of the construction of the coexistence curve and

spinodal is shown in Fig. 2-2 for the case A = 1.25. The open circles are the Monte

Carlo results for the chemical potential with A = 1.25 and ^ = 1.267. The isotherms

which result from the temperature extrapolation (from = 1.267 to = 1.317 in steps

of 0.005) are shown as solid lines. The coexisting points and spinodal points at each

temperature are shown as dashes and crosses respectively. The coexistence curves so

constructed are shown in Fig. 2-3 for the reduced ranges A = 1.8, 1.5, 1.25, and 1.1.

The coexistence curves become broader as the range of the interaction decreases. and

the corresponding critical volume fraction increases.

In Table 2.1 we list the results for a group of representative Monte Carlo simula-

43
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Figure 2-1: Illustration of the temperature expansion method for A = 1.25. The open
symbols represent the Monte (arlo results for the chemical potential for three different
values of the reduced ener '= 1.318 (triangles), 1.267 (circles). and 1.216 (squares).
The solid line is a fit to the - 1.267 Monte Carlo results using Eq. (2.17) with no = 4.
The dashed lines are the chemical potentials obtained by extrapolating the t=1.267
chemical potential to =1.31S (coarse dashed line) and to =1.216 (fine dashed line).
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Figure 2-2: Reconstruction of the spinodal and the coexistence curve. The open circles
are the Monte Carlo results for the chemical potential with A = 1.25 and F = 1.267.
The isotherms which result from the temperature extrapolation (from 6 = 1.267 to
^ = 1.317 in steps of 0.005) are shown as solid lines. The coexisting points and
spinodal points at each temperature are shown as dashes and crosses respectively.
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the results obtained for the reduced ranges ,=1.8. 1.5. 1.25 and 1.1.
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Table 2.1: Results and parameters from the Monte Carlo simulations at different
reduced ranges A (A = oc is the mean field limit). The quantities presented are:
(i) the critical volume fraction c; (ii) the reduced critical energy ic; (iii) the average
number of contacts per particle at the critical point 77,; (iv) the number of successful
attempts made Kot in units of 106; (v) the reduced energy at which the simulation
is performed i; (vi) the diameter of the particles ou; (vii) the maximum number of
particles used in the simulation AI max; and (vii) the maximum volume fraction qmax.

A
00

Oo

2.40
2.40
2.20
2.20
2.00
2.00
1.80
1.80
1.65
1.65
1.50
1.50
1.40
1.40
1.30
1.30
1.25
1.25
1.20
1.20
1.15
1.15
1.10
1.10
1.05

0.134
0.132
0.140
0.140
0.135
0.135
0.126
0.126
0.132
0.129
0.146
0.149
0.171
0.166
0.172
0.173
0.194
0.193
0.205
0.206
0.219
0.216
0.227
0.227
0.235
0.244
0.246

c0.000
0.000
0.000
0.197
0.197
0.263
0.262
0.361
0.359
0.487
0.48:3
0.610
0.606
0.763
0.773
0.935
0.922
1.129
1.128
1.269
1.270
1.449
1. 443
1.69:3
1.673
2.035
2.038
2.667

Tc
00

00

15.51
15.64
11.81
11.59
8.58
8.45
6.71
6.46
5.95
5.95
5.38
5.33
1.85
4.72-
4.44
4.41
1.27
1.31
4.17
4.09
3.91
3.83
:3.54
:3.63
3.16

K tot

0.5
0.9
1.0
4.7
2.9
1.7
4.1
3.0
6.0

7.3
9.1
12.8
5.5
3.4

20.6
15.5
6.7

21.5
14.0
5.5
17.1
10.7
24.0
31.9
61.6
122.1

0.000
0.000
0.000
0.195
0.196
0.260
0.3260
0.357
0.357
0.480
0.480
0.608
0.605
0.760
0.767
0.930
0.920
1.127
1.127
1.267
1.267
1.435
1.435
1.680
1.660
2.015
2.015
2.650

cT

0.16
0.14
0.16
0.14
0.14
0.16
0.14
0.16
0.16
0.18
0.16
0.18
0.18
0.16
0.14
0.18
0.18
0.18
0.18
0.18
0.16
0.18
0.16
0.18
0.16
0.18
0.18

A 1
max

178
248
140
208
228
140
218
142
148
118
142
110
110
154
218
100
110
110
110
100
169
110
169
110
169
118
125

Omax

0.38
0.36
0.30
0.30
0.33
0.30
0.31
0.30
0.32
0.36
0.30
0.34
0.34
0.33
0.31
0.31
0.34
0.34
0.34
0.31
0.36
0.34
0.36
0.34
0.36
0.36
0.38

1.05 0.273 2.665 :3.42 81.4 2.650 0.18 125 0.38
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tions for different values of the reduced range, A. For each value of A listed in column

1, we present in columns 2-4 the corresponding results we obtained for the critical

volume fraction o, the critical reduced energy i. = E/kT, and the average number

of contacts per particle, V., at the critical point. Note that all the results in the table

were obtained using no = 4. The manner in which we obtained the results in the

A = oo case will be discussed in Sec. 2.3.3.

To gain insight into the accuracy of the results, we varied the conditions under

which the simulations were made. We list in columns 5-9 of Table 2.1 the simulation

parameters that we varied: Ktot, the total number of successful attempts (in units

of 106) made during the testing of the chemical potential at each volume fraction,

the reduced energy, it, at which the simulation is performed, 0u. the diameter of

the particles, Mmax, the maximum number of particles used in the simulation, and

6max, the maximum volume fraction at which the simulation was carried out (note

that 0max = Mmax;ro3/6). For each reduced range presented in Table 2.1. we show

the results obtained with two different sets of simulation parameters. Although it

is difficult to evalute a priori the systematic errors inherent in our method, we may

estimate a posteriori our errors by using the variation in the values of the quantities

of interest: the critical volume fraction c,. the reduced critical energy L, and the

average number of contacts per particle at the critical point . We see that these

quantities vary by no more than a few percent between the different runs for a given

A.

Another source of systematic errors which we inve- tigated is that brought about

by our particular choice of fit to Eq. (2.17). Different fits will result in different values

for the critical volume fraction and the critical temperature. In Table 2.2 we show

the values of 6, and i obtained using different values of no at three different ranges:

,\=1.8. 1.3 and 1.1. We see that the variation in o, and &, due to the change in n0

is of the order of the errors shown in Table 2.1. Thus we conclude that. for no=3.

4. or 5. our results are relatively insensitive to the value of no chosen. However, we

do find that for no below three the fit does not give an adequate representation of

the chemical potential, while for no above five. the fit begins to follow the statistical
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errors of the simulation results.

Table 2.2: Variation of the simulation results with the order of the chemical potential
fit, no.

A no  c 4
1.80 3 0.126 0.466
1.80 4 0.129 0.483
1.80 5 0.132 0.484
1.30 3 0.189 1.131
1.30 4 0.194 1.129
1.30 5 0.196 1.132
1.10 3 0.251 2.006
1.10 4 0.244 2.038
1.10 5 0.245 2.038
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2.3.2 Other Monte Carlo Results

In view of the non-orthodox nature of our calculational procedure, which involves

analytic techniques as well as simulations. it is useful to compare our results with

those available from conventional Monte Carlo simulations. We present, in Fig. 2-

4, the coexistence curves from our simulations at A=1.25 (coarse dashed line) and

1.5 (fine solid line), together with the coexisting points for the same values of A as

obtained by Vega ct al. (open circles and squares respectively) [47]. We can see that

the agreement between the two simulations is satisfactory. even though we extend our

coexistence curves to temperatures significantly below the critical point. Note that

T* = kT/c.

We believe that our approach provides a better waly to estimate O and i, than the

conventional Monte Carlo method. As can be seen from Fig. 2-4. the Gibbs ensemble

Monte Carlo simulations of two coexisting phases [47] are impractical to carry out

close to the critical point. Therefore, the critical parameters of those calculations

must still be obtained from some form of extrapolation. Our simulations are carried

out very close to the critical temperature allowing for a better estimation of 6, and

In Figs. 2-5 and 2-6 \we comipare our deduced critical volume fractions and reduced

critical energies with those found by conventional Monte ('arlo simulations. In Fig. 2-

5. we show our results (solid circles) for the critical volume fraction o as a function

of the reduced range A. We also show in Fig. 2-5 the results for c,. as obtained by

other Monte Carlo simulations: (i) Henderson et al. [45] use an NVT algorithm (open

squares); (ii) V:ega ct al. [tT] use a Gibbs ensemble Monte Carlo simulation (open

triangles) (iii) Lomba rt al. [ 9] iuse a Gibbs ensemble Monte Carlo simulation but

choose a Yukawa potential illstea(t of a square-well (open circles). The corresponding

results for the reduced critical energy (, are shown in Fig. 2-6. \Ve have converted

the Yukawa potential paralntclers into those of an equivalent square-well by taking

the depth of the two potentials to be the same and requiring the high temperature

limit of the second virial coefficients to be equal. The Yukawa potential results of

Lomba et al. [49] illustrate that the phase separation phenomena do not depend on
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Figure 2-4: Comparison of the coexistence curves. The coexistence curves from our
simulations at A=1.25 (coarse dashed line) and 1.5 (fine dashed line) are shown to-
gether with the coexisting points obtained by Vega d al. [47] for the same ranges
(open circles and squares respectively). Note that T = kT/c.
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Figure 2-5: Variation of the critical volume fraction with the reduced range. Our
results (solid circles) are presented together with those of Henderson et al. [45] (open
squares) Vega t al. [47] (open triangles). and Lomba et al. [49] (open circles). The
solid line is a linear extrapolation of our results to A = 1. The dashed line is the
mean field result.
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Figure 2-6: Variation of the critical reduced energy with the reduced range A. Our
results (solid circles) are presented together with those of Henderson et al. [45] (open
squares), Vega el al. [47] (open triangles), and Lomba et al. [49] (open circles). The
solid line is Eq. (2.31) with Tr = 0.13. The dashed line is Eq. (2.30) with a, = 10.6.
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the detailed form of the potential chosen. We see that the mean values we find for 6,

and & are consistent with those found by others. In addition, the uncertainty in our

results is smaller than that obtained bv conventional Monte Carlo simulations.

The effectiveness of our approach is especially important for short range potentials

which are the focus of our study. Monte Carlo simulations become increasingly time-

consuming as A -* 1 [46]. However. the time saved by our use of analytic methods

allows us to thoroughly investigate the short range regime as can be seen from Fig.

2-5.

2.3.3 Connection with the Mean Field and Adhesive Sphere

Models

As we have seen above. our Monte Carlo calculations provide a description of the

phase diagram over a wide domain of \: 1.05 < A < 2.40. It is interesting to examine

these Monte Carlo results in the A -- oc and A - 1 limits where analytic solutions

are available. The A - oc limit corresponds to mean field theory [61], while the

A -- 1 limit corresponds to the adhesive or sticky sphere model [38, 39]. Both of

these limiting theories depend on one parameter only. We will show how the general

two parameter ( and A) square-well potential reduces to these different one parameter

models. We show that we can recover the well-known mean field results [3. 43] and we

determine the domain of A ini which mean field theory becomes a valid approximation.

For the A - 1 limit. the Mointe (Carlo calculat ,n provides us with important estimates

of the critical parameters of the adhesive sphc re model. which have been the subject

of theoretical uncertainty [39].

The connection between the two parameter square-well potential and the two

limiting theories is most readily seen by considering the second virial coefficient B 2(T)

of the square-well potential [62]. where

B, 7 -- {exp[-?i(r)/kT] - 1} d r

= - 4[exp( ) 1](A 3 - 1). (2.23)
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Here term (I) comes from the hard sphere core. while term (II) is the contribution of

the attractive square-well.

Recall that the virial coefficient is defined through the equation of state [63] by

7rpfp '-No

T= + E B , (2.24)
i=2

where rp is the osmotic pressure of the solution and Bi is the ith virial coefficient. For

the interaction between the proteins to provide a physically reasonable equation of

state, the attraction term (II) in B2 (see Eq. (2.23)) must be finite. In the mean field

case, this requirement implies that as A -- oo. we must have -+ 0 (see Eq. (2.23)).

Analogously, for the adhesive sphere model, we must take -+ oo as A -* 1. Therefore,

the second virial coefficients for the two limiting theories are

B'f = 4 - 4 A3 , for mean field (A -+ oo, -- 0) (2.25)

B2 = 4- 12(A - 1) exp( ), for adhesive spheres (A -+ 1,, - oc). (2.26)

Eqs. (2.25) and (2.26) provide relationships between f and A for the two limiting

theories. Thus. if we define the quantities

a =4 a (2.27)

and
1

T= (2.28)
12(A - 1)exp( )'

we see that a is the single parameter which characterizes the mean field theory, while

r is the single parameter which describes the adhesive sphere model. Before we begin

the analysis of our results within the context of the mean field and adhesive sphere

models, we discuss these two limiting theories more fully.

In the mean field limit a is the well known van der Waals term [61] and is a

measure of the strength of the attraction between particles for a long range interaction

potential. Explicity, a is the energy of interaction per particle times the volume over
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which the interaction is felt (in dimensionless units) [36]. Note that in the mean field

limit the chemical potential may be written as [3. 43]

imf = [tHS- 2ao. (2.29)

Here fLHS is the chemical potential of an assembly of hard spheres. In Refs. [3, 43]

the Carnahan-Starling approximation for this term (kcs, defined in Eq. (2.18)) was

used to obtain the critical parameters analytically. Our A = oc entries in Table 2.1

we obtained by calculating fitHs from a simulation of hard spheres. We then used

Eq. (2.29) to obtain the results shown in Table 2.1. These agree with those found

analytically in the mean field limit [3, 43]. We also find a(T,) = 10.6 as predicted

theoretically.

In this short range regime. it is the parameter 7. given in Eq. (2.28), which

characterizes the potential. The parameter 7 was introduced by Baxter [38] and

it is a measure of the stickiness of the adhesive spheres. It may also be thought

of as a dimensionless measure of the temperature of the systems, being zero at low

temperatures and larger at high temperatures [64]. Here the hard sphere model is

regained in the limit of r -+ oc: in this limit B d=4 (see Eqs. (2.26) and (2.28)),

which is the hard sphere result.

We begin our analysis )w considering the predictions of these limiting theories for

the reduced critical energy. ^.. c/IkT,. In Fig. 2-6 we show our simulation results

(solid points) for the reduced critical energy as a function of ln(A - 1). We see that

reduced critical energy increases as the range of the potential decreases. The mean

field result for ., is

A 3  (2.30)

This last equation is derived from Eq. (2.27) and a, is the value of the parameter a

at the critical point. The dashed line in Fig. 2-6 represents Eq. (2.30) with a, = 10.6.

a, value determined analytically [3, 43]. We see that mean field theory gives a good

estimate for &. for reduced ranges greater than A \ 1.10 (i.e.. ln(A - 1) - -2.30).
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As A tends to unity, we may compare our findings with the adhesive sphere results

given by Eq. (2.28). At the critical point r = r, and the relation between 6c and A is

c = - In[127c(A - 1)]. (2.31)

Thus, using our short-range results for c (shown in Fig. 2-6), we may estimate

a value for rc. The numerical value of r is not well-established. Watts et al. [39]

obtained r, by using the Percus-Yevick [37] equation to find an analytic solution

for the equation of state [38] of adhesive spheres. They undertook a calculation of

the equation of state in three distinct ways: through the pressure, compressibility,

and energy equations. The pressure equation gives unphysical solutions while the

other two equations predict different values for 7: 0.0976 (from the compressibility

equation) and 0.1185 (from the energy equation). Neither of these two values is

consistent with our results for c as A approaches unity. For our Monte Carlo results

to asymptotically approach the theoretical predictions. we require 7c > 0.125. We

observe that this lower bound for r7 is larger than either of the two previous estimates

made by Watts ct al. [39]. although the energy equation result T=0.1185 is closer to

the lower bound we find. The solid line in Fig. 2-6 shows a comparison of our results

with Eq. (2.31) for Tr = 0.13.

We may also examine the behavior of the critical volume fraction in the context

of the two limiting theories. In Fig. 2-5 we show the mean field result for Oc as the

horizontal dashed line: o,,=0.130 [3, 43]. VVe note that for the mean field theory to

give an accurate result for o,, the reduced range A must exceed 1.65.

'To compare the Monte Carlo findings with the adhesive sphere model. we ex-

trapolate our results for the critical volume fraction to A=1. If we perform a linear

extrapolation (solid line), we find that oc(A = 1) is 0.266 ± 0.009. The uncertainty

reported in this quantity represents only the statistical errors of our data and does

not include any systematic errors. The critical volume fractions predicted by Watts

et al. [39] are: o, = 0.121 (from the compressibility equation) and 0, = 0.320 (from

the energy equation). The large uncertainty in the theoretical result is due to the
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increasing flatness of the chemical potential near the critical point as A -- 1. This

makes the critical volume fraction very sensitive to the approximations made in the

Percus-Yevick scheme. However, as with the results for Tr, we note that the energy

equation prediction is closer to our value for c, that the prediction from the compress-

ibility equation. We believe that our result. o(A = 1) = 0.266 ± 0.009, represents a

reliable estimate of the critical volume fraction for adhesive spheres. This value of the

critical volume fraction may prove useful as a benchmark for further investigations of

systems with short range interactions.

Another quantity we may examine to elucidate the connection between the lim-

iting theories and the Monte Carlo results is 7, the average number of contacts per

particle. We calculate the dependence of 7 on volume fraction during the Monte

Carlo simulations. This important quantity is the key ingredient in our extrapolation

formula (Eq. (2.22)). The low o behavior of 7 may be examined theoretically. As is

shown in Appendix E. the result is [65]

T7 = (A3 - 1) exp( )o. (2.32)

Equation (2.32) is derived uising the Boltzmann distribution and assuming that the

particles interact inldependently. The assumnption of independent interactions is also

a fundamental postulate in mean field theory and it is justified when the number of

possible contacts is large i.e.. A - o. Thus. Eq. (2.32) should hold for all o in the

mean field limit and where it reduces to 7r,f = SA3 o.

In Fig. 2-7. we show the average number of conta(cs per particle 7 (open sym-

bols). as a function of o for several of the entries in Table 2.1: (i) A=1.05 (il=2.650.

triangles): (ii) A=1.25 ( =1-.267. squares): (iii) A=1.65 (1=0.605. bow ties): and (iv)

A=2.20 (.1=0.260. circles). Recall that K1 is the reduced energy at which the simula-

tions are performed. The straight lines represent Eq. (2.32) with = Ki at each of the

ranges listed above. As expected. Eq. (2.32) fits the Monte Carlo results very well

at low o for all values of A. For a given range A, the deviation of 7 from the direct

proportionality to o expressed in Eq. (2.32) is a measure of the departure from the
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mean field limit. The solid line in the figure is the analytic result for 7- in the adhesive

sphere limit [66] with 7 = 0.13. At low 0, this full expression reduces to - = 26/7, a

result which can be obtained directly from Eq. (2.32). As we see. the average number

of contacts per particle provides direct physical insight into the protein interactions.

We will return to it in the next section.

2.3.4 Comparison with Experimental Data for the 7-crystallin

Proteins

In this section we compare the coexistence curves generated by the Monte Carlo sim-

ulation with the experimentally measured ones [2]. In Fig. 2-8 we present data points

of the reduced coexistence curves (T/T, vs. o) for (inIa (circles). -,IIb (squares), VII

(triangles). and I (bow ties). The experimentally observed value of 6, is 0.21±0.02

for all the ,-crystallins. From Fig. 2-5. this corresponds to a range of approximately

A=1.25. Thus, we also show our -Monte Carlo results for the coexistence curves at

A=1.25 (coarse dashled line').

For comparison, we also present the mean field coexistence curve as obtained

analvticallv (fine dasiled line). Recall that in the mean field case o. = 0.130. Thus

one can understand t he experimnentally observed value of ,_ = 0.21 as arising from

the short range character of the interaction potential. In addition. the Monte ('arlo

results for A = 1.25 )redict a coexistence curve which is twice as broad as the one

obtained by mean field ItleorY. Nevertheless. the predicted width is still about half

that found experimentallyt. Iven if we allow for uncertainty in the value of the critical

volume fraction. and lieiice coinsider smaller values of A. we still find that the curves

generated by Monte Carlo simulation are significantly narrower than the experimental

coexistence curves.

The question of the extra width of the coexistence curves notwithstanding, it

is important to note that the agreement between the Monte Carlo simulations and

the experiment results worsens as A increases. Therefore. it is safe to conclude that

the range of the protein-protein interaction is no greater than A=1.25. Since the 7-
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Figure 2-8: Comparison with the experimental results for the y-crystallins. The
coexistence curve generated by the Monte Carlo simulation for A=1.25 is shown as
a coarse dashed line. The fine dashed line represents the coexistence curve obtained
analytically in the mean field limit. The experimental results of Broide et al. [2] are
presented for YIIIa (circles). -1Ib (squares), -y, (triangles), and YIva (bow ties). The
solid line is the coexistence curve obtained for A=1.25 and a temperature dependent
interaction energy of the form = kTi(1 + TTK), with = -3.
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crystallins are typically 48A in diameter, this sets an upper limit of 12A on the width

of the attractive well of the ;,-crystallins. This is consistent with the conclusions

drawn from structure factor measurements [67]. The information contained in Figs.

2-3. 2-5, and 2-8 shows that A must exceed 1.65 for mean field theory to provide a

satisfactory description of the protein-protein interactions. Our observation above

that A < 1.25 for the ,-crystallins implies that a mean field model is inadequate for

an accurate representation of 7-crystallin phase separation.

We now examine possible explanations for the width of the experimentally de-

termined coexistence curves. Since the interaction between the proteins is in fact

mediated by the surrounding water, we may consider the energy of interaction be-

tween the proteins to be temperature dependent. For example.

T - T,
(T) = (T)( + (2.33)

where K is a constant. In Fig. 2-8. the coexistence curve for A = 1.25 with K = -3

is shown as a solid liine. This curve obviously gives a better fit to the data than

the temperature independent (f = 0) case. It was calculated as follows. In our

simulations we obtain the coexisting volume fractions di and oiz as a function of

= (T)/kT. We imaY use EIq. (2.33) to express the reduced temperature T/T in

terms of L. as

T 1-sT I K (2.34)

This equation allows ,use to convert our values of ^ to reduced temperatures TI/T for

any value of tK. Note that for K=. i.e.. a temperarure independent energy, we have

TIT, =

We see from Fig. 2-8 that the temperature dependence of the interaction energy

in no way affects o,. but ii does increase the width of the coexistence curve. It

remains to be seen whether siuch a strong temperature dependence of c(T) is physically

reasonable.

It is also possible that the observed extra width of the coexistence curve could
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result from an anisotropic character of the protein interaction energy. We note from

our simulations that, as the range of the interaction decreases, j,, the average number

of contacts per particle at the critical point, decreases (see Table 2.1) while the width

of the coexistence curves increases (see Fig. 2-3). From this perspective the large

widths observed experimentally correspond to an effective number of contacts which

is even smaller than that found for short-range isotropic interactions. Such a decrease

in the number of contacts will occur if the true potential is both short-ranged and

anisotropic.

From these considerations an interesting point emerges. We can see from the re-

sults presented in Table 2.1 that for a system with short range attractions (A --+ 1)

each particle already makes only about three contacts at the critical point. An

anisotropic potential i.e., one for which the attraction between proteins depends on

their relative orientation, will cause the average number of contacts per particle to

drop even further and may change the interactions of particles to the point where

phase separation is replaced by reversible aggregation. The experimental results pre-

sented in this section lead us to believe that the proteins we study could be in fact

close to this boundary. Work is currently underway to explore the role of anisotropy

in the relationship between phase separation and reversible aggregation.

2.4 Summary and Conclusions

We have studied the binary liquid phase separation of aqueous protein solutions by

modeling the protein interactions with a square-well potential. We utilize this poten-

tial in a hybrid Monte Carlo method which blends simulations with thermodynamic

extrapolation techniques. In this method. we use the results of Monte Carlo simula-

tions along a single isotherm to construct an analytic form of the chemical potential

for a series of isotherms above and below the critical temperature. This unorthodox

Monte Carlo scheme permits us. by the economy of its design, to reconstruct the

phase diagram of systems over a wide domain of the reduced range of attraction A.

In particular, we have thoroughly explored potentials in the short range regime, with
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ranges as small as A = 1.05. These potentials are especially important for they apply

to many colloidal suspensions, including the -y-crystallin protein solutions which we

have previously investigated experimentally.

Our results provide insight into the central role played by the range of the interac-

tion in determining the shape and location of the phase boundaries. Indeed, we have

found that as the range decreases, the width of the coexistence curve increases and

the critical volume fraction shifts to higher values. As part of our analysis, we have

demonstrated how the two parameter square-well model reduces to the one parame-

ter mean field model as A - x and to the one parameter adhesive sphere model as

A -+ 1. In the mean field limit, we recover the analytic result for the critical volume

fraction, 6c(A -* o) = 0.13. In fact, we find that the mean field model is a valid

approximation provided that A > 1.65. On the other hand, by examining our short

range results, we are able to propose a value for the critical volume fraction in the

adhesive sphere limit, pc(A = 1) = 0.266 ± 0.009. We have also obtained an estimate

for the critical value of the Baxter parameter 7r, 0.13. In view of the uncertainty

in previous analytical findings, we believe that our results will be useful benchmarks

for future theoretical and experimental studies of the adhesive sphere system.

For the -crvstallins. we have experimentally observed a critical volume fraction

of P, ' 0.21 and very broad coexistence curves. These facts imply that A < 1.25, that

is the width of the attractive well of these proteins is no greater than one quarter of

their diameter. Thus. we conclude that the interactions between the proteins fall into

the short range regime and cannot accurately be described by a mean field theory.

Although our simulation results for the critical volume fraction of short range systems

are in agreement with the experimentally observed value, the calculated width of the

coexistence curve is still significantly smaller than that found experimentally. We

have shown that the extra width of the experimental curves may be explained phe-

nomenologically by employing a temperature dependent depth of the attractive well.

However, another possibility is that this additional width may be due to anisotropy

in the interaction potential. Such anisotropic interactions are to be expected in pro-

tein solutions. The calculational simplicity of our hybrid Monte Carlo method should
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facilitate a systematic examination of the effects of such anisotropic interactions.
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Chapter 3

The Solid Phase

Portions of this chapter have already been published in Ref. '19]: N. Asherie, A.

Lomakin, and G. B. Benedek. "Phase Diagram of Colloidal Solutions." Phys. Rev.

Lett. 77. 4832 (1996).

3.1 Introduction

The phase diagramis of colloidal solutions have been studied for over a century not

only because of their great theoretical interest, but also for the many industrial ap-

plications of colloids [68]. The most commonly observed phase transition in colloidal

solutions is solidification. I pon a change in temperature (or other external condition)

the colloidal particles form a condensed phase which may have a regular structure

(crystals) or be amorphous (aggregates). A less frequent transition is liquid-liquid

phase separation (coacervation). Here the colloidal solution forms two distinct liquid

phases: one colloid-rich. the other colloid-poor [69].

These transitions have analogous counterparts in simple molecular fluids. The

solidification of colloids is equivalent to the fluid-solid transition while colloidal liquid-

liquid phase separation corresponds to gas-liquid coexistence. There is however one

striking difference: when most simple fluids are cooled the order of phases observed
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is gas to liquid to solid. In colloidal solutions the colloidal "gas" usually transforms

into a solid without passing through a liquid phase.

We illustrate this anomalous order of phases by presenting in Fig. 3-1 the phase

diagram of y1-crystallin protein [2. 3, 4]. This phase diagram is typical of the 7-

crystallins (a family of monomeric eye lens proteins) and of other small globular

proteins [5, 6, 7]. The circles are points which represent the volume fractions (0)

of coexisting protein-rich and protein-poor liquid phases (liquid-liquid coexistence

curve). The squares (liquidus line) and the triangle (solidus line) respectively repre-

sent the volume fractions of protein in the liquid and solid phases in equilibrium with

each other. We see that there is no triple point and the coexistence curve lies below

the liquidus line. The -- crystallins are an unusual colloidal system in that liquid-

liquid phase separation may be observed despite it being metastable with respect

to solidification. For comparison the phase diagram of argon is shown in Fig. 3-

2 [8, 9, 10]. We see that for argon the critical point lies above the triple point (i.e.,

T, > T,) indicating the presence of a stable liquid phase. Although most colloidal

phase diagrams resemble t hat shlown in Fig. 3-1. a few do show phase behavior closer

to that pictured in Fig. :3-2 '21].

Recently, evidence has accumulated that the interaction range plays a significant

role in determining the structure of the phase diagram [70. 71]. In colloid-polymer

mixtures it has b)een found that the shape of the phase diagram depends on the

ratio of the radius of gyration of the polymer molecules to the radius of the col-

loidal particles [21. 72. 731. Iheoretical models [74. 75] of this system agree with the

experimental observation Ihat with very small polymers (i.e.. very short ranges of

attraction) there is no colloidal liquid phase [21]. Colloids are not the only system for

which the connection between short-range interactions and the structure of the phase

diagram has been noted. Fullerenes, macromolecules of carbon. also do not appear

to exhibit a liquid )phase iupon cooling [76]. Simulations of hard spheres with an at-

tractive Yukawa potential have been carried out to investigate the phase diagram of

the fullerene (CO [8. 49]. It is found that for a sufficiently short-range potential the

coexistence curve lies below the liquidus curve.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0¢/c

Figure 3-1: The phase diagram of jiI-crystallin [2, 3. 4]. The circles are points on the
liquid-liquid coexistence curve (CC). The squares are points on the liquidus line (L).
The triangle is a point on the solidus line (S). The lines are guides to the eye. The
critical temperature is T, = 278.4K. The critical volume fraction is c = 0.21.
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Figure 3-2: The phase diagram of argon [8. 9. 10] showing the coexistence curve

(CC) and the liquidus (L) and solidus (S) lines. The critical temperature is T,c
150.86K. The critical volume fraction is o, - 0.133, assuming a hard core diameter

-= 3.162A [12]. The triple point temperature is T 83.78I\= 0.56T.
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In this chapter we present a general analysis which explains these individual exper-

imental and theoretical findings. In the Monte Carlo work described in the previous

chapter, we studied the liquid-liquid phase separation of globular particles with at-

tractive interactions and obtained numerically the chemical potential of the liquid

phase. Here we present an analytic expression for the chemical potential of a solid

with short-range interactions. Our model of the solid incorporates the same essential

features that were used to describe the liquid phase: the range A of the interaction,

the interaction energy c and the number of contacts n, made per particle. Knowing

the chemical potentials of both phases we are able to demonstrate how the relative

locations of the phase boundaries are related to A and n,.

3.2 The Cell Model

We use the Lennard-Jones and Devonshire cell model [77] to obtain an approximate

analytic expression for the chemical potential of a solid with short-range interactions.

As we did in Chapter 2 (see Eq. (2.2)), we will assume that the effective potential

energy u(r) for a pair of proteins (diameter a) whose centers are separated by a

distance r7 is of the form of an attractive square-well with a hard core as given by

Eq. (3.1) below.

+oc. for 1. < a

u-(r) = -. for a(7< r< A (3.1)

0. for r > Aa

Here A is the reduced range of the potential well and e is its depth. When the interac-

tions are short-ranged (A -- 1) the thermodynamic properties become independent of

the shape of the potential. \We work with the square-well potential rather than other

potentials [48. 49. 78] because it allows for an unambiguous definition of not only the

range of interaction A. but also of n,. the number of contacts made per particle in the

solid phase. Explicitly, n, is the number of particles whose centers lie in the region

a < r < ,a from a. given particle. As is shown in the Appendix F. the square-well
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model produces a very simple form for the chemical potential of the solid ys, namely

Its = y0 - ns(c/2) - kTln[(A - 1)3]. (3.2)

The first term on the right-hand side of Eq. (3.2), to, is the standard part of the

chemical potential. The second term is the total energy associated with each particle.

The last term is the entropic contribution: the volume accessible to the center of mass

of the particle is proportional to (A - 1)3. The proportionality factor, essentially the

volume of a unit cell, has been absorbed into ipo. As we show in Appendix F, this

factor can be calculated within the framework of the cell model [79]. The cell volume,

however, is practically constant. reflecting the incompressibility of the solid phase.

We may therefore choose a cell volume at zero pressure. The corresponding value

of ito is found to be identical to that in the expression [t = to +$ T Inc , which is

appropriate for dilute solutions [80] (see Appendix F).

An important parameter in the chemical potential of the solid is n,. The value of

n, is not known a priori. but determined by the structure of the solid. It is common

practice to impose a particular crystal structure upon the solid when calculating the

chemical potential by choosing the appropriate integral value for n,. In the subsequent

analysis, however, we will treat ?,, as a continuous. phenomenological parameter so

as to subsume within the cell Inodel the actual structure and detailed interactions in

the solid phase of real colloids.

3.3 Results and Discussion

3.3.1 Construction of the Phase Diagram

The liquidus line is obtained by equating the chemical potentials of the solid and the

liquid. The reduced chemical potential of the liquid [I was established as a numerical

function of o and C in Chapter 2. Here we have added the subscript I to the chemical

potential of the liquid to distinguish it from the chemical potential of the solid yt,.

Note that for a protein-water solution /us - p1,()- lf,(). where plp(s) and IL,(s) are
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the chemical potentials of the protein and water in the solid phase. This is analogous

to the representation we used for the liquid phase (see Sec. 2.2 and Appendix A). The

corresponding reduced chemical potential of the solid is given by s [ys - 0l]/lcT

and thus

is = -ns,(/2) - 31n[(A - 1)]. (3.3)

The liquidus line is then given by

Is(E; n)= it(, 0. (3.4)

For any solid with a given value of n,, Eq. (3.4) allows us to construct the liquidus

line, using Eq. (3.3) for fts together with our previous calculations of it. In Fig. 3-3

we show the liquidus lines for several values of n, at A = 1.25: ns = 12.0 (A); n, =

11.6 (B); n, = 11.5 ((C). These were constructed as follows. For any given reduced

temperature T/T,. the equivalent reduced energy i = ic/(T/T,) was found (this last

equation follows from i _ :/kT: we take &,=1.269 for A = 1.25 (see Table 2.1)). The

value of 0 which satisfies Eq. (3.4) for that reduced energy c was then calculated.

This procedure was repeated for temperatures in the range 1.17 > (T/T,) > 0.94 to

generate the liquidus lines shown. The line (D) is the solidus line obtained by using

the volume of a unit cell appropriate to a face-centered cubic solid (ns = 12) at zero

pressure, as is shown in Appendix F. The coexistence curve (E) is taken from our

simulation work in Chapter 2 (see Fig. 2-3). As the value of n, increases liquid-liquid

coexistence becomes metastable with respect to solidification. The shape of the phase

diagram for n, = 12.0 (curves A. D. and E) has the same structure as the one found

experimentally for the -,-crystallins (Fig. 3-1).

We may consider as a measure of the metastability of the liquid phase the "metasta-

bility gap" (TL - T)/T,,. where T, is the critical temperature and TL is the tempera-

ture of the point on the li(quidus line at the critical volume fraction 6,. According to

Eq. (3.4)

= L(3.5)
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Figure 3-3: The phase diagram for a square-well system for A = 1.25. The liquidus
lines for three values of ns are shown: ns = 12.0 (A): n, = 11.6 (B); n, = 11.5 (C).
The vertical line (D) is the solidus for n, = 1.2.0. Curve E is the coexistence curve
taken from Fig. 2-3.
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with = c/kTL. As we have shown earlier (see Eq. (2.22)), the chemical potential

of the liquid at L may be expanded about the reduced critical energy cc

l(Oc- L) = Ail(c, (c) L- 2 )n (3.6)

Here nt is the change in the total number of contacts in the liquid phase upon the

addition of an extra particle at the critical point (nt - [ , in the notation of

Chapter 2.) Let us define n- as the number of contacts in the solid at which TL = T,

i.e., the value of n for which the liquidus line touches the critical point. Thus n* is

given by i,(ic; n.) = [i( ,7). Using this definition of n* and substituting Eqs. (3.6)

and (3.3) into Eq. (3.5) we obtain

TL - Tc ns- ns  (3.7)
(3.7)

From Eq. (3.7) we see that the metastability gap (TL - T)/T, depends on the

parameters n,. n'. and nt. The first of these is determined by the structure of the

solid. We list the other two in Table 3.1. In this Table we show for each value of A,

the corresponding values of n; and nr. Since ,i- and nt are evaluated at the critical

point, these two parameters depend only on A and not on c. We note that for all of

our short range simulations. the quantity n1- - n is in the range 3.2 - 3.8. We also

list the critical volume fraction o, and the reduced critical enervgy , at each range.

Columns 3 - 5 are from t lihe results of Chapter 2 (see Table 2.1). while n-. is obtained

from a numerical solution of tihe equation 7s(,-; n.) = j(6o, &c).

For the solid phase to be more stable than any coexisting liquid phases i.e.. TL >

T,, we require i, > n. IThe maximum number of contacts for hard spheres with

short-range interactions is 12. Therefore at any given range the solid will always be

stable if 12 > u, > n'. As the range decreases so does n. and fewer contacts are

necessary to form a stable solid. Thus. we expect that as the range decreases, there

will be a greater variety of solid structures (characterized by different n.,) which will

be more stable that the coexisting liquid phases. As a result. liquid-liquid phase

separation will be less likely to be observed.
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Table 3.1: Metastability gap parameters at different reduced ranges A (See Eq. (3.7)).
The quantities presented are: (i) the average number of contacts per particle in the
solid n at the metastabilitv boundary (TL = T); (ii) the change in the total number
of contacts per particle in the liquid nt upon the the addition of an extra particle;
(iii) the critical volume fraction oc; (iv) the reduced critical energy ^c.

1.25 11.59 7.84 0.205 1.269
1.20 11.03 7.47 0.216 1.443
1.15 10.45 7.00 0.227 1.673
1.10 9.75 6.57 0.244 2.038
1.05 8.95 5.62 0.246 2.667
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3.3.2 Comparison with Experimental Results

With our approach we may understand the experiments of Ilett et al. [21]. These

authors study colloid-polymer mixtures with different ranges of interaction, and find

at A 1.25 a transition from the type of phase diagram shown in Fig. 3-2 to that

in Fig. 3-1 (they do not observe the metastable liquid-liquid coexistence). In our

analysis this transition occurs when the metastability gap changes sign i.e., when

n* = ns. In the solid phase the colloid-polymer system forms close-packed crystals

i.e., n, = 12 [81]. Thus from Table 3.1 we expect the transition to occur at A , 1.25,

the value observed experimentally. In their experiments only one range of interaction

shorter than the crossover value of A - 1.25 is studied: A = 1.08 [82]. Taking n, = 12,

Table 3.1 implies that at this range the metastability gap of the system is so large

that the coexistence curve lies outside the experimentally examined region. It would

be interesting to search intermediate ranges i.e., 1.08 < A < 1.25, for metastable

liquid-liquid coexistence and compare the values of the metastability gaps with our

predictions.

In Chapter 2 we suggested that the large values of 0' and the broad coexistence

curves observed for the -,-crystallins imply that these proteins lie in the domain

A < 1.25 [18]. W\e inow find that this is precisely the domain where liquid-liquid

coexistence may be inetastable. and in fact this metastability is observed. When

plotted in reduced units t he phase diagrams of each of the -y-crystallins have the

same shape with almost identical values of o, and with approximately the same

size metastability gaps (see Fig. 3-4). The interactions between these proteins may

therefore be described bY potentials with the same range. In addition, all the protein

crystals should have the same value of n.. For (TL - T,)/T 0 0.1. the relation found

experimentally for the -crystallins [3]. Eq. (3.7) gives n. - % 0.35. It is because n,

differs little from ii* that we observe both liquid-liquid coexistence and solidification

for the ,,-crystallins.

Related observations are made by Broide et al. [5] who find that the metastability

gap of lysozvme is unaffected by ionic strength but that it is larger (by 5 - 100 C)

for needle-shaped crystals than for prism-shaped crystals. In our analysis these two
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Figure 3-4: The experimentally determined phase diagram for the 7--crystallins from
Refs. [2. 3]. We present the liquid-liquid coexistence curve and the liquidus line for
,IIIa (circles), 'IIIb (squares). II triangles) and ";rv (bow ties). The solid lines are

guides to the eve.
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types of crystals are predicted to have values of n, - n* differing by approximately

0.05 - 0.1.

The difference seen in Fig. 3-4 between the liquidus lines of yII (triangles) and -Irmm

(squares) may similarly be a reflection of the different crystal structures of these pro-

teins. However. another factor may be causing this difference. It is known that 7yI un-

dergoes rapid aggregation while /IImb does not (see Chapter 4). For the measurement

of the coexistence curve., this aggregation was suppressed by adding dithiothreitol to

the solution of ,II [83]. Such precautions were not taken for the measurement of the

,I liquidus line [3]. It would be necessary to repeat the ,'un liquidus line measurements

under conditions where the aggregation is suppressed to make a proper comparison

with the 'Ijib results.

It has been argued that in the adhesive sphere limit (A -- 1. - 00) there is

no thermodynamically stable liquid phase [84]. Our analysis shows that for a close-

packed system the absence of a stable liquid phase already begins when A < 1.25.
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3.4 Summary

We have presented a simple analytic form for the chemical potential of a short-range

solid in terms of the physically significant parameters of the system: the interaction

range A, the interaction energy ( and the number of contacts made per particle n,.

We have shown how these parameters determine the order of phases found in the

phase diagram. In particular, we have demonstrated that for a given n, a sufficiently

short range of interaction leads to the metastability of liquid-liquid coexistence with

respect to solidification. Conversely, experimental information on the relative order

of the phase boundaries of colloidal solutions gives direct insight into the magnitude

of the physically important parameters A and n,. The theory we have presented ap-

pears capable of explaining the phase diagrams observed in a wide variety of colloidal

systems including globular protein solutions.
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Aggregation and Phase Separation

4.1 Introduction

In the previous two chapters we have seen how the range of interaction of globular

proteins and the number of contacts made in the solid phase determine the positions

of the phase boundaries observed. In particular, the fact that the liquid-liquid coex-

istence curve lies below the liquidus line is a reflection of the shortness of the range

of interaction. There is another important phenomenon occuring in globular protein

solutions which is related to the short-ranged nature of the protein interactions. This

phenomenon is aggregation. Aggregation. unlike liquid-liquid or liquid-solid coexis-

tence. is not a phase transition. Aggregates are amorphous solid structures which are

not in thermodynarmic equilibrium with the surrounding solution [85]. Aggregation is

driven by the specific short-ranged bonding that is present between proteins. Almost

all protein solutions are susceptible to aggregation.

In globular protein solutions, aggregation is in competition with liquid-liquid and

liquid-solid phase separation. Since aggregates do not require the formation of trans-

lationally and rotationally ordered structures. they form more rapidly than crystals.

Thus aggregation often preempts crystallization in a liquid-solid transition. Much

effort has gone into investigating how to prevent aggregation and promote crystal-

lization of globular proteins [82]. There has been, however, much less work done on

the effect of aggregation on the liquid-liquid phase separation of globular proteins.
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In this chapter we describe our study of the liquid-liquid coexistence curve of

oligomers of globular proteins. For our experimental work we will use proteins from

the 7-cryvstallin family. The -- crystallins are a homologous family of monomeric pro-

teins found in the mammalian eye lens. They have molecular weights of approximately

21 kDa and the average hydrodynamic radius for all the -,-crystallins is 2.4 nm [89].

As we stated in Sec. 2.1. the 7->crystallins may be divided into two groups: "high-T,"

proteins, such as IIIa (.c) and -Iva (-E), which exhibit high critical temperatures

(To, 38 0 C), and "low-T'" proteins, such as 711 (yB) and ;,nII, (YD), which exhibit low

critical temperatures (T. 5IC). The critical volume fractions of all the -y-crystallins

are approximately the same oc = 0.21 ± 0.02 [2].

Phase separation and aggregation of the 7-crystallins are involved in the formation

of cataracts [25]. Recently. Pande et al. [23] have observed that liquid-liquid phase

separation temperature (T ,,) of a solution of -; increased with time when the solution

was allowed to stand several weeks at room temperature. These authors argued that

this increase in T,[ was due to the formation of a new protein species, ;IIH. They

isolated this species and concluded that it consisted of two types of dimers of ilI-

crystallin [86]: covalently crosslinked dimers. formed through the oxidation of thiol

groups on the protein. and loosely associated dimers. This work stimulated us to

develop a model system which could be used to understand how small aggregates

affect the liquid-liquid phase separation of globular protein solutions, and in particular

to help us interpret the results found for ^iu-crystallin. VWe believe that the oligomers

that we have produced are such a system.

We decided to work with the protein ^lIIb-crystallin for the following reasons:

IIIIb is a low T protein like ,Ar. These two proteins have almost identical liquid-liquid

coexistence curves (see Figs. 2-8 and 4-7). UTnlike -II. ;'IIIb does not form dimers

spontaneously by oxidation uinder the same solution conditions [87]. This allows us

to produce oligomers of 7 1Ib inl a controlled fashion. Work in this laboratory has

shown that the thiol groups of the ;-crystallins are susceptible to chemical modifi-

cations [25. 86, 88]. In particular. the monofunctional reagent N-ethylmaleimide has

proved effective in modifying thiol groups [88]. We therefore chose a bifunctional
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analog of this reagent, bismaleimidohexane, which has two maleimide groups and

therefore can be used to form oligomers of the protein. The details of the crosslinking

procedure are given in Secs. 4.2.2. Our measurements of the coexistence curves of the

resulting oligomers are described in Sec. 4.3

4.2 Materials and Methods

4.2.1 Preparation of Pure ^-Illb-Crystallin Solutions

The ~YIIjb crystallin used in our study was isolated from 1- to 6-week-old calf lenses,

obtained by overnight express from Antech (Tyler, TX). The monomeric 7-crystallin

fraction was isolated from the soluble protein fraction by size-exclusion chromatog-

raphy on Sephadex G(-75. as described in Thomson et al. [4]. Native 'y-crystallin so

obtained was further fractioned into yqI, ys, II, /III and ",Iv by cation-exchange chro-

matography on Sulfopropyl Sephadex C-50, according to Ref. [14]. Anion-exchange

chromatography on Diet hylaninoethyl (DEAE)-Sephadex was used to fractionate yIII

into 7IIa and iIIIb as described in Broide et al. [2]. Native -,III consists of 4 40% IIIb

and e 60% ;'rma by weight. Immediately after elution. the pure "IIIb fraction was

transferred into 275 mM sodium acetate buffer. pH 4.8. to prevent possible oxidation

of sulfhydryl groups. The purity of the protein samples was at least 98%. based on

both cation-exchange High Performance Liquid Chromatography (CAT-HPLC) and

size-exclusion tHigh Performance Liquid Chromatography (SX-HPLC). These meth-

ods are described in Sec. 4.-12.3.

The purified ;IIIb fraction was dialyzed exhaustively into 100 mM sodium phos-

phate buffer (ionic strength 210 rmM. pH 7.1). which contained sodium azide (0.02%).

The concentrations of the pure 'IIIb samples were determined by -V absorption at 280

nm. as described by Berland rt al. [3]. using the extinction coefficient E 0o*"lcm = 2.11.

The protein volume fraction o was obtained from the concentration C (in mg/ml) by

using the specific volume p with o = VC. We assume that the specific volume of all

the i-crystallins are the same and use the value determined for 'nII. F = 0.71cm 3 /g [31]
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(we will use the above values of Eo'""0cm and i for the oligomers as well). Precautions

were taken to obtain aggregate-free and crystal-free solutions [2. 3, 89].

The next two subsections describe the production and characterization of the

crosslinked oligomers.

4.2.2 Production of Crosslinked Oligomers

The oligomers of 'IHIb-crvstallin were produced by crosslinking the native monomer

protein with the homobifunctional reagent bismaleimidohexane (BMH. Pierce Chem-

ical Company, Rockford. IL) [90. 91, 92]. This reagent is a member of a homologous

series of the form ((1 4H20 2N)2(CH 2),, with n = 6 for BMH [93]. The reagent is in-

soluble in water. but it has been added to aqueous protein solutions as the solid [94].

Since no significant side reactions occur, stoichiometric amounts can be added. For

our reactions the mass of 13\IH used was such that the mole ratio of protein to BMH

was unity. Typically 5 mis of ,IIIb at 30-40 mg/ml (in phosphate buffer) were added

to the appropriate amount of dry. solid BMH (about 2 -3 mgs). The solution was

left to react at room l emperaure while stirring constantly for :3 hours. Since BMH

is insoluble in water tile solution appeared slightly cloudy even at the beginning of

the reaction. However. by I lie end of the reaction the cloudiness had increased, most

probably due to the format ion of large aggregates.

The reaction was not (luenched. but at the end of the three hours the sample was

centrifuged for :30 minutes at 10.000 rpm. The supernatant was removed and filtered

(0.22 micron filter). The resulting solution vas clear. The composition of this solution

was determined bY SX-IIPL(' on a Superdcex 200HR column (see Sec. 4.2.3). Typi-

cally, the solution containedl 30V monomers. 6 0c, dimers and 10% higher oligomers

(see Fig. 4-1). Since this monomer fraction may have been modified by the cross-

linker (e.g., by an intramolecular crosslink) we will refer to this fraction as "monomer

after crosslinking" to distinguish it from the native monomer protein. The individual

oligomers were subsequently isolated by low pressure size-exclusion chromatography

on a XK26/70 Superdex-75 column (Pharmacia Biotech, Piscatawav. NJ) at a flow

rate of Iml/min. with 100 mM sodium phosphate buffer containing sodium azide

84
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Figure 4-1: Size exclusion chromatography results (on a Superdex 200HR column)
for the crosslinked protein after a three hour reaction. The absorbance at 280 nm is
shown as function of retention time in minutes.
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(0.02%). This allowed for a larger scale separation, and with a better resolution, than

was possible with the Superdex 200HR column. The final yields of the oligomers after

the low pressure separation were approximately 15% monomer, 30% dimer and 3%

trimer. These fractions were each at least 99% pure as determined by SX-HPLC. The

good resolution of the low pressure column enabled us also to collect a mixture of

higher n-mers (trimers. tetramers and pentamers).

The structure of BMH and the expected structure of the dimer are shown in Fig. 4-

2. The predominance of the dimer over other oligomers is consistent with the three

dimensional x-ray crystal structure of nIIIb [95]. This protein has five thiol groups,

but only one of these has significant surface accessibility (_, 7A 2). Thus oligomers

greater than the dimer will be very slow to form. In the next section we describe the

characterization of these oligomers.

4.2.3 Characterization of Crosslinked Oligomers

The oligomers were studied bY gel electrophoresis (SDS/PAGE), SX-HPLC. Quasielas-

tic Light Scattering (QLS) and ('.\T-HPLC.

Gel Electrophoresis

SDS/PAGE was carried out on 12( gels in the absence of urea with a Mini-Protean

II electrophoresis system (Bio-Rad). Conditions were as described elsewhere [96, 97].

Gels were run with and without dithiothreitol (DTT). This reagent reduces disulphide

links and has been shown to dissociate "/IIH completely into monomers [23]. The

electrophoresis results dislpaved in Fig. 4-3 show that the major dimer (lanes 5 and

6) and trimer bands (lanes S and 9) have molecular weights of _ 41 kDa and - 62

kDa respectively. This is consistent with the known native monomer molecular weight

of - 21 kDa [98]. Tetramers (, 8.5 kDa) and pentamers (- 97 kDa) were seen in

the high n-mer fraction collected (lane 10). SDS/PAGE experiments following a four

hour incubation with 100mI DTT (data not shown), gave results almost identical to

those dislpayed in Fig. -1-3.

Note that, as expected. the control sample (lane 3) appears identical to the native
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Figure 4-2: The expected reaction of bismaleimidohexane (BMH) with thiol groups
on a protein. schematically shown as P. The final product is the expected structure
of the dimer.
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sample (lane 2). The control was treated exactly as the oligomer samples except that

no crosslinker was added to the solution. The native sample was taken from the pure

lImIb fraction in 275 mM sodium acetate buffer at pH 4.8 (see Sec. 4.2.1).

Size-exclusion HPLC

SX-HPLC was carried out essentially according to Friberg et al. [86] with a Superdex

200HR column from Pharmacia Biotech (Piscataway, NJ); the buffer used was 100

mM sodium phosphate (pH 7.1) with 0.02% sodium azide. The results for the molec-

ular weights of the various oligomers were consistent with those found by SDS/PAGE.

Quasielastic Light Scattering

QLS measurements were performed with a 144 channel Langley-Ford model 1097

correlator and a (Coherent model Innova 90 Plus argon laser to determine the hy-

drodynamic radii (Rh) of the oligomers. To calculate the distribution of sizes of the

scattering particles, we uised the method described in Ref. [99], which was adapted for

the analysis of the homodyne correlation function. The conditions of non-negativity

and smoothness were superimposed on the size distribution to stabilize this otherwise

ill-conditioned problem [100].

Mleasurements were made at (250C() on the monomer. dimer, trimer and n-mer

fractions. The sample conicent rations were 3-5 mg/ml. The results are discussed in

detail in Sec. 4.3.3.

Cation-exchange HPLC

CAT-HPLC was performed using a synchropak CM-300 column from SvnChrom

(Lafayette. IN) as described in Ref. [101]. The results indicated that each oligomer

was )redominantly (>70 ) a single charged species (data not shown).

Our analysis shows that the oligomers of 2'IIIb we have formed consist of stable

complexes whose size and weight are consistent with that of a iIIIb monomeric unit.

We believe that we have successfully produced crosslinked oligomers of IIIb.
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: .

Figure 4-3: SDS/PAGE of the oligomers of TIb11 without DTT. Lanes (left to right):
1 and 7, molecular mass markers (from bottom to top) are 14.4, 21.5, 31.0, 45.0. 66.2
and 97.4 kDa: 2. native ;IIIb; 3. control IIIb; 4, monomer fraction after crosslinking;
5 and 6, dimer fraction; 8 and 9, trimer fraction; 10, n-mer mixture.
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4.2.4 Tph measurements

We obtained the coexistence curve for the oligomers using the method described

elsewhere [35]. We found that concentrating the oligomers with the Ultrafree-4 ul-

trafiltration devices (Millipore. Bedford. MA; molecular weight cutoffs of 5, 10 and

30 kDa) was easier than with the Centricon-10 and Centricon-30 (Amicon, Beverly,

MA) used in previous work [2]. In this work we determined the complete coexistence

curve for the YIIIb dimers. Only a partial coexistence curve could be obtained for

the trimers due to the low yields of material. As has been reported previously for

high T 7y-crystallin monomers [2] and for TIIH [23], we found that our oligomer sam-

ples would often precipitate at high temperatures and high concentrations, making

measurements difficult. The coexistence curve for the native monomer -[Ib has been

published from this laboratory [2]. We also present partial coexistence curves for the

monomer and n-mer fractions collected after the crosslinking reaction.

4.3 Results and Discussion

4.3.1 Coexistence Curves of Oligomers

In Fig. 4-4 we present the coexistence curves for oligomers of y/Ib-crystallin in 100mM

sodium phosphate solution (pH 7.1). We show our results for the YIIIb monomers after

crosslinking (solid bowties). the "IIb dimers (solid circles) and he YIIIb trimers (solid

triangles). The monomer -AIIb (taken from Ref. [2]) is also shown (open squares)

together with our control sample for the monomer (open circles). This control sample

was treated exactly as the oligomer samples except that no crosslinker was added to

the solution. As can be seen in the figure. we find excellent agreement between our

control sample and the results of Broide et al. [2].

The solid lines in the figure are fits to the function [102]

=( 4 T
=A(1 )- (4.1)

oc Tc
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Figure 4-4: Coexistence curves for the oligomers of /'IIIb-crystallin in 0.1 M sodium

phosphate (pH 7.1). Native Y'IIb monomers. from Ref. [2] (open squares); control

71IIb monomers, this report (open circles); /111b monomers after crosslinking (solid

bowties); ^/Ib dimers (solid circles): 'IIIb trimers (solid triangles). The solid lines are

fits to Eq. (4.1).
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4.3. RESULTS AND DISCUSSION

where 7 = 0.325, <0 and 0" are the volume fractions of the dilute and dense coexisting

phases respectively, 6c is the critical volume fraction, Tc is the critical temperature (in

Kelvin) and A is a parameter that characterizes the width of the coexistence curve.

In Table 4.1 we list the values of the parameters oc, T, and A for the native monomer

and for the dimer. Note that the parameter A as defined in Eq. (4.1) is a factor of

two greater than that used by Broide et al. [2].

Table 4.1: Coexistence curve parameters (see Eq. (4.1) in text) for the monomer and
dimer.

Oligomer oc Tc (K) A
Monomer 0.20 ± 0.01 278.4 + 0.2 5.2 + 0.2

Dimer 0.18 ± 0.01 :304.7 ± 0.5 4.2 - 0.2

We note that the dimer has a lower critical volume fraction, a higher critical

temperature and a narrower coexistence curve than the monomer. As will be discussed

in Sec. 4.3.2 this can be ulnderstood in terms of the dimer having a longer effective

range of interaction than the monomer. Infortunately. our data does not allow us

to determine the values of o... T_ and A for the trimers. We however point out that

one important trend is seen in all three systems. At a fixed concentration the phase

separation temperatures increases with the size of the oligomer.

Another interesting resi t we find is that the TO of the monomer samples af-

ter crosslinking (solid bowties) is approximately :30C higher than that of the native

monomer. perhaps dlue to the formation of an interiiolecular crosslink. This reaction

of the crosslinker with the monomer is an important issue to be investigated, but in

the rest of this chapter \we \will coincetrate on the phase separation of the oligomers.

4.3.2 Comparison with Theoretical Models

In Fig 4-5 we show the width of the coexistence curve A and the critical volume

fraction o, for various systems. These are the simple gases nitrogen. carbon monox-

ide. methane. neon. argon. krypton and xenon [12, 103. 104]; the globular proteins

-i-crystallins [2]. globulins [105]. arachin [106]. apoferritin [7]. concanavalin [7] and
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Figure 4-5: The width of the coexistence curve A and the critical volume fraction c
for various systems. The center of each word lies approximately at the values of A
and 6c corresponding to that system.
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lysozyme [89]; and the results for the YIIIb dimer from Table 4.1. The center of each

word lies approximately at the values of A and 6c corresponding to that system. The

boxes are intended to highlight the fact that the systems cluster into groups. The

simple gases all have d, 0.13 and A 3.5. As was discussed in Chapter 2, these are

the values expected for spherical particles with long ranges of interaction [18, 47, 107].

The proteins all have larger values of 6, (0.19-0.21) and A (5.2-8.8). This is due to

the short-range nature of the protein interactions. The larger spread in these values

for each protein as compared to the simple gases reflects the greater experimental

uncertainty in determining o, and .4 for proteins.

We see that the 1'cIIIb dimer lies in between the two groups. This suggests that if we

wish to characterize the dimner phenomenologically, it should be described as having

an effective range of interaction that falls in between that of monomeric proteins and

simple gases. We found in Chapter 2. that as the range of interaction increases so does

the critical temperature (see Table 2.1 and Fig. 2-6). Since the dimer may be thought

of as a longer effective range of interaction than the monomer, we would expect it to

have a higher critical temperature. This is indeed observed experimentally.

We now wish to examine whether the trends we have observed experimentally for

the dimers. namely a higher critical temperature. a higher critical volume fraction

and a wider coexistence curve than the monomer. are general in nature. We do so by

considering several inodels that take into account the dumbell shape of the hard core

of the dimers, which we did not consider in our qualitative discussion above.

There have been several theoretical investigations iinto the free energy of dimers

consisting of two tangent spheres [108, 109. 110. 111. 112. 113, 114]. where both

spheres are assumed to have a given range of interaction. Below we present the free

energies obtained for three models corresponding to different ranges of interaction:

(A) mean field, (B) a square-well potential with A=1.5: and (C) adhesive spheres. As

we have discussed in Chapter 2. the mean field model is equivalent to a long-ranged

(A -+ oc) square-well potential. while for the adhesive sphere the range of interaction

is very short (A -* 1).

For each model. Nwe consider the monomer (denoted by the subscript m) and
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the corresponding dimer (denoted by the subscript d). We give for each system the

reduced free energy per monomeric unit f - F/Nm kT. Here Nm is the total number

of monomeric units (whether free or bound as a dimer) and F is the Helmholtz

free energy of the system. Note that the expressions given below were derived for

one component fluids. However, we are assuming the protein-water solution to be

incompressible and thus its free energy is equivalent to that of a one component fluid

(as is shown in Appendix A). We use the expressions for the free energy of the various

models to numerically determine the coexistence curves. This is done by finding the

coexisting volume fractions o1 and ,I I which at each temperature minimize the total

free energy of the system.

We wish to point out that using our Monte Carlo method (see Chapter 2) we have

alreadv determined the coexistence curves for the monomer systems we are about to

consider. For dimer systems, however, simulations are much more difficult to carry out

and there are no reliable simulations available. Thus to understand our experimental

results we resort to previously published theoretical calculations for the free energy

of the dimers. These are described in the various sections below. For consistency we

use similar calculations for the free energy of the corresponding monomer systems.

As we have mentioned in Chapter 2, theoretical predictions for the free energy of

for the monomer systems are only in qualitative agreement with the results from

simulations. Nevertheless. as we will see below,. they capture the trends observed in

the simulations. Thus we believe that predictions of the calculations for dimers will

also be qualitatively correct. if not numerically accurate. We use these calculations

to illustrate that the relatively short-range of interaction of the monomer plays a role

in shaping the phase diagram of the dimer.

A. Mean field

A1. Monomers. The free energy for mean field monomers we use is [18]

fm = fcs - ao. (4.2)
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Here fcs is the Carnahan-Starling approximation for the free energy of hard spheres [55],

given by

3 - 20
fcs = In + - 6  (4.3)

(1 - 6)2

Note that fcs represents the entropic contribution to the free energy of the monomers,

while -ao is the energetic contribution (see Eq. (4.2)). Here a is the well known van

der Waals term [61] and was discussed in Sec. 2.3.3. For convenience, we repeat here

its definition in terms of the square-well model.

a = 4 A3 . (4.4)

A2. Dimers. The corresponding free energy for mean field dimers is

fJ = fTs - ao. (4.5)

Here fTS is the Tildesley-Street [115] approximation for the free energy of hard di-

spheres, given by

1 3.154575 - 2.20310
.frs =- In + 1.3775151n(1 - o) + - (4.6)

The factor of one half preceding the in o term is due to the fact that we normalized

the free energy to the number of monomer units. The number of dimers is half the

numnber of the constituent mronomers.

B. Square-well potential, A=1.5

The free energies we use for both the monomer and dimer are those obtained by

second order perturbationl t heory about the corresponding hard core system (whose

properties are known from simuilations). W\e use the expression for the free energy as

obtained by Yethiraj and Hall [110]. We have chosen to use the results for A=1.5. for

this is the only range of interaction which lies in between the mean field and adhesive

sphere limits and for which there are published calculations.
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B1. Monomers. For the monomer we have

fm = fcs - if, - 2 f 2)

ff) = -22.563545b +
54.5051575 - 131.45202251) + 80.95349 2

(1- 0) 3

and
0.6320017 + 12.80252795) + 230.526130702

m) (1 + 6.752370) 3

B2. Dimers. The free energy of the dimers is

fd = fTs - c.f(1
l)

- 2f2)

fdl) = -28.72802589o +
56.35234651 - 134.32725376 + 81.56952133 2

(1-o) 3

0.58829498 + 14.591450980 + 366.81848962

(1 + 8.267656) 3 (4.12)

C. Adhesive spheres

C1. Monomers. For the monomers we use the results of Watts et al. [39]. As

mentioned in Sec. 2.3.3. these authors calculate the pair distribution of adhesive

spheres using the Percus-Yevick equation. They use the energy equation to find an

expression for the free energy of adhesive spheres. This is

(4.13).fr = ,c's - 6

where

a = T + -----

with

(4.7)

(4.8)

(4.9)

where

(4.10)

and

(4.11)
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and
(1 + /2)

= )2 (4.15)
S 3(1 - )2

Recall that the parameter r is defined as (Eq. (2.28))

1

r = 12(A - 1)exp( ) (4.16)

Note that we choose to work with the energy equation (see Sec 2.3.3), for it leads

to values of 6c and r, which are close to those we find by simulation.

C2. Dimers. For the dimer we use the expression given by Banaszack et al. [112]

for chains of adhesive spheres. which they obtained from the theory of association of

Wertheim [114. 116]. The free energy of adhesive dimers is found to be

1
.f = fm - ln(oym) (4.17)

where

6T - ( - )1/2] (4.18)

is the cavity function for adhesive monomers.

Coexistence Curves

In Fig. 4-6 we show the coexistelnce curves corresponding to the above six systems

(Al. A2. B1. B2. ('1 and ('2). The temperatures are given in reduced units T/T71

in terms of the critical temperature of the monomer 7 . taken to be the same for all

three monomer systems. To convert the parameter r to a real temperature. Eq. (4.16)

was used with A = 1.05. This leads to a value of ,=2.66. consistent with our Monte

Carlo simulations (see Table 2.1).

\\e see from Fig. 4-6 that the value of o-. and the width of the coexistence curve

for the dimers increase as the range of the constituent monomer decreases. This is

consistent with our previous findings for the monomer. The critical parameters for

each system are given in Table 4.2. In column 2 we present the range of interaction

of the constituent monomer. In column 3 and 4 we show. respectively, the value of 0o
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Figure 4-6: Coexistence curves for (1) monomers and (2) dimers according to various
models. A: mean field (solid lines): B: square-well potential with A= 1.5 (coarse dashed
lines); C: adhesive spheres (fine dashed lines).
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Table 4.2: Coexistence curve parameters for the curves presented in Fig. 4-6.

Model Range Oc critical temperature Tcd Tm
Mean field monomer (Al ) A,\ - 0.130 (0.130) ac=10.6 (10.6)

Mean field dimer (A2) 0.105 ac= 6 .95 1.53
Square-well monomer (B) A = 1.5 0.157 (0.171) c=0.745 (0.763)

Square-well dimer (B2) 0.165 &c=0.596 1.28
Adhesive monomer (Cl) A - 1 0.316 (0.266) r,=0.1164 (0.13)

Adhesive dimer (A2) 0.291 rc=0.1419 1.08

and the critical temperature (expressed as the dimensionless temperature appropriate

for each system) for the the different systems. The values in parenthesis shown in

columns 3 and 4 are those we obtained from our simulation results in Chapter 2 (see

Table 2.1 and Sec. 2.3.3) for t he monomer systems. The ratio of critical temperature

of the dimer T to the critical temperature of the monomer Tm is given in column 5.

When we compare the dimers with their constituent monomers we see that the

critical temperature of any given dimer is higher than that of its constituent monomer

[see columns 4 and 5: recall that a oc 1/T (Eq. (4.4)): N 1/IT (see Sec. 2.2); and 7

increases monotonically with T (Eq. (4.16))]. This increase of the critical temperature

of the dimer can he interpreted, as we did previously. as the dimer having an effectively

larger range of interaction. From column 5. we see that although TI/Tm is always

greater than unity. it decreases as the range of interaction of the constituent monomer

decreases.

We also see that o,. (column 3) of the dimer tc-nds to be smaller than that of the

monomer. This is again consistent with our phenoinenological description that the

effective range of the dlimer is longer than that of the monomer. As we have seen

in Chapter 2. o, lecreases as the range of interaction increases. \Ve note that the

value of c = 0.165 for the \= 1.5 dimer is actually larger than that of the monomer

0c = 0.157. There is however some theoretical uncertainty in these results. for they

depend on which analytic functions are used to express the various terms in the free

energies given ablove. We find from our Monte Carlo simulations that for a monomer

with A=1.5. oQ - 0.171. By comparing the Monte Carlo results with the theoretical
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results for 0, and 6c in Table 4.2. we see that prediction of the theories used for the

monomers are qualitatively correct. although not in strict numerical agreement with

the simulations. We expect the theories for the dimers to be of a similar accuracy.

The trends shown by these theoretical results are consistent with our experimental

findings given in Sec. 4.3.1. The 'IIb dimers have a lower value of 0, and a higher crit-

ical temperature than the monomer, as is found theoretically for the dimer-monomer

pairs. Experimentally we observe Td/Tm = 1.09 (Table 4.1). This is very close to the

value of 1.08 found theoretically for the adhesive dimers and contrasts sharply with

the value of 1.53 found in the mean field limit (see Table 4.2). Of course, the ex-

perimentally observed change in the critical temperatures between the dimer and the

monomer may be due in part to chemical changes brought about by the crosslinker.

However, we believe that the relatively small change in the critical temperature of the

dimer is one more phenomenon which reflects the short-range nature of the protein

interactions.

4.3.3 Effect of Oligomers on the Phase Behavior of Globular

Proteins

In Fig 4-7 we compare the coexistence curves for the oligomers of ,iib-crystallin with

those of 3' 1i-crystallin. The native IIb and -II monomers are shown as open squares

and open triangles respectively. \Ve note that the two coexistence curves are almost

identical. The solid symbols represent our results for the yIIm oligomers: dimers

(circles), trimers (triangles) and a mixture of higher n-mers (squares). We estimated

(from our Superdex 75 separation-see Sec. 4.2.2) that the n-mer mixtures contained

approximately 10% trimers. 70% tetramers and 20% pentamers. The crossed squares

are the results for the partial coexistence curve of YIIH taken from Ref. [23].

We can see from this figure. that although the coexistence curves of the IIIb and

11 monomers are practically the same. the coexistence curve of YIIH is very different

from that of the '"IIIb dimer. even though IIH was suggested to consists of dimers

of u1 [86]. In fact the partial coexistence curve of IIH resembles more closely that
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Figure 4-7: Comparison of the coexistence curves for yjiIb and 7n oligomers. Native

T"IIIb and -yu monomers. from Ref. [2] (open squares and open triangles respectively);
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of the yITHIb n-mers than that of the 'nIb dimers. This suggests that 7IUH, reported

previously to consist of dimers, may in fact contain some n-mers.

There is further evidence that ?IIH may actually contain some higher n-mers. In

Fig 4-8 we show the normalized scattering intensity plotted against the apparent

hydrodynamic radius Rh as obtained by QLS. The results for the hIIIb oligomers

are shown in Figs. 4-8(A-D): native monomer (A); dimer (B); trimer (C) and n-

mer mixture (D). The average hydrodynamic radius < Rh > increases with size as

expected. In Figs. 4-8E and F we present the results for the In monomer and for IIH,

respectively, taken from Ref. [23]. We see that the average Rh of the -u monomer is

26.0O not far from the average Rh of the ^IIIb monomer, 24.9.k. The hydrodynamic

radius for 1'IIH however, differs substantially from that of the YIIb dimer. The average

hydrodynamic radius of MIIH is approximately 36A. significantly larger than the 30A

found for the hIIIb dimer. In addition. the distribution of particle sizes is much broader

for IIH (10-100A) than is seen for the YIIIb dimer (20-40A). We note that for the n-

mer mixture of ~/IIIb the average hydrodynamic radius is 39A with a spread in sizes

(25-55A) which is broader than that of the rIIb dimer. Thus. it is the n-mer mixture

and not the YIIIb dimers. which most closely resembles 'IIH in the distribution of

particle sizes.

In Table 4.3 we show the hydrodynamic radii expected in the limit of zero con-

centration for oligomers made up of tangent spheres. This table has been adapted

from the calculations of Garcfa de la Torre and Bloomfield [117]. Note that Rh(nm) is

the hydrodynamic radius of the spherical monomer.

For the "1IIIb climer we find experimentally that < R1, > / < Rh(m) >m 1.2.

while for /IIH we have < Rb > / < Rh(m) >- 1.4. These values are both close to

those expected theoretically for a dimer (1.38). However. the distribution of particles

sizes is very different for the two samples. The largest particles seen in the .IIIb

sample has only Rh/ < Rh(m) >- 1.6. The results presented in Table 4.3 suggest

that this corresponds to the presence of some trimers in the dimer sample, which is

consistent with the gel electrophoresis results (see Fig. 4-3). In contrast. we see that

;IIH contains particles with sizes up to R1,/ < Rh(m) >- 3.8, which correspond to
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CHAPTER 4. AGGREGATION AND PHASE SEPARATION

Table 4.3: Hydrodynamic radii in the limit of zero concentration for oligomers made
up of spheres [117]. Rh(m) is the hydrodynamic radius of the spherical monomer.

No. of subunits (n) Geometry Rh/Rh(m)
1 Sphere 1.00
2 Dimer 1.38
3 Triangle 1.61
3 Linear 1.71
4 Square 1.82
4 Tetrahedron 1.77
4 Linear 2.00
5 Pentagon 2.04
5 Bipyramid 1.92
6 Hexagon 2.25
6 Octahedron 2.02
6 Trigonal prism 2.07
8 Cube 2.31

very large particles; from Table 4.3 we see that octamers are expected to only have a

size of Rhl/ < Rh(m) >= 2.31. Thus by comparing the QLS results together with the

values presented in Table 4.3 for Rh, we can conclude that the YIIH sample contains a

significant proportion of large oligomers while the TIIb sample is mostly dimers. Note

that for the 'IIb n-mer sample. < Rh > / < Rh(m) > 1.6. which is consistent with

this sample being composed of a mixture of trimers. tetramers and pentamers.

We have seen in Sec. 1.3.1 that at a fixed concentration Tph increases with the

number of subunits in the oligomer. We have argued above that YIIH actually contain

higher n-mers as well. Thus. we may attribute the difference in the coexistence curves

between the ^/IIIb dimers and TIIH to the presence of n-mers in the latter. Of course. it

is possible that part of the difference in the phase behavior may due to the different

chemical nature of the protein oligomers. leading to different energies of interaction.

The '%IIIb dimer contains a crosslinker while the "1IIH dimer is thought to be a mixture of

covalent dimers held together by a disulphide link as well as associated (non-covalent)

dimers [86]. Our results however strongly suggest that these associated dimers can

actually form larger oligomers which lead to the observed QLS and coexistence curve

data.
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4.4 Conclusions

We have produced, through chemical crosslinking, oligomers of the protein 'YII,-

crystallin. We have identified a crosslinking reagent and a set of experimental con-

ditions which enable us to generate large amount of crosslinked oligomers. We have

presented the coexistence curves of the dimer and trimer species. We have observed

that the dimer has a higher critical temperature, a lower critical volume fraction and

a narrower coexistence curve than the native monomer. Our results for the trimer

and higher n-mers have shown that at a fixed concentration the phase separation

temperature increases with the size of the oligomer. We have found that our experi-

mentally observed increase in the critical temperature of the dimer is consistent with

the monomer having a short range of interaction.

We have shown how our results for the dimer can be explained by considering the

dimer to have a longer effective range of interaction than the monomer. We have used

our results to investigate the effect of aggregation on liquid-liquid phase separation

in globular protein solutions. We have observed that the presence of oligomers can

dramatically raise the phase separation temperatures. We have compared our results

with those obtained for "-vi-crvstallin where the formation of a new species /IIH is

believed to raise the phase separation temperature of the protein solution. This work

further strengthens the results obtained previously for ,II. However, we have shown

here that 'YIIH does not solely consist of dimers of -II as previously suggested, but

that these dimers are accompanied by the formation of larger associated aggregates.

The model system we have presented here allows us to produce large quantities

of pure and stable oligomers. With this system we will now be able to construct

multicomponent mixtures of monomers and oligomers which mimic the mixtures of

monomeric protein and aggregates which form naturally in many biological settings.

We believe that the model experimental system we have developed opens the door to

a systematic investigation of the effect of aggregation on phase separation in globular

protein solutions.
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Chapter 5

Conclusions

In this thesis, I have shown how the phase behavior of globular proteins can be

understood in terms of their microscopic interactions.

In Chapter 2. I described how we studied the liquid-liquid phase separation of glob-

ular proteins. The proteins are modeled as hard spheres with an attractive square-well

potential of depth c and reduced range A. We compared the experimentally deter-

mined phase diagram with the results of a modified Monte Carlo procedure which

combines simulations with analytic techniques. The simplicity and economy of the

procedure made it practical to investigate the effect on the phase diagram of an essen-

tially continuous variation of A in the domain 1.05 < \ < 2.40. In particular. we were

able to study. without great computational cost. the domain most relevant to globuar

proteins. that of short ranges of interaction. We calculated the coexistence curves

and found that they are in good agreement with the information available from pre-

vious standard Monte Carlo simulations conducted at a few specific values of A. We

analyzed the experimental data, for the critical volume fractions of the ,'-crystallins

and determined the actual range of interaction appropriate for these proteins. A

comparison of the experimental and calculated widths of the coexistence curves sug-

gests a significant contribution from anisotropy in the real interaction potential of

the -crystallins. The dependence of the critical volume fraction &c and the reduced

critical energy i, upon the reduced range A were also analyzed in the context of two

limiting cases: mean field theory (A --+ oc) and the Baxter adhesive sphere model
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(A -* 1). Mean field theory failed to describe both the value of oc and the width of

the coexistence curve of the iy-crystallins. This is consistent with the observation that

mean field is no longer applicable when A < 1.65. In the opposite case, A --+ 1, we

obtained the critical parameters for ranges much shorter than those investigated in

the literature. This allowed us to reliably determine the critical volume fraction in

the adhesive sphere limit: oc(A = 1) = 0.266 + 0.009.

In Chapter 3, I described how we continued our investigation of the phase diagram

of globular proteins by studying the liquid-solid transition. Here we presented an

analytic expression for the chemical potential of a solid with short-range interactions

by using a simple cell model. We then used this chemical potential, together with

the chemical potential of the liquid phase we had obtained previously, to show how

the relative positions of the phase boundaries are related to the range of interaction

and the number of contacts made per particle in the solid phase. In particular, we

explained how the "minetastability gap" of globular protein solutions (i.e., the difference

between the temperature at which a stable solid phase appears and that at which

coexisting liquid i)hases are first stable) is a manifestation of the shortness of the

range of interaction and of the number of contacts made in the solid phase. The

theory presented successfully describes the features of the phase diagrams observed

in a wide variety of colloidal systems, including globular proteins.

In C'hapter 4. 1 discussed the effect of oligomers on the phase diagram of globular

protein solutions. W\e produced dimers. trimers and larger n-mers of globular proteins

by crosslinking native ,Ilb-crystallin protein. WVe determined the experimental con-

ditions which maximized the yield of the dimer species. \Ve presented results for the

liquid-liquid coexistence curves of the dimers and trimers. We found that at a given

concentration, the t rimers phase separated at a higher temperature than the dimers.

which in turn phase separated at a higher temperatures than the native monomer

protein. In addition,. we observed that the critical volume fraction and the width of

the coexistence curve for the dimers were smaller than those of the monomers. We an-

alyzed the results within the context of the model used to describe protein monomers.

We found that the protein oligomers may be described phenomenologically as having
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CHAPTER 5. CONCLUSIONS

longer effective ranges of interaction than the monomer protein. The experimental

findings were then used to illustrate the relationship between aggregation and phase

separation in globular protein solutions.

The work in this thesis has addressed several important issues regarding the phase

behavior of globular proteins. I suggest below possible further work.

I have discussed in this thesis that the interactions of globular proteins are an-

isotropic. I believe that it would be interesting to extend the work presented in

Chapters 2 and 3 to include anisotropic interactions. Anisotropic potentials should

be investigated not only because they are more realistic, but also because they may

shed light on the connection between crystallization, liquid-liquid phase separation

and aggregation. How is the anisotropy of the interaction related to crystallization,

liquid-liquid phase-separation and aggregation? As illustrated by the work I have

done, isotropic interactions allow all three types of behavior to be observed. However,

for highly anisotropic interactions (e.g., a sphere with two narrow cones of attraction

so that each particle only interacts with a neighbor exactly to its right and left),

liquid-liquid phase separation cannot occur. This is because with such anisotropic

interactions only chains of particles may form. not the drop-like clusters needed to

create new liquid phases. Therefore. by systematically making the interaction between

particles more and more anisotropic. it should be possible to observe a change in

behavior from liquid-liquid phase separation to aggregation.

It is also important to carry out more experiments to study how the microscopic

interactions affect the p)hase diagrams of proteins. I believe that the work which I

described in Chapter 4. related to the phase diagram of crosslinked oligomers, should

be extended. If sufficient protein is available. it would be interesting to measure

the complete coexistence curve of the trimers (and those of higher n-mers). This

study could then be continued to characterize the behavior of other phase separating

globular proteins. such as lysozyme or other members of the -crystallin family, to

see if the universality of the monomer phase diagram is repeated for the oligomers.

Another possible extension would be to explore the role of the crosslinker. At its

simplest. this would include ihe specific chemical effects of a given crosslinker on a
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protein, and hence on its phase behavior. However, a more appealing possibility is

to vary the length of the spacer arm in the crosslinker and study the effect of the

distance between the constituents of the oligomer on the phase behavior. I would

expect this to produce dramatic results, for in the limit of a very long spacer arm

the oligomers should behave like a polymer even though each of the constituents is

short-ranged.

I hope that the work presented in this thesis will encourage others to explore the

phase behavior of solutions of globular proteins.
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Appendix A

The Incompressible Protein-Water

Solution

In this Appendix we show the equivalence of the thermodynamic descriptions of an

incompressible protein-water solution and that of a compressible one component fluid.

Consider a solution of N2 protein molecules and N, water molecules at pressure

P and temperature T. Let the chemical potential of a protein molecule be p and

let that of a water molecule be fw,. We assume that the protein-water solution is

incompressible. Therefore the volume of the system may be written as

V= NP + A Q,,. (A.1)

Here Q~ is the volume of a protein molecule and .,, is that of a water molecule.

The equivalence between the incompressible protein-water solution and a com-

pressible one component fluid is most easily seen by considering the Helmholtz free

energy F ( T, V. A,, VI, )

(Id F(T, V, _N. I,, ) = -S'dT - PdV + ptdN, + ps,ddN,,. (A.2)

where S5 and P are, respectively, the entropy and pressure of the system.

Equation (A.1) allows us to eliminate the variable N,, from the free energy. From
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this equation we write
1

cdN, = dV - -dN,, (A.3)

where y = Qp/ , is the ratio of the volume of one protein molecule to the volume of

a water molecule.

Substituting Eq. (A.3) into Eq. (A.2) we obtain

dF(T. V, Np, N )= -SdT - (P - -)dV + (tp - -,p)dNp . (A.4)

The quantity x, -- -t,/, is the osmotic pressure of the solution.

We now compare Eq. (A.4) with the free energy of a compressible fluid of Np

particles at temperatute T with volume V. This free energy is

dF(T. I. N_,) = -SdT - PdV + idNp. (A.5)

Here S is the entropy and P is the pressure of the fluid. The chemical potential of

the fluid is p.

By comparing Eqs. (A.4) and Eqs. (A.5) we see that the free energy of an in-

compressible protein-water solution is formally equivalent to the free energy of a

compressible one component fluid consisting of N. particles in a volume V at tem-

perature 7. lThe effective chlelical potential liff = , - p, is equivalent to the

chemical potential p of the fluid. The total pressure P + 7 of the protein-water

solution corresponds to the pressure P of the fluid.

Note that since the protein-water solution is incompressible its free energy is in-

sensitive to external pressure J) applied to it. We may therefore consider the external

pressure to be zero. In this case. the equivalent pressure in the one component fluid

is simply the osmotic pressulre . The relationship between the two systems is sum-

marized in Table A.1.
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APPENDIX A. THE INCOMPRESSIBLE PROTEIN-WATER SOLUTION

Table A.1: Corresponding variables for the incompressible protein-water solution (at
zero external pressure) and the compressible one component fluid systems.

Incompressible protein-water solution I Compressible one component fluid
Number of protein molecules. ,N~p

Helmholtz free energy, F(N!, V, T)
Chemical potential. tp, - 7,

Osmotic pressure 7

Number of particles, ,V
Helmholtz free energy, F(N,, 1/, T)

Chemical potential, t
Pressure P

113



114



Appendix B

Widom's Formula

Here we present the original derivation of Widom's formula [54] for the chemical

potential of a system of N identical particles, without internal degrees of freedom, in

a volume V at temperature T. The equivalence of the thermodynamic descrptions of

this system and that of the protein-water solution is discussed in Appendix A.

In the canonical ensemble the chemical potential is given by

OFF = F(N + 1. V. T) - F(N. V, T), (B.1)
V.T

where F is the Helmholtz free energy.

The Helmholtz free energy F is defined as F(N, V. T) = -kT In ZN( V. T), where

ZN is the partition function of a system of N particles. The chemical potential can

therefore be written as

t= -kT In (ZN+(V, T) (B.2)
SZv(V. T)

The ratio of the two partition functions is given by

Zs+ 1 exp(-!3EN+l{ri, pi}) '+1 d3 rid3pi
_=1 (B.3)

Z (.V+ 1) f exp(-3ENv{ri,Pi}) 1 d=13rjd3 pi

where Ex and E+l are the energies of the system with N and N + 1 particles

respectively. The p)osition and momenta of the particles are denoted by {ri,Pi}. The
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factor 1/(N+1) is due to the indistinguishability of the particles. As usual / = 1/kBT

Now we split the energies into kinetic (K) and potential (TW) contributions i.e.,

EN{ri,pi} = KiN{Pi} + W-v{ri} and similarly for EN+l. We then perform the inte-

gration over the momenta coordinates to obtain (assuming N > 1)

ZN 1  1 f exp(-/3U{ri}) exp(-/3W{ri}) IN1 d3r(
N = V- (B.4)

ZN N V f exp(-3W {ri}) I i= 1d3ri

Here VF is the Fermi volume. which comes from the extra momentum integration in

the numerator. We have also written WN+l{ri} = WN {r;} + U{ri}. Thus, U{ri}

is the extra potential energy associated with adding the (N + 1)th particle into the

original N particle system.

Clearly IN{r/} is a function of {ri, r2 ... r-v}, while U{r;} is a function of

{ri, r 2 ,... rN, r.N+1}. However. if we assume that the system is translationally in-

variant, then the potential energies are only functions of the distances between the

particles i.e., of ri - r where i f j. Thus, by changing coordinates so that the

origin is centered at the position of the (N + 1)th particle. namely r =ri - TN+1,

with i = 1, 2, .... w.e can write Eq. (B.4) as

ZN+1 t_ 1 d fexp t-3. {r})exp( -3WN{r })(d 3 r+1V) d r B
(B.5)

ZNv J fexp(-3,Iv {r}) l-I 1  cd3l

and hence

ZN+ ( ' f exp(-3Uf{7})p(p(- 3Iv {r }) l dr (.6)
Z. A fJexp(-31W1{r }) Hj'd 3 r(

Let us define

f exp(- 3U{ri }) exp( - 31''W{r}) IF'I  d3 (i
< exp(-,') >- (B.7)f exp(- 31v -{ri}) FH d3 r B

The canonical average symbolized by <> may be interpreted as follows. Imagine

that the system of N particles. with potential energy W' v{r }, and which is in ther-

modynamic equilibrium. is suddenly frozen into one of its possible equilibrium con-
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figurations. Now add to the frozen system another particle, identical to the others,

and let it wander amongst the fixed particles, measuring at each point the value of

exp(-/3U{r }). The average value of this function is represented by <>.

Using our definition in Eq. (B.7) we can write Eq. (B.6) as

ZN+1(V\
ZN = (' )< exp(-3U)>. (B.8)

We can insert Eq. (B.8) into Eq. (B.2) to obtain

p = -kT In < exp(-fU) > . (B.9)

Now we use the definition of the volume fraction - Np/ V--where QR is the volume

of one particle--to rewrite Eq. (B.9) as

t = io + kT In o - kTln < exp(-U:/kT) >, (B.10)

where

po = -kTln(,l/Vy), (B.11)

is the standard part of the chemical potential. Equation (B.10) is directly analogous

to Eq. (2.11) used in Sec. 2.2.

117



118



Appendix C

Chemical Potential Extrapolation

In this Appendix we derive Eq. (2.20), namely

N1 ( i t= d,, (C.1)

which is used in Sec. 2.2 to derive the chemical potential extrapolation formula

(Eq. (2.22)).

The chemical potential is given by Eq. (2.16):

^ = In 6 - In < exp(vi) >. (C.2)

Here v is the number of new contacts made by the test protein. given by (see

Eq. (2.14))

V NVon(Np + 1) - con(-\Np) (C.3)

The canonical average of the second term in Eq. (C.2) may be written explicitly

as (cf. Eq. (B.7))

< exp(vi) > S< exp{ [N,,(-on, + 1)- (Np)]} >

Jf exp[N-on( p\ )] 1i= d3 r (C.4)

Recall that N,,o is a, function of the positions of the particles.
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Substituting Eq. (C.4) into Eq. (C.2) gives

it = In 6 - In{ exp[NCon(N, + 1)^] 1 d3 rl} + In{ exp[Neon(Np) ] fj d3 r}.
i=1 z=1

(C.5)

Differentiating Eq. (C.5) with respect to i we obtain

__ N- < No (N ) >
= - (< NYon(N + 1) > - < Neon(NV) >) < o;n (C.6)

The average interaction energy Ef, is given by E,, = - < No,,(Np) > 6 (see

Eq. (2.3)). Thus Eq. (C(.6) may be written as

1 (&Es,,
= - -

Equation (C.7) is the dlesired result.

120

(C.7)84-



Appendix D

Flowchart of the Monte Carlo

Algorithm

In this Appendix we present the flowcharts which schematically describe the Monte

Carlo algorithm developed by Dr. Aleksey Lomakin (see also Sec. 2.2).

Figure D-1 illustrates the main operations of the algorithm. These are (the num-

bers refer to the boxes in the figure):

1. The initial configuartion is set up. The number of particles N determines the

value of o for the simulation as we fix the diameter of the particles beforehand.

The variable SuM accumulates the sum of the exponents exp(v), where is the

reduced energy and vi is the number of contacts made by the test particle (see

Eq. (2.15)). T he quantity exp(vi) is used to calculate the chemical potential

(cf. Eq. (2.16)). The variable K keeps track of the number of attempts made

to add a test particle.

2. A particle (the ith particle) is chosen at random. The number of contacts rq

made by this particle is calculated and stored. It is by accumulating information

on the number of contacts made by each particle that -, the average number

of contacts per particle, is calculated. Recall that this quantity appears in the

extrapolation formula for the chemical potential Eq. (2.22).

3. A position X,Y.Z in the simulation box is selected at random.
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The main procedure of the Monte Carlo algorithm

Place N particles at random
1 in a Ilxxl box.

Sum=O; Number of attempts K=0;

Choose a random integer i between I and N.

2 Calculate the number of contacts il of ith particle.

Generate three random numbers X, Y, Z between
0 and 1. These define a new position inside the box

Does hard core corresponding to position
X, Y, Z overlap with the hard core of any
other particle (except ith ) in the box?

Yes

No

Increase K
by one.
If K > Kmax

then report
jt and end.

Calculate number of contacts 12 at

position X, Y, Z, excluding ith particle.

6 Calculate chemical potential. .

Calculate A=-E(l 2-fl 1). Generate a
random number W between 0 and 1.

Is exp(-A/kT) > W?

Yes

9 Move ith particle to position X,Y,Z.

Figure D-1: A flowchart for the main routine of the Monte Carlo algorithm.
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4. An attempt is made to add a test particle to the the selected position. If there

is an overlap with the hard core of any particle (except the ith particle of step 2)

the attempt to add the particle is deemed unsuccessful and the program returns

to step 2 (via step 10-see below).

5. The number of contacts made by the test particle r2 is calculated. The ith

particle is excluded from this calculation.

6. The chemical potential is calculated. For lack of space, this step is shown in

detail in Fig. D-2 and explained below.

7.-9. The Metropolis equilibration algorithm. The difference in energy A between

the test particle and the ith particle is calculated. If this is negative then

the condition in step S will always be true and the ith particle is moved to

the position of the test particle. If A > 0 then the move is accepted with a

probability of exp(-A/kT).

10. After both an unsuccessful addition of the test particle (at step 4) or a successful

addition which leads to the Metropolis algoritm (steps 7-9) the variable K,

which records the number of attempts to add a test particle, is increased by

one. If the total number of attempts K to add the test particle is greater than

a, specified maximum ,,a, (typically 107). the program reports the value of the

chemical potential and terminates.

Figure D-2 illustrates the calculation of the chemical potential in step 6. The

steps in this procedure are (the numbers refer to the boxes in the figure):

1. The procedure first program checks if the number of attempts K to add a test

particle is greater than a specified minimum Ko (typically. 104). If it is, then

the procedure continues in its calculation of the chemical potential. If K < K0o

then the chemical potential is not calculated and the routine continues with a

Metropolis equilibration algorithm (steps 7-9). This is done to ensure that the

chemical potential calculations are not biased by the choice of initial conditions.
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Step 6: calculation of the chemical potential

From step 5
(main procedure)

1 IsK>K 0 ?

Yes

No

Does hard core corresponding to position
X, Y, Z overlap with hard core of ith particle?

No

Is the position X, Y, Z in contact with

the ith particle?

No

Add exp [(12+l)] to Sum Add exp(l2) to Sum

6 u = In 0 - In [Sum/(K-KO)]

To step 7

To step 7
(main procedure)

Figure D-2: A flowchart for the calculation of the chemical potential.
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APPENDIX D. FLOWCHART OF THE MONTE CARLO ALGORITHM

2. A check is made to see if the hard core of the test particle overlaps with that of

the ith particle chosen previously. If it does, the program returns to the main

procedure (the equilibration algorithm in steps 7-9) and there is no contribution

to SUM. If there is no overlap, the chemical potential calculation continues.

3. A check is made to see if the test particle and ith particle are in contact.

4. If the two particles are in contact, then the total number of contacts made by

the test particle v is 'q2 + 1 (r12 is the number of contacts of the test particle as

determined in step 5 of the main procedure). SUM is increased by exp[(2 + 1)].

5. If the two particles are not in contact, then the total number of contacts made

by the test particle v is 112. SUM is increased by exp(Yr2 ).

6. After either step 4 or 5 the chemical potential is calculated. Note that once

the system is in equilibrium. then SuM/(K - K0 ) is equal to < exp(vi) > (cf.

Eq. (2.16)). The program then returns to the equilibration algorithm (steps 7-9

of the main procedure).

The savings in compuational time with respect to conventional algorithms comes

from using the position of the test particle both as a means to calculate the chemical

potential (in step 6 of the main procedure) and as a way to equilibrate the system

(steps 7-9 in the main procedure i.
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Appendix E

The Number of Contacts

In this Appendix we derive Eq. (2.32), which describes the low 0 behavior of 7, the

average number of contacts per particle. The result is [65]

q = 8(A3 - 1)exp(i)>. (E.1)

Equation (E.1) is derived as follows. In the low € limit we may assume that the

particles make contacts independently of each other. That is, the probability two

particles are in contact is independent of the presence of any third particle. Thus -,

the average number of contacts made by each particle. may be written as

-q = pcon . (E.2)

where pon is the probability that the particle makes one contact and _ is the total

number of particles in the system.

Now the probability con, will be proportional to the Boltzmann factor exp(),

where = e/kT. for the attraction between particles increases the chance that they

will be near one another. However. for particles to be in contact their centers must

lie with a distance u < r < Ao, of each other (see Eq. (2.2)). Thus the probability

that two particles are in contact is given by
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Pcon = V exp(i). (E.3)

Here V is the total volume of the system and uco is the volume in which the center

of a particle may be located while still being in contact with a given particle. For a

contact the centers of two particles must lie within a distance a <_ r < A( of each

other. Therefore vcon is given by

Ocon (A3 - 1) 8Qp(A3 - 1), (E.4)
3

with Qn 7ar3/6. the volume of one particle. since the hard core radius of a particle

is o/2.

Therefore. substituing Eqs. (E.3) and (E.4) into Eq. (E.2) we obtain

T = 80p(A3 - 1) exp( ) .  (E.5)

Using the definition of o - Qp/V, this may be rewritten as

hi = 8(A 3 - l) exp(e). (E.6)

which is the desired result.
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Appendix F

The Chemical Potential of the

Solid

In this Appendix we present a derivation of the chemical potential of the solid as

given by Eq. (3.2) in the context of a simple cell model [79]. The solid consists of

N identical particles. in a volume V, at temperature T. This is analogous to the

representation we used for the liquid phase (see Sec. 2.2). The equivalence of the

thermodynamic descriptions of this system and that of the protein-water solution is

discussed in Appendix A.

As stated in Section 3.2. we will assume that the particles interact in a pairwise

additive fashion through a square-well potential of the form

+oo, for r < a

1u(r) = -,for a < r < At (F.1)

0, for r > Aa

The equation to be derived is

it, = /1t - n,(c/2) - kTln[(A - 1)3]. (F.2)

The cell model is based on the idea that each molecule in a solid is confined by its

neighbors. We picture the neighboring molecules as forming a cage or cell in which
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the central molecule moves. The size of the cell at equilibrium is determined by the

external pressure p, through (OF/V)N,T = -p, where F is the Helmholtz free energy

of the system. As we discussed in Sec. 3.2, we will neglect the small compressibility

of the solid and calculate the partition function. and hence the chemical potential of

the solid, at zero pressure.

In the simple cell model which we adopt, these are the fundamental assumptions:

1. The solid consists of a regular lattice of particles.

2. Each particle moves independently in a cell, caged in by its neighbors, in a

potential provided by the neighbors when they are all at their lattice positions.

Since the particles are assumed to move independently, the partition function of

the whole system Z(N. V. T) is

Z(N. V1 T) [= Z(, T)/VF]v. (F.3)

where IV is the Fermi volume and Zi(V. T) is the configurational integral for one

particle. The configurational integral is defined as

Zi ( .T) - exp[- w(p)kT](d"p. (F.4)

Here tw(p) is the potential provided by the neighbors and p is the radial distance a

particle moves from the center of its cell with all of its neighbors remaining at their

lattice positions. Note that. folllowing the approximations made by Lennard-.lJones

and Devonshire. \we have written the potential energy tL(p) in its spherically averaged

form. It has been shown Ihe error introduced by this approximation is small [79].

The integration in Eq. (F. 1) is to be taken throughout the interior of the cell.

If we can evaluate Z1. we can calculate the partition function and hence the

chemical potential of the solid. To do so we need to (i) specify the geometry of the

integration and (ii) represent the quantity t,(p) so as to calculate ZI. For convenience,

we shall assume that the lattice of particles is a face-centered cubic lattice i.e.. each

particle has twelve nearest neighbors. Our derivation is easily modified for other
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geometries. We will take distance between adjacent particles (the lattice spacing) to

be au. Since the particles are spheres of diameter o, a is simply the ratio of the

lattice spacing to the diameter of the particle. Clearly, a > 1. We will determine the

equilibrium value of a by minimizing the free energy of the solid at zero pressure.

We are now going to compute the configurational integral Z 1 (see Eq. (F.4)) as a

function of a. We will start from the close-packed solid with a = 1 and then let a

increase monomtonically. The pair potential is assumed to be short-ranged, so that

only nearest-neighbors interact. When a particle is at the center of its cell it is in

contact with all of its neighbors. Recall (see Sec. 2.1) that two particles are said to

be in contact of their centers lie within a distance ar < r < Act of each other. Thus

w(p = 0), the potential energy of a particle when it and its neighbors are at their cell

centers, may be written as

w(p = 0) = -n 6/2, (F.5)

with n, the number of nearest neighbors. For our geometry n = 12, but we leave n, as

a general quantity since this derivation will be applicable to other lattice geometries.

Note also that for this geometry of the solid, it is the hard core repulsion of the

neighbors which limits the displacement of particles in their cells. In Fig. F-1A we

show the solid for the case where a - 1. The large solid circles represent the hard

cores of the particles, diameter o-. The small solid circle encloses the region where

the center of the central particle may move without overlapping the hard core of a

neighbor. Recall that. due to the hard core repulsion, the closest the center of the

central particle mnay be to the center of any of its neighbors is a distance a. We call

the region enclosed by the small solid circle the "sphere of excursion". This sphere

has a radius of (a - 1)or. The clashed circle encloses the region where the central

particle could move and still be in contact with all of its neighbors. We call this

region the "sphere of attraction". This sphere has a radius of (A - a)oa.

In Fig. F-1B the sphere of excursion and sphere of contact are shown separately.

The particle can only move in the sphere of excursion. Therefore, the hatched region
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Sphere of excursion
(inner sphere)

r, = (X-l)(5

hard core

r

Sphere of attraction
(outer sphere)

r2 = (X- c)T

Figure F-1: (A) The solid for the case where o I 1 and A > 1. The large solid circles
represent the hard cores of the particles. The small solid circle encloses the region
where the center of the central particle may move without overlapping the hard core
of a neighbor ("sphere of excursion"). The dashed circle encloses the region where the
central particle could move and still be in contact with all of its neighbors ("sphere of
attraction"); (B) The sphere of excursion and sphere of attraction shown separately.
The hatched region is excluded to the particle for it cannot move beyond the sphere
of excursion.
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is forbidden to the particle. Since the sphere of attraction is greater than that of

excursion, the particle makes all n, contacts throughout the sphere of excursion.

Therefore w(p) = -n 8s/2 for p < (a - l)a,. Hence for the domain of a shown in

Fig. F-1 the configurational integral is easily calculated from Eq. (F.4) as

Z+ = 47r exp[-(p)/kT]p2dp = 3(a - 1) exp(ni/2), (F.6)

where we have used the notation i - E/kT. Here the superscript + is used to denote

the case where the sphere of excursion is smaller than the sphere of attraction. This

domain applies as a increases relative to A until the point is reached that the sphere

of excursion attains the same radius as the sphere of attraction. Since the radii of

these sphere are, respectively, (a - 1)o and (A - a)o, the condition for congruence is

a - 1=A - a or a = (A + 1)/2. Therefore the upper limit of validity of Eq. (F.6) is

a = (A + 1)/2.

We now consider the domain where a > (A + 1)/2. The geometry of this domain

is illustrated in Figs. F-2A and B. The symbols are defined as for Fig. F-1. In

this domain the sphere of attraction has a smaller radius than that of the sphere of

excursion. As a result, the configurational integral has a different dependence on a

than for the domain a < (A + 1)/2. Within the sphere of attraction (p < (A - a)a),

the particle makes all of its attractive contacts and thus w(p) = -nE/2. In the region

outside the sphere of attraction, but within the sphere of excursion (the gray area in

Fig. F-2B), the particle will lose of some of its contacts. Therefore in this region we

may write zw(p) = -n,E/2 + he. where Kh > 0, and Ke represents the average attractive

energy lost in this region.

The configurational integral in the a > (A + 1)/2 domain contains two terms,

corresponding to the white and gray regions in Fig. F-2B. They are (using Eq. (F.4))

Z = 47r expfn/2] pl'dp + 4w exp[n/2] exp[-tNJ] ( ) p2dp. (F.7)
3 JA ( )- or
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Sphere of excursion
(outer sphere)

r, = (a-1)o

hard core

Sphere of attraction
(inner sphere)

r2 = (,-)cc

Figure F-2: (A) The solid for the case where a - 1 > A - ., i.e., a > (A + 1)/2.
The large solid circles represent the hard cores of the particles. The small solid
circle represents the sphere of excursion. The clashed circle represents the sphere of
attraction; (B) The sphere of excursion and sphere of attraction shown separately. In
the gray region the particle (toes not feel the attraction of all of its neighbors.
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Here the superscript - is used to denote the regime a > (A + 1)/2.

We are interested in the short-range (A - 1) and hence deep well (f - 00) limit

of the pair potential, for this is limit which corresponds to the interaction of globular

proteins. In this limit the second term in Eq. (F.7), which comes from the gray region

in Fig. F-2, makes only a small contribution to the configurational integral (since it

is smaller than the first term by a factor of - exp(-i~i)) and Eq. (F.7) becomes

approximately

Z = 4 3( - a) 3 exp[n,2/2]. (F.8)
3

Substituting Eq. (F.6) or Eq. (F.8) together into Eq. (F.3) we obtain the partition

function in the two domains. namely

4 7r o3
Z+(N, a. T) = [- (a - 1) exp(ns/2kT)]N. (F.9)

3 VF

for a < (A + 1)/2 and

Z-(N, a. T) = [ - (A - a) 3 exp(nsc/2kT)] . (F.10)
3 VF

for a > (A + 1)/2.

The behavior of Z as a function of a is shown in Fig. F-3. It can be seen that the

partition function is a maximum i.e., the free energy is a minimum at a = (A + 1)/2.

Thus, at zero pressure. the solid will adopt a cell size of a = (A+1)/2. This is the cell

size for which the sphere of excursion and sphere of attraction are equal in size. Note

that OZ/a is discontinuous at a = (A + 1)/2. This is because the pair potential is

not a smooth function of particle position and because we have neglected correlations

between the motions of particles.

Therefore, using our approximations, the partition function of the solid is

Z(N, p = 0 T) = [ ( )3 exp(nc/2kT)]N . (F.11)
3This result is obtained = ( 1)/ into either E. (.9) or E. (.10).

This result is obtained by substituting a = (A+1)/2 into either Eq. (F.9) or Eq. (F.10).
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Z
Z +

1 (h+1)/2

Figure F-3: A schematic illustration of the partition function Z as a function of cell
size c in the c co limit.
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Since we are working at constant pressure (and p = 0), the free energy of the

solid, given by G = -kTln Z, is the Gibbs free energy. From Eq. (F.11) we have

G(N,p = 0, T) = -NkTln( Q -) - Nn,(6/2) - NkTln[(A - 1)3] (F.12)
VF

The chemical potential of the solid y, is it, = G/N. Using Eq. (F.12), we write

it, = -kTln( ) - n,(e/2) - kTln[(A - 1)3]. (F.13)

Here Q, = ru3 /6 is the volume of one particle. We now may define 0

-kTln(Qp/VF) as the standard chemical potential of the solid and we note that it

is equal to the standard part of the chemical potential of the liquid (see Eq. (B.11)).

Then Eq. (F.13) may be rewritten as

its = Ito - n,(c/2) - kTln[(A - 1)3]. (F.14)

This equation is the same as Eq. (3.2). As we have discussed in Sec. 3.2, the

first term on the right-hand side of Eq. (F.14) is the standard part of the chemical

potential. The second term is the total energy associated with each particle and the

last term is the entropic contribution. It is a measure of the volume accessible to the

center of mass of the particle.

Addendum: The Volume Fraction of the Solid

We may obtain os. the volume fraction of the solid at equilibrium. as follows.

The volume fraction o, is given by

6S = Qp/cs. (F.15)

where ,S - V/N is the volume per particle in the solid.

At close packing we have

0cp = p/t". (F.16)
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where Ocp = 0.7405 is the volume fraction of closed-packed hard spheres and v,p is

the corresponding volume per particle. Thus from Eqs. (F.15) and (F.16) we write

Os = OCp('ve,/vS). (F.17)

Now from geometrical considerations v./v, = a3. since the volume per particle

scales as the cube of the lattice spacing, and for a = 1. v, = vcp. Therefore from

Eq. (F.17) the volume fraction of the solid, in terms of a. is

Os = 6c/ 3  (F.18)

As we showed above. the free energy of the solid is a minimum at a = (A + 1)/2.

Therefore the corresponding volume fraction is

oS = 80;,/(A + 1)3. (F.19)

and since we have neglected the compressibility (or equivalently the thermal expan-

sivity) of the solid. 6, is independent of temperature.

In Chapter 2 we saw that in order to obtain the experimentally observed value of

the critical volume fraction for the -,-crystallins A should be 1.25. Using this value

in Eq. (F.19). together with o,p = 0.7405. we find o, = 0.520 = 2.56,. as is shown

in Fig. 3-3. This is smaller than the value found experimentally for the y-crystallins,

o6 = 0.62 = 3.0o, (see Fig. 3-1). We believe that the difference is a reflection of

the fact that the real interactions between the proteins are anisotropic. When we

assume that the interactions are isotropic. we are neglecting orientational degrees of

freedom. These would alter the entropy term in Eq. (F.14) and affect the position of

the liquidus and solidus lines.
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