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ABSTRACT

The hsp70 protein functions as a molecular chaperone and is an

integral component of the protein folding machinery in a cell. Interestingly,

the Mycobacterium tuberculosis hsp70 protein has been found to be a major

target of the immune response and is a dominant antigen for both B and T

cells. We exploited the antigenic and chaperoning properties of mycobacterial

hsp70 and used it as an adjuvant-free carrier protein to stimulate the

immune response to an accompanying protein. We found that a

recombinant HIV p24-hsp70 fusion protein could be administered in saline in

the absence of adjuvant to elicit strong and long lasting immune responses to

HIV-1 p24. The anti-p24 IgG1 antibodies induced in p24-hsp70-immunized

mice persisted at high levels for more than one year after immunization.

Immunization of mice with p24-hsp70 elicited p24-specific Thl and Th2 cells

and thus splenocytes from the immunized mice exhibited p24 antigen-

dependent proliferation and production of IL-2, IL-5 and IFN-y.

The chaperoning properties of heat shock proteins prompted us to

investigate whether an exogenously added soluble hsp70 fusion protein can

prime antigen-specific MHC class I-restricted CD8 + CTLs. Ovalbumin, when

covalently linked to mycobacterial hsp70 and administered without adjuvant,

was processed for presentation in the MHC class I pathway and elicited CTLs



in mice. In contrast, when administered as a mixture with hsp70, soluble

ovalbumin failed to induce CTLs. The immune responses engendered by

hsp70-ovalbumin fusion proteins can protect mice against a lethal challenge

with ovalbumin-expressing tumor cells. These results imply that hsp70

fusion proteins have features that permit them to enter into cellular

compartments that lead to MHC class I antigen presentation.

The effectiveness of hsp70 in eliciting an antigen-specific CTL response

and a protective tumor response highly accentuates the utility of hsp70 in

inducing immune responses to any antigen of interest. An hsp70 fusion

protein can be utilized to induce immune responses against multiple B or T

cell epitopes in the accompanying antigen of interest. Hsp70 fusion proteins

may a practical, inexpensive strategy for inducing immunity to pathogens in

man.

Thesis Supervisor: Richard A. Young
Title: Professor of Biology
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Section I: Introduction

The purpose of this introductory section is to discuss the chaperoning

functions and the immunogenicity of heat shock proteins. These aspects of

hsp70 prompted me to study the Mycobacterium tuberculosis hsp70 protein as

an 'immunological carrier'. I have taken advantage of these special properties

of hsp70 and in the subsequent sections of this thesis, I will describe my work

describing the exceptional manner in which hsp70 proteins are able to elicit

both humoral and cellular immune responses against a covalently attached

antigen of interest. Chapter 1 describes the structure and function of

molecular chaperones and chapter 2 illustrates the poweful antigenic nature

of heat shock proteins. The information contained in this section has been

published as a review article review article: Suzue, K. and Young, R.A., Heat

shock proteins as immunological carriers and vaccines. in: Stress-Inducible

Cellular Responses (U. Feige, R. I. Morimoto, I. Yahara, B. S. Polla, eds.),

Birkhauser/Springer, 77: 451-465 (1996).



Section I

Chapter 1. Heat shock proteins as molecular chaperones

Classic in vitro experiments by Anfinsen with ribonuclease demonstrated

that the amino acid sequence of a polypeptide chain contains the information

needed to specify the three-dimensional structure of a protein (Anfinsen,

1973). In addition, various protein folding processes in vivo and in vitro

require the assistance of chaperones. A molecular chaperone is 'a protein that

binds to and stabilizes an otherwise unstable conformer of another protein

and, by controlled binding and release of the substrate protein, facilitates its

correct fate, be it folding, oligomeric assembly, transport to a particular

subcellular compartment, or controlled switching between active/inactive

conformations' (Ellis and van der Vies, 1991).

While various chaperone proteins are expressed constitutively in cells

growing under normal conditions, the level of expression of many of the

chaperones increase upon exposure to heat shock. The higher level of

chaperone proteins minimizes or prevents protein aggregation and promotes

proper folding of nascent and aggregated polypeptides (Tissieres et al., 1974).

Subsequent studies revealed that the expression of these 'heat shock proteins'

were also induced by other types of stress such as nutrient deprivation,

oxygen radicals or viral infection. Thus molecular chaperones are also

referred to as stress proteins or heat shock proteins.

Cells from bacteria to man contain distinct families of chaperones and

these heat shock proteins are among the most conserved proteins known.

Heat shock proteins are commonly grouped based on their molecular weight

and three of the major families are hsp60, hsp70 and hsp90 (Table I).



Table I. Heat Shock Protein Families

Component Organism Subcellular Localization

Hsp90 HtpG Prokaryotes Cytosol

Hsp90 S. cerevisiae Cytosol
(Hsp83, 89) Mammals

Grp94/Gp96 Mammals Endoplasmic Reticulum

Hsp70 DnaK Prokaryotes Cytosol

SSA1-4 S. cerevisiae Cytosol
SSB1,2

Hsc73 Mammals Cytosol

KAR2 S. cerevisiae Endoplasmic Reticulum

BiP/Grp78 Mammals Endoplasmic Reticulum

SSC1 S. cerevisiae Mitochondria

ctHsp70 Plants Chloroplasts

Prokaryotes

S. cerevisiae
Mammals

Plants

Cytosol

Mitochondria

Chloroplasts

Hsp60 GroEL

Hsp60

Cpn60



This thesis primarily focuses on hsp70, a family of stress-inducible and

constitutive proteins which are present in multiple cell compartments such

as the mitochondria, endoplasmic reticulum (ER), chloroplast and cytoplasm.

Chaperoning functions of hsp70

The mechanism of hsp70-mediated protein folding has been studied

extensively in vitro. For example, actin and luciferase proteins denatured in

vitro with guanidium-HCI could not refold spontaneously upon dilution

from denaturant. However, protein refolding could be initiated in the

presence of cytosolic chaperones (Frydman and Hartl, 1996). Studies utilizing

freshly translated mRNA have demonstrated that hsp70 interacts with

nascent polypeptides on ribosomes to initiate their folding (Beckmann et al.,

1990; Frydman et al., 1994). The translation of mRNA in the presence of

chaperone proteins is thought to mimic chaperone-mediated folding of

nascent proteins in vivo, while the interactions of chemically denatured

proteins with chaperones may resemble those occurring in the cell upon

exposure to various forms of stress such as heat shock. In either case, hsp70

proteins transiently associate with unfolded polypeptides--such an association

can prevent aggregation of substrates, by shielding exposed hydrophobic

surfaces, and assist folding, probably by decreasing the concentration of free-

aggregation-prone folding intermediates.

In addition, hsp70 has multiple roles in protein translocation (Cyr and

Neupert, 1996). The S. cerevisiae cytosolic hsp70 proteins Ssal and Ssa2

increase the rate of protein translocation into microsomes and mitochondria

(Chirico et al., 1988; Murakami et al., 1988) and studies with conditional Ssa

mutants support the involvement of cytosolic hsp70 in protein translocation

into the mitochondria and the ER (Becker et al., 1996). Mitochondria import
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most of their proteins from the cytosol and Sscl, an hsp70 homologue in the

mitochondrial matrix, is essential for the translocation and folding of

precursor proteins (Kang et al., 1990). Mitochondrial hsp70 directly binds the

polypeptide chain in transit and drives its translocation into the matrix.

Furthermore, mitochondrial hsp70 is a component of the refolding

machinery in the matrix (Rassow et al., 1995). The ER resident hsp70 protein

BiP works in conjuction with ER membrane protein Sec63 (Hsp40 DnaJ

homologue) in order to function as a ATP-dependent translocation motor

and reel in the precursor protein (Lyman and Schekman, 1995; Sanders et al.,

1992). BiP also mediates the ATP-dependent release of the precursor protein

from the signal-sequence-receptor complex (Lyman and Schekman, 1997).

Hsp70 plays a multitude of central and essential roles in the translocation of

proteins across membranes.

In addition to protein folding and translocation, hsp70 is also involved

in protein degradation. DnaK (hsp70 homologue) regulates its own level of

expression by affecting the synthesis and stability of a32 , a a-factor which

enables RNA polymerase to recognize heat shock gene promoters. When

DnaK binds to 032, the susceptibility of 0 32 to cell proteases is enhanced and

a3 2 is rapidly degraded (Sherman and Goldberg, 1992; Straus et al., 1990).

However, when the level of unfolded or damaged proteins accumulate upon

exposure to heat shock, the number of substrates for DnaK increase.

Consequently, less DnaK is available for binding to 0 32 and the level of 0 32

can accumulate since it is no longer being rapidly degraded.

In various instances, molecular chaperones and heat inducible

proteases act in a coordinated manner to rid the cell of abnormal proteins. In

E.coli, the short-lived mutant form of alkaline phosphatase, PhoA61, which

cannot be transported across the cell membrane, is hydrolyzed by an ATP-



dependent process that requires DnaK and the proteases La and Clp (Michaelis

et al., 1986). In the mitochondrial matrix, hsp70 functions in conjunction

with Pim protease in order to degrade misfolded proteins (Wagner et al.,

1994). Also, prolonged interaction of immunoglobulin light chains in the ER

with BiP (hsp70) leads to the degradation of the light chain polypeptide

(Knittler et al., 1995). It appears that hsp70 promotes protein degradation by

rendering unfolded portions of these substrates accessible to proteases.

Hsp70 structure & substrate binding

The affinity of hsp70 for substrates is tightly regulated by ATP and by

co-chaperones which control the key points of the ATPase cycle (Bukau and

Horwich, 1998). In hsp70-assisted folding reactions, substrates undergo

repeated cycles of binding and release. The ATP-bound form of hsp70 has low

affinity and fast exchange rates for substrates while the ADP-bound form of

hsp70 has high affinity and slow exchange rates for substrates. The

prokaryotic hsp70 system is composed of the DnaK chaperone (Hsp70

homologue) and the DnaJ (Hsp40 homologue) and GrpE co-chaperones

(Szabo et al., 1994). The ATPase activity of DnaK is simulated by DnaJ and the

release of ADP by hsp70 is accelerated by GrpE.

High resolution structural information on the hsp70 protein exists

from crystallographic studies of (1) the ATPase domain of bovine hsc70

(Flaherty et al., 1990), (2) the ATPase domain of DnaK in complex with GrpE

(Harrison et al., 1997) and (3) the C-terminal substrate binding domain of

DnaK complexed with a heptapeptide substrate (Zhu et al., 1996).

Hsp70 consists of an N-terminal ATPase domain of 45kd which is

composed of two structural lobes which form a cleft for ATP binding

(Flaherty, et al., 1990). The ATPase domain of hsp70 binds to its cofactor GrpE

12



with a 1:2 stoichiometry. The dimeric GrpE complex appears to recognize the

ADP-bound form of hsp70, which then leads to ADP dissociation (Harrison, et

al., 1997). Unexpectedly, the GrpE dimer was found to have two long a-

helices which extend beyond the ATPase domain of hsp70 and GrpE may

directly affect substrate release by hsp70.

The 25kd C-terminal substrate-binding domain of hsp70 was

crystallized as a complex with a heptapeptide in order to overcome the

oligomerization behavior of this fragment (Zhu, et al., 1996). (Hsp70 self-

associates into dimers and trimers via its C-terminal peptide binding domain

(Benaroudj et al., 1997).) The hsp70 C-terminal domain is composed of a 0-

sandwich subdomain which binds substrates and an a-helical subdomain

which appears to form a lid that encapsulates the peptide. The heptapeptide

NRLLLTG was bound to hsp70 in an extended conformation an the fourth

Leu residue was buried in a deep hydrophobic pocket, functioning as an

anchor residue. The geometric constraints for the other residues were less

restrictive although hydrophobic residues in the central portion of the

substrate is most compatible with the binding site.

Various other studies have demonstrated the ability of hsp70 to bind

short synthetic peptides (Flynn et al., 1991; Gragerov and Gottesman, 1994;

Roman et al., 1994) and the peptide binding specificity has been examined

utilizing randomly synthesized heptapeptides (Flynn, et al., 1991),

bacteriophage peptide-display libraries (Blond-Elguindi et al., 1993) and a

library of 13-mer peptides representing 37 complete sequences of proteins

(Rudiger et al., 1997). Peptides which lack aromatic or large hydrophobic

residues bind poorly to hsp70 (Blond-Elguindi, et al., 1993; Flynn, et al., 1991)

and the binding motif of DnaK is composed of a hydrophobic core of 4-5



residues (Rudiger, et al., 1997). These peptide binding studies are compatible

with the crystal structure of the substrate-binding domain of hsp70.

In summary, hsp70 binds to linear hydrophobic protein segments and

by binding to other cofactors, hsp70 is involved in chaperoning functions

such as and (1) folding proteins in the mitochondria, endoplasmic reticulum

and cytosol; (2) degrading unstable proteins and the bacterial heat shock

transcription factor 032; (3) guiding translocating proteins into cellular

compartments such as the mitochondria, and the ER.
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Section I

Chapter 2. Heat shock proteins are among the major targets of the immune

response to many bacterial and parasitic pathogens.

Humans are exposed to a large number and variety of pathogenic and

non-pathogenic microorganisms. Our bodies provide niches for a multitude

of microbes that do not typically cause disease. For example, approximately

106 cocci and diptheroides reside on one cubic centimeter of human skin

(Leyden et al., 1991) and 1 ml of saliva contains about 108 microbes (Rosebury,

1962). We are also continuously confronted by pathogenic organisms of

substantial diversity.

To protect us from these microorganisms, the immune system has

evolved to recognize a remarkable variety of antigenic determinants. Despite

this capacity, the immune system appears to devote considerable attention to

the members of one family of proteins, the ubiquitous heat shock proteins

(HSPs) (Kaufmann, 1990; Kaufmann and Schoel, 1994b; Murray and Young,

1992; Young et al., 1990b; Young, 1990a). The HSPs are among the major

targets of the immune response to most bacterial and parasitic pathogens.

Humoral and cellular immune responses to HSPs have been observed

following exposure to a broad spectrum of infectious agents, including gram

positive and gram negative bacteria, fungi, helminths and protozoa (Table II).



Table II
Pathogens induce immune responses to HSPs

Infectious agent Disease

Bacteria
Bordetella pertussis
Borrelia burgdorferi
Brucella abortus
Chlamydia trachomatis
Coxiella burnetti
Helicobacterpylori
Legionella pneumophila
Mycobacterium leprae
Mycobacterium tuberculosis
Treponema pallidum

Fungi
Aspergillus fumigatus
Candida albicans
Histoplasma capsulatum

Helminths
Brugia malayi
Onchocerca volvus
Schistosoma mansoni
Schistosoma japonicum

Protozoa
Leishmania braziliensis
Leishmania donovani
Plasmodium falciparum
Trypanosoma cruzi

pertussis
Lyme disease
brucellosis
blinding trachoma
Q fever
gastritis
Legionnaires' disease
leprosy
tuberculosis
syphilis

aspergillosis
candidasis
histoplasmosis

lymphatic filariasis
ocular filariasis
schistosomiasis
schistosomiasis

leishmaniasis
visceral leishmaniasis
malaria
Chagas' disease

hsp70, hsp60
hsp60
hsp60
hsp70, hsp60
hsp60
hsp60, hsp 10
hsp60
hsp70, hsp60, small hsps
hsp70, hsp60, small hsps
hsp60

hsp60
hsp90
hsp60, hsp70

hsp70
hsp70
hsp90,
hsp70

hsp70, small hsps

hsp70
hsp90, hsp70
hsp70
hsp70

Del Giudice et al., 1993
Hansen et al., 1988
Roop et al., 1992
Taylor et al., 1990; Cerrone et al., 1991; Zhong and Brunham, 1992
Vodkin and Williams, 1988
Suerbaum, 1994; Ferrero et al., 1995
Hoffman et al., 1990
Mehra et al., 1992; Young et al., 1988
Young et al., 1988; Shinnick et al., 1988; Baird et al., 1988
Hindersson et al., 1987

Kumar et al., 1993
Matthews et al, 1987; Matthews and Burnie 1989
Gomez et al., 1991a; 1992; 1995

Selkirk et al., 1989
Rothstein et al., 1989
Johnson et al., 1989; Hedstrom et al., 1987; Nene et al., 1986
Scallon et al., 1987; Hedstrom et al., 1988

Levy Yeyati et al., 1992
MacFarlane et al., 1990; de Andrade et al., 1992
Mattei et al., 1989; Renia et al., 1990
Levy Yeyati et al., 1992; Requena et al. 1993

HSP References



The immune responses to HSPs elicited by mycobacterial pathogens

have been particularly well-studied. Exposure to Mycobacterium tuberculosis

or Mycobacterium leprae leads to humoral and cellular immune responses to

hsp70, hsp60 and small hsps (18kD, 14kD, 10kD) (Adams et al., 1994; Husson

and Young, 1987; Mehra, et al., 1992; Nerland et al., 1988; Verbon et al., 1992;

Young, et al., 1988). The cellular responses to mycobacterial HSPs are

profound; limiting dilution analysis indicates that 20% of the murine CD4+ T

lymphocytes that recognize mycobacterial antigens are directed against hsp60

alone (Kaufmann et al., 1987). The high frequency with which human CD4+

T cell clones directed against mycobacterial hsp70 and hsp60 have been

detected suggests that these HSPs are also major targets of the cellular

response in humans (Munk et al., 1988). Limiting dilution analysis of human

T lymphocytes from a tuberculoid leprosy patient as well as a patient contact

revealed that one third of M. leprae reactive T cells were directed against

hspl0 (Mehra, et al., 1992).

The powerful antigenic nature of HSPs is emphasized by evidence that

mammals are capable of recognizing multiple B and T cell epitopes in these

proteins. Murine and human B cell epitopes have been mapped in HSPs

from M. tuberculosis, M. leprae, Trypanosoma cruzi and Plasmodium

falciparum (Mattei, et al., 1989; Matthews et al., 1991; Mehra et al., 1986;

Requena, et al., 1993; Richman et al., 1989; Thole et al., 1988). These mapping

data indicate that B cells can recognize many portions of the hsp70 and hsp60

protein molecules. Murine and human T cell epitopes have been mapped

most extensively for mycobacterial hsp60 and hsp70 (Adams, et al., 1994; Lamb

et al., 1987; Munk et al., 1990; Oftung et al., 1994; Van Schooten et al., 1988).

This evidence indicates that mycobacterial HSPs can be presented in the
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context of multiple MHC haplotypes, and that T cell epitopes can be found

throughout these HSPs.

HSPs derived from a variety of bacterial and fungal pathogens have

been found to stimulate protective immunity in animal models when used

as subunit vaccines. For example, vaccination of mice with syngenic J774

macrophage cells expressing mycobacterial hsp60 afforded remarkable

protection against M. tuberculosis (Silva and Lowrie, 1994a). In mice

vaccinated with J774-hsp60, 100 times fewer M. tuberculosis CFUs could be

recovered from the liver 5 weeks after challenge, compared to unvaccinated

mice. Hsp60 specific T cells cloned from the vaccinated mice could adoptively

transfer protection to non-vaccinated mice (Silva et al., 1994b). Vaccination of

mice with mycobacterial hsp60 was also effective when administered to mice

as a naked DNA vaccine (Bonato et al., 1998; Lowrie et al., 1994)

As shown in Table III, the immune responses against HSPs confer

protection against a broad range of pathogens. Although there is some

concern with using HSPs in vaccine formulations due to their highly

conserved nature and homology with self-HSPs, it must be emphasized that

healthy individuals are routinely stimulated to respond to HSPs without

causing autoimmunity. For example, the trivalent vaccine against tetanus,

diphtheria and pertussis, which is routinely administered to infants, induces

anti-hsp70 immune responses (Del Giudice, et al., 1993). Live BCG, which

contains substantial amounts of hsp70 and hsp60, has been used to immunize

80% of the world's children against tuberculosis. Thus, current knowledge

suggests that the inclusion of HSPs in vaccines against a broad spectrum of

infectious diseases would be both safe and beneficial.
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Table III
HSPs can elicit protective immune responses

Infectious agent

Bacteria
Helicobacterpylori
Legionella pneumophila
Mycobacterium leprae
Mycobacterium tuberculosis
Mycobacterium tuberculosis
Yersinia enterocolitica

Fungi
Candida albicans
Histoplasma capsulatum

HSP

hsp60, hspl0
hsp60
hsp60, hspl0
hsp70
hsp60
hsp60

hsp90
hsp60, hsp70

Animal model

mouse
guinea pig
mouse
mouse, guinea pig
mouse
mouse

mouse
mouse

References

Ferrero et al., 1995
Blander and Horwitz, 1993
Gelber et al., 1992;1994
Pal and Horwitz, 1992; Hubbard et al., 1992; Andersen 1994; Horwtiz et al., 1995
Silva et al., 1994a, 1994b; Lowrie et al., 1994
Noll et al., 1994

Matthews et al, 1991
Gomez et al., 1991a; 1991b; 1992; 1995
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Section II: Generation of Humoral Immune Responses

The powerful chaperoning and immunological features of HSPs have

led to their experimental use as immunologic carrier molecules. In chapter 3,

I will describe the concepts behind immunological carrier proteins and

adjuvants, which are typically co-administered with an antigen of interest. I

will then discuss the adjuvant-free carrier effects of hsp60 and hsp70 and

describe my work with hsp70 fusion proteins in chapter 4. The work

described in chapter 4 has been published as: Suzue, K. and Young, R.A.,

Adjuvant-free hsp70 fusion protein system elicits humoral and cellular

immune responses to HIV-1 p24. J. Immunol. 156: 873-879 (1996).



Section II

Chapter 3. Immunological carrier proteins and adjuvants

Carrier proteins

Many polysaccharides and simple chemical compounds are inherently non-

immunogenic and fail to elicit strong antibody responses. Landsteiner

observed that these substances, "haptens", react in vitro with antibodies but

do not have the capacity to elicit antibodies in vivo (Landsteiner, 1936).

However, if the hapten was administered in combination with a "carrier"

protein, antibodies to the hapten could be generated.

Ovary and Benacerraf demonstrated that the same carrier protein used

in the primary immunization must be used in the subsequent immunization

in order to elicit a secondary immune response to the hapten (Ovary and

Benacerraf, 1963). The hapten and carrier had to be physically linked and

within this conjugate molecule, cells recognized one antigenic determinant

on the hapten and a second determinant on the carrier (Mitchison, 1971a;

Rajewsky et al., 1969). It was determined that in the generation of an antibody

response, two distinct types of cells were involved: bone marrow derived

lymphocytes (B cells) and thymus derived lymphocytes (T cells) (Claman et

al., 1966; Davies et al., 1967; Miller and Mitchell, 1967). Involvement of B and

T cell cooperation in the "carrier effect" was demonstrated by adoptive

transfer experiments in which one mouse was injected with the hapten, a

second mouse was injected with the carrier and a third mouse was irradiated

and received hapten-primed B cells and carrier-primed T cells (Mitchison,

1971b; Raff, 1970). The B and T cells could collaborate to generate an antibody
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response only if they were obtained from syngeneic mice (Katz et al., 1973;

Kindred and Shreffler, 1972).

The "carrier effect" is believed to occur in the following manner.

When animals are primed with a hapten-carrier preparation, and then

exposed to a second dose, hapten-specific B cells recognize, internalize and

process the hapten-carrier conjugate. The B cell can then present peptides

derived from the carrier molecule on its surface in the context of an MHC

molecule. This MHC/peptide complex is bound by a carrier-primed T cell,

leading to the directed release of cytokines by the T cell to the B cell. These

soluble factors stimulate the B cell to proliferate, differentiate and secrete

antibodies. In this thesis, a "carrier" will refer to a molecule containing T cell

epitopes which, when covalently linked to a second molecule, help to elicit

and enhance immune responses against the second molecule.

Carriers are an important component of some human vaccines.

Tetanus toxoid (TT), diphtheria toxoid (DT) and neisseria outer membrane

proteins are the carrier molecules used in the various Haemophilus

influenzae vaccines licensed for use in humans (Smith et al., 1989). The

principal virulence determinant of H. influenzae type b, a repeating polymer

of ribose, ribitol and phosphate, is classified as a T-independent antigen

because it elicits predominantly IgM antibodies and fails to elicit secondary

antibody responses. In the H. influenzae vaccines, the capsular

polysaccharide antigen had to be conjugated to a carrier in order to elicit the

high levels of anti-polysaccharide antibodies necessary for protective

immunity in young children (Robbins and Schneerson, 1990).

The choice of an appropriate carrier protein is of primary importance

for optimizing the response to an attached antigen. In certain circumstances,

previous exposure to a carrier protein alone will prevent the elicitation of an
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immune response to a new antigenic epitope presented on the same carrier.

Priming animals with KLH before exposure to DNP-KLH (dinitrophenyl-

keyhole limpet hemocyanin) reduced the IgG antibody response against DNP

(Herzenberg et al., 1980). Priming with tetanus toxoid (TT) or with bovine

serum albumin (BSA) strongly reduced the anti-peptide antibody response

when animals were immunized with peptides conjugated to the homologous

carrier (Lise et al., 1987). This phenomenon, termed epitope-specific

suppression is observed with some but not all carrier-antigen combinations.

As will be explained shortly, hsp60 or hsp70 proteins do not cause epitope-

specific suppression when they are utilized as carrier proteins (Barrios et al.,

1992). As the number of vaccines containing the same carrier increases, the

concern for epitope suppression and competition also increases and the

selection of optimal carrier proteins will continue to grow in importance.

Adjuvants

The immune response to an antigen of interest can also be enhanced by use of

an adjuvant (derived from the Latin word adjuvare-to aid). Indeed,

adjuvants are often necessary to elicit desired immune responses (Geerligs et

al., 1989; Kenney et al., 1989). In contrast to a carrier, an adjuvant does not

need to be covalently coupled to the antigen to perform its function. Instead,

the adjuvant and antigen are adsorbed or mixed together and are co-

administered (Nicklas, 1992). In general, adjuvants function by slowly

releasing the antigen, thereby acting as a long-lived antigen reservoir (called

the depot effect), and by causing general inflammation at the injection site

and thus recruiting immunological mediators such as macrophages (Cox and

Coulter, 1997). Many adjuvants containing bacterial components, oils and

various chemicals have been described (Edelman and Tacket, 1990).
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Alum, which contains the aluminum salts AI(OH)3 and AlPO4, is

currently the only adjuvant licensed for use in humans and is included in

vaccines against diphtheria, tetanus, pertussis, Haemophilus influenza and

hepatitis B. Alum has been widely used in human and veterinary vaccines

since 1930 since it has the capability of stimulating strong T helper type 2

responses in certain circumstances, which result in high antibody levels

(Mark et al., 1995). However, alum is poor at stimulating cell mediated

responses and is not effective in the induction of humoral responses against

certain antigens (Altman and Dixon, 1989). Clinical trials have failed to

demonstrate that alum enhances the immunogenicity of purified influenza

virus hemagglutinin and for this reason, alum is not included in the

influenza vaccine formulation (Davenport et al., 1968). A considerable effort

is thus being made to develop new safe and effective adjuvants for use in

man (Audibert and Lise, 1993; Dintzis, 1992; Lussow et al., 1990a).

Adjuvant-free carrier effect of hsp60 and hsp70 proteins

Purified protein derivative (PPD), prepared from mycobacterial culture

supernatant, is a protein mix which contains hsp60 and hsp70 and elicits a

delayed type hypersensitivity reaction in individuals previously exposed to

mycobacteria. The powerful immunostimulatory properties of PPD also

suggested that it might have some utility as an immunological carrier.

Indeed, when PPD was cross-linked to small chemical haptens or peptides,

the conjugates elicited a strong antibody response against the attached

molecules (Lachmann and Amos, 1970; Lachmann et al., 1986). In addition, a

PPD-tumor cell conjugate has been found to enhance the immune response

to tumor cells (Lachmann and Sikora, 1978). For PPD to be an effective

carrier, physical linkage of PPD to the antigen was crucial and carrier priming
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with bacille Calmette-Guerin (BCG) was necessary. The powerful carrier effect

of PPD was also evident in comparative studies using various conjugates

administered with Freund's adjuvant; these studies demonstrated that PPD

was a more effective carrier than bovine serum albumin or keyhole limpet

hemacyanin (Lachmann, et al., 1986). PPD has been shown to be an effective

carrier in the absence of adjuvant. When the synthetic malarial peptide

(NANP)40, an epitope from the Plasmodium falciparum major surface

protein, was conjugated to PPD and administered in Freund's adjuvant or in

saline to BCG primed mice, the anti-(NANP)40 antibody titers were

equivalent (Lussow et al., 1990b).

Recombinant mycobacterial hsp60 and hsp70 proteins can substitute for

PPD in a (NANP)40 conjugate (Lussow et al., 1991), suggesting that these were

among the components of PPD responsible for the adjuvant-free carrier effect.

Hsp60-(NANP)40 and hsp70-(NANP)40 conjugates were found to elicit anti-

(NANP)40 antibodies in mice and squirrel monkeys in the absence of

adjuvants (Barrios, et al., 1992; Lussow, et al., 1991; Perraut et al., 1993).

Moreover, mycobacterial hsp60 and hsp70 were also found to be effective

adjuvant-free carriers when conjugated to the poorly immunogenic

meningococcal group C oligosaccharide (MenC) (Barrios, et al., 1992).

Other results from the (NANP)40 studies support the notion that HSPs

can be powerful carriers, but indicate that not all HSPs behave identically.

(NANP)40 alone acts as a hapten in most strains of mice (Del Giudice et al.,

1986; Good et al., 1986), and the presence of covalently linked mycobacterial

hsp60 or hsp70 carrier molecules were essential to obtain antibody responses

against (NANP)40 (Lussow, et al., 1990b). The corresponding heat shock

proteins from E. coli, GroEL and DnaK, could also function as adjuvant-free

carriers to elicit anti-(NANP)40 antibodies (Barrios et al., 1994). However, the
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hsp70 conjugates exhibited one useful feature that was not observed with

hsp60 conjugates. While priming with recombinant hsp60 in Freund's

adjuvant or with live BCG was necessary to obtain the carrier effect with the

hsp60 conjugates, priming was unnecessary with the hsp70 conjugates.

Moreover, previous exposure to BCG or to hsp70 neither augmented nor

suppressed the antibody response against the antigen attached to hsp70.

To further investigate the adjuvant-free carrier effect of mycobacterial

hsp70, I created an hsp70 fusion vector system (Suzue and Young, 1996). This

system enabled the production of proteins composed of one mole of antigen

fused to one mole of the hsp70 carrier protein in which the number and

position of potential epitopes were identical for each molecule. In contrast,

hsp70 conjugates generated by glutaraldehyde cross-linking are a pool of

nonidentical molecules with variable epitope density. Immune responses to

an antigen can be strongly affected by differences in the molar ratio of antigen

and carrier, in the mode of linkage of hapten and carrier and in the position

of B and T cell epitopes (Anderson et al., 1989; Dintzis, 1992; Hanna et al., 1972;

Klaus and Cross, 1974). Thus, hsp70 fusion proteins reduce the variables

associated with the study of HSPs as immunological carriers.

The next chapter of this thesis describes my work in developing the

adjuvant-free hsp70 fusion protein system. I used the hsp70 fusion vector

system to produce an HIV Gag-hsp70 fusion protein and then investigated the

humoral and cellular immune responses elicited against HIV Gag (Suzue and

Young, 1996). The mycobacterial hsp70 moiety was found to dramatically

increase the immunogenicity of the Gag p24 antigen.
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Section II

Chapter 4:

Adjuvant-free hsp70 fusion protein system elicits

humoral and cellular immune responses to HIV-1 p24

Summary

Heat shock proteins are major targets of the immune response to bacterial

and parasitic pathogens. Mycobacterium tuberculosis hsp70 is an especially

powerful antigen containing multiple B and T cell epitopes. We investigated

whether M. tuberculosis hsp70 can be used as an adjuvant-free carrier to

stimulate the humoral and cellular immune response to an accompanying

protein. A recombinant hsp70 protein expression vector was developed

which permits the production of any protein fused to the amino terminus of

mycobacterial hsp70. We found that a recombinant HIV p24-hsp70 fusion

protein produced with this vector elicited both humoral and cellular

immune responses against p24 in mice when administered in the absence of

adjuvant. Covalent linkage of hsp70 to p24 was essential to elicit immune

responses to p24 in the absence of adjuvant. The anti-p24 IgG1 antibodies

induced in p24-hsp70-immunized mice persisted at high levels for more than

one year after immunization. These results demonstrate that the antigenic

properties of M. tuberculosis hsp70 can be exploited to enhance the humoral

and cellular immune response to an attached protein.
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Results

Production and purification of recombinant proteins

A recombinant system was developed to permit production of M.

tuberculosis hsp70 protein fused to a foreign protein of interest. The vector

pKS70 (Fig. 1A) was constructed to permit insertion of DNA between the

bacteriophage T7 promoter and the M. tuberculosis hsp70 coding sequence,

allowing expression of high levels of an hsp70 fusion protein using the T7

expression system (Studier, et al., 1990). Plasmid pKS72 (Fig. 1A), which

encodes an HIV-1 p24-hsp70 fusion protein, was then constructed using the

pKS70 plasmid. The recombinant fusion protein contained the HIV-1 p24 gag

protein at the amino terminus and the hsp70 protein at the carboxyl

terminus. Recombinant HIV-1 p2 4, M. tuberculosis hsp70 and p24-

ovalbumin proteins were also produced using the related plasmid vectors

pKS24, pKS74 and pKS26, respectively (Fig. 1A).

The p24-hsp70 fusion protein, the p24-ovalbumin fusion protein and

the hsp70 and HIV-1 p24 proteins were found to be expressed at very high

levels in E. coli (Fig. 1B; p24-ovalbumin expression not shown). The p24-

hsp70 and hsp70 proteins were purified as inclusion bodies and the

subsequently refolded proteins were further purified by ATP affinity

chromatography and Mono-Q anion exchange chromatography. Histidine

tagged HIV-1 p24 and p24-ovalbumin proteins were isolated by using NTA-

Ni2 + columns. The purity of the recombinant proteins was assessed by SDS-

PAGE (Fig. 1B).

39



Figure 1

A

Ndel
pT7 EcoRI T7 Nde I

Smal
BamHI p24

Amp pKS70 Amp pKS72 BamHI

4.3 kb 5 kb

Hsp7O HHs p70

Hind III Hind III

pT7
Nde I

Amp Amp

pKS74 pKS24 pKS26
Amp 4.3 kb Hsp70 6.4 kb BarmHI 7.6 kb

lac I
BainHI lac I Ova

p24 pT7 lac BamHI pT7 lac
Hind III p24 Nde I

Nde I

Crude Lysates Purified Proteins

B I II I

97- ON

69- i

46-

30-

21-



Fig. 1. A. Protein expression vectors. All vectors were constructed for use in

the T7 expression system (Studier, et al., 1990) and contain a T7 RNA

polymerase promoter. Plasmid pKS70 contains a polylinker that permits

introduction of DNA 5' of the M. tuberculosis hsp70 coding sequence.

Plasmid pKS72 was constructed for expression of the fusion protein p24-

hsp70. Plasmid pKS74 was constructed to express M. tuberculosis hsp70 alone

(the NdeI site overlaps the AUG initiation codon of hsp70). Plasmid pKS24

can be used to express N-terminal histidine-tagged HIV-1 p24 gag protein.

Plasmid pKS26 was constructed for expression of the fusion protein p24-

ovalbumin.

B. Production of recombinant proteins. E. coli cell lysates and purified

proteins were examined by SDS-PAGE and proteins were visualized by

Coomassie staining. The gel contains crude extract from E. coli containing

pKS72 (-), extract from IPTG-induced E. coli containing pKS72 (p24-hsp70),

extract from IPTG-induced E. coli containing pKS74 (hsp70), extract from

IPTG-induced E. coli containing pKS24 (p24), and the purified proteins p24-

hsp70, hsp70, HIV-1 p24 gag and p24-ovalbumin.



E. coli derived recombinant proteins can be contaminated with

endotoxins, which have pyrogenic and nonspecific immunostimulatory

activities. The endotoxin content of the three purified recombinant proteins

was investigated using the Limulus amebocyte lysate assay. All of the protein

preparations had less than 0.04% endotoxin by weight. Thus, endotoxin

contamination of the purified proteins was negligible.

Immunization of mice with p24-hsp70 elicits anti-p24 humoral and cellular

responses

We investigated whether mice would elicit an anti-p24 antibody

response when injected with the p24-hsp70 fusion protein without adjuvant.

Groups of BALB/c mice were inoculated i.p. with various doses of p24-hsp70

fusion protein in PBS. A second equivalent dose was given at three weeks.

Serum samples were obtained three weeks after the second immunization,

and anti-p24 IgG antibody titers were determined by ELISA. Mice injected

with 0.3 gg or 1.2 jgg of p24-hsp70 fusion protein had low or undetectable

levels of anti-p24 antibody (Fig. 2A). However, mice given doses of 5 jgg or 20

jgg of p24-hsp70 had high antibody titers, averaging 104.3 and 104.2

respectively. Thus, administration of two doses of 5 gg of p24-hsp70 fusion

protein in the absence of adjuvant is sufficient to induce high levels of anti-

p24 IgG antibodies in BALB/c mice.

We examined the ability of the p24-hsp70 fusion protein to elicit anti-

p24 cellular responses in the absence of adjuvant. BALB/c mice were

immunized as above with various doses of p24-hsp70 and the T cell response

to p24 was assessed using in vitro cytokine assays. Three weeks after the

boost, the splenocytes of immunized mice were removed and cultured in

vitro. The level of IL-2 secreted by the splenocytes in response to
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restimulation with p24 antigen was measured by ELISA. As the immunizing

dose of p24-hsp70 increased from 0.3 gg to 5 gg, the amount of IL-2 detected in

the splenocyte culture medium also increased (Fig. 2B). The level of in vitro

IL-2 produced was highest for the 5 jgg p24-hsp70 dose group.
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Fig. 2. Immune response of BALB/c mice to various doses of p24-hsp70

fusion protein. Mice were injected i.p. with the indicated amount of fusion

protein without adjuvant and boosted 3 weeks later. A) Anti-p24 IgG

antibody dose response curve. Mice were bled 3 weeks after the boost and sera

was analyzed for anti-p24 IgG antibody by ELISA. The titer is expressed as the

highest serum dilution factor giving an absorbance >0.2. The average titer of

4 or 5 mice per group is shown. Titers of 101.4 were considered negative for

the presence of anti-p24 antibodies. B) IL-2 secretion by splenocytes

stimulated in vitro with HIV-1 p24 gag antigen (10 gg/ml). For each mouse

group, 5 spleens were pooled and processed. Spleens removed 3 weeks or 6

weeks after the boost gave identical results. After 24 hrs of stimulation,

culture supernatants were analyzed for IL-2 levels by ELISA. The average of

triplicate wells is shown.
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Hsp70 is a more effective adjuvant-free carrier protein than ovalbumin

The effectiveness of hsp70 as an adjuvant-free carrier was compared

with the carrier protein ovalbumin. Anti-p24 antibody responses were

measured in groups of BALB/c mice inoculated with equimolar amounts of

p24-hsp70 fusion protein, p24-ovalbumin fusion protein, p24 protein alone or

with hsp70 protein alone. Since the immunizing dose of p24-hsp70 that

elicited optimal p24-specific antibody and T cell responses was 5 jig (50

pmoles), 50 pmoles of p24-hsp70 and control proteins were used. Mice

immunized with p24-ovalbumin had an anti-p24 antibody titer of 102.7 (6

weeks after the boost), which was higher than the 101.9 antibody titer of mice

immunized with p24 alone (Fig. 3A). The highest anti-p24 antibody titer,

104.3, was elicited in mice immunized with p24-hsp70 fusion protein.

The p24-specific immune response in each mouse group was further

assessed by stimulating spleen cells in vitro with p24 antigen. T cell responses

were measured using cytokine ELISAs and cell proliferation assays.

Splenocytes from mice injected with p24-hsp70 fusion protein released high

levels of IFN-y (10.5 ng/ml) and IL-5 (970 pg/ml) after stimulation in vitro

with p24 (Fig. 3B & 3C). In contrast, relatively little IFN-y or IL-5 was

produced by splenocytes from mice injected with p24-ovalbumin fusion

protein, p24 alone, hsp70 alone or PBS. Levels of IL-4 and IL-10 produced by

splenocytes were low (<100 pg/ml and <1 U/ml respectively) in all mouse

groups. Results from cell proliferation assays measuring [3 H] thymidine

incorporation were consistent with the IFN-y and IL-5 cytokine data in that

high levels of p24-specific cell proliferation were elicited only in mice

immunized with the p24-hsp70 fusion protein (Fig. 3D).
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Fig. 3. Comparison of hsp70 and ovalbumin as carrier proteins. Mice were

injected i.p. with 50 pmoles of one of the following proteins: p24-hsp70, p24-

ovalbumin, p24 or hsp70. Mice were boosted 3 weeks later A) Anti-p24 IgG

antibody titers 6 weeks after the boost, determined as described in the Figure 2

legend. B-D) Cellular response of BALB/c mice inoculated with recombinant

proteins in the absence of adjuvant. Mice were sacrificed 6 weeks after the

boost and for each mouse group, 5 spleens were pooled and processed. B)

IFN-y, secretion and C) IL-5 secretion by splenocytes stimulated in vitro with

p24 as measured by ELISA. All samples were done in triplicate. D) Cell

proliferation. Splenocytes were stimulated in vitro with p24 antigen and

pulsed on day 3 with [3 H] thymidine. The average Acpm value from two

experiments is shown.
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Hsp70 must be covalently coupled to p24 to engender immune responses

We investigated whether the carrier effect of hsp70 depends on

physical linkage of hsp70 to p24. It is possible that hsp70 acts as a classic

adjuvant, in which case it should stimulate the immune response to an

antigen when mixed with, but not covalently coupled to, the antigen. Mice

were injected with 50 pmoles of p24-hsp70 fusion protein or with 50 pmoles

of hsp70 mixed with but not attached to, 50 pmoles of p24. Both anti-p24

antibody titers and IL-2 production by splenocytes were measured. The

presence of anti-p24 antibody was barely detectable in mice injected with the

hsp70, p24 protein mix (Fig. 4A). In comparison, the mice injected with the

p24-hsp70 fusion protein had at least 1000 times greater anti-p24 antibody

levels. Similar results were obtained in splenocyte assays; very low levels of

IL-2 were produced by splenocytes of mice injected with the hsp70, p24 protein

mix whereas high levels of IL-2 were secreted by the splenocytes of the fusion

protein mouse group (Fig. 4B). These experiments indicate that hsp70

engenders substantial immune responses to p24 only when physically

attached to p24.
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Fig. 4. Immune response of mice injected with p24-hsp70 fusion protein or

with a mixture of p24 and hsp70. Mice were injected i.p. with 50 pmoles of

the fusion protein or with 50 pmoles each of p24 and hsp70. A) Anti-p24 IgG

antibody titers, determined as described in the legend to Figure 2. B) IL-2

secretion by splenocytes stimulated in vitro with HIV-1 p24 gag antigen,

determined as described in the legend to Figure 2.



Adjuvant-free immunization of mice with p24-hsp70 elicits long-lived anti-

p24 IgG1 antibody response

The anti-p24 antibody response was monitored over a period of 71

weeks in mice immunized with p24-hsp70 fusion protein, p24, hsp70 or PBS.

None of the immunogens included an adjuvant. Since 5 gg (50 pmole) of

p24-hsp70 was optimal for inducing antibody responses in previous

experiments, 50 pmole doses of each of the proteins were used in the time

course experiment. Figure 5A shows that the antibody response elicited by

the p24-hsp70 fusion protein was long-lasting; 36 weeks after the boost, the

average anti-p24 antibody titer was above 104 and 68 weeks after boost, the

titer was 103.6. Some mice injected with p24 protein alone had low but

detectable anti-p24 antibody titers soon after the boost, but anti-p24 antibodies

in these mice were not long-lasting. As expected, there was no detectable anti-

p24 antibody in mice immunized with hsp70 or PBS.

In mice immunized with p24-hsp70 fusion protein, the anti-p24 IgG

antibodies detected 9 days after the boost were IgG1, IgG2a and IgG2b isotype

antibodies (Fig. 5B). Anti-p24 IgG3 and IgA antibodies were not detected. The

anti-p24 antibodies 9 days after the boost were approximately >90% IgG1. The

levels of anti-p24 IgG2a and IgG2b antibodies 6 weeks after the boost were

significantly lower than at 9 days after the boost (Fig. 5B). In contrast, the anti-

p24 IgG1 antibody response was long-lasting and the levels detected 9 days

after the boost and 36 weeks after the boost were nearly identical.
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Fig. 5. A. Time course of the anti-p24 IgG antibody response. Mice were

injected on day 1 and 21 (as indicated, t) with 50 pmoles of either p24-hsp70

fusion protein - , p24 - , or with hsp70 - -. Mice were bled at

the indicated time points and the serum samples were tested for anti-p24 IgG

antibody levels by ELISA. Results obtained with mice injected with PBS or

with hsp70 protein were identical. The average titer for 4 to 5 mice per group

is shown. Titer is expressed as the highest serum dilution factor positive in

the ELISA.

B. Isotype analysis of anti-p24 antibodies. Serum samples from mice

immunized with 50 pmoles of p24-hsp70 were analyzed for anti-p24 IgG1,

IgG2a and IgG2b antibodies on the following days after the boost: 9 days

w--, 6 weeks --- and 36 weeks . Results are expressed as 450 nm

absorbance values.
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Discussion

The hsp70 fusion vector described here enabled the expression of

recombinant HIV p24-hsp70 fusion protein. Fusing mycobacterial hsp70 to

HIV-1 gag p24 enhanced the immunogenicity of the p24 antigen and obviated

the need for an exogenous adjuvant. Both humoral and cellular immune

responses against p24 could be elicited by administering p24-hsp70 fusion

protein in phosphate buffer. In order for hsp70 to augment anti-p24 immune

responses in the absence of adjuvant, physical linkage of hsp70 to p24 was

essential.

In this study, recombinant p24-hsp70 fusion protein was produced for

use as an immunogen using a vector system that permits the production of

any hsp70 fusion protein. In principle, any gene or epitope of interest can be

subcloned into the plasmid vector pKS70 and antigen fused to hsp70 can be

expressed and purified. For studies of the adjuvant-free carrier effect of hsp70,

these fusion proteins have several advantages. The hsp70 fusion proteins are

easy to produce in large amounts, to purify and to characterize. This vector

system enables the production of proteins composed of one mole of antigen

fused to one mole of the hsp70 carrier protein in which the number and

position of potential epitopes were identical for each molecule. In contrast,

hsp70 conjugates generated by glutaraldehyde cross-linking (Barrios, et al.,

1992; Lussow, et al., 1991; Perraut, et al., 1993) are a pool of nonidentical

molecules with variable epitope density. Immune responses to an antigen

can be strongly affected by differences in the molar ratio of antigen and carrier,

in the mode of linkage of hapten and carrier and in the position of B and T

cell epitopes (Anderson, et al., 1989; Cox et al., 1988; Dintzis, 1992; Hanna, et

al., 1972; Klaus and Cross, 1974; Lowenadler and Lycke, 1994; Lowenadler et al.,
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1992; Snippe et al., 1975). Thus, hsp70 fusion proteins reduce the variables

associated with the study of HSPs as immunological carriers.

Inoculation of mice with the hsp70-p24 fusion protein elicited a strong

antibody response to HIV-1 p24 when administered in the absence of

adjuvant. These results show that the adjuvant-free carrier effect of hsp70,

previously observed when cross-linked to high molar amounts of synthetic

peptide or oligosaccharide (Barrios, et al., 1992; Lussow, et al., 1991; Perraut, et

al., 1993), can be extended to an hsp70 fusion protein where the antigen is a

full-length protein, and where the immunogen contains equivalent molar

amounts of hsp70 and the antigen of interest. Thus, our studies demonstrate

the effectiveness of hsp70 as an adjuvant-free carrier when used with low

epitope density of antigen.

The antibody response elicited by the hsp70 fusion protein was

surprisingly long-lived. Mice immunized with p24-hsp70 fusion protein

maintained high levels of anti-p24 antibody for at least 68 weeks after

immunization. The antibody isotypes secreted in vivo are regulated by

cytokines, with TH1 cytokines preferentially eliciting IgG2a and TH2 cytokines

stimulating IgG1 (Coffman et al., 1988; Finkelman et al., 1990). In p24-hsp70

immunized mice, anti-p24 IgG1, IgG2a and IgG2b antibodies were elcited and

in particular, the anti-p24 IgG1 antibodies persisted at high levels.

The experiments described here also demonstrated that the adjuvant-

free carrier effect of hsp70 extends to the stimulation of cellular responses to a

foreign antigen. Splenocytes from the fusion protein-immunized mice

exhibited p24 antigen-dependent proliferation and production of IL-2, IL-5

and IFN-y. On the basis of cytokine secretion patterns, murine helper T cell

clones have been categorized as TH1 or TH2 (Mosmann and Coffman, 1989).

Immunization of mice with p24-hsp70 elicited p24 specific TH1 and TH2 cells

56



since both TH1 (IL-2 and IFN-y) and TH2 (IL5) type cytokines were secreted in

response to p24 stimulation in vitro.

The powerful carrier effect of hsp70 was also evident in comparative

studies with the carrier protein ovalbumin. The mycobacterial hsp70 moiety

was found to dramatically increase the immunogenicity of the HIV-1 gag p24

antigen in the absence of adjuvant. In contrast, mice immunized with the

p24-ovalbumin fusion protein failed to elicit high levels of anti-p24 immune

responses.

Covalent linkage of hsp70 to p24 was essential to elicit humoral and

cellular immune responses to p24 in the absence of adjuvant under the

conditions used in these experiments. These results are consistent with the

recent report that an anti-(NANP)40 antibody response is elicited in mice

when hsp70 is cross-linked but not when it is simply mixed with the malarial

peptide (NANP)40 (Barrios, et al., 1994). Since (NANP)40 acts as a hapten in

these mice strains (Del Giudice, et al., 1986; Good, et al., 1986), (NANP)40

administered with Freund's adjuvant is also ineffective in eliciting anti-

(NANP)40 antibodies. Thus, it was not clear from previous studies whether

the adjuvant-free immunostimulatory effect of hsp70 was directly related to

its carrier function of supplying T cell epitopes. By using the non-haptenic

antigen HIV p24, we found that, unlike conventional adjuvants, hsp70 could

not be merely mixed with the antigen. Physical linkage of hsp70 to the non-

haptenic antigen p24 was necessary in order for hsp70 to exert an adjuvant-

free carrier effect with p24.

This requisite physical attachment of hsp70 to the p24 antigen implies

that p24, which already contains numerous T cell epitopes, becomes more

immunogenic due to the addition of hsp70 T cell epitopes. It has been

suggested that a high precursor frequency of high affinity hsp70 reactive T
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cells exists due to the continual exposure of the immune system to hsp70

from commensal or pathogenic organisms (Kaufmann and Schoel, 1994b;

Murray and Young, 1992). Immune responses to hsp70 have been detected

following exposure to a broad spectrum of infectious agents (Anzola et al.,

1992; Hedstrom et al., 1987; Rothstein et al., 1989; Selkirk et al., 1989; Young et

al., 1988). In addition, anti-hsp70 immune responses were induced in infants

by the trivalent vaccine against tetanus, diphtheria and pertussis (Del Giudice

et al., 1993). It seems that the immune system is routinely stimulated to

respond to hsp70 and such stimulation may cause an expansion of hsp70

reactive T cells.

How does hsp70 exert its adjuvant-free carrier effect? We suggest that

the humoral response against p24 is augmented by hsp70 in the following

manner. When animals are primed with p24-hsp70 fusion protein, and then

exposed to a second dose, a p24-specific B cell recognizes, internalizes and

processes the p24-hsp70 fusion protein. The B cell then efficiently presents

peptides derived from hsp70 on its surface in the context of an MHC

molecule. This MHC/hsp70 peptide complex is bound by a primed, hsp70-

reactive T cell, leading to the directed release of cytokines by the T cell to the B

cell. These soluble factors stimulate the B cell to proliferate, differentiate and

secrete anti-p24 antibodies.

Other factors may contribute to the mechanism by which hsp70 exerts

its adjuvant-free carrier effect. Hsp70 has been implicated in antigen

presentation (De Nagel and Pierce, 1992; Vanbuskirk et al., 1989) and it is

possible that this function of hsp70 contributes to its adjuvant-free carrier

effect. It may also be that relative to T cell epitopes of other proteins, hsp70 T

cell epitopes are processed by antigen presenting cells more efficiently and

that the resulting hsp70 peptides bind with high affinity to MHC molecules.
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Further experiments must be performed to address the adjuvant-free carrier

mechanism of hsp70.

The lack of optimal adjuvants and carrier proteins have been

problematic in vaccine development (Altman and Dixon, 1989; Del Giudice,

1992) and the use of hsp70 may be a practical alternative. The present study

illustrates the effectiveness of hsp70 in eliciting a humoral and cellular

response to an attached molecule in the absence of adjuvant and affirms the

potential utility of hsp70 in vaccine development.
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Materials and Methods

Expression Vector Constructs

The DNA fragment containing the M. tuberculosis hsp70 coding sequence

was synthesized by PCR using DNA purified from Xgt11 clones Y3111 and

Y3130 (Young et al., 1987) as a template. One upstream primer

(5'CCCGGCATATGGCTCGTGCGGTCGG3') contained an NdeI site that

overlapped the AUG translation initiation codon of the hsp70 gene and

another upstream primer

(5'GCCCGGGATCCATGGCTCGTGCGGTCGGGAT3') contained a BamHI site

immediately before the hsp70 coding sequence. The downstream primer

(5'GGACACAAGCTTTCATCAGCCGAGCCG3') contained a HindIII site

immediately after the translation stop codon.

The DNA fragment containing the HIV-1 gag p24 coding sequence was

synthesized by PCR using plasmid pHXB2 (Fisher et al., 1985) as a template.

The upstream primer

(5'CCTCGTGCATATGCCTATAGTGCAGAACATCCAGGG3') contained an

NdeI site that overlapped the AUG translation initiation codon for the p24

gene. The downstream primers contained a BamHI site either immediately

after the last coding sequence or immediately after the translation stop codon

(5'CGGGATCCCAAAACTCTTGCCTTATGGCC3';

5'CGGGATCCTCATTACAAAACTCTTGCCTTATG3').

The DNA fragment containing the ovalbumin coding sequence was

synthesized by PCR using plasmid pOv230 (McReynolds et al., 1978;

McReynolds et al., 1977) as a template. The upstream primer contained a

BamHI site immediately before the ovalbumin coding sequence

(5'GTCGGATCCATGGGCTCCATCGGCGCAGCA3') and the downstream
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primer contained a BamHI site immediately after the translation stop codon

(5'GCAGGATCCTTAAGGGGAAACACATCTG3').

The plasmid vector pKS70 was created by subcloning the M.

tuberculosis hsp70 gene into the expression vector pT7-7 (Tabor and

Richardson, 1985) at the BamHI and HindIII sites (Fig. 1A). DNA encoding

HIV-1 p24 was then subcloned into pKS70 at the Ndel and BamHI sites to

generate pKS72 (Fig 1A). Plasmid pKS74 was created by subcloning hsp70 into

the NdeI and HindII sites of pT7-7 (Fig 1A). The expression vector pET11

(Studier et al., 1990) was modified with a histidine tag coding sequence and

DNA encoding HIV-1 p24 was subcloned at the NdeI and BamHI sites,

producing pKS24 (Fig 1A). Plasmid pKS26 was created by subcloning

ovalbumin into the BamHI site of pKS24. All plasmids were propagated in E.

coli DH5. Recombinant protein expression was carried out in E. coli

BL21(DE3)pLysS (Studier, et al., 1990).

Protein Purification

Overnight cultures of BL21(DE3)pLysS were diluted 1/100 in 2XYT medium

containing ampicillin (100 gg/ml) and chloramphenicol (50 gg/ml). The

cultures were grown to an OD600 of 0.5 and recombinant protein production

was induced by addition of IPTG (0.5 mM) to the culture. After 30 min.,

rifampicin (150 gg/ml) was added to cells expressing recombinant hsp70 and

to cells expressing p24-hsp70. All cultures were induced with IPTG for a total

of 4 hrs. The cells were harvested and cell pellets were frozen in ethanol/dry

ice.

Hsp70 and p24-hsp70 proteins both formed inclusion bodies and were

purified as follows. To prepare inclusion bodies, cell pellets were

resuspended in ice-cold lysis buffer (25 mM HEPES pH 7.3, 12.5 mM MgCl2, 0.1



mM ZnC12, 0.1% NP-40, 20% glycerol, 1.25 M LiC1, 1 mM PMSF). The cells

were sonicated and then pelleted by centrifugation at 15,000 rpm for 10 min.

in a Sorvall SS-34 rotor. The pellet was resuspended in buffer A (20 mM Tris

pH 8, 20 mM EDTA, 0.5 mg/ml lysozyme), the suspended cells were sonicated,

placed on ice for 30 min. and pelleted by centrifugation at 15,000 rpm for 10

min. The pellet was resuspended in buffer B (10 mM Tris pH 8, 1 mM EDTA,

1.25 M LiC1, 0.5% NP-40), sonicated and centrifuged at 15,000 rpm for 15 min.

After repeating the buffer B wash, the pellet was resuspended in buffer C (10

mM Tris pH 8, 1 mM EDTA, 0.5% NP-40), sonicated and centrifuged at 15,000

rpm for 15 min. The buffer C wash was repeated.

The hsp70 and p24-hsp70 inclusion bodies were each solubilized in

buffer D (10 mM Tris pH 8, 20 mM EDTA, 0.1 M KC1) containing 5 M

guanidine. Proteins were refolded stepwise by dialyzing against buffer D plus

2 M guanidine HC1, buffer D plus 1 M guanidine, buffer D plus 0.5 M

guanidine, buffer D plus 0.25 M guanidine and finally against HEPES buffer

(25 mM HEPES pH 7.3, 12.5 mM MgC12, 20 mM EDTA).

For ATP affinity chromatography, ATP-agarose (Sigma) was

equilibrated in buffer E (100 mM Tris pH 7.5, 4 mM MgC12) plus 0.2% NP-40

and 100 mM NaCl. Protein was loaded on the ATP-column and subsequently

the column was rinsed with buffer E plus 0.2% NP-40 and 600 mM NaC1. The

column was then rinsed with buffer E plus 100 mM NaCl and then with

buffer E containing 100 mM NaCl and 5 mM ATP. Hsp70 and p24-hsp70 were

eluted with buffer E plus 100 mM NaC1 and 25 mM ATP. An aliquot of each

fraction was analyzed by SDS-PAGE and pooled fractions were dialyzed

against buffer F (20 mM Tris pH 8, 1 mM MgC12).

Hsp70 or p24-hsp70 protein was loaded on a FPLC Mono-Q HR 5/5

anion exchange column (Pharmacia) equilibrated in buffer F. After washing
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with buffer F plus 50 mM NaC1, protein was eluted with a 50 mM to 500 mM

gradient of sodium chloride in buffer F. After examination by SDS-PAGE,

fractions containing the most pure protein were pooled and dialyzed against

PBS.

The HIV-1 p24 gag protein and the p24-ovalbumin fusion protein were

expressed in E. coli as described above. Cells were resuspended in lysis buffer

(1% NP-40, 10 mM 2-ME, 1 mM PMSF, 5% glycerol, 50 mM pH 8 sodium

phosphate, 300 mM NaC1, 30 mM imidazole) and sonicated. The lysate was

then centrifuged at 15,000 rpm for 10 min. in a Sorvall SS-34 rotor. The

clarified cell lysate was loaded on a nitrilo-tri-acetic acid (NTA) Ni2 + column

(Qiagen) and the column was then rinsed with 20 column volumes of lysis

buffer. For purification of p24-ova fusion protein, the column was further

rinsed with an additional ten column volumes of buffer Z (300 mM NaC1, 50

mM pH 6 sodium phosphate) plus 60 mM imidazole and the p24-ova protein

was eluted with buffer Z plus 100 mM imidazole. In the HIV-1 p24 gag

protein purification, buffer Z plus 100 mM imidazole was used for rinsing the

column and the p24 protein was eluted with buffer Z plus 500 mM imidazole.

An aliquot of each 1.5 ml fraction was examined by SDS-PAGE. Pooled

fractions were dialyzed against PBS. The purified p24, hsp70, p24-ovalbumin

and p24-hsp70 proteins were stored at -700 C.

Protein Analysis

Sample aliquots were resuspended in Laemmli buffer (Laemmli, 1970)

and subjected to SDS-PAGE. Protein was visualized by Coomassie staining.

For Western blotting, proteins were transferred from the gel to a Bio-blot

nitrocellulose membrane (Costar) and probed with antibodies. The anti-

mycobacterial hsp70 mAb IT-41 was obtained from the World Health
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Organization Mycobacterial Monoclonal Antibody Bank (Dr. T. Shinnick,

Atlanta, GA), the anti-DnaK mAb was from Dr. L. Mizzen (StressGen,

Victoria, B.C.), the rabbit anti-p24 (HIV-1) antibody was from Intracel

(Cambridge, MA) and the rabbit anti-ovalbumin antibody was from Sigma.

Protein concentrations were determined by the bicinchoninic acid assay

(Pierce). Purified proteins were analyzed for endotoxin content using the

Limulus amebocyte lysate assay (Sigma).

Mice and Immunizations

7-8 week old female BALB/c mice were obtained from Taconic Farms

(Germantown, NY). Mice were immunized i.p. on day 0 and day 21 with

doses ranging up to 20 jgg of purified protein in PBS. Doses of 20 gjg, 5 gg (50

pmoles), 1.2 jgg and 0.3 gg of p24-hsp70 fusion protein were used. When mice

were immunized with hsp70 alone, HIV-1 p24 alone or with a mixture of

hsp70 and HIV-1 p24, 3.8 jgg (50 pmoles) hsp70 and 1.2 jgg (50 pmoles) HIV-1

p24 were used. When mice were injected with p24-ovalbumin fusion

protein, 3.5 jgg (50 pmoles) was used. Mice were periodically bled from the

retroorbital plexus.

Determination of Antibody Titers and Isotypes

A 96 well flat bottom ELISA plate was coated overnight at room

temperature with 50 jl of p 24 (2.5 gg/ml). The plate was rinsed with PBS,

incubated with blocking buffer (5% nonfat dry milk powder and 0.2% Tween-

20 in PBS) for 2 hrs at 370 C, and again rinsed with PBS. Mouse serum samples

were diluted in blocking buffer, added to the plate and incubated for 2 hrs at

37 0 C. After rinsing with PBS, the plate was incubated with HRP conjugated

anti-mouse IgG (Pierce; Pharmingen) for 1 hr at 37°C. After extensive
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washing, 3,3',5,5' tetramethylbenzidine (TMB) substrate was added. After 20

min. at RT, the reaction was stopped with 2 M H2SO4 and absorbance was

read at 450 nm. The titer is expressed as the highest serum dilution factor

giving an absorbance >0.2.

Isotype specific analyses were done by ELISA using one of the following

HRP conjugated anti-mouse Ig: anti-IgG1, anti-IgG2a, anti-IgG2b, anti-IgG3 or

anti-IgA (American Qualex, La Mirada, CA; Pierce, Pharmingen). Due to the

inherent difficulty of designing accurate standards for anti-p24 antibodies of

these various isotypes, the ELISA results are expressed as 450 nm absorbance

values.

Cell Proliferation Assay

Spleens were removed from mice 3-6 weeks after the last injection.

The spleens from 5-10 mice in each treatment group were pooled. Single-cell

suspensions were prepared by grinding tissue through a sterile nylon mesh.

Splenocytes were purified by Ficoll-Paque (Pharmacia) density centrifugation.

3-4 X 106 cells/ml were cultured in RPMI 1640:DMEM (1:1), supplemented

with 10% FCS and 50 gM 2-ME at 370C in 96-well flat bottom microculture

plates in 5% CO 2 . The cells were stimulated with 10 gg/ml p24 (triplicate

samples). On day 3 of culture, [3 H] thymidine (1 gCi/well) was added for 16

hrs. The cells were harvested and [3 H] thymidine incorporation was

measured in a scintillation counter. Results are expressed as Acpm (Acpm =

arithmetic mean of cpm from p24 stimulated cultures - arithmetic mean of

cpm from corresponding control cultures).
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Cytokine ELISAs

Splenocytes were prepared as above and cultured in 96-well round

bottom microculture plates. Cells were stimulated with p24 (10 gg/ml), Con

A (5 jgg/ml) or with HIV-1 gag peptides (10 jgg/ml of ea. peptide). The

peptides used were 25 amino acids each, contained 8 overlapping amino acid

residues and encompassed the HIV-1 gag p55 residues 256-348 (Aldovini and

Young, 1991). Cell culture supernatants were removed at 48 hrs to assay for

IL-2 and at 72 hrs for all other cytokines. A sandwich ELISA using paired

monoclonal antibodies (Pharmingen or Endogen) was used to measure IL-2,

IL-4, IL-5 and IFN-y and an Endogen ELISA kit was used to measure IL-10.
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Section III: Generation of CTL Responses

The ability to induce antigen-specific CTL responses is of broad interest

due to the essential role of CTLs in protective cellular immune responses,

including the elimination of virally infected cells (Kast et al., 1986; Lin and

Askonas, 1981; Lukacher et al., 1984). CTL induction is dependent upon the

presentation of processed antigen to naive T cells by professional antigen

presenting cells (APCs) that express high levels of class I major

histocompatibility complex (MHC) molecules (Townsend and Bodmer, 1989;

Townsend and Allison, 1993) . In chapter 5, I will discuss antigen

presentation pathways of exogenous and endogenous antigens. In chapter 6, I

will then describe my work which demonstrates that an hsp70 fusion protein

administered in the absence of adjuvant can elicit CTLs and induce protective

tumor immunity in mice. The work described in chapter 6 has been

published as: Suzue, K., Zhou, X., Eisen, H.N. and Young, R.A., Heat shock

fusion proteins as vehicles for antigen delivery into the major

histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U

SA 94: 13146-13151 (1997).
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Section III

Chapter 5. Antigen Presentation

MHC class I and class II restricted antigen presentation are typically described

as two distinct pathways which differ in the source of antigen (cytosolic vs.

extracellular) and differ in the cellular compartments which are involved

(Braciale et al., 1987; Brodsky and Guagliardi, 1991; Morrison et al., 1986). In

the conventional MHC class I antigen presentation pathway, cytosolic

antigens are proteolyzed in the cytoplasm by the multicatalytic protease, the

proteasome (Driscoll and Finley, 1992; Goldberg and Rock, 1992). The

cytosolic peptides are transported into the endoplasmic reticulum (ER) by the

peptide transporter associated with antigen presentation (TAP) (Androlewicz

et al., 1993; Neefjes et al., 1993; Shepherd et al., 1993). In the ER lumen, the

peptides bind to MHC class I molecules and form a complex which migrates

to the cell surface for recognition and activation of CD8+ CTL. In contrast to

cytosolic antigens, extracellular protein antigens are normally endocytosed

into intracellular vesicles and subsequently proteolyzed by cathepsins

(Chapman, 1998). The peptides generated can bind to MHC class II molecules

trafficking in the endocytic route (Xu and Pierce, 1995) and the resulting

complex is then presented at the cell surface to CD4+ helper T cells (Wolf and

Ploegh, 1995).

Extensive experimental data supports this basic model whereby

cytosolic antigens or any protein in the topological equivalent of extracellular

space are usually shuttled into the MHC class I pathway while exogenous

antigens are processed in the MHC class II pathway. For example,

experiments by Braciale et al. demonstrated that the addition of viable virus
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preparations to cells allowed the synthesis of viral antigen within the cytosol

of the antigen presenting cell and resulted in viral peptide presentation on

the cell surface by MHC class I molecules (Braciale, et al., 1987). In contrast,

nonviable viral antigens were endocytosed and processed by a chloroquine-

inhibited mechanism which resulted in the processing of viral antigens for

presentation by MHC class II molecules. Other investigators have

demonstrated that exogenously added protein can be processed for class I

restricted presentation when artificially delivered into the cytosolic

compartment, for example as a consequence of the osmotic lysis of pinosomes

(Moore et al., 1988), membrane fusion (Yewdell et al., 1988) or electroporation

(Harding, 1992).

Alternative MHC class I presentation pathways

Despite the general view that the MHC class I pathway exclusively monitors

the endogenously synthesized proteins of a cell, it now appears that

exogenous antigens can also gain access to the MHC class I antigen

presentation pathway (Jondal et al., 1996; Rock, 1996). Early studies by Bevan

described an in vivo "cross-priming" phenomenon where transfer of donor

H-2b cells into F1 H-2 bxd mice generated H-2d restricted alloreactive CTL.

This response apparently resulted from the presentation of H-2b donor cell-

derived alloantigen peptides by H-2d MHC molecules expressed by antigen

presenting cells native to the recipient animals (Bevan, 1976). Subsequent

studies continue to demonstrate that cell-associated antigens can be taken up,

processed, and then presented to CTL precursors by host cells (Arnold et al.,

1995; Huang et al., 1996).

Furthermore, proteins such as ovalbumin, hepatitis B surface antigen

and HIV gp120 can be administered as exogenous antigen preparations in
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order to prime MHC class I restricted T cell responses in vivo (Bohm et al.,

1995; Raychaudhuri et al., 1992; Schirmbeck et al., 1995; Wijburg et al., 1998).

Indeed, although many investigators have been unable to prime anti-

ovalbumin CTL in vivo by administering soluble ovalbumin protein in

saline, CTLs against ovalbumin have been elicited by administering

denatured ovalbumin (Martinez-Kinader et al., 1995; Schirmbeck et al., 1994a)

ovalbumin coupled to beads (Harding and Song, 1994; Kovacsovics-

Bankowski et al., 1993), cell-associated ovalbumin (Carbone and Bevan, 1990)

or recombinant bacteria expressing ovalbumin (Pfeifer et al., 1993). In

addition, formulations of ovalbumin with adjuvants such as complete

Freund's adjuvant, saponin, squalene and Tween 80 elicited antigen-specific

CTL responses (Ke et al., 1995; Newman et al., 1992; Raychaudhuri, et al.,

1992).

The predominant mechanism by which peptides derived from

extracellularly added antigens combine with MHC class I molecules is

currently unresolved. In some cases, exogenous antigen fragments may

escape endocytic vesicles and enter the cytoplasm, merging with the

conventional MHC class I pathway. For example, macrophage from wild type

mice processed ovalbumin coupled to latex particles in the context of MHC

class I molecules (Kovacsovics-Bankowski and Rock, 1995). However, the use

of macrophage from TAP1 mutant mice or the addition of proteosomal

inhibitors to wild type macrophage blocked the presentation of the exogenous

antigen with MHC class I. The failure of chloroquine to inhibit presentation

indicates that the antigen is processed in a nonlysosomal compartment and

further suggests the trafficking of the exogenous antigen into the

conventional MHC class I presentation pathway. The transfer of exogenous

material from endocytic compartments into the cytosol has been visualized in
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vitro by incubating bone marrow macrophage with horseradish peroxidase or

fluorescein isothiocyanate-dextran (Norbury et al., 1995).

Other studies have illustrated independence of exogenous antigens

from conventional cytosolic processing mechanisms and ER function. The

phagocytic processing of E. coli or Salmonella typhimurium expressing

ovalbumin resulted in MHC class I presentation of ovalbumin in a brefeldin

A resistant pathway (Pfeifer, et al., 1993). Ovalbumin conjugated to beads has

also been reported to be processed and presented in the context of MHC class I

by macrophage in a brefeldin A resistant pathway (Harding and Song, 1994).

In studies utilizing recombinant glyco- and nucleoprotein from lymphocytic

choriomeningitis virus and nucleoprotein of vesicular stomatitis virus, viral

peptides were presented in association with class I MHC molecules. The

presentation was as efficient in TAP deficient macrophage as by wild type

macrophage (Bachmann et al., 1995).

It should be emphasized that the quality of the antigen preparation

may have a large impact on the measurement of MHC class I responses in

vivo and in vitro. For example, Sousa and Germain (1995) screened nine

different batches of commercially purchased ovalbumin and found that seven

of the batches resulted in the formation of ovalbumin peptide SIINFEKL

bound to MHC class I on the surface of paraformaldehyde-fixed antigen

presenting cells, in the absence of intracellular antigen presentation. Sousa

and Germain thus rigorously screened ovalbumin preparations and only

utilized two of the nine batches of ovalbumin for their in vitro antigen

presentation assays. Protein preparations containing numerous degradation

products may significantly affect the result of MHC class I presentation assays.

It should also be noted that antigen presenting cells process particulate

antigens much more efficiently than soluble antigens (Harding and Song,
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1994; Pfeifer, et al., 1993; Rock, 1996). Ovalbumin coupled to latex particles

was processed by macrophage in vitro and presented by MHC class I

molecules 100 to 1000-fold more efficiently than soluble ovalbumin (Harding

and Song, 1994). Numerous published results demonstrate that injection of 1

jgg to 1 mg of native soluble ovalbumin protein in saline solution into mice

fails to elicit an anti-ovalbumin CTL response (Ke, et al., 1995; Martinez-

Kinader, et al., 1995; Moore, et al., 1988; Raychaudhuri, et al., 1992;

Schirmbeck, et al., 1994a). Studies which do demonstrate the class I

presentation of exogenous soluble antigen in vitro have used very high

concentrations of antigen, from 4 to 10 mg/ml (Norbury, et al., 1995; Reis e

Sousa and Germain, 1995; Rock et al., 1993).

Investigators have utilized different cell types as well as a broad range

of antigen formulations in in vitro antigen presentation assays. Both

macrophages and dendritic cells have prominent phagocytic and

macropinocytic activity and are capable of mediating class I presentation of

exogenous antigens (Albert et al., 1998; Norbury et al., 1997; Rock, et al., 1993).

The mechanism by which these specialized antigen presenting cells process

exogenous antigens is currently an area of intense investigation.

In summary, exogenous antigens have been found to prime MHC class

I restricted CTL responses under certain circumstances and various antigen

formulations appear to be handled differently by antigen presenting cells. In

contrast to particulate antigens, the efficient MHC class I presentation of

soluble protein antigens is infrequently observed. Thus, as described in the

next chapter, I examined whether the hsp70 could be utilized to enhance the

delivery of an antigen into the MHC class I presentation pathway.



Section III

Chapter 6.

Heat shock proteins as vehicles for antigen delivery into the

MHC class I presentation pathway

Summary

Mice immunized with heat shock proteins (hsp) isolated from mouse tumor

cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize

donor cell peptides in association with the MHC class I proteins of the

responding mouse. The CTL are induced apparently because peptides

noncovalently associated with the isolated hsp molecules can enter the MHC

class I antigen processing pathway of professional antigen presenting cells.

Using a recombinant heat shock fusion protein with a large fragment of

ovalbumin covalently linked to mycobacterial hsp70, we show here that

when the soluble fusion protein was injected without adjuvant into H-2b

mice, CTL were produced that recognized an ovalbumin-derived peptide,

SIINFEKL, in association with Kb. The peptide is known to arise from

natural processing of ovalbumin in H-2b mouse cells, and both CTL from the

ova-hsp70-immunized mice and a highly effective CTL clone (4G3) raised

against ovalbumin-expressing EL4 tumor cells (EG7-OVA), were equally

effective in terms of the concentration of SIINFEKL required for half-

maximal lysis in a CTL assay. The mice were also protected against lethal

challenge with ovalbumin-expressing melanoma tumor cells. Because large

protein fragments or whole proteins serving as fusion partners can be cleaved

into short peptides in the MHC class I processing pathway, hsp fusion
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proteins of the type described here are promising candidates for vaccines

aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.
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Introduction

The cytotoxic T lymphocytes (CTL) that play an important role in protective

cellular immunity, including the destruction of virus-infected cells, are

predominantly CD8 T cells (Byrne and Oldstone, 1984; Nagler-Anderson et al.,

1988). Antigen-specific activation of these cells depends upon their

recognition of peptide-MHC complexes, which normally arise within antigen

presenting cells by proteolytic cleavage of cytosolic proteins (Townsend and

Bodmer, 1989). Translocated into the ER, the resulting peptides bind to

nascent class I MHC molecules for transport to the cell surface (Heemels and

Ploegh, 1995). Since intact proteins in the extracellular medium do not

ordinarily penetrate into a cell's cytosol, soluble proteins typically fail to

stimulate mice to produce CTL (Braciale, et al., 1987), although there are

exceptions (Jondal, et al., 1996).

In comparison with other proteins, the soluble heat shock protein

termed gp96 is an unusually effective stimulator of CD8 CTL (Udono and

Srivastava, 1994). Mice injected with gp96 isolated from tumor cells (donor

cells) produce CTL that are specific for donor cell peptides in association with

the responder mouse's class I MHC proteins (Arnold, et al., 1995; Udono and

Srivastava, 1994). Since donor peptides are bound noncovalently by the

isolated hsp protein, the results suggest that the hsp molecules are capable of

delivering noncovalently associated peptides to MHC-I proteins of other

(recipient) cells, including antigen presenting cells.

The noncovalently bound peptide-gp96 complexes which are purified

from a tumor cell appear to represent a broad array of proteins expressed by

the cell (Arnold et al., 1997; Li and Srivastava, 1993). In contrast, recombinant

hsp fusion proteins in which specific proteins of interest are covalently linked

to the hsp would provide a well-characterized polypeptide which would lack
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extraneous peptides. In addition, a large protein fragment covalently linked

to the hsp would be an especially rich source of many different naturally

processed peptides. Peptide mixtures of this kind, derived from specific

antigens of interest, would be particularly suitable for forming intracellular

peptide-MHC complexes with the highly diverse MHC proteins found in

different individuals of genetically outbred populations.

We have accordingly taken advantage of a recombinant hsp70 protein

expression vector that permits diverse proteins and peptides to be fused to the

amino terminus of mycobacterial hsp70. We have previously shown that M.

tuberculosis hsp70 can be used as an adjuvant-free carrier to stimulate the

humoral and cellular response to a full-length protein that is covalently

linked to the hsp (Suzue and Young, 1996) . The special properties of hsp70

prompted us to investigate whether soluble hsp70 fusion proteins could be

utilized to elicit MHC class-I restricted CD8+ CTL.

We show here that a soluble hsp70 fusion protein having a large

fragment of chicken ovalbumin as fusion partner could, in the absence of

adjuvants, stimulate H-2b mice to produce ovalbumin-specific CD8 CTL. The

CTL recognized an immunodominant ovalbumin octapeptide, SIINFEKL,

known to be a naturally processed peptide derived from ovalbumin expressed

in mouse cells (Rotzschke et al., 1991), in the context of Kb. CTL from the

immunized mice were as active cytolytically as a highly effective CTL clone

(4G3) that had been raised against ovalbumin-expressing tumor cells, as both

caused half-maximal lysis of Kb+ target cells with the SIINFEKL peptide at

about the same concentration

(10-13 M). Our results thus indicate that the ovalbumin-hsp70 fusion protein,

injected as a soluble protein into mice, can enter the MHC class I processing

pathway in antigen presenting cells and stimulate the production of CD8 CTL.
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Results

Purified recombinant proteins

A recombinant system developed to permit production of M.

tuberculosis hsp70 fusion proteins in E. coli (Suzue and Young, 1996) was

utilized to attach amino acids 161 to 276 of ovalbumin to the N-terminus of

M. tuberculosis hsp70. A comparable recombinant ovalbumin protein

(amino acids 161 to 276) was also produced. The selected portion of

ovalbumin contains the immunodominant epitope SIINFEKL recognized by

CTL in association with Kb (Carbone and Bevan, 1989; Rotzschke, et al., 1991).

The ovalbumin-hsp70 fusion protein and the ovalbumin (aa 161-276) protein

were expressed at high levels in E. coli (Fig. 1A). These proteins were purified

as inclusion bodies, refolded in vitro, and further purified by column

chromatography. The purity of the recombinant proteins was assessed by

SDS-PAGE (Fig. 1A). Examination of commercial preparations of crystallized

and high grade ovalbumin by SDS-PAGE and silver staining revealed that

they are highly contaminated with low molecular weight polypeptides. For

this reason, only the highly purified recombinant ovalbumin (aa 161-276)

protein, referred to below simply as ovalbumin, was used in these studies.
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Fig. 1. A) Production of recombinant proteins. E. coli cell lysates and purified

proteins were examined by SDS-PAGE and proteins were visualized by

Coomassie staining. The gel contains crude extracts from IPTG-induced E.

coli containing pKS28 (ova 161-276) and from IPTG-induced E. coli containing

pKS76 (ova-hsp70), and the purified proteins ova 161-276 and ova-hsp70.

Molecular weight markers (X10 -3) are at left. B) Generation of ovalbumin-

specific CTL by immunization with ova-hsp70 fusion protein in saline. Mice

were injected i.p. with either 120 pmoles of recombinant ova, ova-p24 or ova-

hsp70 protein without adjuvant. The injections were repeated s.c. 2 weeks

later. Mice were sacrificed 10 days after the boost and for each mouse group, 5-

10 spleens were pooled and splenocytes from immunized mice were

incubated for 6 days in the presence of irradiated E.G7-OVA cells without

added interleukins. The splenocyte cultures derived from mice immunized

with ova 0, ova-p24 V and ova-hsp70 N were then used as effector cells in a

standard cytotoxicity assay. The following 5 1Cr-labeled target cells were used:

T2-Kb cells - - and T2-Kb pulsed with SIINFEKL peptide - at 300

gg/ml. C) SIINFEKL peptide titration. T2-Kb cells were incubated with the

indicated molar concentrations of SIINFEKL peptide for 45 min. for use as

target cells in a CTL assay. The effector cells ova 0 and ova-hsp70 as

described above, were used at an E:T ratio of 80:1. The 4G3 CTL clone A was

used at an E:T of 5:1.
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Immunization of mice with hsp70 fusion protein in PBS elicits T cell

responses against the attached antigen

We investigated whether mice injected with soluble protein without

adjuvant could be primed to produce anti-ovalbumin T cells (Fig. 1B).

C57BL/6 mice were inoculated i.p. with 120 pmoles of ovalbumin or with 120

pmoles of ovalbumin-hsp70 fusion protein in PBS. A second equivalent dose

was given s.c. at two weeks. A third group of mice was injected with 120

pmoles of ovalbumin-p24 gag fusion protein, purified as described in (Suzue

and Young, 1996), in order to examine the immune responses elicited by

administering ovalbumin covalently linked to a protein other than hsp70, in

the absence of adjuvant. Splenocytes of immunized mice were removed ten

days after the s.c. immunization and cultured in vitro for 6 days with

irradiated E.G7-OVA cells (syngeneic EL4 cells transfected with ovalbumin)

(Moore, et al., 1988). The cultured cells were then used as effector cells in CTL

assays. Cells from mice injected with ovalbumin protein or with ovalbumin-

p24 fusion protein were unable to lyse T2-Kb target cells or T2-Kb cells pulsed

with SIINFEKL peptide. In contrast, effector cells from mice primed with

ovalbumin-hsp70 fusion protein were able to lyse T2-Kb cells pulsed with

SIINFEKL peptide (Fig. 1B).

Results obtained with other target cells also show that the anti-

ovalbumin CTL recognized SIINFEKL in association with Kb. Splenocytes

from ovalbumin-hsp70 immunized mice were able to lyse both E.G7-OVA

target cells and EL4 cells pulsed with SIINFEKL peptide but were unable to

lyse EL4 cells in the absence of peptide or EL4 cells pulsed with another Kb -

binding peptide (RGYVYQGL, from vesicular stomatitis virus, (Van Bleek

and Nathenson, 1990), data not shown).
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To assess the effectiveness of the CTL from ova-hsp70-immunized

mice, they were tested after 6 days in culture in cytolytic assays using T2-Kb as

target cells and SIINFEKL at various concentrations. For purposes of

comparison, the assay included a well-characterized CTL clone (4G3) that

recognizes the SIINFEKL-Kb complex. As shown in Fig. 1C, half-maximal

lysis was obtained with both the CTL line and the 4G3 clone at about the same

peptide concentration, approximately 5 x 10-13 M. Thus CTL from the ova-

hsp70-immunized mice and the clone against the ovalbumin-expressing

tumor (E.G7-OVA) were equally effective in terms of the SIINFEKL

concentration required for half-maximal lysis. It may be noted that in Fig. 1C

the ratio of 4G3 cells to target cells (E:T ratio) was 5:1, whereas for the CTL line

this ratio was 80:1. While the E:T ratio has a large impact on the maximal

lysis of target cells at 4 hr, changing this ratio over an 80-fold range (1:1 to 80:1)

has a negligible effect on the peptide concentration required for half-maximal

lysis (unpublished data).

We next verified that the cytolytic activity of the CTL line from ova-

hsp70-immunized mice was due to CD8+ T cells (Fig. 2). For this purpose we

used a MACS column to separate the CTL line into T cell subsets (see

Materials and Methods). CTL activity was unaffected by removing CD4+ cells,

but it was completely abrogated by removing CD8+ cells. Retrieval of the

CD8 + cells from the MACS column led to recovery of cytolytic activity. The

results were the same when target cells were EL4 cells incubated with

SIINFEKL or ovalbumin-expressing EL4 cells (E.G7-OVA). Thus,

administration of ovalbumin-hsp70 fusion protein, but not ovalbumin alone,

elicits CD8+ CTL specific for SIINFEKL-Kb.
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Fig. 2. Immunization with ova-hsp70 elicits ovalbumin reactive CD8+ T

cells. C57BL/6 mice were injected i.p. with 120 pmoles of ova or ova-hsp70

without adjuvant and boosted s.c. with the same amounts of these proteins 2

weeks later. Mice were sacrificed 10 days after the boost and for each mouse

group, 5-10 spleens were pooled and splenocytes were incubated for 6 days in

the presence of irradiated E.G7-OVA cells. Prior to performing the cytotoxicity

assay, the effector cells were negatively or positively selected for CD4+ cells or

CD8+ cells using paramagnetic antibodies (see Materials and Methods).

Splenocyte cultures were either depleted of CD4+ cells (CD4-CD8+), depleted

of CD8+ cells (CD4+ CD8-) or were enriched for CD8+ cells (CD8+).
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The lower level of cytolytic activity in Fig. 2 relative to Fig. 1 (B and C)

reflects the different target cells used. T2-Kb cells (Fig. 1) and EL4 cells (Fig. 2)

have approximately the same high level of cell surface Kb (roughly 100,000

molecules per cell, unpublished observations), but the peptide transporter

(TAP) is defective in T2-Kb (Andersen and Heron, 1993), and not in EL4.

Hence, at a given free concentration of SIINFEKL the target cell epitope

density (number of SIINFEKL-Kb complexes per cell) is much greater on T2-

Kb than EL4 cells.

Hsp70 must be covalently coupled to ovalbumin to engender anti-ovalbumin

T cell responses

We examined whether the covalent fusion of hsp70 to ovalbumin was

necessary to elicit cellular responses to ovalbumin or whether the same

results could be obtained if the two proteins were simply mixed but not

covalently attached (Fig. 3). Mice were injected with 120 pmoles of

ovalbumin-hsp70 fusion protein, with 120 pmoles of ovalbumin, or with 120

pmoles of hsp70 mixed with 120 pmoles of ovalbumin. The level of IFN-y

secreted by the splenocytes in response to restimulation with ovalbumin in

vitro was measured by ELISA. Splenocytes from mice immunized with

ovalbumin alone or with a mixture of ovalbumin and hsp70 proteins

produced less than 6 ng/ml IFN-y in response to stimulation with SIINFEKL

peptide or ovalbumin (Fig. 3A). In contrast, splenocytes from mice injected

with the ovalbumin-hsp70 fusion protein secreted substantially higher levels

of IFN-y when restimulated in vitro with SIINFEKL peptide or ovalbumin.

The release of IFN-y was ovalbumin-specific, since splenocytes cultured in

media alone or with control RGYVYQGL peptide secreted low levels of IFN-y.
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Similar results were obtained by cytolytic assays (Fig. 3B). Ovalbumin-

specific CTL were produced by mice injected with the ovalbumin-hsp70

fusion protein but not by those injected with a mixture of ovalbumin with

hsp70.
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Fig. 3. Examination of ovalbumin-specific T cell responses in mice injected

with a mixture of ova and hsp70. Mice were injected twice as described in Fig.

1 with 120 pmoles of recombinant ova, 120 pmoles of ova-hsp70 fusion

protein or with 120 pmoles each of ova and hsp70. Ten days after the boost 5-

10 spleens from each mouse group were pooled and processed. A) IFN-y

secretion by splenocytes stimulated 72 h in vitro with 5 gg/ml recombinant

ova protein 0, SIINFEKL peptide S, RGYVYQGL peptide M, or tissue culture

media alone O. All samples were examined in triplicate. B) Generation of

ova-specific CTL by immunization with ova-hsp70 fusion protein in saline.

Splenocyte cultures from mice immunized with recombinant ova 0, ova-

hsp70 fusion protein N or with a mixture of ova and hsp70 proteins A, were

used as effector cells in a standard cytotoxicity assay. The following 51Cr-

labeled target cells were used: E.G7-OVA - and EL4 cells alone - -.
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Immunization of mice with ovalbumin-hsp70 protein without adjuvant

engenders protective immunity to M05 tumor challenge

The MO5 cell line, which is a B16 melanoma cell line transfected with

ovalbumin expressing DNA, presents the immunodominant SIINFEKL

peptide in association with Kb on the cell surface (Falo, et al., 1995). Using

this tumor we could determine whether the immune response induced by

ovalbumin-hsp70 fusion protein is sufficient to engender protective tumor

immunity. Mice were injected i.p. with 120 pmoles of ovalbumin or

ovalbumin-hsp70 without adjuvant and boosted s.c. 2 weeks later. Ten days

later the mice were injected s.c. on the right flank with 1 X 105 M05 tumor

cells or with 1 X 105 B16 tumor cells. As an additional control, naive mice

were also inoculated with the tumor cells.

All mice challenged with tumor cells were monitored for tumor

growth and growth was recorded as the average tumor diameter in

millimeters (Fig. 4A). Twenty-one days following the M05 tumor challenge,

the average tumor diameter in the control and the ovalbumin immunized

mice was greater than 15 mm. Because the control and ovalbumin

immunized mice began dying 21 days after the tumor challenge, tumor

growth was not recorded beyond 21 days. In contrast to the control and the

ovalbumin-immunized mice, no tumors were detected in the ovalbumin-

hsp70 immunized mice 21 days after the tumor challenge. All groups of mice

(control, ovalbumin-immunized or ovalbumin-hsp70 immunized) which

were challenged with the B16 tumor cells developed tumors (Fig. 4A) and

became moribund by 21 days after the tumor challenge.
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Fig. 4. Immunization of mice with ova-hsp70 protein without adjuvant

engenders protective immunity to M05 tumor challenge. Mice were injected

i.p. with 120 pmoles of ova or ova-hsp70 without adjuvant and boosted s.c.

with the same amounts of these proteins 2 weeks later. 10 days after the last

immunization the mice were injected s.c. on the right flank with 1 X 105 MO5

tumor cells. Each group contained at least 5 mice. A) Following the MO5 and

B16 tumor challenges, tumor growth was monitored in control mice A and in

ova 0 and ova-hsp70 immunized mice. Growth was recorded as the

average tumor diameter in millimeters. B) The survival of mice was

recorded as the percentage of mice surviving following the tumor challenge.

Mice which appeared moribund were killed and scored as 'not surviving'.
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The survival of mice was recorded as the percentage of mice surviving

following the tumor challenge (Fig. 4B). Mice which appeared moribund

were sacrificed. Forty days after the M05 tumor challenge, none of the

control mice and only 10% of the ovalbumin-immunized mice had survived.

In contrast, 80% of the ovalbumin-hsp70 immunized mice had survived.

These experiments demonstrate that immunization of mice with the

ovalbumin-hsp70 fusion protein, but not with the ovalbumin protein alone,

induces ovalbumin specific protective tumor immunity.
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Discussion

The principal finding in this study is that injection of an hsp70-ovalbumin

fusion protein into H-2b mice stimulated the production of CD8 CTL that

recognize the immunodominant ovalbumin octapeptide, SIINFEKL, in

association with Kb. The immunized mice were protected against an

otherwise lethal challenge with an ovalbumin-expressing melanoma tumor,

and their CTL were as effective (see Fig. 1C) in recognizing the SIINFEKL-Kb

complex as a CTL clone (4G3) that was raised against cells (EG7-OVA) in

which ovalbumin is expressed and processed naturally for class I-MHC

presentation. These findings clearly imply that the covalently linked fusion

partner of the injected hsp fusion protein was processed in the same way as

ordinary cytosolic proteins for presentation with MHC class I proteins in

antigen presenting cells.

We previously reported that mice injected with an HIV-1 gag protein

(p24) linked to hsp70 produced p24-specific T cells. Although the peptide-

MHC complexes recognized by the T cells were not identified, the splenocytes

from the fusion-protein immunized mice exhibited p24 antigen-dependent

production of IFN-y, which implies the presence of Thl helper T cells and

CTL. The previous findings, taken in conjunction with the present results,

suggest that hsp70 fusion proteins may prove to be generally useful as

immunogens for stimulating CD8 CTL that are specific for peptides produced

by natural proteolytic processing of the fusion partners within antigen

presenting cells.

The mechanisms by which hsp70 enables covalently linked

polypeptide fusion partners to gain entry into the MHC class I processing

pathway and elicit CD8 CTL could be based on: i) hsp70's ability to assist

protein folding (Flynn et al., 1991; Zhu et al., 1996), and to facilitate the
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translocation of proteins into subcellular compartments (Brodsky, 1996; Cyr

and Neupert, 1996), ii) hsp70's ability to facilitate the breakdown of

intracellular proteins (Sherman and Goldberg, 1996) and iii) the high

frequency of T cells directed against mycobacterial hsp70.

Hsp70 is an integral component of the protein folding machinery

(Gething and Sambrook, 1992; Hartl, 1996; Hartl et al., 1994) and functions

through its ability to bind short linear peptide segments of folding

intermediates. Detailed studies of the peptide-binding activity of hsp70 have

shown that it has a clear preference for peptides with aliphatic hydrophobic

side chains (Flynn, et al., 1991; Rudiger et al., 1997). Thus hsp70 appears to

transiently associate with hydrophobic protein regions and prevent protein

aggregation. The kinetics of hsp70-substrate binding is governed by the ATP

binding and ATPase activity of hsp70 (Flynn et al., 1989). The combination of

the peptide and ATP binding functions of hsp70 may be involved in the

efficient transfer of antigenic peptides into the MHC class I antigen

presentation pathway. Hsp70 also associates with nascent polypeptide chains

as they emerge from ribosomes and are involved in stabilizing nascent

polypeptides prior to their translocation into various subcellular

compartments (Beckmann et al., 1990; Frydman et al., 1994), including

chloroplasts, the ER, lysosomes, mitochondria, the nucleus and peroxisomes

(Brodsky, 1996; Cyr and Neupert, 1996). The present findings indicate that

hsp70 also promotes delivery of covalently linked fusion polypeptides to the

subcellular compartment(s) required for cell surface presentation of peptide-

MHC-I complexes.

Hsp70's role in intracellular protein breakdown may be especially

relevant for the immunogenic effectiveness of its fusion partner.

Experiments with yeast cell mutants and with mammalian cell extracts have
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shown that, in addition to its function in protein refolding, hsp70 serves an

essential role in the degradation of certain abnormal polypeptides (Nelson et

al., 1992; Sherman and Goldberg, 1996). Thus, if hsp70 fails to refold a

denatured protein, it can facilitate its degradation by the cell's proteolytic

machinery. In eukaryotes, hsp70 is essential for the ubiquitination of certain

abnormal and regulatory proteins and thus in the breakdown of

polyubiquinated polypeptides by the 26S proteasome (Sherman and Goldberg,

1996). The peptides generated by the proteasome in the cytosol appear to be

the primary source of the peptides that are translocated into the ER for

association with MHC class I. Thus proteins that are linked to hsp70 may be

ubiquitinated and processed especially well for presentation with MHC-I

proteins.

Immune responses to hsp70 have been detected following exposure to

a broad spectrum of infectious agents (Hedstrom et al., 1987; Selkirk et al.,

1989; Young et al., 1988). In addition, anti-hsp70 immune responses were

induced in infants by the trivalent vaccine against tetanus, diphtheria and

pertussis (Del Giudice et al., 1993). It seems that the immune system is

routinely stimulated to respond to hsp70 and such stimulation may cause an

expansion of hsp70-reactive cells. The cellular responses to mycobacterial

hsps are profound; limiting dilution analysis indicates that 20% of the

murine CD4+ T lymphocytes that recognize mycobacterial antigens are

directed against hsp60 alone (Kaufmann et al., 1987). The high frequency with

which human CD4+ T cell clones directed against mycobacterial hsp70 and

hsp60 have been detected suggests that these hsps are also major targets of the

cellular response in humans (Munk et al., 1988). Thus, although soluble

proteins administered in the absence of adjuvant do not typically elicit CD8

CTL, it is possible that the abundant hsp70-reactive helper T cells are
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involved in facilitating the unusually efficient CTL response against the

soluble hsp70 fusion protein.

Another hsp, gp96, isolated from various tumors and tumor cell lines,

has previously been shown to be a potent immunogen for eliciting CD8 CTL.

Gp96's effectiveness derives from i) the many peptides that remain bound

noncovalently to the protein when isolated from cells (Arnold, et al., 1997; Li

and Srivastava, 1993), and ii) its ability to facilitate the transfer of those

peptides to MHC-I proteins of "professional" antigen presenting cells (Suto

and Srivastava, 1995). Detailed studies of the peptide-binding activity of

hsp70 has shown that it has a clear preference for peptides over 7 amino acids

in length and those with aliphatic hydrophobic side chains (Flynn, et al., 1991;

Rudiger, et al., 1997). Although gp96 can bind many different peptides

(Arnold, et al., 1995; Nieland et al., 1996; Udono and Srivastava, 1993), studies

with hsp70, as well as general considerations, indicate that no protein can

serve as a universal receptor for all peptides. Recombinant hsp70 fusion

proteins, in contrast, are thus likely to provide a richer source of peptides

available for binding to diverse MHC molecules.

Many different proteins can be linked to hsp70 and the fusion proteins

studied so far are effective immunogens in the absence of adjuvants. Hsp70

fusion proteins are thus attractive candidates for vaccines intended to

stimulate CD8 CTL in humans.
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Materials and Methods

Expression Vector Constructs. The DNA fragment containing the M.

tuberculosis hsp70 coding sequence was synthesized by PCR using DNA

purified from Xgt11 clones Y3111 and Y3130 as a template (Young et al., 1987).

The complete coding sequence of hsp70 was synthesized by using the

upstream primer oKS63 (5'GCCCGGGATCCATGGCTCGTGCGGTCGGGAT3')

containing a BamHI site immediately before the hsp70 coding sequence and

the downstream primer oKS79

(5'GCGGAATTCTCATCAGCCGAGCCGGGGT3') containing an EcoRI site

immediately after the last coding sequence of hsp70. The DNA fragment

containing the ovalbumin coding sequence was synthesized by PCR using

plasmid pOv230 (McReynolds et al., 1978) as a template. The upstream

primer oKS83 (5'GCGGATCCATATGGTCCTTCAGCCAAGCTCCGTGG3')

contained a NdeI site immediately before amino acid 161 of ovalbumin and

the downstream primer oKS82

(5'GCAGGATCCCTCTTCCATAACATTAGA3') contained a BamHI site

immediately after amino acid 276 of ovalbumin. Another downstream

primer containing a BamHI site oKS80

(5'GCTGAATTCTTACTCTTCCATAACATTAG3'), included a translation stop

codon immediately after amino acid 276 of ovalbumin.

Construction of the vector used to produce hsp70 alone, pKS74, has

been previously described (Suzue and Young, 1996). The vector pKS11h was

made by modifying the plasmid vector pET11 (Studier et al., 1990) with a

histidine tag coding sequence and with the polylinker from pET17b. Plasmid

pKS28 was made by subcloning the DNA encoding amino acids 161 to 276 of

ovalbumin into the NdeI and BamHI sites of pKS11h. Plasmid pKS76 was
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created by subcloning ovalbumin (161-276) and hsp70 into the NdeI and

BamHI sites of pKS11h.

Protein Purification. Cultures of BL21(DE3)pLysS (Studier, et al., 1990)

were grown and induced with 0.5 mM isopropylthiogalactoside (IPTG). Hsp70

and ova-hsp70 proteins were both purified as inclusion bodies, refolded

stepwise in guanidine and subsequently purified by ATP affinity

chromatography as previously described (Suzue and Young, 1996). Protein

purity was verified by SDS-PAGE and protein fractions were pooled and

dialyzed against PBS. Protein concentrations were determined by the

bicinchoninic acid assay (Pierce, Rockford, IL).

Peptides. The peptides SIINFEKL (corresponding to ovalbumin amino

acids 258-276) and RGYVYQGL (corresponding to the vesicular stomatitis

virus nucleoprotein amino acids 324-332), were synthesized by the

Biopolymers Facility at the Center for Cancer Research at the Massachusetts

Institute of Technology. Peptides were stored as 1 mg/ml stock solutions in

PBS.

Mice and Immunizations. 7-8 week old female C57BL/6 mice were

obtained from Jackson Laboratories (Bar Harbor, Maine) and Taconic Farms

(Germantown, NY). Mice were immunized i.p. on day 0 and s.c. on day 14

with 120 pmoles of purified protein in PBS.

Cell lines. EL4 (H-2b) thymoma cells, from the American Type Culture

Collection (ATCC, Rockville, MD), were grown in RPMI 1640 /10% FCS.

E.G7-OVA cells (ovalbumin transfected EL4 cells) (Moore, et al., 1988) were

cultured in RPMI 1640 /10% FCS in the presence of 320 gg of G418 per ml.

The human cell line T2, is a TAP-deficient, T-B lymphoblastoid fusion hybrid.

The Kb transfected clone, T2-Kb, a generous gift from P. Cresswell, was

cultured in RPMI 1640 /10% FCS in the presence of 320 gg of G418 per ml.
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The CTL clone 4G3 was maintained by weekly restimulation with irradiated

E.G7-OVA cells in RPMI 1640/10% FCS/5% rat Con A supernatant (Walden

and Eisen, 1990) The C57BL/6-derived melanoma B16 and the ovalbumin-

transfected B16 clone, MO5, (Falo et al., 1995) were generously provided by L.

Rothstein and L. Sigal. The B16 cells were grown in RPMI 1640 /10% FCS and

the M05 cells were grown in the presence of 2.0 mg of G418 and 40 jgg of

hygromycin per ml.

IFN-y ELISA. Spleens were removed from mice 10 days after the last

injection. The spleens from 3-10 mice in each treatment group were pooled.

Single-cell suspensions were prepared by grinding tissue through a sterile

nylon mesh. Erythrocytes were removed by suspending the cells in pH 7.2

lysis buffer (0.15 M NH4C1, 1 M KHCO3, 0.1 mM Na2EDTA) and rinsing the

cells two times with RPMI 1640 media. Splenocytes were then cultured at 1 X

107 cells/ml in 96-well round bottom microculture plates in RPMI 1640,

supplemented with 10% FCS and 50 gM 2-ME at 37 0C in 5% CO 2 . The cells

were stimulated with recombinant ovalbumin (10 gg/ml), SIINFEKL peptide

(10 gg/ml), RGYVYQGL (10 gg/ml) or with Con A (5 gg/ml). Cell culture

supernatants were removed at 72 h. A sandwich ELISA using paired

monoclonal antibodies (Endogen, Cambridge, MA) was used to measure IFN-

,.

CTL assay. Single-cell suspensions of splenocytes were prepared as

above. 25 X 106 splenocytes were cultured with 5 X 106 irradiated (15,000 rads)

E.G7-OVA cells in RPMI 1640 supplemented with 10% FCS, 50 gM 2-ME, 1

mM sodium pyruvate and 100 gM non-essential amino acids. After 6-7 days

in culture, splenocytes were purified by Ficoll-Paque (Pharmacia, Piscataway,

NJ) density centrifugation and then utilized as effector cells.
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Target cells were labeled with 100 gCi [5 1Cr] at 370 C for 1-2 h. For

peptide sensitization of target cells, 50 gg of peptide was added to the target

cells (300 gg/ml final peptide concentration) during the labeling period. The

cells were then rinsed and 5000 [5 1Cr]-labeled targets and serial dilutions of

effector cells were incubated at various E:T ratios in 96 well U-bottom plates at

37°C. For peptide titration assays, the target cells were not pulsed with any

peptide during the [51Cr]-labeling period and instead, the peptide was directly

added to the 96 well U-bottom plate at final concentrations of 10-10 M to 10-14

M. Supernatants were harvested after 4-6 h and the radioactivity was

measured in a gamma counter. % Specific lysis was calculated as equal to 100

X [(release by CTL-spontaneous release)/ (maximal release-spontaneous

release)]. Maximal release was determined by addition of 1% Triton X-100 or

by resuspending target cells.

In vitro depletion or enrichment of lymphocyte subpopulations.

Splenocytes were cultured with irradiated E.G7-OVA cells and purified by

Ficoll-Paque (Pharmacia) density centrifugation as described above. Cells

were resuspended in cold PBS with 1% FCS and incubated with anti-mouse

CD4 (L3T4) microbeads or with anti-mouse CD8a (Ly-2) microbeads (Miltenyi

Biotech, Bergisch Gladbach, Germany) for 20 min. at 4°C. For cell depletion,

the cells were applied on to a Mini MACS column (Miltenyi Biotech) with an

attached flow resistor. The cells from the flow-through were collected and

used as effector cell in the cytolytic assay. For positive selection of CD8 cells,

the cells were applied on to a Mini MACS column without a flow resistor.

The column was rinsed and the cells adhering to the column were released by

removing the column from the magnetic holder. The positively selected cells

were then used as effector cells in the cytolytic assay. The effectiveness of

positive and negative selection of cells was verified by flow cytometry using
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phycoerythrin conjugated anti-mouse CD4 and fluorescein isothiocyanate

conjugated anti-mouse CD8a antibodies (Pharmingen, San Diego, CA).

Tumor protection assay. C57BL/6 mice were injected i.p. with 120

pmoles of ova or ova-hsp70 without adjuvant and boosted s.c. 2 weeks later.

Ten days after the last immunization the mice were injected s.c. on the right

flank with 1 X 105 M05 tumor cells or with 1 X 105 B16 tumor cells. As a

control, unimmunized mice were also inoculated with the tumor cells. 5 to

10 mice were used for each experimental group. On the day of the tumor

challenge, the B16 and M05 cells were harvested by trypsinization and rinsed

three times in PBS. The cells were resuspended in PBS and administered s.c.

in a volume of 0.1 ml. Tumor growth was assessed by measuring the

diameter of the tumor in millimeters (recorded as the average of two

perpendicular diameter measurements). Mice that became moribund were

sacrificed. Consistent results were observed in three separate experiments.
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Section IV: Further Experimental Studies.

Section one discussed the chaperoning functions and the immunogenic

nature of hsp70. In section II, immunological carrier proteins and adjuvants

were presented and included data illustrating the effectiveness of hsp70 as an

adjuvant-free carrier to elicit humoral responses to an attached antigen.

Section III described my work which demonstrates that an hsp70 fusion

protein administered in the absence of adjuvant can elicit CTLs and induce

protective immunity in mice. How does hsp70 assist in the elicitation of

humoral and cellular responses? Currently, experiments are ongoing in the

laboratory to address this question. This last section of the thesis contains

unpublished experimental results, which provide some insight to the

mechanism by which hsp70 functions as an immnological carrier.
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Is the ATP-binding domain or the peptide binding domain of hsp70 sufficient

for the adjuvant-free carrier effect?

Humoral response-

I investigated whether the peptide binding or the ATP binding domain

of hsp70 was sufficient for eliciting antibody responses to the attached p24

antigen. As discussed in chapter 1, the amino terminal 44 kD portion of

hsp70 contains the ATP binding domain, and the carboxyl terminal portion of

hsp70 binds polypeptide substrates. Recombinant fusion proteins were

produced with the ATP binding domain of hsp70 attached to p24

(p24-NH2 hsp70) and the peptide binding domain of hsp70 attached to p24

(p24-CO2H hsp70). These proteins were purified from E. coli as inclusion

bodies, refolded and purified using NTA-Ni2 + chromatography.

I examined the ability of the p24 fusion proteins to elicit anti-p24

antibody responses in the absence of adjuvant. Groups of BALB/c mice were

inoculated with 50 pmoles of one of the following proteins: p24,

p24-NH2 hsp70, p24-CO2H, or with p24 fused to the whole hsp70 molecule

(p24-hsp70). A second equivalent dose was given at three weeks. Serum

samples were obtained three weeks after the second immunization and anti-

p24 IgG antibody titers were determined by ELISA. Mice injected with p24-

hsp70 had high levels of anti-p24 antibody (Fig. 1). In comparison, mice

inoculated with p24-NH2 hsp70 or with p24-CO2H had anti-p24 antibody

levels which were only two or four-fold higher than that elicited by the

administration of p24 alone.
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Figure 1

Anti-p24 antibody response of BALB/c mice
after administration of p24-hsp70 fusion proteins
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This experiment demonstrates that administration of HIV-1 p24 fusion

proteins containing portions of hsp70 does not elicit anti-p24 humoral

responses very effectively. This result suggested to me that perhaps the

chaperoning function of hsp70 was necessary for the adjuvant-free carrier

effect of hsp70. At that time, I was beginning studies on the use of hsp70

fusion proteins to elicit CTL responses (the work described in chapter 6).

Thus, I decided make hsp70 fusion proteins with ovalbumin due to the

availability of reagents for studying CTL responses against ovalbumin and the

hsp70 molecules attached to ovalbumin were defective in chaperoning

function.

Can mutant hsp70 molecules function as adjuvant-free carriers?

Examination of CTL responses

The amino acid point mutations in DnaK of glutamic acid at position

171 to lysine (E171K) and of glycine at position 229 to aspartic acid (G229D)

confer a temperature-sensitive phenotype in E. coli (Wild et al., 1992). These

are highly conserved residues (Figure 2A) in the ATP binding domain of

hsp70. The E171K mutation results in defective ATPase activity and the

G229D mutation results in defective ATP-binding. Hsp70 binds to

hydrophobic peptide segments in an ATP-dependent manner and thus the

E171K and 229D mutations interfere with the chaperoning function of hsp70

(Gaut and Hendershot, 1993; Liberek et al., 1991). The corresponding

mutations in mycobacterial hsp70, glycine at position 201 and glutamic acid at

position 147 (Fig. 2A), were made by PCR and the mutant proteins were

expressed as ovalbumin-hsp70 fusion proteins. The fusion proteins (ova-

hsp70 G201D, ova-hsp70 E147K) were purified from E. coli as inclusion bodies,

refolded and purified using NTA-Ni 2 + chromatography.
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In order to assess whether the mutant hsp70 molecules could function

as adjuvant-free carriers, mice were injected i.p. with 120 pmoles of ova, ova-

hsp70 WT, ova-hsp70 G201D or ova-hsp70 E147K in saline. The injections

were repeated s.c. 2 weeks later. Mice were sacrificed 10 days after the boost

and for each mouse group, 5-10 spleens were pooled and splenocytes from

immunized mice were incubated for 6 days in the presence of irradiated E.G7-

OVA cells without added interleukins. The cultured cells were then used as

effector cells in CTL assays. Cells from mice injected with ovalbumin protein

were unable to lyse EL4 target cells or E.G7-OVA cells (Figure 2B). In contrast,

effector cells from mice primed with ovalbumin-hsp70 WT, ova-hsp70 G201D

or ova-hsp70 E147K fusion protein were able to lyse E.G7-OVA cells. Thus,

the point mutations which affected the ATP binding and hydrolysis functions

of hsp70 had no observable effect on the ability of hsp70 to assist in the

induction of CTL responses against an attached antigen.
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Figure 2
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Is the ATP-binding domain or the peptide binding domain of hsp70 sufficient

for the adjuvant-free carrier effect?

Cellular responses-

Since the chaperoning function of hsp70 did not appear to be essential

for the delivery of ovalbumin into the MHC class I presentation pathway, I

investigated whether the peptide binding or the ATP binding domain of

hsp70 was sufficient for eliciting T cell responses to the attached ovalbumin

antigen. Although either domain of hsp70 was sufficient for the adjuvant-

free carrier effect of hsp70 in the induction of the humoral response, it was

possible that hsp70 functioned via a different mechanism to induce cellular

responses to an attached antigen. Recombinant fusion proteins were

produced with the ATP binding domain of hsp70 attached to ovalbumin

(ovalbumin-NH 2 hsp70) and the peptide binding domain of hsp70 attached to

ovalbumin (ovalbumin-CO2H hsp70). These proteins were purified from E.

coli as inclusion bodies, refolded and purified using NTA-Ni 2 +

chromatography (Figure 3A).

Splenocyte T cell responses to ovalbumin were assessed after injecting

mice with ovalbumin-NH2 hsp70 or with ovalbumin-CO2H hsp70 fusion

protein in saline solution (Fig. 3B and Fig. 4). The anti-ovalbumin T cell

response in the immunized mice were examined by stimulating splenocytes

in culture with the SIINFEKL peptide or with the ovalbumin protein antigen.

Similar levels of IFN-y was released from the ova-hsp70, ova-NH2 hsp70 or

the ova-CO2H hsp70 groups (Fig. 3B). The release of IFN-y was ovalbumin-

specific, since splenocytes cultured in media alone or with control

RGYVYQGL peptide secreted low levels of IFN-y.
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In the cytolytic assay, the effector cells from ova-NH 2 hsp70 or the ova-CO 2H

hsp70 groups were able to effectively lyse E.G7-OVA target cells but not the

EL4 control cells (Fig. 4A). As described in chapter 6, the effectiveness of the

CTL in immunized mice were examined by using T2-Kb as target cells and

SIINFEKL at various concentrations. As shown in Fig. 4B, half-maximal lysis

was obtained for the ova-hsp70, ova-NH2 hsp70 and ova-CO2H hsp70 groups

at about the same peptide concentration. (It may be noted that the peptide

concentration at which half-maximal lysis was obtained for the ova-hsp70

group in Fig. 4B in this chapter differs from that in Fig. 1B in chapter 6. This

is due to the different length of time which the SIINFEKL peptide was pre-

incubated with the T2-Kb target cells.) The peptide titration assay

demonstrates that CTL from the ova-NH2 hsp70 and ova-CO 2H hsp70

immunized mice were equally effective as the CTL from the ova-hsp70-

immunized mice in terms of the SIINFEKL concentration required for half-

maximal lysis. Thus, administering soluble protein with either the amino or

the carboxyl terminal portion of hsp70 fused to ovalbumin is sufficient to

elicit anti-ovalbumin T cell responses.
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Figure 4

Induction of CTL Response

Effectors from mice immunized with:

O ova

A ova-NH 2 hsp70

V ova-CO 2H hsp70

* ova-hsp70

Targets:

T2-Kb & SIINFEKL peptide

- - T2-Kb

I I I

20:1 40:1 80:1

E:T Ratios

SIINFEKL peptide titration
50 r

Effectors from mice immunized with:

O ova
A ova-NH2 hsp70

V ova-CO 2H hsp70

* ova-hsp70

Targets:

- T2-Kb & SIINFEKL peptide

112 10"11 1"10 1-9 10-8

log [peptide]

50 -

40 -

30 -

20 -

10-

0-

.-

O

C)
0.
0)

10

10 13

: ;.:..--~~.1..~...1-^-- ..:-1;-;----- .-..-,.~'3.~4 ~~~~.~--~-j~-- -.-- .l--.-

* * *
*

--

107



Concluding Remarks

The experimental results currently suggest a different mechanism of action

for hsp70 in the induction of humoral versus cellular immune responses.

However, the humoral responses described in Section IV were assessed with

the HIV p24 antigen while the cellular immune responses were examined

with ovalbumin as the antigen of interest. It is possible that there is an

antigen specific variable and the conditions necessary to elicit immune

responses against p24 in comparison to ovalbumin may differ. The humoral

response against ovalbumin should be examined with the various ova-hsp70

fusion proteins. In order to examine the CTL response against p24, the

appropriate p24 target cell line is in the process of being made. Are there in

fact specific portions of hsp70 which are sufficient for the adjuvant-free carrier

effect? Are there particular T cell epitopes of hsp70 which are essential? Is

the interaction of hsp70-fusion proteins with other membrane proteins

involved? Do the hsp70 fusion proteins have an enhanced ability to enter

into cellular compartments? Do antigen presenting cells such as dendritic

cells or macrophages present an antigen in the context of MHC class I

molecules more efficiently as an hsp70 fusion protein? These are the types of

issues which will continue being addressed in the future.
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