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ABSTRACT

A forming process for creating MEMS and mesoscale ceramic parts with micron
scale features has been developed. This micromolding process takes advantage of clean
room compatible techniques to create silicon etchings, which are used to create a silicone
transfer mold. The silicone molds are used to make numerous sacrificial mold into which
ceramic slurry is cast. The wax molds are sacrificed leaving green ceramic parts which
are fired to produce the final component.

The process was found to reproduce features as small as 2 gm with a tolerance of
± 0.8 pm over about a 100 pm length scale. The production of several parts are
examined, demonstrating the ability to make stand alone MEMS and mesoscale parts
with complex geometries. A non-ceramic application involving precise particle
arrangement is also discussed. Observations regarding part quality, defect formation,
yield issues, and process enhancement are made, along with a characterization of the
dimensional stability of the process. The costs associated with processing silicon molds
are also compared to competing processing techniques.

This technique has generated excellent results and has potential to become a major
forming tool to fill the materials selection gap in MEMS and mesoscale component
design.

Thesis Supervisor: Michael J. Cima
Title: Sumitomo Electric Industries Professor of Materials Science Engineering
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Chapter 1

1.1 Introduction

Micro-electromechanical Systems (MEMS) are a class of machines which have

rapidly evolved over the last decade. They are devices which sense, actuate, and pump,

much in the same way as their macroscopic counterparts, only these machines reside on

microchips, and are characterized by their micron sized dimensions. The most common

MEMS device is found in almost every automobile in production; an accelerometer on a

chip senses the impact of a collision and instantaneously triggers the airbag to cushion the

blow.

Mesoscale devices are machines slightly larger than MEMS with millimeter sized

parts and features. One such example, a miniature pacemaker implant, contains several

parts which can be as small as 4 mm, yet must be machined to very tight tolerances.1

Creating parts this small can be a challenge, requiring expensive specialized equipment.

Fabrication of these devices is commonplace, however, as more specialized applications

are developed, the materials base must be expanded.

Most MEMS devices are made of silicon, the same material used to create

microprocessors. These devices can be easily mass produced using machinery and

techniques common to the semiconductor industry. Silicon has proven to be a viable

material from which to make MEMS devices, as silicon processing methods have been

established for many years. However, silicon is not robust in harsh environments, such as

elevated temperatures and corrosive atmospheres. Designers are turning to other

materials to fill the needs of advanced designs requiring resistance to heat, oxidation, and

damage.

There are several conventional techniques used to fabricate very small metal,

plastic, and ceramic parts. Some of these processes are reviewed to examine their

suitability for forming components for MEMS and mesoscale devices. Alternate methods



of production are being explored to expand the manufacturing avenue for ceramic MEMS

parts. One such method, developed at the Ceramics Processing Research Lab, is the

focus of this work.

1.2 MEMS and Mesoscale Device Overview

MEMS are machines with parts on the micron scale. These parts are integrated

together with a computer controller to form the "system", which is then employed for its

specific application. MEMS devices are not only small but inexpensive to produce

thanks to the established infrastructure and techniques of the integrated circuit industry.

Common MEMS devices include accelerometers, pressure sensors, mirror arrays, and

fluidic devices.

MEMS devices have been in use for several years. The micro-accelerometer

described in the introduction is a simple surface micromachined device on a chip capable

of detecting accelerations less than ± 10 milli-g and as high as ± 50g. The device consists

of a silicon micromachined proof mass connected to anchors by flexible silicon tethers

(Figure 1-1). A center plate rests between two fixed capacitor plates. The plate moves

during accelerations creating a change in capacitance. The resulting voltage change is

sensed and converted to an acceleration. The ADXL50 chip, introduced by Analog

Devices in 1991, is one example of this type of device. This $5 component has greatly

reduced the costs associated with the electronics package in automotive air bags. New

models are capable of sensing acceleration in two axis and contain all necessary

electronics on one single chip to form a low cost, high performance sensor. Micro-

accelerometers are available for use in consumer products such as car alarms and

computer peripherals, as well as in industrial settings for vibration sensing and shock

detection.2' 3
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Figure 1-1 Schematic of Surface Micromachined Accelerometer A) at Rest and
B) During Acceleration 2

The HP Ink Jet Print Head is probably the largest volume MEMS device on the

market today. The heart of the device consists of several micromachined orifices, behind

which reside tiny heaters. A drop of ink is expelled each time one of the heaters is

activated. This technology has brought about cheap color printing and resolutions

approaching laser quality. The widespread popularity of ink jet printers is a testimony to

the success caused by these little devices.4

Even more complex devices are now becoming available in the marketplace. The

Digital Light Processing chip developed by Texas Instruments is one such example. The

chip consists of an array of over half a million adjustable micro mirrors used to digitally

project an image onto a large screen (Figure 1-2). The DLP provides a noise free image

with precise reproduction of gray scale and colors. It is more efficient than liquid crystal

displays as it depends on reflected rather than polarized light, and provides a sharper

picture through its 1 tm spaced 16 jtm2 mirrors, providing a 90% reflective surface

(Figure 1-3 and Figure 1-4).5,6



Figure 1-2 Texas Instruments Digital Light Processing Chip5

Figure 1-3 Close Up of 16 m2 Micro mirrors
(One Mirror Removed to Show Detail Below)5
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Figure 1-4 Detailed View of a DLP Mirror Assembly 5

Applications more elaborate than the commercial products mentioned above are

the subject of intense research. The micro turbine engine project at MIT is an example of

one such application (Figure 1-5). 7 The goal of the microturbine project is to produce a

device that can deliver power at high density with a turbine disk approximately the size of

a shirt button. These devices are currently fabricated out of silicon, however, in order to

achieve elevated power efficiencies, a higher operating temperature (1700 K) is

necessary. The final version of the turbine will require materials capable of handling the

hot, corrosive environments encountered in the combustion sections of the device, as the

mechanical properties of silicon degrade with increasing temperature. Designers are

considering ceramics such as silicon carbide (SiC) as a possible solution. The

microforming process described here has successfully produced turbine disks from

alumina (A120 3) as a proof of concept.
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Figure 1-5 Micro Gas Turbine Engine7

Mesoscale devices are a class of machines that bridge the gap between MEMS

devices and conventional machines.8 Devices on the mesoscale have been in production

for several years. Miniature pacemakers, containing several small high precision parts,

can be implanted into cardiac patients with minimally invasive surgery. Production of

these devices relies on high precision machining and injection molding techniques. Other

devices such as a micro un-piloted autonomous vehicle (UAV), fluidic release devices,

and chemical reactors are subjects of current research.

There are several potential applications for devices of this scale. Troops could

deploy low cost micro UAV's (Figure 1-6) on the battlefield to transmit back real time

surveillance. 9 Small fluidic release devices could administer tiny amounts of chemicals

for drug delivery or analysis. 10 Finally, micro reactors could produce small amounts of

volatile chemicals on demand, or act as field deployable sensing devices for hazardous

materials (Figure 1-7)." These applications are only examples of the potential mesoscale

Fuel Manifold



devices have in several industries. However, manufacturing technologies must be

developed to produce these tiny devices out of materials suitable for the task.

Figure 1-6 Prototype Micro UAV 9

Si chip

Aluminum sealing plate

Reaction channel,

Mixing zone

Figure 1-7 Prototype Silicon Micro Reactor11



1.3 Limitations

MEMS and mesoscale devices have a number of limitations. They are susceptible

to vibration, temperature, shock, fatigue, and corrosion. The delicate parts found in small

machines must be able to withstand the very same forces machines on a macro scale

experience. Mass production of MEMS devices can make them relatively inexpensive to

replace, however, mesoscale devices often consist of many tiny, inaccessible parts, and

individual component replacement can be difficult. Finally, device designs are entering

an era where traditional materials such as silicon are not suitable for the desired operating

conditions.

The materials out of which devices are constructed must change to meet the

specific needs of more complex and exotic designs. Silicon processing techniques

adopted from the IC industry have been the mainstay of MEMS production, however,

there is a growing need for materials with properties superior to silicon. Advanced

concepts, such as the micro reactor, require materials that can withstand the unique

operating conditions of the device. Plastic, metal, and silicon are not suitable for use in

many of these specialized environments.

There are several advantages to expanding the materials selection base for MEMS

and mesoscale devices. The micro UAV could take advantage of high strength low

density materials, as well as employ piezoelectric actuators to manipulate its flight

surfaces. Applications such as the micro reactor or micro turbine would greatly benefit

from the higher operating temperatures and oxidation resistance offered by ceramic

materials. While these devices are currently made out of silicon, limitations imposed by

the material properties of silicon prevent operation at optimal performance levels. The

potential benefits of utilizing ceramics in these devices to overcome the deficiencies of

silicon warrant the expansion of the materials selection base for mesoscale and MEMS

parts.



1.4 Role of Ceramics

Only in the last 40 years have a class of materials known as technical ceramics

been developed. Technical ceramics are a unique class of materials which exhibit

properties suitable for high temperature corrosive environments. They also offer

increased strength at low densities, making them a viable structural material. Special

classes of ceramics, such as lead zirconate titanate (PZT), exhibit piezoelectric properties

making them suitable for actuation and sensing applications. Insertion of technical

ceramics into systems as both structural and non-structural components has been the

subject of intense research. Turbine manufacturers are considering ceramics and ceramic

composites as hot section components for aircraft and power generating engines. The

high temperature durability of ceramics offers the ability to increase turbine temperatures,

resulting in improved efficiency, increased power output and reduced emissions.12

Oxide-oxide ceramic composites are of particular interest because of their inherent

oxidation resistance and non-catastrophic failure modes. 13  Expanding the materials

selection tool box for designers is important as more innovative designs are considered.

In light of recent advances in ceramic materials, it is only logical that they be considered

for mesoscale and MEMS devices.

Understanding the properties of ceramics in comparison to other materials is

necessary before they can take their place as a viable material for microforming. Table

1-1 lists properties of several materials used in mesoscale and MEMS production.4



Material Yield (GPa) Modulus Density Thermal Thermal
(GPa) (g/cm 3) Conductivity Expansion

(W/cm0C) (xE-6/oC)
Diamond 53 1035 3.5 20 1.0
SiC 21 700 3.2 3.5 3.3

A120 3  15.4 530 4.0 0.5 5.4

Si 3N4  14 385 3.1 0.19 0.8
SiO 2  8.4 73 / 2.5 0.014 0.55
AIN N/A 260 3.3 0.301 4.03

Si 7.0 v 190 " 2.3 1.57 2.33
Steel 4.2 210 7.9 0.97 12
W 4.0 410 19.3 1.78 4.5

Mo 2.1 343 10.3 1.38 5.0
Al 0.17 70 2.7 2.36 22
Au 0.13 57 19.3 2.97 14.2

Table 1-1 Mechanical and Thermal Properties of Materials4

Silicon has elastic properties similar to that of steel, but is less dense and has a

higher thermal conductivity. Unfortunately, silicon is a brittle material, and is therefore

subject to fracture from mechanical shock. Ceramic materials such as A120 3 also

experience brittle failure, however, they can have more than twice the yield stress and

half the thermal conductivity of silicon. Mechanical properties of silicon also begin to

degrade as temperature increases (Figure 1-8), thus silicon is less than ideal for high

temperature applications. 14

Other mechanical properties of ceramics, such as fracture toughness, are also

superior to silicon (Table 1-2), although metals still have almost an order of magnitude

higher KIC. 15 Nevertheless, higher strength and lower thermal conductivity ceramics can

be used to take the place of metals and plastics in several applications. Successfully

microformed ceramics can become a viable material alternative in environments where

shock and brittle fracture are not a concern. Applications requiring piezoelectric

properties, such as ultrasonic imaging devices or active composites, must use ceramic

materials to achieve the desired electromechanical responses.
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Figure 1-8 Silicon Strength vs. Temperature14

Incorporation of ceramics in structural applications has historically been a

challenge for designers. Insertion of ceramic parts in mechanical systems is limited by

brittle failure due to growth of cracks exceeding critical size. Ceramic materials fail

catastrophically at a flaw of critical size, as demonstrated by Griffith crack theory. The

following equation relates fracture stress of to the flaw size (c), elastic modulus (E),

fracture energy (y), and a geometric constant (A):

(Ey
1 2

o-f= AE /

Weibull flaw distribution theory states that as part volume decreases, the probability of it

containing a flaw of critical size also decreases. This assumes that any failure at any flaw

will result in complete part failure (weakest link), and that flaws are evenly distributed



throughout a part. The smaller the part, the less chance of there being a flaw that will

lead to failure. A Weibull distribution for the probability of survival (Ps) is given by:

P, =lI- Pf = exO V fVo( oI

where ou=O for ceramics. A plot of probability of failure versus part volume can be

obtained by normalizing the volume, and applying experimentally derived, material

specific constants to the above equation. Figure 1-9 demonstrates that as part volume

decreases, so does the probability of failure due to flaws. Therefore, the small volume of

MEMS parts inheriently reduces the probability of failure due to the part containing a

crack of critical length.

One of the major challenges of bringing ceramics into the MEMS design

community is the forming of raw materials into usable components. Achieving such a

goal with the required degree of accuracy and cost effectiveness will allow production of

advanced designs mentioned earlier. This work centers on attempts to form components

for these devices using a newly developed microforming technique.

Material Kic (MPa*mv)

Si 0.6
A120 3 (Single Crystal) 2

A120 3 (Polycrystalline) 3.5-4.0

SiC (Polycrystalline) 3.0-3.5
ZrO2 (Polycrystalline) 2

Si 3N4 (Sintered) 4-6
Al alloys 33-44
Steel 44-66

Table 1-2 Fracture Toughness of Various Materials
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1.5 Competing Technologies

There are several methods used to create MEMS and mesoscale parts, many of

which are simply refinements in traditional machining techniques, although most are

limited to non-ceramics. Several forming methods are based on LIGA derived micro

molds, a costly forming process designed to create high aspect ratio structures.

Techniques such as slurry casting and tape embossing utilize these micro molds to form

the ceramic structures.

1.5.1 Non-ceramic Processes

Refinements in conventional forming techniques, such as lathe milling, end

milling, and injection molding, have made possible the production of small precision



components. Mold inserts, used for injection molding and compression molding, can be

made with laser ablation techniques, micro milling, and electro-discharge machining.

These techniques have the ability to form metals and plastics to within millimeter and

micron accuracy. 16 Other methods such as milling are capable of a positioning accuracy

of 0.0025 mm and resolutions of 0.001mm. 17 Unfortunately, machining of ceramics

results in a large occurrence of surface flaws that can act as crack initiation sites.

Injection molding of plastics is employed in the manufacture of compact disks

(low aspect ratio), and higher aspect ratio parts can be produced with LIGA derived mold

inserts. These inserts can produce parts with very high aspect rations (up to 600) out of

amorphous (PMMA, PC) and semi-crystalline (POM, PVDF) thermoplastics."8 One

limitation of injection molding is that evacuation holes must be provided to prevent the

trapping of air during material infusion. Placement of these holes becomes difficult as

feature size decreases.

A process that is capible of creating high aspect ratio micromolds is the LIGA

method. LIGA is an acronym for the German Lithographie (lithography),

Galvanoformung (electroforming), and Abformung (molding) process, which was

developed in late 1970's for slotted nozzles used in uranium isotope separation. The

process (Figure 1-10) used X-rays from a synchrotron source to pattern a thick PMMA

resist. The PMMA was developed to produce a high aspect ratio polymer structure. The

inverse microstructure pattern was then formed through electroplating of a metal such as

copper or nickel (Figure 1-11). Other polymer molds could be made from this metal

mold. LIGA has proven to be a good tool for creating high aspect ratio metallic parts and

micromolds, with applications in injection molding, embossing, and micromolding.4 The

cost and accessibility of synchrotron X-ray radiation necessary to produce LIGA molds,

however, can be prohibitive, as there are only a handful of sources available throughout

the country. Consequently, the processing of LIGA forms is not compatible with the

existing microfabrication infrastructure, and new technologies such as deep reactive ion

etching are coming online which are capable of obtaining similar results.



Figure 1-10 LIGA Process Flow 4

Figure 1-11 LIGA Produced Nickel Micro Gears4



1.5.2 Ceramic Processes

Several adaptations of conventional machining techniques have been used to form

micro ceramics. Modifications of thermoplastic injection molding processes, ultrasonic

machining, mold casting, and embossing are some examples of forming processes which

have been used to create small ceramic parts. Tools created through the LIGA process

have also been frequently used in micro ceramic forming processes. This section

describes several methods used to create ceramic micro forms.

Many processes utilize LIGA derived molds as embossing tools for ceramic tapes,

or as sacrificial molds into which ceramic material was cast. Figure 1-12 shows a

complex part created by casting a preceramic polymer, poly(vinylilazane), into a LIGA

produced PMMA mold. The polymer was pyrolized to form a silicon nitride ceramic

with good feature resolution. The walls of the channels were very smooth, although the

top surface roughness was a result of the molding used.19 Limitations of pyrolysis

included large shrinkage during the reaction, and the limited types of ceramic that can be

created through polymer pyrolysis reactions.

Figure 1-12 Pyrolized Poly(vinylsilazane) Part Produced from LIGA Molding"



Ceramic structures have also been formed by stamping LIGA produced molds

onto green ceramic tapes. Figure 1-13 shows a ZrO2 part that was created with a PMMA

mold produced by the LIGA technique. The mold was 200 gm high with 50 gm

hexagonal columns (for an aspect ratio of 4), and was stamped onto a green ZrO2 tape.

The low mechanical strength of PMMA required that low stamping pressures be used (6

N/mm2), resulting in forms that were not as deep as the original mold. Other stamping

attempts using machined and LIGA produced metallic dies were performed at higher

pressures (12-20 N/mm 2) to achieve better pattern transfers (Figure 1-14). However, the

large mechanical forces necessary to achieve complete mold transfer illustrate one of the

difficulties of stamping: separation from the die resulting in distortion and cracking of the

green tape.20

Both of these processes used LIGA molding. Unfortunately, the high intensity X-

ray radiation required to make these molds is very costly and not readily accessible,

making LIGA incompatible with current processing technology. The economic feasibility

of LIGA is questionable, and therefore other processing options were explored. These

included adaptations of conventional processing techniques, and examination of

developing processes utilizing alternate technology.

Figure 1-13 Fired ZrO2 Part Stamped with LIGA PMMA Structure20



Figure 1-14 Fired ZrO2 Stamped at a) 12 N/mm2 and b) 20 N/mm2 with c) Machined
Metalic Die20

There are several conventional machining techniques available to create ceramic

parts with mesoscale features. Ultrasonic machining uses a steel tool and ultrasonic

vibration to cut into a ceramic material. This method has proven the ability to create

features as small as 0.76 mm. 2 1 Laser drilling is capable of creating blind vias and

through holes in ceramic substrates with feature resolution down to 1-2 jim, although

complex raised patterns can become very expensive to produce.22 Other techniques, such

as micro endmilling have shown promise as new forming tools in silicon and polymers.4

However, as pointed out earlier, machining of ceramics can lead to unwanted surface

flaws and only certain types can be successfully machined.

Micro extrusion has been examined as a novel method for forming ceramic parts.

A co-extrusion process has been developed to create axisymmetric ceramic forms with

two dimensional micron sized features. This co-extrusion process progressively



compressed the shape through a series of reduction dies. The initial ceramic form was

embedded in a matrix of carbon black and forced through progressively smaller dies

(Figure 1-15). The form was compressed until the desired dimensions were achieved.

Initial and final extruded shapes are shown in Figure 1-16. This method had limitations

in that the smallest feature size appeared to be around 10m, and the final sintered part

appeared to loose some of its initial resolution through the reduction steps. Additionally,

instabilities in extrusion material interfaces, varying slurry viscosity, and distortions in

flow fields destroyed shape fidelity. Finally, discrete stand-alone parts must be cut from

the extrusion, a challenging prospect.23
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Figure 1-15 Co-Extrusion Process Diagram23
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Figure 1-16 Co-Extruded Alumina Micro-Part A) After One Reduction and B)
After Four Reductions (Fired)23

A ceramic forming process that did not rely on LIGA molding was a plasma

etched polyimide stamping process. The process utilized an oxygen plasma etch using a

titanium mask over polyimide. The resulting polyimide micromold pattern was pressed

onto a green ceramic tape with 20 - 30 MPa of pressure, and was then separated from the

mold resulting in a pattern transfer to the ceramic. Features below 9 gm were destroyed

during the separation step. Figure 1-17 shows the polyimide mold and the resulting ceria-

zirconia structure. This process was successful in producing positive features as small as

4 gm wide and 9 gm tall (AR=2.25) (Figure 1-18).24

A non-LIGA processing methodology and a direct casting technique characterize

the new micromolding process described in this work. Several etching techniques were

used to create micromolds into which ceramic materials were cast. The most

revolutionary etching method, deep reactive ion etching (DRIE), was used to form molds

similar to those produced through LIGA. Deep RIE was less expensive than LIGA,

compatible with current processing techniques, and was easy to control and perform. The

process described in this work was used to produce low and moderate aspect ratio



ceramic parts using reusable tooling, simple processing techniques, and equipment readily

available in industry.

Figure 1-17 A) Polyimide Stamping Mold and B) Green Stamped Ceria Zirconia24

Figure 1-18 Fired Ceramic Features Created by Stamping24



Chapter 2

2.1 Microforming Process

A process was developed to create ceramic parts using standard photolithography

techniques and new etching methods. This process had an advantage over previous

methods in that it did not employ costly LIGA processing, was easily scaleable, and could

be performed using the most basic of microelectronic processing equipment. Factors

such as ease of processing, reproducibility of features, and reusability of tooling were all

considered while developing the process.

2.2 Process Goals

The goal of the process was to create ceramic parts with micron scale features for

practical use in MEMS and mesoscale devices. Not only did the process have to be one

which utilized readily available materials and techniques, but also had to be simple to

perform consistently and reliably.

The process should be able to produce identical parts every time. This is important,

especially in MEMS manufacturing environments, as devices can have very tight

tolerances. Applications such as the micro turbine engine require components with

tolerances on the order of one micron. Out of tolerance parts can lead to excessive part

wear and friction. Since friction can be a major problem in MEMS devices, any source of

wear can lead to catastrophic failure. Understanding the dimensional changes throughout

the process is critical in designing precision parts.

It must be inexpensive and easy to produce tooling and parts. Manufacturing costs

are a large driver in the market cost of the product. MEMS with multiple moving parts

will be considerably more expensive to produce than simple monolithic devices. Extra



cost is incurred in forming of three-dimensional structures, in assembling small parts, and

in the systems level integration of the various components.

2.3 Process Description

2.3.1 Initial Approach

The initial design philosophy was based on casting ceramic slurry into a

microfabricated mold. The part would be removed from the mold, fired, and placed in

service. While slurry tape casting processes have been available for years, it was unclear

how a slurry would perform with a micromold. Additionally, a process that embodied

reusable tooling, scaled to a large manufacturing environment, and utilized existing

processing infrastructures was desired. Several challenges were encountered during

process development, resulting in a gradual evolution of the process over time.

2.3.2 Evolution of Design

Initial attempts centered on the manufacture of PZT fibers, and consisted of

making a mold by cutting lines in an aluminum block. A PZT slurry was cast into the

grooves, however, there was no way to remove the green fibers intact. Additionally, the

dimensions of the cutting blade limited the size of the fibers. A more robust procedure

was developed using photolithography and silicon. This method allowed a silicon mold

to be produced with any pattern, yet fibers cast into these molds still could not be

removed. The next step was to investigate transfer molding, using silicone rubber to

make a transfer mold of the silicon etching. A second silicone mold was made from the

transfer mold, into which fibers were cast. It was hoped that the flexibility of the silicone

mold would allow the fibers to be removed intact. This method met with limited success

as only very short lengths of fibers (a few mm) were successfully removed. A mold was

required that could be removed with little mechanical disturbance to the green fibers, as



they were very fragile. Utilization of a lost mold procedure was the key to evolving the

process into its current form.

2.3.3 Current Method

The micromolding technique used several different photolithography methods to

achieve the initial silicon mold. The method by which the silicon was etched determined

the geometry of the final silicon master mold. Several different methods, each of which

produced a different geometry, were used to etch silicon. While several wet and dry

silicon etching techniques were available, the primary methods used in this process were

KOH and deep reactive ion etching (DRIE). Unlike LIGA, both methods required only

the use of standard UV photo alignment equipment.

2.3.3.1 Photolithography and Etching

2.3.3.1.1 Hot KOH Etching

The hot potassium hydroxide (KOH) method of etching used a nitride layer as an

etching mask. Approximately 1000 A of silicon nitride was deposited onto a silicon

wafer in a PlasmaQuest CVD reactor. A one micron layer of positive photoresist (OCG

825-20) was spun coat onto the wafer at 3000 RPM. The wafer was placed in a standard

photolithography alligner (KarlSuss) and exposed to UV light through a photomask

containing the desired features. The UV light de-polymerized the exposed areas of the

photoresist which was removed with a developer (1:1 OCG 934), leaving a photoresist

mask over the nitride. The wafer was immersed in a buffered hydrofluoric acid bath

(BOE) which etched away the nitride not protected by photoresist (Figure 2-1). The resist

was stripped with ethanol, leaving a nitride mask on silicon. The wafer was placed in a

hot KOH bath (850 C, 10.4 M), where areas not covered by silicon nitride were etched.



KOH etched silicon preferentially in the <100> direction, resulting in a final etching with

walls at 54.7 degrees. Alignment of features with respect to the silicon flat was

important, as their orientation to the <100> plane would determine the final geometry of

the etching. This mold was used to create triangular PZT fibers. The KOH method was

limited by the geometries available with the preferential etch.

U U U U UR EM Photolithography mask

* * Photoresist

Nitride mask

Silicon substrate

Figure 2-1 Photolithography Patterning

Nitride mask

Etched silicon substrate

Figure 2-2 KOH Silicon Etching

2.3.3.1.2 Deep RIE Etching

The second method employed in making silicon molds was deep reactive ion

etching (DRIE), utilizing the STS Multiplexing Deep RIE system. This new method was

an anisotropic dry etching process capable of creating 90 degree sidewall, high aspect

ratio molds. The STS Etcher was capable of etching randomly shaped and aligned

features in <100> silicon, and was even capable of etching straight through a standard

sized wafer.25 Alternating etching and passivation steps made up this two cycle process.

The cycle began with the deposition and dissociation of a fluorocarbon gas (C4F8), which

polymerized to form a passivating layer (Figure 2-3).



CF4 + e- - CF,+ + CFx + F + e-

nCFx - nCF2(ads) -> nCF2 (f)

The gasses were then switched to SF 6 which was dissociated in a plasma. Fluorine ions

selectively removed the surface passivation at the bottom of the trench, due to the direct

ion bombardment. The passivation layer on the sidewalls remained intact, protecting the

silicon from the etching step.

nCF2(f) + F' -> ion energy --- CFx (ads) --> CF (g)

Further ion bombardment on the bottom of the trench caused absorption of F ions to form

a SiFx product, which was then desorbed as a gas (Figure 2-4).

Si+F' - Si- nF

Si - nF -- ion energy -- SiFx (ads)

SiFx (ads) -> SiFx (g)

The cycle repeated until the desired depth was reached. A scalloping effect could be

produced through this alternating process, although sidewall surface roughness of less

than 0.15 pm could be achieved.26 Examples of surface scalloping are presented in

Figure 2-5. Complex structures produced through deep RIE are shown in Figure 2-6.

The STS Etcher only required a thick layer of photoresist as a mask, eliminating

the need to deposit nitride and work with HF. A 10-15 gtm layer of AZ4620 was spun

onto a silicon wafer (1500 RPM for 30 seconds) and exposed in a photoalligner (KarlSus)

for 400 seconds through a photomask. The amount of photoresist required was a function

of etch depth, as the etcher had a selectivity to photoresist of 75:1. Alignment was not an

issue, as there were no crystallographic implications during STS etching. The pattern was



developed using AZ422 developer and placed in the STS Etcher. Etching took place at

the rate of 2.5 im/minute. A 1 gtm Teflon-like layer of C4F8 was applied in the machine

to serve as a release layer during subsequent processing.

Deep RIE etching was capable of creating high aspect ratio structures very similar

to those produced through LIGA. The STS Etcher was compatible with the current clean

room infrastructure, was easy to perform, and achieved excellent results. Deep RIE

etching was used to create all of the vertical sidewall molds used in this process.
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Figure 2-3 Deep RIE Passivation Step26
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Figure 2-4 Deep RIE Etching Step26



Figure 2-5 A) STS DRIE Trench and B) Sidewall Scalloping27

Figure 2-6 High Aspect Ratio Parts Produced by Deep RIE Etching2 8



2.3.3.2 Silicone Master Mold

The silicon mold was the first of several reusable tools produced for this process.

The silicon tool was now used to create the next mold in the transfer operation. A master

mold was created from the etched silicon substrate using silicone rubber, however, before

applying the silicone, a release layer had to be deposited onto the silicon wafer.

The silicone rubber was nearly impossible to separate from the silicon without a

release layer, resulting in the destruction of both the silicon and silicone molds. Silicon

etchings from the STS Etcher could have a release layer (C4F8) deposited during

processing; however, silicon etched by other means required a separate deposition.

Several release layers were experimented with, including spray on lubricant (Contour

Release Agent and Dry Lubricant). The spray lubricant left a very faint film pattern on

the silicon, which transferred to the silicone. This introduced an undesirable surface

roughness into the process stream. Instead, a thin layer of Teflon-like material was

deposited in a CVD reactor. This material was a plasma enhanced CVD

hexafluropropylene oxide (HFPO), which was similar in composition to Teflon.29 About

500 A was sufficient facilitate smooth mold separation.

The silicon etching was ready to be transferred to silicone after application of the

release layer. The wafer was diced and placed in a small enclosure to contain the uncured

silicone. For a 3" by 3" mold, 64 grams of RTV31 (GE Silicones) was thoroughly mixed

with its curing agent (DBT 1 drop/4 grams) and poured onto the silicon etching (Figure

2-7). The mold was cured for 24 hours after deairing in a vacuum bell jar. Curing times

varied inexplicably, so verification of complete curing was necessary before attempting

separation. The molds were separated by gently pulling them apart, creating a positive

silicone master mold. The silicon could be used to make another silicone mold, although

experiments indicated that best results occurred after re-depositing another release layer.



Silicone mold

Etched silicon substrate

Figure 2-7 Silicone Molding of Etched Substrate

2.3.3.3 Wax Sacrificial Mold

The silicone master mold was used to produce multiple sacrificial molds. Liquid

paraffin (1000 C) was poured onto the silicone mold and allowed to solidify (Figure 2-8).

The wax had to be hot enough so that solidification did not occur immediately upon

contact with the silicone mold, or a poor reproduction would result. A glass slide was

placed on top of the wax after it was poured if a rigid backing was desired. The wax was

removed from the silicone mold, creating a negative mold. No release layer was

necessary, as the wax naturally debonded from the silicone. Numerous wax molds were

produced from one silicone mold. Photographs of silicon, silicone, and wax molds can be

found in Appendix A.

Sacrificial wax mold

Silicone mold

Figure 2-8 Wax Molding of Silicone Mold

2.3.3.4 Slurry Application

A slurry of the desired material was cast or applied with a pipette onto the

sacrificial wax mold (Figure 2-9). In the case of cast parts, up to three castings were

performed to insure complete mold filing. Pipetted parts only required one application of

slurry. Parts were allowed to dry thoroughly before the wax removal step. Drying



conditions depended on the type of slurry used, and were specified for each part

produced.

Ceramic slurry

Sacrificial wax mold

Figure 2-9 Application of Ceramic to Wax Mold

2.3.3.5 Wax Removal and Sintering

The mold was placed in an oven (1000 C) on a porous substrate for wax removal

(Figure 2-10). Porous alumina was used for larger scale parts, while an extruded alumina

honeycomb structure was used for delicate standalone parts. The parts were placed in a

furnace for binder burnout and sintering after the wax was completely removed. Several

firing procedures and process variations were established for different parts and materials,

and are detailed in Section 2.4.

yr y y y y 'yr yr yr Finished ceramic parts

Figure 2-10 Wax Removal and Sintering

2.4 Specific Parts

Several different parts were fabricated during process development. This was

done to test the capabilities of the process, and to generate a variety of test structures.



Each part had specific processing issues which are explained in this section. PZT fibers

were produced to demonstrate the ability to create very small stand alone parts. Zirconia

parts and alumina micro turbines were used to explore complex shapes, while alumina

micro reactors were fabricated to demonstrate mesoscale forming capability. Finally, a

non-ceramic use of the molding process was examined.

2.4.1 PZT Fibers

PZT fibers are currently being investigated as an actuating material for active

composites. The electromechanical response produced by piezoelectric fibers in a matrix

can be used for controlling vibration, manipulating airfoil shapes, and suppressing

sound.30 Due to the immature nature of this technology, there are only a few commercial

sources of PZT fibers. CeraNova (Hopedale, MA) currently produces 120-140 jtm

diameter circular fibers in 6" lengths through a proprietary extrusion process. 31 Square

PZT fibers as small as 100 Lm on a side and 3" long are produced by Staveley Sensors

(East Hartford, CT), using a fine diamond saw to dice fibers from fired PZT ceramic. 32

Both processes have several limitations: extrusion requires large amounts of binder which

can result in porous fired structures, and dicing can result in undesired surface flaws and

residue. Additionally, the geometry of the fibers are limited by the tooling and methods

used during production.

The microforming process provided an alternate method for making PZT fibers.

Fibers created through this method could have varying morphologies (fibers with

features), a concept not available through conventional fiber processing means. The

process was also capable of producing small lot sizes, making it ideal for compositional

studies. Finally, the micromolding process had the potential to produce fibers in mass

quantities using easily produced, reusable tooling, giving it the potential to be a

competitive alternative to other commercial sources.

Wax molds for triangular and square fibers (Figure 2-11) were created by the

etching methods described above using a photomask containing 200 gtm line widths.



Several PZT 5H slurry formulations were investigated, the most successful of which is

listed in Table 2-1.

Material Weight % Volume %

PZT 5H 85.93 40

Methyl Ethyl Ketone (MEK) 10.69 46.04

Ethanol 2.62 11.51

Plasticizer (BBP) 0.087 0.275

Dispersant (Phosphate Ester) 0.24 0.80

Binder (PVB) 0.43 1.375

Table 2-1 PZT Recipe

Figure 2-11 Wax Mold for 200 lm A) Triangular Fiber and B) Square Fiber



Ethanol, methyl ethyl ketone (MEK), and poly vinyl butyrate (PVB) (Butvar 76,

Monstato Corp.) were placed in a 250 ml Nalgene bottle and stirred with a magnetic stir

bar to thoroughly dissolve the PVB binder. A dual solvent system was used to prevent

binder segregation during drying. Benzyl butyl phalatalate (BBP) and phosphate ester

(Emphos C) were then added along with 1/4" zirconia milling media (100 beads). PZT 5H

powder (PZT EC-76, EDO Corp.) was added slowly: half the powder was initially put in,

and the slurry placed on a rolling mill for one hour. The rest of the powder was added in

10 g increments, with an hour of milling between additions. The slurry was allowed to

mill for 12 hours after the final powder addition before use.

Slurry was cast into the wax mold using a silicone squeegee, either manually or

with an automated tape casting device. A template was designed to hold a 3" X 3" mold

to prevent movement during casting. Figure 2-12 shows the template with a wax mold,

along with the automated casting head. The casting head consisted of a modified tape

casting device with a squeegee attached.33 A 40 durometer squeegee was mounted with

two micrometers for adjustment. An automated casting arm, enclosed in a glove box to

slow solvent evaporation rate, was used to push the casting head. Micrometer

adjustments were necessary to level the blade for each mold since there were dimensional

differences in the thickness of the wax molds. Slurry was manually applied in a line

across the mold, and the casting head squeegeed the material across. The casting head

produced fairly consistent results when properly adjusted; however, a film of material

could remain if there were variations in thickness across the mold. Multiple castings (4)

were performed to completely fill the mold, as typical slurries only contained about 40%

solids. Figure 2-13 illustrates the necessity of casting multiple times. The material was

allowed to dry between castings to ensure complete settling of the material into the mold.

The squeegee effectively removed material between individual fibers, although a light

wiping with ethanol could be used to remove excess.



Figure 2-12 Casting Head, Wax Mold, and Holder Plate

Figure 2-13 PZT Mold Filling after A) One Casting and B) Four Castings



Casting operations were performed in a nitrogen glove box for best results. The

volatile nature of the solvents caused them to evaporate very quickly; therefore, casting in

the enclosure was necessary. Manual casting in the glove box was very cumbersome. It

could be done in a fume hood, however, it had be done quickly before solvent loss made

the slurry uncastable.

The wax molds containing the cast PZT fibers were placed in an oven face down

on an alumina honeycomb surface to remove the mold (Figure 2-14). The honeycomb

was preferred to porous alumina due to the smaller area of contact between the green

fiber and the substrate. Removal of fibers from a porous alumina substrate was possible,

but since the fibers tended to stick, yield was relatively low. Green fibers the entire

length of the mold (3") were successfully produced.

The green fibers were placed on a bed of loose PZT powder (Figure 2-15) and

sealed in a crucible for firing (Figure 2-16). A crucible within a crucible arrangement

was used to seal the cavity to prevent lead loss. The fibers were arranged on a loosely

packed powder bed, covered with another crucible, and the surrounding space filled with

PZT powder to form a seal. The entire setup was covered with an alumina plate and

placed in a furnace (Teresco) for binder burnout and firing.

A binder burnout step at 500 OC for eight hours was followed by four hours of

sintering at 1200 'C. An annealing step down was performed to avoid formation of a

second phase PbO, which had poor piezoelectric properties and introduced large flaws

that were undesirable in the final fiber. The entire firing schedule is illustrated in Figure

2-17. Cross sections of fired triangular and square PZT fibers are presented in Figure

2-18 and Figure 2-19.

This sintering method met with limited success. The packing density of the

powder bed was important, as tightly packed powders would sinter and crack resulting in

broken fibers. The fibers also had a tendency to curve, a phenomenon that is currently

under investigation (Figure 2-20). PZT granules sintered to the fibers as a result of using

a bed of loose PZT powder as the setter (Figure 2-21). Alternate firing arrangements,



such as firing on a micromolded setter, are under consideration to straighten the fibers

and avoid contact with loose PZT powder.

Figure 2-14 Green Fibers on Honeycomb During Wax Melting40

Figure 2-15 Green Fibers on PZT Powder Bed
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Figure 2-18 Fired Triangular PZT Fiber

Figure 2-19 Fired Square PZT Fiber



Figure 2-20 Distorted Fired Fibers on cracked PZT Bed

Figure 2-21 Fired Fibers with Sintered PZT Powders



Low pressure mercury porisometry (Autopore II 9200) was used to determine

fired fiber density. A small sample of material was placed in a calibrated volume

penetrometer, which was filled under pressure with mercury. Knowing the sample

weight, mercury weight, and penetrometer volume, density of the sample could be

determined. Fibers were found to have a density of 97.3% of theoretical. A comparison

of microstructure between commercially available fibers and micromolded fibers is

presented in Figure 2-22 and Figure 2-23. Porosity of micromolded fibers was equal or

superior to those commercially available.

A measurement of piezoelectric properties was performed on several

micromolded fibers, and was found to be comparable to those of commercially produced

fibers. See Appendix B for a diagram of the fiber testing apparatus. Studies have shown

that fibers of similar composition exhibit a strain of 2167 ± 493 ppm, and that

microstructure and porosity played a role in fiber performance. Values obtained for

micromolded fibers were similar to those obtained from commercial PZT 5H fibers.

Furthers study into the optimization of grain size and final porosity should result in better

performance. Results of fiber testing are presented in Table 2-2.

A B

Figure 2-22 Fired Commercial PZT Fibers A) Extruded31 and B) Diced32



Figure 2-23 Fired Micromolded PZT Fiber Cross Section and Microstructure

Hysteresis Loop Strain (ppm) Area (urn2)

2,275 27,245

2,187 19,515

1,493 8,349

/1\ ,

Table 2-2 Micromolded Fiber Testing Results

Shape



The micromolding process demonstrated the ability to make PZT fibers, however,

the ultimate goal was to be able to produce fibers with features. Featured fibers could

contain a tab or other feature (Figure 2-24) that could be machine identifiable and placed

precisely in a matrix. Other advanced concepts included creating sheets of interconnected

fibers which could be easily placed into composites (Figure 2-25). Fibers with small tabs

on the ends could also be electroded and connected directly to an electrical source,

increasing E field penetration. Finally, variable geometry fibers could increase matrix

coupling and fiber effectiveness (Figure 2-26). 34

Figure 2-24 Fired PZT Fiber with Feature



Figure 2-25 Interconnected Micromolded Fiber Array

Positive Electrode

r_- Negative Electrode

Figure 2-26 Selectively Electroded Featured Fibers in a Matrix



2.4.2 Zirconia

The first attempt at making other parts with features was done with a simple KOH

etching of several closely spaced grooves (Figure 2-27). A 30% volume water and

zirconia slurry was prepared and milled with zirconia media for 12 hours. A bead of

slurry was applied with a pipette to the mold and allowed to dry. The part was melted

from the wax mold on a porous alumina substrate and fired at 1500 'C for four hours.

The sintered part is show in Figure 2-28.

A comparison of Figure 2-27 and Figure 2-28 reveal excellent reproducibility

from silicon to ceramic. Textures in the original silicon etching even reproduced well.

The striation lines on the side walls of the V grooves were silicon planes present in the

original etching, a result of a small misalignment during photolithography. These lines

were also reproduced in the final zirconia part. Some parts did experience defects, as

evident in Figure 2-29 where wetting bubbles formed in the part. A large drying void was

also observed in the center of the bead. These filing and drying defects were experienced

throughout all the parts produced, and will be examined in subsequent sections.

The results provided by the production of the zirconia part demonstrated the

feasibility of creating a ceramic part through the micromolding process. Even the subtlest

of textures were carried across the process steps to the final part. These encouraging

results indicated that much more complex features were possible. Experiments with PZT

fibers and zirconia parts indicated that KOH etched shapes were possible, however, this

method of silicon etching was limited by the etch geometry. A part containing complex

vertical sidewall features, the micro turbine, was the next challenge.



Figure 2-27 Silicon Etching for Zirconia Part

Figure 2-28 Fired Zirconia Part With Silicon Etch Planes



Figure 2-29 Filling Defects in Fired Zirconia Part

57



2.4.3 Micro Turbine

The micro turbine device is a high power density micromachine currently under

development at MIT. 7 The ideal material for this application would be one that has high

strength, low density, good oxidation resistance, good creep resistance, and high

toughness. Additionally, it requires parts with tolerances as small as one micron.

Currently, the micro turbine is fabricated out of silicon, however other materials will be

required to run the turbine at desired temperatures of up to 1700 K. The strength of

silicon begins to decrease as temperature increases (Figure 1-8), and does not have good

creep resistance or toughness. 35 It would be desirable to fabricate the hot section

components out of a material that would be better suited for the high temperature

corrosive environment of combustion. Ceramic materials such as silicon carbide or

mullite are better suited for this application, and are good candidates for the

microforming process.

A micro turbine was produced out of alumina to demonstrate the ability to create

complex parts with vertical sidewalls. This proof-of-concept rotor/stator section of the

turbine engine was selected for its curved airfoils and small high aspect ratio features.

The turbine was 6 mm in diameter with blades 60 gm high, and had a minimum feature

size of about 10 gm, for a maximum aspect ratio of 6. Another version of the turbine had

blades 150 lm high with 20 gm minimum features, for a maximum aspect ratio of 7.5.

Negative STS etchings of the turbines were obtained from the principal investigators and

subjected to the micromolding process.

Several aqueous and non-aqueous alumina slurries were experimented with.

Examples of aqueous and solvent based slurries are found in Table 2-3 and Table 2-4

respectively. Aqueous slurries were made by placing water, methanol, 1 M nitric acid,

and 8000 molecular weight poly-etheyline glycol in a 500 ml Nalgene bottle and charging

the mixture with alumina grinding media (1/2 liquid height). The mixture was placed on

a roller mill for one hour to allow the PEG to dissolve. Half of the 0.5 lm alumina



powder (Ceralox with MgO sintering aid) was added and the mix placed back on the

roller mill. After one hour, half of the remaining powder was added, and allowed to mill

for another hour. The remaining powder was then added and allowed to mill for 24

hours. Post milling, three drops of surfactant (Surfaynol 104E) were added to improve

mold wetting characteristics, and a 540 mM solution of CaCl2 was added to flocculate the

slurry. Slurry flocculation was necessary to avoid drying defects, a phenomenon

described in subsequent sections. The solvent based slurry was prepared in a manner

identical to the PZT slurries described earlier.

Material Weight % Volume %

Alumina 60.29 27.80

Water (deionized) 17.99 32.88

Methanol 11.99 21.92

Binder 3.01 5.13

Dispersant 2.64 4.82

Flocculant 4.07 7.44

Table 2-3 Sample Aqueous Alumina Slurry Recipe

Material Weight % Volume %

Alumina 61.67 25.0

MEK 27.70 55.28

Ethanol 6.93 14.10

Dispersant (Menhaden Fish Oil) 0.62 1.07

Plasticizer (DBT) 1.23 1.80

Binder (PVB) 1.85 2.75

Table 2-4 Sample Solvent Based Alumina Slurry Recipe



The alumina slurry was applied with a pipette as one bead, rather than through

casting several times, as it was a stand alone part with significant thickness. This resulted

in one solid piece which was easily handled. The parts were fired at 1650 'C for one hour

after a four hour binder burnout step at 600 OC.

Fired micro turbines were successfully produced from both slurry formulations. A

difference between turbines produced from aqueous and non-aqueous slurries was

apparent. While the solvent based slurries filled the wax molds well, they frequently

exhibited drying defects (Figure 2-30). However, reproduction of individual turbines

blades was excellent. The flocculated aqueous based slurries did not experience the

drying defects, but had problems with filling defects (Figure 2-31). This problem was

more pronounced in the higher aspect ratio turbines. Part quality was largely a function

of slurry dispersion state and mold wetting, as will be examined later.

Attempts making a complex, high aspect ratio part using the micromolding

technique were very successful. While there were some issues regarding defects, initial

results were encouraging, and improvement could be expected by adjusting slurry

formulations. Production of micro turbines has demonstrated the versatility of the

process and the capability to produce ceramic parts with micron scale features.



Figure 2-30 Fired Alumina Micro Turbines Produced from Non-Aqueous Slurry



Figure 2-31 Fired Alumina Micro Turbines Produced from Aqueous Slurry



2.4.4 Micro Reactor

The ability of the process to reproduce mesoscale parts with larger features was

also investigated. A micro reactor chip being developed at MIT was selected for this

experiment due to its relatively large channel dimensions (1 mm). There are several

potential uses for a micro reactor: it could be used as an on site production plant for small

amounts of toxic chemicals, obviating the need for transportation. Many micro reactors

could be arrayed together to produce mass quantities of chemicals, or to act as a pilot

plant for new processes. Currently, the micro reactor is being designed out of silicon, with

a silicon nitride membrane covering the reactor channel (see Figure 1-7). A desirable

reaction temperature is 11000 C, making a ceramic micro reactor more desirable than a

silicon one. The highly corrosive conditions produced by certain reactions also warrant

the use of ceramics. 36

A mold was created from a silicon micro reactor produced through KOH etching.

Deionized water and centrifugally classified 1 gm powder (30% weight) (Ceralox with

MgO sintering aid) was placed in a 250 ml Nalgene bottle and charged with alumina

media. The mixture was allowed to mill for 12 hours and then 1 % volume binder

(Duramax B-1023) was slowly stirred in. The slurry was immediately applied and

allowed to dry in a humidity oven at 40 oC and 90% relative humidity. Humidity oven

drying was necessary to avoid cracking in the green part. A binder burnout step was

performed at 600 OC for four hours in a Nytec furnace and sintering occurred at 1650 'C

for one hour in a Teresco furnace.

Figure 2-32 shows a fired micro reactor part. The details of the channel were also

reproduced well (Figure 2-33). The reactor exhibited some warpage, a phenomenon

believed to be caused by particle size and density gradients through the part.

Furthermore, some macro cracking was observed. It was believed that by adjusting the

slurry properties and drying conditions, that the warpage and cracking could be mitigated.

It was for this reason that a narrow 1gm particle size distribution powder was obtained



through a centrifugal classification system and used to create reactors in the hopes of

reducing warpage due to particle size gradients. The effect of using narrow particle size

distribution powders, however, has not been quantified.

Experiments with making micro reactors, while not extensive, demonstrated the

ability to produce parts with mesoscale dimensions. The parts produced experienced

some defects related to slurry composition and processing conditions, however these

problems are expected to be overcome with refinement of slurry properties.

Figure 2-32 Fired Alumina Micro Reactor



Figure 2-33 Detail of Channel in Alumina Micro Reactor

2.4.5 HIDE Tooling

The main focus of the process was on forming ceramic parts, however, other

material forming applications were explored. The micromolding process was used to

precisely arrange particles in a lattice arrangement in an effort to create a highly

controlled infrared dielectric emissivity (HIDE) device. Theoretically, arranging metallic
particles in a diamond lattice would produce a large omnidirectional photonic bandgap in
the infrared regime. 37 If a fabric consisting of these arrays could be fabricated, it could be
used to cloak infrared signatures.

A photolithography mask was created with a lattice of 2 pm squares and circles

arrayed 3.5 gm apart. Approximately 2 gm of photoresist was coated (1500 RPM) on

silicon and was patterned with the photolithography mask in a photo alligner (KarlSus).

A CC14 plasma silicon etch was sufficient for this application as the depth of the holes

was only 2 gim. The resulting silicon etching is shown in Figure 2-34.



Figure 2-34 CC14 HIDE Silicon Etching of 2 pm Holes

A solution of ethanol and one micron air classified copper powder (UltraFine

Powders, Woonsocket, RI) was made by adding 3.56 mg of powder to 10 ml of ethanol.

The solution was placed in a sonicator for one hour to disperse the particles, and then

applied to a 16 mm x 16 mm silicon substrate, which was also sitting on a plate in a sonic

bath. A micro pipette was used to dispense 0.25 ml of the solution, which was held on

the substrate by surface tension. Sonication was used to "shake" the particles into the

holes. Copper particles were ballistic, meaning they rapidly fell when in a liquid. The

copper settled into the holes, and the excess was wiped clean after the ethanol evaporated.

Three applications resulted in near complete filing of the matrix (Figure 2-35). The

powder used had a wide size distribution so many holes contained several particles while

others only contained one.

Ideally, a metallic sphere would occupy each hole. This concept was

demonstrated using precisely sized silica spheres. Ten drops of an aqueous 2.5% solids



Figure 2-35 Copper Particles (1 lpm Dist.) in Silicon After Three Applications

solution of 1.58 ± 0.06 gim silica spheres (Duke Scientific, Palo Alto, CA) were placed in

a small beaker, and the water allowed to evaporate. Ten milliliters of ethanol were added

to the dried spheres and the solution placed in a sonic bath for one hour to disperse the

particles. The solution was applied to the silicon in the same manner as the copper

particles. The silicon array was almost completely filled after two applications,

demonstrating that given the correct size distribution of particles, a precise arrangement

of monosized spheres was possible. Figure 2-36 illustrates a perfectly filled array of

particles. Improvements in powder processing should yield a more uniform particle size

powder in order to perfectly fill the holes. Investigations into metallizing readily

available silica spheres could also provide a source of monioside metallic particles.

Attempts were also made to fill a wax mold with particles. A wax transfer mold

was produced replicating the 2 jim holes with only minimal distortions, however,

application of copper particles using the described method resulted in damage to the mold

(Figure 2-37). This indicated that paraffin was too soft a media to apply the particles too.



Figure 2-36 1.58 gim Silica Spheres in Silicon Substrate

A B

Figure 2-37 A) Wax Mold of HIDE Etching and B) Copper Particles in Damaged
Wax Mold



Other materials such as epoxies and polyimides should be investigated as suitable

molding materials. The ultimate goal would be to create a thin structure with one layer of

the lattice, and then to stack several layers together to form the final array. Producing a

tool to stamp a more robust material could be one possible solution.

An aqueous alumina slurry identical to those used for the micro turbine was

applied to a wax mold of the HIDE etching. Figure 2-38 shows the resulting structure in

fired alumina. The molding process successfully produced a precisely arranged array of

ceramic posts, which could be used as an embossing tool to pattern other substrates. This

pattern was also a testament to the fine features possible with the micromolding process.

Figure 2-38 HIDE Embossing Tool in Fired Alumina



2.5 Conclusion

A micromolding process was developed which was capable of producing a variety

of MEMS and mesoscale parts. The process utilized reusable tooling and was very easy

to perform, however, the process will not be of much use until it has been properly

characterized and optimized. Understanding the origin of defects will be crucial to the

formation of components. Dimensional changes across process steps will make designing

for final part measurements a challenge. While initial results were very encouraging,

several issues regarding slurry composition and part quality remain to be solved. In the

next section, the limitations of the process are explored, along with factors influencing

these issues. A quantitative assessment of feature resolution and dimensional stability of

the transfer steps is also presented.



Chapter 3

3.1 Process Performance

A quantitative assessment of process performance is required before it can

progress from the laboratory into production. There are many aspects of this process

which require characterization and analysis for development to continue. Understanding

how the process works is key to developing improvements in processing methodology.

Several aspect of process performance are examined in this chapter. Minimum

feature resolution is explored, factors influencing yield and part quality are explained, and

an analysis of dimensional stability is presented. This initial inquiry into the performance

and phenomena of the process represents the first step in refining the method into a viable

production tool.

3.1.1 Minimum Feature Size

Experiments were conducted to determine how small a feature could be produced

with the micromolding method. A test pattern of geometric shapes was etched in silicon

and subjected to the micromolding process to produce the pattern in ceramic (Figure 3-1).

(each feature was referred to by its position X,Y) The pattern demonstrated that positive

and negative features smaller than two microns could be resolved, although significant

feature degradation was observed below two microns. Figure 3-2A shows feature (1,4),

two rectangles separated by a one micron line which was degraded in the wax. While this

feature was successfully reproduced in fired ceramic (Figure 3-2B), the two rectangles

were not resolved in other samples (Figure 3-3). This, along with observations of

degradation in the wax mold, suggests that negative feature resolution was a function of

wax mold quality. Feature (5,4), two lines approximately two microns wide, were used to

gauge the minimum positive features possible. Figure 3-4 shows the feature in wax and

in fired alumina. The negative features were on the order of two microns and appear to



have reproduced with only slight degradation. Note that the width of the lines were on

the order of a sintered grain.

The resolution of the process was tested by comparing the diminishing sizes of

circles and squared in rows 1 and 2 of the feature grid. Note that the smallest circle (5,1)

and square (5,2) were not reproduced in silicon due to reaching the limit of the

photolithography equipment. There was a discernable difference between the circle

(Figure 3-5) and square (Figure 3-6) in features (3,1) and (3,2), which measured

approximately six microns across. Resolution began to falter in features (4,1) and (4,2),

which measured only about 2.5 microns across (Figure 3-8 and Figure 3-7). Therefore

feature resolution below six microns was difficult, but not impossible, to maintain.

Resolution again also appeared to be limited by the sintered grain size of the ceramic.

A B

Figure 3-1 Geometric Test Features in A) Silicon and B) Fired Ceramic



A B

Figure 3-2 Minimum Negative Test Feature (1,4) in A) Wax and B) Fired Alumina

Figure 3-3 Unsuccessful Minimum Negative Test Feature (1,4) in Fired Alumina



Figure 3-4 Minimum Positive Test Feature (5,4) in A)Wax and B) Fired Alumina

Figure 3-5 Circular Feature (3,1) in
Fired Alumina

Figure 3-6 Square Feature (3,2) in Fired
Alumina



Figure 3-7 Smallest Resolvable Square
Feature (4,2) in Fired Alumina

Figure 3-8 Smallest Resolvable Circular
Feature (4,1) in Fired Alumina

The higher aspect ratio features found on the micro turbines also reproduced well.

A detailed view of the smallest feature, an airfoil trailing edge, is presented in Figure 3-9.

The blade tip was about 10 gm wide and 60 gm high, for an aspect ratio of 6. Some

blades, however, exhibited significant tapering at the tips (Figure 3-10). This was most

likely a result of the DRIE etch. Even higher aspect ratio turbine blades showed excellent

minimum feature resolutions. Figure 3-11 shows the trailing edge of a blade tip 20 jim

wide and 150 gm high (AR=7.5). Although these deep turbines experienced several

filling defects, several blades were successfully produced (Figure 3-12). These defects

allowed a cross sectional view of the corner of one of the blades (Figure 3-13). The

curvature of the top surface of the blade was again a result of the DRIE etching process

(see Figure 2-5), and demonstrated that curvature control of corners could be dominated

by the etching process parameters. Detailed photos of the 6.5 aspect ratio turbine blades

showed excellent resolution on both the outside and inside 900 corners, approaching that

of the sintered grain size (Figure 3-14).



Figure 3-9 High AR (6) Stator Trailing Edge in Fired Alumina

Figure 3-10 High AR (6) Stator Trailing Edge with Taper in Fired Alumina



Figure 3-11 High AR (7.5) Turbine Rotor Blade Trailing Edge

Figure 3-12 High AR (7.5) Turbine Stator Blades



Figure 3-13 Cross Section of Top Edge of High AR (7.5) Turbine Blade in Fired
Alumina

A B

Figure 3-14 High AR (6.5) Fired Alumina A) Outside and B) Inside Corner Detail



The smallest features observed on turbine blades were the etching striations

produced in some silicon molds (Figure 3-15). These striations appeared to be about

three microns wide, and could be seen clearly in many of the turbines produced (Figure

3-16). This vertical scalloping was due to the uneven degradation of the photoresist

during etching. The smooth sides of the blades in Figure 3-17 demonstrated that it was

possible to eliminate these striations through proper DRIE processing techniques.

Figure 3-15 Scalloped Sidewalls of Silicon Etching



Figure 3-16 High AR (6.5) Turbine Blade With Reproduced Etch Relics

Figure 3-17 High AR (7.5) Turbine Blade Without Etching Relics in Fired Alumina



Several other small feature sets were created using the HIDE mold and a test

pattern (used in section 3.1.4). Figure 3-18 shows the closely spaced structures formed in

alumina from the HIDE etchings. Experiments with the HIDE patterns have

demonstrated that low aspect ratio, closely packed features smaller than 2 gm can be

successfully patterned. Additionally, a test pattern of squares (Figure 3-19) were

successfully produced in ceramic and measured to determine dimensional stability of the

process. Several other features resident on the same mask, such as closely spaced lines,

were also produced, demonstrating the versatility of the process to make such "textured"

ceramics. These lines were 5 gm wide with a spacing that diminishes to 5 gm (Figure

3-20).

Figure 3-18 Closely Packed <2gm Pattern from HIDE Etching in Fired Alumina

qWWWWWW W Wwwwwwwwo

wet****

M,900 ***a***&

b # 00 0 *Opp*& a, 0
01b 0*0**

toi ao a *a V,04***

* **,** 0 00
so** ow4se 49**10*900 ***a*

go*** *04**6

CW 9000s *0
0 09*4 Ofto

lot*

00 ***#see



Figure 3-19 Fired Alumina Dimensional Test Squares

Figure 3-20 Fired Alumina Lines Forming Textured Ceramic



The limits of the micromolding technique were not only dependent on how small

a feature could be patterned in wax. Minimum feature size was also limited by the

sintered grain size of the ceramic. Herein lies one of the drawbacks of this powder based

process. Ceramic forming is unable of achieving features smaller than the base particle

size of the working material. This is unlike high precision non-ceramic forming

processes such a LIGA, where metal can be plated directly into a mold. The sintered size

of the ceramic particles will ultimately determine the smallest feature available,

regardless of how small a feature is molded. As such, the smallest practical particle size

slurry should be used for maximum feature resolution and surface finish. A tradeoff

between particle size and drying effects makes this an interesting design challenge.

Sintering time and temperature must also be carefully controlled to control grain growth

during firing.

This section has examined the capabilities and limitations of the process to create

ceramic forms with micron scale features. Several different structures were successfully

produced, demonstrating the capability of the process to produce complex high aspect

ratio parts and to resolve features approaching sintered grain size. Features smaller than

two microns were resolved, proving that very small dimensions were possible. Parts with

aspect ratios of up to 7.5 were also successfully formed by this method. Determining

factors in part resolution appeared to be the quality of the molds used and the fired grain

size of the ceramic.

3.1.2 Part Quality

The quality of parts produced by the process is a true measure of its worth as a

manufacturing tool. The process must be able to produce parts without defects in order

for them to be placed in a MEMS or mesoscale device. Understanding the origin of part

defects is essential to developing a reliable, consistent process. A variety of defects were

observed during part production, most of which were common to all parts produced.



The major source of flaws in PZT fibers, as well as other parts produced by this

process, were drying defects. During drying, solvent evaporates from a drying surface at

a rate given by:

Ve = k(p, - PA)

where k is a constant dependent on thermal and geometrical factors, pv is the solvent

vapor pressure, and PA is the partial solvent pressure in the atmosphere. The evaporation

rate per unit area is constant due to the continuous supply of fluid to the surface, hence

this is called the Constant Rate Period (CRP) of drying. During the CRP, a liquid

meniscus is located at the surface of the body, which is continuously fed from a

supersaturated region central to the body. In order to maintain the least amount of surface

energy in the system, fluid is constantly moving to the surface through capillary action to

maintain the less energetic solid/liquid interface. As the supersaturated region is

depleted, there is no longer a source of fluid to keep the surface saturated. Studies have

shown that the point of maximum capillary stress occurs immediately after the

supersaturated region has been depleted, leaving a 100% saturated drying plane that then

begins to recede into the body. Capillary stress is inversely proportional to pore size, and

is give by:

2#yP 
_

d

where 0 is a geometric packing factor, y is the surface tension, and d is the pore diameter.

It is at the point of maximum capillary stress when the electrostatic repulsion forces

between dispersed particles are overcome, causing the particle network to shrink.38 The

dispersion state of the slurry, therefore, plays an important role in how the body deforms

during drying.

Void formation is believed to be influenced by the dispersion state of the slurry.

In a well dispersed slurry, a dense layer of particles is cast on the drying surface as

moisture continues to be removed from the body. The corresponding loss of moisture is

accompanied by a change in part volume due to particle packing at the drying surface.



This volumetric change is hindered by the hard dense layer and constrained by the mold,

thus causing any volumetric change to occur opposite the drying surface. It is the large

amount of shrinkage that occurs during drying of a dispersed slurry that causes a void to

form. Figure 3-21 demonstrates this phenomena. This would explain the location of

shrinkage voids seen opposite the cast surface of fibers (Figure 3-22) and in the center of

pipette applied ceramics, both of which were made with well dispersed slurries.

A slurry that is not well dispersed, or flocculated, produces parts without

shrinkage voids. In a flocculated slurry, the electrostatic forces between particles are

weak, allowing the natural attractive forces (VanDer Walls) to cause the particles to form

floccs. The resulting agglomerates cluster at the drying face, forming a structure with

large pores that is significantly weaker than the dense solids layer formed by dispersed

slurries. The weak structure allows uniform shrinkage throughout the body, allowing the

original shape to be maintained. The large pore structure also results in less shrinkage of

the body during drying. These are the same principles behind creating spherical particles

during spray drying operations.3 9

To test this theory, flocculated slurries were created and used to make

micromolded parts. Alumina slurries were flocculated by adding CaCl2 to increase the

ionic strength of the slurry, thereby reducing the interparticle repulsive forces causing the

slurry to flocculate. PZT slurries were flocculated by adjusting the amount of polymeric

dispersant. Flocculation of slurries was verified through viscometry. Parts created with

both flocculated and dispersed slurries are presented in Figure 3-23. A dramatic

difference in formation of defects is immediately apparent between parts made from

flocced and dispersed slurries. Unfortunately using flocculated slurries results in a lower

green density due to the larger pores created during drying. Therefore there is a tradeoff

between defect mitigation and green density.
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Figure 3-21 Void Formation Due to Shrinkage During Drying

Figure 3-22 Square PZT Fibers with Shrinkage Voids40
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Flocculated Dispersed

Figure 3-23 PZT Fibers and Alumina Micro Turbines Created From Flocculated
and Dispersed Slurries

Other issues affecting part quality included warpage during firing (all parts),

powder residue (PZT fibers) and mold wetting (micro turbines). The most pronounced

warpage during sintering was observed in PZT fibers fired on a PZT powder bed. There

were no constraints on the fibers as they sat on the PZT bed, therefore they were free to



deform during sintering. Deformation of the powder bed also occurred during firing,

causing the fibers to warp and crack. Sintering also imparted some negligible warping on

the micro turbines and micro reactor parts, although this warpage was not quantified.

Additionally, some of the PZT powder inevitably sintered to the fiber. Efforts to resolve

these problems have recently centered on development of a micromolded setter (Figure

3-24), which has shown encouraging results in both straightening fibers and avoiding

powder residue (Figure 3-25). 4 0

Figure 3-24 Micromolded PZT Setter40

Figure 3-25 PZT Fibers a)Fired on Micromolded Setter (top) and b) PZT Powder
Bed (bottom) 40



Wetting of the wax molds also posed a problem, especially when using aqueous

slurries. Alumina slurries made with different solvent systems were used to create micro

turbines. Figure 3-26 shows several micro turbines and the contact angles of their

respective slurry solvents. Turbines produced with slurries containing low contact angle

solvents produced the best results, completely filling the features. A water and methanol

slurry completely failed to fill the turbine baldes, leaving only impressions of the blades

in the alumina. Surfactants were added (0.002 g/ml Surfanol 104E) to improve wetting

characteristics, although complete filling of deep features was not achieved. Since the

best filling results have been with solvent based slurries, this suggests that a flocculated

non-aqueous slurry would produce parts with complete filling and no drying defects.

Investigations into different surfactant concentrations, as well as more compatible

mold/slurry combinations will be the subject of future work.

This section has examined several issues related to part quality. It has explained

the source of major defects found in parts, and has exposed several areas in which

improvement is needed. Adjustment of process parameters through an understanding of

phenomena behind defect formation will lead to a process that can reliably produce mass

quantities of perfect parts for MEMS and mesoscale devices.
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Figure 3-26 Effect of Contact Angle on Mold Filling
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3.1.3 Yield

Not only must the process produce defect free part, but it must also be able to do

so in large quantities. Determining the success rate of batch production was difficult due

to the experimental nature of the slurries. Gaining an understanding of slurry drying

characteristics made quantitative yield determinations difficult. However, several

observations were made regarding yield and yield improvement. Process yield was

largely a function of the part geometry, and each part had specific issues. Batch yields

ranged from complete failure to complete success. Clearly yield improvement and

consistency are areas for future work.

The yield of PZT fibers was initially poor, due to the non-sacrificial silicone

molds being used. Yield improved once a switch to wax sacrificial molds was made.

Initial attempts to melt the wax mold were performed on porous alumina. Fully intact

continuous fibers were successfully melted out of the wax, however, the fibers tended to

stick to the alumina, and were very difficult to remove without breaking. A razor blade

was used to scrape the fibers off the substrate, but several continuous length fibers were

broken this way. Yield was again improved when a honeycomb structure was used as a

melting substrate. This structure provided enough support to prevent sagging and

allowed a path for wax to be removed. Removal of the fibers from this substrate was

much easier.

The fibers must be transferred to the firing crucible after wax melting. This was

done with fine tweezers. Grabbing the green fibers directly usually resulted in breakage,

so a "forklift" approach was taken (Figure 3-27). The tips of the tweezers were bent

upward and used to forklift the fibers. This method greatly decreased breakage due to

physical manipulation.



Figure 3-27 Fiber Handling with Forklift Tweezers

The alumina parts were not very sensitive to physical manipulation due to their

larger dimensions. However, the small features on the micro turbines could easily be

damaged if touched during handling. Removing the parts from the melting surface also

posed a hazard, as any lateral forces could cause the blades to break. Investigation into

stronger binder systems and different wax melting techniques should help prevent

breakage due to manipulation.

Cracking of micro turbine and micro reactors typically occurred during drying,

especially when using smaller particle size ceramics. Recalling that capillary stress is

inversely proportional to pore diameter, a smaller particle size powder will have smaller

pore sizes, hence have a larger tendency to crack during drying. Controlling the drying

rate through usage of a humidity oven mitigated cracking during drying, as the decreased

drying rate allowed stress gradients through the part to come into equilibrium. This

method worked for aqueous slurries, however solvent based systems could be controlled

in this manner. Utilizing a flocculated slurry also helped mitigate cracking. The larger

pores created in a flocculated slurry resulted in lower capillary stresses. Subsequently,

parts made from flocculated slurries did not need to be placed in a humidity oven.



Clearly there are several issues associated with making ceramic parts with a

consistent yield. Before a quantitative measure of yield can be made with confidence,

several process related issues should first be resolved. Improvements in process

performance, handling techniques, and slurry characteristics will provide methods to

improve part yield.

3.1.4 Dimensional Stability

Understanding the dimensional changes across mold steps is critical to designing

precision parts. Examination of the different process steps revealed that some changes in

dimension occurred between the original design and the final part. Additionally, firing of

ceramics inherently involves shrinkage, and mold designs should be made with this in

mind.

Measurements of original silicon etchings, silicone master molds, wax molds, and

fired parts (created from the same slurries used to make the micro turbines) yielded

information regarding dimensional changes across process steps. A test pattern of

squares was etched in silicon using CC14 to a depth of two microns (Figure 3-28). The

features were photographed using an optical microscope at a magnification of 750X,

focusing on the bottom edge of the features. Each feature was measured with a hand held

digital micrometer three times from edge to edge horizontally, removing and replacing

the micrometer from the picture between every measurement. The three measurements

were averaged to determine the dimension of the feature. Measurements were also taken

across a second length scale (a row of five features) in the same manner. Table 3-1 and

Table 3-2 lists the dimensional changes measured across the process steps.

Measurement of green parts were not conducted for a variety of reasons.

Measurements had to be taken either after wax melting or binder burnout, which resulted

in inaccuracies due to wax uptake into the part, wax residue on the part, or shrinkage

during binder burnout. Therefore, it was assumed that the green part retains the same



dimensions of the wax mold, hence dimensional changes were reported between wax and

fired ceramic parts.

There was considerable difficulty in accurately measuring features with micron

scale accuracy. Errors were minimized by photographing features at the highest possible

magnification, and by measuring each feature three time. Error was introduced every

time the micrometer was placed on the photograph for measurement. Other errors were

the result of poor photograph resolution, resulting from low contrast and focusing errors.

Incident lighting was used to enhance photographic quality, however, it was still

sometimes difficult to differentiate edges. Error was estimated by measuring features

twenty times in each type of photograph used. The average error imposed by the

micrometer was about 0.1 gm. Taking into account variations in contrast and focusing

quality, the actual measurement error was estimated to be somewhere between 0.1 gtm

and 0.3 lm.

Rowl 000

Row2 0 0 0 0 c
Row3 3 0 0 0 8

Row4 
0 

00
Row 5

Figure 3-28 Silicon Array of 12 pm Squares



Absolute Change (pLm)
Square Number Silicon- Silicone- Wax- Silicon-

Silicone Wax Fired Fired

1 -0.2 -0.5 -1.9 -2.7
2 -0.2 -0.5 -2.0 -2.7
3 -0.2 -0.5 -2.1 -2.8
4 -0.4 -0.4 -2.0 -2.9
5 -0.3 -0.6 -2.2 -3.0
6 -0.1 -0.8 -1.9 -2.9
7 -0.9 -0.2 -2.0 -3.2
8 -0.2 -0.9 -2.0 -3.1
9 -0.3 -0.9 -1.9 -3.2
10 0.1 -0.8 -2.0 -2.8

Average Change (gm) -0.3 + 0.3 -0.6 ± 0.2 -2.0 + 0.1 -2.9 + 0.2
Average Change (%) -2.1 ± 2.0 -4.6 ± 1.9 -17.1 ± 0.6 -22.8 ± 2.3

Table 3-1 Dimensional Changes Across Process Steps (12 lpm Length Scale)

Absolute Change (gtm)
Row Number Silicon- Silicone-Wax Wax- Silicon-

Silicone Fired Fired

1 -0.2 -0.9 -14.0 -16.2
2 -0.3 -1.0 -14.8 -17.1
3 -0.1 -1.0 -14.3 -16.5
4 -0.5 -0.7 -14.4 -16.8
5 -0.6 -0.6 -14.2 -16.8

Average Change (gim) -0.4 ± 0.4 -0.9 ± 0.19 -14.3 ± 0.3 -15.6 ± 0.3
Average Change (%) -0.4 ± 0.4 -1.0 ± 0.20 -15.5 ± 0.3 -16.7 ± 0.3

Table 3-2 Dimensional Changes Across Process Steps (93 Plm Length Scale)

Absolute and percent change were calculated for each 12 jLm feature in this length

set and averaged to determine the amount of expansion or shrinkage. The original

features measured 12.8 jim ± 0.2 jim. Measurements indicated that an absolute shrinkage

of 0.3 jim ± 0.3 (2.1% ± 2.0) occurred over each feature between silicone and silicone

molds and 0.6 jLm ± 0.2 (4.6% ± 1.9) silicone and wax molds. An absolute shrinkage of



2.0 gim ± 0.1 (17.1% ± 0.6) was observed between green and fired states resulting in an

overall silicon to fired shrinkage of 2.9 jim ± 0.2 (22.8% ± 2.3) over a 12 gim length

scale.

Measurements on the 12 Lm length scale, while useful for examining changes

across process steps, contained a large amount of relative error. Considering that the

estimated error was about 2% of the dimensions being measured, and that large standard

deviations were obtained for percent average changes, this length scale was not useful for

determining dimensional variation when making multiple molds or parts. According to

product literature, the silicone should be expected to shrink 0.6% during curing.

Detecting a 0.6% change over a 12 jm feature would mean differentiating 0.05 im on the

micrometer, a value well inside the estimated error of the measurement method. It was

believed that at this scale, variations in measurement were most likely due to errors in the

technique rather than actual deviations in dimensions. The fact that shrinkage numbers

did not approximate expected values, combined with the large standard deviations at this

scale resulted in low confidence in results at these lengths.

Measurements across the larger length scale (93 jm) yielded much better results.

An average absolute shrinkage between silicon and silicone of 0.4 jm ± 0.2 (0.4% ± 0.2)

was measured, a value more in line with the expected silicone shrinkage. Values between

silicon and wax were determined to be 0.9 jm ± 0.1 (1.0% ± 0.1), while wax to fired

measurements indicated a shrinkage of 14.3 jm ± 0.3 (15.5% + 0.3). Overall shrinkage

from silicon to fired part was 15.6 jim ± 0.3 (16.7% ± 0.3).

Measurements at the 93 jLm length scale approximated expected results well. At

this scale, the measurement errors were only about 0.2 % of the length scale. Porosimetry

was conducted on green and fired ceramics and indicated a porosity of 59.7% (accounting

for binder) and 98.3% respectively. Expected linear shrinkage of 15.31% was calculated

using the equation:

1 PgY
(P Pf)



where pg and p,f are the green and fired densities. This corresponded closely to the

average row shrinkage between wax and fired ceramic of 15.5%, and was reasonably

close to the individual feature shrinkage of 17.1%. Since shrinkage during firing was a

function of the green and fired densities of the slurry, it is important to note that these

values will change depending on the dispersion state of the suspension. The increased

confidence in measurements over the 93 pm range indicated that any variation among

separate parts could be determined accurately.

Measurements of the reproducibility of the process were performed on wax molds

and fired parts. Silicone molding was not measured for reproducibility, as shrinkage was

predictable from product literature, and the dimensional changes associated with curing

were very close to the measurement error. Therefore, any deviation across silicone molds

would most likely be below the detectable limit.

Since shrinkage data for wax molds was not available, measurements were made

over five different molds to determine mold reproducibility. Changes in dimension

between several different wax molds and the silicone mold are presented in Table 3-3.

Ideally, dimensions from mold to mold would be exactly identical. The largest standard

deviation across molds was found in Row 2, with a deviation of ± 0.2 pm. Since this was

within the estimated measurement error, this suggested that when making several molds

from one silicone mold, over a 93 pm area dimensions could be reproduced to within ±

0.2 pm. Actual and expected dimensions were also compared. Expected change was

calculated based on the value of 1.0% shrinkage determined earlier. Figure 3-29 shows

that over five different molds, dimensions over a 93 pm area could be predicted

confidently to within ± 0.3 pm, again within measurement error. This indicated that, if

there was any variation among wax molds, it was below the detectable limit.

Five ceramic parts were produced and measured across the 93 pm length scale to

determine final part dimension predictability. Dimensional changes across the parts are

presented in Table 3-4. The largest dimensional deviation over parts was observed in row

3, with a standard deviation of ±0.8 pm. Ideally, there would be no fluctuation in



dimensions of a row from part to part. Based on an average expected silicon to fired

shrinkage of 16.8%, final part dimensions between original silicon etching and fired

ceramic fell within a + 0.8 gim range over a 93 gm area (Figure 3-30), indicating that

variation of part dimensions occurs during this phase of the process. Not surprisingly,

this means that the ceramic forming step was limiting dimensional stability.

Absolute Change (lm)
Mold Number Row 1 Row 2 Row 3

1 -0.8 -0.7 -0.9
2 -0.8 -0.7 -1.2
3 -0.9 -0.6 -1.1
4 -0.8 -1.0 -1.2
5 -0.9 -1.0 -1.0

Average Change (im) -0.9 ± 0.04 -0.8 ± 0.2 -1.1 + 0.1
Expected Change (jim) -0.9 -0.9 -0.9

Table 3-3 Dimensional Changes Across Multiple Molds Over 93 pm

-- Mold 1
-n- Mold 2

Mold 3
--- Mold 4

-m- Mold 5
-+- Expected

Row #

Figure 3-29 Actual and Expected Change Across Several Wax Molds Over 93 jlm
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Absolute Change (jgm)
Part # Row 1 Row 2 Row 3 Row 4 Row 5

1 -15.2 -16.0 -15.4 -15.7 -15.8
2 -16.1 -15.1 -15.6 -16.0 -15.2
3 -16.0 -16.0 -16.3 -15.5 -16.1
4 -15.1 -15.6 -14.8 -15.6 -16.1
5 -15.8 -15.9 -16.5 -16.6 -16.6

Avg. Chng. (m) -15.6 ±0.5 -15.7 ± 0.5 -15.7 + 0.8 -15.8 ± 0.4 -16.0 ± 0.5
Avg.Chng (%) -16.7 + 0.5 -16.8 + 0.4 -16.7 + 0.6 -16.8 + 0.3 -17.0 + 0.5

Exp. Chng. (gm) 15.6 -15.6 -15.7 -15.6 -15.68

Table 3-4 Dimensional Change Across Fired Parts Over 93 jpm

-.- Part 1
-u- Part 2

Part 3
--~Part 4

-1- Part 5

- Expected

0.8 gm

1 2 3 4 5
Row #

Figure 3-30 Actual and Expected Change Across Several Fired Parts Over 93 jm

Several factors contributed to the dimensional instabilities across the process.

Unfortunately, accurate measurement of micron sized features was difficult and entailed a

considerable amount of error. Because of this, dimensional stability across silicone and

wax process steps was undetectable, as fluctuations appeared to be below the

measurement error. Deviations in ceramic parts, however, were detectable, making the
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ceramic processing step the limiting factor in predicting final part dimensions. This was

not surprising, as there have historically been several issues regarding reproducibility in

ceramic processing. Factors influencing shrinkage from green to fired states include the

green density of the part, which is a function of dispersion state, drying conditions, and

particle size distribution. Other factors contributing to shrinkage instabilities include

sintering time and temperature.

Reasonable values for dimensional change were determined for the different

process steps, although the measurement techniques used had a relative amount of

uncertainty. Stability of the process up to the wax mold was determined to be predictable

to within the estimated measurement errors (0.1 - 0.3 jtm). A more accurate

measurement technique is necessary to quantify stability of these steps further. Ceramic

stability was found to be ± 0.8 [im over a 93 gtm length scale. This translated into a non

dimensional shrinkage of 8.6 X 10-3 m/gm. This value extrapolated to the mesoscale

would result in a variation of 86 Lm over a 10000 jLm length. This would suggest that the

process was stable on the micron scale, but might be too unstable for a mesoscale device.

Measurements over larger length scales should be performed to confirm stability at larger

dimensions.

While the values obtained contained considerable amounts of errors, designers

should be able to predict final part dimensions based on consistent slurry characteristics,

processing conditions and silicon etching dimensions to within ± 0.8 jim over a 93 jim

scale. Since ceramic processing was the limiting factor in reproducibility, optimizing

processing conditions should result in a reduction of this value. This will allow designers

to predict shrinkage and design accordingly to achieve the desired part dimensions.
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3.2 Conclusion

This chapter has examined several aspects of the micromolding process which

were important to understanding the mechanisms behind part defect formation. It has

also examined the capabilities and limitations inherent in producing ceramic parts on a

micron scale. Lastly, several design parameters have been established which will allow

future users of the process to tailor their designs and achieve precise part dimensions.
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Chapter 4

4.1 Cost Analysis

Cost is an important facet of part production. Production costs must be on a level

where mass production is a viable option. A barrier to full scale production exists if the

process is cost prohibitive. This section examines the major costs associated with making

a ceramic part using the microforming process, namely tooling production.

This analysis focused on the tool production portion of the micromolding process,

assuming that once a micromold was made, the actual ceramic forming process was the

same. This was compared to the cost of a LIGA run, a technique that has proven to be

capable of making high aspect micromolds for forming applications, but at a very high

cost.

4.1.1 LIGA Processing

The high cost of facilities required to generate synchronous x-ray radiation is a

barrier to wide scale LIGA mold production. Processing is done in a multi-user

environment since only a few sources are available in the US. Multi-user processes are

scheduled runs where several people share beam time and a common mask. LIGA

processing is currently available to the public through a multi-user service such as the

LIGA Multi-User MEMS Processes (LIGAMUMPs) provided by MCNC in Research

Triangle Park, NC. This DARPA supported program sells 6.5 mm by 9 mm die sites with

five dies delivered for $900. A typical LIGA run has 20 dies on a 4" wafer. This process

produces a 200 pm high nickel form, and is limited to minimum line widths of 20 pm and

aspect ratios of 10.41
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4.1.2 Deep RIE Processing

Processing prices for the MIT Microsystems Technology Laboratory were obtained

and used in this analysis. Various clean room processing steps are priced in process units,

each unit being $5.75. Costs for a typical DRIE run of one 4" wafer with 20 dies is

compared on a die by die basis to LIGA. Table 4-1 provides an estimated breakdown of

the costs associated in producing a 4" wafer (staff produced costs are used to include

labor). Only processing steps which incur costs are included in the table. The cost of the

photolithography mask was considered negligible, as it could be used many times. It was

assumed that a photolithography mask for LIGA would cost the same, although the x-ray

mask used in the synchrotron represented an additional cost of $5000. This amount was

factored into the public selling price, but still represented a capital investment beyond that

required for the micromolding process. 42

Process Step/Material Step Cost (1 unit =$5.75) Per Wafer Per Die

Photo Aligner 9 / Wafer $51.75 $2.59
Developer 32 / 25 Wafers $7.36 $.37
STS Etcher 30 / Wafer $172.50 $8.63

Total $231.61 $11.59

Table 4-1 Clean Room Costs for a Typical DRIE Process Run

4.2 Cost Comparison

A LIGA run costing $900 for five dies translated into a cost of $180 per die.

Processing of a 4" wafer in the MTL facilities was estimated to cost $231.61 per wafer.

With 20 dies per wafer, a die cost of $11.59 was realized for a savings of almost 94%. It

should also be noted that both the LIGAMUMPS program and the MTL are supported by

DARPA to offset the high costs. This comparison was made on a single wafer basis, and
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processing costs can be expected to drop dramatically in a bulk manufacturing

environment.

Deep RIE processing can be used to produce micromolds for ceramic forming at a

significant cost savings. The process has demonstrated the ability to produce complex

high aspect ratio molds, which can be used to make ceramic microforms. Not only is

Deep RIE less expensive, but is also compatible with current processing methods, and

can utilize the current industry infrastructure.
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Chapter 5

5.1 Future work

A process for making ceramic parts with micron scale features has been

developed which uses basic photolithography techniques. This process was inexpensive

in comparison to other forming processes, and was relatively simple to perform. It has

evolved from a crude forming technique to a viable alternative for making MEMS

components, although the process still has room for improvement. There is still much

work to be done before this process can have commercial potential.

5.2 Process Improvement

The micromolding process has demonstrated the ability to make ceramic parts,

although there are still many issues which need to be resolved. The process must undergo

refinement before it will be capable of producing parts on a large scale. Work is required

in the area of quality control, yield improvement, and scale up.

5.2.1 Quality Control

A full understanding of defect formation is necessary to produce high quality

parts. Defects observed in PZT fibers demonstrated that a well dispersed slurry will

create shrinkage voids in the green parts. Experiments have shown that slurry properties

can greatly affect the outcome of the final part, from defect formation to dimensional

stability. A partially flocced slurry has been observed to perform better than a well

dispersed one. Observations have also been made that indicate that solvent based slurries

wet the molds better than aqueous ones. A complete investigation of the effect of slurry

properties on part quality should be performed, determining the optimum balance of

dispersion state and mold/slurry compatibility.
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5.2.2 Yield Improvement

Improving part quality will be an important aspect of increasing yield, although

another important advance will be in the refinement of process steps. The process can be

made more efficient by eliminating handling steps and improving firing techniques. The

ability to place the wax mold and cast part directly into the furnace for wax removal,

binder burnout, and firing would resolve major part handling issues. This would

eliminate the need to remove the part from the wax melt substrate and transfer it to the

firing crucible. Elimination of physical handling steps should dramatically decrease

breakage of green parts. While this is not as much an issue for parts with larger overall

dimensions, small fragile pieces, such as PZT fibers, would greatly benefit from this

improvement. Development of microsetters and firing schedules to reduce warpage will

also increase yield of usable parts. 40

5.2.3 Scale Up

The process must be able to produce large quantities of product to become a

viable manufacturing tool. Scaling up of the process is crucial to the commercial

adoption as a forming technique. Several modifications could be made to the process to

facilitate this.

A setup for continuously producing PZT fibers is proposed in Figure 5-1. Wax

molds could be produced in a continuous fashion by using the silicone (or other material)

master mold to emboss a steady feed of molding material. Such large molds could

contain long lengths of fibers, or several thousands of small parts, into which a ceramic

slurry could be continuously cast. This process would be very similar to a tape casting

operation, except the carrier film would be the patterned wax mold. Several casting

heads could be located in series to ensure complete filling of the molds. Large sections of

filled wax molds could be placed in a furnace for wax melting, binder removal, and

firing. This is but one approach that could be used to mass produce PZT fibers.
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Continuously Cast Wax Mold

Casting Head

Slurry Dispenser

Figure 5-1 Proposed Continuous Casting Setup for PZT FIbers

5.3 Conclusion

The micromolding process has demonstrated the ability to create MEMS and

mesoscale ceramic parts with micron scale features through a series of mold transfers and

slurry casting. This low cost, easy to perform method is competitive with other forming

techniques being used to create ceramic parts with micron scale features. Reusable

tooling, accurate reproduction, and dynamic flexibility give this process potential to

evolve into a major forming avenue for MEMS and mesoscale components. Excellent

results were obtained and basic phenomena understood. While there are still several

developmental issues to be resolved, the microforming process shows much promise as a

viable ceramic forming tool for MEMS and mesoscale applications.
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Appendix A Micromold Tooling

Silicone and Silicon Micromolds

Silicone and Wax Micromolds
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