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ABSTRACT

Worldwide, the continuously growing air traffic induces a need for new ATM concepts to be
defined. One possibility is using a more decentralized system predicated mainly around free
routings (Free Flight), for a more flexible management of airspace.

The present study first highlights the discrepancies and inefficiencies of the current best flight-
plan optimizing software that use the Cost Index concept before departure. It then investigates
techniques to perform enhanced flight-plan optimizations en-route, with algorithms that are less
complex than using the Cost Index. The long-haul flight leg that is considered through the
simulations is London (UK) - Boston (MA, USA), flown on a constant flight level. This study
shows that running another optimization at the Top of Climb point reduces the average delay at
destination from 6.9 minutes to 5.0 minutes. Then, the more futuristic method of considering
discrete flight-plan optimizations, while en-route using updated weather forecasts, provides
results that are more interesting. If the weather forecasts and the optimizations are done
simultaneously every 3-hour or 1.5-hour, the average delay respectively becomes 2.6 minutes or
2.0 minutes.

The second part of this work investigates ways of performing a Linear Program to fly a route
close to a 4D-trajectory. This study provides ways of determining the exact weight values for the
different state variables used in the cost function to minimize.

Thesis Supervisor: James K. Kuchar

Title: Assistant Professor of Aeronautics and Astronautics
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Section 1

Introduction

1.1 Air Traffic Management: an Optimization Problem

The objective of air transportation is to carry passengers or cargo between two airports in

the world with the maximum safety and in a cost-efficient way. For each flight, the different

partners involved in air traffic flow operations (passengers, aircraft operators, authorities) are not

interested in optimizing the same criteria. For example, the Air Traffic Control (ATC) systems

will try to maximize flow efficiency at a manageable controllers' workload, whereas airlines'

Aircraft Operators (AOs) will want to minimize the trip duration and the fuel consumption. The

economic efficiency of the system, and thus a large part of its acceptability by the different

partners of Air Traffic Management (ATM), comes from the adequacy of the cost function to

minimize. Ref. 1 studies the issues raised by the definition of a cost function for Air Traffic Flow

Management (ATFM) optimization problems. The present study addresses the benefit-driven

optimization problem from the airlines' perspective.

Fortunately, the passengers' concerns often match the airlines', as a delay on one flight

can affect the costs incurred by further flights chained to it. This phenomenon can lead during a

day to a significant disorganization of the entire air traffic system (including the ATFM),

particularly around a hub airport. This already suggests that the cost function to consider for the

flight path optimization problem should be highly concerned with meeting the scheduled time of

arrival.



1.2 Objectives of Present Study

Actually, as seen in the next paragraphs, a look in the field at the different parameters

considered by airlines when determining their flight plans shows that meeting the scheduled time

of arrival summarizes very well the numerous flight planning concerns. This is useful because it

is much easier to consider a single goal rather than several interdependent ones. Moreover,

Section 2 shows that the complex Cost Index concept that is currently used in the most advanced

flight planning systems has important discrepancies and inefficiencies. Consequently, the first

part of the present work simplifies the routing method by focusing on a goal that is more

relevant than using a Cost Index: it is to simply concentrate on meeting the time of arrival.

Air traffic is growing worldwide at a rate that imposes new air traffic management

concepts to be defined. One such concept, known as Free Flight, is an environment based on free

user-preferred routings, permitting dynamic modifications of the flight plan. This requires

transitions from the current air traffic system. The present work looks at the efficiency of

realistic transition states, first by recalculating the optimized flight plan at the Top of Climb

point, then by considering new optimizations run at several discrete times during the flight.

Finally, in the perspective of discrete real-time optimizations, the second part of this

work investigates how to cost-efficiently perform a 4D-trajectory.



1.3 Flight Plan Types

1.3.1 Mach Selection

At the flight-planning level, the en-route Mach number is decided in compliance with the

strategy chosen by the airline for the flight. This strategy is described by one of the following

criteria:

* Minimum fuel

* Minimum time

* Minimum cost

* Minimum fuel within schedule

* Minimum cost within schedule

These are explained in section 1.4.

During the en-route phase, the pilot selects a Mach between the Maxi Range Cruise

Mach MMRC and the Long-Range Cruise Mach MLRC (also called the "accelerated Mach"). MMRC

is the Mach at which the aircraft flies over its maximal Specific Range (SR), where the Specific

Range is the distance flown with one ton of fuel at a given weight, height and temperature. MLRC,

typically superior to MMRC by 0.015 or 0.02, is defined by the following relation:

SRLc = 0.99x SRMRC (1.2.1)

where SRLRc is the Long Range Cruise Specific Range, and SRMRC is the Maxi Range Cruise

Specific Range.

Consequently, during a flight, the best possible increase in the Mach M is less than or

equal to AM=0.02. In the best case scenario, the flight duration is then shortened by a mere 1.5



minute per hour of flight. Indeed, if Ad is the extra distance flown during one hour at Mach

M+AM, then:

Ad = AM x a x lhour (1.2.2)

where a is the speed of sound. Therefore, the time gain during a one-hour distance flight is:

Ad AM xaxlhour AM
At = -- x lhour (1.2.3)

Speed Mxa M

If the flight cruise Mach is M=0.8, we conclude that At= 1.5 minute.

1.3.2 Medium-Haul versus Long-Haul Flights

1.3.2.1 Medium-Haul Flights

The previous result proves that changing the Mach may only slightly reduce the delays at

arrival for medium-haul flights. Indeed, combining the use of the "accelerated Mach" MLRC with

the decision of flying direct routes (see section 3.5) may reduce the flight plan by only up to five

minutes, or ten minutes in extremely rare situations. The time reduction goes down to only two

to three minutes if the flight remains on its original trajectory. Even though a few minutes

recovered over a delay may be helpful, the airlines agree that a more efficient use of airspace,

such as in a Free Flight environment, will be mostly beneficial to long-haul flights. During them,

dynamic path optimizations should importantly affect the time of arrival (TOA). The impact will

certainly be less obvious with short or medium-haul flights, in particular over Europe where the

numerous military restricted areas are strong barriers to a Free Flight environment.

Moreover, medium-haul flights are usually short enough to allow the aircraft to carry a

lot of extra fuel, thus enabling them to fly at the maximal Mach and shorten the flight duration.

Passengers prefer that option, as well as it matches the airline's interest to lower its operational



costs. Indeed, shorter flight duration incurs smaller crew costs, thus resulting in smaller total

flight cost, as crew costs are more expensive today than fuel is.

Finally, it must be noticed that airlines generally consider the need for a Cost Index (see

Section 2) for medium-haul flights to be questionable. Medium-haul flights' duration may be

importantly affected by numerous trajectory constraints, which are too difficult to implement as

parameters in the Cost Index model. Therefore, airlines usually simply choose between flying at

the Maxi Range Cruise Mach MMRC or at the Long-Range Cruise Mach MLRC.

1.3.2.2 Long-Haul Flights

Long-haul flights divide into two main categories: the limiting and the non-limiting ones.

1.3.2.2.1 Limiting Flights

A flight is said to be limiting when its duration and payload are such that it cannot carry

enough fuel to fly at the Long-Range Cruise Mach MLRc during the whole flight. This often

causes a flight at Maxi Range Cruise Mach MMRC, mostly with those small airlines that do not

have the Cost Index technology. However, a compromise can be found by using an intermediate

Mach chosen from a finite set of Mach numbers with the use of a preset Cost Index (see Section

2). As an example, Groupe Air France Airlines makes its choice at the flight planning level

between four Machs.

1.3.2.2.2 Non Limiting Flights

When enough fuel can be carried onboard, the aircraft usually flies at the Long-Range

Cruise Mach. The reason is that during a flight, the time-related costs (cf. section 2.2.2) are

usually - and nowadays - more expensive than fuel is.



1.4 Flight Plan Strategies

1.4.1 Minimum-Fuel Strategy

The minimum-fuel strategy consists in flying at the Maximal Range Cruise Mach MMRC

(the lowest Mach possibly in use during the en-route phase) to enable the aircraft to fly over the

longest distance. In other words, it provides the lowest fuel burn for a given range. This criterion

intervenes when the payload is so heavy that the legal amount of fuel needed to fly at the Long-

Range Cruise Mach MLRC cannot be carried. This situation primarily happens with long-haul

flights, with a higher probability for longer flights. For example, a flight from Paris (France) to

the Reunion Island lasts 10.5 hours and cannot be flown at maximal speed.

The minimum-fuel strategy is also used when the aircraft has been sent into a holding

pattern.

This criterion corresponds to the use of a Cost Index (cf. Section 2) equal to zero.

1.4.2 Minimum-Time Strategy

The minimum-time strategy corresponds to flying at the Long-Range Cruise Mach MLRC

(the upper bound of the Mach range). In other words, it corresponds to flying at the highest

speed with "reasonable" fuel consumption. Some airlines prefer to apply this criterion instead of

the minimum cost strategy to save on maintenance costs. This decision varies from one airline to

another, depending on the adopted economic strategy.

When an airliner is late on schedule and when payload allows it, the aircraft is usually

flown at the "accelerated Mach". This has the most interest for long haul flights, which can this



way recover up to twenty or thirty minutes, possibly bringing important useful consequences

under circumstances like heading towards a hub airport. The pilot has full authority for deciding

at Block Time the strategy applied during the flight - after acknowledgment of recommendations

by the Airline Operating Center (AOC).

Moreover, the pilot is responsible for deciding at any moment during a flight whether to

continue with the current flight regime or to switch to another one, which generally implies

using the accelerated Mach to minimize the flight duration. This decision is up to the pilot

because even a Flight Management System (FMS) does not send to the ground the dynamic

times-over-future-waypoints calculations, hence no one but the pilot knows better if the schedule

will be met. Anyway, it should be remarked that increasing the Mach during the last half-hour of

a flight is rarely an option as it unreasonably raises the fuel consumption for less than a thirty-

second delay recovery.

Finally, it must be stressed out that an airliner should not arrive at destination ahead of

schedule as this may cause problems like not having the gate available yet. In this case, the

consequences may include a holding pattern or a long taxiing time, both inducing higher fuel

costs and ruining the purpose of flying faster.

This criterion corresponds to setting a Cost Index to its maximal value.

1.4.3 Minimum-Cost Strategy

A priori, the minimum-cost strategy looks the most attractive, as it makes use of the Cost

Index (see Section 2) to find a trade-off between fuel and time-related costs to attempt and really

minimize the total trip cost. This strategy can be applied to properly FMS-equipped aircraft only.

However, a genuine optimization should dynamically take into account the often-unpredictable



real-time events that affect the time of arrival, while the Cost Index is a static optimization

method. It is entered in the FMS before take-off and is supposedly fixed for the entire flight. In

practice, pilots fly in accordance with the chosen Cost Index as long as no real-time event causes

a modification of the strategy for the remainder of the flight.

Most airlines are interested in taking the route charges into account (cf. section 3.7), in

particular in Europe where the yearly expenses they incur justify trying to reduce them.

However, for now, few companies try to reduce the route charges bill because this is a problem

relatively difficult to implement in the optimizing tool of a flight planning system. This is bound

to evolve; in the meantime, alternatives have sometimes been found. For example, Air France

chooses a cheaper route (considering route charges) only if:

* the money benefit over the best route without route charges is higher than a constant

threshold,

* and the flight duration exceeds the other's by less than a fixed percentage.

1.4.4 Minimum-Fuel-within-Schedule or Minimum-Cost-within-Schedule Strategies

The minimum-fuel-within-schedule strategy is self-explanatory. The minimum-cost-

within-schedule strategy consists in minimizing the trip cost with the constraint of meeting the

scheduled arrival time at destination (this is typically of much less interest to charters or cargo

flights). During the present study, no existing flight-planning system was found using either one

of these criteria.

The minimum-cost-within-schedule strategy has an alternative: fix the Estimated Time of

Arrival (ETA) according to the average flight duration known from former years' experience

and/or according to the known aircraft performance. This theoretically ensures that the flight will



stay close to schedule if its departure is not too much delayed. This is why the existing flight-

planning systems simply assume that the time of departure is met to ensure staying close to

schedule. The path is calculated from the planned time of departure and uses extrapolations of

the weather forecasts to obtain the time at destination. The actual time of arrival is hence

different than the scheduled one, notably because time translations occur with the allocation of a

departure slot by the Air Traffic Management System (ATMS). The difference is often small, yet

often non-negligible in terms of consequence.

It quickly comes to mind that a way of meeting the scheduled time of arrival would be to

run the path optimization program with the simple constraint of meeting the time of arrival.

Doing the path optimization backwards, using extrapolations of the weather forecasts known

before departure, would provide the exact path and time of departure. In fact, the following

reasons explain why this method is never and should not be used:

* the time of departure is a constraint, not a parameter,

* the weather forecasts are more likely to be accurate near the time of departure rather

than near arrival, causing the basis of the path optimization to be unpredictably

obsolete.

Therefore, it should not be assumed in the optimizing process that the time of arrival is known

from the beginning. One alternative is to run several flight path optimizations with different

Mach values, then to choose the one that brings the aircraft the closest to the scheduled time of

arrival (TOA). For example, Air France chooses between four different Machs (the reason is in

fact different than trying to meet TOA: the Mach is chosen such that it incurs the minimal flight

cost in terms of fuel and crew costs).



1.4.5 Non Universality of Strategies

In practice, an airline's flight plans' strategy may drastically change from one day to the

next.

Moreover, two airlines seemingly working the same way may not apply the same

criterion over similar flight legs. For example, this may occur when the crew costs are very

different, inducing a greater concern to minimize the flight duration for one airline versus the

other. Fifteen-minute delays at destinations sum up to high extra crew costs per year, which

importance depends on the crew costs per extra hour of flight, causing a more or less important

concern about reducing delays.



Section 2

Cost Index

2.1 Definition

The Cost Index (CI) for a flight is the ratio of the time-related costs to the fuel price, with

the time-related costs being defined as those incurred by one extra hour of flight.

C,
CI = (2.1.1)

Cf

Along a given route, reducing the flight duration by opting for a higher Mach is done at

the expense of fuel. The Cost Index method is an attempt towards an appropriate trade-off. It

performs an optimization of the total trip cost by controlling both the fuel burn and the flight

duration. This optimization is run according to diverse rules relevant to the airline's economic

policy.

The Cost Index can only be used with suitably equipped aircraft: a Flight Management

System equipped with the Aircraft Performance option is necessary.

2.2 Components

2.2.1 Fuel Price

In theory, the fuel price used in the Cost Index calculation is the sum of:

* the fuel price at departure,

* the fuel price at destination,



* the trip fuel,

* the tankered fuel (to be used on the next rotation of the aircraft).

In the 1980's, fuel expenses represented 25% of the total operating costs. Now, because fuel

is cheaper and because most aircraft burn a significantly lower amount of fuel, they count for

about only 10% and are now less important than the other costs induced by a flight. This

explains why, nowadays, it is considered more important to reduce the flight duration rather than

save on fuel.

2.2.2 Time-Related Costs

Also called 'marginal', the time-related costs are those incurred by one extra hour of

flight. Their three major components are the following:

* the cockpit crew costs,

* the cabin crew costs,

* the engine and airframe maintenance costs. These include costs per hour of flight (with the

assumption that the flight-time-dependent degradations evolve linearly with time) and the

cyclic ones. The latter are analytically interpreted as costs per hour of flight, so that all

maintenance costs are used in the optimization scheme as time-linear (more details are

described in section 2.2.3).

Other components may intervene in the time-related costs:

* the aircraft depreciation,

* the customized costs raised by late arrivals, when delay reaches a threshold; these are

significant of :

0 the crew overtime compensation,



Q the passengers' dissatisfaction,

O the missed connections (mostly in case of a hub), which usually incur high extra costs

to take care of:

* the passengers' rescheduling on other flights,

* extra meals and accommodation (catering).

2.2.3 Maintenance Costs

A wide variety of parameters can be considered in the Cost Index calculation as

"maintenance costs", including the costs incurred by:

* the carpet, seats, etc. (mainly dependent on the type of aircraft),

* the "actual maintenance" of the aircraft,

* the maintenance staff,

* the maintenance contracting (when the airline does not have technicians at one airport),

* the stocks possession,

* the flight monitoring,

* the hangars,

* the engineering,

* possibly other costs.

These entire costs sum up to a non-negligible amount in an airline's operating costs as

they typically count for 15% to 20% of the total time-related costs. However in practice, many

components of the maintenance costs are too difficult to evaluate, and only few of them are used

in the Cost Index calculation - when there are any.



2.2.4 Fixed Costs

Fixed costs do not intervene in the Cost Index calculation because they are normally

independent from trip fuel and flight duration, and they would be incurred anyway. They

include:

* the cyclic maintenance costs,

* the landing and user costs,

* the basic fixed salaries,

* the basic passenger costs (meals, ...).

2.3 Proof that Cost Index is a Performance Optimization Tool

For the purpose of this proof, it is first assumed that the total trip cost can be written as:

TripCost = C, -Af + Ct, At + C, (2.3.1)

where Cf is the cost of a ton of fuel - constant, Df is the trip fuel, Ct is the time-related cost per

extra flight hour - constant, D is the extra flight duration, and Cc represents the fixed costs.

Hence, the only part of the trip cost that could be modified if changes were applied to the

flight path is Cf -Af + C, -At. This provides the cost for one extra nautical mile:

ExtraCost = Af + C (2.3.2)
V -At

where V is the magnitude of V, the ground speed of the aircraft. We have:

V= a M + W (2.3.3)

where a is the speed of sound, AM is the Mach vector, and W is the wind speed vector.



We then introduce the Specific Range SR, which is the distance flown with one ton of

fuel:

V At
SR = (2.3.4)

Af

Equation (2.3.2) can then be written as:

Cf C,
ExtraCost = + - (2.3.5)

S, V

Hence, for a given barometric altitude (which allows one to consider a as a constant) the

minimum cost cruise verifies:

d d d
d (ExtraCost) = 0 = Cf (1/ SR)+ C d (1/V) (2.3.6)dM dM dM

Also, we have:

a. -- *V

dV M
d =a.cosf (2.3.7)

dM V

where p is the drift angle; therefore, we obtain:

C, V2 d
C, = C' 2 d O/SR ) (2.3.8)

Cf a-cos dM

This ends the proof of CI being a flight performance optimization tool.

Finally, it can be noticed that since P is small in practice, it is legitimate to approximate

cos f as 1, such that (2.3.8) can be written as

C, - dM (1O/SR) (2.3.9)
Cf a dM



2.4 Cost Index-Based Flight Path Optimization

Flight Planning systems typically perform Cost Index-based flight path optimization with

the following successive steps:

1) For a particular flight leg, the airline first chooses the strategy of the flight (see paragraph

1.4). This translates into opting between flying the en-route phase at the Maximal Range

Cruise Mach or at the Long-Range Cruise Mach. Then, the airline extracts from a database a

Cost Index that leads to this Mach number in normal atmospheric conditions.

2) The Flight Planning system uses this Cost Index (CI) with the weather forecasts to compute

the "best" routes (assuming the Cost Index truly represents the best strategy for the flight)

towards destination. Using databases on the aircraft performance, the flight-planning device

elaborates the best paths with the best changes of flight level for the desired Mach values.

3) The actual flight plan is then chosen among these paths to best cope with concerns related to

the departure slot allocation. From this step onwards, attention is rarely paid to the time of

arrival at destination.

4) Later, at Block Time, the pilot enters a Cost Index value in the Flight Management System

(FMS). This value is either the same as the one used in the previous steps, or is different

when late changes of flight strategy have been decided (e.g., when delay at destination may

cause a landing-prohibiting curfew). Whatever the Cost Index value is, it modifies the flight

plan which had been originally accepted by the Air Traffic Management System (ATMS) by

changing the Mach and the flight level changes (the route is unchanged).

5) Finally, during the flight, the FMS uses the Cost Index on the ATMS-accepted route with

updated weather forecasts to dynamically compute the optimal flight level changes. This is a

first approach to a real-time optimization, even more because ATC may allow flying direct



routes (cf. section 3.5) or may impose real-time flight level constraints to ensure the

avoidance of collisions. However, these modifications have the limitation of always using

the original route.

2.5 The Cost Index in Practice

2.5.1 Components

Whether it is suitably equipped for Cost Index use or not, each airline agrees that the

Cost Index is a "good idea". However, its necessity and more importantly its efficiency are

usually questioned.

Depending on the airline, in practice only few of the possible cost parameters listed in

section 2.2 are considered for the Cost Index calculation. The time-related costs usually

comprise at least the crew and some maintenance costs, but the "customized" ones are very

rarely taken into account.

Moreover, the fuel cost used in the Cost Index calculation should always be the one at the

airport where the fuel was filled in the tanks, but some airlines pay little attention to this. For

example, Air Libert6 Airlines resets its Cost Index values for each departure airport once every

three months. This may be irrelevant because the fuel is not always entirely filled in at the

departure airport, some of it may have been tankered at a previous one. In most cases, airlines

erase this issue by, for example, considering the average fuel cost for the whole fleet of the same

type of aircraft, on all the flight legs they cover during a year. This questionable statistical

method shows already that the Cost Index is just an approximation of what would be an

optimizing parameter.



Other reasons cause important Cost Index differences between airlines. A major one is

that airlines do not use the same parameters for the maintenance cost calculation. Indeed,

maintenance data are more or less easily accessible from one airline to another due to evaluation

difficulty or simply confidentiality issues. In Reference 3, Airbus Industrie proposes formulas to

compute these maintenance costs, provided manufacturers and repairmen can reveal a few

specific parameters. These empirical formulas are highly questionable, and we will not even try

to study their relevancy.

2.5.2 Efficiency

The Cost Index method may seem a good way to perform path optimization. In practice,

it appears that its efficiency is too unpredictable - and too often questioned - to justify such a

complex theory. Indeed, numerous real-time events may drastically modify the flight strategy.

2.5.3 Rounded Cost Index

Airlines use approximate values of what should be their optimum Cost Index. To

noticeably modify the speed of an airliner, one needs to modify the Cost Index value (CI) by a

factor of about two. This shows that speed is not very sensitive to CI, except when it is

drastically changed. This allows each airline to use a Cost Index definition that is not extensive

and not thoroughly accurate. Consequently, most airlines use rounded and fixed CIs.

As an example4 , a certain airline was recently using the following CIs:

* For B767-200: CI = 70 (reason given by pilots: it approximates the Long Range Cruise)

* For B767-300: CI = 60 (same reason)

* For B747-400: CI = 100 (reason: it allows low fuel burn with acceptable speed stability).



These differences are mostly due to crew wage differences, which are usually the mean values of

all the wages on the considered type of aircraft.

* For each aircraft: CI = 300 when flight duration is critical, e.g., to avoid crew overtime.

This example shows that CI can be a very rounded approximation that can drastically change

during irregular operations (IROPS).

Another airline4 was recently using a CI of 80 for its B747-400s (obviously using a

different Cost Index definition than the previous airline). Its pilots had received the instruction to

switch to 250 when behind schedule for connecting passengers (this airline works as a hub).

Some other airlines 4 use non-rounded CIs by considering the fuel cost as the one at

departure for an unnecessary "precise" calculation.

Finally, other airlines4 even let their crews select CI.

These examples prove that the Cost Index definition is very uncertain. Actually, most

airlines' engineering departments agree that computing an "exact" CI would not bring noticeable

benefit, even during normal operations. On the contrary, improving the definition is often

believed to induce more research costs than operational benefits.

2.5.4 An Irrelevantly Linear Definition

The variety of Cost Index values raises a major issue: is it even possible to find a list of

parameters to use in the CI calculation to provide a real optimization from the airline's

perspective? The answer is no. The following example shows it: Air Libert6 Airlines represents

the fatigue of the engines as hourly maintenance costs, while Air France does not. Both have

justification for their respective decision:

* Air Libert6 Airlines pays attention to taking into account the use of engines,



* whereas Air France rightfully considers that the engines' fatigue is not linearly dependent on

the flight duration, therefore taking it into account in the CI calculation would induce a

wrong calculation anyway. Indeed, the Cost Index value entered in the FMS directly affects

the regime of the engines, causing their inside temperature to be one or another. This

induces a certain fatigue speed, which eventually incurs hourly maintenance costs for the

engines that are specific to this regime.

This example proves one important limitation of the Cost Index theory: it assumes all the cost

parameters to be interpretable linearly while some of the maintenance costs are not.

The theory contains numerous interesting aspects, however the CI calculation and its use

seem uselessly complex and impose tools that may be too sophisticated - hence expensive - for

the limited efficiency that is obtained.

2.5.5 Criticisms about Proof

Actually, the definition of the total trip cost is questionable in itself. Indeed, the time-

related costs are not all linear functions of the extra trip time as was mentioned in the former

paragraph.

Moreover, the time-related costs during scheduled flight hours are often incorrectly

considered as fixed costs - or at least as Mach independent. Using the same example as in the

previous paragraph, different CI entries in the FMS lead to different fatigue rates for the engines,

causing them different maintenance costs. In other words, the fuel cost during scheduled hours

depends on the flight regime, which may change in real-time. Therefore, the total trip cost during

scheduled hours should not be considered as a fixed cost.



Moreover, the proof of Cost Index being a performance optimization tool assumes that

the aircraft remains on a single flight level. This suggests that a truly optimized flight probably

involves different Cost Index values for the different flight levels encountered during the en-

route phase (e.g., for a long-haul flight). In practice, things are different as a Cost Index value is

entered in the FMS at Block Time and remains constant for the whole flight (see section 2.4). In

other words, the Cost Index theory is based on an assumption that is not applicable to long-haul

flights.

The CI theory assumes that D, is positive, while there are situations when it would be

interesting to fly faster than schedule.

Several other descriptions - expected at the time to be more practical - of the Cost Index

parameters were attempted for the present work. They tried to stress more the possible

discontinuity and non-linearity of some costs (notably by using discretized engine's regimes);

unfortunately they were not of much use because their derivatives respective to Mach were

unsolvable.

These reasons prove important discrepancies in the Cost Index theory, putting a high

random weight on its efficiency. Moreover, this theory should certainly not be used for dynamic

optimizations.



Section 3

Optimization Goals Analysis

3.1 Rationale

This section intends to show that the primary goal of each flight is to arrive on time. To

clarify this, several points are discussed. First, attention is paid to the importance of taking-off

on scheduled time, to eventually understand that needing to depart on time is just a consequence

of the importance of arriving at destination on schedule.

3.2 Importance of Meeting Departure Time

3.2.1 Medium-Haul Flights

On medium-haul flights, departing on time is roughly equivalent to arriving on time.

Indeed, we saw in section 1.3.2.1 that the duration of a medium-haul trip can only be shortened

by five minutes (ten in rare situations) with direct routings and use of the "accelerated Mach".

Therefore, it is especially important for medium-haul flights to depart on time to reach

destination on schedule.

3.2.2 Rotations

Departing on time is a top priority when the aircraft is scheduled for rotation at

destination. The daily schedule of an airliner sometimes asks for turn-times down to almost the

airport's Minimum Connecting Time (MCT, the minimum time required by the airport's



logistics to rotate an aircraft). For example, Air France's "La Navette" airliners have turn-times

equal to Orly airport's MCT (thirty minutes). Therefore, a delay occurring at any moment of a

day with a flight subject to rotations can generate delays up to the end of the day's operations, or,

at least, a delay at next departure. Aircraft Operators work very carefully at avoiding this kind of

"threat".

3.2.3 Curfew

The Aircraft Operators' concern about rotations becomes critical when the chained

flights can face a curfew at the end of the day. If the destination airport closes before an aircraft

lands, the latter is rerouted towards a nearby airport. For example, the 11:00 p.m. - 6:00 a.m.

curfew at Orly airport may reroute aircraft towards Roissy Charles De Gaulle. In such

occurrence, most passengers get a bad image of the airline and may decide to avoid flying with it

in the future. Furthermore, this situation usually incurs very high extra costs by imposing the

need to take care of the passengers' accommodation, transport, and food (catering). A rerouting

due to a curfew is probably the worst situation for an airline - during safe operations.

3.2.4 Duty-Time Limits

Usually, it is considered less important for long-haul flights to meet the scheduled time of

departure than with medium-haul flights because it is much easier to recover from a delay on a

long-haul flight. However, for very long flights, the crew duty-time limit can be the number one

constraint. It would impose an "accelerated Mach" strategy, with a departure close to the

scheduled time (having to reduce the payload if necessary). There is also a duty-time limit for



flight attendants, but it is much less a restriction because flight attendants are allowed to fly extra

hours.

3.2.5 Psychological Importance of Departing on time

According to Air Libert6 Airlines' aircraft operators, experience has shown that

passengers generally notice a delay at departure after about three minutes (more relevantly on

medium-haul flights). This explains why airliners try to depart within two extra minutes of the

scheduled time. When this is not possible, the pilots try to limit the delay to a certain threshold

(e.g., fifteen minutes), provided no constraints like rotations strongly recommend a shorter delay.

In general, the airlines without hubs admit that they pay less attention to reach the

scheduled time of arrival. Their priority is usually to depart their flights with very small delay.

They keep an eye on rotations, but they achieve short delays at arrival by focusing more on the

time of departure. This is true as long as there is no risk of arriving at an airport under curfew, in

which case the only priority is to reach the airport before it is closed.

3.3 Importance of Meeting the Time of Arrival (TOA)

For medium-haul flights, we explained in section 3.2.1 that trying to meet the scheduled

time of departure is often sufficient to ensure arriving close to the scheduled TOA.

On long-haul flights, when payload allows carrying more fuel, direct routings and use of

the "accelerated Mach" make it easier to recover from a delay at departure.

Meeting the time of arrival is very important for a number of purposes, among which are

the following:

* please passengers (including the business-class passengers who are a priority),



* avoid a curfew after chained flights when turn-times are close to the Minimum Connecting

Time (read section 3.2.3),

* permit adequate aircraft rotations (for the reasons given above),

* favor adequate crew rotations,

* allow adequate connections.

3.3.1 Hubbing

When an airline works as a hub at one airport, its arrivals and departures at this airport

are sequenced in such a way that several times a day, a wave of airliners arrives and a wave

departs shortly after. For example, this happens five times a day for Air France at Roissy Charles

De Gaulle. This attracts passengers, as they naturally prefer fast connections to reduce their total

trip time.

In practice, not every airliner reaches its allocated gate on schedule; this may result in

missed connections. One common reason for this is that the airlines working as hubs reduce their

connecting times as much as possible, close to the Minimum Connecting Time (MCT). MCT is

airport-dependent: it represents the time needed to move passengers from one gate to another as

well as to transit luggage from one aircraft to the other (which is more likely to be time-

consuming). Since scheduled times of arrival are, in fact, averages over an entire IATA season

(winter's September-to-March or summer's April-to-August), big differences from these

averages occur. For example, a flight from Southeast Asia to France sees its duration differ by

thirty minutes from April to August. This induces a fair probability to miss some connections.

If an aircraft delay causes missed connections, the airline takes care of:



* finding another connecting flight from the same airline, or from another if this is not

possible,

* offering accommodations (food, hotel, etc.).

Typically, the airline takes care of the passengers who have missed their connection in order of

economic importance, making a difference between a businessman and a tourist.

These operations are very expensive to the airline and shall be avoided, such that the next

flight could be slightly delayed to allow a connection to happen. This decision is taken at the

AOC level after consideration of:

* the number of passengers to connect and their economic importance,

* the possibility to connect them to another flight with a reasonable delay,

* the consequence on the next flights if the one to connect with is delayed.

The flights that are the most likely to be imposed such delays at departure are those with long

rotation times at destination, to make sure that the delay on the next flight leg is not affected by

the first delay. For example, if for one connection situation, there were another possible flight to

connect with thirty minutes later, the airline would probably consider that missing the first

connection is acceptable. On the contrary, if the next connecting flight were seven hours later, it

would be very important to reach the scheduled connection, otherwise the non-connected

passengers would be very unpleased and would possibly become forever-lost customers. These

aspects are taken into account to possibly fly at the "accelerated" Mach.

3.3.2 Business-Class Passengers

They are very important to the airline because it sees in them as its best source of profit

and because they are more likely to fly with the same airline again than tourists are. The airline



does its best not to disappoint these customers. Since businessmen, for business reasons, are very

scrupulous about reaching the destination airport on time, it becomes a much bigger concern to

meet the time of arrival with a flight carrying a number of business-class passengers.

3.3.3 Charters and Cargo Flights

Naturally, meeting the scheduled time of arrival with charters and most cargo flights is

less important than with other flights. In those cases, the main concern becomes minimizing the

total trip cost - while paying little attention to delays.

3.4 Conclusion for the Flight Strategy

It was described above that, by far, most of the arguments in section 3.2 that justify trying

to meet the time of departure are in fact concerns about arriving on time at destination (as is

explained further in section 3.3). Actually, for passenger-carrying flights, only one argument was

discussed not mentioning the importance to meet the time of arrival: the psychological impact on

passengers of leaving the gate late (see section 3.2.5). This leads to the reasonable conclusion

that arriving on scheduled time at destination is the one objective that sums up the arguments in

sections 3.2 and 3.3. Moreover, it is much easier in a flight-plan optimization tool to concentrate

on this single goal rather than to try to model all the different arguments as parameters. The

complexity of the model would otherwise be much too important. It would actually be

meaningless because the time of departure is not known before the ATMS has allocated a slot,

therefore talking about real optimization before the departure slot is known is bound to errors.

These remarks have led the present study to concentrate on the importance of meeting the

time of arrival, and to look at real-time optimizations.
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3.5 Direct-Routings

3.5.1 Concept

When the airspace is under ATC control, the pilot can ask during the flight for direct-

route allowances. Upon clearance, a direct-route shortens the flight path by deleting one or

several waypoints from the scheduled path. Figure 1 shows two different "direct paths".

A

C

Figure 1. Two direct-routing scenarios

A, B and C are three waypoints. The dashed line represents the original planned path from A to
C, via B. The plain lines are two direct-routing alternatives.

Obviously, airlines want their pilots to fly as many direct-routings as possible to reduce

the total trip cost by shortening the flight duration and the fuel consumption. In practice, to avoid

receiving direct-routing requests too often (thereby risking additional workload), controllers

usually propose the direct-routings themselves. These shortcuts match the controllers' interests,

as direct-routings reduce the time spent by one aircraft in one controller's surveillance area.

However, it remains easier for controllers to handle the aircraft that stay within official airways,

where most conflict resolution procedures are known.



3.5.2 Europe

Over Europe, most direct-routings occur at night, when traffic and controllers' workload

are lighter (direct-routings are possible in Europe because all aircraft are tracked by radar). For

example, a flight in France from Nice to Paris is ensured of receiving direct-path clearances if it

takes off around 5:00 a.m., but it is confronted to a peak of traffic if it departs near 8:00 a.m. In

the second case, the controller usually prefers the aircraft to stay on its scheduled path because it

corresponds to a classic route that he knows how to handle.

Moreover, a number of specific-use-areas block direct-routings; these include the

restricted military airspace and the transfer zones. There are numerous military restricted areas

over Europe, in particular near Paris, and it is unanimously agreed among air traffic controllers

and airlines' crews that they constitute a major constraint against direct-routings.

Finally, direct-routings across borders are not allowed. Therefore, having an aircraft

constrained to stop a direct routing at the last waypoint before crossing a border is frequent.

3.5.3 The Atlantic

Waypoints over the Atlantic are defined in "lat/long" coordinates (latitude/longitude).

Transatlantic flights are done with a constant Mach along one of four tracks (each defined by a

set of "lat/long" waypoints) to ensure safe separation distances. The track concept has been

necessary until now because there is no radar coverage over most of the Atlantic. By using

tracks, air traffic control centers get reasonable knowledge of each aircraft's position by logging

what track is flown, what time it was entered, and by using regular HF-radio position reports



from the aircraft's crew. Then, the crew obtains position information from the inertial navigation

equipment.

The four tracks are set on a 12-hour basis, switching westbound and eastbound flow.

Each track crosses the northern part of the Atlantic and tries to make best use of the weather

forecasts for one aircraft category. An aircraft that plans to cross the Atlantic will then be

allocated to the track that best fits its cruise performance. Along these tracks, crews are not

allowed to ask for direct-routings and aircraft are required to fly in conformance with their

announced flight plan (except in case of an emergency or on controller's request).

Transatlantic flights should benefit a lot - and should be the most important beneficiary -

from new and future CNS systems, as will be discussed in section 4.4.4, saving a lot of money

on aircraft operations. This is the reason why improving the path of transatlantic flights is the

major point looked at in the present work.

3.5.4 Africa

Since there is very little radar control over most of the African continent, crews rarely ask

for direct-path clearances. Actually, over large areas of Africa where the air traffic control

efficiency is sometimes dubious, pilots do the air traffic control on their own by keeping in touch

with one another on one specific VHF frequency. Free Flight (see section 4.4.6) would have a lot

of potential over Africa, however implementing it could require ground equipment that is for

now unrealistically expensive for these countries. Therefore, optimizing flight paths over Africa

is for the moment a minor priority.



3.5.5 RNAV

RNAV-restricted air segments are for direct-routings only, and an aircraft must be

RNAV-equipped to be eligible for clearance to use them.

Furthermore, according to airlines, experience shows that a direct-routing is not possible

without RNAV-equipment when the next VOR station is at more than a hundred nautical miles

distance. Since direct paths are commonly considered of interest over distances superior to 200

NM, the RNAV-equipment is seen as a necessity for direct-routings.

Nowadays, the European Civil Aviation Community (ECAC) airspace is on continuous

rearrangement to increase the number of direct-routing opportunities. Since January 1998, every

aircraft above flight level FL245 in Europe has to be RNAV-equipped.

The RNAV-equipment includes the FMS for which the INS, GPS and DME positions are

possible inputs, such that a minimal accuracy of 5 NM is achieved. This allows using imaginary

waypoints (RNAV waypoints) that are defined in "lat/long" coordinates.

3.6 Optimization Parameters

The entire section has described a number of parameters that should be taken into

account in a real flight-plan optimization. As it was concluded in section 3.4, a much more

handy way of considering most of these parameters is to set the goal to meeting the time of

arrival. Moreover, other constraints such as the regional ones listed in section 3.5 are extra

evidence to prove that an exact model that would consider every parameter individually is much

too complicated to elaborate. Actually, considering each of these parameters would certainly

lead to very elevated optimization computing times, while the efficiency would be very

questionable because nobody knows how to correctly implement each of these parameters



individually.

3.7 Route Charges

The route charge concern must be mentioned before ending this section. Route charges

are the fees for flying over Flight Information Regions (FIR's). They may differ considerably

from one FIR to another. They are not easy to take into account because of the difficulty of

implementing the contour of FIR's in the flight-planning tool. They are paid according to a fee

per kilometer over each FIR (this fee is the same over an entire country, except in the USA).

These charges sum up over a year to a very big amount, inducing increasingly more

airlines to consider the route charges in their Flight Planning system. However, the route charges

do not interact in the choice of the catalogue of routes that feeds the Flight Planning system.

Indeed, the cost for flying over one FIR may drastically change from one day to the next.

The flights considered in our study are transatlantic, so no attention will be paid on the

route charge concern.



Section 4

The Future of Flight Plan Optimization

4.1 Current Non-Feasibility of Dynamic Optimizations

With the current ATM system, the airline usually fixes the flight path optimization

criterion (see section 1.4) several hours before departure. It uses the latest weather forecasts and

assumes that there is no delay at departure. Once the slot has been allocated by the ATMS and

accepted by the airline, the flight plan is set. Later, real-time events sometimes cause the Airline

Operating Center to ask the pilot during the en-route phase to change the strategy for the flight -

while flying the same route. Such possible real-time occurrences show first-hand that a flight

cannot be confirmed to be optimized before departure. Furthermore, a delayed departure causes

the airliner to encounter other winds than those used for the route calculation, even if the

forecasts were correct (while there always are errors, as is discussed in section 6.3).

Consequently, the route is known to be frequently not the optimized one, and, as it was asserted

in section 3.4, talking trustingly about flight plan optimization is possible only after the

departure slot has been allocated.

Improvements of this pseudo-optimization are difficult to achieve with the current air

traffic system. The safety of the flight relies a lot on the controller, and all in-flight route changes

occur only upon ATC clearance. A dynamic optimization is therefore not applicable in the

current system, and the route is fixed before departure. A few changes can be cleared during the



flight, but they are limited in number and frequency so that the pilot and mostly the air traffic

controller keep good situation awareness.

4.2 Evolution in Air Transport

Since 1983, the International Civil Aviation Organization (ICAO) has launched a group

to define what can be used in the future to improve the existing Air Traffic Control system. The

future system, called CNS/ATM (Communication Navigation Surveillance for Air traffic

Management), will be deployed by taking into account a transition period for the ground

equipment, and the necessity to adapt the existing aircraft fleet.

4.3 The Needs of Air Traffic Management

Air Traffic demand is increasing in all parts of the world. Although rates of growth differ

between regions, significant increases in air traffic demand are expected to continue into the next

century at a rate of about 6% more aircraft per year. The current demands have already increased

the pressure on air traffic service providers and users, straining airspace and airport resources.

Without change, the result will be further congestion and delays due to the capacity limitations

of today's system, which together with environmental considerations could have significant

economic consequences.

This continuously growing air traffic induces the need for new ATM concepts to be

defined. One possibility is an extensive automated support, a more decentralized system

predicated mainly around free routings and, eventually, autonomous aircraft operations. This is

the concept of Free Flight, which leads to the introduction of dynamic airspace structures, in

particular Free Flight Airspace (FFAS), and the provision of greater flexibility and free routings



to suitably equipped aircraft wherever and whenever possible. The concept requirements involve

fundamental changes to current roles such as a more flexible management of airspace.

Consequently, the gradual implementation of the Future Air Navigation Systems

(FANS), also called the CNS/ATM (Communication Navigation Surveillance for ATM), will

provide the capability for closer interaction between ground-based and airborne systems, as well

as between several aircraft.

The International Civil Aviation Organization (ICAO) states approved the global

CNS/ATM concept aimed at surpassing the current system limits by making better use of the

new technologies that are available.

4.4 The Future Environment

4.4.1 Navigation

The CNS/ATM concept takes advantage of the best of line-of-sight systems as well as

satellite communication and Global Positioning System (GPS, used for 4D-positioning and

speed determination). GPS can provide a high-integrity, highly accurate navigation service

suitable to en-route (and terminal) operations. Airlines will hence benefit from both GPS and

improved performance of Inertial Navigation Systems (INS), thereby obtaining a better

performance than either would alone. Several FAA-sponsored projects are currently under

implementation (e.g., the Wide Area Augmentation System, WAAS) or study (e.g., the Local

Area Augmentation System, LAAS), to make full use of GPS.

One non-obvious but useful GPS characteristic is its ability to deliver a common and

highly accurate time. This allows perfect synchronization between ground and air elements of air



traffic systems. This is very useful notably because the Automatic Dependent Surveillance

(ADS) position reports only make sense if they can be referenced to a common time. Time

provides the means to move from 3D to 4D-navigation. This makes it possible for ground and air

systems to cooperate in the real-time management of flight profiles, for example in ensuring that

aircraft arrive at reporting points exactly on schedule, or in handling different approach streams

to an airport.

GPS time, positioning, and speed accuracy could lead to a reduction in separation

distance minimums between aircraft, thus allowing a more efficient use of airspace. Ultimately,

GPS will be the tool that will enable Free Flight (see section 4.4.6).

4.4.2 Surveillance

4.4.2.1 Today

In areas of high traffic density, Secondary Surveillance Radar (SSR) Modes A and C

currently provide the main method for surveillance and control of air movements, backed up by

primary radar and voice reports on VHF. These are line-of-sight systems. Consequently, for

oceanic operations, remote land areas, and airspace where primary and secondary radar are not

economically justified, voice reports on HF are used for a procedural service that demands wide

separation standards to ensure safety.

4.4.2.2 Future

The key feature of the FANS surveillance concept is Automatic Dependent Surveillance

(ADS), a means of extending surveillance service to oceanic airspace, remote land areas, and



other areas where radar coverage is not available. Instead of relying on voice position reports, an

aircraft operating in non-radar areas will automatically transmit its position (and other relevant

data such as aircraft intent, speed, and weather) to the air traffic center via satellite or other

communication links. This is the basis for potentially significant enhancements to flight safety

by reducing position report errors. Use of ADS, supported by direct two-way pilot-controller

communications, will allow non-radar areas to evolve to the point where air traffic services are

provided the same way as in today's radar airspace. ADS will support reductions in separation

minimums in non-radar airspace, thus alleviating delays, minimizing necessary diversions from

preferred flight plans, and reducing flight operating costs. Hence, ADS will support increased

ATC flexibility, enabling controllers to be more responsive to aircraft flight preferences. With or

without reductions in separation minimums, this flexibility will contribute to cost savings for

flight operations.

SSR technology will continue to be used for surveillance in terminal areas and high-

density continental airspace.

4.4.3 Flow Management

Benefiting from the new CNS systems, Flow Management is to be based on sophisticated

models and databases describing the current and projected levels of demand and resources. This

new automation should make it possible to predict the possible sources of congestion and delay

and to formulate real-time flow management strategies to cope with demand.



4.4.4 Oceanic Operations

International air traffic is growing much more rapidly than domestic operations. This area

of Air Traffic Management should benefit significantly from the new technologies and should

experience significant improvements through the next decade. Extensive use will be made of

ADS, satellite communications, GPS, weather system improvements, etc., to integrate ground-

based ATM into the airborne FMS. The goal is to develop flexible oceanic operations that

accommodate the users' preferred trajectories to the maximum extent.

4.4.5 En-Route and Terminal Operations

It is expected that the automated flow management will monitor available capacity and

demand at airports throughout the en-route (and terminal) airspace, and will implement

strategies to prevent the development of congestion.

4.4.6 Free Flight

4.4.6.1 Concept

Using GPS performance, aircraft should be able in a "near" future to navigate directly

from departure to destination while obviating the need for rigid, less efficient airway systems

and ground-based navigation infrastructure. This is the idea behind "Free Flight". Under Free

Flight rules, aircraft operators - or pilots - would be free to choose their own direct routes,

speeds and altitudes. Controllers would only intervene to ensure safe separation, prevent

unauthorized entry of Special Use Airspace (SUA) and preclude overloading of airport or system



traffic capacity. This concept would allow pilots to operate without specific route, speed, or

altitude clearances.

4.4.6.2 Savings

The push to Free Flight is coming directly from the system's heaviest users, primarily the

air carriers and large fleet operators who have understood the potential for tremendous time and

fuel savings that it could make possible. According to industry analysts, the airlines lose between

$3.5 and $5 billion a year because of built-in system inefficiencies. As an example, United

Airlines estimated in 1997 that its annual costs for traffic-delayed arrivals, missed connections,

long gate-holds and take-off queues, inefficient altitude assignments, and circuitous airway

routings added $670 million to its cost ledger alone. Similarly, Delta Airlines calculated in 1997

that it would save $16.8 million a year in fuel if using computer programs that would

simultaneously optimize the aircraft's route, speed, altitude for current wind, weather and traffic

conditions. The transition to Free Flight will not happen overnight, but the evolutionary process

has begun.

The trend to free routing is led by the current use of RNAV capabilities (as discussed in

section 3.5.5). Table 1 was realized in 1996 by British Airways to show the potential of RNAV-

navigation for fuel savings.

Table 1. RNAV-driven fuel savings

Distance Fuel
London - Hong Kong
Flight corridor on 11/1/96 5,922 NM 127.6 tons
RNAV (Great Circle) 5,205 NM 112.8 tons
Saving 12% 12%



London -Los Angeles
Flight corridor 4,905 NM 116 tons
RNAV (Great Circle) 4,727 NM 111.4 tons
Saving 4% 4%

4.4.7 Dynamic Flight Path Optimization

The analysis of optimization goals made in Section 3 led to the conclusion that the one

concern that stood for all of these goals was to meet the scheduled time of arrival (TOA).

Virtually, this way, connections, rotations, passengers' mood and other time-dependent flight

consequences are all optimized at the same time. In other words, virtually all time-dependent

flight consequences rely on the accuracy to meet TOA, which is much more important to the

airline than saving fuel - as long as there is enough fuel carried by the aircraft. Moreover, it must

be recalled that fuel counts for only about 10% of the flight costs: the most avoidable costs are

time-related and incurred by extra flight hours. Minimizing these costs is the main concern that

defines the optimization of the flight path.

As explained in section 3.4, taking care of arriving on schedule is not the main concern

nowadays, nor is it feasible. Indeed, flight plans are set before departure, while dynamic events

such as the weather forecasting errors (which count for the most part) affect the efficiency of the

flight plan, hence the ability to reach TOA. Therefore, today airlines mostly concentrate on the

effort to meet the time of departure, then try to optimize the path by using, for example, a Cost

Index. The Cost Index surely helps the pilot by telling him when cost-efficient changes of Flight

Level should occur, however it remains a very complicated notion for a limited efficiency, as

discussed in section 2.5.2. This induces unneeded extra costs for a result that is often questioned

about its benefits by airlines. Indeed, even if all airlines were to agree on one Cost Index



definition, the problem of dynamic events affecting the flight and the time of arrival would still

be the same.

Consequently, to ensure meeting TOA with a minor error, it is a necessity to consider

real-time optimizations during the flight to dynamically adjust the flight characteristics.

Furthermore, the Cost Index concept should not be used because of the numerous

irrelevancies that were discussed in section 2.5. The time-related costs cannot be considered as a

linear notion summing different independent costs (see section 2.5.4). Instead, the optimization

should simply concentrate on reducing the extra flight hours, which would turn out to be similar

to reducing the time-related costs - whatever they are.



Section 5

Discrete Real-Time Flight Path Optimization

5.1 Introduction

The work that is described in the next sections concentrates on meeting the time of

arrival (when fuel limitation due to a heavy payload is not an issue) through real-time

optimizations. The flight path is chosen with the smallest cruise Mach that satisfies this time of

arrival. This ensures the lowest flight cost as the time of arrival is met, and for that flight

duration, the fuel consumption is minimized.

As mentioned in section 4.4.6.2, some major airlines (e.g., Delta Airlines) have already

studied the potential of dynamic optimization, concluding that this could save them up to

billions of US dollars a year. However, these studies have considered the very futuristic case of a

perfect Free Flight environment where continuous or very frequent path optimizations are

possible in real-time. Such frequent optimizations would highly increase the air traffic

controllers' and pilots' workload, as they would find it difficult to keep good situation awareness

- unless they have a huge automated back-up system that is not realistic now. Therefore, the ideal

situation of frequent optimizations is too futuristic to be paid attention to for the moment.

The present work looks at the efficiency of a realistic transition to Free Flight that could

be implemented soon; it consists of using a limited number of flight path optimizations during

the flight. Interestingly, this method could prove more useful than continuous optimization for

many years. Indeed, the errors on the weather forecasts are today still so important that insisting

on the accuracy of the flight plan from departure is not very useful. This point raises interesting



issues studied in Section 7, such as how to use the better efficiency of flight path optimization on

short paths over long flying distances.

The optimizations performed for the present study use a Dynamic Programming-like

algorithm, as opposed to the Great Circle technique that a priori does not provide the best flight

plan. Indeed, the second technique consists in defining the best path as the set of waypoints

closest to the direct trajectory from departure until destination, but such parameters as the

weather forecasts are ignored. Section 6 describes the specific algorithm used for the present

work.

5.2 Used Data and Assumptions

5.2.1 Transatlantic Flight Leg

As was explained through sections 1.3.2.1, 3.5.3, and 4.4.4, flight path optimization is

mostly interesting for long-haul flights, and one major area where the largest benefits can be

obtained is transatlantic flights. Therefore, the present work performs simulations on a typical

transatlantic flight, which leaves the south of the United Kingdom in late morning to reach the

United States near Boston (MA) in early evening (GMT time).

In fact, little room exists for choosing the Top of Climb (TOC, corresponding to the end

of the climb where the flight reaches its Requested cruise Flight Level (RFL)) and the Entry

Point (EP) of the Terminal Maneuvering Area (TMA). Among several reasons for this are the

numerous constraints inherent to the vicinity of airports and urban areas. Therefore, optimizing

the flight path is virtually only significant between TOC and EP. Consequently, the present work

performs path optimizations between TOC and EP only. TOC is located in "lat/long"



coordinates at [latToc,longToc] = [+490,0] and is passed over at about 11:00 GMT (about the

same time and position as the real flight); EP is defined by [latEp,longEp] = [+40',-70'] and its

"requested time over" is set at 18:45 GMT. This corresponds to a little longer flight duration

than in the real situation, but it is acceptable because the average speed is slower when the

aircraft stays at a constant flight level.

5.2.2 Flight Level

Whether the optimizations are performed for the path, Mach, and Flight Level choices, or

simply for the first two, considerably varies the complexity of the model as well as the

simulation running time. Besides, the results that may be obtained by acting on the path and

Mach choices only are sufficient to understand the consequence on the time of arrival of

discretized real-time optimizations - the purpose of this work. This is why the following

important assumption is afforded in this study: the flight remains from TOC to EP on a single

flight level. Most simulations will be run on flight level FL300 - a typical value.

5.2.3 Weather Data

5.2.3.1 Extreme Error Analysis

Nair and Forrester 13 found that gross errors in wind models are more common than what

would be expected from a normal distribution. On a three-month winter period, they made

approximately fifty reports of errors in the wind speed magnitude that exceeded 30 meters per

second. Most of these reports were due to unrealistically large wind speed measurements

reported from a couple of aircraft on just a few flights. Moreover, errors in the headwinds above



the Atlantic in wintertime (when forecasting errors are at their peak) range up to about 7 meters

per second. It should be noted however that Nair and Forrester agree that the error distributions

in both wind speed and wind direction conform closely to standard normal distributions.

To be more realistic, it was decided in the present work to use real weather forecasts

rather than normal distributions.

5.2.3.2 Weather Forecasts, True Weather

Professor Ilari from MIT's department of Earth, Atmospheric and Planetary Science

provided weather forecasts and "true weather" grids between longitudes -90' and 00 with a 2.50-

step, and between latitudes +200 and +700 with a 2.5 0-step. This area covers a large part of the

Northern Atlantic where most transatlantic flights occur. The grids contain information about the

horizontal wind speed components and the temperature at different pressure levels

(corresponding to flight levels). The "true weather" data are the analysis performed by MIT's

department of Earth, Atmospheric, and Planetary Science, providing the actual weather a few

hours after they have occurred.

It should be noticed that it is reasonable to use these grids for our simulations because the

2.5 0 -steps provide a good approximation to the 1.50 -steps actually used by air traffic systems.

For each simulated flight, the following weather data were used:

* the 6-hour weather forecasts released at 0:00 GMT,

* the 12-hour weather forecasts released at 0:00 GMT,

* the 6-hour forecasts released at 12:00 GMT,

* the 12-hour forecasts released at 12:00 GMT,

* the "true weather" for 0:00 GMT,



* the "true weather" for 12:00 GMT,

* the "true weather" for next-day's 0:00 GMT.

5.2.4 Waypoints

The set of waypoints considered in the simulations is disposed similarly to the one used

nowadays for actual transatlantic flights. They are defined by their "lat/long" coordinates every

1 of latitude and 10' of longitude as they are represented in Figure 2. For real flights, more

waypoints are located near coasts, but we will not consider them in the simulations because - a

priori - they affect less the time at destination than the choice of waypoints over the Atlantic

does.
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Figure 2. Waypoints database
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of longitude (vertically). The circles refer to the Top of Climb (right circle, located south of the
UK) and the Entry Point (left circle, located near Boston, MA, USA). The plain line is the
computed optimal flight path from TOC to EP (determined at departure) on one particular day.

5.2.5 Linear Motion

5.2.5.1 Turns

Large angles of turn at cruise speed are unusual. They will become even rarer with the

advent of free flight. As it is suggested for long-haul flights in Reference 5, turns were first

considered for the simulations to be at a rate of 10 per second.

Let us call 0 the accumulated course change by the aircraft between the Top of Climb

and the Entry Point, M the Mach, a the speed of sound, and TR = 1 o/s the turn rate. We find that

the travel distance (aside from wind effects) flown during turns is given by:

s =- (5.2.5.1.1)
TR

If we then consider the case where turns are performed over waypoints only, immediately

heading to the next waypoint, an easy calculation shows that the distance flown during what

should have been turns is:

M-a 8
1 = 2- tani - (5.2.5.1.2)

TR 2J

Considering the very bad example where 0 = 900 and M is the "accelerated Mach" 0.82,

we obtain that the flight duration difference between the two cases is of about 25 seconds

(corresponding to about 5,040 meters). Compared to the scheduled flight duration from TOC to

EP of 7:45 hours, 25 seconds is a mere 0.09%. Moreover, a 25-second difference from schedule



is not noticed. As a result, we will make the approximation for the simulations that turns are

performed immediately over waypoints.

5.2.5.2 Between Turns

The reasoning used in the previous paragraph would similarly prove the credibility of the

assumption that motion between two consecutive turns can be considered linear for the

simulations (and in fact, pilots really try to fly linearly).

5.3 Flight Path Optimization

5.3.1 Waypoints Search Space

5.3.1.1 An Elliptic Search Space

The optimized path is searched among all the contiguous waypoint combinations from

TOC to EP. Of course, the computing time evolves exponentially with the number of waypoints.

Since it is obviously useless to consider some waypoints in the path-search algorithm, a first

concern is to reduce the flight path search space. One analytically practical and natural way of

achieving this is to consider only the waypoints within an ellipse, whose foci are the Top of

Climb and the Entry Point. Several flight-planning systems used by actual airlines do the same.



5.3.1.2 Pujet's Ellipse

5.3.1.2.1 Proof of Concept

Pujet 6 found a way to analytically justify the reduction of the search space to an ellipse.

He explained that a waypoint M cannot be on the optimized path if the direct routes TOC-to-M

and M-to-EP at speed (Vma,+wmax) bring the aircraft at destination later than the Required Time

of Arrival (RTA). V,,ax is the maximum true air speed in the aircraft envelope, and wmax is the

maximum wind velocity in the entire weather grid; the sum of the two represents the highest

ground speed magnitude reachable by the aircraft. In other words, what Pujet means is that any

acceptable waypoint M for the search space follows:

dist(TOC, M) + dist(M, EP) < tmax (Vmax + Wmax) (5.3.1.2.1.1)

where dist(A,B) is defined as the shortest distance around the Earth between points A and B, and

tmax is the maximal flight duration determined by the Required Time of Arrival (RTA).

Relation (5.2.1.2.1) describes the inside of an ellipse, whose eccentricity e is given by:

dist(TOC, EP)
e = (5.3.1.2.1.2)

tmax (Vmax + Wmax)

5.3.1.2.2 First Eccentricity Improvement

The search ellipse can be slightly reduced by using a smaller Vmax to compute the

eccentricity value. Since the weather grids that are used in the simulations include temperatures,

if Tmax is the highest temperature in the search space, then we can consider that Vm is the

maximal speed magnitude relatively to the wind. It is then given:

Vmax = Mmax max (5.3.1.2.2.1)



where Mmax is the maximal acceptable Mach, and yR is classically approximated as the

following constant:

yR = 223.2 m2/(K.s2) (5.3.1.2.2.2)

5.3.1.2.3 Insufficient Search Space Reduction

The assumption was made in section 5.2.2 that the motion of the aircraft was on a

constant flight level. Compared to the Earth's radius, there are small altitude differences on a

same flight level. This allows the following approximation to be made in this study, giving the

distance between two positions A and B on a single flight level:

dist(A, B) = a -(RE + altFL) (5.3.1.2.3.1)

where a is the angle at the center of the Earth between A and B, RE is the Earth's radius (RE =

6,378 km), and altFL is a typical altitude on the considered flight level.

A alt ............ B ..... .

Figure 3. Calculating distances on a single flight level



This figure proves the following relation:

AB = 2 -(RE+altFL) -in a (5.3.1.2.3.2)

On relatively short distances, such as between two contiguous waypoints, the sine function can

be approximated by the identity function. However, the approximation is no longer valid when

calculating much longer distances such as between TOC and EP.

By working in spherical coordinates with origin the center of the Earth, we obtain the

practical approximation:

IIAB| = (RE +altFL) . F [1- Cos(LB - LA). COSlA -cosl - sinlA -sinB 1 1/2 (5.3.1.2.3.3)

where LM and IM respectively refer to the latitude and longitude of point M.

Equations (5.3.1.2.3.1), (5.3.1.2.3.2) and (5.3.1.2.3.3) combine into:

dist(A, B) = 2(RE+ altFL) a sin [1 - cos(LB - LA ) COS IA cos B - sin A sin 1/ 2

(5.3.1.2.3.4)

To take an example, if we assume in our simulations that the flight level is FL300, then

altFL- 10,000 m, and (5.3.1.2.3.4) provides:

dist(TOC,EP) = 5455 km

The weather database on a typical day (e.g., March 6, 1998) provides Wmax = 78.1 m/s,

Tmax= 243.8 K and tmax = 8 hr. Then (5.2.1.2.2) gives Vmax = 191.3 m/s = 371.9 kt, and equation

(5.3.1.2.1.2) eventually reveals the value of the elliptic search space eccentricity:

e = 0.703

This value is possibly useful for medium-haul flights, since these are subject to numerous

regulations (e.g., having to avoid Special Use Airspaces), which incur a need for big search

spaces. However, using a 0.703-eccentricity is not interesting for transatlantic flights. The



corresponding elliptic search space is huge and barely reduces the full original search space, as is

seen on Figure 4.
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Figure 4. Projection of the search space ellipse in the "lat/long" plane for e = 0.7033 I I I
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EP (this would provide the minimal RTA), the eccentricity of the previous example would be

equal to 0.775. This defines an ellipse very similar to the 0.703-eccentricity case.

In conclusion, in practice, when an airline uses an elliptic search space, the eccentricity

value is empirically chosen. One method for setting it is to start from a value close to 1, then to

decrease it until the optimized path lies well inside the ellipse. For the example given above, e =

0.94 provides an all-the-time acceptable size of search area for long-haul flights (an example is

seen on Figure 5). It can be noticed that the obtained elliptic search space is very similar to the

one actually used by Air France6, shown on Figure 6 (corresponding to e = 0.92).

I I I I I
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Figure 5. Projection of the search space ellipse in the "lat/long" plane for e = 0.94

All possible paths starting at TOC and verifying the criteria described later are shown. The thick
plain trajectory is the optimal one (forecasted at departure).
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Figure 6. Air France's search space ellipse for the same flight leg as in our study

Actually, even e = 0.94 is probably an unnecessarily low eccentricity value, as in our

example, the forecasted optimal flight path is still found with e = 0.994 (Figure 7).



I I I I I I I I

-80 -70 - --50 -40 -30 -20 -- 0 0

Figure 7. e = 0.994

The plain line is the optimal path.

For the present study, several algorithms - inspired from Pujet's idea - were thought of to

methodically diminish the search space size better than the e = 0.703 case. Unfortunately, none

managed to significantly improve the eccentricity value, and the size of the search space

remained huge with every attempt. The reason is most probably that the weather data grids are

too large to afford being used quickly and easily to reduce the search space dimension.

Further work - not done here - could be performed on analytically proving a useful

eccentricity value.

5.3.2 Waypoint Pairs

This paragraph describes the algorithm used in the simulations to detect when waypoint

B can follow waypoint A on a route. B is considered "potentially after A" when:



* the angle at the center of the Earth between A and B is less than 12 degrees. This way, there

are numerous possible B choices, but B is never - with our set of waypoints - at more than

one longitude step from A (2.5' longitude). This allows all pairs of contiguous waypoints

used in actual flight-planning systems for calculating transatlantic Random Routes (see

paragraph A.1.4) to be comprised. For example, Air France looks at few possibilities for

waypoint B and only keeps in its database the four that are inside the search space ellipse and

that bring the least cost from A to B. The 12-degree criterion used in the present work leads

to more than fifteen B possibilities, and those used by Air France lie well within. This

ensures to not reduce this part of the efficiency of the path optimization compared to actual

flight-planning systems. Nevertheless, a 12-degree criterion is unlikely to ever be used in a

real flight-planning tool because it considers numerous waypoint pairs that would definitely

never be flown during safe procedures. Much worse, this method has the huge drawback to

considerably increase the computing time, as this one increases exponentially with the

number of considered waypoint pairs. Some further work - not done here - could study the

efficiency of looking at only 3, 4, 5, or n possible next waypoints.

* B can be reached from A only if B is closer to the Entry Point (EP).

* If A and EP are on the same latitude, then B is necessarily EP.

5.3.3 Reachable Waypoints

Having obtained all the possible "pairs", a waypoint W shall be said to be reachable from

TOC if there exists a chain of waypoint pairs from TOC to W. Figures 4, 5, and 6 show all the

reachable waypoint pairs for different eccentricity values of the search space ellipse.



5.3.4 Best Paths Computation

An algorithm that finds the best path from the Top of Climb to any reachable waypoint is

then run. The path is calculated for a constant Mach as it is done in actual flight-planning tools.

A better Mach choice is later (see section 5.3.6) easily obtained by just slightly increasing the

computing time and without running the complete optimizing algorithm again with another

Mach (which is what real flight-planning software do).

5.3.4.1 Best Path Definitions

Referring to the conclusions in sections 3.4 and 4.4.7, the optimized path shall be

considered as the one that allows reaching destination the closest to the scheduled Time of

Arrival, with the smallest Mach that affords this.

Moreover, the quickest trajectory that brings the aircraft from the Top of Climb to a

reachable waypoint at a particular Mach shall be called the best path to this waypoint at this

Mach. For each Mach we are working with, a Dynamic Programming-like algorithm (detailed in

Section 6) will find the quickest path from TOC to any "reachable waypoint" (as defined in

section 5.3.3) of the search space. Consequently, this path will be the best path towards this

waypoint at the used Mach.

5.3.4.2 Best Path Determination

5.3.4.2.1 Two-Step Process

As explained in the previous paragraph, the simulations run for this study consider that

the best trajectory up to the Entry Point (EP) can be found in two steps:



1) for the usual Mach on this flight leg, the fastest path up to EP is calculated,

2) then, on the same route, a binary search determines a Mach that allows arriving very close to

the scheduled time of arrival.

The simulations confirmed the relevancy of this method. Always, deriving the Mach this

way, or directly setting it to this value before calculating the best path, both lead to the same

forecasted optimal path. This is even more true when the optimization is run during the flight,

because the path that is left to fly is shorter, such that there are fewer route options. However, it

must be understood that this method might have a different efficiency with a denser grid of

waypoints.

5.3.4.2.2 Algorithm

Once the "reachable waypoints" have been listed (see section 5.3.3), the following algorithm

derives the optimal path from the Top of Climb (TOC) to any reachable waypoint:

1) for each reachable waypoint B, the list (Ai)i=1,2,...n of waypoints possibly right before B on the

flight route is determined. The Ai's are the waypoints that are paired with (see paragraph

5.3.2), and are "anterior to", B.

2) The minimal flight cost from TOC to B via a specific waypoint Ai - right before B - is the

sum of the minimal cost from TOC to Ai and of the cost from Ai to B.

BestCost(TOC, 4.,B) = BestCost(TOC, 4) + Cost(4 ,B) (5.3.4.2.2.1)

Consequently, if the best path towards each Ai right before B is known, then the best

trajectory from TOC to B is the one with the lowest sum of costs from TOC to Ai and Ai to

B. This technique is inspired by the Dynamic Programming algorithm.

BestCost(TOC,B) = ii f {BestCost(TOC, ,B) } (5.3.4.2.2.2)



3) If the best path to one Ai has not been determined yet, then the program applies step 1) to Ai.

It will get back to waypoint B only when the best path to Ai has been determined.

An example of the obtained "best paths" is seen on Figure 8.
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Figure 8. Best paths from TOC to any reachable waypoint. e=0.92.

The dashed lines represent the best paths from TOC to each point in the
line is the optimal path.
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Interestingly, a 0.994-eccentricity provides the "best paths" plot shown on Figure 9. In

this case, the optimal path from TOC to EP barely fits inside the search space ellipse. This

indicates that one should not rely on this eccentricity value to compute an optimal route.

45 -4 

5

, r 11 'ilrl----

4..

5- r - . '..I.--- •. -<

40 ~ '1 ..I . I I -.

r_ 

-

... 

. . -

L



C I

Li -

Figure 9. Best paths, e = 0.994.

The plain line is the optimal path.

5.3.5 Cost Function

To analytically translate the goal that was explained in section 5.3.4.1, the Cost Function

to minimize in the optimization problem is defined as the trip duration. Then, once the best path

- according to this cost function and one particular Mach - has been obtained, the Mach is

adjusted to meet the Time of Arrival, or at least to arrive with the minimal delay.

The Cost Function having been defined as the flight duration, it is the sum of the flight

duration over each route segment. A segment is delimited by two consecutive waypoints (section

5.2.5.1 proved that motion could be assumed from top-of-waypoint to top-of-waypoint).

5.3.5.1 Segment Discretization

Over each segment (whose linear assumption was justified in section 5.2.5.2), a number n

of equidistant discretizations, defining n sub-segments, is done to favor a more adequate use of



the weather data. The weather information is assumed constant over each sub-segment, equal to

the value at one bound. The n value did not affect the results of the simulations by much, yet a

safe n = 10 was adopted as it seemed a very reasonable choice. However, a smaller value could

be chosen to reduce the computing time.

5.3.5.2 Tri-Linear Extrapolation

The weather information at the beginning of a sub-segment is calculated via a tri-linear

extrapolation of the weather data grids along the East-West, North-South, and vertical axis. This

is in conformance with what actual flight-planning systems do. The tri-linearization is performed

with the corners of the smallest paralleloid that contains the sub-segment (the corners are points

of the weather grids), not taking into account the influence of the weather external from the

paralleloid.
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Figure 10. Weather data tri-linearization

x, y and z are normalized.

By linearization, we have (for example):



WeatherData(ab) = (1 - x) -WeatherData(A) + x -WeatherData(B) (5.3.5.2.1)

By bi-linearization, we then obtain (for example):

WeatherData (abef ) = (1 - z) -WeatherData(ab) + z -WeatherData(ef) (5.3.5.2.2)

Finally, by tri-linearization, we conclude:

WeatherData(W) = (1- y) -WeatherData(abef ) + y -WeatherData(cgdh) (5.3.5.2.3)

5.3.6 The Optimal Mach

5.3.6.1 Take-Off Weight Limited Knowledge

The weather uncertainties (described in section 6.3) understandably limit the efficiency of

the Mach choice to meet the scheduled time of arrival (see the simulations results in Section 8).

Next to this, airlines have at least one other important reason for not seeking the exact optimal

Mach value. It is that there is limited knowledge about the take-off weight three hours before

departure when the flight-planning system tries to compute the "best" route. At this time, the

take-off weight (and the fuel to refill the tanks with) is estimated by using:

* the number of currently booked tickets,

* the number of passengers who have already checked in,

* the cargo weight that has already been checked in,

* an estimate of the amount of fuel left onboard from the previous flight,

* prior take-off weight statistics for that route.

These parameters are used two to three hours before the flight, when it is probable that many

passengers have not checked in yet. Moreover, it happens often that the pilot demands more fuel

to be carried onboard to ensure a safe fuel margin in case of "holding", rerouting, or other



important unpredicted occurrence. This happens one hour before the flight, while the passengers

and cargo mass is still not known. As a conclusion, the aircraft's take-off mass used for the

flight-path optimization is only based on statistics. This goes against what E. Hoffman proved in

Reference 7: accurate knowledge of the take-off mass is mandatory to compute a flight-plan that

is really optimized.

Therefore, optimizing a flight path can first take its meaning only shortly before

departure, when the take-off mass can be guessed with the best accuracy.

This conclusion inspired the present work to first look at the efficiency of running a path

optimization during the climb phase (see section 6.1). Some airlines have manifested their

interest in this idea: they see in it a first step towards real-time optimizations, and they are

curious about the benefits of this technique. However, E. Hoffman insists that the ability to

correctly estimate the aircraft's mass, even during the flight, is very much questionable. This

explains why the airlines' interest in looking at a new optimization during the climb phase is

much more due to an interest in looking at the benefit of using last-minute weather forecasts.

5.3.6.2 Best Mach Determination

The best route from the Top of Climb to the Entry Point was determined in section

5.3.4.2.2 with a certain Mach that was statistically estimated for the flight leg in question,

probably close to the optimal Mach value. Once this route has been calculated, a binary search is

run until it finds a Mach that allows the aircraft to reach the Entry Point at less than one minute

from the scheduled time of arrival, on this same path. We discussed in section 5.3.4.2.1 the

relevancy of this method for finding the optimal Mach. The important benefit of making a binary

search (rather than running the route optimization for a whole set of Mach values) is a very fast



computing time. Moreover, the one-minute-threshold corresponds to a realistic acceptable

difference from schedule.

Of course, if the binary search exceeds the Mach range, the Mach is set to the nearest

boundary value (the Long-Range Cruise Mach or the Max Range Cruise Mach).



Section 6

Optimizations in Future Context

6.1 Optimization at the Top of Climb

As mentioned in section 5.3.6.1, some major airlines are curious about the benefit of

running a new flight-plan optimization during the climb phase with updated weather forecasts.

Therefore the present study first compares the efficiencies of running a single

optimization three hours before departure - as is currently done - and of running another one at

the Top of Climb (TOC) with last-minute updated weather forecasts. The two strategies may

truly differ in their results as the flight may notably have suffered an important delay at departure

- for example. These results are shown in section 8.1.4.

6.2 Dynamic Optimization

Farther in the perspective of Free Flight, it is interesting to investigate the effectiveness

of real-time flight-plan optimizations - during the en-route phase. The present work focused on

the efficiency of optimizations periodically performed in real-time. Another study could look at

the potential benefit of realizing optimizations at non-periodic times, if not non-correlated ones.

Each real-time optimization computes the best path from the next waypoint until the

Entry Point (the trajectory is still assumed from waypoint to waypoint). Choices had to be made

concerning the weather forecast periodicity, which would certainly have in practice an impact on

the optimization frequency. The decision held for this work was that each optimization would be

run at the weather forecast update rate. Currently, the weather forecasts are given every 12 hours



for 6, 12, 18 and 24 hours later (closer forecasts are not possible yet, but will become so in the

future with faster computers). The 6-hour and 12-hour forecasts (i.e., for 6 and 12 hours later)

were used along all the simulations. Then the efficiency of switching to 3-hour forecasts (i.e., 3,

6, 9...) or 1.5-hour forecasts (i.e., 1.5, 3, 4.5, 6, 7.5...) was investigated.

6.2.1 New Weather Forecasts

To use weather forecasts that are more frequent in the simulations, a realistic degree of

uncertainty for the new forecasts had to be modeled. Hereafter is the algorithm that was adopted

for the present work. It is based on a multi-linear extrapolation of the current weather status and

forecasts, with a realistic amount of uncertainty that is obtained via linear extrapolation.

First of all, let us assume there exists a parameter ap e [0,1] that represents the level of

accuracy of the new forecasts given at time t, such that:

forecast(t) = (1 - ap) -forecasto (t) + ap, actual(t) (6.2.1.1)

where:

* forecast(t) is the weather forecast matrix at time t,

* forecasto(t) is the linear extrapolation at time t of the 6 and 12-hour weather forecast matrices

that correspond to the boundaries of the 6-hour time window containing t

([6:OOGMT, 12:00GMT], [12:00GMT,18:00GMT], or [18:00GMT, 24:00GMT]),

* and actual(t) is the actual weather data matrix.

In other words, forecast() is barycenter of forecasto() and actual(). The 6-hour and 12-hour

forecasts are given for times to and tj (t e [to,t 1]). ap is equal to 1 when the forecast and the

actual weather are identical, and is equal to 0 when the forecast is the one at time to.



Similarly, let us assume that there exists a function af of time t, with af(t) e [0,1], such

that the new forecastforecast(t)(tl) given at time t of the weather at time tl is defined by:

forecast(t)(t ) = (1 - a, (t)) -forecasto (t ) + af (t) -actual(t, ) (6.2.1.2)

where forecasto(tl) is the actual 6-hour (or 12-hour) forecast at time tl.

It seems reasonable to first-degree that a/(t) is a linear function of t. Therefore, by using

the following initial conditions:

aj(t= to) = 0 (6.2.1.3)

aftl) = ap (6.2.1.4)

we obtain:

(t - to)af(t) = - .a (6.2.1.5)

Then, relations (6.2.1.2) and (6.2.1.5) combine together to provide the forecast at time t of the

weather at time t1. The result is a function of t and a,.

Moreover, the forecast at time t of the weather at any time in [t, t1] is given by linear

extrapolation between the forecast at time t of the weather at time t, and the forecast at time t of

the weather at time tl.

6.2.2 Flight Path Stability

In the context of dynamic optimizations, the flight path is considered stable when:

* it is subject to only small modifications if a new optimization reduces only slightly the cost

function value,

* and a route modification must occur only if it brings substantial benefit (a substantial

decrease of the cost function).



Stability is very important to ensure comfortable situation awareness for both the pilot and the

controller.

The cost function used in the present work is the flight duration (see section 5.3.4.1).

This has turned out through the simulations to bring a very good stability. More precisely, almost

no real-time optimization modified the remaining flight route (instead, these optimizations

adjusted the Mach value to meet the scheduled time of arrival). A few restrictions, such as

allowing modification of the route only if it brings more benefit than a certain threshold, can be

used to ensure stability; the simulations of the present study did not need them. Nevertheless, in

the context of denser grid of waypoints, it is expected that restrictions would become of interest.

6.3 Wind Uncertainties

6.3.1 Impact of Weather Turbulence on Time of Arrival

Certain scientists showed their interest in investigating the impact of turbulence on the

efficiency of a Flight Plan optimization. Actually, the mean value of the turbulence wind speed

being near zero, it is expected that the effect on the time at destination is not important

(assuming the aircraft does not reduce Mach). This was verified throughout the simulations, as

we will see in section 8.1.2.

6.3.2 Turbulence Model

6.3.2.1 Dryden Model

The turbulence models that are frequently used to evaluate aircraft performance are the

Dryden and von Karman models. The Dryden model, which is used much more frequently, was



the one retained for the present work; it has indeed a simpler form and can be easily

implemented by passing white noise through linear filters. TR. Beal9's algorithm for generating

turbulence based on the Dryden model is described in the next paragraph.

Note that the vertical turbulence effects are not considered, as the present work is limited

to a two-dimensional study (on a single flight level).

6.3.2.2 Beal's Algorithm

* Let u and v be the turbulence velocities along the x and y axes of the aircraft, supposed to

remain on a single flight level,

* let u, and cv be the standard deviations of u and v,

* and let L, and L, be the scale lengths for power spectra.

The en-route flight levels that are considered in the simulations are above 2,000 ft. As it is

recommended in Ref.10, this allows the following typical assumptions to be made: o u = cv and

Lu = L = 1,750 ft.

For the spectral densities of the filtered signals to correspond to those of the Dryden

spectra, the standard deviations of the unfiltered signals must be as follows:

C = L, ,2 u  (6.3.3.1)
u Dx

for the u-velocity filter, and:

,wn = 2v, V (6.3.3.2)
for the v-velocity filter, where Dx is the integration step.D

for the v-velocity filter, where Dx is the integration step.



With Matlab ®, the uncorrelated random discrete functions xu and x, are generated such

that their standard deviations respectively correspond to (6.3.3.1) and (6.3.3.2). Then, Beal's

algorithm provides discrete sets for u and v:

ui = Auui_1 + 2B,(x,)i-l (6.3.3.3)

with:

Dx
2L
2 L

A4=
1+R

R,B, =
1+/R

Yi = AYi- 1 + 2Bv(x,)-,

Vi = Avi-_ + B, (y, + y,_) + C (y, - y_l1)

(6.3.3.4)

(6.3.3.5)

(6.3.3.6)

Dx 1- RB -R, = A, = B = C, = -
2L I+R I+R 1 +R,

Using these relations, the turbulence effects are incorporated in the

appropriately adding the random u and v to the average wind speed coordinates.

(6.3.3.7)

weather data by

and:

with:



Section 7

Formulation of a Linear Program to Fly 4D

7.1 Introduction

A lot of research (notably done by Eurocontrol) has been performed on trying to build

"4D-trajectories" for approaches in Terminal Maneuvering Areas (TMA's). This concept

literally consists in seeking that the aircraft passes over a given set of waypoints at precise given

times. This enables the ATC to deal more easily with air traffic management in TMA's. One

subsequent issue is whether this concept would be of interest outside TMA's. Notably, 4D-

trajectories for the entire route could provide airlines with a more comprehensible reaction to

airspace congestion, connections to get at a destination airport, and other cost-inducing factors to

take into account in real-time. However, an obvious consequence of using a 4D-strategy is that

the Mach can no longer be considered a constant. Moreover, due to the weather uncertainties

(see paragraph 6.3), the 4D-strategy is likely to burn more fuel than would be the case with less

stringent time constraints.

The previous sections were focused on the scheduled time of arrival only. Now, it is

interesting to study the consequences of imposing several intermediary times to meet. The

current section is a first approach towards a strategy that affords 4D-routing while minimizing

the difference between the forecasted fuel-cost for the trip and the actual one.



7.2 Assumptions and Goals

7.2.1 Optimizations Goal

The 4D-trajectory to follow is assumed to be determined before departure. The

simulation goal is to find how to minimize the fuel consumption while passing on top of each

waypoint at a time very close to the corresponding Estimated Time Over (ETO, time constraint

that is set before departure).

More exactly, to match real needs, the concern of this study is to minimize the impact of

wind uncertainties on the optimized fuel cost (defined as the fuel cost for the whole flight, as

calculated before departure). Indeed, airlines want the actual costs of their flights to remain

reasonably close to the predicted costs. The contrary would give little meaning to running flight

path 'optimizations'; it could even turn out as a drawback if the pilot wants to meet the

Estimated Times Over "at any cost", possibly causing a lot of extra fuel burn. Actually, the

simulations showed that different definitions for the cost function of the 4D-optimization

problem resulted in very different errors between the actual and the forecasted fuel costs. This

proved that finding a correct definition was a major concern to solve.

7.2.2 4D-Trajectory Choice

The 4D-trajectory corresponds to the route calculated before departure by a flight-

planning optimizing software. For each waypoint, the Estimated Time Over is set to the time at

which the waypoint is calculated in this 'optimal path' to be flown over.

Similarly to previous sections, this study is restricted to the case of a flight on a single

Flight Level (cf. section 5.2.2), and motion between two consecutive waypoints is legitimately



considered linear (cf. section 5.2.5). Also, only the components of the wind in the horizontal

plane are considered. With these assumptions, the 4D-trajectory can be set to a typical optimal

path obtained with the algorithms of Section 5. It can be noted that by considering 'reasonable'

weather errors, we are then ensured that the path is stable (cf. section 6.2.2).

7.2.3 Mono-Dimensional Study

Actually, because the set of waypoints identifying the trajectory has already been

determined, the models used in the simulations are simplified by considering that the entire en-

route phase is in a single dimension. In other words, the flight shall be considered linear on one

flight level from the Top of Climb until the Entry Point but with the weather data of a real path

(a typical optimal path obtained in Section 5). This mono-dimensional study provides results that

can be extrapolated to the 4D-problem (which is much more difficult to model, and which uses

much more computing time) when trying to define a useful cost function to minimize.

7.2.4 Weather Data

The 4D-trajectory goal is calculated before departure as the optimized path according to

the weather forecasts (and the optimization criteria). This path, obtained through the algorithms

of Section 5, assumes that the Mach is constant (this is consistent with reality). Consequently, if

the aircraft flies at this Mach, meeting the Estimated Time Over each waypoint is only

dependent on the accuracy of the weather forecasts. More specifically, whatever these weather

forecasts were before departure, the only relevant wind information for our work is the error in

the forecasts. In other words, once we have the 4D-trajectory goal, it is useless in our study to



consider the original forecasted winds. Only the impact of the error of forecasts and (of the next

forecasts if any) are of interest to us.

Two different ways of considering the forecast errors were used in the simulations:

* either by using the real differences between the forecasts and the actual weather obtained via

the weather grids provided by MIT's department of Earth, Atmospheric and Planetary

Science (cf. section 5.2.3.2),

* or by using Normal distributions of wind errors (for both the North-South and the East-West

components), as Nair and Forrester showed it was relevant to do (cf. section 5.2.3.1). This

simple technique is used in the simulations when different magnitudes of the wind forecasts

errors are considered.

7.3 Linear Programming

Our problem is subject to a number of constraints that, it will be seen, can be formulated

as linear. The classic, natural and easy choice is then to use Linear Programming (LP) to perform

the fuel flow optimization.

7.3.1 Notations

7.3.1.1 Linear Motion

To summarize the previous paragraphs, the goal of this study is to look at an optimal use

of the fuel flow for a mono-dimensional motion along what will be called the x-axis. The flight

is considered between the Top of Climb at position xO and time 0, and the Entry Point at position

X, originally scheduled to be reached at time T.
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Figure 11. Linear motion from the Top of Climb until the Entry Point

7.3.1.2 Intermediate Waypoints

For the general case study, let us call Nip the number of intermediate waypoints before

the Entry Point. Waypoint number i is located at x=wpx(i), and is expected to be flown over at the

exact Estimated-Time-Over Twp(i). The actual location of the aircraft at time Twp(i) is noted x,i.
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12. Intermediate Waypoints Notations
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7.3.1.3 Discretized Real-Time Optimization

The classic way for a problem like ours to use Linear Programming (LP) is to discretize

time between the starting position (at time 0) and the destination one (at time T). The period of

x0A-
0-I-
xO

Figure

tion



time that separates two discretization steps is chosen as a constant called dt. If Ndisc is the

number of time steps, then we have:

T
dt = (7.3.1.3.1)

Ndisc

The higher Ndisc, the more "continuous" the optimization. However, similar to the work

in Section 5, the higher Ndisc, and the much higher the computing time. Indeed, we will see later

that the dimensions of the matrices involved in the Linear Program are almost proportional to

Ndisc, causing the optimization running time to increase exponentially with Ndisc. In actual flight

situations, cockpit software functions are wanted to provide their results after a few seconds (at

worst), this explains why Ndisc cannot be chosen too big if onboard real-time flight optimizations

are to be run. Consequently, the computing time dictates a Ndisc threshold. However, even if a

big Ndisc would seem to favor more continuous variations of Mach, in fact, it is typical to such

LP problems that accelerations will be done only at a few discretization steps.

The LP program is run one first time at the Top of Climb, then is - for instance - run at

each update of data sent from the AOC. For the simulations, it makes sense to run a new

optimization at each "discretization step" following an update of the weather forecasts.

Considering that two consecutive weather forecasts are always separated by the same amount of

time, two consecutive optimizations are almost separated the same. However, some further work

could investigate when optimizations during the flight should be computed.
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Figure 13. Time discretizations, weather forecasts, and optimizations steps

Parameters at the top of climb or where and when a new optimization occurs are indexed

0 (e.g., time is to). Parameters at the nth time discretization step after the optimization location

are indexed n (at time tn = to+n.dt):

* the aircraft's position is x,,

* the speed relative to the ground is dxm,

* the acceleration command is u,

* and the wind horizontal speed forecast is Un.

7.3.2 Acceleration Command u,

Having explained the linear motion assumptions, we can consider that only one

command acts on the 'aircraft' system: the acceleration (u),n=o..(N-1), with N the number of time

discretization steps left before the scheduled time over the Entry Point (T). This useful property

of a single command for the system highly encouraged working in one dimension. It is easy to

implement, while the results of the optimizations provide exactly what this work is looking at:



knowing the fuel consumption for the whole trip. For that, we do the first-degree approximation

that the acceleration command corresponds to the extra fuel consumption (extra to the flight-

with-constant-Mach case). The optimization will act on the command to reduce the extra fuel

consumption.

7.3.3 Equality Constraints

7.3.3.1 First Relations on

Since by construction, the LP program

discretization step, we have:

i, (t ) = ,r + (t - t) un

Positions and Speeds

provides a constant acceleration on every

Vn c [0, N - 1],Vt E[t , tn+l] (7.3.3.1.1)

where *r (t) is the speed of the aircraft relative to the wind, at time t.

We also have:

k(t) = kr(t) + U(t) Vt

Notably, this provides at time t = tn the following relation:

xr n = i - U, Vn E= [0, N - 1]

(7.3.3.1.1) and (7.3.3.1.2) combine into the following relation:

(t) = n + U(t) + (t - tn) u, Vn [O, N - 1],Vt e [tn,t1 ]

In particular, the two last equations provide at time t = t,,+:

Xn+I = Cn, dt -u+ U,, - U Vn E [0, N - 1]

This relation is used as such in the linear program.

Finally, (7.3.3.1.4) can be integrated between t, and t as:

(7.3.3.1.2)

(7.3.3.1.3)

(7.3.3.1.4)

(7.3.3.1.5)



X(t)= X = () + (t - t,) 2 t
x(t) = xn + f n(t)dt = x n +(t - tn)Xn + 2 n ((t) - Un)dt Vn E [0, N - 1], Vt E [t, t,

(7.3.3.1.6)

7.3.3.2 Wind Speed Linear Approximation, Positions Incrementation

The wind forecast at time t is used as a first-degree linear extrapolation:

(t - t,)
U(t) = U + (U,+1 - U,)dt

which allows us to write (7.3.3.1.6) in the following easier form:

(t - t)2 (t - tn )2

x(t)= x+ (t)dt = x + (t - t,)"n + u + - (U,+ - U,)
,2 2dt

In particular, this provides at time t = t,,l:

dt2  dt
Xn+ 1 = X, + dt. + -- u + -. (Un+1 -U,) Vn

2 2

This equation is used as such in the linear program.

Vn e [0,N - 1], Vt E [t,,tn+l]

(7.3.3.2.2)

[0O,N- 1] (7.3.3.2.3)

7.3.3.3 Aircraft's Position at an Estimated Time Over

Let us call nT,(i) the discretization step number which corresponds to the discretization

time directly preceding T,,(i) (waypoint i's Estimated Time Over). The time difference dtw(i)

between Tp(i) and the preceding discretization step is:

dt(i) = Tp(i)+[Ndisc -N- + nwp(i)].dt Vi [l1,Ni] (7.3.3.3.1)

With (7.3.3.2.2), we obtain:

dt (i)2 dtwp(i) 2

X(Twp(i)) = Xnrp(i) + dtwp (i)XnTp(i +. 2 UnTwp(i - 2- (Un (i+l - Un"(i' Vi E 1,NwP]

(7.3.3.3.2)

Vn E [0,N-l], Vt [tn,t,+1] (7.3.3.2.1)



This value will be called xwpi.

7.3.3.4 Summary

The equality constraints for the LP formulation are equations (7.3.3.1.5), (7.3.3.2.3),

(7.3.3.3.2), as well as the three initial and final conditions:

x0 = x0O (7.3.3.4.1)

. o = dxO (7.3.3.4.2)

x(T) = X (7.3.3.4.3)

with xO and X the respective Toc of Climb and Entry Point position, and dxO the initial ground

speed.

7.3.4 N4D Formulation

7.3.4.1 Definition

As it will prove useful, we define the notion of Near-4D trajectory (N4D). It shall be

similar to the 4D notion, except that the strong time equality constraints over each intermediate

waypoint become the following goal: at each original Estimated Time Over, keep the miss

distance to (or from) the corresponding waypoint reasonably small.

7.3.4.2 4D versus N4D

The Nip time equality constraints imposed by the 4D formulation (versus N4D) are:

xwp, = xw (i) Vi e [1, Nip] (7.3.4.2.1)



To compare 4D and N4D efficiencies, there is no need to make two different linear

programs. 4D is just the particular case of N4D with infinite weights - in the cost function - on

the miss distance with intermediate waypoints (these infinite weights will simply be simulated

with very big values). The notion of weight on miss distance will be explained in paragraph

7.3.6.2.1.

For our study, two different LP's were originally written with one being specific to 4D.

The results confirmed the statement that 4D is just the particular case of N4D with infinite miss

distance weights. This is why only the N4D formulation is described hereafter.

Finally, it should be remarked that a 4D formulation has an advantage: the involved

matrices are smaller, so that the optimization computing time is reduced. However, experience

showed that a 4D program does not run faster than twice the speed of a N4D algorithm. This

time advantage is outweighed by the drawbacks of "4D versus N4D" that will be explained later.

7.3.5 First Inequality Constraints

Here follows the list of "obvious" inequality constraints acting on the system:

* the acceleration (relative to the wind) limitations:

ui, < un 5 ua x  Vn [0, N- 1] (7.3.5.1)

which can be notably relevant of a desired passengers' comfort;

* the Mach number bounds:

Mn, < M I M x  (7.3.5.2)

The speed relative to the wind is:

x. = M - yR. Temperature (7.3.5.3)



(7.3.5.2) and (7.3.5.3) combine into the following speed inequality constraints to implement

in the linear program:

M in yR -Temperaturen < Mmax Vn e [1,N] (7.3.5.4)

where Temperature, is the temperature at waypoint number n when the aircraft is on top of

it. In fact, Temperaturen should depend on the result of the optimization, as it is a function of

the time at which waypoint n is predicted reached. This problematic situation is resolved by

defining Temperature, as the temperature over waypoint number n at the originally expected

time there. This first-degree approximation is very reasonable.

7.3.6 Cost Function

7.3.6.1 4D Study

A first idea is to look at minimizing the positive acceleration increment u(t) along the

path of the aircraft. Indeed, to recall a fuel cost minimization, we can consider that if u(t) is

positive, the value of the cost function augments, while if it is negative the cost function remains

unchanged. This is mathematically the same as saying that we want to minimize the integral over

u(t)+lu(t)lthe flight of the quantity
2

The cost function to minimize would then be written as:

C= u(t) + (t) dt (7.3.6.1.1)
2to

Since time is discretized, we obtain:

N-l Un "-Un[

C, = dt (7.3.6.1.2)
n=o 2



The absolute value is typically taken care of in the LP formulation by adding new

decision variables: (vn)n=o,..,N-1. They verify:

-v, < u < v, Vn E [0, N- 1] (7.3.6.1.3)

and the cost function to minimize in the 4D study finally becomes:

N-1

C2 = u, + V. dt (7.3.6.1.4)
n=O 2

7.3.6.2 N4D Study

7.3.6.2.1 Weights on Miss Distances with Waypoints

We choose an arbitrary weight Wmd(i) for the miss distance at time Tw(i) with waypoint i.

The new objective function to minimize is thus:

Niwp

C3 = C 2 + Wmd(i). wp(i)-xwpi (7.3.6.2.1.1)
i=1

A constant value was chosen for these weights. This value influences the results of the

optimization, as will be shown in section 8.2.2.

Similarly to what was done in the previous paragraph, to keep an LP-like formulation, we

deal with the absolute values by introducing new decision variables: (a i )i=1,..,Niwp. They verify:

-a i < x (i) - xwpi 5 a i  Vi [1,N, Ni] (7.3.6.2.1.2)

and the objective function becomes:

Niwp

C4 = C2 + ,Wm(i) a, (7.3.6.2.1.3)
i=1

7.3.6.2.2 Weights on Positive Acceleration Increments



The good-but-limited efficiency of the simulations using C4 as the cost function showed

that forecasting late in-flight acceleration increments is not very useful for precise arrival over

the Entry Point (because of weather uncertainties during the flight). The main consequence is a

waste of fuel consumption. This has led to the consideration of weights for the positive

acceleration increments, such that eventually we obtain the following cost function:

C, = CW(n) (u, + v,) -d + W i) (7.3.6.2.2.1)
n=0 2 ,

where Wa(n) is the weight on the nth positive acceleration increment.

The intuitive idea, which will be confirmed with the results of the simulations, is that we

should choose (Wa(n))n=o,..,N-1 as a monotonically decreasing series. Indeed, this way, early

positive acceleration increments occur only when necessary. The series shall also depend on the

flight length left to travel to make sure that the first big parenthesis in (7.3.6.2.4) remains on the

same order of magnitude as the second.



Section 8

Simulation Results and Analysis

8.1 Objective: Meeting the Time of Arrival

8.1.1 Stability of Real-Time Dynamic-Programming Optimizations

To show the stability of the optimal paths obtained with the Section 5 and Section 6

algorithms, the next page shows a typical example of the best paths these algorithms would

provide. The optimizations are run before the Top of Climb, and in real-time during the en-route

phase. The best path towards each reachable waypoint is represented (cf. Section 5), and the

optimal trajectory is the plain line. These plots show the very good stability of the optimized

trajectory. However, it must be kept in mind that this may be true only for the case of waypoints

separated by 10-degree latitudes; the impact of a denser grid of waypoints was not studied in the

present work.

Although the route is very stable, at each optimization, a new optimal Mach is calculated

and it sometimes varies a lot. This is acceptable because the pilot and the controller keep good

situation awareness if the route is stable.
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Figure 14. Real-Time Dynamic-Programming Optimizations Sample

Best paths computed at optimization steps distant from each other by time t = 1.5 hour. The
actual route is in this case the one that was computed three hours before departure. Other
simulations rarely show a real-time change of the optimal path (but the Mach is changed after
each optimization). Here, the first optimization gives an optimal Mach of 0.8025. After the
second optimization, it is set to 0.82 (maximal value), then to 0.8178, and finally to 0.8132.
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8.1.2 Impact of Weather Turbulence on Time at Destination

Using the notations defined in section 6.3.2.2, the standard deviations of wind turbulence

components were varied to see their impact on the delay at arrival. On the following figure, each

plotted value is the average of eight simulations:

* four different days,

* the optimization is run twice on each day for the same flight leg.

* 6.5

6
5.5

5 

0 1 2 3 4 5 6 7 8 9 10

Usd, Vsd

Figure 15. Impact of weather turbulence on time at destination

Optimizations are run every 1.5-hour; at every attempt, they try to compensate the error on
schedule. Consequently, it is the last optimization that generally affects the delay the most at
destination.
The delay when there is no turbulence is seen in more detail in section 8.1.4.

Figure 15 shows the obvious result that the delay at destination increases with the

importance of the weather turbulence. Nevertheless, the delay values remain confined very close

to the non-turbulence situation. Consequently, the weather turbulence is no longer considered in

the rest of the study. This saves computing time.



8.1.3 Comparison with Actual Flight-Planning Systems

The most famous flight-planning system is probably PHOENIX (see Ref.10). PHOENIX

uses 12, 18 and 24-hour weather forecasts, not the 6-hour forecasts that are more likely to be

accurate. Air France has added many features to the PHOENIX software by creating the

OCTAVE (Ref.7). This advanced flight-planning tool works in a way that is very similar to the

algorithms described in Section 5 (with, of course, the extra possibility to change the flight

level). Consequently, the present work is a study into the consequences on the time at destination

of running other flight-plan optimizations rather than only one before departure, with the best

current flight-planning systems.

The flight leg that is considered for the simulations was chosen because it corresponds to

a flight leg flown by Air France, for which a typical optimal path is known from Ref.7. Air

France's "best path" is very similar to the one obtained through the simulations of the present

work (as seen on Figure 2). Naturally, a few differences exist because the waypoint grids are not

exactly similar, and because real flights fly in 3D and not 2D, but these differences are very

limited.

In conclusion, it is legitimate to compare the results of the real-time optimizations with

the situation of a single optimization run before departure, and to extrapolate the conclusions to

the real case with the best real flight-planning tools.



8.1.4 Optimization Before Departure

The two next paragraphs show the consequence on the delay at destination of running

real-time flight path optimizations. The results need baseline delays to compare with; these are

the delays over the Entry Point when the simulations are run similarly to the current practice

(only once, and before departure). Figure 16 shows the distribution of these delays over 50
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0-3 4-7 8-11 12-15 16+

Delay at Entry Point

simulations.

Figure 16. Baseline delays

The values involve 50 simulations on flights for which a single optimization before departure
induces delay at destination. The average delay is 6.88 minutes. The average delay when also
considering the non-delayed flights was 5.17 minutes (over 50 simulations too).

8.1.5 Optimization at the Top of Climb

The first step towards real-time optimizations is to run a flight-plan optimization at the

Top of Climb with the latest updates of weather forecasts (cf. section 6.1). Figure 17 illustrates

the improvement of such method over the flight delay due to an optimization done three hours

before reaching the Top of Climb (which roughly corresponds to the current real situations). The
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assumption made is that the weather forecasting system has improved from 6-hour to 3-hour

forecasts, allowing a forecast update to be obtained right before the Top of Climb.
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Figure 17. Delay reduction through optimization at the Top of Climb

The values involve 50 simulations on flights for which a single optimization before departure
induces delay at destination. The average recovered delay is 1.92 minute.

This graphic shows that about 90% of flights shortened their delay over the Entry Point by

performing a flight path optimization over the Top of Climb with updated 3-hour weather

forecasts. However, the improvement was always very limited.

10% of flights worsened their delay over the Entry Point after running an optimization at

the Top of Climb. Fortunately, the lengthening of the flight duration never exceed 4 minutes (out

of five simulations with increased delays, only one augmented delay by more than 2 minutes).

In conclusion, running a flight-plan optimization with updated weather forecasts at the

Top of Climb is beneficial to the airline, but this improvement is very limited.
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8.1.6 Dynamic Optimization

A farther look in the future is then investigated by considering a discrete set of real-time

flight path optimizations (cf. section 6.2). The logical evolution in the complex ATC-world

context is that the first step towards real-time flight path optimizations will probably be to re-

optimize the path over the Top of Climb (read previous paragraph). Therefore, the current 6-hour

weather forecasts are considered enhanced to 3-hour forecasts, or even 1.5-hour forecasts.

Figures 18 and 19 show the results for the corresponding sets of simulations. Optimizations are

run at each weather forecasts update.
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Figure 18. Delay reduction through real-time optimizations every 3-hour

The values involve 50 simulations on flights for which a single optimization before departure
induces delay at destination. The average recovered delay is 4.28 minutes.
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Figure 19. Delay reduction through real-time optimizations every 1.5-hour

The values involve 50 simulations on flights for which a single optimization before departure
induces delay at destination. The average recovered delay is 4.84 minutes.

Figures 18 and 19 prove the efficiency of considering real-time discrete optimizations.

For both cases, 100% of flights decreased their delay at destination, and the time gain is often

relatively significant. Moreover, Figure 19 shows results slightly better than on Figure 18, which

tends to conclude that more frequent real-time optimizations can reduce even more delay.

However, the differences are not big, so it seems reasonable to stay with 3-hour weather forecasts

(which will be much more affordable in terms of weather system computing time than 1.5-hour

forecasts).
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8.2 4D and N4D Trajectories

The following paragraphs refer to the work described in Section 7.

8.2.1 Linear Program Outputs

Figure 20 shows an example of aircraft velocity results obtained with the linear

program described in Section 7.

x speed

S..... a/c relative to ground

a/c relative to wind

. - wind relative to ground

I.
I

--

- , " .

I I- i, ,

2 4 E 8 10 12
discretization step#

14 1B 18 20

Figure 20. Typical N4D linear program outputs (Wmd=0.05)

The weather data is here chosen such that it varies a lot. Five intermediate waypoints are
considered, and three optimizations are performed. The acceleration can be seen from the
variations of aircraft speed relative to the wind.
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8.2.2 4D versus N4D efficiency

The difference between 4D and N4D is set by the choice of the weight on miss distances

with the intermediate waypoints (see section 7.3.6.2.1). If Wd < 10-2, it means that no effort is

paid on trying to pass by the intermediate waypoints on schedule, such that the miss distances

become sometimes significant, causing delays (positive or negative) over the intermediate

waypoints of several minutes. If Wind > 102, it means that the goal is set to fly 4D. The

consequence of the effective trip fuel cost of varying the value of Wind is shown on Figure 21.
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Figure 21. Impact of Wmd on trip fuel consumption

Each value is the average of eight simulations, with a wind speed variance Uvar = 5m/s, five
intermediate waypoints, and three time-equidistant optimizations. The fuel cost represents the
extra fuel cost over the flight at a constant Mach (calculated to fly over the Entry Point on
schedule). When Wmd is very small, the extra fuel cost is not zero because there still exists the
constraint of having to adjust the Mach to try to arrive at the Entry Point on schedule.
The extra fuel cost was assimilated in the simulations as the positive acceleration increments,
such that the unit for the extra fuel cost is m/s 2

Figure 21 clearly shows that imposing to fly a 4D-trajectory considerably increases the

extra fuel consumption. A trade-off must be found if the goal is to stay close to a 4D-path. It is

found by adequately setting the Wnd value in the N4D problem. Figure 22 provides another

reason for imposing to adequately choose Wmd.
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Figure 22. Impact of Wmd on reliability of fuel consumption forecast

Each plotted value is the average of eight simulations, with a wind speed variance Uar,,, = 5m/s,
five intermediate waypoints, and three time-equidistant optimizations. The forecasted fuel
represents the extra fuel calculated before departure to be needed compared to the flight at a
constant Mach. The effective fuel is the extra fuel that has actually been burnt during the flight,
different from the forecasted one because of the weather forecasts errors.
The ideal result - in terms of reliability of the flight-path optimization run before departure - is to
have the effective fuel equal to the forecasted one.

Figure 22 shows that the 4D concept would result in poor reliability in the flight-path

optimization run before departure. More exactly, wanting to fly 4D causes the actual fuel

consumption to be possibly very different from the one predicted. Again, flying near a 4D-

trajectory requires a trade-off with the value of Wind.

It is possible to guess a good value for Wind by looking at the cost function involved (cf.

section 7.3.6.2.1) and wanting to roughly equal the fuel consumption terms with the miss

distance ones. This balances the importance of flying N4D and of minimizing the fuel

consumption. Let us consider the examples used for Figures 20, 21 and 22. Figure 20 tells us

that the fuel term should be less than 20. By considering for example that a miss distance is

wanted less than 2000 meters, since there are five intermediate waypoints, this suggests a W.d

value of 20/(2000*5) = 0.002. This method seems efficient, as Figures 21 and 22 suggest.
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8.2.3 Improved Strategy

As mentioned in section 7.3.6.2.2, introducing weights on the positive acceleration

increments in the cost function allows us to reduce the fuel consumption. The idea is to consider

that the constraints near the end of the flight should be less stringent than near where the

optimization is run. Indeed, strong constraints at the end of the flight could cause unnecessarily

elevated extra fuel consumption, while dynamic events such as the weather forecast error could

make useless the previous acceleration increments. This idea was verified through the

simulations. No results are displayed here, as they are not based on analytical proof, but the

reader could find it interesting to learn that choosing Wf(i) (see section 7.3.6.2.2) as a decreasing

function of i, where i is the next i th waypoint, sometimes worked remarkably well to reduce the

extra fuel consumption. For example, it seemed that choosing

Wfc(i) = Ndise - i + discretization_step_number

provided promising results.

8.2.4 Other Results

Finally, Figure 23 confirms the previous comparison between 4D and N4D. It also shows

the intuitive result that more errors on the wind forecast bring more errors in the fuel

consumption forecast. It should be noticed that the reason for the local minimum in fuel cost

ratio at five waypoints was not investigated.
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Figure 23. Impact of number of waypoints and of weather forecasts errors on reliability of
forecasted trip fuel

Uvar is the variance of the wind speed. The number of waypoints includes the waypoints of the
path without the Top of Climb.
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Section 9

Conclusion

Weather uncertainties prove to be such that calculating an optimal Mach number at

departure results in significant errors in arrival time and fuel burn. The strategy used by airlines

to run several optimizations for several constant Mach numbers is then justifiable. It provides

them with a fast method to obtain different optimized routes for different Mach numbers, then to

choose the one whose characteristics fit best with their goals (e.g., arriving at the Entry Point

very close to the scheduled time). Their choice is made between about four Mach numbers only

because they know additional resolution is inefficient when confronted with weather

uncertainties.

We described a study into the effect of wind forecast error on flight plan accuracy. We

saw that the time over the Entry Point, hence at the destination airport too, can be very much

different from the one computed before take-off. This results in flight cost uncertainties that

make irrelevant many criteria that could be thought of for a Flight Plan optimization. The only

way for now of dealing with wind forecasts errors is to carry contingency fuel (CF) to cover

deviations from the planned route. Deviations may be due to ATC intervention, weather, or

equipment failure. As for now, CF typically counts for 5% of the total trip fuel, the quantity of

which is calculated according to the forecasted headwinds. The European regulation will soon go

down to 3%. CF can occasionally be used in taxiing before take-off.

Providing guidance on the forecast wind error would have definite benefits for long-haul

flights, where approximately one third of the fuel is burnt to carry CF. A small decrease in CF
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could produce large financial savings. For short-haul flights, there is less scope for making

financial savings by reducing CF.

There is another area of benefit, operating on time-scales of minutes rather than hours,

where uncertainties in forecast winds produce uncertainties in aircraft position. A reduction in

these uncertainties might result in a reduction in ATC conflicts and hence a reduction in

controller workload.

The only wind forecast accuracy information currently available is monthly or seasonal

and RMS error statistics. This information covers areas such as NW Europe (Ref. 14) and the

North Atlantic, and it is stratified as a function of flight level. A more sophisticated error model

would lead to higher confidence in the forecasts thus allowing airlines to safely reduce the CF.

The present study investigated ways of performing enhanced flight-plan optimizations

compared to what is currently done. We first saw the benefit of running another optimization at

the Top of Climb, yet we realized that the benefits were limited. On the contrary, the more

futuristic method of considering discrete flight-plan optimizations certainly seemed promising to

ensure reducing delays at destination.

Finally, we investigated ways of performing a Linear Program to fly a route close to a

4D-trajectory. It is not sure whether people will further study the 4D concept. Nevertheless, the

results described in paragraph 8.2 bring precious information to help creating the cost function to

minimize in this optimizing problem.
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Appendix

A.1 Different Flight Plan Preparation for Different Flight Legs

A.1.1 Repetitive Flight Plan (RPL)

Repetitive Flight Plans are planned months in advance. They represent the statistically

"best" routes for each flight leg and are often the shortest path. An RPL is the route frequently

chosen by the airline for one flight leg. The ATMS gathers all RPLs months prior to flights,

thereby roughly forecasting the traffic density.

RPLs exist for medium-haul flight plans only, as the weather will not affect the duration

of a medium-haul flight a lot, contrarily to what may happen to a long-haul flight.

A.1.2 Planned Flight Data (PFD)

Aside from RPLs, months before the corresponding flights, the airline sends PFDs to the

CFMU that only contain the scheduled flight legs (for long-haul flights). Using complete flight

plans (RPLs) ready for such flights would not be very useful.

A.1.3 Flight Plan (FPL)

On the actual day of the flight, the Flight Planning software uses the weather forecasts to

determine the route that fits best the airline's strategy. The route is selected from a catalogue of

routes, oceanic tracks (for transatlantic flights), computed random routes (if the airline has the

corresponding optimizing tools), or a combination of all these.



A.1.4 Random Routes

The best Flight-Planning tools work in a way similar to Dynamic Programming to

determine on long-haul flights the set of waypoints that will constitute a so-called "Random

Route". This route is supposedly the best one to fly accordingly to the weather forecasts.

Other flight-planning tools consider that the best path is given by the Great Circle

technique, which looks at the path the closest to the direct route from departure to destination.

However, a better path requires the use of weather forecasts.

Random Routes are computed from a set of imaginary (given by their latitude/longitude

coordinates) and real waypoints. Therefore they require that the aircraft be RNAV-equipped.

A.2 Flight Levels

A.2.1 Introduction

At each moment, for each Mach, there is an optimal barometric altitude where the aircraft

burns minimal fuel. The lighter the aircraft is, the higher this altitude is. While the aircraft burns

fuel, its weight decreases; consequently, the optimal path would be a constant climb. In practice,

except Concorde (only commercial aircraft allowed above FL410) and over certain areas of the

Pacific Ocean where air traffic is almost non-existent, this is not permitted. Instead, aircraft fly

on Flight Levels (FL's) to ensure vertical separation.
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A.2.2 Optimal Flight Level Determination

It is the responsibility of the crew to find an optimal flight level - as long as it has been

cleared by the ATC. Some onboard equipment helps the crew for this purpose, e.g., the FMS

with use of a Cost Index.

Let us recall briefly how changes of Flight Levels are decided by the pilot when done

manually (i.e., when he replaces the FMS). He uses plots of the optimum Flight Levels versus

the aircraft weight, according to the chosen flight strategy (see section 1.4). A limit of 1% extra

fuel consumption than on the optimal Flight Level is used to determine when the Flight Level

change should occur. On a DC10 for instance, this corresponds to a climb every around two

hours.

Currently, the experimental RVSM zone between FL330 and FL370 only requires 1,000ft

vertical separation (as opposed to 2,000ft), this allows flying closer to the optimal climb.

It should be noticed that it is economically a very bad choice to climb on too small

slopes. The climb rates are given on the plots and the Captain reacts in compliance with them

while staying within the 1% extra fuel margin. These rates have been determined such that the

aircraft reaches the desired Flight Plan with the maximal mass to remain in the 1% extra fuel

margin.

Actually, pilots always try to climb as long as they respect this margin, except when

"close" to destination (two hours for a DC10 not on a low Flight Level, one hour for an A320),

when it would not be profitable. The reasons for not climbing vary:

* for DC10s, it would cost too much fuel for little gain;

* for A320s, the climbing over-consumption is low (as long as the aircraft remains under the

optimal FL, this is an improvement on older aircraft). However, the few kilos of fuel that can
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be saved by climbing during the last hour of flight are much less profitable than the possible

rerouting to reduce trip duration.

Moreover, in case of an airline working as a hub, the airliner would not increase the trip

duration by climbing because the primary concern is to arrive on time (more important than

minimizing fuel consumption).

Even when the load of the aircraft allows flying at the "accelerated" Mach, climbs are

often done with the "slow" Mach, as it brings more lift and improved vertical speed (the ATC

wants fast Flight Level transitions). For example, a DC10 doing his en-route phase at the

accelerated Mach 0.84 would do his climbs at Mach 0.82.

A.2.3 Irregular Constraints

The ATC may ask the Captain to stay on a certain Flight Level for a few minutes to

ensure safe aircraft separation. In addition, the controller may ask for a small (e.g., 10 degrees)

change in heading followed by the climb to a desired FL to ensure safe separation. The aircraft

would then re-join the planned route.

By the way, the one-percent margin (see the previous paragraph) corresponds to regular

flight procedures. The pilot, confronted to real-time weather events like turbulence, favorable

winds, or unfavorable ones, can ask to move to another Flight Level. Avoiding dangerous

weather (storms, cumulonimbus clouds...) is a first priority for safety. The pilot could therefore

choose to fly out from the one percent-margin, but this decision remains dependent on ATC-

clearance.

A noticeable case is the flights from Europe to Asia, which are very ATC-dependent.

Indeed, the traffic on this "route" is heavy and entirely done in airways (even when flying to
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Reunion). Towards Asia, there exists only one airway, and all aircraft fly through it. This may

induce for example a four-hour wait on the flight level taken when leaving the Paris TMA (e.g.,

FL290 for a DC10) before being cleared for a climb to FL330 - the next allowed FL. This is

because when it exits the TMA, the DC10 flying to Asia is too heavy to afford going directly to

FL330. It then enters the Turkish airspace on FL290, where traffic is very heavy, forcing the

aircraft to stay on this FL.

Finally, it must be remembered that FL's over a few countries are fixed (e.g., over Great

Britain and Netherlands), as well as certain routes are (e.g., Great Britain to Paris).

A.3 Holding Pattern in Area Control Center (ACC)

A Holding Pattern consists of one - rarely several - lap on one Flight Level along a fixed

track. The flight routes do not cross the tracks (hence constraining the routes to avoid the tracks).

To ensure safety, a "held" aircraft flies at a speed imposed by the ATC such that all aircraft in a

holding track at the same Flight Level fly at the same assigned speed. This speed (and/or flight

level) depends on the type of aircraft, such that the airliner flies close to its Maximal Range

Cruise Mach (lowest speed for lowest fuel consumption).

Two different types of holding patterns exist: inside the Terminal Maneuvering Area

(TMA), or right before entrance into the TMA. The second one (the one of interest to us) is

regulated by an Area Control Center (ACC). On arrival to Paris airports for example, the Athis-

Mons ACC takes care of sequencing at an "adequate" rate the aircraft scheduled to enter the

Paris TMA. The access to a TMA is done through one of several (three around Paris) Entry

Points, and one role of the ACC is to ensure that the aircraft rate through the Entry Point
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corresponds to the current runways capacity. For that purpose, an ACC controller may request a

pilot to fly along a holding track.

In France, the ACC controller knows the delays to apply to aircraft with the help of the

sequencing tool MAESTRO. Other systems are used in other countries. MAESTRO knows the

updated runways capacities and assigns each flight aiming at an Entry Point with the number of

minutes of delay it should be imposed to permit a good sequencing. It should be noted that all

sequencing tools, as for the CFMU slot allocation system CASA, are based on a "First come,

First served" basis.

Holding Patterns outside TMA's are increasingly seldom because the sequencing tools do

often well at predicting enough time in advance the delays to apply to aircraft, allowing the

controller to find early solutions to those delays. When needed, the controller asks the pilot to

reduce speed, or to deviate to slightly lengthen or shorten the path.
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