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A. MICROWAVE BREAKDOWN IN HYDROGEN

The distribution function theory which was used successfully in pre-

dicting the breakdown electric fields in helium at microwave frequencies (1)*

has been applied to the case of molecular hydrogen. As indicated in the

Progress Report of January 15, 1949 (page 5), hydrogen is the only gas for

which breakdown measurements have been made at high frequencies other than

microwaves. The purpose of the theory is to explain the three-dimensional

surface in the aforementioned report.

In hydrogen, the energy going into excitation must be taken into

account. In the range of electronic energies in which we are interested,

the experiments of Ramien (2) indicate that the excitation efficiency is

linear in energy, and this variation may be put into the Boltzmann trans-

port equation. The collision frequency at a given pressure is constant in

H2'
Excitation does not start until the electrons have energies of 8.9

volts, and the distribution function is therefore,divided into two separate

expressions. Below the excitation level, the distribution function may be

expressed in terms of the confluent hypergeometric function, and, above

the excitation level, in terms of simple exponentials. The two functions

are equated in value and slope at 8.9 volts.

Following the method in Reference 1, the ionization rate and diffusion

coefficient have been calculated as integrals of the appropriate functions

multiplied by the distribution function. For the first part of the distri-

bution function, the integrals may be evaluated by the formulas and tables

in Technical Report No. 84; in the second part, the integrations produce

incomplete F-functions. The ionization coefficient is calculated as

in the case of helium and related to the diffusion length through the

diffusion equation. This procedure produces the equation which determines

breakdown.

Although the experiments at microwave frequencies are not complete as

yet, the theory and experiment agree well so far as they have been carried

out. A complete report is being prepared.

* Refer to numbered references at the end of each section.
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B. MEASUREMENT OF THE RATIO OF D/ji FOR ELECTRONS

The ratio of the diffusion constants of electrons, D, to the mobility

constant, ji, is of interest for two reasons. It is a nearly direct measure

of the average energy of electrons in a gas u by the relation

D ku (1)

where k = 2/3 for a Maxwellian distribution and varies but little for other

distributions. In addition (3)

D= (2)

where 9 is the Townsend d-c ionization coefficient, and t is the high-

frequency ionization coefficient.

The microwave breakdown of gases in a cavity to which small d-c sweep-

ing fields have been applied affords a new method of measuring D/. The

loss of electrons from the body of the gas by diffusion, which normally

determines the breakdown field, is supplemented by a mobility loss produc-

ing a higher breakdown field, from which D/4 may be determined.

The flow r of electrons in a cylindrical cavity of radius R and axial

height L is given by

= - nE Ddc On , (3)

where n is the electron concentration and y is the sweeping d-c electricdc
field. If for each electron present in the gas, vi new electrons per

second are created, the gas will break down when (3)

v .= vi (4)

If Edc is directed along the axial direction z and the condition of zero

electron concentration on the cavity walls imposed, Eqs. (3) and (4) can be

solved to give [Edc ]

n :2const o o(2.404 r L/i si
n = const Jo R )e sin fz , (5)

and the breakdown condition

1 i (6)2

where A
2

l 2D/4 A2
A 1 A
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2 2
1 + (2.404 (7)
A2 L R

Use of an effective field (3) can be extended to include a d-c field

2 2 )2 E2
E = E + 2) (8)e do 2 + (

(y) +w

where v is electron velocity, t the electronic mean free path, E the a-c

field and w its radian frequency. This reduces the breakdown three-

variable set EA, E/p, ph (where p is gas pressure and X wavelength) to a

two-variable set EeA , Ee/P, giving a universal plot for a gas. The effec-

tive field provides a simplification, however, only if (v/t) >> w as in the

case of high pressures, or if (v/) is a constant, a condition reasonably

well met by helium and hydrogen.

With E, Edc, and p known, one then obtains EA1 from a universal plot

and calculates D/Ij from Eq. (7).

The experimental apparatus has been previously described (3). For this

type of measurement a TM0 2 0 cylindrical cavity is used with a circular cut

at the zero-current radius for applying a d-c field.

1.2.

E
E0

In

4
U)
I-,_0

o

7j

0" 40 80 120 160 200 30 40 50 60 70
Edc IN E/p IN VOLTS

CM-mm Hg

Fig.II-1 Relative increase of Fig.II-2 The ratio of electron diffu-
a-c breakdown field with d-c sweep- sion to electron mobility as a function
ing field for air at 37.6 mm Hg. of energy per mean free path.

Preliminary measurements of D/L have been made for air. Figure II-1

gives the a-c/d-c breakdown characteristics for one pressure. Figure II-2

is a plot of D/A. All measurements are limited to the high-pressure

region where v/1 >>w.

A cavity which can be outgassed is now being constructed for the study
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of pure helium, helium treated with mercury, and hydrogen.

C. EFFECT OF MAGNETIC FIELD ON HIGH-FREQUENCY BREAKDOWN

A simple qualitative explanation of the phenomenon of breakdown in a

magnetic field can be obtained by considering the dynamics of a single

electron. The force on the electron is given by

S dV -* -
F = m =- eE - ev x B . (9)

When the magnetic and the electric fields are parallel, the motion of

the electron is given by independent solutions of the above equation,

parallel and perpendicular to the fields. The former is the effect of the

electric field alone and the latter of the magnetic field. The motion is

a cylindrical helix of varying pitch. Breakdown between parallel plates

would show no effect due to the magnetic field since only the direction of

the random motion at right angles to it is altered. This means that if

there were diffusion sideways, it would be reduced. However, there is

negligible diffusion in this direction in the actual cavities. Experiments

in air with this configuration at pressures varying from 1 to 100 mm showed

no measurable effects.

The second arrangement of transverse fields is more significant because

the presence of the magnetic field has a pronounced effect upon the energy

gained by the electron from the high-frequency electric field. This is

calculated as follows. Let the magnetic field be in the direction of the

Z-axis and the electric field in the X-direction. The equations of motion

then become:

dvx
m dt - 2 eE cos wt - eBv

t y

dv (10)
m -i = eBv

dt x

dvz
dt -

where E is the rms value of the electric field and B is the value of the

d-c magnetic field. The solution is the following:

vx= VOxcos Wb - V0 ysin Wb+ 2 -eE cos Wtosin wbT

+ 2 eE [sin wt 0 cos b- sin w(t 0 +)]

m(w Wb)

-9-



(II. MICROWAVE GASEOUS DISCHARGES)

2 WbeEV = v0xsin wb V0ycos w 2 2 Lcos w(t0 + T) (11)y= V0 xl WT m(w - wb

- cos wt 0 cos w + weE sin wtOsin wab
2 wtsinm(w - wb

Vz = VOz

where wb = eB/m; t0 is the initial time of collision; 7 is the interval

between collisions and v0x, V0y and v0 z are the initial components of the

random velocity.

If the electron suffers a large number of successive collisions, the

average energy is obtained by averaging the square of the velocity properly

over space and time. We obtain the following for ue, the average energy

gained by the electron from the electric field per collision:

2
eE2 1

e m 2 2+
c m (12)

V2 (22 + U2) + (2 _2)
2 c
m 2  2 2m V2 + w + wb

The quantity ue is plotted in Figure II-3 (in terms of u o = eE2 /mw 2 )

as a function of the magnetic field or wb . For clarity, numerical values

of pressure were obtained for air using,as an approximate formula for its

mean value, v c~ 5 x 109p. The resonance character of the energy gain

becomes more and more significant for decreasing pressure. For very low

pressure, we have essentially a free electron. In this case, the electron

picks up large amounts of energy between collisions at and near resonance,

namely when w, the r-f frequency, is equal to wb, the cyclotron frequency.

The mechanism by which this occurs is that the circular component of the

motion of the electron falls more and more nearly in phase with the

direction of the alternating electric field and more energy is gained each

cycle until the electron collides with a gas molecule. Beyond resonance,

the energy gain decreases and eventually becomes less than that with the

electric field alone.

If we neglect diffusion effects of the magnetic field and consider

only the energy gain, then the breakdown field versus the magnetic field

would yield a graph which would be approximately the inverse of Figure 11-3.
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This is nearly the situation in air because the resonance phenomenon is

the most prominent result of the magnetic field. The curve of Figure II-4

shows the experimental data of breakdown field in terms of the magnetic

field as obtained from a cylindrical cavity of 2 7/8-inch diameter and

1/8-inch height. Effectively this is a parallel-plate discharge which

is confined to the center in essentially a uniform electric field.

o

z0Uj-J

Iu14oLu

CYCLOTRON FREQUENCY b---

Fig.II-3 Energy gain of electron
per collision in electric and magnetic
fields.

MAGNETIC FIELD IN GAUSS

Fig.II-4 Breakdown of air in trans-
verse electric and magnetic fields.

From the previous discussion, iL is apparent that no effect would be

expected at high pressures. The first noticeable result was obtained at

a pressure of 5.0 mm. This corresponds to a value of Vc i25 x 109 or the

same order of magnitude as w = 20 x 109. For uw > v c' the effect becomes

even further evident, to the extent that, at 0.5 mm of pressure, the re-

duction in the breakdown field goes from about 750 volt/cm down to 70

volt/cm. The minimum of each curve occurs at approximately B = 1100

gauss, the resonance value, where w = ub.  Finally, it can be observed in

Figure II-4 that,for large values of B,the breakdown fields tend to exceed
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their values with the magnetic field absent. This is in accord with the

qualitative prediction to be obtained from Figure 1I-3.

D. DIELECTRIC COEFFICIENT OF PLASMAS

The study of the microwave dielectric properties of plasmas is being

continued. The principal difficulty in this work is that a plasma in a

container of finite size must necessarily sustain a spatially nonuniform

distribution of electron density. The resulting dielectric coefficient or

the equivalent conductivity is, therefore, also nonuniform, and any measure-

ments require a solution of the wave equation for a nonuniform medium.

There are numerous well-known approximate solutions, employed particularly

in quantum mechanics, for cases in which the dielectric properties change

slowly in a wavelength. In the present case, however, the rate of change

per wavelength is large, and little is known about the corresponding

solutions.

When the plasma is confined to a region in a resonant cavity or similar

structure, and this region is very small compared to the wavelength, approx-

imations may be made which involve a combination of lumped-network and

distributed-field theory. This type of problem is the subject of a forth-

coming technical report and will not be considered further here.

The scheme to be investigated involves transmission-line measurements

of the standing-wave pattern formed by reflections from a plasma region

in the line. The procedure is illustrated by the idealized situation of

Figure 11-5, which refers to transmission of electromagnetic waves between

infinite, parallel, perfectly conducting planes. Between z = 0 and z = t,

there is a block of dielectric material (plasma) of which the dielectric

coefficient, K, is to be measured. At z = L, there is a perfectly conduc-

ting short circuit. There is no variation of K or the wave fields along

the X-axis, which is perpendicular to the page. There is a transverse

electromagnetic (TEM) wave incident upon the dielectric from a generator

to the left of the origin; because of the restriction that a << /2, this

wave must be the principal transmission-line wave having only components

E and Hx .

If K is independent of position it may be determined from the standing-

wave pattern by well-known methods; when K arises from a plasma, it is a

function of position. The resulting problem may be formulated briefly as

follows. In the dielectric, the only waves which will be excited by the

incident TEM wave are, in general, transverse magnetic (TM) having, at

most, components Ey, Ez and Hx . If we assume that K may depend upon both

y and z, and look for solutions to Maxwell's equations having the form:
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H = cp(y)(z) , (13)

it can be shown that

+ _ Y -K) + k2K= (14)
(P 4f K p ay 4 az 0

where k0 = w/c= 2/X)O, the propagation constant for free space. Further

separation of the equation is impossible if K depends upon both y and z;

consequently we consider separately the cases for which K = K(z) and

K= K(y).

Et HHx

z a L
bx

Fig.II-5 Idealized model for measurement of properties
of a dielectric slab between two infinite parallel planes.

The case of K(z) gives rise to a tapered-transmission-line problem, in

which the admittance per unit length is a function of position, but the

impedance per unit length is constant. The most general study of this sit-

uation has been made by Rawer (4). In this latter case, the wave in the

dielectric is purely a TEM type, and the reflection coefficient of the com-

bined dielectric slab and short-circuiting termination may be evaluated

fairly simply from the values of Y and its derivatives at z = 0 and 4, and

from the distance L - 4.

The case of K = K(y) is more complicated. Here a TEM wave is not

permitted in the dielectric, and it is necessary to consider an infinite

series of TM waves in the dielectric, joining at the boundaries with both

TM and TEM waves in the air spaces on either side. The theory for both

problems hAs been developed formally but no numerical solutions have yet

been obtained, since they depend upon the assumed or measured functional

form of K. The mathematical details will be given in a later report.

Figure II-6 shows a simplified sketch of the apparatus under development
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1-6 Coaxial-line dis-
ube. Constructional
of vacuum seals, r-f
nd d-c insulation are

omitted.

for the experiment of Figure 11-5. The condition for infinite parallel

planes is approximated by a coaxial transmission line having the difference

between inner and outer diameters much less than the average diameter. The

condition that a/ax = 0 is replaced by 8/a = 0, where T is the angle in

polar coordinates. The plasma is formed in an dnnular region between the

cylinders by a radial electric field which draws electrons from a hot cathode

in the center of the structure and through a set of longitudinal slots in

the cylinders toan outer collecting electrode. The longitudinal boundaries

of that part of the plasma being measured are formed by very thin sheets of

mica fitted into place at the ends of the slotted section of the line, and

the radial boundaries are the slotted cylinders which have about 50 per cent

open area. A Langmuir probe at the center of the slotted section is made

to travel through the thickness of the plasma, from the outer to the inner

cylinder.

The apparatus indicated in Figure 11-6 is in the process of being

assembled and tested.
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