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Abstract

In this paper we combine ideas from cutting plane and interior point methods in order to solve variational
inequality problems efficiently. In particular, we introduce a general framework that incorporates nonlinear as
well as linear "smarter" cuts. These cuts utilize second order information on the problem through the use of a gap
function. We establish convergence as well as complexity results for this framework. Moreover, in order to devise
more practical methods, we consider an affine scaling method as it applies to symmetric, monotone variational
inequality problems and demonstrate its convergence. Finally, in order to further improve the computational
efficiency of the methods in this paper, we combine the cutting plane approach with the affine scaling approach.
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1 Introduction

Variational inequality problems (VIPs) arise frequently in a variety of applications that range from transportation

and telecommunications to finance and economics. Moreover, variational inequalities provide a unifying framework

for studying a number of important mathematical programming problems including equilibrium, minimax, saddle

point, complementarity and optimization problems. As a result, variational inequalities have been the subject of

extensive research over the past forty years. In particular, a variational inequality problem seeks a point

x* E K such that f(x*)'(x - x*) 0, for all E K, (1)

where K C R' is the ground set and f : K -+ Rn is the problem function.
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Program for supporting this research.

tSloan School of Management and Operations Research Center, E53-359, MIT, Cambridge MA 02139, georgiap~mit.edu
t
Operations Research Center, MIT, Cambridge MA 02139, mzar~mit.edu
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In this paper, we focus on devising methods for solving variational inequalities efficiently. To achieve this, we

explore ideas from cutting plane methods as well as ideas from interior point methods.

Cutting plane methods have been used extensively in the literature for solving optimization problems. As applied

to variational inequality problems, these methods include among others the ellipsoid method by Liithi [6], the

general geometric framework by Magnanti and Perakis [8], analytic center methods (see, for example, Goffin et. al.

[4]), and barrier methods (see, for example, Nesterov and Nemirovskiy [11], and Nesterov and Vial [12]). Cutting

plane methods incorporate several types of cuts: linear cuts (see, for example, Goffin et. al. [4]), quadratic cuts

(see, for example, Liithi and Biieler [7], Denault and Goffin [1]) and nonlinear cuts (see, for example, Nesterov

and Nemirovskiy [12]). These methods converge to a solution when the problem function satisfies some form of

a monotonicity condition. Moreover, for several of these methods, researchers have established complexity results

(see, for example, [8], [12]). In this paper, we will consider an extension of the general geometric framework [8] that

also incorporates nonlinear cuts. Moreover, this paper focuses on choices of "smarter" linear cuts. The motivation

comes from the fact that this framework encapsulates several well-known methods for solving optimization problems

such as the ellipsoid method, the volumetric center method, and the method of centers of gravity. Furthermore, an

additional motivation comes from the fact that complexity bounds have been established for this framework.

Although one can establish complexity bounds for cutting plane methods, these methods are often computationally

expensive in practice. This is due to the fact that the complexity bounds established are often tight in practice but

also due to the fact that most cutting plane methods require the computation of a "nice" set and its "center" at

each iteration. As a result, we also consider alternate methods for solving variational inequalities such as interior

point methods. The motivation in considering this class of methods comes from the observation that it has been

successful in solving linear optimization problems in practice. Moreover, for several methods in this class, researchers

have established complexity bounds. These observations make these methods attractive for solving other problem

classes as well. In particular, in this paper we consider versions of the affine scaling method. This method was

originally developed for solving linear optimization problems by Dikin in 1967 [2]. Subsequently, Ye [16], [17] and

more recently Tseng [14] extended this method for solving quadratic optimization problems, and Sun [13], for solving

convex optimization problems. Our motivation in studying this method as it applies to variational inequalities,

comes from its simplicity. Moreover, the version of the method that we introduce in this paper is motivated from
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the Frank-Wolfe method [3]. This method is widely used by transportation practitioners.

Our goal in this paper is twofold; (a) to develop results towards the efficient solution of a larger class of variational

inequalities in theory (i.e., establish complexity bounds under weak conditions) as well as (b) develop results towards

the efficient solution of variational inequalities in practice (i.e., develop methods that are computationally efficient).

To achieve the first goal we extend the general geometric framework by Magnanti and Perakis [8], by considering

linear cuts with "smarter" directions. To achieve the second goal, we introduce an affine scaling method for solving

symmetric monotone VIPs (i.e., convex optimization problems) and establish its convergence. Moreover, we combine

the two approaches and provide some computational results.

In summary, this paper contributes to the existing body of literature by

- proposing methods for solving a larger class of variational inequality problems efficiently;

- presenting polynomially convergent methods;

- proposing more practical versions of these methods that are easy to perform computationally.

The paper is organized as follows: in the remainder of this section we provide some background and describe

some useful concepts. In Section 2, we introduce an extension of the general geometric framework by considering

general nonlinear cuts. We prove its convergence under rather general conditions. In Section 3, we focus on linear

cuts by considering "smarter" choices for the directions of the linear cuts. In Section 4, we establish complexity

results. In Section 5, we focus on the solution of symmetric, monotone VIPs, by presenting an affine scaling method

and providing convergence results. In Section 6, we introduce the cut ideas we proposed in the previous sections

in the affine scaling method. This allows us to suggest schemes that are more tractable computationally. We also

provide some preliminary computational results. In Section 8, we summarize our conclusions.

1.1 Preliminaries

In this section we review some basic definitions. Notice that in Appendix B we summarize the notation, in Appendix

C we review all the basic definitions and finally, in Appendix D we summarize the assumptions we will use throughout

this paper.
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1.1.1 Weak Variational Inequalities

In this subsection we define the notion of a weak variational inequality problem and relate it to a variational inequality

problem.

Definition 1 A point E K is a weak VIP solution if for all z K, f(x)'(x - J) > 0. We will refer to the problem

that seeks a weak VIP solution as a weak variational inequality problem (WVIP).

Definition 2

1. A function f is quasimonotone on K if f(y)'(x - y) > 0 implies that f(x)'(x - y) > 0, for all x, y E K.

2. A function f is pseudomonotone on K if f(y)'(x - y) > 0 implies that f(x)'(x - y) > 0, for all x,y E K.

3. A function f is monotone if (f(x) - f(y))'(x - y) > 0, for all x,y E K.

Assumption 1 K is a closed, bounded and convex set with a nonempty interior.

In particular, through Assumption 1 we assume that there exist positive constants L and such that the feasible

region is contained in a ball of radius 2L and, in turn, contains a ball of radius 2-1 (see [8] for a further discussion

on how these constants can be explicitly defined for a polyhedral feasible region).

Lemma 1 When the problem function f is continuous, a VIP is equivalent to a WVIP if one of the following

conditions holds:

(a) The underlying problem function f is quasimonotone and for some y E K, f(x*)'(y - x*) > 0;

(b) The underlying problem function f is pseudomonotone.

Proof. It is easy to see that when the problem function f is continuous, every solution x* of a WVIP is also a VIP

solution. Next we assume that x* is a VIP solution and show that it is also a WVIP solution. Consider condition

(a). Suppose that f( )'(Z - x*) < 0, for some E K. The quasimonotonicity of problem function f implies that

f(x*)'(x* - ) > O. Condition (a) then implies that for some y E K, f(x*)'(y - t) > O. Let t = y + t ( -y),

since f(x*)'(y - ±) > 0, then f(x*)'(xt - ±) = (1 - t) f (x*)'(y - ) > 0, for all t E (0,1). This, in turn, implies that

f(xt)'(xt - x*) > 0, for all t E (0, 1) (due to quasimonotonicity). Therefore, as t - 1, the continuity of problem

function f implies that f( )'(± - x*) > O. This contradicts our initial assumption.

In the case of condition (b), the pseudomonotonicity of problem function f implies that if f (z*)'(x - x*) > 0, for

all x E K, then f(x)'(x - x*) > 0, for all x E K. ·
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1.1.2 Gap Functions

In what follows we notice that VIP and WVIP solutions can be characterized through appropriate gap functions.

Definition 3 We define function Cp(y) = maxzEK f(y)'(y - z) as the primal gap function and function Cd(y) =

maxzEK f(z)'(y - z) as the dual gap function.

It is well known that the VIP solution set X* consists of points argmin: K C, (x), i.e., X* = {x I Cp(x) = 0}.

Moreover, gap function Cd is a closed convex function, that is strictly positive outside the solution set. The solution

set of a WVIP, coincides with the set arg miniEK Cd(x) = {x I Cd (x) = 0}. Finally, we note that when the conditions

of Lemma 1 are satisfied, then the VIP solution set coincides with the WVIP solution set.

On the Theoretical Complexity of VIPs

2 An Extension of the General Geometric Framework

2.1 The General Geometric Framework

In this section we present an extension of the general geometric framework (GGF) originally proposed in [8]. A key

notion in the GGF is that of a "nice" set. These "nice" sets are constructed at each iteration so that they have the

following properties: (a) an approximation of a "nice" set and its center can be computed efficiently, (b) a "nice"

sets contains the VIP (or WVIP) solution set, (c) its volume strictly decreases at each iteration. At each iteration,

the GGF first computes a cut through the center of the "nice" set, and subsequently constructs a new "nice" set of

smaller volume that contains the remainder of the feasible region as well as the VIP (or WVIP) solutions.

More formally, at iteration k, the GGF maintains the following: a "nice" set pk, a set K k that contains the

solution set and coincides with the set pk n K, and, finally, the iterate xk , which is the center of pk. Initially set

P0 is chosen so that it contains the whole feasible region K. Furthermore, we assume that we can construct "nice"

sets pk so that their volumes strictly decrease, that is, Vol(P k+ 1 ) < b(n)Vol(Pk), for some constant 0 < b(n) < 1.

As a result, the volume Vol(K k) also decreases and converges to zero. In what follows, we outline a more general

version of the geometric framework studied in [8].
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An Extension of the General Geometric Framework

1. Start with an interior point x2 - center of a "nice" set P ° D K ° = K.

2. Feasibility cuts. At iteration k, given pk, Kk, and xk (center of Pk):

(i) Compute a surface S (xk ) that supports K. Moreover, we denote by S ( k ) the set lying below this surface.

(ii) Update pk+1, so that pk+l D S( k ) n pk, Kk+l = Kk.

3. Optimality cuts. At iteration k, given pk, Kk, and xk (center of Pk):

(i) Compute a surface S ( k ) that cuts K k through xk. Moreover, the surface is such that the set S ( k ) lying

below this surface, contains all the VIP (or WVIP) solutions.

(ii) Update K k+l = K k n S(Xk), pk+l D S(x k ) n pk

(iii) Repeat steps 2 and 3 until a desirable precision is reached.

In Magnanti and Perakis [8], the surface 9(x
k ) is a hyperpane H(x k) determined through a linear cut with slope

f(xk). In Section 3 of this paper, we will consider alternate choices for the slopes of these cuts.

The extension of the previous framework allows us to incorporate nonlinear cuts. For example, an obvious

but perhaps not very practical choice of a cut, could be to introduce at each step k, a nonlinear cut S(x k ) =

{x I f ()'(x -x k ) < O}. In some special cases of the GGF (such as the ellipsoid method [6], [8]), it is important that

the sets K k employed in the algorithm, preserve some properties (for example, convexity and/or connectivity). In

these cases notice that if at each step of the GGF we use a cut determined through a surface Sg = {X I g(x) = 0},

where g is a quasiconvex function on K, then the new set K n Sg, where S = {x I g(x) < 0}, remains convex.

This leads us to conclude that quasiconvex cuts preserve the convexity as well as the connectivity of the feasible

region. In particular, when the problem function f is strongly monotone, i.e., there exists for some a > 0, such that

(f(x) - f(y))' (x -y) > allx - yll 2, for all x, y, we can consider quadratic cuts in the GGF. An example includes a cut

where the set lying below the quadratic surface is determined by S (xk ) - { f (k) (x - x) + allx - xkl 2 • 0}.

Liithi and Biieler [7] have considered quadratic cuts of this type.

2.2 The Convergence of the GGF

The analysis of the framework in this paper relies on the observation that we can measure the "closeness" of a point

x E K to a VIP (or a WVIP) solution using some function G. Examples of such functions include the primal or the

dual gap function we described in Subsection 1.2.2. For a variational inequality problem with a symmetric Jacobian

matrix Vf, an alternate choice could be the corresponding objective function F (that is, when VF = f). In what

6



follows, we examine how the properties of the level sets of such a function G imply the convergence of the GGF. In

particular, the following assumptions summarize the key properties.

Assumption 2 Let X* be the VIP (or, depending on the context, the WVIP) solution set. There exists a function

G: K - IR+ such that x* E argmin.EK G (x) if and only if x* E X*.

We also assume that the set S(x) lying below the cutting surface at point x, contains some level set La =

{z I G (z) < a), for some a > O, i.e., for some a > 0, S(x) D La.

Examples of sets S(x), include the half space S(x) = H(x) = {z I a(x)'z < b(x)} or the set

S(x) = {z I a(x)'z + z'Q(x)z < b(x)}, where Q(x) is a positive semi-definite matrix. Notice that in both examples,

set S(x) is a convex set.

Assumption 3 Given a point y K, and a small enough e > 0, such that minwx. lx - Yll < e, it follows that

G(y) < c(e), where lim,o c(e) = 0.

Notice that the previous assumption seems to imply that function G is locally continuous close to the solution

set.

In what follows, we establish the convergence of the GGF when the variational inequality problem satisfies

Assumptions 1 - 3.

Theorem 1 Consider the sequence {xk} induced by the GGF. At each iteration we introduce a cut through a set

S(xk). Under Assumptions 1 - 3, every limit point of the sequence {xk} is a VIP solution.

Proof. We first examine the properties of the sequences {(k} and Kk}. Assumptions 1 - 3 imply that at the kth

iteration, the framework adds a cut Sk, such that for some ark, (z E K I G(z) < ak} C S k . We note that Assumption

2 implies that the solution set X* C z E K I G(z) < ak } C Sk. Since we cut through xk, it follows that pk Z Sk.

Moreover, the description of the algorithm implies that Vol(Kk) -+ 0, x* Kk and Vol(Kk) > 0, for all k. Let R

denote the set limk,,e K k and KC, its complement. Every limit point of the sequence {xk" belongs to the set K.

Assumption 2 implies that X* E K. Therefore we only need to show that every point Z E K is a VIP solution.

Since Vol(Kk) - 0 and Vol(K k) > 0, there exists a point in KCnK that is arbitrarily close to some VIP solution x*.

According to Assumption 3, for small enough > 0, we can choose this point to be yE E K c such that IlyE - *" 11 < e
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and G(yE) < c(e), where x* E X*. Since yE E Kc, it follows that G (2) < G (ye) < c(e). By letting e go to zero, we

conclude that G () = 0. Consequently, Assumption 2 implies that g is a VIP solution. This further implies that

every point in the limiting set K is a VIP solution. Therefore, we conclude that K is the solution set of the VIP.

In the next section, we focus on linear cuts and consider particular choices for these cuts. We show that these

cuts satisfy conditions discussed in this section for an appropriate function G. As a result we show that the GGF is

convergent for these choices of cuts.

3 The GGF with Linear Cuts

3.1 Linear Cuts via an Exact Gap Function

In the previous section we considered an extension version of the GGF that incorporated cuts with general nonlinear

surfaces S(xk). Examples included linear and quadratic cuts. In what follows we will focus on linear cuts, that is,

cuts of the form Hk = {z I ak'(z - xk) < 0}, where ak is the slope of the cut. In this section we consider particular

choices for the slopes of these cuts. We first introduce some notation. Let

yz = arg max f(y)'(x - y), (2)
yEK

yk = argmaxyeK f(y)/(xk - y), and Cut(y,x) = {z E K I f(y)'(z - x) < 0} the half space through point z with

slope f(y).

In what follows we consider the GGF with cuts S(x) = Cut(yx, x). Notice that this modification of the GGF

determines the direction of the cut using information from the dual gap function Cd at the current iterate.

Remark: Linear cuts of the form Cut (x, x) are often considered in the literature (see, for example, [7] or [8]).

Assumption 4 f is a bounded function. That is, for some M > 0, If () 11 < M, for any x E K.

Theorem 2 Suppose that a WVIP satisfies Assumptions 1, . Let {xk} be the sequence induced by the GGF with

cuts Cut(yk, xk). Every limit point of {xk} is a WVIP solution.
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Proof. The dual gap function Cd(x) is the function we will employ in order to measure the closeness of point x E K

to the solution set of the WVIP. We will show that for this function, Assumptions 2 and 3 hold. Then the result

follows from Theorem 1.

In this theorem, we denote by X* the WVIP solution set. Since set X* coincides with set {z I Cd (z) = O}, in

order to prove that Assumption 2 is valid for G(x) = Cd(x), we need to show that the level sets of Cd are contained

in half spaces. Wlog, it is sufficient to show that z E K I Cd(z) < Cd(xk)} C Cut(yk,xk). The following are

consequences of the definition of the gap function Cd:

(a) Cd(x) < Cd ( k ) X f(yz)'(x - yz) < f(yk)l(Xk _ yk),

(b) f(yx)'(x - yz) > f(yk)'(x - yk), since yk K and y, = argmaxyeK f(y)'(x - y).

Therefore, if x E {z E K Cd (z) < Cd (xk ) }, then

f(k),(x -
k )

= f(yk),(X _ k) + f(yk),(yk _ x
k )

_ f(y )'(x - y.) + f(yk),(yk _- k), (using (b))

< f(yk)'(xk _ yk) + f(yk),(yk _ Xk), (using (a))

= 0.

This leads us to conclude that x E Cut(yk , Xk), that is, Assumption 2 holds.

Assumption 3 holds as well. Indeed,

Cd () = f (y.)' ( - y) = f ()' (* - ) + f (y) ( - *) < f (z)' ( - ). ·

Remarks:

1. This scheme induces a sequence {x k } whose limit points are WVIP solutions. To prove this we required the

feasible region to be a closed and convex set, with a nonempty interior and the problem function f to have a bounded

norm. Notice that if in addition, the problem function satisfies some form of a quasimonotonicity condition, then

these limit points are also VIP solutions.

2. Nevertheless, in this scheme determining the slope of a cut can be computationally expensive. This is due to
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the nonlinearity and, perhaps, even the nonconvexity of the subproblem that generates point yk. As a result, in the

next section we consider schemes that compute approximations of the direction f(yk), yet generating sequences that

converge to a WVIP solution.

3.2 Approximation Schemes

3.2.1 Motivation

To motivate the schemes we introduce in this section, we first consider an approximation of the gap function Cd. In

particular, given a point y E K, if we apply the mean value theorem on function f(.)'(y - x) around point x E K, it

follows that f(y)'(y - x) = f(x)'(y - x) + (y - x)'Vf(z)'(y-x), for some z E [x; y]. As a result, subproblem (2) can be

rewritten as y, = argmaxyEK f(y)'(x - y) = argmaxyEK (f(x)'(x - y) - (y - x)'Vf(z)(y - x)), for some z E [z; y].

Motivated by this observation, we will consider cuts whose directions will be determined from this approximation.

To develop this observation more formally, we first need to impose an additional assumption on the Jacobian matrix.

Definition 4 A function f: i
n -+ Rn has the property of Jacobian similarity if the Jacobian matrix is positive

semi-definite and there exists some constant p > 1 such that the Jacobian matrix satisfies d'Vf(y)d < pd'Vf(x)d,

for all x,y E K, and d E IRn .

Assumption 5 Problem function f satisfies the Jacobian similarity property.

Remarks:

1. In the context of convex optimization, there is an analogous property called Hessian similarity (see [13]).

2. The property of Jacobian similarity holds for monotone functions with a bounded Jacobian matrix. This property is

similar to the property of self-concordance as it applies to barrier functions. In the context of nonlinear optimization,

Nemirovskiy and Nesterov [11] have shown that if the self-concordance property holds on a barrier function then the

property of Hessian similarity also holds locally.

3. Moreover, when the problem function f is strictly monotone, one can choose the Jacobian similarity constant p as

the ratio of the eigenvalues of the symmetrized Jacobian matrix vfi+Vf, that is, p = UPyK M- ( ) Finally, notice
2that infEKwhen the p(X)roblem function f is affine, then we can choose p = 1.

that when the problem function f is affine, then we can choose p = 1.
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We denote by H(x) = f(x)+vf(0) the symmetrized Jacobian matrix of f and let IIWl12H() = w'H(x)w. As-

sumption 5 then implies that f(y)'(y - x) = f()'(y - x) + (y - x)'Vf(z)'(y - x) f()'(y - x) + p - YIH() 

where z E [x; y]. Therefore, f (y)' ( - y) > f(x)'(x - y) x - YIIH(2 )

3.2.2 Approximation Scheme 1

The previous discussion motivates us to consider the GGF with cuts whose directions are determined by solving a

quadratic approximation of subproblem (2). In particular, we approximate the gap function Cd(x) with its quadratic

approximation

Cd(x) = max (f(x)'(x -- [- i-YIH(Z)) 

Let point y be the maximizer in this quadratic approximation of Cd(x). At each iteration, Approximation Scheme

1 introduces a cut defined by Cut (ykl,xk) = {ZI f (k,)' (Z - k) < O}, where point xk is the current iterate of

the framework, while point yk1 = argmaxyEK C (k). In order to illustrate the convergence of this modified GGF,

we first need to prove the following two propositions.

Proposition 1 Under Assumption 5, {I E K I Cd(x) < C ( k ) } C {x E K I f(ykl)(x -_ Xk) < O}.

Proof. Notice that inequality Cd(x) • C (k) holds if and only if for all y K,

f(y)'(x - ) < f(k)'(xk _ ykl) _ P 11 k - yk, 211( . (3)

An application of the mean value theorem together with Assumption 5 (i.e., the Jacobian similarity property)

imply that there exists a point zk E [xk; ykl] such that

f(Xk),(Xk _ yk,l) _ IIXk _ yk,Hll2 = f(yk'l)'(xk - ykl). (4)
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Therefore, if x is such that Cd(x) < Cd(x), then

f(ykl),(x _ Xk) = f(yk,1),(x _ yk) + f(ykl)(ykl -_ k)

< f(xY)'' W -- -- Y") -(- ) + f(yk,1l)(,l - X), (using (3))

f(k)(rk _ykl) _ -
k - ykx,1H(z) + f(ykl)(ykl _ k), (using Assumption 5)

= f(ykl)(xk - yk,1) + f(ykl)(ykl - k), (using (4))

- 0. 

Proposition 2 Under Assumptions 1 and 5, the WVIP solution set X* coincides with the set of minimizers of

Proof. Let x* be a WVIP solution and y,, yz and ykl be the points defined above. Observe that Cd(z) > O,

therefore f(xk)(k _ yk,l) > p I kp k,1( . Since Cd (x*) = 0 < Cd (x), for all x E K, Proposition 1 implies

that x E {x E K f(ykl)'(x - xk) < 0}.

It what follows we show that Cd(x) > Cj (x). From the definitions of points yz and y, it follows that Cd () =

f (yx)' (x - yZ) and Cd(z) = f(x)'(x -y )- -p x -y 1H() respectively. Therefore,

Cd(x) = f (y)' (x-y) = argmaxf(y)'(x-y) > f(y)'(x-y )
yEK 

= f(x)'(x-y,)- -_ 1- Y|H()' (for some z E [x;yl])

Since Cd(x*) > 0 = Cd (x*), the previous inequality implies that Cd(x*) = 0.

So far we have shown that any WVIP solution minimizes function Cdr(x). Next we show that every E

arg minxEK Cd (x) is also a WVIP solution. Suppose, the opposite is true, that is, for every such a, there exists some

y such that f(y)'(y - a) < O. Applying the mean value theorem and the Jacobian similarity property, it follows that

f(z.)I( -y) = f(y)'(5t-y)±I-y-5p(2) Ž f(y)( - Y)+ IIY -II), for some E [; y]. Consider a = l/p 2 E (0, 1].HP) ~~~-x][H(W som
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Then for y, = x + ac(y - ) E K, it follows that

f(j)'(. - ya) - P - YIIH() = af(y)'( - y) - (p2a - 1)I - YlIH()) > 0.

However, we argued above that Cd (t) = 0, for all x E arg mincEK Cd (x). This leads to a contradiction. ·

We are now ready to prove the convergence of the sequence induced by Approximation Scheme 1.

Theorem 3 Consider a WVIP satisfying Assumptions 1 and 5. Let {xk} be the sequence induced by the GGF with

cuts Cut(yk ' l, xk). Then every limit point of the sequence {xk} is a WVIP solution.

Proof. The proof is similar to that of Theorem 2. Moreover, notice that in Propositions 1 and 2 we have shown

that Assumption 2 holds. Finally, in Proposition 2 we proved that Cd (x) < Cd(x). Therefore, Assumption 3 also

holds. ·

Remark: Under the Jacobian similarity property, the set of minimizers of gap function Cd also coincides with the

VIP solution set. This follows from the observation that for any VIP solution x*, f(z*)' (x* -y)-p 11x* - YI/H( ) < 0.

This in turn implies that Cd (x*) = 0. Just as in the proof of Proposition 2, it follows that every minimizer of Cd is

a VIP solution. In other words, under the Jacobian similarity property, the WVIP solution set coincides with the

VIP solution set. Therefore Approximation Scheme 1 also computes a VIP solution.

3.2.3 Approximation Scheme 2

Approximation Scheme 1 considered a quadratic approximation of the dual gap function Cd. Although this ap-

proximation simplified the objective function in the dual gap function computation, it did not concern itself with

the structure of the feasible region K. In what follows we consider a polyhedral feasible region K of the form

{x I Ax = b, x > 01.

Assumption 6 Matrix A has a full row rank.

Assumption 7 Matrix AX 2 A' is invertible for all x E K.

In what follows, we consider an approximation of the gap function Cd (similar to Cd) by also restricting the

maximization problem over a Dikin ellipsoid rather than maximizing over the entire feasible region K. We denote a
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Dikin ellipsoid by D (x) = {y E K I IIX-1 (y - x) < r}, where matrix X = diag (x) and constant r (0, 1). We

then define

Cd(x) =myax f(x)'(x -y) -P x-Y I ( j Ay = b, X-'(y-x)ll < r}

Notice that under Assumptions 6 and 7, the function Cd (x) is well defined for every x in the polyhedron K. Moreover,

the computation of point y2 in the definition of Cd (x), when x lies in the the interior of K, can be performed in

polynomial time (see [14], [17]).

Let yk, 2 be a maximizer in the definition of Cd (xk), then Approximation Scheme 2 introduces at each iteration

k, cuts Cut(yk 2, xk ) in the GGF. The convergence proof for Approximation Scheme 2 is completely analogous to the

proof for Approximation Scheme 1. Therefore, for the sake of brevity, in what follows we outline the key properties,

omitting the proofs.

Theorem 4 Suppose that a WVIP satisfies Assumptions 1, 5-7. Let {x k) be the sequence induced by the GGF with

cuts Cut(yk 2 , xk). Then every limit point of the sequence {x k ) is a WVIP (and VIP) solution.

Proof. 1. {x E K I Cd(x) < Cd (xk)} C {x e K I f(yk 2)'(x - xk) < 0}.

2. C () > ; Cd (x) > Cd ().

3. C2 (x*) = 0; x2* is a WVIP solution if and only if Cd' (x*) = 0.

The proof that every limit point of {xk} is a WVIP solution follows, as before, from Theorem 1. Moreover, the

Jacobian similarity property (that is, Assumption 5) implies that every limit point is also a VIP solution. ·

4 Complexity Analysis

So far we have presented an extension of the GGF for solving WVIPs by introducing at each step linear cuts with

slopes that exploited second order information of the problem function. We established the convergence of these

methods to WVIP solutions under rather weak assumptions. Moreover, we established the convergence of these

methods to VIP solutions under a quasimonotonicity type of condition on the problem function. In what follows,

we provide complexity results for the previous schemes.
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4.1 Preliminaries and Key Properties

We start the analysis by describing the notion of an approximate solution in the context of a variational inequality as

well as a weak variational inequality problem. The definitions we introduce use the gap function concepts described

in Subsection 1.1.2.

Definition 5 For any £ > 0, a point x I E K is an e-approximate VIP solution if Cp(xs) < e, where Cp is the primal

gap function.

Definition 6 For any e > 0, a point xII E K is an c-approximate WVIP solution if Cd (xI") < c, where Cd is the

dual gap function.

Remark: Notice that we can also state scale-invariant versions of Definitions 5 and 6. For example, a point xi E K

is an e-approximate VIP solution, if for any e > 0, Cp(xs) < 2e2-M. Constant M is defined in Assumption 4, and

1 is defined in Subsection 1.1. We can adjust the proofs in this section to be also applicable to this scale-invariant

definition (see [8] for a more detailed discussion of these definitions).

At this point it is natural to ask when Definitions 5 and 6 become equivalent. First we notice that in Section

1 we introduced assumptions under which variational inequality and weak variational inequality problems have the

same solutions. However, these results do not directly translate into the equivalence of the respective approximate

solutions as we defined them above. As a result, in what follows we examine the relationship between approximate

VIP and WVIP solutions.

Definition 7 A function f is Lipschitz continuous with a Lipschitz constant A > 0 if d'Vf(x)d < Ad'd, for all

d EIRn .

Assumption 8 The problem function f is Lipschitz continuous with Lipschitz constant A.

The next two propositions establish a connection between approximate VIP and WVIP solutions.

Proposition 3 If the VIP problem function f is monotone, then an e-approximate VIP solution s I is also an

c-approximate WVIP solution.

Proof. This result follows from the definitions of approximate solutions and monotone functions. ·
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Proposition 4 Suppose that Assumptions 1 and 8 hold and L is the constant defined in Subsection 1.1. Then an

c-approximate WVIP solution is also a /22L+ 2 A-approximate VIP solution.

Proof. Suppose xII is an e-approximate WVIP solution, i.e., for all z E K, f(z)'(xI I - z) < . Then an application

of the mean value theorem implies that for some y E [; z], f(xI)'(z - xII) = f(z)'(z - xI) - zl - xjII(12 >

-c-A liZ -xII 12 (*). For a E (0,1], we now define point za = x" +a ( - XI), for any x E K. Then the convexity

of set K, implies that point za lies in set K. It follows that f(xII)t(za - xI) = af(II)'(x - xsI). Therefore,

f(x")'(x - x") = f(x")'(za - XI). If we apply (*) for a choice of z = z,, it follows that f(xII)'(x - zII) >
a

/' i-- o/21 n11
2
) > 1

(- - A 2 |x X- Ix > ) -- - Aa22 L. Furthermore, notice that this inequality is true for any choice of x E K.
a a

1
Setting J(a) = -e + Aa22 L, we conclude that xI is an (a)-approximate VIP solution. In particular, the

choice of a = 22 minimizes (a). Such an a gives rise to = 22L+ 2Ae. Therefore, point xI' is a /22L+2Ac-

approximate VIP solution. Also notice that, as - - 0 and a - O0, it follows that f(z")'(x - xI t ) > 0, for all
a

xEK. U

The next lemma, relates the approximate VIP solutions with the approximate WVIP solutions of Approximation

Schemes 1 and 2.

Lemma 2 If Assumption 5 holds and Cd(x) < e (or Cid(x) < e and Assumption 6 holds ), then Cd (x) < p2 e, i.e.,

x is a p2e-approximate WVIP solution.

Proof. Suppose, on the contrary, that for some x, Cd (x) < , while Cd (Z) > p2 e. It follows that for some y,

f(g)t(x
k

_- ) > p2 e. Consider a point Ya = (1 - a) x + ay, for some a E [0,1]. We define function g(Ya) 

f(x)'(x - Ya) - 1i- Ya (z) · Then for some z E [x; ],

g(y.) = af (X)(x - ) - a2 p 11-II ) = a ( )'( - ) + iI - ( a2 p X- 1YII

> a(p2Y- XIIH(Z)) p l - YiiH() = Cp2 + - () - ap ire -1 lH(x)

> ap2 - (1-p ) Il-yIIH(Z).
P

Letting a = , we observe that g(ya) > e. Hence, C () = maxyEKg(y) > e. This contradicts the assumption that

Cd (x) < . Similarly we can show that C2 (x) < e implies that Cd(x) < p2e. Notice that if the property of Jacobian
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similarity holds for some constant p, then it also holds for all e > p. Therefore, if we assume that Cd(x) > p2e, then

g(y,) > , for every ac < (where ya is defined above). Since for a sufficiently small a, point ya lies inside the

Dikin ellipsoid D(x), it also holds that C2(x) > e, (i.e Cd(x) > p2e implies that C2(x) > e). ·

4.2 Complexity Bounds

In this subsection we establish complexity bounds for the schemes we introduced so far.

Assumption 9 21 > log n + 1; L1 = L + 31 + log( M).

We introduce a contraction map T: K - K defined as T(x) = x* + 2 -L+
+ l

ogn (x - x*), where x* is some

solution of the VIP. This is a one-to-one map between sets K and T (K). Therefore, we can retrieve a point x from

its image y = T(x), as x = x* + 2 Li---l ° g n (y - x*).

Proposition 5 Let = 0 (-nlf.). Assumptions 1, 4, 9 imply that there is a point y E T (K) n Pk, where PI'

is the complement of pk.

Proof. Observe that the volume of set pk is at most 2 -nLj in k = O (- on ) iterations. Moreover, as we

discussed in Subsection 1.1, Assumption 1 implies that there is a point z E K such that the ball S(z, 2-1) of radius

2-', centered at point z , is contained in the feasible region K and S = S(z, 2-') $ K. Therefore T(S) C T(K) and

(2-L+logn)n
Vol(T(K)) > Vol(T(S)) = Vol(S(T(z),2-L+'ogn)) > > Vol(Pk').

Since Vol(T(K)) >Vol(Pk), it follows that T(K)n f P' 0. ·

Theorem 5 Suppose Assumptions 1, 4- 9 are satisfied, then the GGF computes an e-approximate WVIP solution

in k = 0 (- n iterations. Moreover, Cd(2) < e (or Cd(2) < c) in the same number of iterations.

Proof. As in the preceding proposition we first note that since the volume of set pk is at most 2
- n L in k =

O (- lo(n ) iterations, the GGF reaches a feasible solution in at most k steps. Furthermore, notice that Proposition
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5 implies that there exists a point y that lies in T (K) n pkC. Then it follows that

Cd () < Cd (y), (since y E T (K) n P )

= f(yy)'(y - yy), (using the definition of Cd(y))

- f(yy)'(y - x*) + f(yy)'(x* -yy)

< f(yy)'(y - x*), (since x* is a WVIP solution)

2-Li+l+l°gnf(yy)'(z - x*), (setting z = T-l(y))

< 2- L ++ l g n . M. 2
L+

1, (using Assumption 4)

< e, (using Assumption 9).

Since for any x E K, Cd(x) < Cd(x), for i = 1, 2 (see Proposition 2 and Theorem 4), it follows that in k iterations,

Approximation Scheme i satisfies C() _ e. ·

The previous theorem developed a complexity result for the weak variational inequality problem. We are now

ready to prove a complexity result for the variational inequality problem.

Theorem 6 Let L2 = L+31+2 log((MA) p2 ). Consider a VIP satisfying Assumptions 1, 4 - 9. In 0 ( log b()

iterations, the schemes we considered in Section 3 compute an e-approximate VIP solution.

Proof. Theorem 5 implies that in O (- aon ) iterations each of the schemes computes a point x at which the

corresponding dual gap function approximation (i.e., Cd, Cd and Cd2 respectively) does not exceed p2A22L+2 From

Lemma 2, it follows that this point is also an A22L --approximate WVIP solution. Moreover, Proposition 4 implies

that such a point is also an e-approximate VIP solution. ·

Example: (see [8]). All the methods that are special cases of the GGF can also be modified to incorporate the cuts

we introduced in this paper. Below we list some of these methods together with the respective descriptions of the

volume reduction constants as well as the complexity bounds.

Method of centers of gravity: b (n) = e, O (nL2).

Ellipsoid Method: b (n) = 20( ), O (n2L2).

Method of inscribed ellipsoids: b (n) = 0.843, O (nL2).
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Volumetric Center Method: b (n) = const, 0 (nL2).

On the Computational Solution of VIPs

5 An Affine Scaling Method

So far in this paper, we have introduced a cutting plane framework for solving variational inequalities. This framework

extended the general geometric framework in [8] by considering nonlinear cuts as well as "smarter" linear cuts. Even

though we showed polynomial complexity for the methods in this framework, the task of finding a "nice" set pk

and its center xk, at each iteration k, might be computationally difficult. Moreover, the complexity bounds for the

methods in this framework tend to be tight in practice. For this reason, in the remainder of this paper, we will consider

methods that are simpler to perform and, perhaps, as a result computationally more efficient. Our motivation in this

part of the paper comes from the success of (i) interior point methods for solving linear optimization problems in

practice, but also (ii) the Frank-Wolfe method for solving traffic equilibrium problems. This latter method is widely

used by transportation practitioners in the context of traffic equilibrium. However, it often exhibits pathological

behavior when close to a solution. In this section, we will introduce a method that closely relates to the Frank-Wolfe

method and is a variation of the aflfine scaling method for solving linear optimization. Moreover, we will incorporate

in the affine scaling method (AS method) the cut ideas from the first part of the paper (Section 3). Combining these

ideas will also allow us to propose more practical versions of the schemes we considered in the previous sections.

In the remainder of this section we assume that the feasible region is a polyhedron and that Assumptions 1 and

6 hold. We will also assume the following:

Assumption 10 The Jacobian matrix of the problem function f is symmetric and positive semi-definite.

Under this assumption, we can represent the problem function f as the gradient of a convex objective function F

(i.e., f = VF). Then the variational inequality problem becomes equivalent to the convex optimization problem

min{F(x) Ax = b, x > 0. (5)
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Under this assumption, the results in the remainder of this section apply to problem (5). To motivate the approach

we take, we first describe the Frank-Wolfe method.

The Frank-Wolfe Method.

1. Start with a feasible point x0 , tolerance e > 0.

2. At step k:

dk =argmind f (xk)'d Ad=O, k +d >O }

ak = argmin {F(xk + adk) I a e [0, 1]

xk+l +. Xk + akdk

3. Stop when If(xk)'dkI < e.

The approach below modifies Step 2 by restricting the direction finding subproblem to a Dikin ellipsoid.

An Affine Scaling Method.

1. Start with a strictly feasible point xo, tolerance e > 0, and constant r E (0, 1).

2. At step k:

dk =argmin{f (xk)'d I Ad =O, II(Xk)-dll r}

ak = argminE[o,] F(xk + akdk )

xk+l + xk + akdk

3. Stop when If(xk)dk < .

Remark: In this section we consider a short step version of the affine scaling method. Nevertheless, the results in

this section can be easily modified to apply to the long step version of the method.

This method differs from other affine scaling methods in the literature for solving nonlinear optimization problems,

(see [13], [16], [17]). In particular, notice that the direction finding subproblem in this paper optimizes a linear

objective. The literature (for example, [13] and [16]) often considers a quadratic objective.

The necessary conditions of optimality for problem (5) are

Ax* = b, x* > O, f (x*) + A'y*-s* = 0, x*s* = 0, s* > 0. (6)

20



For a feasible point z, the affine scaling algorithm finds a direction of descent by solving

min f (x)'d I Ad = O, IIX-ldll < r}. (7)

The KKT conditions for this problem are

f (x) + A'y + 2X- 2d = 0, p(d'X- 2d - r2 ) = 0 p >O, Ad =, IIX-dll < r. (8)

If p = 0, then the current iterate is a global optimum. If p $ 0, the solution to problem (8) is

IIPXf(x)II d=-rXPXf()
A~= 2rf )1', y=-(AX2A')- lAX2f(x),

where P = I - XA'(AX 2A')-'AX is a projection matrix on the null space of matrix AX. We also introduce a

variable related to the dual variable s* in (6) by letting s(x) = -2pX-2d = X-PXf(x).

Notice that d is a direction of descent, that is f(x)'d = -2pr2 < 0. Moreover, iterate xk+ l = xk + akdk is strictly

feasible since constant r < 1.

Before proving the convergence of this method, we prove two key lemmas. These lemmas demonstrate that the

limit points of the affine scaling method satisfy the complementary slackness and dual feasibility properties.

Lemma 3 Consider the sequence {xk} generated by the affine scaling algorithm and suppose that f(xk)'dk -+ 0, as

k -+ oo. Then it follows that IIXks(xk)l -+ O.

Proof. Conditions (8) imply that f(Xk)dk = -2pkr 2. Therefore, from the definition of s(xk), it follows that

IIXkS(xk)I = 2pkXk-ldk = 2pkr =-f _()'d ·

Lemma 4 Suppose that the sequences {xk} and {sk} generated by the affine scaling method converge to points Z

and s respectively. Then > 0.

Proof. Let us assume, by contradiction, that g < 0. That is, there exist integer indices i and K0 , such that for all
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k > Ko, s < -E < 0. We rewrite xk + l as xk+l = xk + akdk = k _ k rIIXf (Xk) 2 sk, then

c+1 1- lPk Xkf(sk)ll ) > ik (l+ alpkX rt(k X ) >r 

since xi ,ak, e > 0. Therefore, the limit of the sequence 4x is strictly positive while limk,, xs < 0. However, since

sequence {xk } converges, limk,,,o f(xk)'d k = 0. Lemma 3 leads us to a contradiction. It follows that limko,, sk =

s> 0. 

In Subsections 5.1 and 5.2, we will describe two different convergence proofs for the AS Method under different

assumptions.

5.1 The Convergence of the AS Method under Strict Complementarity

In order to describe the first convergence approach of the AS method, we first need to describe how we choose the step

sizes a k at each iteration in the method. As we described in the beginning of Section 5, we let xk (a) = tx + adk , with

a E [0,1]. We notice that the line search procedure we described is equivalent to finding a step size ark + l E [0, 1] such

that f(x(ack + l))'(x(a) - (ak+l)) > 0, for all a E [0, 1]. We set as the next iterate the point xk +l = x(a k +l ). Notice

that this point is well-defined since f is a monotone function. Furthermore, notice that if f(x k + dk)'d k > O, then

using the mean value theorem, we can express the step size ak as ak
=- 1' where dk = dk ()d

for some z k E [xk; xk + dk ]. On the other hand, if f (xk + dk ) 'dk < 0, then we set a k = 1 and as a result,

x k+
= - xk + dk . Moreover, notice that unless we have reached a solution, step size aCk > 0. As a result, wlog, we set

a k = min {_-4 lk , 1. When the step sizes are chosen in this fashion, sequence {F(xk)} is nonincreasing. This

follows using mean value theorem since

F(Xk) = F(Xk+l) + f(X+l)l'( - Xk+l) + IlXk -_ k+lll) (9)

for some z A E [xk; xk+l]. The line search procedure we described above implies that f (xk+)'(sxk - xz+) > 0. This

line search procedure together with relation (9) and Assumption 10 imply that F(xk) > F(xk+l).

In what follows we will establish a convergence result for the AS method with step sizes as defined above. To

achieve this we first need to impose two additional assumptions. These assumptions ensure primal nondegeneracy
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(that is, Assumption 7 from Subsection 3.2.3) and strict complementarity for the VIP solutions.

Definition 8 A limit point (, 5) satisfies the property of strict complementarity, if tisi = 0 and ti + i $ 0, Vi.

Assumption 11 Every limit point of the sequence {xk,s(xk)} has the property of strict complementarity.

Theorem 7 Under Assumptions 1, 6, 7, 10, 11 the AS method converges to an optimal solution.

Before proceeding with the proof of this theorem, we establish several intermediate results.

Lemma 5 Suppose that Assumptions 1 and 10 hold. Consider the sequence {(
k ) generated by the AS method with

step sizes as described above. Then |1Xks(xk)ll -* 0 as k -+ oo.

Proof. We will first show that f(xk)'dk -+ 0 as k - oo. Notice that sequence {F(xk)} is nonincreasing and bounded

and, therefore, it has a limit point. We denote this limit point by F. For Vk,

F(xk) - > kf(x)dk +o( ) =-min f() d k 1) f(xd + (dk 2)

It follows that f(xk)'dk 0 O, whenever F(xk) - F, i.e., as k -+ o. Lemma 3 implies the result. ·

Proposition 6 Suppose that Assumptions 1, 7 and 11 are satisfied. Then the sequence {xk} generated by the AS

method converges.

Proof. For some point , we denote by N = {i I i $ 0, B = i si = 0O, S* = (x I Xs(x) = O, Ax = b, x > 0),

and Cs = {x I xi E [0, ) Vi E N).

First notice that from Assumption 7 and the continuity of matrix AX 2 A', it follows that s(x) is a continuous

variable. Hence for a small enough 6 > 0, when x E Ca and j E N, it holds that sj I > 2 ISj > 0.

We next show that Assumption 11 implies that the set of limit points is discrete. Since the sequence ((xk, sk))

is bounded, it has some limit point, say (, s). Notice that every limit point 2 of the sequence {xk} induced by the

AS method belongs to the set S*. This set also contains all x e K satisfying the strict complementarity property.

We will show that for some 6 > 0 there exists a neighborhood Cs such that Cs n S* = 2. Suppose, on the contrary,

that V6 > 0, 3x s E S* n Ca such that xa $ 2. Then, since point is a vector of finite dimension, for some j E N,
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6 - 0, > , and I - tj < 1 Notice that thethere exists a sequence {x 6 )} with x 5-n E S* n C, , x 0, x 0 and < . Notice that the

strict complementarity property implies that s = 0 whereas j $ 0. By continuity, however, sn -+ j, which is a

contradiction. Therefore, for any limit point of the sequence {xk}, there exists a neighborhood whose intersection

with the set of all limit points is a singleton.

At this point, we notice that conditions analogous to those in [17] are satisfied and the convergence of the sequence

{X k can be shown by contradiction. Suppose that the entire sequence {(xk does not converge to . Then for some

6 > 0, xk E C infinitely often, whereas Isj(x) > l ijl > 0, when x E Ca,j E N.

Consider a subsequence k, such that xk" E Ca but xkp+ l E C6. Since x is a vector of finite dimension, it follows

that for some index j E N, there exists a subsequence {k 1} C {kp,} such that XkL+l > 6. The properties of the AS

method imply that jk' > . On the other hand, notice that Sk, > ' HI > O since Xk I Ca. Therefore,

2 .
]xj4sj I - jl > 0, for all ki.

This contradicts the fact that IXks(xk)ll - 0 as k - oo (see Lemma 5). We conclude that the sequence {xk}

converges to a point ±. ·

We are now ready to prove Theorem 7 which is the main convergence result of the AS method.

Proof of Theorem 7. Proposition 6 shows that { k} is a convergent sequence. Moreover, since function s(x) is

continuous in x, sequence (sk} is also convergent. Hence, Lemmas 4 and 5 imply that the sequence {sk} converges to

a nonnegative point and limk-,, IIXksk I = 0. Therefore, the limit point of the sequence {xk} satisfies the necessary

conditions of optimality. Assumption 10 then implies the result. ·

5.2 The Convergence of the AS Method under the Jacobian Similarity Property

In the subsection we introduce an alternate convergence proof for the AS method. In this proof we do not assume

the property of strict complementarity (Assumption 11). Instead we assume that the problem function f satisfies

the Jacobian similarity property (Assumption 5). An essential element behind this convergence approach is the

modification of the line search procedure in the AS method. In particular, we set the next iterate as xk+ 1 = x k +r k dk ,

where the direction dk is chosen as in Subsection 5.1 and the "optimal" step size a k is determined through a line

search. That is, if for all a C [0, 1], we define k (a) = xk + apdk, where constant p is the Jacobian similarity constant,
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then we choose

a k E [0, 1] satisfying (f(xk((ak))'dk).(a - crk) > 0, Va e [0, 1].

Notice that step size a k equals the one in Subsection 5.1 scaled by 1, where p is the Jacobian similarity constant.

In this subsection, we assume that the step sizes a k are bounded away from zero. In particular,

Assumption 12 For some a > O, a k > a, for all k.

Remark: Indeed some of the examples we consider in Section 6, induce step sizes that satisfy this condition. As a

result, this assumption allows us to relax the assumption of strict complementarity that we imposed in the previous

subsection.

Theorem 8 Under Assumptions 5, 6, 10 and 12, the AS method converges to an optimal solution.

Before proving this theorem we show some intermediate results.

Proposition 7 Consider the sequence of step sizes {ak} as described above. For some F the following relation holds

F (+) - < (1- 2a) (F (k) - ) .

Proof. We define an auxiliary point yk = xk + pakdk, and use a Taylor expansion to obtain

F(Xk) = F(yk) + f (yk),(Xk _ yk) + (xk _- yk),Vf (zk)(2k _ yk), (for some zk E [k; yk])

> F(yk). (This follows from the definition of k and the monotonicity of problem function f.)

Moreover, the convexity of the objective function F and the previous inequality imply that

F(xk+l) - F -(1) k + y)< - F(xk) + F(yk) _ F(k).

Therefore, it follows that the sequence {F(xk)}, with step sizes as defined above, is monotonically nonincreas-

ing. Since this sequence is also bounded, it has a limit point. We denote this limit by F and let set S =

K n {x I F (z) < F}, where K is the feasible region. Notice that S 0, since every cluster point of the se-

quence {xk} belongs to this set. Using similar arguments as in [13], we can show that for sufficiently large k,
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minEs (Xk) - (z- Z k ) _ < . In what follows, we use this result to devise a feasible point in the direction

finding subproblem. In particular, suppose that point zk E S satisfies ||(Xk)-l (zk - xk) v< , then point

x = Xk + (k - xk), with 0 < a < 1, is feasible for the affine scaling direction finding subproblem. Therefore,

f(xk)'dk < af(Xk)' (Zk _ xk), for all 0 < a < 1. (10)

An application of the mean value theorem implies that

f(yk), (yk _ xk) = akpf (Xk)dk + (kp)2dk'Vf(2)dk, for some 2 E [k;yk] 

Therefore, the definition of point yk implies that

akpdk'Vf (2)dk < -f(xk)'dk. (11)

Combining these results we obtain that

F(xk+l) = F (Xk ) + ak f (xk)dk + (ak)2dk'Vf()dk, ( for some i E [xk; k+l])

< F (xk) + ak f (Xk)'dk + 2ak2 dk'Vf(2)dk, (using the property of Jacobian similarity)2

< F (zk) + Ckf (xk)'dk - _cxkf(Xk)'dk, (using (11))
2

ak 1
< F (zk) + -- f(x sk) (k - Xk), (using (10))

Ck 1
< F (k) + (F (zk) - F (xk)), (using the convexity of the objective function F)

/ ak 1 k a 1-< 2 i) (Xk) + 2k

Hence, F (k+ l ) - < 1 2 (F 

This result also allows us to obtain a rate of convergence for the AS method in this paper. Next we illustrate that

the sequence that this method induces is indeed convergent. This result will also allow us to provide a convergence

result for the AS method (that is, prove Theorem 8).
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Theorem 9 Under Assumptions 5, 6, 10 and 12, the sequence {zk} generated by the AS method converges.

Proof. First we observe that analogously to [13] (see also Appendix A), Assumptions 5 and 12 imply that there

exists some constant c > 0, such that F(xk) - F(xk+ l ) > cdk'd k . Therefore,

xk _ - < E llZi- '1 = o E (x) - F (Xi-') 1/2)

s+1 s+l

Assumption 12 and Proposition 7 imply that F (k+l) - P < (1-2¼) (F (xk) - F). Hence,

F (Xk+l) F () < F (xk+l)-< (1-2a) (F (k) -),andas a result,

|X| <_ | < (1- ) F(x) - p11/2)

= " (1- 2' -(1- 2 ) ) 0 (F() 1

Since the sequence F (xa) converges to F, it follows that as k, s -+ oo, 1 k - xs - O. We conclude that {x k} is

a Cauchy sequence and, therefore, it is a convergent sequence. ·

We are now ready to prove the general convergence result of this subsection.

Proof of Theorem 8. Theorem 9 shows that {xk} is a convergent sequence. Moreover, since function s(x) is a

continuous function in x, sequence {s k} is also convergent. Therefore, from Lemma 4, it follows that = limk-c,, sk

0. Since aik > c, F(xk) - > -af(xk)'dk +o(ldk112). Hence, as k oo, f(xk)'dk - 0, whenever F(xk) - P. Then

Lemma 3 implies that IIXkskI1 -+ 0. It follows that the limit of sequence {x
k) satisfies the necessary conditions of

optimality. The convexity of the objective function F implies the result. ·

6 Variations of the AS Method and Computational Results

Our goal in this section is to examine computationally the performance of the methods we introduced in this paper.

For this reason, we consider the affine scaling method as well as several variations that incorporate the cut ideas from

Section 3. In order to test the methods in this paper, we chose several randomly generated instances of symmetric,

affine variational inequality problems. In particular, we considered variational inequality problems of the following
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format,

Find x* E P such that f(x*)'(x - x*) > 0, Vx E P,

with (i) problem function f (x) = Mx - c, where M is a symmetric, positive semi-definite n x n matrix, vector c E IRn ,

and (ii) polyhedron P = {x E IRn I Ax < b, where A is an m x n matrix, vector b E IRm . We implemented all the

methods using MATLAB version 6.1, on a personal computer with a Dual Xeon processor, 1.5GHz speed and 1GB

RAM memory. Finally, the CPU time was computed using MATLAB's build-in function. In the stopping criterion

we used as tolerance level e = 10- 4 .

In Table 1, we compare the performance of the affine scaling method introduced in this paper with the performance

of the Frank-Wolfe method. We observe that in all the examples we studied, the affine scaling method in this paper

fixes the zigzagging behavior of the Frank-Wolfe method. Moreover, in most of the examples, the affine scaling

method computes a solution in shorter CPU time. Nevertheless, in one of the examples, the Frank-Wolfe method

computed the solution faster (in terms of CPU time) than the affine scaling method. This was an example where the

Frank-Wolfe method did not zigzag but rather the solution of the variational inequality problem lied at a corner point

of the polyhedral feasible region. The Frank-Wolfe method computed the solution in one step (that is, by solving a

single linear optimization subproblem). It is worth noting that a possible reason for the faster convergence of the

Frank-Wolfe method in this example, is that as it solved a single linear optimization subproblem using Matlab's

built-in optimization solver, it relied on the speed of this implementation. On the other hand, in the same example,

the affine scaling method applied a sequence of much simpler steps. Our belief is that a better implementation of

the affine scaling method will yield a similar performance even in this example. In conclusion, we observed that in

most of the examples we generated, the affine scaling method outperformed the Frank-Wolfe method.

Moreover, in Table 2, we compare the performance of the long step affine scaling method we introduced in this

paper (LAS) with that of two other affine scaling methods: i) QLAS, a quadratic approximation long step affine

scaling method (see [17]), ii) DLAS, a long step affine scaling method that considers a quadratic approximation of

the objective further using a diagonal approximation of the Jacobian matrix. We chose the long step versions of these

methods since we noticed that within the family of affine scaling methods the long step versions perform the best

computationally. The two quadratic approximation methods (QLAS and DLAS) perform similarly computationally.

Furthermore, in most of the examples we generated, the affine scaling method introduced in this paper outperformed
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FW
LAS

Table 1:

Frank-Wolfe Algorithm
long step Affine Scaling Algorithm

LAS method vs. FW method

both of these methods in CPU time. We attribute this partly to the simplicity of each iteration. Nevertheless, in two

examples the affine scaling method (LAS) performed worse. Even in these two examples, we drastically improved

the performance of the method (LAS) when we incorporated cuts (see Table 3). This new method significantly

outperformed the two quadratic approximation methods. In what follows, we will discuss this in further detail.

LAS QLAS DLAS
iterations time iterations time iterations time

8 7 10 0.028 10 0.0685 9 0.0667
11 10 9 0.0468 10 0.0859 10 0.0904
31 30 137 1.1397 12 1.3045 11 1.2324
51 30 46 0.7505 15 1.4003 12 1.2455
43 40 21 0.3962 16 3.2849 16 3.4243
166 60 153 41.5669 100 92.3103 100 95.1253
154 77 100 22.3608 95 189.2372 100 201.0876
101 100 221 22.0946 20 87.9 24 101.2705
171 100 803 252.9649 17 79.537 49 234.6041
111 110 801 99.2196 20 97.3761 15 69.733

LAS
QLAS
DLAS

long step Affine Scaling Algorithm
LAS with a quadratic approximation of the objective in the subproblem
LAS with a diagonalized approximation of the objective in the subproblem

Table 2: LAS method vs. QLAS and DLAS methods

In order to further improve the computational results in this paper, we incorporate the cut ideas we discussed in

Section 3 into the affine scaling method. The motivation in this comes from the observation that methods utilizing

cuts often provide better complexity results in theory as well as in practice.
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FW LAS
m n iterations time iterations time

8 7 2 0.0628 10 0.028
10 6 >3000 106.6596 11 0.0315
31 30 18 0.8967 137 1.1397
51 30 >3000 >171 46 0.7505
43 40 2 0.0691 21 0.3962

101 100 >3000 171.244 221 22.0946
171 100 >300 >300 803 252.9649
111 110 269 139.112 801 99.2196



The AS Method with Cuts

1. Start with a strictly feasible point x0 , feasible region K ° = K, tolerance e > 0, and constant r E (0, 1).

2. At iteration k:

(a) Find yk E K such that F(yk) < F(xk).

(b) dk = argmin {f(yk)'d I Ad = 0, I(Yk)-ldll < r}.

(c) Choose step size ak such that (a - ak)f (yk + akdk)'dk > 0, for all a E (0, ck .a), where akam" > 1.

(d) x2k +1 + yk + akdk.

(e) Update Kk+l = Kk n Cut(yk, xk).

3. Stop when If(xk)'dkl < E.

In what follows, we compare the long step affine scaling method (LAS) from Section 5 with several special cases

of the AS method with cuts we just described. These special cases include the following:

(1) Simple cuts. Set point yk = xk and introduce cut Cut(xk,xk) = { I f (zk)' (2- xk) < O0 (LASC).

(2) Cuts based on the dual gap function. Suppose that Assumption 5 holds. We introduce cut

Cut(yk,xk) = I I f (k)' (x - xk) < 0} with

(a) yk = argmaxEK, >( {f(xk)(xk - y) - p xk-Y(,) I Ay = b, (Xk)-l(y - xk)J < r} (LASGs).

(b) yk = argmaxyK {f(xk),(xk _ y) - p iXk - y ( Ay = b, (Xk)l(y _ Xk)j < r} (LASGD).laH,<} LSD

LAS LASC LASGs LASGD
m n iterations time iterations time iterations time iterations time

8 7 10 0.028 10 0.0325 6 0.0586 8 0.052
11 10 9 0.0468 9 0.0302 6 0.066 7 0.0678
31 30 137 1.1397 24 0.2985 8 0.9622 17 1.9883
51 30 46 0.7505 24 0.5143 9 0.7311 13 1.2917
43 40 21 0.3962 21 0.6716 10 0.8234 18 2.2375
166 60 153 41.5669 161 33.2601 12 4.1987 181 61.9024
154 77 100 22.3608 104 25.89 13 4.6085 133 104.8659
101 100 221 22.0946 25 2.9223 12 13.4612 89 392.7285
171 100 803 252.9649 40 15.8761 10 13.4899 50 241.7931
111 110 801 99.2196 33 4.659 13 12.9911 26 108.0049

LAS long step Affine Scaling Algorithm
LASC LAS with cuts Cut(x,x)
LASGs LAS with cuts Cut(y,x), where y is found within { z I Az >=a Ax, with O<a<=})
LASGD LAS with cuts Cut(y,x), where y is found within Dikin ellipsoid

Table 3: AS method vs. AS methods with cuts

Table 3 summarizes the computations that compare the various versions of the affine scaling method of this
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paper. We notice that the two best versions in terms of CPU time are the method that uses simple cuts (LASC)

as well as the method that uses cuts determined via a gap function where the direction of the cut is found within a

restricted feasible region (LASGs). Moreover, Table 3 demonstrates that these two versions compute a solution in a

comparable or even less number of iterations than the quadratic approximation affine scaling methods. Nevertheless,

in terms of CPU time, both methods with cuts are faster. Among the versions of the method with cuts determined

via a gap function, the method where the direction of the cut is found within a restricted feasible region (LASGs)

has consistently the least number of iterations. In colclusion, both LASC and LASGs outperform considerably the

affine scaling method without cuts, both in terms of number of iterations and in terms of CPU time.

Below we summarize our learnings from the computational experiments we performed.

1. All the versions of the affine scaling method we introduced in this paper fix the zigzagging behavior of the

Frank-Wolfe method.

2. In one example the Frank-Wolfe method performed better than the affine scaling method. This was an example

where the Frank-Wolfe method did not zigzag, but rather the Frank-Wolfe method found the solution in one

step through the solution of a linear optimization subproblem. We attribute this to the quality of the Matlab

built-in linear optimization solver. We believe that a better implementation of the affine scaling method will

also yield comparable results in terms of CPU time, even in this example.

3. In theory, the affine scaling method will perform in the worst case similarly to the Frank-Wolfe method.

Nevertheless, in most cases in practice, we believe that the affine scaling will perform better.

4. After comparing all the versions of the affine scaling method we considered in this paper, we conclude that the

LASC and LASGs methods perform better in terms of CPU time. Moreover, in terms of number of iterations,

the LASC method performs a similar number of iterations while the LASGs method performs fewer iterations

than the quadratic approximation affine scaling methods.

5. The LASC and LASGs versions of the affine scaling method outperform the affine scaling method (LAS)

without cuts both in terms of number of iterations and in terms of CPU time.

6. In particular, the LASGs method performs fewer iterations than all the other versions of the affine scaling

method we considered in this paper. Furthermore, it has the best or second best CPU time.
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7. As the dimension of the problem grows, the LASC and LASGs versions of the affine scaling method consistently

outperform the Frank-Wolfe method, the quadratic approximation affine scaling methods we considered, and

finally, the affine scaling method without cuts.

We would like to note that the theoretical convergence properties of the general affine scaling method with cuts

are similar to those of the affine scaling method without cuts. For the sake of brevity we do not include this discussion

in the paper. Finally, we would also like to add that although the theoretical results we established for the affine

scaling method (see Section 5) apply to the symmetric variational inequality problem, computationally this method

seems to also work well for asymmetric problems.

7 Conclusions

In this paper, we have introduced an extension of the general geometric framework for solving variational inequalities

by incorporating both linear and nonlinear cuts. In particular, in this framework we considered as special cases

"smarter" linear cuts. The directions of these cuts were based on the dual gap function associated with the variational

inequality problem. Furthermore, we established complexity results for the methods using these cuts. To make our

results computationally efficient in practice, we introduced an affine scaling method that computed at each step a

direction by solving a subproblem with a linear objective within a Dikin ellipsoid. We proved the convergence of this

method in the case of monotone and symmetric variational inequality problems. The theoretical convergence of the

method in the asymmetric case remains an open question. Finally, we also incorporated cutting plane ideas into the

affine scaling method. In our computational experiments, we observed that even the affine scaling method without

cuts outperformed in terms of CPU time both the Frank-Wolfe algorithm as well as variations of the affine scaling

method that use a quadratic approximation of the objective in the direction finding subproblem. Furthermore, the

affine scaling method with cuts reduced considerably the number of iterations as well as the CPU time for larger

dimensional examples as compared to other methods. Although more extensive computational testing is needed,

preliminary testing seems to indicate that these methods may perform well in practice.
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A

Proposition 8 Suppose Assumptions 5 and 12 hold. Then F(xk) - P > cldk112 for some c > 0.

Proof. Paper [13] has shown that when the problem function f has the property of Jacobian similarity, then for some

positive integer nl < n, there is an orthogonal matrix M, such that for any z E K, it holds that M'HM = (P 00),

33



where H = Vf(x) and matrix P, is an nl x nl bounded, positive definite matrix. Therefore, if we let Hk = Vf(xk),
then

M'HkM (Pk o)

We can express dk = M (k) or dk =k + W k, where sk = M (% ) and wk = M ( k) . From the proof of

Proposition 7 it follows that

F(xk)- F(Xk+l) (a) 2 dkVf(2)dk,

therefore

F(xk) - F(xk+l) > (a) ykpOyk.

When ak > a,

liSkjj = jjykll < A1 (F(xk) F(k+))1/2a

Next we show that Ilikll < - (F(xk) - F(Xk+1))'/2 , for some constant /2. Suppose this is not true. Then, since
{wk ) is a bounded sequence, there exists a subsequence S and a subset J of {1, ..., n} so that

IF(x"+l') - F(ik)nk2 k Wk

- /0, lim w > 0, Vj E J, lim = 0, Vj E jc.
[[~kjj is k-oo,kES jjWkjj k-+[[,kS 110[[

Then from the properties we established above for lskll, it follows that

{Ilskl , Vj E J.

Consider the following system of linear equations

A(sk + w) = 0
f(x 0 )'W = f(ZO),Wk
wj = Wjk V E J
(M'w)j = O Vj = 1,..., nl.

Next we will show that there exists a solution of the above system bounded by IF(xk) - F(xk+l) 1/2. To achieve

this it suffices to show that in the system above the norm of the left-hand-side is bounded by O(F(xk ) -F(xk+l)1/2 ) ,

and the matrix on the right-hand-side is bounded. Paper [13] showed that for any system Ax < b that has a feasible
solution, there exists some solution whose norm is bounded by Allbll, where A is a constant dependent only on matrix
A. Notice that

F(xk) - F(x k+ l ) = akf(xk)'dk + ak 2 /2 dk'Vf(zk)dk

= akf(XO)I(wk + sk) + ak(Xk -_ O)'Vf(zok)dk +ak 2 /2dk'Vf(zk)d k

From this relation it follows that

-f(JO)II = f(z)'sk + ½k1 (F(xk) - F(x+) )

+(xO)M(& ¢), 0\ +ak k''Zky k
+(Xk _ X)'M (° ° ) (k) + y y

where IIZokll, IIZkll, IIxk - ll11 are bounded on K, and a < ak < 1. Therefore, since there exists a solution of this
system, namely wk, there exists a solution wk that is of order O (IF(xk) - F(xk+l)l). Therefore {IIV"kll/llwkll}s - o.
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Let tk = wk - zk . Then it follows that

{
[MItk]i = 0, i = , ...,n
Atk = 0

f(Xk)tk = f(X)'ttk + (k -_ o)M 
/_L 

lHktk = M 

o) MItk = 0
0\I~z

O) M'tk = O

Observe that for large k E S, dk - tk is an optimal solution of (7) lying in the interior of D(xk). Notice that
f(k),(dk _ tk) = f(Xk)dk, A(dk - tk) = 0 and

n|Xk kd i 2

iixk-'@k t)I = Y ( 
I

(Wi 

KXk)

wk )2 dik)2

J J

However our assumptions imply that {(I[tk[I}/{(lwklI)kE - 0, as k - oo. This is a contradiction. 
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ation
variational inequality problem
weak variational inequality problem
general geometric framework
Frank-Wolfe method
affine scaling method
VIP problem function
feasible region
solution, solution set of a VIP
level set
in GGF hyperplane z E I n I a'(z - ) < 0} for vector a E I n

symmetrized Hessian of f
{z E K f (y)'(z - x) < 0}
feasible region is later specified as K = {lAx = b, x > 01
ball centered in x of radius R

If (z)ll < M
K C S(2L)
K D S(2-1 )

Jacobian similarity constant
Lipschitz constant
L1 = L + 31 + og2 (M/E)

L2 = L+ 31 + 21og2 ( (Mx)° p
2L+l)

primal gap function
dual gap function
approximation of Cd
approximation of Cd restricted to Dikin ellipsoid
g(y) = f(z)'(x - y) - p 11x - Y112
"nice" set as defined in GGF
remaining part of a feasible region in GGF
Vol(Pk+l) < b(n)Vol(Pk)
objective function such that VF = f
measure of the distance to the solution set
diag(x)
P = I - XA'(AX 2A')-'AX
s(x) = X-1PXf(XZ)
{y E K I IIX-'dll < r} Dikin ellipsoid around z
arg maxyeK f(y)'(x - y)
argmaxyEK f ()'( - y) - llx IIH(Z)
argmaxy{f(x)'( - y) - pl - y() I Ay = b,y E D(z)}
an e approximate VIP solution
an e approximate WVIP solution
N = {i I si 0}
B = {i = 01
S* = {z I Xs() )= 0, A = b, > 0}
C = I 2i E [0,6) Vi E N}

C Definitions

* f is monotone if (f(x) - f(y))' ( - y) > 0 for all x, y E K.

· f is pseudomonotone if f(y)'(x - y) > 0 implies that f(z)'(x - y) > 0, for all x, y E K.

· f is quasimonotone if f(y)'(x - y) > 0 implies that f(x)'(x - y) 0, for all x,y E K.
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B Not
VIP
WVIP
GGF
FW
AS

f
K C WI'
x*, X*
L
H(z)
H(z)
Cut(y, x)
A,b
S(x, R)
M>O
L>0

> 

L1

L2

Cp(z)

Cd(X)

Cd (z)

g(y)
pk

Kk
b(n) > 0
F(z)
G(z)
X
P

D(x)
Yz
Yzyl
y2

XII

N
B
S*
Ca

;



* f is strongly-f-monotone if there exists a > 0 such that (f(y) - f(x)'(y - ) a Ilf () - f (y)1l2 for all
x,y E K.

* f is Lipschitz continuous if for some constant A > 0 it holds that d'Vf(x)d < Alldji 2
.

* f satisfies the Jacobian similarity property if for some constant p > 1, it holds that d'Vf(x)d < pd'Vf(y)d for
all x,y E K, d E Wn.

* F is convex if F(ax + (1 - a)y) < aF(x) + (1 - a)F(y) for all x, y E K, a E [0, 1].

* F is a-self-concordant if (F"'(x)[d,d,dC) 2/3 < ad'F"(x)d, for every x E K, d E RIn .

* A point (, S) satisfies the property of strict complementarity if xiSi = 0 and xi + si $ 0 for every i.

* A point x is a weak variational inequality solution if f(y)'(y - x) > 0 for all y E K.

* A primal gap function Cp(x) = maxYEK f(x)'(x - y).

* A dual gap function Cd(x) = maxyEK f(y)'(x - Y).

* A point x is an e-approximate VIP solution if Cp(x) < e.

* A point x is an -approximate WVIP solution if Cd(x) < e.

D Assumptions

1. K is a closed, bounded and convex set with a nonempty interior.

2. There exists a function G: K -+ R+ such that x* e argminxEK G (x) if and only if x* is a solution of the
VIP. Each of the level sets of G lies in a nonlinear convex set S as follows:

La = {z I G (z) < a} C S.

3. Given a point y E K, and a small enough > 0, such that minzEx IFx - YlI < e, it follows that
G(y) < min Ex [a(y)'(y - x) - c(y - x)'Q(y)(y - x)], where vector a(y) has a bounded norm and matrix
Q(y) has a bounded operator norm.

4. f is a bounded function. That is, for some M > 0, Ilf (x)II < M, for any x E K.

5. Problem function f exhibits the Jacobian similarity property.

6. A has full row rank.

7. AX 2 A' is invertible for all x e K.

8. The problem function f is Lipschitz continuous with Lipschitz constant A.

9. 21 > logn + 1; L1 = L + 31 + log( M).

10. The problem function f has a symmetric and positive semi-definite Jacobian matrix.

11. Every limit point (, g) of the sequence {xk, s(xk)} has the property of strict complementarity.

12. For some a > 0, for all k, ak > a.
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