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Couplings between quantum systems are frequently less robust and harder to implement than controls on
individual systems; thus, constructing quantum gates with minimal interactions is an important problem in
quantum computation. In this paper we study the optimal synthesis of two-qubit quantum gates for the tunable
coupling scheme of coupled superconducting qubits and compute the minimal interaction time of generating
any two-qubit quantum gate.
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I. INTRODUCTION

Superconducting systems are among the leading candi-
dates for the implementation of quantum information pro-
cessing applications �1�. Due to the ubiquitous bath degrees
of freedom in the solid-state environment, the time over
which quantum coherence can be maintained remains lim-
ited, although significant progress in lengthening that time
has been achieved. A key challenge is how to produce accu-
rate quantum gates and how to minimize their duration such
that the number of operations within T2 meets the error cor-
rection threshold. Concomitantly, progress has been made in
applying optimal control techniques to steer quantum sys-
tems in a robust, relaxation-minimizing �2,3�, or time opti-
mal way �4–6�.

In order to perform multiqubit operations, one needs a
reliable method to perform switchable coupling between the
qubits, i.e., a coupling mechanism that can be easily turned
on and off. Over the past few years, there has been consid-
erable interest in this question, both theoretically �7–11� and
experimentally �12–22�. As a practically relevant and illus-
trative example, we consider the tunable coupling scheme for
flux qubits and considering building two-qubit gates using
minimal coupling time. This is an extension of previous stud-
ies of time optimal control �4�, which considers constructing
quantum gates using one coupling Hamiltonian, to the prob-
lem of constructing quantum gates using two or more cou-
pling Hamiltonians.

II. SYNTHESIZATION OF TWO-QUBIT GATES

In this paper, we will take the tunable coupling scheme
proposed in �23� as our main model for superconducting
quantum computing, but the methods can be easily general-
ized to the other schemes. The tunable coupling scheme in
�23� uses an extra high-frequency qubit to obtain the para-
metric ac-modulated coupling, as shown in Fig. 1. As dis-
cussed in �23�, this coupling scheme has some useful fea-
tures including an optimal point for the effective coupling
energy. At such a point the effective coupling energy is in-
sensitive to low-frequency flux noise, so two-qubit oscilla-

tions can be expected to be long lasting. This coupling
scheme has been recently realized experimentally �24�.

The effective Hamiltonian of this system is �23�

H = −
1

2�
j=1

2

�� j�z
j − uj�t��x

j� − J12�t��x
1�x

2. �1�

In this Hamiltonian, the coupling J12�t� is modulated sinusoi-
dally at the angular frequency ��= ��2��1�. The essence of
the coupling scheme is seen by considering a general modu-
lation of the form

J12�t� = g0 + g+�t�cos��+t� + g−�t�cos��−t� . �2�

To perform single-qubit operations we use Rabi oscillations
driven by a resonant microwave control field,

uj�t� = 2� j�t�cos�� jt + � j�t�� . �3�

In this setup all the temporal dependence of the Hamiltonian
is assumed to arise from the time-dependent flux of the ap-
plied fields. The rotating wave approximation, which is also
valid if cross couplings are taken into account, results in a
rotating frame Hamiltonian of the form
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FIG. 1. By modulating external magnetic field on qubit 3, we
can turn on and off the effective coupling between qubit 1 and qubit
2.
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Hrot =
1

2�
j=1

2

� j�t��cos � j�t��x
j − sin � j�t��y

j �

−
g+�t�

4
��x

1�x
2 − �y

1�y
2� −

g−�t�
4

��x
1�x

2 + �y
1�y

2� .

Here, g+�t� and g−�t� are the effective coupling strengths in
the rotating frame when we apply magnetic field with fre-
quencies �+ and �−, respectively, on the auxiliary qubit.

The problem of using one given coupling Hamiltonian
and local operations to simulate another Hamiltonian has
been extensively studied in �4,5�. What is different here is
that instead of one given coupling Hamiltonian, we have two
tunable coupling Hamiltonians:

H1 = �x
1�x

2 − �y
1�y

2,

H2 = �x
1�x

2 + �y
1�y

2. �4�

Combining with local controls, we want to find out the mini-
mal coupling time synthesizing any given two-qubit gate.
Note that our result can be easily generalized to simulating
Hamiltonian using two general coupling Hamiltonians or
multiple coupling Hamiltonians.

We first review some background materials.
Proposition 1 (Canonical decomposition [4,25]). Any

two-qubit nonlocal Hamiltonian H=�i,jMij�t��i � � j , i , j
� �x ,y ,z� can be written in the form

H = �A � B�†��1
H�x � �x + �2

H�y � �y + �3
H�z � �z��A � B�

�5�

and any two-qubit unitary U�SU�4� may be written in the
form

U = �A1 � B1�e−i��1
U�x��x+�2

U�y��y+�3
UZ�Z��A2 � B2� . �6�

Here A, A1, A2, B, B1, and B2 are single-qubit unitaries and

�1
H � �2

H � ��3
H� ,

	

4
� �1

U � �2
U � ��3

U� . �7�

We call �1
H�x � �x+�2

H�y � �y +�3
H�z � �z and

e−i��1
U

�x��x+�2
U

�y��y+�3
U

�z��z� the canonical form of H and U,

respectively, and ��H and ��U the canonical parameters of H
and U, respectively.

For an element x= �x1 ,x2 ,x3�T of R3, introduce the vector
x̂= ��x1� , �x2� , �x3��T and define the s-order version xs of x by
setting x1

s = x̂1
↓, x2

s = x̂2
↓, and x3

s =sgn�x1x2x3�x̂3
↓, where

�x̂1
↓ , x̂2

↓ , x̂3
↓� is a permutation of x̂ which arranges the entries in

decreasing order, i.e., x̂1
↓� x̂2

↓� x̂3
↓.

Definition 1 [26–30]. The vector x�R3 is s majorized by
y�R3 �denoted x�sy� if

x1
s 
 y1

s ,

x1
s + x2

s + x3
s 
 y1

s + y2
s + y3

s ,

x1
s + x2

s − x3
s 
 y1

s + y2
s − y3

s . �8�

Remark 1. x�sy means that x lies in the convex hull of
���1y	�1� ,�2y	�2� ,�3y	�3�� ��1,2,3= �1, 	i=1

3 �i=1,	 is permu-
tation on �1,2,3��.

From now on, when we say constructing a gate in time T,
we mean constructing the gate with coupling time less or
equal to T, aided by local operations.

Theorem 1 [5]. A unitary gate U�SU�4� can be generated
in coupling time T if and only if we can simulate a Hamil-

tonian H̃ in coupling time T, such that ��U�s�
�H̃ or ��U

+ 	
2 �−1,0 ,0��s�

�H̃. For a given Hamiltonian H�t�, the Hamil-
tonians that can be simulated within time T using H�t� and
local control are the Hamiltonians with the canonical forms
of the following:


�1�x � �x + �2�y � �y + �3�z � �z�

��1,�2,�3��s�
0

T

��H�t�dt, �1 � �2 � ��3�� .

This theorem reduces our problem to the integration of
the canonical form of

H�t� = g+�t���x
1�x

2 − �y
1�y

2� + g−�t���x
1�x

2 + �y
1�y

2�

= „g+�t� + g−�t�…�x
1�x

2 + „g−�t� − g+�t�…�y
1�y

2 �9�

while we absorbed the constant 1
4 into g+�t� and g−�t� and

here g+�t� and g−�t� are both non-negative. We need to find

out the boundary of 
0
T��H�t�dt, as all the Hamiltonians that

can be simulated within time T is s majorized by one of the
points on the boundary. We study the problem in two cases:

Case 1. The magnetic fields of frequencies �+ and �− can
be generated power independently, i.e., g+ and g− are con-
strained independently. Let us say they take values indepen-
dently in the ranges of �0,A� and �0,B�.

Using Proposition 1, we get the canonical parameter of
the Hamiltonian �9�, which is

„g+�t� + g−�t�, �g−�t� − g+�t��,0… .

We will see that it is actually s majorized by

�A + B, �A − B�,0�

since

g+�t� + g−�t� 
 A + B ,

g+�t� + g−�t� + �g−�t� − g+�t�� = max�2g+�t�,2g−�t��


 max�2A,2B�

= A + B + �A − B� ,

so (g+�t�+g−�t� , �g−�t�−g+�t�� ,0)�s�A+B , �A−B� ,0� for all t.
Then given a unitary matrix U�SU�4�, the minimal cou-
pling time needed to generate U is the minimal T such that

��U�s„�A + B�T, �A − B�T,0…

or
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��U +
	

2
�− 1,0,0��s„�A + B�T, �A − B�T,0…

holds.
For example, suppose we want to generate a controlled-

NOT �CNOT� gate,

CNOT = exp�− i
	

4
��z � �x − �z � I − I � �x +

1

2
I�� .

The canonical parameter of CNOT is � 	
4 ,0 ,0�. The two in-

equalities coincide in this case, so the minimal coupling time
needed is the minimal T such that

�	

4
,0,0��s„�A + B�T, �A − B�T,0… ,

which is 	
4�A+B� .

Case 2. The magnetic fields of frequencies �� are gener-
ated power correlated, i.e., g+ and g− are jointly constrained,
g+

2 +g−
2 
M2. In this case the situation is more subtle as there

is no single point, like �A+B , �A−B� ,0�, that s majorizes all
the points in the region.

Since x��sDx� when D�1, to be at the boundary, g+�t� and
g−�t� should take maximal values. Let g+�t�=M sin ��t� and
g−�t�=M cos ��t�, where ��t�� �0, 	

4 � �as � and 	
2 −� give

the same canonical parameter, we will just consider �
� �0, 	

4 ��, then integration of these canonical parameters give
a set of boundary points,

��
0

T

g+�t� + g−�t�dt,�
0

T

�g−�t� − g+�t��dt,0� .

In the case that � is constant, we obtain

��
0

T

g+�t� + g−�t�dt,�
0

T

�g−�t� − g+�t��dt,0�
= TM�sin � + cos �,cos � − sin �,0�

= TM��2 sin�� +
	

4
�,�2 cos�� +

	

4
�,0� . �10�

In the general case where � varies in time, we get

��
0

T

g+�t� + g−�t�dt,�
0

T

�g−�t� − g+�t��dt,0�
= ��

0

T

M sin„��t�… + M cos„��t�…dt,

�
0

T

M cos„��t�… − M sin„��t�…dt,0� �11�

=��
i=1

T/
t

M�sin„��ti�… + cos„��ti�…�
t,

�
i=1

T/
t

M�cos„��ti�… − sin„��ti�…�
t,0� �12�

=�
i=1

T/
t

t

T
TM��2 sin���ti� +

	

4
�,�2 cos���ti� +

	

4
�,0� .

�13�

This is just the convex combination of the points we ob-
tained by constant �, and lies in the interior of those points,
so all the boundary points are achieved by constant �.

So given a unitary matrix U�SU�4�, the minimal time
needed to generate U is the minimal T such that ∃�
� �0, 	

4 �,

��U�sTM��2 sin�� +
	

4
�,�2 cos�� +

	

4
�,0�

or

��U +
	

2
�− 1,0,0��sTM��2 sin�� +

	

4
�,�2 cos�� +

	

4
�,0� .

Again taking CNOT, for example, the minimal time needed
to generate it is the minimal T such that

�	

4
,0,0��sTM��2 sin�� +

	

4
�,�2 cos�� +

	

4
�,0�

holds for one �� �0, 	
4 �. It is obvious that �= 	

4 gives the
minimal time T= 	

4�2M
. So to generate CNOT, we should take

g+�t�=g−�t�=
�2M

2 , turning on the coupling for a time 	

4�2M
.

This control sequence generates the term exp�−i 	
4 �x � �x�,

which is locally equivalent to the CNOT gate.

III. CONCLUSION

To perform large-scale quantum information processing, it
is necessary to control the interactions between individual
qubits while retaining quantum coherence. To this end, su-
perconducting circuits allow for a high degree of flexibility.
In this paper, we found the minimal coupling time required
to generate arbitrary two-qubit quantum gate in the super-
conducting quantum computing scheme. We reduced this
problem to the problem of simulating a desired Hamiltonian
using two Hamiltonians and single-qubit operations and de-
rived explicit forms to compute the minimal time needed to
control the system. The results of this work might be useful
for guiding the design of pulses in superconducting quantum
computing experiments. Minimizing the time taken to per-
form an operation is certainly helpful in the presence of finite
decoherence times. If one were able to take into account the
specific form and time dependence of the environmental cou-
pling, one might be able to devise more robust schemes.
While it lies outside the scope of the current paper, it might
be interesting to combine the time optimal control techniques
with methods that take advantage of correlations in the noise,
e.g., implementing refocusing sequences to counteract the
effects of 1 / f noise �31,32�. Such optimization in the face of
the combination of several different types of constraints is a
challenging problem in both classical and quantum control
theories.
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