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Abstract

We argue that higher-curvature terms in the gravitational Lagrangian lead, via non-relativistic

gauge-gravity duality, to finite renormalization of the dynamical exponent of the dual confor-

mal field theory. Our argument includes a proof of the non-renormalization of the Schrödinger

and Lifshitz metrics beyond rescalings of their parameters, directly generalizing the AdS case.

We use this effect to construct string-theory duals of non-relativistic critical systems with

non-integer dynamical exponents, then use these duals to predict the viscosity/entropy ratios

of these systems. The predicted values weakly violate the KSS bound.
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1 Introduction

The study of non-relativistic conformal field theories has accelerated considerably in recent

years, both theoretically [1] and experimentally [2]. Since these systems are typically strongly

coupled, theoretical progress has depended largely on sophisticated non-perturbative tech-

niques or large-N toy models (for example, the ε [3] or large-N [4] expansions). A general

and computationally effective strong-coupling description would be extremely useful.

It has recently been argued that many non-relativistic CFTs (NRCFTs) should ad-

mit dual strong-coupling descriptions as gravitational systems. In this duality, the non-

relativistic conformal group is realized as the isometry group of a dual spacetime geometry

[5]. A special subset of these geometries were subsequently embedded in string theory (which

allowed a precise identification of the dual NRCFT) and warmed to finite temperature by

the heat of the Hawking fire [6, 7, 8].

Thus far, only a special subset of NRCFTs (those with Schrödinger symmetry with

dynamical exponent z = 2, 4) have found such a home in string theory1. Meanwhile, many

notable effects discovered in the study of NRCFTs – for example, the renormalization of the

dynamical exponent – remain obscure. Finally, with only a few known examples, it is unclear

what features of non-relativistic gauge/gravity duality are robust, or even universal. For

example, do all NRCFTs satisfy the KSS bound, η/s ≥ 1/4π? If not, does some quantum

version persist, as in the relativistic case, or are these systems even more non-universal?

What about more general hydrodynamic physics, much of which is not universal even in the

relativistic case?

In this paper we argue that R2 corrections to the gravitational action map, via gauge-

gravity duality, to a renormalization of the dual NRCFT away from the naive classical result.

By engineering string configurations in which suitable higher-curvature terms are under

control, we construct explicit stringy NRCFT-gravity dualities with non-integral dynamical

exponents z 6= 2. For example, we find that the NRCFT defined by the βDLCQ of an

N = 2 gauge theory with gauge group Sp(N) is dual to type IIB string theory on SchzN
5 .

The dynamical exponent zN of the strongly-coupled theory has a large-N expansion2,

zN = 2 +
2

27N
+O

(
1

N2

)
. (1.1)

1Recently, Hartnoll and Yoshida [9] introduced a novel and beautiful embedding of certain z 6= 2 space-
times into string theory. However, due to the more intricate form of these metrics (explicitly, the Schrödinger
part of the metric varies non-trivially over the compact Sasaki-Einstein space), it is not clear how to use
these spacetimes to construct a dual CFT. It would be very interesting to illuminate this point.

2This expansion is reminiscent of the large-N renormalization of exponents found in other NRCFTs [4].
Reproducing our expansion directly within the dual field theory using such techniques would provide a strong
test of non-relativistic gauge-gravity duality.
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Applying various lessons from gauge-gravity duality, we use these results to argue that the

KSS bound may well be violated by quantum effects in NRCFTs as it is in the relativistic

case [13, 17], with the viscosity to entropy ratio for our main example given by,

η

s
=

1

4π

(
1− 1

2N

)
. (1.2)

This weak quantum violation of the KSS bound suggests that typical NRCFTs, whose critical

exponents are generically renormalized, will not universally satisfy the KSS bound.

This paper is organized as follows. In Section 2 we review the geometry of Schrödinger

space and examine the conditions under which a general theory of gravity+matter will enjoy

Schrödinger solutions to its equations of motion. We then engineer explicit examples of

higher-curvature theories of gravity supporting Schrödinger space. We also repeat these

arguments and constructions for metrics with Lifshitz, rather than Schrödinger, isometry

group. In Section 3 we study the effects of higher-curvature terms present in the IIB action.

Treating these deformations perturbatively, we find new solutions of the IIB with non-integer

dynamical exponent, z 6= 2; for special values of the higher-curvature corrections, we argue

that the dual CFT is the non-relativistic βDLCQ of a Sp(N) gauge theory. Again, similar

results are found for Lifshitz spacetimes. In Section 4 we comment on the hydrodynamics

of these general-z systems and argue that they weakly violate the KSS bound. We close in

Section 5 with comments and open questions.

2 Non-Renormalization of Schrödinger Space

It is a familiar and beautiful fact that quantum corrections to the gravity+matter action

do not lift AdS solutions of the equations of motion – all they can do is renormalize the

AdS radius in units of GN . In this section we will prove a similar result for non-relativistic

Schrödinger and Lifshitz metrics, with the minor modification that both the radius of cur-

vature and the dynamical exponent z may be renormalized. We begin by describing the

geometry of Schrödinger metrics.

2.1 The Non-Relativistic Conformal Algebra

The non-relativistic conformal algebra in d spatial dimensions, known as the d-dimensional

Schrödinger algebra, is generated by spatial translations, Pi, rotations Mij, boosts Ki, and

time translations, H, together with a dilatation operator, D, and a “number” operator, N ,
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with non-trivial commutation relations,

[D,Pi] = iPi [D,Ki] = i(1− z)Ki [D,H] = izH

[D,N ] = i(2− z)N [Pi, Kj] = −iδijN (2.1)

The dynamical exponent z determines the relative scaling between the time and spatial

coordinates, [t]=[x]z, or equivalently fixes the dispersion relation to, ω ∼ kz. The algebra

imposes no constraints on the value of z other than reality. We thus have a one-parameter

family of conformal algebras labeled by z.

It is useful to emphasize how different this is from the relativistic case. Part of the power

of the relativistic conformal group is its rigidity – there are no free parameters that could

possibly depend on the dynamics. Relativistic conformal invariance can thus be used to pow-

erfully constrain dynamical effects. In the Schrödinger case, however, we have a 1-parameter

family of conformal algebras, with the dynamical exponent z providing some information

about how the dynamics of the particular system realizes the conformal symmetry. The

weak-coupling symmetries of the system are simply insufficient to completely fix the confor-

mal structure in the NR case. Indeed, it is known that z may be shifted away from its naive

classical value by interactions [4], an effect we shall examine in detail in what follows.

This is not to say all values of z are equivalent: physically, different values of z correspond

to different dispersion relations; algebraically, a shift of z cannot be realized by any operator

inside the algebra. Shifting z is not a symmetry of an NRCFT. Meanwhile, and importantly,

for special values of z the algebra may be extended to a larger algebra (though of course the

full extended symmetry need not be realized).

For example, consider the special case z = 2. The dispersion relation is ω ∼ k2, so this

is a conformal version of the familiar Galilean group. This case has two important special

properties. First, the generator N is central, since [D,N ] = 0. Representations of the z = 2

algebra are thus labeled by two numbers, a dimension ∆ and a “number” `. (For fermions

at unitarity, N = ψ†ψ, so ` is precisely the fermion number.) Second, the z = 2 algebra may

be extended by a “special conformal” generator C with non-trivial commutators

[D,C] = −2iC , [H,C] = −iD . (2.2)

A more familiar special case is z = 1. This corresponds to the relativistic dispersion

relation ω ∼ k, with H, N and Pi scaling uniformly under dilatations. The algebra may

thus be extended by operators generating rotations and boosts mixing the number operator

with the time and spatial directions. This enhanced algebra is the just the usual relativistic

conformal algebra, SO(d+ 1, 2), aka the AdS isometry group.

Since these extended algebras are larger than the algebra with other values of z, sys-

tems realizing these extended Schrödinger conformal algebras are considerably more tightly
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constrained than those with general z. Explicitly, since the conformal structure has no free

parameters to depend on the details of the dynamics, these systems are considerably more

robust to quantum modification than theories with more general z: were a radiative effect

to shift z, the extended symmetry would be broken! By contrast, for systems respecting the

non-extended conformal symmetry, z may be consistently renormalized, with the dispersion

relation for low-lying modes determined by the details of the conformal fixed point.

2.2 Schrödinger Spacetimes

As in the case of the relativistic conformal group, the non-relativistic conformal group may

be realized as the isometry group of an associated spacetime. We’ll denote this spacetime by

Schzd+3, where d counts the number of spatial dimensions and z is the dynamical exponent.

The metric on Schzd+3 is

ds2 = L2

(
−dt

2

r2z
+
−2dtdξ + d~x2 + dr2

r2

)
, (2.3)

where xi, i = 1, . . . d label the spatial coordinates and L controls the overall radius of

curvature; when we wish to denote the dependence on L explicitly, we will write Schz,Ld+3.

This metric has isometries generated by the following Killing vectors

Mij = −i(xi∂j − xj∂i), Pi = −i∂i, H = −i∂t, Ki = −i(−t∂i + xi∂ξ) ,

D = −i(zt∂t + xi∂i +(2− z)ξ∂ξ + r∂r), N = −i∂ξ. (2.4)

It is straightforward to verify that these obey the Schrödinger algebra. It is not difficult to

exponentiate these infinitesimal generators to find the action of the Schrd̈inger group on the

spacetime (2.3). The special case Schz=2
d+3 enjoys the additional Killing vector,

C = −i(t2∂t + txi∂i −
~x2 + r2

2
∂ξ + rt∂r), (2.5)

realizing the special conformal extension of the z = 2 algebra. The goal of the rest of this

section is to study the conditions under which Schzd+3 may be embedded in a generic theory

of gravity; we apply these considerations to IIB string theory in the next section.

2.3 Invariant two-forms in Schrödinger Spacetimes

Suppose we are looking for Schzd+3 solutions to the equations of motion of gravity coupled

to some matter sector. The basic objects in these equations – the stress tensor Tµν and

the Einstein tensor Gµν evaluated on (2.3) – are symmetric two tensors invariant under the

Schrödinger symmetries (2.4). Due to the symmetry of this geometry, however, there are
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very few such symmetric invariant two-forms. Expanding the Einstein equation in a basis

of such symmetric invariant two-forms will allow us to reduce the search for solutions to

a simple algebraic form. With this motivation, we now proceed to classify all symmetric

two-forms invariant under the Schrödinger symmetries.

Let τ = τµνdx
µdxν be a symmetric two-tensor invariant under the Schrödinger group, i.e.

Lvτµν = 0 , (2.6)

for all of the Killing vectors v listed above. Invariance under H, N and Pi implies that the

components of τµν are functions of r only. Invariance under Mij implies that τti, τξi, τri vanish

and that τij is proportional to δij. Invariance under Ki implies that τξξ and τξr vanish and

that τtξ = τii. Finally, invariance under D implies that

τ = α

[
dt2

r2z

]
+ β

[
−2dtdξ + d~x2

r2

]
+ γ

[
dr2

r2

]
+ δ

[
dtdr

rz+1

]
, (2.7)

for some constants α, β, γ, δ. Thus for generic values of z there is a four parameter family of

symmetric tensors invariant under the continuous symmetries of Schzd+3. The stress tensor

must in addition be conserved,

∇µτµν = 0, (2.8)

which restricts the family of allowed stress tensors to the two parameter class

τ = α

[
dt2

r2z

]
+ β

[
−2dtdξ + d~x2 + dr2

r2

]
. (2.9)

In the special case z = 2, one may show that this two parameter family is in addition

invariant under C. We thus learn that any conserved, Schrödinger-invariant symmetric rank

two tensor is completely specified by the two constants α and β defined above.

This observation allows us to discuss the construction of Schzd+3 solutions under general

circumstances. Consider the equations of motion of gravity coupled to an arbitrary matter

sector via the action

S =
1

16πG

∫
√
g(R− 2Λ) + Sm(g, φi) . (2.10)

Here Sm denotes an arbitrary matter sector with matter fields φi where i = 1, . . . , N . We

will also allow Sm to include higher curvature corrections to the Einstein-Hilbert action. The

metric equation of motion is

Rµν +

(
Λ− 1

2
R

)
gµν = −8πGTµν , (2.11)

where Tµν = δSm/δg
µν includes the usual matter stress tensor as well as additional functions

of the Riemann tensor due to the presence of the higher curvature terms.
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Let us now evaluate this equation on the Schzd+3 metric (2.3). The left hand side is

automatically a conserved two tensor which is invariant under the Schzd+3 isometries, which

may thus be written in the form (2.9). It is not hard to check that the α and β coefficients

are simple functions of z and L,

αG = (z − 1)(2z + d− 3)− (d− 1)(d− 2)

2
− Λ , (2.12)

βG =
(d− 1)(d− 2)

2
+ Λ .

Since the left hand side of our metric equation (2.11) is a Schrödinger-invariant symmetric

two-tensor, the right hand side must also take this form. Hence it must fall in the classifica-

tion of symmetric tensors described above, and in particular must have the values of α and

β given in (2.12).

The invariance of Tµν is a non-trivial constraint on the φi. The simplest way to impose

this constraint is to demand that the fields themselves are Schzd+3 invariant

Lvφi = 0 . (2.13)

Indeed, this constraint is nothing more than the statement that the full background field

configuration – rather than just the metric – is Schzd+3 invariant. In this case, Tµν is au-

tomatically Schzd+3 invariant. If φi is a field (or a collection of fields) of spin 0 or 1 it is

straightforward to check that Schzd+3 invariance implies that the φi are just constants. We

may then view the action as a function of the constants φi. The φi equations of motion are

just minimization with respect to φi

∂Sm(gsch, φi)

∂φi
= 0 . (2.14)

These may be regarded as equations for the unknown constants φi. Since these are N

equations for N unknowns, the system will “generically” have a solution. More precisely, we

have demonstrated that if we have an action which has a Schz,Ld+3 solution, then for sufficiently

small variations of the couplings in the matter sector Schz,Ld+3 will remain a solution to the

equations of motion. The values of φi will change as we vary the parameters of the action.

Of course, it is not strictly necessary that the background fields φi are Schzd+3 invariant in

order for Tµν to be invariant. We will however demand that any gauge invariant observables

must be invariant under the full Schzd+3 symmetry. For example, if we have a U(1) gauge field

Aµ, then we should in general allow non-constant configurations, subject to the constraint

that the fieldstrength F = dA is Schzd+3 invariant. In this case there is a one-parameter

family of such allowed fieldstrengths

F = e
dt ∧ dr
rz+1

, (2.15)
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Of course in this case the stress tensor depends only on the constant e and not on the gauge

dependent form of Aµ.

For any such matter sector, then, the stress tensor evaluated on Schz,Ld+3 takes the form,

Tµν = α(L, z, φi)

[
dt2

r2z

]
+ β(L, z, φi)

[
−2dtdξ + d~x2 + dr2

r2

]
, (2.16)

where α, β are functions of the curvature radius L, the dynamical exponent z and the matter

fields φi. The specific form of these functions will depend on the parameters of the matter

action Sm. The metric equations thus reduce to,

αG = α(L, z, φi), βG = β(L, z, φi) . (2.17)

As the values of φi – or at least of the gauge invariant observables on which the stress tensor

depends – are fixed by the φ equations of motion, these may be viewed as two equations for

the two unknowns L and z.

We conclude that Schz,Ld+3 metrics arise generically as solutions of gravity coupled to

sufficiently general matter – one does not need to tune the parameters in the action to

find a Schz,Ld+3 solution. In particular, if Schz,Ld+3 solves the equations of motion for one

action, then for any small deformation of the parameters in the action we can find a new

solution Schz
′,L′

d+3 with nearby values of z and L. Conversely, variation of the action (due for

example to quantum corrections) can only lead to renormalization of the parameters z and

L appearing in the metric. Thus as quantum corrections are included in the effective action,

the Schrödinger symmetry of the spacetime will be bent (by changing the value of z) but

not broken.

In many cases of interest we may wish to ask whether a particular value of z is found as a

solution to the equations of motion. In this case we are required to impose a one parameter

constraint on the parameters appearing in the action Sm. The value of L is then given by

simply minimizing the action on Schz,Ld+3 as a function of L i.e. by solving

dS(L)

dL
= 0 . (2.18)

This is nothing more than the Schrödinger version of the c-extremization procedure [18, 19].

As an example of the procedure described above let us consider a theory of pure gravity

with no matter fields φi. Diffeomorphism invariance implies that the action will be of the

form

S =
1

16πG

∫
√
g
(
R− 2Λ + c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ + · · ·+ ccsΩCS

)
. (2.19)

where we include the possibility of a gravitational Chern-Simons term in odd dimensions.

The stress tensor Tµν is therefore function of the Riemann tensor and its covariant derivatives.
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Because these are constructed out of the Schz,Ld+3 metric, the stress tensor will automatically

be invariant under the continuous Schz,Ld+3 symmetries. By general covariance, it will be

conserved as well. We conclude that in general Schz,Ld+3 will be a solution to the equations

of motion for arbitrary values of the coefficients (c1, c2, c3, . . . , ccs) appearing in the action

in addition to possible zero parameter constraints (i.e. inequalities). If we wish to fix a

particular value of z then we must impose an additional one parameter constraint.

We should make an additional comment on the higher curvature actions described above.

It is well known that terms in the action which are quadratic in the Riemann tensor may be

shuffled around or removed by a field redefinition of the form

gµν → φ(R)gµν + ψ(R)Rµν + . . . (2.20)

However, this procedure mixes different orders in the derivative expansion, so will not nec-

essarily map solutions of the equations of motion to solutions of the equations of motion. In

particular, a solution where different terms in the derivative expansion are balanced against

one another will not necessarily be mapped to a new solution to the equations of motion.

To see that this is the case, let us imagine applying this change of variables (2.20) to the

usual Einstein-Hilbert action. The resulting equation of motion is fourth order rather than

second order, so the number of solutions to the equations of motion is not preserved. This

subtlety is normally irrelevant, because the derivative expansion is viewed as a perturbative

expansion in the sense of effective field theory. In this case the perturbation series can not

be trusted for solutions in which different orders in the expansion are balanced against one

another. Thus the classical solutions may be taken seriously only if one has an additional

argument that higher terms in the perturbation series can be neglected.

Notably, this can sometimes happen in supersymmetric systems, where higher order terms

are expected to be absent[20]; an example where this is the case will appear in [21]. The

suppression of corrections beyond some fixed order can also happen via fine tuning, as for

example in Banks-Zaks fixed points in which Nf and Nc may be tuned so that precisely two

orders compete but no higher-order contributions matter3.

2.3.1 On the Non-Renormalization of AdS

Before moving on, it is entertaining to rephrase our results in the special case z = 1. In

this case, the conformal algebra may be extended to the full AdS algebra, SO(d + 1, 2).

Remarkably, the only symmetric two-tensor invariant under this enlarged symmetry group

is the AdS metric itself,

τ = τ0

[
−dt′2 + d~x2 + dr2

r2

]
, (2.21)

3We thank Shamit Kachru for discussions on this point.
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where τ0 is the only free parameter (note that we have changed coordinates away from light-

cone to canonical Poincare coordinates). The only possible effect of modification of the

action on the Einstein equation is thus to shift the value of τ0, and thus to rescale the AdS

radius, RAdS. Aside from this rescaling, the form of the AdS metric is not renormalized by

quantum corrections to the effective action; this is the familiar statement that Anti-de Sitter

space is a “universal” solution of quantum gravity.

2.4 A Toy Example: Schzd+3 Solutions of R2 Gravity

As an example of the above discussion, we consider the special case of pure gravity in

D = d+ 3 dimensions with general quadratic corrections to the Einstein-Hilbert action,

1

16πG

∫
dDx

√
−g
(
R− 2Λ + c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ
)
, (2.22)

and look for a Schrödinger solution of the form (2.3). According to the above analysis, this

metric should be a solution for generic values of the parameters ci and Λ in our Lagrangian,

with z and L fixed in terms of these parameters. The equations of motion for this theory

take the form [13]

Rµν −
1

2
Rgµν + Λgµν =

1

2
TRµν , (2.23)

where TRµν is the effective stress tensor generated by the quadratic curvature terms (see

the appendix for details). Evaluated on our metric and expanded in the invariant tensors,

TRµν reduces to two coefficients αT and βT which are unenlightening4 but easily computable

functions of z, L and the ci. The equations of motion set these coefficients equal to those in

(2.12). Keeping z fixed, we can solve one of these equations by fixing L in terms of the ci

and Λ, with the second equation becoming a single condition on the parameters ci and Λ.

For example, consider the case d = 5 with LR2 = (cW 2 − aGB), where W 2 and GB are

the Weyl-squared and Gauss-Bonnet terms, respectively. (This corresponds to c1 = c/6− a,

c2 = 4a− 4c/3 and c3 = c− a.) Solving the equations of motion fixes z and L in terms of c,

a and Λ as,

z = ±1 , L =

√
−3±

√
9− 12aΛ

Λ
, (2.24)

z = ±

√
8cΛ + (9− 12aΛ)± 3

√
9− 12aΛ

32cΛ
, L =

√
−3±

√
9− 12aΛ

Λ
. (2.25)

Notice that AdS with z = 1 is always a solution for any value of a, c. Also note that pure

Gauss-Bonnet with c = 0 leads to degenerate solutions. The interesting (perilous) solutions

4For example, βT = (d−1)(d−4)
L2 (c1d(d− 1) + c2(d− 1) + 2c3).
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are those in the second line. Expanding around small a, c, we have two possibilities

z = ± 3

4
√
cΛ

+O(
√
c,
√
a) , L =

√
− 6

Λ
+O(a, c) , (2.26)

z = ±1

4

√
4− 3a

c
+O(a, c) , L =

√
−2a+O(a3/2, c3/2) . (2.27)

The solution in the first line corresponds to a large z since in our parametrization Λ ∼ O(1)

while c ∼ O(1/N) as we explain in the appendix. If we demand that z ∼ O(1) then c ∼ O(1)

and the approximation becomes suspect. The solution in the second line can in principle

correspond to arbitrary z by tuning c, a but it generically corresponds to large curvature and

hence the approximation breaks down.

Of course, these solutions only exist by balancing terms in the action which are linear

and quadratic in the curvature, raising the obvious concern that truncating to quadratic

order is not reliable. Indeed, it is easily verified that even higher order terms will lead to

order one corrections to the dynamical exponent. We can avoid this danger by re-introducing

a non-trivial matter sector: this introduces a third term to the equation of motion which

allows us to make the contributions from the higher-curvature terms controllably small. We

will exploit this possibility in the next section by studying a particular matter sector, Type

IIB string theory. First, though, we show that our higher-curvature Lagrangian contains

another non-relativistic geometry as a solution, the Lifshitz spacetime.

2.5 Solutions with Lif zd Symmetry

In this section we describe the construction of gravitational solutions with Lif zd+2 symmetry.

We will follow the general strategy of the previous sections. The Lif zd+2 symmetry algebra is

generated by linear momenta Pi, a Hamiltonian H and angular momenta Mij enjoying the

usual commutators, along with a dilatation operator D with nonvanishing commutators

[D,Pi] = iPi, [D,H] = izH . (2.28)

Following Kachru, Liu and Mulligan [10], we may realize these as isometries of a d + 2

dimensional spacetime

ds2 = L2

(
−dt

2

r2z
+
d~x2 + dr2

r2

)
. (2.29)

which we refer to as Lif zd+2. It is easy to check that the Killing vectors

Mij = −i(xi∂j − xj∂i), Pi = −i∂i, H = −i∂t, D = −i(zt∂t + xi∂i + r∂r) , (2.30)

generate the Lif zd+2 algebra. This observation led the authors of [10] to conjecture that

quantum gravity in Lif zd+2 is holographically dual to a quantum fields theory sitting at a
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quantum critical point with Lifshitz symmetry. Such critical points with z = 2 are well

known in the condensed matter literature [16].

The general analysis of this spacetime proceeds exactly as above. The most general

invariant symmetric two-tensor τ = τµνdx
µdxν is

τ = α
dt2

r2z
+ β

d~x2

r2
+ γ

dr2

r2
+ δ

2drdt

rz+1
. (2.31)

Conservation of the stress tensor ∇µτµν = 0 implies that

τ = α
dt2

r2z
+ β

d~x2

r2
+

(
(d− 2)β − zα
d− 2 + z

)
dr2

r2
. (2.32)

Thus there is a two parameter family of conserved stress tensors, just as in the Schrödinger

case.

The metric (2.29) contains two free parameters – z and L – just as in the Schrödinger

case. Following the logic of section 2.1, we therefore conclude that Lif z,Ld+2 may be obtained

as a solution without any fine-tuning of the parameters in the Lagrangian. Likewise, we

conclude that quantum corrections to the effective action will not spoil the existence of a

Lifshitz invariant spacetime, although they may renormalize the parameters L and z.

Like the Schrödinger metric, the Lifshitz metric may be found as the solution of a suitably-

tuned higher-curvature Lagrangian. For example, consider the Lagrangian studied above,

(2.22), with c2 = c3 = 0, i.e. pure R2 gravity. Evaluating the equations of motion on the

Lifshitz metric leads to the relations5

c1 =
L2

6 + 4z + 2z2
, Λ =

3 + 2z + z2

L2
. (2.33)

This solution has the frustrating property that when the space is large, so must be the

higher-curvature corrections, and vice versa. So we appear forced outside the regime of valid-

ity of our perturbative description. Indeed, these solutions balance curvature terms against

curvature-squared terms, so we have no right to expect the quadratic approximation to be

reliable. To avoid this trap, we should re-introduce a non-trivial matter sector, for example

the p-form action of [10]. We will study this system in the next section, where perturba-

tively small higher-curvature corrections will be shown to generate quantum corrections to

the parameters L and z of the Lifshitz metric.

5Note that while AdS remain a solution of this higher-curvature gravity Lagrangian, our Lifshitz solution
is on a separate branch of solutions. As with Schzd+3, we will improve upon this spherical cow in the next
section, where a non-trivial matter sector will give our constructions real legs.
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3 Renormalizing z in Type IIB and Other Animals

As we saw in the previous section, varying the coefficients of higher-curvature terms in the

gravitational action shifts the dynamical exponent z of Schzd+3 solutions of the unperturbed

Lagrangian. In this section we will explore this effect in Schz5 solutions of IIB supergrav-

ity, where higher curvature corrections to the bulk action will renormalize the dynamical

exponent z of the dual NRCFT. This leads to explicit NRCFT-gravity dualities for general

non-integral values of z.

We begin by considering the case of the five dimensional solution Sch2
5 originally pre-

sented in [5] and embedded in IIB string theory in [6, 7, 8]. Incorporating higher curvature

corrections will renormalize the dynamical exponent away from its classical integer value.

We then apply similar reasoning to the Lifshitz system studied in [10], where we again find

z shifted away from its classical value.

3.1 Embedding Non-Galilean Schrödinger Spacetimes in Type IIB

We start with the consistent truncation of type IIB supergravity on a Sasaki-Einstein 5-

manifold described in [6]. In this reduction, the only fields turned on are the metric, dilaton,

five-form flux and the NS-NS three-form flux. Two different ansatz for the ten dimensional

fields were presented in [6]. One of them gives rise to the z = 2 exponent, and the other to

z = 4. We will concentrate on the case of z = 2, although our arguments work just as well

for z = 4. The Kaluza-Klein reduction leads to the five-dimensional action

S =
1

2

∫
d5x
√
−g
[
R + 24e−u−4v − 4e−6u−4v − 8e−10v − 5(∇u)2 − 15

2
(∇v)2

−1

2
(∇Φ)2 − 1

4
e−Φ+4u+vFµνF

µν − 4e−Φ−2u−3vAµA
µ

]
, (3.1)

where Φ is the dilaton, and u, v are related to the warp factors of the compactification. The

gauge field A is related to the B-field in ten dimensions. The action (3.1) admits solutions

with all scalars set to zero so long as FµνF
µν = 0 and AµA

µ = 0 when evaluated in the

solution. One can easily show that this is case for any Schrödinger spacetimes since the

gauge field takes form A ∼ αr−zdt. The equations of motion that follow from (3.1) thus lead

to the Schrödinger metric (2.3) supported by vector dust,

A = α
dt

rz
, (3.2)

with the coefficients fixed to

L = 1 , z = 2 , α = 1 . (3.3)
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Let’s now add general R2 corrections to the five dimensional effective Lagrangian (for a

concise discussion of the origin of such terms in the IIB effective action, see the appendix),

L = R + 12− 1

4
FµνF

µν − 4AµA
µ + c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ + . . . (3.4)

Note that we have again set all scalars to zero – this is consistent in the zero temperature

case on which we focus in this section, though must be relaxed when considering black hole

solutions. Note too that we have suppressed other α′2 corrections which depend on the

gauge flux (e.g. F 4, (dF )2, RF 2). However, since6 F 2=0 and dF=0, the only terms we

need to worry about are of the form7 RF 2. An explicit calculation with all possible tensor

contractions shows that this will not affect the result for the dynamical exponent (we will

however return to this term when studying the matter EOMs). With these simplifications,

the equations of motion that follow from this action are:

∇µF
µν = 8Aν , (3.5)

Gµν − 6gµν =
1

2
FµσF

σ
ν + 4AµAν −

1

2
gµν

(
1

4
F 2 + 4A2

)
+

1

2
TRµν , (3.6)

where TRµν is as described in Section 2 and presented in the appendix.

Since the ci represent α′2 corrections, it is reasonable to treat these corrections perturba-

tively and look for deformed solutions order by order in the ci, at least so long as RAdS � `s.

By the arguments in Section 2, the worst that can happen to the metric under such a pertur-

bation of the action is a renormalization of the parameters L and z. Expanding Eqs. (3.5)

and (3.6) to linear order in ci’s and the above perturbations, we indeed find a renormalized

solution. Defining c4 = 5c1 + c2 as in the appendix,

δz = − 8

27
(2c4 + c3) , (3.7)

δL = − 3

27
(2c4 + c3) , (3.8)

δα =
5

27
(−122c1 + 8c2 + 139c3) . (3.9)

R2 corrections to the IIB action thus renormalize the dynamical exponent away from its

classical value, with the precise value depending on what corrections are generated.

At this point, you might be worrying that the value of z appears dangerously coordinate

dependent, since the R2 terms in the gravity action (and thus their coefficients, the ci) may

be shuffled around by a field redefinition gµν → gµν + f(R)Rµν .... But z is a physical,

6This makes the analysis quite similar to the argument in [15] where it was shown why the five-form flux
could not affect the finite coupling result for η/s in the AdS-Schwarzschild case.

7A topological term like A ∧R ∧R could also in principle be present at this order but one can explicitly
check that R ∧R = 0 so that the gauge field equations of motion are not affected.
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observable quantity in the NRCFT – it controls the dispersion relation, ω ∼ kz – so it had

better remain invariant under field redefinitions! It is thus reassuring to note that the specific

combination appearing before us, 2c4 + c3, is in fact invariant under field redefinitions of the

metric. Sound the trumpets.

Actually, not just yet on the trumpets. Of the parameters defining our solution, two

depend on the invariant combination 2c4 + c3. However, α, the density of the dust, appears

to depend on a different, field-redefinition-dependent, combination of the ci. In fact, under

this field-redefinition of the metric, the F 2 terms themselves get corrected, with e.g. new

F 2R terms generated in the action (notably, we suppressed terms of this form above). It

is straightforward to check that the effect of these terms is only to shift α, not z or L. A

careful treatment of all such terms necessarily gives a coordinate-independent result.

3.1.1 Gauge Theory Duals with z 6= 2

At this point, we have constructed solutions of higher-curvature modified IIB string theory

which realize the Schrödinger group as their isometry group. We have yet to answer, however,

a basic question: who puts the “gauge” in our gauge-gravity duality?

As a warm-up, recall the answer in the special-conformal case, z = 2. In that case,

the duality could be understood as mapping IIB on the Schrödinger spacetime to a twisted

βDLCQ of N = 4 with gauge group SU(N). Concretely, the βDLCQ is defined by choosing

a light-like direction, x+, and an R-symmetry generator, JR, and demanding that all the

fields of the gauge theory be periodic along x+ up to an R-charge dependent phase,

Φ(x+ + L) = e−iβqRΦ(x+), (3.10)

where Φ stands in for any of the fields of the theory and qR its charge under the chosen

R-current, JR. Expanding in modes along the compactified x+ direction, the modified peri-

odicity condition becomes,

Φ =
∑
`

ei`x
+

Φ` , ` =
2π

L
n− βqR , n ∈ Z . (3.11)

The effect of non-zero β is thus to shift the moding by a constant proportional to the R-

charge. To see that the resulting theory is effectively non-relativistic, note that the kinetic

terms for, say, a scalar φ become,

(∂φ)2 = −2 ∂+φ̄∂−φ+ (~∇φ)2

=
∑
`

[
−2i` φ̄`∂−φ` + (~∇φ`)2

]
. (3.12)
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Iff β 6= 0, every mode of φ has a non-trivial first-order kinetic term8. The action is thus

invariant under the non-relativistic Galilei group, with x− playing the role of time. At zero

coupling, the entire action is in fact invariant under the full z = 2 Schrödinger group with

N = ∂x+ . That L remains conformal at finite coupling is a remarkable and beautiful fact.

Let’s now return to our R2-modified examples with z 6= 2. To whom are they dual?

Clearly the answer depends on precisely what combination of higher-curvature terms are

present in the IIB effective action. As reviewed in the appendix, one well-understood and

controlled example involves adding D7 branes to a stack of N D3 branes at an orientifold

fixed plane and taking the decoupling limit. The worldvolume theory is then an N = 2

Sp(N) gauge theory with nH = 2N2 + 7N − 1 hypermultiplets and nV = 2N2 + N vector

multiplets. A standard argument relates the trace anomaly of this theory to the coefficients

of the Weyl and Gauss-Bonnet terms in the dual gravitational action. But N = 2 ensures

that the trace anomaly takes a very simple form in terms of nH and nV . This allows us to

fix the coefficient of the R2 terms in the gravitational action in terms of the rank, N , of the

dual Sp(N) gauge theory.

Now, as we have seen, such an action still has AdS solutions with z = 1 and slightly

modified L. In fact, this is completely robust: the AdS isometry group only preserves

a single rank-2 symmetric tensor, so any deformation of the gravitational action may be

absorbed in a rescaling of the AdS radius, L. Other features of these solutions, of course,

do depend on the details of the R2 corrections, leading to interesting physics; such solutions

have thus received considerable attention.

As we have also seen, the curvature-corrected IIB action also includes Sch5 solutions

whose dual NRCFT is now easily identified as the βDLCQ of N = 2 Sp(N) SYM with

nH(N) hypers and nV (N) vectors. In terms of the gauge theory parameters (i.e. expressing

the ci in terms of N ; for details, see the appendix), our strong-coupling gravitational result

for the renormalized dynamical exponent becomes,

z = 2 +
2

27

1

N
+O

(
1

N2

)
, (3.13)

with z → 2 in the classical large-N limit. Matching this prediction on the field theory side

would be a remarkable check, so let’s see what we can say.

Classically, i.e. at zero coupling, the kinetic terms for all fields but the vector zero modes

take the Galilei-invariant form described above, so we expect z = 2. This matches the O(N0)

8If β = 0, Φ picks up a zero mode without a kinetic term, indicating a strong-coupling break-down of
the non-relativistic Kaluza-Klein reduction along the light-like x+ circle and reminding us that the theory
is fundamentally relativistic. Of course, even with β 6= 0, any field with trivial R-charge will also have a
badly-behaved zero mode. In the cases of interest to us, the only such field is the gauge boson whose zero
mode enforces a Gauss law. While this is an important feature of our theories, for our concerns in this paper,
where most computations are conducted on the gravity side, it can safely be swept under the rug.

15



result on the gravity side nicely. Once we turn on interactions, of course, we can no longer

trust the classical result; in general, z will be renormalized away from its classical value.

Precisely this effect was studied by Son and by Sachdev and Nikolic [4], among others, who

found that, eg in a system of fermions respecting a global Sp(N) symmetry at unitarity,

critical exponents generally receive non-trivial 1/N corrections9. In our finite-N field theory,

then, it is natural to expect a similar non-zero finite-N renormalization of the exponent,

z = 2 + ζ
1

N
+O

(
1

N2

)
, (3.14)

where the explicit coefficient, ζ, is model-dependent but generically non-zero.

This qualitative agreement suggests a very strong and concrete test of our proposal. It

should be possible to extend these large-N techniques to our gauge theories, and to use them

to compute z in 1/N expansion. Comparison to our gravitational prediction would provide

a very sharp test of the strong, i.e. quantum, version of this non-relativistic gauge-gravity

correspondence, which predicts

ζ =
2

27
. (3.15)

It should be noted, however, that this is a rather non-trivial computation, which we pose as

a very much open problem.

3.1.2 Higher Curvature Corrections?

So much for the R2 terms in the IIB action. What about higher curvature corrections?For

example, our 5d IIB action receives α′3 corrections from the well-known C4 term in 10d10.

The non-zero components of the Weyl tensor are

Ctrtr =
2L2(2z − 1)(z − 1)

3r2(z+1)
, Ctx1tx1 = Ctx2tx2 = −L

2(2z − 1)(z − 1)

3r2(z+1)
, (3.16)

where we are now considering a general dynamical exponent. The α′3 correction in IIB is

proportional to
∫ √
−gW where W is given by

W = −1

2
CabcdC

ab
efC

ce
ghC

dgfh + CabcdC
a c
e fC

b e
g hC

dgfh . (3.17)

9For example, in an N -species model of graphene, Son computed the dynamical exponent to be z =
1 − 4

π2N , while in a global Sp(2N) model of unitary fermions, Sachdev and Nicolic computed the critical
fermi energy to be εF

T |Tc
∼ 2 + 5.3

N .
10This is of course a classical correction suppressed by powers of the ’t Hooft coupling, as opposed to the

1/N corrections discussed above. Subleading corrections in the 1/N expansion would include for example R3

terms about which relatively less is known; we leave such corrections to future consideration, but comment
briefly on more general corrections momentarily.
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If one assumes a solution of the type A5 ×M5 where M5 is a 5d-compact manifold, then it

can be shown that after a field redefinition [14], the correction in the effective theory in 5-

dimensions is again given by (3.17) with the indices now restricted to lie in the non-compact

directions. It can be easily verified that δW/δgµν vanishes. On varying one of the Weyl

tensors, the remaining 4 index C3 has to be evaluated on-shell and this vanishes. Hence

there are no C4 modifications to this metric. It is possible that the flux terms at this order

may play a role; we leave the analysis of this possibility as an open problem.

What about still higher-orders? Recalling our classification of symmetric 2-tensors in

Section 2, it should be clear that, up to the assumption that the matter sector is sufficiently

general to allow solutions of the full equations of motion, additional higher-curvature cor-

rections can do nothing but further re-normalize our solutions. So long as we begin with a

solution with curvatures well below string or Planck scale, these renormalizations should be

smaller still.

Finally, it is useful to observe that the results of this section can readily be generalized

to any dimensions and for a general matter sector, and thus well beyond the 5d IIB effective

action. Rather then belabor this point, however, let’s look at a related non-relativistic

system, the Lifshitz spacetime.

3.2 Non-Galilean Lifshitz Spacetimes in 4d Gravity

Another interesting class of non-relativistic metrics with time-reversal invariance is the Lif-

shitz metric, (2.29), first presented by Kachru, Mulligan and Liu in [10]. This metric solves

the EOM that follow from the effective action,

S =

∫
d4x
√
−g (R− 2Λ)− 1

2

∫
(F2 ∧ ∗F2 + F3 ∧ ∗F3)− γ

∫
B2 ∧ F2 , (3.18)

where F3 = dB2 and F2 = dA1. The EOM are

d ∗ F2 = −γF3 , d ∗ F3 = γF2 , (3.19)

and

Gµν + Λgµν =
∑
p=2,3

1

2p!

(
pFµρ2···ρpF

ρ2···ρp
ν − 1

2
gµνF

2
p

)
. (3.20)

The solution to these EOMs takes the form:

F2 = Aθr ∧ θt , F3 = Bθr ∧ θx ∧ θy , (3.21)

where

θt = L
dt

rz
, θxi = L

dxi

r
, θr = L

dr

r
, (3.22)
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L2 = −z
2 + z + 4

2Λ
, A2 =

2z(z − 1)

L2
, B2 =

4(z − 1)

L2
, (3.23)

and

2z = (γL)2 . (3.24)

Note that the value of the coupling γ and the cosmological constant Λ determine the

dynamical exponent. To make this explicit, one can use the first equation in (3.23) in the

consistency condition (3.24). We then get a quadratic equation which can be solved for z as

a function of γ and Λ. To simplify our lives, let’s fix units so that Λ takes the conventional

value of the cosmological constant, Λ = −1
2
(D − 2)(D − 1) = −3, where the last equality

assumed we are working in D = 4. The dynamical exponent is then,

z± =
12− γ2 ±

√
3
√
−5γ4 − 8γ2 + 48

2γ2
. (3.25)

The two roots correspond to dynamical exponents greater (z+) and less (z−) than z = 2.

The “critical” value of z = 2 is obtained when γ2 = 12/5. The value of L,A,B are then

determined in terms of z or γ.

How does the dynamical exponent get modified by the inclusion of higher derivative

corrections to the action (3.18)? Explicitly, consider the action

S ′KLM = SKLM +

∫
d4x
√
−g
(
c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ
)
, (3.26)

where the ci are again assumed to be small. Let z0 be the “classical” value of the dynamical

exponent obtained without the higher derivative corrections (determined by γ from γ =

12z0/(z
2
0 + z0 + 4)) and write z = z0 + δz; similarly, let A = A0 + δA, with A2

0 = 12(z0 −
1)z0/(z

2
0 + z0 + 4). Note that the EOM for the gauge fields is unchanged by the addition

of the higher curvature terms, though the coefficients A and B and the one-forms θµ will

themselves be modified,

θt = L
dt

rz0+δz
, θxi = L

dxi

r
, θr = L

dr

r
, (3.27)

and

L2 =
2

γ2
(z0 + δz), B = −A 2

γL
. (3.28)

Solving the linearized EOM then gives,

δz =
8z0(z0 − 1) [3c4(z2

0 + 2z0 + 3) + c3(9z2
0 − 22z0 + 7)]

5(z2
0 − 4)(z2

0 + z0 + 4)
(3.29)

and

δA0 =

√
3(z2

0 + z0 − 4)√
z0(z0 − 1)(z2

0 + z0 + 4)
δz (3.30)
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Notably, these results are badly behaved near z0 = 1, 2, so these cases of must be treated

separately. As expected, the AdS case z0 = 1 does not receive any corrections. Somewhat

surprisingly, the case z0 = 2 seems to be protected too, at least at this order in perturbation

theory. However, we see no sign of an extra symmetry protecting this solution – indeed, it

is easy to construct ad-hoc higher-curvature terms which do appear to renormalize z0 = 2.

It thus seems unlikely to us that this solution remains protected at higher orders in the full

quantum theory.

Unfortunately, we do not as yet know how to embed these solutions in string theory

(which makes the problem of possible higher-order corrections extremely open-ended), or

to identify unambiguously the dual NRCFT. Nonetheless, whatever the dual theory, we

expect that renormalization of its dynamical exponent is dual to the renormalization of the

gravitational action by higher-curvature terms.

4 Violating The KSS Bound in an NRCFT

We can now apply our machinery to a test of the KSS conjecture in non-relativistic CFTs.

In principle, the way to proceed is to heat up the zero-temperature NRCFT by holding its

feet to the Hawking fire. More precisely, the partition function for the NRCFT in a thermal

ensemble may be found by evaluating the gravitational action on a suitable black-hole solu-

tion and exponentiating. Computing the viscosity-to-entropy ratio is then a straightforward

but intricate application of real-time gauge-gravity duality prescription.

Unfortunately, finding the black hole solution of our higher-curvature theory is far more

difficult than the zero temperature case above, since the form of the solution is no longer

fixed by Schrödinger invariance. The in-principle-straightforward computation of η
s

is thus,

in practice, analytically quite challenging.

Happily, we can use a few simple facts about our Schrödinger spacetimes to derive the

result without any messy mucking about with numerics. Look back at the Schrödinger

metric, (2.3). For any z > 1, the dt2/r2z term falls off more rapidly than the remaining light-

cone-AdS piece of the metric as we approach the zero-temperature horizon at r →∞. The

geometry near the horizon thus reduces to (a DLCQ of) pure AdS with RAdS = L. Puffing

up the zero-temperature horizon, r → ∞, to a fluffy finite-T horizon should thus lead to a

black hole whose near-horizon geometry is the same as the usual AdS black hole. Indeed,

this is precisely what was found by explicit construction in the z = 2 and z = 4 cases studied

in [7, 8, 6]. This is also the structure found in other families of asymptotically-Schrödinger

black holes [22]. As beautifully argued in [23], we may thus import the computation of the

viscosity-to-entropy ratio directly from the case of the asymptotically-AdS black hole dual
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to the Sp(N) theory at finite temperature [13] to get11,

η

s
=

1

4π

(
1− 1

2N

)
. (4.1)

Indeed, following Iqbal and Liu, we may import all of the universal hydrodynamics of our

system directly from the AdS result. It would thus be very interesting to go beyond this

universal hydrodynamic sector. For that, however, we need a full black hole solution; we

leave this thorny problem to future work.

5 Conclusions

We have argued that higher-curvature corrections to the gravitational action renormalize the

dynamical exponent z of a Schrödinger solution to Einstein’s equations. This observation al-

lowed us to embed a class of fractional-z Schrödinger spacetimes in string theory, identify the

non-relativistic conformal field theories which we conjectured to be dual to these spacetimes,

and begin studying their properties at strong coupling. For example, we deduced the ratio

of viscosity to entropy density η/s for a simple class of NRCFTs with non-integral z. This

ratio varied with z in a perturbatively computable way. Notably, this result was derived

indirectly; an explicit computation awaits the construction of asymptotically Schrödinger

black hole solutions of the higher curvature gravity theory. That said, our indirect argument

relies on the Iqbal-Liu proof of universality, whose assumptions our system obeys, making

this an aesthetic lacuna, not a technical one.

In our discussion of finite temperature effects, there are several important points to note.

First, while such a symmetric AdS black hole embedded in asymptotically Schrödinger space

is certainly a finite-temperature solution, it is by no means clear that it is the only such

solution. Indeed, phase transitions in the boundary theory should correspond to instabilities

of the bulk solution12, and it seems likely that the phase structure of these theories may

sometimes be non-trivial. Second, while we were not able to find an analytic solution for the

the black hole metric with z 6= 2, this problem should be numerically tractable. Note that

a numerical solution would likely also be sensitive to the stability of the solution, and thus

shed light on the phase structure of the dual theory. Work in this direction is in progress.

11It may be tempting to write the RHS of this relation in terms of z − 2. This would be misleading – it
is not the dynamical exponent departing from z = 2 that modifies the KSS bound, as is clear from the fact
that the same relation holds for the z = 1 AdS case. Rather, both z and η

s (or rather, as emphasized in [23],
GN ) receive quantum renormalization, with the relation between η

s and z fixed by non-universal features of
the system.

12For a discussion of this connection in AdS/CMT, see for example [24] and references therein. We thank
J. McGreevy for illuminating discussion on this point.
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Finally, it is interesting to ask what disaster, if any, might be signaled by a violation

of the KSS bound. It was shown in [17] that R2 corrections which strongly violate KSS

bound η
s
< 16

25
1

4π
led to the introduction of closed timelike curves13. Thus sufficiently strong

violations of the KSS bound are not consistent with relativistic causality in the bulk. Of

course, since our system is already non-relativistic this can hardly be a concern. However,

the observations of [26] would suggest that the problem with strong violations of KSS are as

much about unitarity and locality as about causality, and should persist in the non-relativistic

limit. It would be interesting to further elucidate this mystery.
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A R2 Terms in the Action and TRµν

Consider the action,

S =
1

κ2

∫
dDx
√
−g(R + Λ + c1R

2 + c2RµνR
µν + c3RµνρλR

µνρλ) . (1.1)

In terms of the D-dimensional Weyl and Gauss-Bonnet quadratic curvature invariants,

W = CµνρλC
µνρλ = RµνρλR

µνρλ − 4

D − 2
RµνR

µν +
2

(D − 1)(D − 2)
R2 , (1.2)

GB = RµνρλR
µνρλ − 4RµνR

µν +R2 , (1.3)

13An equivalent bound deriving from unitarity of the dual field theory appears in [25] – it would be very
interesting to identify any similar bound in the non-relativistic context.
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this becomes,

S =
1

κ2

∫
dDx
√
−g(R + Λ + α1GB + α2W + α3R

2) , (1.4)

where c1 = α1 + 1
6
α2 + α3, c2 = −4(α1 + 1

3
α2) and c3 = α1 + α2.

Varying with respect to the metric gives the “stress tensor”,

TRµν = c3(gµνR
2 − 4RRµν + 4∇ν∇µR− 4gµν�R)

+ c2(gµνRρσR
ρσ + 4∇α∇(νR

α
µ) − 2�Rµν − gµν�R− 4Rα

µRαν)

+ c1(gµνRαβγδR
αβγδ − 4RµαβγR

αβγ
ν − 8�Rµν + 4∇ν∇µR + 8Rα

µRαν − 8RαβRµανβ) .

(1.5)

B R2 Terms in IIB and their Gauge Theory Origins

The purpose of this appendix is to fix the R2 terms in the action in terms of gauge theory

variables. The simplest example [12] is the gravity dual to N = 2 superconformal field

theory with Sp(N) gauge group with four fundamental and one antisymmetric traceless

hypermultiplet. The string theory dual is IIB on AdS5 × S5/Z2 in which 8 D7 branes are

coincident on an O7 plane. The D7 branes and O7 plane wrap an S3 which is the fixed point

locus of the Z2. Using the Weyl anomaly and holographic recipes, the coefficients of the

higher derivative R2 terms in the 5-dimensional effective action can be determined [12, 11].

These are the R2 terms that we will use in the calculations in section 3. Let’s focus on the

case of 5d compactifications of Type IIB Supergravity, whose pure curvature terms take the

form

S =
1

κ2

∫
d5x
√
−g
(
R +

12

`2
+ `2(c1R

2 + c2RµνR
µν + c3RµνρλR

µνρλ)

)
. (2.1)

The trace anomaly for the boundary theory was derived holographically in [12, 11] to be,

κ2〈Tmm 〉 = (−L
3

8
+ 5c1`

2L+ c2`
2L)︸ ︷︷ ︸

α1

(GB4 −W4) +
c3`

2L

2︸ ︷︷ ︸
α2

(GB4 +W4) , (2.2)

where L is the AdS-radius. Let’s define c2 + 5c1 ≡ c4, as only this combination appears in

what follows. We have [11]

2L2 =

(
1 +

√
1− 8

3
(2c4 + c3)

)
`2 . (2.3)

The trace anomaly can also be written as

κ2〈Tmm 〉 =

(
2α2RmnrsR

mnrs − 2(α1 + 3α2)RmnR
mn +

2

3
(α1 + 2α2)R2

)
, (2.4)
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where m,n, r, s are 4-d indices. We know that for a N = 2 theory with nV vector multiplets

and nH hypermultiplets, the trace anomaly is

〈Tmm 〉 = τ

(
(nH − nV )RmnrsR

mnrs + 12nVRmnR
mn − 1

3
(11nV + nH)R2

)
. (2.5)

Here [11] τ = 1
24×16π2 . Comparing coefficients we get 3 equations for 2 variables,

ñH − ñV = 2α2 , 12ñV = −2(α1 + 3α2) , 11ñV + ñH = −2(α1 + 2α2) . (2.6)

The tilde-d variables are the original ones times τκ2.

Consider specifically the case when the gauge group is Sp(N). In this case with 1/κ2 =

N2/(4π2L3) and,

nH = 2N2 + 7N − 1 , nV = 2N2 +N , (2.7)

using which we get perturbatively in 1/N

c3 =
1

16N
+O(1/N2) , c4 = − 5

32N
+O(1/N2) . (2.8)

This is consistent with the findings in [13]. In the main text we sometimes set L = 1 which

to O(1/N) is the same as setting ` = 1.
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