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We analyze a quantum walk on a bipartite one-dimensional lattice, in which the particle can decay

whenever it visits one of the two sublattices. The corresponding non-Hermitian tight-binding problem

with a complex potential for the decaying sites exhibits two different phases, distinguished by a winding

number defined in terms of the Bloch eigenstates in the Brillouin zone. We find that the mean

displacement of a particle initially localized on one of the nondecaying sites can be expressed in terms

of the winding number, and is therefore quantized as an integer, changing from zero to one at the critical

point. We show that the topological transition is relevant for a variety of experimental settings. The

quantized behavior can be used to distinguish coherent from incoherent dynamics.

DOI: 10.1103/PhysRevLett.102.065703 PACS numbers: 64.70.Tg, 05.60.Gg, 74.78.Na

The recent achievement of quantum control in super-
conducting artificial atoms coupled to microwave resona-
tors opens many new possibilities to investigate coherent
dynamics in many-level quantum systems using solid-state
devices [1]. These systems, as well as those realized in
phase qubits [2], feature dynamics on one or several lad-
ders of discrete quantum states [1]. Strong coherent cou-
pling of these states to external ac fields and to each other
can be used as a vehicle to generate single photons [3], to
realize quantum state storage and transfer [4,5], and to
demonstrate nonlinear quantum-optical phenomena [6,7].

In light of these new possibilities, it is tempting to look
for new phenomena that could serve as a litmus test of
quantumness in ladders of quantum states. Here we discuss
an example of a quantum walk that exhibits a topological
transition resulting in a discontinuous behavior of observ-
ables which is absent for an incoherent classical walk.

A quantum system is said to exhibit a topological tran-
sition when it features several phases, characterized by a
topological invariant that takes on different quantized val-
ues in each of these phases [8]. Topological transitions are
of special interest in part because they are often robust
against many types of noise [9], as is well known, for
example, in the case of the quantized Hall effect.

We consider a quantum walk on a bipartite one-
dimensional (1D) lattice, from which the ‘‘walker’’ (parti-
cle) can decay whenever it resides on the sites of one of the
sublattices [see Fig. 1(a)]. Because of hopping between
sites, a particle initially localized on any of the non-
decaying sites will eventually decay from the system.
Surprisingly, we find that the average displacement of the
particle before its decay, h�mi ¼ P

mmPm, is exactly
quantized as an integer (0 or 1 unit cells), where Pm is
the probability distribution for decay from different sites
[see Figs. 1(b) and 1(c)].

This quantization results from an underlying topological
structure; in this case it is the winding number of the

relative phase between two components of the Bloch
wave function, shown in Fig. 1(d). Using the topological
origin of this phenomenon, we are able to show that the
quantization is insensitive to parameters and is robust
against certain types of noise and decoherence. This quan-
tized behavior should be contrasted with the continuous
behavior of h�mi in the case when hopping is completely
incoherent, shown in Fig. 1(c).
In our discussion, we first focus on the general aspects of

the topological transition, after which we outline its rela-
tion to a Jaynes-Cummings model with decay. Models of

FIG. 1 (color online). (a) Quantum walk on a bipartite 1D
lattice. Each unit cell m contains two sites B (filled circles)
and A (open circles). Decay with rate � occurs from each site of
the B sublattice. Intracell (wavy lines) and intercell (straight
lines) tunneling occur with amplitudes v and v0, respectively.
(b) Schematic distribution of local decay probabilities fPmg used
to calculate (c) the expected displacement, Eq. (3), after full
decay of the initially localized state. In the absence of quantum
coherence, h�mi would depend smoothly on v and v0 (dashed
green curve). The quantization of h�mi is topological in nature,
and is linked to (d) the winding of the Bloch eigenstates of the
Hamiltonian (4). Here we plot the component ratio �k ¼ c B

k =c
A
k

vs. momentum k for ��< k < �.
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this type often arise in a variety of experimental systems
such as trapped ions, cavity QED, and, in particular, solid-
state artificial atoms coupled to resonators [1,3–5,7]. In
addition, a real-space realization of our quantum walk may
help settle a long standing question about the quantum
coherence of vortex transport in Josephson arrays [10].

The configuration space of the problem consists of states
labeled by the lattice indexm, taking integer values�1<
m<1, and the sublattice indices A andB. In this basis, the
state of the system jc i is described by the amplitudes
c A

m ¼ hmAjc i and c B
m ¼ hmBjc i, and evolves according

to the equations of motion

i@ _c A
m ¼ "Ac

A
m þ vc B

m þ v0c B
mþ1

i@ _c B
m ¼ ~"Bc

B
m þ vc A

m þ v0c A
m�1:

(1)

Without loss of generality, we choose v > 0 and v0 > 0.
The on site energy ~"B ¼ "B � i@�=2 for the B states has an
imaginary part that accounts for the decay of these states
with rate �, while the on site energy "A is real.

The problem (1) is an example of non-Hermitian quan-
tum mechanics in one dimension, which in recent years has
found applications to a variety of different problems (see
Ref. [11] and references therein). Much of the interest in
these 1D problems was triggered by the idea that an
Anderson localization transition can occur in disordered
transport with an imaginary vector potential [12]. In con-
trast, our problem is translationally invariant; the transition
results from competition between two processes, intracell
and intercell hopping, which occur with amplitudes v and
v0 [see Fig. 1(a)].

Now, suppose the system is initialized to the A state

c A
m ¼ �m;0; c B

m ¼ 0 (2)

at time t ¼ 0, and allowed to evolve freely under the
equations of motion (1). Because of translational invari-
ance, we can equivalently start anywhere on the A sub-
lattice. Under the dynamics (1), the wave packet describing
the quantum walker spreads throughout the lattice and
leaks out through its components on the B sites, decaying
completely as t ! 1. Given the ability to detect the site m
from which the decay occurs, and thereby measure the
decay probability distribution Pm [see Fig. 1(b)], we would
like to find the expected displacement

h�mi � X
m

mPm; Pm ¼
Z 1

0
�jc B

mðtÞj2dt: (3)

Although h�mi can be obtained from an explicit calcula-
tion of the system’s time evolution operator, here we
pursue a less direct approach that helps uncover the topo-
logical structure behind the solution. The result is sup-
ported by numerical simulations, which also allow us to
test the model’s robustness against decoherence.

As a first step in the calculation of h�mi, we note that
the norm of a quantum state jc i evolves according to
d
dt hc jc i ¼ ihc jðĤy � ĤÞjc i. For Hermitian systems,

Ĥy ¼ Ĥ and d
dt hc jc i ¼ 0. However, our system is non-

Hermitian due to the complex energy ~"B, and, as seen
from the equations of motion (1), decays according to
d
dt hc jc i ¼ �P

m�jc B
mj2. The decay is thus described as

a sum over local terms accounting for the decay from each
site of the lattice, Eq. (3), with

P
mPm ¼ 1.

It is beneficial to pass to the momentum representation,
c B

m ¼ 1
2�

H
dkeikmc B

k , where the integral is taken over the

Brillouin zone �� � k < �. Because of the translational
invariance of the system (1), the equations of motion in the
Fourier representation break up into 2� 2 blocks, one for
each value of momentum k:

i@
d

dt

c A
k

c B
k

� �
¼ "A vk

v�
k ~"B

� �
c A

k

c B
k

� �
; (4)

with vk ¼ vþ v0eik. The two-component wave functions
for different k values are decoupled. The probability den-
sity pkðtÞ � jc A

k ðtÞj2 þ jc B
k ðtÞj2 to find the system with

momentum k at time t decays as @tpk ¼ ��jc B
k ðtÞj2.

Writing m as a derivative with respect to k via mc B
m ¼

� i
2�

H
dk d

dk ðeikmÞc B
k and integrating by parts to move the

derivative onto c B
k , we bring Eq. (3) to the form

h�mi ¼ i�
Z 1

0
dt

I dk

2�
c B�

k

@c B
k

@k
: (5)

Next, we use the polar decomposition c B
k ðtÞ ¼ ukðtÞei�kðtÞ,

where uk ¼ jc B
k ðtÞj and �k ¼ argfc B

k ðtÞg. We assume that

ukðtÞ> 0 for all t > 0, which follows from Eq. (4) after
some algebra [13]. Using the fact that

H
dkuk@kuk ¼ 0 is

an integral of a total derivative over a closed contour, we
rewrite Eq. (5) as

h�mi ¼
I dk

2�

Z 1

0
dt

@pk

@t

@�k
@k

; (6)

where we replaced��jukðtÞj2 by @tpk in Eq. (6). With the
help of integration by parts in the integral over t, the time
derivative can be moved from pk onto @k�k, giving
h�mi ¼ I0 �

R1
0 dt

H dk
2�pk@tð@k�kÞ, with

I 0 ¼
I dk

2�

�
pk

@�k
@k

��������
1

t¼0

�
: (7)

We will now show that the boundary term I0 provides the
only nonzero contribution to the integral (6). First, we use
integration by parts on the integral over k to obtain

�
Z 1

0
dt

I
dkpk

@2�k
@t@k

¼
Z 1

0
dt

I
dk

@pk

@k

@�k
@t

: (8)

As demonstrated below, this integral vanishes because pk

and @t�k are both even functions of k.
In order to see that pk and @t�k are even functions, it is

helpful to view the evolution (4) within each 2� 2 k sub-
space as the precession of a decaying pseudospin in a
(complex) magnetic field with z component "A � ~"B and
transverse component of magnitude 2jvkj ¼ 2jvþ v0eikj.
Because jvkj ¼ jv�kj, a static rotation about the z axis

maps Ĥ�k into Ĥk, with Ĥk the 2� 2 matrix in Eq. (4):

e�i’k�̂
z
Ĥ�ke

i’k�̂
z ¼ Ĥk; ’k ¼ argfvkg: (9)
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Given that the initial state (2) is oriented along the z axis in
pseudospin space for all k, in the rotated frame (9) the
pseudospins associated with momenta k and �k evolve
identically. Because state (2) has equal magnitude in all
momentum sectors, the moduli of the k and �k pseudo-
spins are equal for all times, pkðtÞ ¼ p�kðtÞ. Furthermore,
from (9) their phase difference is time independent, ��k ¼
�k � 2’k, which proves the claim.

To evaluate I0, we use the facts that all k states are
initially occupied with equal probability pkðt ¼ 0Þ ¼ 1,
and that the state decays completely, pkðt ! 1Þ ¼ 0.
Substituting these values in Eq. (7), we find

h�mi ¼ �
I dk

2�

@�0k
@k

; �0k � lim
t!0þ

�kðtÞ: (10)

Although ukð0Þ ¼ 0, the limit t ! 0þ is well defined.
Expression (10) is a surprising result: the expected

displacement of the particle as it spreads out and decays
is equal to the winding number of the relative phase be-
tween components of the Bloch wave function. In particu-
lar, this means that h�mi can only take on integer values.
Using c B

k ðdtÞ ¼ �iv�
kdt=@, we have �

0
k ¼ argf�iv�

kg. It is
thus immediately clear that there are two possible situ-
ations depending on whether or not vk ¼ vþ v0eik wraps
the origin as k is taken around the Brillouin zone: h�mi ¼
1ð0Þ when v0 > v (v > v0).

It is perhaps not entirely obvious from this discussion
that the transition at v ¼ v0 is a characteristic of the
Hamiltonian rather than of the initial state. To clarify this

point, we examine the eigenstates of Ĥk and plot the ratio
of their components �k ¼ c B

k =c
A
k in the complex plane.

As shown in Fig. 1(d), the winding number about the origin
changes from 1 at v0 > v to 0 at v0 < v.

Furthermore, one of the eigenvalues of Ĥk becomes real
at the transition v ¼ v0, where vk¼� ¼ 0. This indicates
the formation of a nondecaying dark statewith c B

k¼� ¼ 0;
under these conditions, the k ¼ � component of the initial
state remains stuck on the A sublattice for all t.

Because of dark state formation, the average decay time

�� ¼ �
Z 1

0
t
d

dt
hc jc idt ¼

I dk

2�

Z 1

0
pkðtÞdt (11)

may become very long near the transition (here we used
d
dt hc jc i ¼ 1

2�

H
dk@tpk and integrated by parts). Close to

the transition v ¼ v0, when jvk��j � @�, the dynamics
(4) yields pkðtÞ � expð��ktÞ, where �k is given by
Fermi’s golden rule: �k¼jvkj2�=½ð"A�"BÞ2þð@�=2Þ2�.
Substituting these expressions into Eq. (11), and using the
change of variables z ¼ eik, we get

�� ¼ ð"A � "BÞ2 þ ð@�=2Þ2
2�i�

I dz

ðvzþ v0Þðvþ v0zÞ ; (12)

where the integral is taken over the unit circle jzj ¼ 1.

Using the residue theorem, we see that the decay time
indeed diverges at v0 ¼ v as �� / 1=jv� v0j.
Conspicuously, neither the quantization of h�mi nor the

discontinuity at v ¼ v0 depend on the values of the decay
rate � or the energies "A=B. Furthermore, the analysis

leading up to Eq. (10) goes through even for time-
dependent � and "A=B. In particular, the integral (8) still

vanishes because the states k and �k see identical time-
dependent effective fields, up to a rotation (9). This sug-
gests that the sharp transition [Fig. 1(c)] survives dephas-
ing due to classical noise on the energy levels "A=B.
To investigate this remarkable indifference to dephasing,

we have performed direct numerical simulations of the
equations of motion (1) up to a fixed time T and restricted
to a finite chain of 51 unit cells. During each time step tn <
t < tn þ �t, we evolve the state forward in time and bin
the probability of decay from each unit cell. In Fig. 2(a) we
show the results for the mean displacement (10) and the
decay time ��, obtained using the distribution Pm [see
Fig. 2(b)], and the formula �� ¼ P

njc ðtnÞj2�t. The simu-
lation, showing clear quantization, was then altered to
include exponential damping of the A-B off diagonal ele-
ments of the system’s density matrix with rate �2.

FIG. 2 (color online). Results of simulation on finite system of
N ¼ 51 unit cells and � ¼ "A � "B ¼ 1. (a) Displacement h�mi
(blue circles) and decay time �� (red diamonds). Filled symbols
were obtained by evolving the wave function up to time T ¼
100. Longer running time is needed near the critical point (open
symbols, T ¼ 500). The black dashed line shows 1� jc ðTÞj2,
used to monitor completion of the simulation. Finite length and
running time effects appear as rounding of the step. Results of
simulation with �2 ¼ 10 (green boxes) show that quantization
survives A-B decoherence. (b) Decay probabilities fPmg at
v=v0 ¼ 1

9 , 0.85, 9. The distribution is broad near the transition

v ¼ v0, but the mean remains quantized.
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Consistent with expectations, the quantization is robust
against such intersublattice dephasing (green boxes).

In order to identify physical systems that realize the
quantum walk studied above, it is helpful to redraw the
quantum walk schematic [Fig. 1(a)] as shown in Fig. 3(a).
Here the tensor product structure of the Hilbert space
spanfjmi 	 je1=e2ig is clearly displayed. This bipartite
structure commonly arises in the description of a two-level
system coupled to a harmonic oscillator, as in the Jaynes-
Cummings (JC) model. A similar structure arises in the
problem of coupled electron and nuclear spins in quantum
dots in the presence of competing spin-orbit and hyperfine
interactions [14].

The JC model we consider is governed by a Hamiltonian

with the general form: ĤJC ¼ @�âyâþ 1
2 �ð�̂z � 1Þ þ

ð�ei!t�̂þâþ	ei!
0t�̂þ þ H:c:Þ, where ây and â are the

harmonic oscillator creation and annihilation operators,
f�̂
g are Pauli matrices acting on the two-level-system
subspace, and � and 	 are parameters that control the
intracell and intercell hopping v and v0 in the related
quantum walk. The energy � includes the real energy
difference between the states je1i and je2i and an imagi-
nary part�i�=2 responsible for the decay of je2i. Decay of
this form has been studied in a variety of experimentally
relevant contexts (see, e.g., Ref. [15]).

The time-dependent couplings in the general
Hamiltonian allow for the possibility of external driving;
depending on the specific implementation, these terms
may be static or time dependent. However, in a rotating

frame where �þ ¼ ei!
0t�̂þ and ~a ¼ eið!þ!0Þtâ, with

the two-photon resonance condition � ¼ !þ!0, the

Hamiltonian ĤJC is time independent:

HJC ¼ 1
2�"�

z þ �ð�þ~aþ ��~ayÞ þ	ð�þ þ ��Þ; (13)

where �" ¼ � � !0. Next, we rewrite ~a ¼P
m>0

ffiffiffiffi
m

p jm � 1ihmj, and similarly for ~ay. In the semi-
classical limit of a highly excited oscillator, hmi ¼ N 
 1,

we extend the sums to include �1<m<1 and replace
the factors of

ffiffiffiffi
m

p
by

ffiffiffiffi
N

p
, to obtain ĤJC ¼ 1

2�"�
zþ

�
ffiffiffiffi
N

p P
mðjm�1ihmj�þþ��jmihm�1jÞþ	ð�þþ��Þ.

This model is equivalent to Eq. (1) with v ¼ 	 and v0 ¼ffiffiffiffi
N

p
�.
Experimentally, for the JC systems considered here, the

quantity h�mi is related to absorption by the oscillator. The
quantization causes an abrupt change from absorption to
no absorption as a function of the parameters � and 	.

Because the intercell hopping amplitude v0 ¼ �
ffiffiffiffi
N

p
, the

location of the transition depends on the oscillator excita-
tion N [see Fig. 3(b)]. At the transition, we predict a
suppression of fluorescence by the two-level system due
to dark state formation (cf. Refs. [16,17]).
In summary, the topological transition in a quantum

walk problem provides a unique signature of quantum co-
herent dynamics. It can be used to probe quantumness in a
variety of systems, including Jaynes–Cummings-type lad-
ders of quantum states, as in qubits or two-level systems
coupled to resonators [1], or grids in position space, such as
Josephson arrays [10].
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FIG. 3. Realizations of the non-Hermitian quantum walk in
Jaynes–Cummings-like systems. (a) Representation of the quan-
tum walk (1) in a form that reveals the relation to the Jaynes-
Cummings ladder of states. (b) 2D plot showing the phases of
absorption and nonabsorption by the oscillator, separated by the
topological transition (10). The location of the transition depends
on the excitation state of the oscillator due to the

ffiffiffiffi
N

p
dependence

of the harmonic oscillator matrix elements. Fluorescence is
suppressed at the transition (dashed line) due to dark state
formation.
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