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A. NOISE REDUCTION BY MEANS OF A LOSSY BEAM TRANSFORMER

The minimum noise figure of a traveling-wave tube obtainable by means of lossless

beam transformers has been found (1) to be

F m = 1 + 4T- (4QCf f )1/2 (S - 1o) (1)
mm kT max mm o o

where

So= -A1/

in which 4o is the self power spectrum of the noise voltage, To is the self power
0 0

spectrum of the noise current, A is the imaginary part of the cross power spectrum
0

of the noise voltage and current, and H is the real part of the cross power spectrum;
O0

the subscript o indicates that all noise power spectra are taken at a reference plane

beyond the potential minimum in the electron gun. The reference plane is chosen suffi-

ciently far from the potential minimum that an approximate single velocity treatment of

the electron flow is justified at and beyond the reference plane. In other words, the

average velocity of the electrons at the reference plane must be large compared to their

velocity spread.

If the corresponding power spectra at an arbitrary cross-sectional plane of the

electron beam are indicated by 4, 4, A, and H, and if we set S = ( \'- A ) 1/ 2 , then

S = So and 1 = H , as proved before (1), provided only lossless beam transformers act

upon the beam. Velocity jumps, beam expansions and contractions, and the like, if

analyzed under the assumption of a one-dimensional geometry, are examples of lossless

beam transformers.

It is of interest to know whether or not an extraction of noise power from the

electron beam would lead to a lower ultimate noise figure than that given in Eq. 1.

A wide class of microwave structures that extract rf power from an electron beam

can be represented as lossy nonreciprocal four-terminal networks so far as their
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Fig. VII-1

Equivalent circuit of a lossy nonreciprocal four-terminal network.
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action upon the rf beam voltage and current is concerned. A helix terminated in passive
loads at both ends is an example of such a structure (2). It has been proved that the
action of a lossy beam transformer upon a beam before it enters the amplifier structure
cannot improve the noise figure of a traveling-wave tube below the limit given in Eq. 1.
The proof is summarized below.

The most general nonreciprocal lossy four-terminal network can be represented by
an equivalent circuit (3) as shown in Fig. VII-1. The amplifier (or attenuator) charac-
terized by the matrix of the generalized circuit parameters (4)

k o

o k]

has an amplification (or attenuation) k which is limited by the inequality

S(k + - (R G + 1)1/2

The noise parameters So and no which are fed into the network at the point za appear at
the output terminals at zb as S2 and 1r2 . The difference S2 - r enters into the expres-
sion for the minimum obtainable noise figure of a traveling-wave tube whose rf structure
follows the beam transformer at z > zb. It is proved that the extraction of rf power
from the beam does not improve the noise figure of a traveling-wave tube below the
limit given in Eq. 1 if it is shown that [(S 2 - H)/(S - 1O) >1I for any choice of the

network and for any noise characteristics. If one expresses the parameters So and I1o,
S and 12, in terms of the power spectra -1' ),' A l and 1l at the point 1 in the equiva-
lent circuit of Fig. VII-1, one finds

( Z 2  G I 1/2 HG
S+ p1 2 1 ) Sl 1 p 1

Sz - I S 2 S l S1  S 1
S - o R2V R 1+ i)1/2 1 R T

S SI S SI S 11 1

This expression can be minimized with respect to (Rs 5 )/S 1 , (G p 1 )/S 1 , and RsG ,
keeping in mind that 1 

= (S~ + A )/ 1 > S /P1 according to the definition of the noise
parameter S. The minimization corresponds to a proper choice of the transformer
network. We find that the minimum of the right-hand side of Eq. 3 is equal to unity,
independent of the parameter l1//S1, that is, independent of the character of the noise
in the beam.

In conclusion, the following statement can be made: Under the assumption that a
one-dimensional analysis of the electron beam is justified, a lossy "four-terminal"
beam transformer preceding the amplifier structure of a traveling-wave tube cannot
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lower the noise figure of the traveling-wave tube below the value given in Eq. 1. This

value is fixed entirely by the noise process between the cathode and a reference plane

beyond the potential minimum in the electron gun.

H. A. Haus

References

1. Quarterly Progress Report, Research Laboratory of Electronics, M.I.T., April
15, 1954.

2. H. Schnittger, D. Weber, Fernmelde Technische Zeitschrift, 7, 302 (1953).

3. H. A. Haus, Paper to be published in the Journal of Applied Physics.

4. E. A. Guillemin, Communication Networks (John Wiley and Sons, New York,
1931).

B. NOISE-REDUCTION SYSTEMS

1. Optimum Space-Charge Regions

The noise-reduction factor of a general accelerating region, operating on a noise

space-charge wave of infinite standing-wave ratio (see the Quarterly Progress Report,

April 15, 1954), has been optimized with respect to the parameter yl. Physically this

corresponds to adjusting the "input ratio" yl = IJ1 /V 1 of the region to obtain a maxi-

mum noise reduction.

Figures VII-2 and VII-3 show the results graphically. For a chosen set of 6 = u2/ul
and r the physical structure of the region is fixed. To such a point in Fig. VII-2 there

correspond optimum rf input conditions to the region which are specified by yl opt"

(Figure VII-3 is an example of the variation of yl opt for the case of a space-charge-

limited region.)

Hence, the dc parameters 6 and r of an accelerating region, together with the cor-

responding optimum rf input conditions, determine the optimum noise reduction factor

r 1 min of such a region.

The actual input conditions are obtained from the input ratio

J 1 2E 1/2 6+1l1/2/J /2 *

y1 opt V 6 ) 1 optI opt ("2

This optimum "input ratio" is then realizable by a proper drift region preceding the

chosen accelerating region.
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7

Fig. VII-2

Minimum noise reduction factor

vs velocity ratio (y optimized).

Fig. VII-3

Optimum input conditions for
a space-charge-limited region.

The important new result is that a space-charge-limited accelerating region, = 1,
has the lowest noise reduction factor for 6's up to 3. 6 (a voltage increase of 13 times).
Only for velocity ratios greater than 3. 6 will the velocity jump, = 0, give better noise
reduction.

2. Regions of Constant Acceleration

These regions are characterized by the fact that there is no space charge, i = 0,
and hence the electron velocity increases linearly. Although this may be considered as
a special case of the general region investigated above, due attention must be given to
the electronic equations used. Since the Llewellyn-Peterson equations are space-
charge equations, for the case of no space charge they will apply only if the length of
the region is short as compared with the space-charge wavelength.

Under such conditions, the constant accelerating region of finite transit time was
analyzed for its noise-reduction properties. The noise-reduction factor (see the
Quarterly Progress Report, April 15, 1954) was found to be

)2 6322
1 (1 - czl 1  + 6 1  Y1

r1 2 2 2
6 Z 1Y 1+1

where yl = J 1/V I; 6 = u 2 /ul; zI  = (ul/Jo)(wql/w); and c = x/kql must be a constant,
small compared to 1/4 (x is the distance between electrodes; Xql is the space-charge

wavelength at the first electrode).
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Minimization of r l with respect to yl yielded

r 1 2); 6 >> 1; c <1 21 min 62 3 1;34

with the corresponding optimum "input ratio"

c
l opt z1 (63 + c - 1)

These equations show that a finite length (but short compared to Xql/4) ( = 0 region can

be made to give noise reductions at least as good as a velocity jump (c = 0), by properly

adjusting the input conditions.

A. Bers

C. EXAMINATION OF ASSUMPTIONS IMPLIED IN PREDICTED MINIMUM NOISE

FIGURE FOR TRAVELING-WAVE TUBES

Watkins (1) and later Pierce (2) predicted a minimum noise figure for traveling-wave

tubes of 6 db. Implied in these predictions are the following assumptions: (a) excitation

of only the fundamental beam mode of propagation; (b) no coupling of beam modes in the

electron gun; (c) no space-charge smoothing or related phenomena at microwave fre-

quencies.

The first assumption is known to be in error. In previous work, Rowe (3) showed

that the higher modes of propagation will be excited to an appreciable extent. According

to Rowe's theory only about two-thirds of the noise power at the cathode goes into the

first mode, the remainder into the higher modes. This fact should result in a noise

figure lower than that predicted, since the higher modes couple less strongly to the

helix than the fundamental. To obtain the theoretical minimum noise figure, however,

the beam must be acted upon by velocity jumps and accelerating regions that reduce the

effect of the fundamental mode but are apt to act adversely on the higher modes and

enhance their otherwise negligible contribution to the noise figure. In the light of these

considerations, the inclusion of the effect of the noise in at least the second mode seems

warranted in traveling wave tube noise calculations.

While the beam modes (4) in an unaccelerated ion-neutralized electron beam are

essentially orthogonal, this is not the case in regions where dc acceleration occurs;

the beam modes will be coupled to a certain extent. An estimate of the amount of mode

coupling to be expected can be obtained by computing the coupling that takes place in

velocity jumps. For a parallel beam in an infinite magnetic field, a good approximation

to the amount of coupling that takes place in a velocity jump can easily be determined by

expanding the ac velocity (or current) distribution of the modes before the jump in terms
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Table I

Beam Mode Coupling in Velocity Jump 40 Volts to 640 Volts. Beam
Diameter, 1 mm. Infinite Magnetic Field.

Modes After Jump

1st

Ist

2nd

3rd

4th

0.812

0.249

-0.095

0.054

Modes Before Jump Normalized to 1

2nd

-0.068

0.968

0. 138

-0.061

3rd

0.019

-0.070

0.991

0.087

Table II

Beam Mode Coupling in Velocity Jump 640 Volts to 40 Volts. Beam
Diameter, 1 mm. Infinite Magnetic Field.

Modes After Jump

1st

Ist

2nd

3rd

4th

1.198

-0.294

0.149

-0. 092

Modes Before Jump Normalized to 1

2nd

0.088

0.998

-0.128

0.064

3rd

-0.019

0.080

0.995

-0.078

of the velocity (or current) distributions of the modes after the jump. The results of

such computations for two specific cases are summarized in Tables I and II. The

coupling of each of the first four modes before the jump to the first four modes after the

jump is given. The two velocity jumps are perhaps extreme cases and give estimates

of the upper limits to the amount of coupling that will occur between modes in the pre-

helix region of traveling-wave tubes. Tables I and II indicate that the coupling of the

first mode before the velocity jump with the second mode after the jump may be as high

as 25 percent.

In performing these computations an infinite magnetic field was assumed to prevent

lateral motion of the electrons. A more refined computation is planned which will

include the electrostatic lens action of the accelerating region in finite magnetic

fields.
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The correctness of the assumption of no space-charge smoothing at microwave fre-

quencies cannot be determined until a knowledge of the mechanism of space-charge

smoothing is attained. The existence of space-charge smoothing at low frequencies has

been established both experimentally and theoretically. While the theory does not lead

immediately to a clear understanding of the mechanism of space-charge smoothing, it

does seem to indicate that an excess of electrons in one velocity group temporarily

lowers the potential minimum and thereby reduces the number of electrons in all velocity

groups so that, on the average, the original excess charge is almost cancelled. Most of

the remanent noise seems to be caused by the velocity modulation introduced by the dif-

ference in the velocity of the original excess charge and the mean velocity of the com-

pensating charge. If we assume that the mechanism of space-charge smoothing is as

outlined above, a relaxation time for the space charge smoothing process can be

obtained on the basis of an admittably questionable assumption. Our purpose is to get a

dimensionally correct expression that is closely related to the assumed process of

space-charge smoothing.

We adopt a one-dimensional picture of the region between the cathode and anode.

The dc current is assumed to be space-charge-limited so that a virtual cathode exists a

very short distance in front of the actual cathode. The dc current density is then

I1 = Ic exp(-e Vmo/kTc)

where I c is the average current density emitted from the cathode, Vmo is the potential

of the virtual cathode relative to the real cathode, and T is the cathode temperature.

A short pulse of "sheet" electrons with a velocity sufficient to get past the space-charge

minimum and total surface charge density -ql is emitted from the cathode into the

otherwise steady-state space-charge-limited current. A positive surface charge den-

sity ql, the image of -ql, is left behind on the cathode. An electric field approximately

equal to q 1 /Eo then extends between q 1 and -ql. This field will undoubtedly be modified

by the steady-state space charge but in order to obtain a result without solving the space-

charge problem we assume that such is not the case. The lowering of the potential mini-

mum immediately after the passage of -ql through it will be given by Vml q1/ o Xm
where X is the distance of the virtual cathode from the real cathode. We now assumem
that this results in a modified current density

I1 + I1 = Ic exp[-e(Vom + Vlm)/kTcl

which gives

eV

I1 -Io kT
c
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The value of Vim will, of course, decrease towards zero as the field of the charge
carried across by II cancels the field of the original excess charge. Nevertheless, in
the spirit of the present approximate analysis, we assume VIm, and hence II, to be con-
stant until sufficient charge crosses the minimum to neutralize -ql and then drops
immediately to zero. The time required for this to take place should yield a rough esti-
mate of the relaxation time for the space charge smoothing process provided, of course,
that the assumed mechanism of space-charge smoothing is the correct one. This time

is

q kT E

I I eX1 0 m

with Xm = 0. 002 cm, T = 1000 0 K, Io = 1 ma/mm 2 , T 10-10 sec. This result indi-

cates that space-charge smoothing for frequencies up to approximately 3 x 109 cps can-

not be ruled out entirely and that a more accurate analysis is required. Of importance,

too, is the fact that the transit time of electrons from the cathode to the virtual cathode

is also of the order of 10 - 1 0 sec so that an excessive delay in the onset on the supposed

space charge mechanism will not be caused by this factor.

D. L. Bobroff
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D. NOISE IN ELECTRON BEAMS

1. Low-Noise Gun Design

Noise measurements have been performed on a low-noise three-region gun devel-

oped by R. W. Peter (1). The specifications supplied with the gun indicated the following

operating conditions: cathode temperature, 1050-1100 0 C; cathode current, 300 Ia;

beam-forming electrode voltage, 0 volts; first anode voltage, 37 volts; second anode

voltage, 110 volts; third anode voltage, 530 volts; magnetic field, 455 gauss. It was

found, however, that with the voltages given above the beam current was approximately

25 percent more. No current was intercepted by any of the electrodes.
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Figure VII-4 shows a number of noise-current curves as functions of distance along

the drift tube.

In all of these curves the cathode temperature, the beam-forming electrode voltage,

and the first anode voltage were adjusted to the prescribed values. For one of the

curves, the other parameters correspond to the specifications supplied. For the other

curves, however, either the second or the third anode voltage differed from the recom-

mended data. The essential characteristics of the noise-current curves may be sum-

marized as follows. The noise-current maxima were at least 19 db below the pure shot

noise level, provided the second anode voltage was not grossly misadjusted. Under the

same conditions, the standing-wave ratio did not exceed 7 db. By suitably adjusting the

second anode voltage, the standing-wave ratio could be reduced to approximately 1. 5 db.

The indications were that with a few more trials even further reductions could have been

obtained. Under most conditions, the product Imax min remained remarkably constant

at 22 + 1 db. Exceptions occurred when the second and third anodes, or the second

anode and cathode were tied together; the resulting product of I I . then becamemax mm
19 ± 0. 5 db and 17 + 0. 5 db, respectively. In both cases, however, the collector current

changed by approximately 15 percent. According to a recent, somewhat restricted,

theory of Pierce (2) and a more general one of Haus (3), the product Kd I maxI min must

be conserved as long as no rf power is added to or subtracted from the beam. Here, Kd
is the impedance of the beam; I and I n denote the noise-current maximum and

minimum, respectively. Further experiments will be made to test this theory.

2. Interception Current

A number of measurements have been performed in an effort to determine the effect

of interception current upon the noise in electron beams. The prevailing explanation and

treatment of partition noise is due to North (4). For complete space charge smoothing

r2 is very small, and the partition noise can be described according to North's formula

as follows:

- I -I

i2 c nx 2el Af
n I n

c

The factor (Ic - In)/Ic represents the fraction of the cathode current that does not reach
th

the n collector. In a traveling-wave tube, In would represent the collector current;

(I c - I)/Ic, the interception current. If, in a traveling-wave tube, the interception

occurs before the beam enters the circuit, the beam current passing through the circuit

contains an additional noise current. This noise current is uncorrelated with the noise

currents and velocities otherwise contained by the beam.

The effect of interception current was determined experimentally, first, with

the parallel gun described in the Quarterly Progress Report of October 15, 1953.
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Noise current vs cavity position of a confined-flow
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Noise current vs cavity position, using the three-region gun
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A portion of the beam was intercepted by an aperture plate. This aperture plate was

attached to the anode on the side away from the cathode. Figure VII-5 indicates the

effect of the interception current on the noise measurements. Even though the noise-

current minima were raised as a result of partition noise, the noise current remained,

usually, much below the level that would be predicted by Eq. 1. The noise level as com-

puted from Eq. 1 is indicated by dashed lines.

The effect of interception noise was also determined, with Peter's low-noise three-

region gun. Figure VII-6 shows how the noise characteristics were affected when 60-65

percent of the beam was intercepted. The interception was made this time with the aid

of an aperture hole in the shutter attached to the movable cavity. The curves of Fig.

VII-6 were taken with anode voltages corresponding to (a) the values recommended by

Peter and (b) the values at which the standing wave was smoothed out.

It became evident from the data given in Fig. VII-6 that the noise always remained

much below the level that was computed from Eq. 1. The noise level calculated from

Eq. 1 was again indicated by dashed lines. Thus North's partition noise formula does

not seem to apply under the conditions of these experiments.

C. Fried
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E. LARGE-SIGNAL MEASUREMENTS

The measurements on the movable klystron structure described in the Quarterly

Progress Report of January 15, 1954 were continued. The bunching process caused by

a velocity-modulation input was studied in a beam in two different geometries. The

first geometry employs a large drift tube (2. 25 inches, inside diameter) and a thin beam

(beam diameter, 0. 055 inch) described in the January report. The second geometry

involves an expandable telescopic drift tube (0. 085 inch, inside diameter) surrounding

an electron beam 0. 055 inch in diameter.

The telescopic drift tube was mounted by means of hooks on the opposing walls of

the movable cavities. The cavities slid inside the large drift tube (inside diameter,

2. 25 inches). See Fig. VII-7. The hooks that held the telescopic drift tube in position

could be unlatched inside the vacuum by means of a rod-and-cam arrangement and the

-44-



(VII. MICROWAVE TUBE RESEARCH)

Fig. VII-7

Schematic of beam and drift-tube geometry.

small telescopic drift tube could be dropped to the bottom of the larger drift tube. Thus,

the identical measurements could be repeated on the identical beam in two different

geometries. The input power to the buncher cavity and the output power from the catcher

cavity were measured by TBN-3EV-W thermistor bridges. The accuracy of the power

measurements was 0. 2 db; the frequency of operation was 3000 Mc/sec.

The catcher cavity was placed at the position of the first current maximum. The

output power and the position of the maximum were recorded as functions of the input

power in the two geometries. A plot of the experimental data is shown in Fig. VII-8.

The power reference level is arbitrary.

From Fig. VII-8 it can be concluded that the plasma wavelength of the beam in the

telescopic drift tube (system a) is larger than that of the beam in the large drift tube

(system b), as predicted by theory. The standing-wave pattern of system a begins to

change, and the position of the maximum starts to shift at a smaller power input to the

buncher cavity in system a than in system b. The gain of system b, although smaller

at small signal levels than the gain of system a, is constant over a wider range of input

and output power than system a. Actually, the constancy of the gain of system b with the

output power, as compared with that of system a is even more to the advantage of the

former than Fig. VII-8 shows. If it is assumed that the distance between the buncher

and catcher gap is kept constant and equal to a quarter of the respective small signal

plasma wavelengths, a new plot can be constructed in which the data are corrected for

the shift of the current maximum. This plot is shown in Fig. VII-9, which emphasizes

the advantage of system b over system a so far as constancy of gain is concerned.

These experiments seemed to indicate that a modification in the conventional klystron

design would lead to an improvement of efficiency at constant gain. If the diameter of

the drift tube was made several times larger than the beam diameter and the space-

charge forces were correspondingly increased, the gain of the klystron, although

decreased, would stay constant up to a higher power output level than is the case when
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Comparative measurements of the first current maximum in systems a and b.
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Data of Fig. VII-8 corrected for the shift of the current maximum.
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the space-charge forces are kept small by a drift tube closely surrounding the beam.

The importance of the last statement requires further experimental confirmation,

since the present experiments were carried out on a beam of small perveance. The gain

of the klystron structure was not much above unity. Further experiments will be carried

out in the future to determine whether or not the conclusions given above are also valid

for beams of high perveance.

H. A. Haus

F. COUPLING OF TWO CONCENTRIC HELICES

Considering two concentric helices as a pair of coupled transmission lines and

assuming on them a wave that varies as exp (jwt - Fz), a set of telegrapher's equations

may be written

FV 1 - jX 1 I 1 - jX 1 2 I 2 = 0

FI 1 - jB 1V 1 - jB 1 2 (V 2 - V 1)= 0

(1)

Fv 2 - jX 2 I 2 - jX 1 2 I 1 = 0

Iz2 - jB 2 V 2 - jB 1 2 (V 1 - V 2 ) = 0

from which four values of F can be obtained, giving two positive and two negative

traveling waves. Each pair of waves interferes in such a manner that power is trans-

ferred periodically between the two helices, with the power flow in the direction of the

interfering waves.

In order to have complete transfer of power between the two helices in each quarter-

beat wavelength two conditions must be met

X 1 (B 1 - B 12 ) = XZ(B 2 - B 1 2 ) (2)

and

X B X B
12 B12 X1Z B 12

or << 1 (3)
X1X2 BB Z  X1X2 B1 B2

With some manipulation condition 2 gives a relation between the phase velocities on the

two helices

2 2 b(Z 1 -Z 2)]
v 2 =1 1 + Z(4)

Zmean

where v is the velocity, Z is the impedance, and b is the normalized mutual susceptance.
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B
1 2B B (5)

As in Eq. 1, the subscripts 1 and 2 relate to helices 1 and 2, where helix 1 will be

denoted as the inner helix. Since b is negative, and Z1 > Z 2, v 2 turns out to be slightly

smaller than v 1 . This small difference is very critical, however, for transfer of power

and directivity of power flow. In Fig. VII-10 a comparison of the directivity for two

helices with equal phase velocities and two helices with the phase velocities determined

from Eq. 4 is shown.

Condition 3 can be met most easily in practice by making the coupling between the

helices loose. Since the fields around the helices decay quite rapidly, a ratio of dia-

meter of 2 to 1 is more than adequate.

POWER IN FORWARD DIRECTION

POWER INBACKWARD

n DIRECTION

3 4 5 6 7

FREQUENCY (K MC/SEC)

FREQUENCY(K MC/SEC)

Fig. VII-11

Transmitted power vs frequency.

Fig. VII-10

Directivity properties of two helices:
(a) correct phase velocity conditions;
(b) equal phase velocities.
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(VII. MICROWAVE TUBE RESEARCH)

Another condition that must be met for power coupling is that the coupling helix

must be of a diameter that is small enough to be well below the forbidden regions of

Sensiper's analysis at the highest frequencies used. This condition can be shown to be

X > Zrra(1 + sin T) (6)

where X is the free-space wavelength, a is the radius of the helix, and W is the

helical angle. For the experimental coupling, the cut-off frequency was found to be

6.4 kMc/sec. The experimentally determined transmitted power began to fall off sooner

than predicted, as shown in Fig. VII-11. This makes the limitation on the coupling helix

diameter even more stringent than that given by Eq. 6.

The discrepancy between theoretical calculation of the beat wavelength by the sheath

helix approximation and the experimentally determined beat wavelength (see the Quarterly

Progress Report of January 15, 1954) has been partly resolved. This was done by con-

sidering corrections for the presence of a shield around the coupling helix and the fact

that the structures were real wire helices rather than sheath helices. The presence of

dielectric was found to have little effect other than that caused by the change in phase

velocities.

The use of Tien's helix impedance reduction factor closely accounted for the dis-

crepancy between the experimental and theoretical determinations of the beat wavelength.

The theoretical justification of its use, however, is somewhat questionable. The effect

of the outer shield can be taken into account by a quasi-static approach (2) to find the

reduction in field strengths. This quantitatively accounts for the lengthening of the beat

wavelength that results from the presence of the shield.

A. J. Lichtenberg
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