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RESEARCH OBJECTIVES

In the Quarterly Progress Report of January 15, 1954, R. M. Fano gave an intro-
ductory discussion of the two kinds of problems that arise in applying information the-
ory. The first is the determination of the amount of information generated by a message
source, such as a speaker or a television camera. The second is the representation of
a message in the best form for economical transmission over an imperfect channel.

In connection with problems of the first kind, work on speech and picture compres-
sion was discussed. These programs are nearing the end of the first phase of equipment
construction. During the coming year descriptions of equipment, calibration procedures,
and preliminary measurements will be reported as progress is made.

Work on problems of the second kind is also continuing. This work is centered on
the simplest noisy channel: a binary channel that transmits zeros or ones and has the
probability po of transmitting any digit incorrectly. The channel is so simple that it is
possible to compute answers to a variety of detailed questions about error-correcting
codes designed for it. It is also possible to build coders and decoders out of relays and
trigger-pairs. This means that such codes can be tested, and some preliminary con-
struction of apparatus for this purpose is under way.

Since information is a measurable quantity it can be considered somewhat analogous
to energy (1). For example, certain switching circuits realized by means of delay lines
and adders have this property: they may alternately store and give up the information
supplied to them in the form of a sequence of binary digits in the same way that networks
with inductive and capacitive elements store and give up the energy supplied to them in
the form of time "sequences" of voltage and current. If certain restrictions are met,
such information filters may be "lossless"; the analogous electrical-energy filters would
be termed "reactive."

An intensive study of the properties and possible syntheses of information-filters
was undertaken in the belief that proper internal feedback within such filters may sta-
bilize them against the effects of component failure and external noise. From the view-
point discussed above, the problem of obtaining error-free information from a noisy
communication channel can be related to the problem of designing a feedback network
which is lossless for the transmitted signal but lossy for external disturbances. Some
details of the work mentioned above will soon appear as a technical report.

A practical realization of information filters might be in terms of sequential
switching circuits. Switching theory is also developing useful techniques for the treat-
ment of indefinitely extended sequences of binary variables. Therefore, steps have been
taken to insure close cooperation among people with interests in both information theory
and switching theory.

P. Elias, D. A. Huffman

A. THE SYNTHESIS OF ITERATIVE SWITCHING CIRCUITS

One of the properties of an iterative, or "positional, " switching circuit is that its

ability to transmit may, in general, depend upon a large number of binary switching

variables. For example, the extended relay-contact network shown in Fig. XI-1 trans-

mits a ground to the output terminal if and only if the number of operated relays in the
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Fig. XI-1

An "even" circuit.

circuit is even. (Unprimed contacts are normally closed; primed contacts are normally

open.) It is clear what the fundamental structure of a typical cell of this network is, and

this structure (as in all iterative networks) remains the same throughout the network

even if the number of variables is large.

In the synthesis of iterative switching networks (2) it has been difficult to be certain

that the specification of terminal requirements is exact. One conceivable (and accurate)

way to describe the transmission of a network with n binary variables would be to list

an output of either one or zero (ground or no ground for a contact network) for each of

the 2n possible input states in a table of combinations (truth table). Clearly this table

would become excessively large for relatively small values of n. (For example,

210 = 1024.)

What is needed is a method of specification that becomes complex only if the struc-

ture of a typical cell in the network is complex, and from which the typical cell itself

may be synthesized directly.

The synthesis method proposed here satisfies these requirements and is based upon

the fact that the variables in an iterative circuit are ordered from left to right, just as

the input to a sequential switching circuit is a sequence of digits ordered from the past

to the future. Therefore, an iterative circuit can be considered a sequential circuit with

the variables ordered in space rather than in time. And we should be able to describe

an iterative circuit by means of a flow table (3).

As an example we shall synthesize a contact network that transmits a ground if and

only if at least two of the relay variables are equal to unity. A typical cell in such a

network must "know," by means of the grounds on its input leads, how many variables

to its left have the value unity and must transmit this knowledge - modified according

to its own binary value - to the right (to the next cell).

Only three classifications of data need be distinguished by such a cell. Either

1. no variables to the left have the value one, or

2. one variable to the left has the value one, or

3. two or more variables to the left have the value one.
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These three mutually exclusive states have been assigned the state-designators, "0,"
i1," and "2," respectively, and are associated with the three rows of the flow table in

Fig. XI-2(a). The two columns of the table correspond to X. = 0 and X. = 1.
1 1

The six entries within the flow table itself specify the way in which the state of the

circuit is modified when the value of the variable within a new typical cell is considered.

For example, the entry "2" in the row associated with state "1" (the middle row) and

with Xi = 1 (the right-hand column) is interpreted as follows: If to the left of a typical

cell there is just one variable with the value unity, and if the value of the variable in the

cell is also unity, then the data to be sent on to the next cell to the right are that two

variables have the value one.

The output data in Fig. XI-2(a) tell whether or not the circuit should transmit a

ground when the contact network is terminated just to the right of the typical cell under

consideration.

The knowledge about the circuit state which is given to a typical cell is coded as a

set of grounds on one or more input leads to the cell. The knowledge given to the next

cell to the right is coded in exactly the same way. In our present example (and also in

Fig. XI-1) two leads are sufficient. They correspond to states "1" and "2." That is,

the state "O" is associated with no grounds on the cell leads; the state "1," with a ground

on the first lead; the state "2, " with a ground on the second lead.

Now the data in the flow table must be used to show how to connect the contacts within

a typical cell (see Fig. XI-2(b)). The bottom pair of "2" entries in the flow table tells us

that if the second input lead is grounded, the second output lead is to be grounded,

regardless of whether X i =0 or X. = i. Thus the second input lead is tied directly to the

second output lead.

The entry "2" in the middle row of the flow table instructs us to ground the second

output terminal if the first input lead is grounded and if X. 1. The diagonal X. con-
1 1

tact in the typical cell accomplishes this.

The entry "1" in the top row tells us that when neither input lead is grounded and

when Xi = 1, the first output lead should be grounded. The proper result is obtained by

means of the X. contact, which has one terminal connected to ground. The other entry
1

"1" (in the X. = 0 column) corresponds to the X' contact.
1 1

When an indefinite number of typical cells is connected in cascade (Fig. XI-3), it is

found that two of the contacts in both the left-hand and right-hand cells are superfluous.

All that we need do to complete the synthesis is to take the circuit output from the sec-

ond output terminal of the last cell. The resultant contact network transmits a ground

if and only if there are two or more operated relays in the circuit.

Because the flow table specification of an iterative circuit synthesis problem does

not mention the physical nature of the binary variables, it holds, also, for example, for

an electronic realization. A typical cell for one possible analogous vacuum-tube circuit
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The derived relay circuit.
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The typical cell of an analogous vacuum-tube circuit.
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is shown in Fig. XI-4. For this circuit, X. has the value one or zero, depending on

whether the input voltage X i is high or low. The symbol T refers to a triode or to two

triodes in parallel with a common plate-load resistor, and the symbol P to a pentode.

We indicated that the flow table is an implement in the synthesis of a wide variety

of switching circuits; its use is valid whether the variables be ordered in space or in

time. The complexity of the description for an iterative circuit does not depend upon

the number of variables any more than the complexity of description for the synchro-

nous sequential circuit depends upon the length of time it is allowed to operate. Finally,

the methods that have already been developed for the simplification and manipulation of

flow tables (3) have been shown to have a double usefulness.

D. A. Huffman
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B. SEQUENTIAL SWITCHING SYSTEMS WITH CLOSED MEMORY

I. Introduction

Before discussing this problem it is necessary to define some of the basic concepts

of switching circuit theory.

Consider a switching system with several input and output terminals. Each terminal

has associated with it a binary (two-valued) variable which may be physically repre-

sented by the presence or absence of a conduction path to ground, the presence or

absence of a voltage pulse, one of two voltage levels, and so on. The possible states

of these variables are generally designated as either 0 or 1.

The input state applied to a system is defined as the combination of values of the

binary variables at the input terminals. The output state produced by the system is

similarly related to the output terminals. (The terms system input or system output

will occasionally be used.)

A switching circuit is referred to as "combinational" if the output state at any time

is uniquely determined by the existing input state. (Ideally, no delay is involved.)

Detailed studies of the principles of combinational switching circuits will be found in

references 1 and 2.

A sequential switching circuit is characterized by the fact that its present output
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state is, in general, a function of both the present input and the past inputs. This fact

necessitates the use of a memory (usually composed of 2-state elements) whose function

it is to provide information concerning previous input states. The memory state of a

system is the condition of all its memory elements. (A memury composed of m binary

elements can be in any one of 2 m states.)

For simplicity, the following discussion is restricted to synchronous, or clocked,

systems where all inputs, outputs, and other actions occur in cadence with a sequence

of reference pulses. This restriction is not of fundamental importance, since asynchro-

nous systems can be treated in a similar manner.

Figure XI-5 depicts the signal flow in a synchronous sequential switching circuit.

It is a functional diagram; the various parts do not correspond to physical entities.

The operation of the system described by the diagram is as follows. When a clock

pulse arrives, the combinational circuit accepts at its input terminals the system input

and the memory state. Some of its output terminals provide the system output; others

lead to the memory input and specify the new memory state, which can be selected arbi-

trarily. Since there is a delay associated with the memory input, the memory state

cannot change while the clock pulse is on.

A thorough general treatment of sequential switching circuits was pre-sented by

D. A. Huffman (3). One of the principal results of his paper is the flow table, a com-

pact method of specifying, completely, any sequential problem. A companion result

is a direct, though not unique, method for synthesizing a sequential circuit from any

flow table.

2. Open and Closed Memories

The memories considered specifically by Huffman have the property that the states

of all of their elements can be displayed simultaneously to a combinational circuit; fur-

thermore, the states of any number of elements can be altered at one time. These

characteristics make possible the two flow lines

------------------ in Fig. XI-5 which connect the combinational
COMBINATIONAL

CIRCUIT circuit with the memory. Such memories will
CLOCK PULSE

OUTPUT STATE be designated as "open," since their states are
INPUT STATE

at all times fully open to inspection and control
PRESENT NEXT

MEMORY MEMORY by a combinational circuit. Open memories
STATE STATE

can be constructed with relays, vacuum tubes,

transistors, or other devices.
L ------------- There are also memories without the fea-

Fig. XI-5 ture described above. That is, at any partic-

Flow diagram of a synchronous ular instant, the states of only a limited number

sequential switching circuit. of elements, or cells, can be made known to
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the combinational circuit. In addition, the states of only a limited number of elements

can be altered during any one time interval. Such memories, which include electro-

static storage tubes and magnetic core matrices, will be referred to as "closed," to

indicate that at any particular time most of their elements are closed to inspection or

control. This discussion will be limited to those memories in which, at each instant

(excluding transient intervals) a single cell is being "scanned," and only the state of this

cell can be determined or changed.

The terms "reading" and "writing" are used to indicate the operations of inspecting

or changing, respectively, the contents of a cell.

There are at least two general ways in which closed memories can be, and are being,

used. First, they may serve simply as data storage units. Binary coded sequences may

be written into the cells, and then, at a later time, portions may be read out into

smaller open memories so that they can serve as inputs to combinational circuits.

Although this is a very important function, it is of little significance from the point of

view of this study. The second, and more interesting, use of closed memories is in

sequential switching circuits, where they can sometimes serve as replacements for

open-memory elements.

It can be seen from the preceding definitions that closed memories are less flexible

than open memories. However, considerations of such matters as size and cost mili-

tate against the exclusive use of open memories when a large memory (say thousands

of elements) is required.

3. A Synchronous Sequential Switching System with Closed Memory

Consider the system described by Fig. XI-6. The number of states of the open

memory is equal to the number of elements of the closed memory. The selector, which

is controlled by the open memory, is a combinational circuit that selects the cell to be

COMBI----------------------------NATIONAL --
I COMBINTION~L

CLOSED o r.LrV
MEMORY

L ----- -- -- - - --- - ---------------

Fig. XI-6

Synchronous sequential switching system with closed memory.
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scanned. For each state of the open memory there is one element of the closed memory.

When a clock pulse arrives, the combinational circuit inspects the system input

state, the open memory state, and the state of the scanned cell. On the basis of this

information, it fixes the system output, orders a one or a zero to be written in the

scanned cell, and specifies the next open memory state (which is equivalent to choosing

the next closed element to be scanned). A delay inherent in the open memory prevents

its output from changing before the writing operation is over.

Note that the system has an over-all memory of mZm states, where m is the number

of closed cells. (The closed memory has 2m states, and at any time any one of the m

cells may be scanned.)

Since the identity of the cell to be scanned during a time interval is dependent upon

the output of the combinational circuit during the previous interval, a time translation

is necessary, thus requiring the use of the open memory of Fig. XI-6. Because the

size of this memory is logarithmically related to the size of the closed memory, it is

much smaller than the latter for most cases where this type of system would be useful.

The mode of operation just described is certainly not the only one possible. Addi-

tional open elements might often be profitably added, or various other models requiring

less open memory could be devised. An advantage of this model is that some practical

closed memories have inherent in their access circuitry the open memory described

here, and no additional open elements need be added.

4. Preliminary Results

For the sake of brevity, proofs of the following statements will be omitted.

1. Sequential circuits with closed memories can be analyzed in a straightfor-

ward manner by means of flow tables (3).

2. There exist sequential circuits with m closed elements and n open elements

which require at least m + n open elements when no closed memory is used. In other

words, in these cases, the closed memory is equivalent to an open memory of the same

size.

3. There exist sequential circuits with n open elements which cannot be realized

with fewer than n - 1 open elements, regardless of how much closed memory is used. In

these cases closed memories are worthless.

Problems falling into the two preceding categories represent an extremely small

fraction of the aggregate of all possible sequential problems; most cases will be of an

intermediate kind. The classification of any particular flow table remains to be investi-

gated, along with the problem of devising formal synthesis techniques.

4. The following interesting, though apparently inconsequential, fact has been

proved concerning cycles in closed memory systems with no inputs: While it is always

possible to design an open memory system that cycles through all of its memory states,
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this can never be done with a closed memory system.

5. Several diagrammatic representations of possible memory state transitions

in closed element systems have been devised. (One of these consists of a hypercube with

clipped corners.)

S. H. Unger
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