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A. ELECTRON EMISSION PROBLEMS

1. Importance of Porosity in Maintaining High-Current Density from Oxide

Cathodes

A reanalysis of some of the problems of thermionic emission in the presence of

space charge is being carried on at present. This study shows that many of the prop-

erties of oxide cathodes, including the determination of emission constants and the

temperature coefficient of the true work-function, can be discovered from an analysis

of data taken at normal operating temperatures and lower, and with applied fields never

in excess of 5 volts. Some of the details of these studies will be summarized from time

to time. One result involves the concept that surface porosity of an oxide cathode might

very well be taken advantage of by its specific and artificial introduction into the cathode

surface. A brief summary of the reasoning behind this thought is given.

The low value of the true work-function of the oxide-coated cathode structure

accounts for the very high electron emission obtainable at low operating temperatures.

The actual value of the true work-function should be defined as the difference in energy

between that of the Fermi level just inside the surface and the energy of an electron just

outside the surface. The presence of polarizable barium atoms on the surface can con-

tribute to the lowering of the electron affinity of the surface. The presence of excess

barium just inside the surface is the dominating factor that establishes the location and

the temperature dependence of the Fermi level with respect to the conduction band of

the oxide. The emission of electrons constitutes a current flow and therefore creates

in the interior of the oxide an electric field in a direction that drives the excess barium

away from the surface into the interior of the cathode. This migration lowers the Fermi

level with respect to the conduction band and therefore increases the true work-function.

A limitation on the emission current density results indirectly from the fact that the

concentration gradient of barium atoms combined with thermal diffusion must finally

offset the drift under the influence of the internal electric field near the surface.

The practical difficulties of obtaining high-current density from oxide-coated

surfaces can be minimized by taking advantage of the surface porosity to obtain a higher

electron emission density from the pore itself than is demanded from the internal

electron-emitting surfaces that bound the pore and supply electrons to it.

Fowler (1) derived the basic equations for the electron atmosphere in a pillbox-like

cavity by giving proper consideration to the combined influences of the Boltzmann

density relation for charged particles in a potential field and Poisson's equation.
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Re-examination of this problem yields certain practical results that are summarized

here. They serve as a guide in the development of cathode structures capable of high

electron emission density which are not subject to the same deterioration in emission

properties expected from a nonporous structure.

A calculation based on kinetic theory gives a relation between the concentration of

electrons n needed at a given temperature, and the maximum current density. This

equation is

n = 4 10 1 3  / (1)

The current density i is expressed in amperes per square centimeter, the temperature

T in degrees Kelvin, and the concentration n as electrons per cubic centimeter. The

concentration of electrons at the center of a cavity is directly proportional to the tem-

perature and inversely proportional to the square of the smallest dimension of the cavity.

The expression can be worked out exactly for the pillbox structure for which the thick-

ness of the pillbox is w and the other dimensions large compared with w. The expres-

sion for the maximum attainable electron density in this cavity is

2T
e(max) = 2

w

In this expression, w is the cavity dimension in centimeters. These equations may be

equated and solved for w to obtain

-6 T 3 /4w = 5 X 10 1i/Z (3)
i

This equation serves to establish the order of magnitude of the pore dimension. For

example, if the order of current density required is 25 amp/cm 2 , and the temperature
-4

T is 10600K, the value of w is approximately 2 X 10-4 cm. The depth of the pore should

be as great as it is physically possible to make it.

If one could conceive a practical method of creating a uniform "honeycomb" structure

of open pores each having a diameter of the order of 10- 3 cm with good-conducting, very

thin, separation walls, an electron source would be created that should be capable of high

emission current density for the effective emitting surface itself and at the same time

not require such a high emission current density from the actual internal oxide surfaces

themselves. This construction would reduce the tendency of the cathode to destroy its

efficiency because of the impurity migration accompanying a high electron emission.

W. B. Nottingham

Reference

1. R. H. Fowler, Statistical Mechanics (Cambridge University Press, London, 1936),
Second Edition, p. 368.
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2. Reflection of Slow Electrons at a Metal Surface

An experimental tube has been designed for a study of reflection of slow electrons

at a single-crystal tantalum surface. Since the energy resolution of the apparatus is

limited by the geometry, the tube components must be made and aligned precisely.

Since the experiment must be carried out in high vacuum the tube has to be capable of

vacuum-processing. The tube parts are now nearly complete.

A satisfactory single crystal of tantalum, which is to be the target, has not yet been

prepared. Although crystals of sufficient size are obtained the surfaces are speckled

with microscopic pits. The pits seem to develop, after heating, from imperfections in

the commercial tantalum.

W. J. Lange

B. PHYSICAL ELECTRONICS IN THE SOLID STATE

1. Studies of Surface Phenomena in Germanium

Very little information on the properties of germanium surfaces free from contami-

nants is available. The fundamental information that is lacking is quantitative data on

energy levels associated with the surface. These will be important in determining such

quantities as contact potential, surface recombination velocity, and the "field effect."

The object of the present research is to try to use measurements of these quantities,

singly or in combination, for surfaces on germanium crystals which have been treated

and maintained in high-vacuum conditions, in order to get information on surface states.

In general, pressures of less than 10 - 9 mm Hg will be necessary if contamination is to

be slow enough for results to be meaningful.

Apparatus has been set up to produce and measure the required low pressures, and

some preliminary work has been done on measuring contact potentials. These were

derived from diode characteristics in the retarding region with etched surfaces of ger-

manium as anodes. Preliminary measurements of the "field effect" have also been

made.

H. A. Gebbie

C. GAS DISCHARGES

1. Ion Generation and Electron Energy Distributions

A basic problem in the theory of gas discharges is the determination of the relative

importance of cumulative ionization (multiple-collision ionization) as compared to direct

ionization (single-collision ionization).

In order to determine whether or not direct ionization is sufficient to account for the

observed ion generation in the positive column, and in order to calculate certain arc
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characteristics, the theory of ion generation has been subjected to some refinement. The

ion generation G(n_) is the number of singly charged positive ions produced per unit

volume per unit time as a function of the electron density n (and the distribution

function), and may be broken into two parts: G(n_) = Gd(n_) + Gc(n_), where Gd(n_) is

attributable to direct ionization and Gc(n ) is attributable to cumulative ionization. The

direct ionization component can then be given by the usual form:

0Gd(n_) = v Pi(E) f(E) dE

where v = (2E/m)1/2 is the random electron velocity, Pi(E) is the probability of ioniza-

tion in ions per centimeter of path for an electron of energy E, and f(E) is the distribu-

tion function for the electron energies. This expression for Gd(n_) contains the implicit

assumption that P. is independent of the electron density. Previous investigators have

used a linear approximation

Pi=Q[E-eVil, eV.<E<ZeV.

plus the assumption of a Maxwell-Boltzmann (M-B) electron energy distribution.

Langmuir probe measurements in the plasma of a mercury arc indicate that a

depleted M-B distribution actually exists and lead one to suspect that the actual electron

energy distribution is closer to the Druyvesteyn distribution (D-D)

f(E) dE = (n_) D exp -0. 547 dE
EE2

where E is the average electron energy. Using this distribution function and retaining,

for the present, the linear approximation for Pi, one obtains Gd(n_) in terms of incom-

plete gamma functions and it reduces to an expression involving the error function

Gd(n_) = (constant) (n ) a 31- erf (0. 547)1/2
E

The next step in the refinement of the theory involves an improvement over the linear

approximation for P.. Certain theoretical considerations, plus inspection of the. experi-

mental curves, lead one to suspect that the curve can be represented by

p. = g In (yE)
I E

where g and y are constants of the gas. Using this expression, one can even represent

the definite fine structure in P.. If one considers the detailed measurement of P. for
1 1
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mercury made by Nottingham and rectifies the data by proper change of variables, a

number of straight-line sections result, which verifies the representation given above

and indicates that the composite P. consists of a sum of the terms given above.
1

With the improved representation

In (ykE)

i = gk E
k

plus the M-B distribution, the ion generation can be specified in terms of a set of loga-

rithmic integrals. On the other hand, by using the improved representation for P. plus
1

the Druyvesteyn distribution, the ion generation can be expressed in terms of an integral

that has not yet been reduced to a previously tabulated form. It may be necessary to

evaluate the integral by numerical means.

The theory of the Langmuir probe has been extended to the case of a Druyvesteyn

distribution in order to permit one to test for both a Druyvesteyn and an M-B distribu-

tion. For the former, the electron particle current density r 7+x to a plane probe with

a retarding potential AV (with respect to the plasma potential) has been calculated to be

r = (n2 Ei/2 T i -x

+= (n-) 1/2 8m F(3/4) 1(5/4) 1/2 ex - x - erf (

F(5/4) e 547) 1/2 e AV
x -t e0. 547)

F(3/4) E E

where e and m are the electron charge and mass, n_ is the electron density, and F(3/4)

and r(5/4) are complete gamma functions. The value of F+x for zero retarding field

(random particle current density) is only 3 per cent larger than that for the M-B dis-

tribution of the same electron density and same average electron energy E. Proper

rectification of the Langmuir probe data will permit a test for a Druyvesteyn distribu-

tion.

Work is also being continued on the solution of the nonlinear ambipolar diffusion

equation for both direct and cumulative ionization.

S. Aisenberg

D. EXPERIMENTAL TECHNIQUES

1. High Vacuum Studies: The MasslTron

The MasslTron, a small, low-resolution mass spectrometer utilizing cycloidal paths,

which was designed for use as a vacuum gauge has been tested, and its performance and

several interesting results are now known. Its desirable features have been found to be,
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as was anticipated, high efficiency, with about the same gauge constant as that of con-

ventional ion gauges, and perfect shielding, which eliminates spurious currents such

as those caused by soft x-rays in ion gauges and hence easily allows measurement of
-11

pressures as low as 10 mm Hg. Very satisfactory operation is obtained by using a

permanent magnet, although the mass range and the resolution are improved by using

an electromagnet with its greater and more uniform field.

An analysis of the gases in a sealed-off pyrex tube with tungsten and tantalum parts

illustrates the value of this instrument. The important gases studied are: hydrogen,

helium, nitrogen, oxygen, water vapor, carbon monoxide, and carbon dioxide. Hydro-

gen, for instance, exists as H 2 and is emitted when the filament is first heated

and absorbed at high temperatures. Helium is highly insensitive to filament flashing,

but slowly cleans up with electron current. Nitrogen adsorbs on clean filaments

and flashes off easily. It cleans up rapidly with electron current and leaves the

space for a long period after a clean filament is cooled. Oxygen is almost missing and
+

is found as O ions. Water vapor is missing in an operating sealed-off tube. When N 2

is temporarily cleaned from the space, the 28 peak consists of CO and is identified by the
+

fact that about 10 per cent as much C is simultaneously detected. These observations

were taken with a total pressure between 5 x 10 - 8 and 1 x 10 - 9 mm Hg.

H. Shelton

2. The Spectral Emissivity of Tungsten

An experiment designed to measure the spectral emissivity of tungsten as a function

of wavelength and temperature is in progress. Basically, a direct-comparison method

is being used: the radiant intensity (at a particular wavelength selected by a mono-

chromator) from the tungsten source is compared with that from an approximating black

body at the source temperature by means of a photomultiplier. The vacuum tube con-

taining the tungsten source - black body combination and all auxiliary equipment has been

constructed.

R. D. Larrabee

3. Cleanup of Helium in Ionization Gauges

In measuring the character of the cleanup of helium in the Bayard-Alpert ionization

gauge, it has been found that there are small variations that cannot be explained by a

simple theory. In order to measure these variations, it was decided that an electron

current regulator was needed. One that cut the effect of line voltage fluctuations on the

electron current by a factor of 50 was designed and constructed. The electron current

is so stable that it is possible to use recording equipment to read the ion current con-

tinuously during a cleanup experiment. To check for slow drifts in the equipment, hourly

checks can be made and recorded by means of electrical timers. During a permeation
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run the electron current regulator is especially useful. Readings may be taken auto-

matically, as desired, between the limits of once a day to once an hour. The time

required to take a reading is about 3 seconds. This is made possible by the fact that

transients in the regulator and the associated equipment die out rapidly. This fast

measuring time is about one-thirtieth of the previous measuring time. In addition to

producing much less cleanup during a permeation run, because of necessary measure-

ments, this equipment reads continuously (night and day), thus giving all needed data.

The temperature of the air surrounding the ion gauge is automatically regulated.

Special gears for the Brown recorder are being built. These gears will allow a chart

speed appropriate for these measurements, that is, about one foot per day.

D. H. Dickey

4. Ionization Gauge Studies

Now that a satisfactory ionization gauge control circuit has been designed, con-

structed, and is in use, work is being continued on the ionization gauge itself. It has

been noticed that supposedly identical Bayard-Alpert (B-A) ionization gauges have gauge

constants that sometimes differ by 30 per cent or more. The gauge constant K (defined

by PK = i+/i_, where P is the pressure in millimeters of mercury, i+ is the ion

current, and i is the electron current) is determined in part by the gauge geometry.

Construction of gauges with reproducible gauge constants is desired.

In order to determine how critical the various constructional and operational details

of the gauge are, a set of measurements was made in which the relative gauge constants

for the two filaments in the same gauge were determined as a function of electron

current i . This was done by operating both filaments (of a sealed-off B-A ion gauge) at

a temperature suitable for electron emission. One filament "A" was at -108 volts with

respect to the electron collector and the other filament "B" was at the electron collector

potential. After measurements were made with this arrangement of potentials, the

connections were changed so that "B" emitted the electrons instead of "A." The emis-

sion currents are kept equal to each other by means of an electronic emission current

regulator that was specially designed and constructed. The ratio of the gauge sensitivi-

ties for filaments "A" and "B," K(A)/K(B), is given by the ratio of the corresponding

ion currents read from a recorder chart connected to the ion control circuit. The change

in filaments is made so quickly that the pressure change is found to be negligible. The

results for three different gauges (B-A with screen grid and closed ends on electron

collector grid) are given in Fig. I-1. It can be seen that not only do the relative gauge

constants differ but the difference is a function of the electron current i_, thus indicating

that the gauge constant is not really constant. Visual inspection of the three gauges

shows that gauge No. 1 has an almost axial ion collector, gauge No. 2 has an ion col-

lector tilted off the axis, and gauge No. 3 has an ion collector that is extremely tilted.
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There appears to be no correlation between filament orientation and gauge-constant vari-

ation. This indicates that the gauge constant is very dependent upol the orientation of

the ion collector. Measurements will be made upon a gauge with a movable ion collector

in order to verify these observations.

The problem of the variable gauge constant was investigated in more detail. By

quickly changing the emission current of one filament from a particular current to a

standard current (with an emission current regulator stable to a fraction of a per cent)

and by measuring the ion currents with a chart recorder, the gauge constant can be

measured as a function of the electron current, and is expressed relative to the constant

at the standard current, K(i )/K(l ma). The results for three gauges are given in

Fig. 1-2. Gauge No. 4 is a B-A gauge with screen and closed ends. Gauge No. 5 has

closed ends and no screen. Gauge No. 6 has open ends and no screen. It can be seen

that at 1 ma, or less, the dependence upon the current is essentially negligible, indi-

cating that the gauge should probably be operated at currents below 1 ma. This depend-

ence at higher currents is probably caused by space charge modifying the electron and

ion orbits.

S. Aisenberg
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