
Efficient Computation of Probabilities of
Events Described by Order Statistics and

Applications to Queue Inference

Lee K. Jones and Richard C. Larson

OR 289-94 March 1994





Efficient Computation of Probabilities of

Events Described by Order Statistics and

Applications to Queue Inference

Lee K. Jones
Institute for Visualization and Perception Research and

Department of Mathematical Sciences
University of Massachusetts-Lowell,

Lowell, Massachusetts 01854
jonesl@uml.edu

Richard C. Larson
Operations Research Center and

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
rclarson@mit.edu

TO APPEAR IN ORSA JOURNAL ON COMPUTING

March 1994

1





ABSTRACT

This paper derives recursive algorithms for efficiently computing event

probabilities related to order statistics and applies the results in a queue inferencing

setting. Consider a set of N i.i.d. random variables in [0, 1]. When the experimental

values of the random variables are arranged in ascending order from smallest to

largest, one has the order statistics of the set of random variables. Both a forward

and a backward recursive O(N3 ) algorithm are developed for computing the

probability that the order statistics vector lies in a given N-rectangle.

The new algorithms have applicability in inferring the statistical behavior of

Poisson arrival queues, given only the start and stop times of service of all N

customers served in a period of continuous congestion. The queue inference results

extend the theory of the "Queue Inference Engine" (QIE), originally developed by

Larson in 1990 [8]. The methodology is extended to a third O(N 3 ) algorithm,

employing both forward and backward recursion, that computes the conditional

probability that a random customer of the N served waited in queue less than r

minutes, given the observed customer departure times and assuming first come,

first served service. To our knowledge, this result is the first O(N3 ) exact algorithm

for computing points on the in-queue waiting time distribution function,

conditioned on the start and stop time data.

The paper concludes with an extension to the computation of certain

correlations of in-queue waiting times. Illustrative computational results are

included throughout.

Key words: order statistics, queues, inference, computational probability.
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Introduction

Order statistics have applicability in many areas of science. If N students take a

test and if each test score is modeled as an independent sample from a common

"test score" distribution, then the minimum of the N scores has a distribution

corresponding to the first order statistic, the maximum has a distribution

corresponding to the largest order statistic, and in general the jth score from the

lowest has a distribution of the jth order statistic of the set of N independent,

identically distributed (i.i.d.) random variables (r.v.'s). Or, consider a homogeneous

Poisson arrival process for which it is observed that N customers arrive to a bulk

service queue over the pre-set interval [0, T], where T is the time of bulk service.

("Bulk service" implies that all N waiting customers are served simultaneously, as

one observes with elevators, buses, and pedestrian traffic crossing lights, for

example.) Then the N unordered customer arrival times are independent,

uniformly distributed over [0, TI and the in-queue waiting time of the jth arriving

customer in [0, T] corresponds to T - X(j), where X(j) is the jth order statistic of the set

of N uniform independent r.v.'s over [0, T].

Throughout this paper we will focus the application of our results on queueing

computations, although the recursive algorithms developed in Sec. 1 are of

independent interest in any order statistics setting. The substance of the paper

appears to lie at an intersection of the fields of statistics, operations research

(particularly queueing) and computer science (particularly the design of algorithms).

Let X 1, X 2 , .. ., XN(1) be an i.i.d. sequence of random variables with values in

[0,1] where the sequence length N(1) is an independent random integer. It is most

natural to ask for a computationally efficient algorithm to calculate the probability of

an order statistics vector lying in a given N-rectangle, i.e., to compute

rs_) = Pr(sI < X(1) t, s2 < X(2) <t2 , SN < X(N) < tN I N(1) = N)}, (1)
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where s - (s 1, s2 ... , SN), t - (t1, t 2, .. , tN) and without loss of generality the

sequences si} and ti) are increasing. Apparently the question of efficient

computation of event probabilities for the order statistics vector has not been

previously treated in the literature. (See for example [1], [5].) Recently, in an

application to queue inference [8], an O(N3 ) algorithm was developed to compute

the conditional cumulative probability of the vector of order statistics, Pr(X(l) < tl,

X(2) < t2,... , X(N) -< tN I N(1)=N), for the case of each Xi uniform. This is a special

case of our computation, with si) = 0) and with uniform r.v.'s. We note that the

method of computing IT, t) by applying repeated differences to the cumulative

distribution will require 2N evaluations of the cumulative [8]; this is too slow for

many applications. The algorithm presented here will efficiently calculate Eq.(1)

for Xi having arbitrary cumulative distribution function (c.d.f.) F(x). More generally,

in this paper we develop two O(N3 ) algorithms to compute F(s, t) where the Xi have

a given c.d.f. F(x). New applications are shown for deducing queue statistics from

transactional data.

We extend the logic of the two general algorithms to develop a special

"forward/backward 'kiss' (FBK)" O(N3 ) algorithm that computes the conditional

probability that a queued customer waited less than r minutes in the FCFS (First

Come, First Served) queue, given the observed departure times. To our knowledge,

this is the first exact O(N3 ) algorithm for inferring from service time data the

distribution of queue wait in a FCFS queueing system.

The paper concludes with an extension to the computation of certain

correlations of in-queue waiting times. The method utilizes an O(N5 ) nested

recursion to find the correlation coefficients of 0-1 indicator random variables that

are equal to one only if the corresponding customers waited in queue less than r

time units, given the departure time data. This methodology may have applications

in assessing queue inference approximations for very congested systems in which
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exact solutions require a prohibitively long time; it may also be applicable in

estimating the equivalent number n of independent samples of queue delay

contained in a data set having N customers, n < N.

1. The Primary Recursive Algorithms

In this section we derive the (N 3 ) algorithms for finding , t). Assume Xi e

(0, 11 and 0 <t <t2 <. .. < tN 1, 0 <s l -<s2 ... <s N <1 and s i < t i for i = 1, 2,..., N.

Since ti) and si} are each nondecreasing as sequences, we may merge the two

2N
sequences into ({v} , ordered according to magnitude, using only O(N) operations.

We now define a conditional probability indexed on k, the number of i.i.d. r.v.'s

whose order statistics we are computing, and on i, which through v i yields an upper

bound to the allowed value of any of the order statistics. In the developed recursion

k is progressed from 1 to N and i is increased from 1 to 2N. More precisely, define

Wki Pr({s < X( 1) < min {t, vi}, s2 < X(2) < min {t2 , vi}, ., (2)

sk < X(k) min {tk, v i I N(1) =k) k = 1, 2, .. ., N i = 1, 2,. . ., 2N.

For example, suppose X(j) is the time of the jth customer arrival to a queueing

system; then Wki is the conditional probability that each arrival j arrives after his

earliest allowable arrival time s and before his entry-into-service time tj or vi,

whichever is smaller, given exactly k arrivals in [0, 1]. If the last customer's earliest

allowable arrival time sk equals or exceeds v i, then we have an impossible event

and the conditional probability becomes Wki = 0. Setting k and i equal to their

respective maximum values, we easily verify that WN,2N is the desired probability

given in (1), i.e., WN,2N = T, t). Evaluating WN,2N requires recursive computation

of entries of the matrix W = (Wki), starting with k = 1. Our recursive procedure

requires as a boundary condition

Woi = 1 for i = 1,2,...,2N, (3)
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which can be interpreted to be the probability that the event inequalities will be

satisfied, given no random variables (hence no inequalities) in [0, 1].

We now give the forward recursive algorithm as

Theorem 1. For k = 1, 2, ... , N, i = 1, 2,..., 2N, Wki can be computed using the

following recursion:

Wki-l +

k

j=1

s.t. vi-< tk-j+1

if sk< Vi

if skv- vi0

(4)

Note: Eq.(4) essentially states that the conditional probability Wki can be written as the sum of

conditional probabilities of up to k + 1 disjoint events, the jth event corresponding to the first k-j order
statistics appropriately distributed over the inequality-constrained interval (0, v i -_1 and the

remaining j in the simple interval (vi -1, vi 1, j=O, 1, .. ., k. The summation index constraint v i < tk - j + 1

assures that the summation index only produces events having the k-j+1st order statistic less than or
equal to its maximum allowed value, tkj+1. In queueing parlance, the summation index constraint

assures that the earliest arriving customer in (vi_1, vi], customer k-j+l, arrives not later than her time

of entry into service, tk-j+1. The left limit test condition sk > vi creates an impossible event, in queueing

parlance requiring a customer to arrive before her earliest allowable arrival time.

Proof.

The case sk vi yields an impossible event, implying Wki = 0.

Now consider sk < vi. We can write

Wki -= Pr{sl < X( 1) • min {t, vi}, s2 < X( 2 ) min {t2, vi}, ... ,

6
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sk < X(k) < min tk, vi I N(1) = k)

= Prsl < X(1) < min {t1, vi - 1, s2 < X(2) < min {t2 , il} · ·

Sk < X(k) < min tk, v i - 1} I N(1) = k)

+ Pr(s1 < X(1) < min {t1 , v i _ 1}, s2 < X(2) •min {t2, v i 1 .,

Sk- 1 < X(k- 1) -< min {tk _ 1, vi- 1}, vi- 1 < X(k) -< min tk, vi} I N(1) = k}

+ Prfsl < X( 1) < min {t1, vi 1, s2 < X(2 ) < min {t2, v i _ 1}, . .,

Sk - 2 < X(k - 2) min tk - 2, vi- 1, i - 1 < X(k - 1) < min tk - 1, vi},

i-1 < X(k) • min tk, Vi } I N(1) = k

+ ... + Pr(sl < X( 1) -< min [tl, vi- 1}, s2 < X(2) -< min t2 , vi- · ·.,

Sk -j < X(k j) < min (tk j , v i _1}, - 1vi < X(k-j +1) < min m tk_ j+1 vi} . ·,

vi - 1 < X(k) -<min tk, vi} I N(1) = k} +...

The term explicitly displaying X(k- j+l) on the RHS can be nonzero only if

min(tk -j + 1, vi = vi, implying that all order statistics constrained to be greater than

vi- 1 must lie in the simple interval (v i -1, vi ]. By counting the number of ways

that the original (unordered) r.v.'s can fall either into the simple interval (v i -1, vi ]

or into the inequality-constrained interval (0, vi -], and recognizing the appropriate

probabilities that apply in each interval, we can write

Wki= Wki- 1 + () W k - li- 1 (F(vp - F(vi 1))

+ (k)Wk_2 i-1(Fvi)-F( -)) 2

where we include all j satisfying v i < tk - j + 1 and j < k. n

As a verification of the recursion we obtain as expected at the first iteration

7
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Wli = F(mintl, vi}) - F(sl) i = 1, 2,..., 2N.

The matrix W = (Wki) will have the maximum possible number of nonzero

entries if the following strict inequalities hold: O<tl<t2< ... <tN<l; O<sl<s2< ...

<SN<1 ; si<ti; F(x) - F(y) > 0 for x>y, x,y E (0, 1]. Then W = (Wki) can be partitioned

into three regions:

(1) Always impossible events: Wki = 0 for k i;

(2) Sometimes impossible events: Wki 2 0 for i - N < k < i;

(3) Always possible events: Wki > 0 for k • i - N;

Hence the maximum possible number of nonzero terms in row k is 2N -k, and the

minimum number is N- k + 1. The recursion to obtain Wki requires computation

and addition of up to k + 1 terms. Thus, row k of (Wki) requires computation of up

to (2N - k)(k + 1) terms. The total number of terms required to compute (Wki) is

N 2 3 22
I (2N-k)(k+l)= N +2N -- N

k=1 3 3

yielding an O(N3 ) procedure. For the special case s i = O, i = 1, 2,..., N, we have the

problem of Refs. [2, 3, 8], and all Wki in columns i=l through N are equal to 0 and all

Wki in columns i=N+l through 2N are nonzero.

There is a comparable backward recursive algorithm that is used to compute

Yki - Pr(max {SN-k+ 1, vi} < X(1 ) < tN-k+l, max {SN-k+2, vi} < X(2 ) • tN-k+2, ',
(5)

max {sN , vi < X(k) tN I N(1) = k}, i = 1, 2,..., 2N, k = 1, 2,...,N

having boundary conditions Yi = 1 for i=1,2,...,2N. In a queueing context Yki is the

conditional probability that each arrival j arrives after her earliest allowable arrival

time sNk+j or vi, whichever is larger, and before her entry-into-service time tN-k+j,

given exactly k arrivals in [0, 1]. If the first customer's entry-into-service time tN-k+l

is less than or equal to vi, i.e., if tN-k+l < vi, then we have an impossible event and

the conditional probability is Yki = 0. Here we want to compute YN1 -- ITs, ). This
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will require recursive computation of entries of the matrix Y = (Yki), starting with k

= 1. We now give the backward recursive algorithm as

Theorem 2. For k = 1, 2,..., N, i = 2N, 2N-1, ... ,1, Yki can be computed using the

following recursion:

Yk,i+1 + Yk - j i+ l [F(v+ )-F(v?]i if vi< tN.k+l1=1 JL

Yki= |s.t. vi> SN-k+j (6)

0 if vi> tN-k+l

Proof. Omitted (similar to Thm. 1)

Intuitively, the forward algorithm processes disjoint events in the interval [0, 1]

from left to right and the backward algorithm employs similar logic to process

disjoint events in [0, 1] from right to left. The backward algorithm is also O(N3 ).

Example 1. The construction of the set {vi} from the sets {ti} and (si) is shown in

Figure 1 for an example with N=4. In using Eq.(4) the first task is to decide which

entries of the matrix W are zero, i.e., probabilities equaling zero due to impossible

events. This determination is made from testing the inequality skZ , as shown in

Exhibit 1. In the matrix, a "Y" ("N") implies that the test yields "yes" ("no") and

thus the corresponding entry is 0 (positive). Note that all entries in the "southwest"

corner of the matrix, corresponding to ki, are always "Y" regardless of the problem

data. (A dash ("-") as a matrix entry implies that the Y/N categorization is not

relevant.)

To use Eq.(4) to compute a positive entry of the matrix, one must assure that the

summation index constraint, vi< tkj+l, is obeyed. This constraint guarantees that the
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number of r.v.'s allowed in the simple interval (vi-1, v i] does not exceed the

maximum permitted, given the inequalities in the inequality-constrained interval (0,

vil]. Defining m to be the maximum allowed value for the summation index j for a

particular matrix entry, the respective values of m are shown in Exhibit 2.

Example 2. Now consider a simple numerical example with N=3, t=(1/3, 2/3, 1),

s=(1/6, 1/2, 5/6) and hence v=(1/6, 1/3, 1/2, 2/3,5/6, 1). For simplicity assume

uniform r.v.'s, implying F(x)=x, 0<x<l. The desired probability, W 3,6=FI(, ),

corresponds to the event defined by exactly one of the r.v.'s assuming values in each

of the intervals (1/6, 1/3], (1/2, 2/3] and (5/6, 1], respectively. The intervals are

disjoint, so by elementary arguments, I(, t) = 1/36. Using the algorithm of Th.1, we

find the matrix
k\
0

W= 1
2
3

i=1 2 3 4 5
1 1 1 1

0 1/6 1/6 1/6

0 0 0 1/18

0 O O 0

6
1 -

1/6 -

1/18 -

0 1/36

where W3,6=1/36, as expected. We illustrate the computation of

24 = W2, + (2 )WI[2/3 - 1/21= 1/18;

the potential second term in the summation on the RHS, corresponding to j=2, is

not included due to the summation inequality constraint.

Now modify the example so that t=(1/3, 2/3, 1), s=(O, 0, 0) and hence v=(O, 0, 0,

1/3, 2/3, 1). The desired quantity W3,6 is not so readily found by elementary

arguments. By applying the algorithm of Th.1 we find

k\ i=1 2 3 4 5 6
0 1 1 1 1 1 -

1 0 0 0 1/3 1/3-
2 0 0 01/9 1/3-

3 0 0 0 1/27 7/27 16/27

implying that the desired probability is W3, 6 = 16/27.
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Example 3: The Multinomial Distribution.

The algorithm of Th.1 can be applied to the derivation of several well known

probability laws. For example consider F(x) and a vector T = (ri} as shown in Figure

2, where we assume ri+1 > ri, i=1, 2, 3, .... Suppose we are interested in

P{X(n1) < 'r1 ,'<X(n1+l),X(n 1+n2 ) < -2 ,2<X(nl+n 2+1),X(nl+n2 +n3) < 3,

'3<X(n+n2+n3+1),X(n+n 2 +n3+n4) < ~4 (1)= j ni } = 71 (E, · ),
i=

where n {ni). The event whose probability we seek corresponds to a prespecified

number of random variables falling into each of four disjoint intervals. If for i = 1,

2, 3, 4, we define Pi = F(ri) - F(ri-1), where r0 - 0, then we recognize this problem as an

example of the multinomial distribution with
N! nI n2 n3 n4 4

n!l njn3 !n 4 !P1 P 2 P 3 P 4 ,' and ni= N.

The multinomial is also derived by applying Th. 1 as follows:

t ={tl= , 2 = 1,2=-O,...,tn = 1 tnl+l = T2, tnl+n2= 2, t n+n2+1= r3 .

= S = O ., = 0, Sn 1+1 = 1,-.-, Snl+n2= 1, Snl+n2+ = 2 · . }

and v is the ordered merging of t and s. The vector v contains adjacent elements

that are equal in value. Recognizing that for any i having v i = vil, Eq.(4) yields Wki

= Wk, i-1, we can transform the vector v into a reduced vector v' = (0, r, 2, r3, r4). If

we compute elements of the corresponding reduced matrix W'=

(Wki')k=1,...,N,i=1,...,5, then we are obtaining each of the different columns of the

original matrix W. We know that Wki = 0 if sk> vi, implying Wki'= 0 if Sk> v i.

Examining components of s, we find that sk = 0 for k = 1, ..., nl; sk = T1 for k = n 1 + 1,

·.., nl + n2 ; Sk = r2 for k = n l + n2 + 1, ..., n l + n2 + n3 ; and sk = T3 for k = n l + n2 + n 3

+ 1, ..., n1 + n2 + n3 + n4 = N. Hence we find the "southwest corner" elements of
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W' that are equal to zero: Wkl = 0, k = 1, ... , N; Wk2 = 0, k = nl + 1, ... , N; Wk3 = 0, k

=nl + n 2 + ... ,N; Wk 4 = O, k = nl + n 2 + n 3 + 1,..., N.

The nonzero elements of W' are found by following a simple descending

"staircase" through the matrix, starting at W12 and ending at WN,5 . The

summation inequality constraint is vi< tk-j+1, implying for the reduced matrix W'

the summation inequality constraint vi < tk-j+1. For i = 2, we require v 2 = < tkj+l ,

implying that the summation index is allowed values over its full range, j = 1, ..., k;

using Eq.(4) with its "row 0" boundary condition this implies that for k = 1, ... , nl,

k
Wk 2 = F(r) . For i = 3, we require v3 = tk-j+l , implying that for k = n 1 + 1,..., n

+ n2, the summation index varies between j = 1 and j = k - n1 . Hence for k = n1 + 1,

... , n + n2 , we find using Eq.(4)

W' (k )F(h)nl [F() F(_ )]k-nl
Wk3=o sireof k =nl +,l

Following similar reasoning we find for k = n1 + n2 + 1 ,..., n I + n 2 + n 3,

Wk3 =nl+n2)(Wk3= n2
k

k-nl-n2 )
or, equivalently,

Wk3= F(l) 1 [F( - F(lr)] 2[F(i) - F( ]
k

k-nl-n2

:-nl-n2

Finally, again using Eq.(4) and noting allowed values for the summation index, we

obtain the desired multinomial distribution,

WN,5=

N!
F(r" ) 1 [F(rz - F(rl)] 2[F('r)- F(r] F (r N - n l - n 2- n 3.

12

n l!n2!n 3!(N-n l-n2-n3 )!

F(rj) n[F(r - F(r 1)] F(r) - FsZ)



s
1

0 ° tl t2 t3 t4 1

100~~~~~~~~~t 1I I I I

=s2=0 l 3I I sI0 I I I I I I
= I s 1 I 4 1 I

zl= 5 

Figure 1: Creation of {v i} from {ti} and {si} for N=4 example.
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"Negative length" right-most interval test (implying impossible event):

k\ i=123 4 5 6 78
0 

1 Y',Y N N N N N -
SK>Vi 2 Y TN N N N N-

3 Y Y y N NN -
4 'Y Y Y YYYYN

.These entries
always "Y"

Exhibit 1: Test for Impossible Events in the N = 4 Example

Matrix W: m=maximum number of r.v.'s allowed in (vi_1, vi], given
inequality contraints in (0, vil]
=maximum value for summation index j in Eq.(4)

ki=12 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1

1 0 Om=lm=O m=O m=Om=0 -
W= 

2 Om=2m=lm=l m=O-m=O

3 00 0 0 m=2 m=l m=O
4 000 0 0 0 O O O m=l

Exhibit 2: Determining Maximum Allowable Value for Summation Index
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F(x)

1 X

1 I2 I3 I4

Figure 2: Graphical Depiction of F(x) for Multinomial Example
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2. Inferring the Performance of Poisson Arrival Queues

In [8] Larson uses events of order statistics to derive an algorithm, the "Queue

Inference Engine (QIE)," to compute various estimates of performance measures of

Poisson arrival queues from a set of transactional data. The transactional data are

the moments of service initiation and service completion for each customer served.

The "signature of a queue" from the transactional data is a back-to-back service

completion and service initiation. That is, if at least one customer is delayed in

queue, it is assumed that said customer will enter service virtually immediately

following departure of a customer from service. If there are M servers and all are

busy, any arriving customer must be delayed in queue.

Our period of analysis is a single congestion period, a continuous time interval

during when all M servers are busy and all arriving customers (assumed to be

Poisson) must queue for service. A congestion period commences the moment that

all M servers become busy and ends the moment that one of the servers completes

service and then remains idle for a positive period of time. In our notation here, N

is (1) the total number of customers who complete service during and before the end

of a particular congestion period and, also, (2) the total number of new customers to

arrive to the queueing system during the congestion period. By convention N=O for

any congestion period having no queued customers. In a queue inferencing setting,

t i has two definitions: (1) it is the observed time of departure of the ith departing

customer to leave the system during the congestion period; (2) it is also the observed

time for the ith customer from the queue to enter service, not necessarily in a FCFS

manner. The two sets of individuals comprising the set of arriving customers and

the set of departing customers during a congestion period are never identical, and

may be disjoint. The number of servers M does not enter into the analysis, nor do

any distributional properties of the service times (e.g., there is no requirement for

i.i.d. service times). We do assume that service times are independent of arrival
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times, else the assumptions regarding the distributional form of the order statistics

may be incorrect. For any given congestion period, the QIE computations may occur

any time after completion of the congestion period.

Using the fact that for a Poisson process the N unordered arrival times during

any fixed time interval (O,T] are i.i.d. and scaling the congestion period to (0, 1], then

in our notation F(0, t) is the apriori probability that the (unobserved) arrival times

X(1), X(2), . ., X(N), obey the inequalities X(i) < t i for all i = 1, 2,..., N, a condition

that must hold for the congestion period to persist. That is, "X(i) < ti" simply says

that the ith arriving queued customer must arrive (and enter the queue) before

completion of service of the ith departing customer from service; otherwise there

would be no customer to select from the queue at time t i, negating the possibility of

a back-to-back service completion and service initiation, a condition known to be

true from the transactional data. If the Poisson arrival process is homogeneous then

the unordered arrival times are i.i.d. uniform and the rate parameter of the process

does not enter the analysis. If the arrival process is nonhomogeneous then the

time-dependent arrival rate parameter A(t) must be known up to a positive

multiplicative constant for use in computing the c.d.f. F(x), i.e.,
fX

(t) dt

F(x) , O<x<l1.

oA dy

For simplicity we assume that F(x) is strictly monotone nondecreasing continuous,

thereby reducing to zero the probability of simultaneous customer arrivals.

Queue inferencing, despite its youth, is a field with a growing number of

researchers and papers. In [2] Bertsimas and Servi derived the first O(N3 ) algorithm

for queue performance estimation based on N-dimensional integration. They also

extend in various ways the original paper of Larson, for instance explicitly treating
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time varying Poisson arrivals, certain non-Poisson arrivals and bounding each

moment of the customer waiting time in O(N3) and providing an exact (but not

O(N3 )) expression for the waiting time c.d.f. of each customer. In [3] Daley and Servi

demonstrate how the queue inference calculations may be performed in O(N3 ) time

using ideas of nonhomogeneous Markov chains with taboo states. In [4] they extend

these ideas to develop a "kernel" within the Markov framework which allows

development of queue inferencing calculations within more complex

environments involving, for instance, Markovian reneging. The net result of [2], [3]

and [8] is the existence of three O(N3 ) algorithms for computing essentially the same

queue statistics, each based on a different approach and each relying exclusively on

transactional data. Gawlick [6] reports a successful application of these techniques

within a communication network context. Recently in her Ph.D. thesis, published

as an M.I.T. Operations Research Center Technical Report, Hall using order statistics

arguments advanced queue inferencing in a number of directions [7]; among her

results, she finds a stochastic dominance bound for queue inference approximations,

an O(N3 ) algorithm for computing the conditional probability distribution of the

waiting time of the jth customer to be delayed in queue (assuming FCFS queue

discipline), and queue inferencing algorithms for complex situations in which for

instance one knows that during a congestion period the queue did not exceed Lo in

length or in which one knows during the congestion period the precise times at

which the queue exceeds Lo in length. Following [7] and [8], our approach is based

on order statistics.

To date, the QIE and related queue inferencing algorithms have been

implemented to monitor queues and to help schedule servers in post offices,

airports and banks. Additional applications have included telecommunications

systems and automatic teller machines.
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In the following subsections we illustrate the variety of performance

characteristics that can be computed simply using Th.1 (or equivalently Th.2). In the

final two sections of the paper we expand the methodology to derive new

computational algorithms focusing on (1) queue delay c.d.f. and (2) correlations of

queue delays between customers in the same congestion period.

2.1. The Maximum Experienced Oueue Delay

Assume we have a FCFS queue. Suppose we consider a congestion period

having N customers with observed departure time vector t, and we are interested in

the maximum time that any of the N customers was delayed in queue, given t.

More precisely, we are interested in the c.d.f. of the maximum of N nonindependent

r.v.'s, the in-queue waiting times of the N queued customers, given t.

Define

D( I t) _ conditional probability that none of the N customers waited

r or more time units, given the observed departure time data.

Set s = t - r, i.e., s i = maxt i - , 0} for all i = 1, 2,..., N. Then Flt - r, t) is the a priori

probability that the observed departure time inequalities will be obeyed and that no

arrival waits r or more time units in queue. Clearly,

D( I t) = tIt- r, t)/ 0O, t). (7)

As an example, reconsider Example 2 with N=3, t=(1l /3, 2/3, 1), s=(l /6, 1/2, 5/6).

Here F(0, t) is the apriori probability that the Poisson arrivals, assumed in this case to

be homogeneous, will obey the departure time inequalities: X(1) < 1/3, X(2) < 2/3 and

X(3) < 1. This is the same example worked out by Larson in [8], and our result F(O, t)

= 16/27 agrees with his result. For this example we see that s = t - 1/6, and thus

fLt - r, t) is the apriori probability that the arrivals will obey the departure time

inequalities, and that no customer waits more than 1/6 time unit in queue. Hence

D(r I = (1/36)/(16/27) = 3/64 = 0.046875 = conditional probability that none of the 3
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customers waited in queue 1/6 or more time units, given the observed departure

time data, t.

2.2. Maximum Queue Length

The derived methodology is also readily applied to examination of the

maximum length of the queue during any congestion period for which departure

time data are known. Without any assumption regarding queue discipline, suppose

we define s = s*K such that

*K
si = t(i- K ) for all i = 1, 2,..., N; K = 1, 2,..., N,

where a non-positive subscript on t implies a value of zero. These values for s

imply that each arriving customer i has to arrive after the departure time of

departing customer i- K during the congestion period. Now we can compute the

conditional probability that the queue length did not exceed K during the congestion

period, given t:

P(Q <K I t) = Pr{queue length did not exceed K during the congestion period

I observed departure time data)

= s *K , t/)O, 9. (8)

For the departure time data of Example 2 with N=3, t=(1/3, 2/3, 1), we compute

P(Q <1 1It = 3/8, P(Q 2 1 t = 15/16 and P(Q _<3 t) = 1.0.

2.3. Probability Distribution of Queue Length

Following the same arguments as in [8], we can utilize the O(N3 )

computational algorithm to determine for any queue discipline the probability

distribution of queue length at departure epochs, and by a balance of flow argument,
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this distribution is also the queue length distribution experienced by arriving

customers.

2.4. The Cumulative Distribution of Queue Delay: An O(N4) Algorithm

The new recursive algorithms allow exact computation of points on the

conditional in-queue waiting time distribution, given the observed departure data.

To our knowledge, this computation was not feasible with any previous queue

inference procedure.

Again assume we have a FCFS queue. Suppose we define

ji (r I t) Pr{ jth customer to arrive during the congestion period waited less

than r time units I observed departure time data},

Then if we set s = sj, defined so that

si=0 i=1,2,...,j-1Si

= Max{tj- ,0=j,j +1, N.

we can write

fj ( I t) = F(s, )/1O,). (9)

This result allows us to determine for any congestion period the probability

that a random customer waited less than r time units, given the observed departure

data. We simply compute Eq. (9) once for each value of j and average the results.

For Example 2 with = 1/6 we find P1 (1/6 1 t) = 49/128, P2 (1/61 t) = 30/128 = 15/64

and P3 (1/6 I t = 36/128 = 9/32, and thus the probability that a random queued

customer waited less than 1/6 time unit is (1/3) ([49+30+36]/128) = 115/384 0.2995.

By applying Eq. (9) for differing values of r, we can determine any number of points

on the c.d.f. of queue delay, conditioned on the observed departure time data.
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The problem with this approach is that for each value of r an O(N3 ) algorithm

must be performed for each of N customers, resulting in an O(N4 ) procedure. If a

less accurate computation is permitted or if less computational work is required, one

can select the customer j at random from the N available and apply Eq. (9) to the

selected customer. But such a procedure will most likely increase the variance of

the estimate of the cumulative delay distribution.

3. The Cumulative Distribution of Queue Delay: An O(N3) Algorithm

One can utilize the ideas of Thms. 1 and 2 to create an O(N3 ) algorithm to

compute the average probability (averaged over all N customers in a congestion

period) that the in-queue wait is less than r minutes, given the departure time data.

To create the required forward recursion, let (zi} be the ordered merging of {0, t, t 2,

..., tN) and {si} = {max[O, ti- i]}, and define

Zk - Pr{0 < X(1) _ min {t, zi}, < X(2) < min {t2 , zi}, . ..,

(10)

O < X(k) min {tk, z i} I N(1) = k}, i = 1, 2,..., 2N+1, k = 1, 2,. .. , N.

Note that for each value of j the lower limit on X(j) in Eq.(10) is 0, not sj as in Eq.(2).

We have the standard boundary condition Zoi= 1, i = 1, 2, ..., 2N+1, and we note that

since z 1 = , Zkl = 0, k = 1, 2, ... , N. Since {zi} is a refinement of the appropriate {vi}

sequence, by a similar argument to that of Thm. 1 the quantities Zki are computable

in O(N3 ) time using the forward recursion,
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Zki = Zk,i-l +
j=i

) Zk - j, i - 1 [F(zi - F(zi )]

s.t zi< tkj+1

Note that there is no test for impossible events, comparing sk to v i, since in this

recursion the left hand side of each interval is 0, not sk.

To obtain the required backward recursion we use the same definition of {zi}

and define

Rki - Pr(zi < X(1) tNk+l, i < X(2) tN-k+2, . ., Zi< X(k) tN I N(1) = k}• t k l , j X ( 2 (12)

i=1,2,...,2N,2N+1, k= 1,2,...,N.

Note that for each value of j the lower limit on X(j) in Eq.(12) is z i, not max{sNk+j ,

z i} as in Eq.(5). Here we have the usual boundary condition Roi= 1, i = 1, 2, ..., 2N+1,

and we note Rk, 2N+1 = 0, k = 1, 2, ... , N. By a similar argument as that in Thm. 2, the

quantities Rki are computable in O(N3 ) time using the backward recursion,

k

Rk,i+ + I Rk-jii + 1 [F(zi+l) - F(zi I if Zi< tN-k+l
i=1

Rki= (13)

0 if zi> tN-k+l

Note that there is no constraint on the summation index, comparing z i

this recursion the lower limit on X(j) is simply z i.

to SN-k+j, since in
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Upon completion of each of the two recursive algorithms, Eqs. (11) and (13), one has

obtained the same final quantity, ZN,2N+1 = RN,1 = rTO, ) = the apriori probability that the

departure time inequalities are obeyed, which is the fundamental probability found in

the original QIE paper [8].

3.1. The Algorithm

Define the average probability that a customer is delayed in queue less than r

time units, given the departure time data, as
- N

f(j ) (1/N) Xj ') (14)

j=l

The quantity (rlt) can be computed in O(N3 ) time using the forward/backward

"kiss" (FBK) algorithm of

Theorem 3.
N j

j=1 k=l

where i(sj) is the index of the element of {z) equaling sj, i.e., sj = Zi(sj).

Proof.

It is sufficient to show that

JI

=( 101) E (j-k) i-ki RNjki(sjl
k=l

24



or equivalently that j, t) = . (j-k) Z-ki(s) RNj+ki(S)

k=l

But we can write

InIJ, t) = Pr({O < X(1 ) < t1 , 0 < X(2) t2, .. ., max(O, tj - T} < X(j) tj ...,

max(O, tj - r) < X(N) < tN I N(1) = N).

Recall that sj = max[O, tj - :] and that i(sj) is the index of the element of {z} equaling sj,

i.e., sj = zi(sj). By partitioning the arrivals into an early set and a late set, where the

Ith ordered entry in the early set arrives before mint t l, Zi(sj) }, we can write

F(_, t) = Pr{O < X(1) • min( t, Zi(sj) , 0 < X(2) min( t2, Zi(sj ) }, .. 

0 < X(jl) _min{ tjl1 Zi(sj) Zi(sj) < X(j) <tj, Zi(sj) < X(j+l) <tj+, . .

Zi(sj) < X(N) tN I N(1) = N)

Pr{O < X(1) < min t, Zi(sj) , 0 < X(2) < min( t2, Zi(sj) } .. .

0 < X(j_2) min( tj 2, Zi(sj) I, Zi(sj) < X(j-l) < tj-1, Zi(sj) < Xj) tj, .

Zi(sj) < X(N) < tN I N(1) = N)

Pr(O < X(2) min t 2, i(sj) }< X( 2).min( t2 , zi(s) 

0 < X(jk) < min( tj k , Zi(sj) } Zi(sj) < X(j-k+l) tj-k+l,

Zi(sj) < X(j-k+2) <tj-k+2, .. Zi(sj) < X(N) <tN I N(1)= N} + ...

where the kth term on the RHS corresponds to j-k arrivals in the early set and N-j+k

arrivals in the late set. But, recognizing that there are ( k)ways in which the N total
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arrivals may be partitioned into two subsets, we can write the generic kth term as the

product of two conditional probabilities and lNk) 

Pr(O < X( 1) <min( t, Zi(sj) , 0 < X(2) min( t2, Zi(sj) },..

0 < X(jk) < min( tj k, Zi(sj) i Zi(sj) < X(j-k+l) tj-k+l,

Zi(sj) < X(j-k+2) <tj-k+2, , Zi(sj) < X(N) tN I N(1) = N) =

(1 k) X [Pr(O < X() min t, Zi(sj) ), < X(2) min( t2 , Zi(s) ..

0 < X(jk) min( tj-k, i(s) ) I N(1) = j-k)] x [Pr( Zi(s.) < X'( 1) tjk+l,

Zi(sj) < '(2) < X(2 ) tjk+2, . Zi(sj) < X'(N-j+k) < tN I N(1) = N-j+k)],

where X'(i)} is a set of N-j+k order statistics over [0, 1], independent of the set

{X(i)) over [O, 1]. But the last expression is simply - k) Zj-k,i(sj) RNj+k,i(sj).

n

Remark: We call the algorithm forward/backward "kiss" (FBK) because it uses

forward recursion to obtain Zki, then backward recursion to obtain Rki, and the two

algorithms "kiss" at the point sj = max[O, tji - r] = i(sj).

3.2. Illustrative Computational Results

To illustrate the use of Thm. 3 we first apply it to the continuing N=3 example

that we have used throughout the paper. The results are shown in Exhibit 3 and are

seen to be in agreement with the results found in Sec. 2.4 using the less efficient

(N 4) algorithm. Note, as expected, ZN,2N+i = RN,1 = F(0, t) = 16/27, as found

earlier in Example 2.
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We also applied the algorithm in a set of Monte Carlo simulation runs

modeling the well known M/M/1 (Poisson customer arrivals, i.i.d. negative

exponential service times, single server) queue under alternative load factors (ratio

of customer arrival rate to available customer service rate). As one illustrative

example an M/M/1 queue was simulated with an average of 10 customers arriving

per hour, available service rate of 20 customers per hour (i.e., mean service time of

1/20 hour or 3 minutes) for a total of 1000+ simulated hours. The average load

factor was 0.5. The transactional data of each of the 4961 observed congestion

periods were analyzed with Eq.(15) to estimate points on the steady state in-queue

waiting time c.d.f. The random variable of interest is Wq, the in-queue delay

experienced by a random customer. To compute estimates of the c.d.f. for Wq over

many congestion periods, we must be careful to include also those customers

experiencing zero queue delay, i.e., those who commence a congestion period by

activating a previously idle server. Averaging in the appropriate way Eq.(15) yields

the following c.d.f. estimates: P{Wq = 0) = 0.4922, P{Wq < 1 min.) = 0.5913, P{Wq < 2

min.) = 0.6476, P{Wq < 3 min.) = 0.6972. From the theory of M/M/1 queues, the

analytically obtained limiting results are P{Wq = 0) = 0.5000, P{Wq < 1 min.) = 0.5768,

P{Wq < 2 min.} = 0.6417, P{Wq < 3 min.) = 0.6967. [Note: We are using strict rather

than nonstrict inequalities in the definition of the waiting time c.d.f., in order to be

consistent with the strict LHS inequalities in the event definition of Eq.(2). Due to

the continuous nature of the c.d.f., this convention is of no practical significance.]

3.3. Extensions

The distributional results above can be extended in a number of ways. For

instance, suppose one wishes to obtain estimates of points on the c.d.f. of queue

wait, given that in addition to the usual transactional data we also know that the

queue did not exceed K in length during the congestion period. In that case, one

redefines si) = {max[tiK, ti - t)]}. (Again, we use the convention that a non-positive
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subscript on t implies a time of 0.) Then, when strictly positive, the earliest

allowable arrival time for customer i is either (1) r time units before her service

commencement or (2) the service commencement time of the customer who was

the Kth customer to arrive before customer i, whichever is greater. The new

condition ensures that the queue does not exceed K in length during the congestion

period. By employing this definition of {si} one can obtain, using Eqs. (11), (13), and

(15) with O(N3 ) computations, estimates of points on the queue wait distribution in

a situation in which the queue length never exceeds K. In applying this result, use

should be made of Eq.(8) to obtain the correct conditioning probability.

Similar extensions can be obtained using other conditioning events, with

appropriate modifications to the definition of {si).
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Exhibit 3: Use of the 0(N3 ) Algorithm with the Continuing N=3 Example

t = (1/3,2/3,1}; s = (1/6,1/2, 5/6); z = (0, 1/6,1/3, 1/2,2/3,5/6, 1)

i=1 2 3 4 5 6 7
1 1 1 1 1 1

0 1/6 1/3 1/3 1/3 1/3

0 1/36 1/9 2/9 1/3 1/3
0 1/216 8/216 26/216 56/216 92/216 16/27

i=1 2 3 4 5 6 7
- 1 1 1 1 11

5/6 2/3 1/2 1/3 1/6 0
21/36 1/3 5/360 0 0

16/27 49/216 0 0 0 0 0

P1(1/619= 1 132Zo2
1'1 0

R 3,2 = 428

f2(1/6 1 = 1 7)() Z 1 4 R 2 4
(I ) 1 2,4"ZP

O) ZO, 4 R3,4 = 15/64 = 30/128

P3(1/61 ) =
1

(N 
N

(3 Z2,6R16 +3|Z1,6R2,6+( 2
It1) 1{49+30+36 1
J Y-'V3J 128 3

() Z0,6 R 3,6

15
0.2995

84-

= 9/32 = 3 6128

A ID= (1/N)j=

j=l
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k=

0
1

Z=
2
3

k=

R= 1
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4. Correlations

The recursive methods above can be applied to finding correlations between

waiting times of two specified customers during a congestion period. Such results

may be useful in exploring the validity of various approximations to exact recursive

algorithms or in estimating the equivalent sample size of independent observations

of the queue, given the departure time data.

Using the notations of Sec. 3, we define

Al,j,k,i -- Prsj < X(1) min{t I, zi), s < X(2) < mintl+ 1, zi}, ( ,6)

Sj < X(k) < minftl+k_1 , zi} I N(1) = k, k=1,...,N-l+1; j,l=1,...,N; i=1,...,2N+1

We use as a boundary condition AljOi = 1 for all i,j and 1. By noting impossible

events we see that for all i,j such that mintl, zi} sj, Al,j,k,i = 0, implying that Alj,k,1

= 0 for all j,k and 1. For any fixed values of I and j one can compute in O(N3 ) time

the quantities Aljk i for the appropriate values of k and i using the forward

recursion,

k

Al,jki =

Al,j,ki-l +

0

(m) Alj,kmil [F(zi)-F(zil)]m
m=l

s.t. Zitl+km

Sj> Zi
(17)

Since I and j can each take on values l,j=l, 2, ... , N, the entire four dimensional

matrix A (Alj,ki ) requires O(N5) computations.
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We are now interested in the conditional joint probability that both arrival jl

and arrival 2 during the same congestion period waited less than r time units, given

the departure time data. For j2 > jl, define the unconditional joint probability

T1'j 2, t) = Pr {O<X < O<, X(2)t 2, .. ,maxO,tjl - }<X(jl)<tjl, ....

max(O, tj1-)<X(j2li)<tj2-1, max{O,tj2 - r<X(2 )<tj2,... (18)

max{O,tj2- c}<X(N)<tN I N(1) = N}

The quantity ITdl'2, t) can be computed with a nested recursion that partitions [0, 1]

into three subintervals, [0, sjl], (l, sj2] , and ( s2, 1]. Intuitively, for the required

event to occur, sjl+ is the earliest possible arrival time for arrival jl, so that at most

jl-1 arrivals can occur in [0, jl]. But there is also a minimum number of allowable

arrivals in [0, Sjl]; suppose that a(sjl) is the largest index j of t satisfying

tj< jl; then at least a(sjl) arrivals must occur in [0, sjl] or else the original arrival time

inequalities implied in t would not be satisfied. For the second interval

(sjl, sj2] there are similar concerns. The earliest allowable arrival time for arrival j2

is sj2+. And up to time sj2 there must be at least a(sj2) arrivals, or else the arrival

time inequalities of t would not be satisfied. Given the upper and lower bound

constraints on the allowable number of arrivals in each of the first two intervals

(either or both of which may be empty), distributing the unordered arrivals over the

three intervals is rather straightforward. For a given number

n of arrivals in [0, sjl], where n = a(sjl), ... , jl-1, the remaining N - n arrivals are

distributed over the other two intervals. Of those N-n arrivals, for the desired event

to occur, at least N - j2 +1 must be in (sj2, 1] and the remainder (if any) are in (Sj, sj2].

Using essentially the same recursive logic as in Thms. 1-3, we obtain

Theorem 4.
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jl- j-l-n

l -J2= , n!m!(N-n-m)! Zni(sj)An+l,j,m,i(sj2RN-n-mi(sjd (19)
n=a(s j m =max[O,a(sj 2 -n]

Proof: Omitted.

Considering that the matrices Z and R are computed in O(N3 ) time prior to

insertion in Eq.(19), that the matrix A is computed in O(N5) time, and that Eq.(19)

requires O(N2 ) computations for a fixed Jl and j2, the entire matrix of joint

probabilities F() = (Td 1 'j2, L) )J J2 can be obtained in O(N5) time.

Let the random variable Wq(j) be the queue delay experienced by the jth

customer to enter the system during a congestion period having a total of N

customers (j=1,2,...,N), given the usual departure time data. Consider as an

application of Eq. (19) use of indicator random variables

1 if Wq(j)<T
Xj= O theise given the departure time data.

Then using the property that an indicator r.v. can take on values of only 0 or 1, we

have

E[Xj = Pr(Wq(j) < r} = E[X 21 = ( I ),

E[XiXjl = Pr(Xi=l, Xj = 1} = Pr(Wq(i) < , Wq(j) < } = FE?, t) / I(O, ),

2x =E[X] - E[X = Bij(3 r lt)[(1 - fil(r )]

With these quantities we can find for any customers i and j (i j) the correlation

coefficient of X i and Xj,

Pij = correlation coefficient

COV(X ix E[X iX E[X E[X 

' tx
[[(st_/I(Ot_)] - P(l t)ilj(l'r t)

PtlDII-l Pi(lt}f(Tl{1 - Pi(rlt))
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As usual, the correlation coefficient may vary between -1 and +1, with a value of 0

indicating that the random variables are uncorrelated.

Continuing the N=3 example, the above computations are carried out in

Exhibit 4. As we might expect intuitively, all three correlation coefficients are

positive; this reflects the fact that a limited in-queue waiting time for one customer

is statistically associated with a limited in-queue waiting time for other customers

within the same congestion period. But, as we might expect, the degree of statistical

association is strongest for adjacent customers (i.e., customers 1 and 2 or customers 2

and 3) and weakest for the pair of nonadjacent customers (customers 1 and 3).

Exhibit 5 displays the entire matrix of correlation coefficients for an N=15 customer

congestion period with =-0.03333.
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Exhibit 4: Illustrative Computations with Joint Probabilities and

Correlation Coefficients

To solve this problem we only need A 1l (A i,i,kA2= (A 2,2,k). Using Eq. (17) we

obtain

i=1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
0 0 1/6 1/6 1/6 1/6

0 0 1/36 1/12 5/36 5/36
0 0 1/216 7/216 19/216 34/216 49/216

k=
0
1

2

i=1 23 4 5
1 1 11 1
0 000 1/6

0 0 0 1/36

3!
n! m (3-n i)! Z, 2An+l,l,m,4 R3-n-m,4= 3Z0 ,2A 1, 1 ,1, 4 R2,4=3(1)(1/6)(5/36)=5/72n! m ! (3-n- W! n11m)4 3-, 

3!
n! m! (3-n- m)! Z n,2 An+l,l,m,6 R 3-n-m,6 = 3Z0 ,2 A 1,12,6 R 1,6=3(1)(5/36)(1/6)=5/72

n! ! 3-?--W! ,12,

:lt
"' 7 . A I _ 7_ . DA __-41 I'2'( /'1 /I\-A /7'"

(3-n- m)! n,4 n+1,,m,b6 "3-n-m,6 - "- 1,4' 2,2,1,6L" 1,6-"' '-/\ / -/\L / -
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Exhibit 4: Illustrative Computations with Joint Probabilities and Correlation

Coefficients, continued

Pij = correlation coefficient =

P12 =

P13 =

P23 =

[ ,(/lou] - p3 j(l Pf{ It)

1 1t {1 - P1i(Pj(i - Pj(rtl

[(5/72)/(16/27)] - (49/128)(30/128)

V(49/128){1 - 49/128)(30/128){1 - 30/128

[(5/72)/(16/27)] - (49/128)(36/128)

d(49/128)1 - 49/128}(36/128)(1 - 36/128)

[(4/72)/(16/27)] - (30/128)(36/128)

/(30/128){1 - 30/128)(36/128){1 - 36/1281

= 0.13339

= 0.04357

= 0.14613
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Exhibit 5: Matrix of Correlation Coefficients for an N=15 Customer

Congestion Period with -0.03333

t = (0.11638, 0.31580, 0.36149. 0.40434, 0.41049, 0.50302, 0.54814, 0.61105, 0.71665, 0.86028, 0.91845,

0.91988, 0.92351, 0.98407, 1.0)

Matrix of Correlation Coefficients:

0.05097 0.01986 0.02109 0.01637 0.00799 0.00200 0.00134 0.00413 0.00802 0.00458 0.00570

0.08261 0.02037 0.01782

0.18366

0.36959

_-

_ _--

0.03875 0.03215

0.06388

0.15297

_-

_- --

_---

0.04857

0.12006

0.25304

_-

_-

_---

0.01184

0.02060

0.02961

0.07414

0.09937

0.21594

_-

_---

0.00519

0.00882

0.01230

0.03102

0.03377

0.06225

0.12341

_ _--

_---

0.00122

0.00206

0.00283

0.00716

0.00716

0.01251

0.02101

0.04881

_- -

_- --

_-

0.00079

0.00133

0.00181

0.00459

0.00442

0.00757

0.01204

0.02254

0.10138

_- --

0.00237 0.00443 0.00243 0.00294

0.00395

0.00536

0.01360

0.01267

0.02128

0.03237

0.05157

0.11372

0.26677

_---

0.00732

0.00987

0.02508

0.02243

0.03690

0.05331

0.07162

0.08213

0.10085

0.37176

_---

0.00398 0.00480

0.00533 0.00639

0.01357 0.01627

0.01167 0.01363

0.01883 0.02171

0.02599 0.02912

0.03045 0.03144

0.02376 0.01999

0.02696 0.01999

0.09284 0.07101

0.21850 0.17518

0.35093
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0.03011

0.18715

__-

_- --

_- --

_-

_-

0.02700

0.07616

0.22103

_ _
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