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A Fluid Model of Dynamic Pricing and Inventory Management for Make-to-Stock
Manufacturing Systems

Abstract

In this paper, we introduce a fluid model of dynamic pricing and inventory management
for make-to-stock manufacturing systems. Instead of considering a traditional model that is
based on how price affects demand, we consider a model that relies on how price and level of
inventory affect the time a unit of product remains in inventory. Our motivation is based on the
observation that in inventory systems, a unit of product incurs a delay before being sold. This
delay depends on the unit price of the product, prices of competitors, and the level of inventory
of this product. Moreover, delay data is not hard to acquire and is internally controlled and
monitored by the manufacturer. It is interesting to notice that this delay is similar to travel times
incurred in a transportation network. The model of this paper includes joint pricing, production
and inventory decisions in a competitive, capacitated multi-product dynamic environment. In
particular, in this paper we (i) introduce a model for dynamic pricing and inventory control that
uses delay rather then demand data and establish connections with traditional demand models,
(ii) study analytical properties of this model, (iii) establish conditions under which the model
has a solution and finally, (iv) establish an algorithm that solves efficiently a discretized version
of the model.

Keywords: Dynamic Pricing, Fluid Models.




1 Introduction and Motivation

In recent years, pricing has become very important in a variety of areas including airline revenue
management, inventory control and supply chain management. For instance, in the airline industry,
revenue management has demonstrated its potential to dramatically improve revenue. Smith et al.
discuss in [34] how revenue management enabled American Airlines to increase its yearly revenue by
nearly 5 %, which led to a $ 1.4 billion profit improvement over a period of three years. Moreover, in
recent years, the rapid development of information technology, the Internet and E-commerce has had
a very strong influence on the development of pricing.

As a result, pricing theory has been extensively studied by researchers from a variety of fields. These
fields include, among others, economics (see for example, [37]), marketing (see for example, [24]),
telecommunications (see for example, [20], [21], [31]), revenue management and supply chain man-
agement (see for example, [3], [5], [8], [13], [16], [41]). The paper by McGill and van Ryzin [28], and
the references therein, provide a thorough review of revenue management and pricing models.

As the nature of pricing is becoming more dynamic and tactical, companies are faced with the challenge
of reacting to and taking advantage of these changes. A study by McKinsey and Company on the
cost structure of Fortune 1000 companies in the year 2000 shows that pricing is a more powerful lever
than variable cost, fixed cost or sales volume improvements. An improvement of 1% in pricing yields
an average of 8.6% in operating margin improvement (see Figure 1). Therefore, companies’ ability to
survive in this very competitive environment depends on the development of efficient pricing models.

A 1% improvement ... Improves operating
in ... ~ margin by

Price 8.6 %
Variable cost
Sales volume

Fixed cost

*Based on Compustat cost structures of 1,000 companies, 2000. McKinsey & Co

Figure 1: Price as a powerful lever to improve profitability

Make-to-stock manufacturing is the standard for a very large number of industries such as retail (see
Ha [17] and Wein [36] for more details on make-to-stock models). Furthermore, a motivation for the
use of fluid models is that these models have shown to provide good production and inventory policies
in a variety of settings, as illustrated in Avram, Bertsimas and Ricard [2], Bertsimas and Paschalidis
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[4], Harrison [18], and Meyn [29]. Nevertheless, these models do not address the pricing aspect of the
problem.

In this paper, we consider (i) a multi-product and dynamic environment, (ii) a dynamic production
capacity shared amongst all products, (iii) the presence of competition. We address the joint pricing,
production and inventory problem, without assuming any fixed relationship between price and inven-
tory. Furthermore, for better numerical tractability, we study the solution of the model assuming a
specific price-inventory relationship with parameters that are an output of the model.

Instead of considering a traditional model that assumes an a priori relationship between price and
demand with fixed parameters, we consider a model that relies on how price and level of inventory
affect the time a unit of product remains in inventory. We refer to this time spent in inventory as
delay or sojourn time.

The impetus of considering delay data is motivated from: (1) The widespread recording, by barcode
readers, of entrance times and exit times of products in inventory systems, which makes this delay
data easily available. (2) The delay data being internal and easily extractable from data warehouses,
as opposed to demand data, which is external, and therefore not controlled by the manufacturer. As
a result, issues of missing data are not as much present when dealing with delay and inventory data
(contrary to demand data). (3) In an environment where price does not vary a lot with time, the
estimation of the relationship between price and demand, which is used as an input to the pricing
models in the literature, can be quite inaccurate. However, because of the moderate to high variability
of inventories with time, the estimation of the relationship between inventory level and sojourn time
can be more accurate. A few companies such as Amazon.com are currently using sojourn time
information to control their inventories and adjust their pricing policies.

The contributions of this paper are the following:

(1) It studies a general continuous-time formulation of the joint dynamic pricing and inventory control
problem by establishing insightful analytical properties of this model.

(2) It establishes when the general model has a solution.

(3) It examines the solution of a discretized version of the model by introducing an algorithm for
efficiently solving this model and computing pricing policies. As a result, it also discusses how the
delay approach we take in this paper directly connects with the traditional demand approach.

The structure of the paper is as follows. In Section 2, we provide the notation and some definitions.
In Section 3, we formulate the Dynamic Pricing Model as a continuous-time nonlinear optimization
problem. In Section 4, we present a solution algorithm for a discretized version of the model, test it on
a small case example, and report on the computational results. In Section 5, we consider the general
Dynamic Pricing Model. In particular, we study the analytical properties of its feasible region, and
establish, under weak assumptions, the existence of a pricing/production/inventory control policy
that maximizes the profit of the company under study over the feasible region. Finally, in Section 6,
we provide some conclusions.

2 Notation and Definitions

In this section, we present the notation and some definitions that we use throughout the paper.



2.1 Notation

In this paper, we study a multi-product inventory system that we represent conceptually by a directed
network with two nodes O and D, and n links joining these two nodes. Node O represents the arrival
of a product to the warehouse and node D represents the delivery of this product to the customer.
Each link joining O and D corresponds to a distinct product that the company is selling and is
indexed by 4, i € {1,...,n}. We assume that the company under study is a Stackelberg leader, and
as a result is a price setter. Therefore, competitors’ prices are functions of the price of the company
under study. These functions can be estimated in practice using regression on the competitors’ prices
and the prices of the company under study, as illustrated in Subsection 3.2. Below, we describe the
inputs and the outputs of the Dynamic Pricing Model. Figure 2 provides a network illustration of
the notation introduced below.
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Figure 2: Network representation of the multi-product inventory system

Inputs of the Dynamic Pricing Model

Link variables:

CFR(t) = Shared production capacity rate at time ¢;

@) = (0f;(pi(.),3 € {1, .., J(9)}), vector of price functions of
companies competing on product i;




Di(I;) =T;(L;,pi,pf) : product sojourn time function, that is the total time a newly
produced unit of product ¢ spends in the inventory system,
given an inventory I;, a unit price p;(I;), and a set of
competitors’ price functions p§(.);

Ai(L) : average product delay function, that is the average time needed
to sell a unit of product i (i.e. A;(L;) = D—*I(f—il);
By; : a lower bound on the derivative D!(.) of the product sojourn
time function D;(I;);
By, : an upper bound on the derivative D}(.) of the product sojourn
time function D;([;);
c;(t) :  production cost of product 7 at time £;
hi(t) : inventory cost of product 7 at time t.
Time variables:
t : index for continuous time;
[0,T] : production period. After time T, the company under study ceases producing.

Outputs of the Dynamic Pricing Model

Link variables:

Ui(t) : cumulative production flow of product ¢ during interval [0, ];
u;(t) : production flow rate of product ¢ at time ¢;
Vi(t) : cumulative sales flow of product ¢ during interval [0, t];
vi(t) : sales flow rate of product i at time ¢;
Ii(t) : inventory (number of units) of product ¢ at time t;

pi(1i(t)) : sales price of one unit of product ¢ given an inventory ;(t);
3:(t) exit time of a production flow of product type i entering at

time ¢ (s;(t) = t + D;(1;(t))).
Time variables:

[0,T] : analysis period. It is the interval of time from when the first unit
of product is produced to the first instant all products have been sold.

Notice that the control variables are the production flow rates u;(.) and the unit price functions p;(I;).

2.2 Definitions
The following definitions express different types of First In First Out (FIFO) properties. The FIFO

property will play a key role in the analysis of our model in Section 5.
Definition 1 A product verifies the FIFO property if and only if:
V(ti,t2) € [0, T, if ty < ty, then: s;(t;) < s5(t2). (1)

The above property expresses that a newly produced unit of product cannot be sold before its pre-
decessors. Similarly, a product verifies the Strict FIFO property if and only if the product exit time
function is striclty increasing.

Definition 2 A product verifies the strong FIFO property if and only if:
3 g > 0 such that V(tl,tQ) € [O,T]Z, Zf t1 < tQ, then: Si(tQ) - Si(tl) 2 0(t2 - tl) (2)




3 Formulation of the Dynamic Pricing Model

3.1 Modeling Assumptions
Before formulating the model, we describe the setting and the assumptions.

We consider a competitive setting where:

A1) The company under study is a Stackelberg leader (a monopoly is a special case of a Stackelberg
leader).

A2) There are multiple products, (these products could also be non-perishable).

A38) The total production capacity rate is bounded by a non-negative capacity flow rate function
CFR(.).

A/) There is no substitution between products.

A5) The company under study faces holding costs but no setup costs.

A6) The demand is deterministic.

A7) The unit price p;(.) is a function of the inventory I;.

The study of the general dynamic pricing model in Section 5 does not require any assumption on the
functional form of the unit price function p;(.). Instead, the unit price function is an output of the
model. However, for the purpose of analyzing a discretized version of the pricing model in Section
4, we assume that the unit price function p;(.) is linear as a function of the inventory. Notice that
Assumption A7 allows us to consider a variety of models for the unit price functions. Examples of such
models include linear functions of the type p;(f;) = p*** — &Tl—;—’gh as well as nonlinear functions of
the type p;(I;) = Fm%, where C; denotes the inventory capacity, p/*** the maximum allowable
fa S— e A |
pzmn C;
price, and p™" the minimum allowable price. Also, notice that the unit price function p;(Z;(t))
depends on time only through the time-dependence of the inventory I;(¢). Furthermore, the examples

we state consider the case where the unit price decreases as inventory increases.

We consider a sojourn time function D;(I;(t)) = T;(Li(t), pi(L:(t)), p§(p:(1;(t)))) that represents the
total time it takes to sell, at time ¢, a newly produced unit of product %, given a level of inventory
I;(t), a unit price p;(f;(t)) and a set of competitors’ prices p¢(p;(Z;(t))). Notice that the product
sojourn time function D;(I;(t)) resembles the time to traverse a link in a transportation network. For
the sake of completeness, in what follows we discuss how sojourn times can be estimated in practice.

3.2 Estimation of Sojourn Times in Practice

A few companies such as Amazon.com utilize the sojourn time information to control their inventory
levels and adjust their pricing policies. A key motivation for introducing sojourn times in the model of
this paper is the availability of sojourn time information in almost every company’s data warehouse.
Indeed, as a unit of good enters the inventory system, a barcode reader records its entrance time.
When this unit is sold, a barcode reader records its exit time. The lag between the entrance time and
the exit time is the sojourn time.

Below, we describe how to estimate the sojourn times D;(I;) in practice:

e Extract entrance times ¢; and exit times s;(;) of units of product ¢ from the data warehouse
and record sojourn times D;(t;) = s;(t;) — t;.
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e Record the inventory levels I;(¢;) and the unit prices p;(¢;) at entrance times ¢;.
e Fit the triplets (I;(t;) , pi(t;) , Di(t;) ) into a parametric function D;(L; (), pi(t:)).

e Assume a parametric shape for the unit price function p;(I;) and plug it in D;(Z;(t;), pi(t;)) to
derive the sojourn time function D;([;).

Notice that since the vector of competitors’ price functions p(pi(.)) is assumed to be a function of
the unit price function p;(.) of the company under study, it follows that the function D;(I;(¢;), p:(t:))
also takes into account the effect of competition.

Finally, notice that the estimation procedure outlined above is easy to implement. The parameters
of the sojourn time functions D;([;) can be recalibrated regularly to account for changes in customer
behavior and in competitors’ pricing policies.

3.3 Model Formulation

In what follows, we discuss a continuous-time analytical model for the dynamic pricing problem.
This model takes a fluid dynamics approach by expressing link dynamics, flow conservation, flow
propagation and boundary constraints. This formulation extends the Dynamic Network Loading
(DNL) model used in the context of the dynamic traffic equilibrium problem (see Friesz et al. [15],
Wu et al. [39], Xu et al. [40], and Kachani [19] for more details). Nevertheless, the model in this
paper includes the added complexities that it considers a shared production capacity environment, it
incorporates the pricing component, and finally, it is placed in the framework of dynamic optimization.

Dynamic Pricing Model:

Maximize 3~ [ (00 — eut) - KOLO 3)

s.t. d{;ff) = w(t) — w(t), Vie{l,..n} (4)

Vi(t) = /w _, U@)dw, Vi€ {1}, where W={w:sw)<t) (5)
Ui(0) =0, Vi(0)=0, IL(0)=0, Vie{l,..n}

S w(t) < CFR(), (6)

w() >0, vie {1,..n}, CFR()>D0. (7)

The continuous-time Dynamic Pricing Model (DPM) is maximizing objective function (3) subject
to constraints (4)-(7).




Remarks:

The objective of the company is to maximize its profits. That is, by subtracting production
costs and inventory costs from sales.

The link dynamics equations (4) express the change in inventory at time t as the difference
between the production and the sales flow rates.

The flow propagation equations (5) describe the flow progression over time. Note that a pro-
duction flow entering link i at time ¢ will be sold at time s;(t) = t + D;(1;(t)). Therefore, by
time ¢, the cumulative sales flow of link 4 should be equal to the integral of all production inflow
rates which would have entered link 7 at some earlier time w and would have been sold by time
t.

Furthermore, if the product exit time functions s,-(.) are continuous and satisfy the strict First-
In-First-Out (FIFO) property, then the flow propagation equations (5) can be equivalently
rewritten as

5t
Vi(t) = / wi(w)dw, Vi€ {l,..n). 8)
0
Notice that s;'(t) is the time at which a unit of product i needs to be produced so that it is
sold at time ¢. Furthermore, under the strict FIFO condition, a unit of product ¢, entering the
queue at time ¢, will be sold only after the units of product 7, that entered the queue before it,
are all sold. In mathematical terms, this is equivalent to the product exit time functions s;(.)

being strictly increasing. As a result, defining the production time s; !(¢) makes sense.

Furthermore, notice V;(t) represents the cumulative demand. Equation (5) links the demand to
the sojourn time. It replaces the demand-price relationship used in traditional models in the
literature.

Constraint (6) assumes that at each time ¢, the total production flow rate is no more than the
total capacity flow rate CFR(t).

It is not necessary to assume that I;(0) = 0. Instead, we could assume that I;(0) = I;; > 0.
However, we consider zero-level inventories at ¢ = 0 for simplicity of notation. Hence, in the
beginning, we start producing before the demand arrives. As a result, we build inventory, which
is characteristic of make-to-stock systems.

In general, the DPM Model is a continuous-time non-linear optimization problem. The non-
linearity of the model comes from the unit price as a function of the inventory, as well as the
integral equation (5). In this formulation, the known variables are the product sojourn time
functions D;(.), the production and inventory costs ¢;(.) and h;(.), and the total capacity flow
rate function CFR(.). The unknown variables we wish to determine are u;(t), v;(t), Ui(t), Vi(¢t)
and I;(t). Notice that integral equation (5), which connects the production to the sales schedules
through the delays incurred in the system due to price and inventory, makes this problem hard
to solve.

Notice that the model is general enough to account for the case where the FIFO property,
defined above, is not necessarily verified (notice that Equation (5) does not assume that the
FIFO property holds). In Section 5, we investigate when the FIFO property holds. We examine




conditions on the product sojourn time functions D;(.) and on the production flow rates u;(.).
When the FIFO property holds, the model becomes more tractable.

In the remainder of the paper, we will denote by F(DP M) the feasible region of the DPM Model. In
Section 5, we study the analytical properties of this region but also establish conditions under which
the model has a solution.

First in Section 4, we examine the solution of a discretized version of the Dynamic Pricing Model by
introducing an algorithm for solving the model. In Section 5, we illustrate how our results extend to
the general case.

4 Solution Algorithm and Computational Results

In order to study the efficient solution of the Dynamic Pricing Model, in this section, we consider
a discretized version of the model. In particular, we introduce and study a relaxation algorithm,
illustrate this algorithm on an example, and report some preliminary computational results.

In particular, in the following two subsections, we review the modeling assumptions we impose in
order to obtain a discretized version of the model that is computationally tractable. We do not make
a direct assumption on the shape of the sojourn time function but rather impose a condition on the
demand. As a result, we discuss a connection with traditional demand models.

4.1 A Pricing Model

We consider the case of a linear unit price in terms of inventory and a linear demand arrival rate
function in terms of the unit product price. We first need to define the following primitive quantities
that are the essential data for our model. Let p{*" denote a minimum reference price and J\; " denote
the corresponding demand arrival rate. Let p["** denote the corresponding reservation price, that is,
the minimum price for which there is no demand for product . These three quantities are input data
in the model.

Moreover, in addition to Assumptions A1-A7 that we considered in Section 3, we make the following
assumptions, for every product ¢:

A8) The unit price function p;(I;) is linear in terms of the inventory level I; (see Figure 3). As we
discussed in Section 3, we assume that

mazr __ min
nlt) = oy~ PP, ©)

where C; denotes the storage capacity, p™" denotes the minimum allowable price, and p**® denotes
the reservation price. Notice that this function is decreasing in terms of inventory.

A9) The reservation price p™*® is a function of the minimum allowable price p*". To illustrate this

assumption, we consider the example of two retail stores competing on a product 7. If the minimum
price of Store 1 is lower than that of Store 2 (that is, pj%™ < pf%"), then Store 1 will be perceived by
customers as cheaper. As a result, Store 1 can from time to time take advantage of this perception by
having slightly higher prices than Store 2. This observation illustrates that the reservation price of

Store 1 is higher than that of Store 2 (that is p[*** > p™*). Therefore, p**® is a decreasing function
7,1 1,2 7 g

10




of p™". However, due to customers’ sensitivity to high prices, the difference (in absolute value)
between the reservation prices of the two stores needs to be smaller than the difference (in absolute
values) between their minimum allowable prices. This can be achieved by assuming that the difference
between reservation prices is a concave function in terms of the difference between minimum prices.
As a result, we consider the following reservation price function that verifies the condition above.

PO () = B <+ sign(B — pn) g — pn (10)

where sign(z) = 1 when z > 0, and sign(z) = —1 when z < 0. Note that the exponent term } can
be replaced by any real r € (0,1) (since |¢| — |¢|" is concave for 7 € (0,1)).

A10) We assume that the storage capacity for each of the n products of the firm under study is
allocated so that the firm is able to satisfy the maximum demand rate A*** within a fixed period of
time J that is the same for all products. In mathematical terms C; = A***.§, Vi € {1, ...,n}. Quantity
¢ represents the minimum reserve time.

So far, we imposed assumptions on how pricing relates to inventory and the functional form we
consider for the pricing in the model. Our goal in this section is to model the delay of a product
waiting in inventory. To achieve this, we consider average delay functions A;(I;(t)) of the hyperbolic
form %(t), where ¢ is the minimum reserve time, and A;(/;(¢)) is defined in Subsection 2.1. This seems
to imply that as inventory increases, we price so that the average delay of a product decreases. In what
follows, we impose assumptions on the demand arrival rate (as done traditionally in the literature)
and demonstrate how these assumptions give rise to these hyperbolic average product delay functions.

4.2 Delay and Demand Models

We assume the following, for every product i:
A11) For every minimum allowable price p[™*" corresponds an arrival rate A™**. This maximum arrival

rate is a hyperbolic function of the form

=Hmin

e (pminy = 37 B (11)
D

See Allen [1] and Tirole [35] for more details.

A12) A non-homogenous renewal demand arrival process, with rate \;(p;, p™") that is linear as a
function of the price p; (see Figure 4). Similarly to [1], [12], [35], and [38], we assume that

TNAT [, MIinY _ .

)\l(pi7p;711,n) — A;naz(p;'mn)_ pl (p‘l ) pl (12)

pma:: (pmin) - pmin )

Notice that when the inventory level hits its capacity level (i.e. I; = C;), then we charge the minimum
allowable price (i.e. p;(I;) = p/™"), and we target the maximum arrival rate (i.e. A;(p;) = A™**). On
the other hand, when the inventory level is zero (i.e. I; = 0), then we charge the reservation price (i.e.
pi(1;) = p"*®), and we target a zero arrival rate (i.e. \;(p;) = 0). Figure 5 illustrates Assumptions
A9 and A11-A12.

. . o . . ; . . . Imar . .
In practice, given a minimum reference price p;*", its correponding demand arrival A;  is readily
available in a datawarehouse. Furthermore, its corresponding reservation price p{*" can be estimated

11




through customers’ surveys. Therefore, the parametric functions in Assumptions A8-A12 can be
estimated in practice.

In order to provide a connection between demand and delay models, we consider the approximation
that Little’s law holds for every time ¢. That is, [;(t) = Ai(p:(L:(t))).D;(Li(t)). We view I;(.) as the
average length of the queue, X;(.) as the arrival demand rate, and D;(.) as the average waiting time
in the queue. As a result, this approximation views the sojourn time D;(I;(t)) as the expected value
of I;(t) interarrivals of the renewal process, that is Tp‘:‘(%m

Notice that this approximation looks at the average state of the system. Indeed, the expression
Xi(pi(L:(t)) = 'D_(T('(tL)) describes the average arrival rate for product . As a result, it is indifferent
about how far or close some of the I;(¢) units of product 7 in the inventory system are from being sold
at time t. However, by looking at the system from the perspective of the sojourn time, that is the
waiting in the system, the fluid model formulated in Section 3 captures the dynamics of the I;(t) units
of product ¢ in better detail. Furthermore, quantity v;(t) describes the selling rate of product 7 exactly
and not on average. As a result, the two approaches are different and in general, A;(p;(Z;(t))) # vi(t)-
Nevertheless, in what follows, we will attempt to gain some insight on the relationship between the
two approaches. Figure 7 illustrates this relationship in the case of the test example of Subsection
4.6.

In fact, the next lemma shows that the total amount sold in the analysis period [0, 7] is the same
as the cumulative demand.

Lemma 1 For constant product sojourn time functions D;(I;(t)) = 6;, the total cumulative demand
s equal to the total cumulative sales:

[ Mon0))de = Vi(Tn). (13)
Proof:
Since X;(pi(L;(t))) = %, it follows that
[ nwona = It

i

1 [T
wh
1 T
= o [ / Us(t)dt — /g Vi(t)dt] (from equation (4) and the boundary conditions)
1 Too
0 [/ U;(t)dt — /9 Ui(t — 6;)dt] (from equation (8))

1 [T+6; T )
= = /0 Ui(t)dt — /0 Uy(t)dt] (since T = 5:(T) = T + 6)
1

0; Jr
0;.U;(T) (since production ends at time T')
= V1( %) (from equation (8)).
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4.3 Discretized DPM Model

In the remainder of this section, we will consider the discretized version of the Dynamic Pricing
Model In particular, this model discretizes the time space by introducing N = [% |. We consider N+1
intervals of time of length § and assume that for every discretization interval index j € {0,1, ..., N} and
for every time ¢ € [§6, (j+1)d), the following variables in each interval are constant: CFR(t) = CFR;,
u;(t) = uij, ¢;(t) = cij, and h;(t) = hi;. The decision variables are the production levels u;; for every
product 7 and for every discretization interval index j, as well as the unit price function parameter

D;

Remarks:

e Notice that we can have a finer discretization by choosing intervals of length %, where M is a
positive integer that represents the discretization accuracy. This does not add any complexity
in the formulation of the discretized model and in the solution algorithm. Furthermore, the
computational burden increases linearly with M. However, for the sake of clarity and brevity,
in what follows we choose M = 1.

e As discussed in Subsection 2.1, in addition to prices, the control variables also include the
production levels.

In what follows, we show that under this piecewise constant discretization, the Dynamic Pricing
Model becomes equivalent to solving a quadratic optimization problem.

Proposition 1 Under Assumptions A8-A12, the solution of the Dynamic Pricing Model is equivalent
to solving the following quadratic optimization problem:

Discretized Quadratic Pricing Model (DQPM):

n N-1 N N
' 2
Mln((uij)(ie{l ,,,,, n},i€{0,... NPT e, . n})) Z(kz[z UijUij+1  + Zuij] + Zgijuij)
=1 3=0 §=0 =0
n
S u; <CFR; , Vje{0,1,.,N}

=1
uw; >0 ,  Vie{1,2,..,n}, Vje{0,1,..,N}

€02
y kiz "2,31’1(16,':—"

MAT min

b D

hij + hij41
max _ 5
) C

where  gi;; = (" — ¢ D)

Proof:

The capacity constraint, above follows directly from its continuous analogue (6) in Section 3. Moreover,
the non-negativity constraint also follows from its continuous analogue (7). Next, we establish that
the objective function in the DPM Model (see equation (3)) simplifies to the quadratic objective of the
DQPM Model formulated above. Notice that we converted the problem to a minimization problem
by changing the signs. As a result, in what follows, we will illustrate that the optimal objective value
of the original DPM Model is the opposite of the optimal objective value of the DQPM Model.

~For j € {0,1,..., N}, and t € [j4, (j + 1)J), the previous assumptions together with relations (4)-(7)
lmp]y that Il(t) = U,’j.(t - ](5) + U,‘J’_l.((j + 1)5 — t) (14b), M(t) = U,'j.(t — _’]6) + 4. Z{;(} (77} and
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v;(t) = w;j—1. Furthermore, replacing the unit price as a function of the inventory in equation (3)
yields the following objective function:

0Obj = —Min zn: /OTOO —pi(L;(t))vi(t) + ci()ui(t) + hi(t)L:(t)dt
= —Min }; /OTOO eiLi(t)vi(t) — (p7“Tui(t) — ci(t)ui(t) — ha(t)1i(2))dt. (14)

Moreover, replacing v;(t) and I;(t) from (14b) gives rise to:

N+1 (5+1)5 . ) .
€ Z f& (5 + 1)0uy;_y — jOuz_1ui; + uz’j—l(uij — uij..l)tdt
J

L

Too
Gi/ I,-(t)vi (t)dt
0 =
N-1 N-1
= 023 (G +2ul— D (G + Duguign
3=0 j=0
N-1
+0.5 37 (25 + 3)uij(uijr — ui;) + 0.5uly]
j=0

N-1 N
= ki[> wijuign + Y ull, (15).
3=0 3=0

52
where k; = ﬁg—‘

Furthermore, [= p/®®v;(t)dt = 8.p7e*. T gui; (16b), and [y c;()ui(t)dt = 6. 2?;0 cij-uij (16¢).
Replacing I;(t) from (14b) gives rise to:

Too N+l o(j+1)8
/0 hi(t)fi(t)dt = / hz][(] + 1)5ui]’_1 — j5uij + (Ui]’ - ’U,ij._l)t]dt
j=0 "7
N-1 N-1
= 6%[0.5hiouio + Y (G + 2hisug — 2 (7 + Dhijrauiga
j=0 j=0
N-1
+0.5 3 (25 + 3)hijur (tijr1 — uig) + 0.5hin p1uin]
j=0
52 N
= E‘ Z(h,’j + h,-j+1)u,~j. (16)
7=0

Replacing equations (15), (16b), (16c), and (16) in (14) gives rise to the result of the proposition.
0
Remarks:
. g_—‘% represents the profit margin of product 4 for discretization interval index j.
e The objective function of the DQPM Model is separable by product.

e As shown in the next subsection, the DQPM Model is strictly convex. As a result, the DQPM
Model has a unique solution. As a result, we can compute it efficiently.
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4.4 An Iterative Relaxation Algorithm

In this subsection, we focus on the efficient solution of the DQPM Model described in Proposition 1.
In particular, we propose a solution algorithm that determines optimal production levels for a fixed
unit price function (that is, when p™", and as a result p/*®®, are fixed). In the next subsection, we
also will illustrate how to incorporate pricing decisions in the solution algorithm.

The solution algorithm we propose, utilizes ideas from the iterative relaxation scheme of Dafermos
([9]) and Nagurney [30], and the equilibration scheme of Dafermos and Sparrow ([10] and [11]), to
the dynamic pricing problem. The key intuition behind this solution method lies with the idea of
equilibrating at each time period, the “marginal profits” of the produced products. This idea is
extensively used in static traffic equilibrium problems (see Florian and Hearn [14], and Sheffi [33] for
more details).

To illustrate this equilibration approach, we need to introduce some additional notation. We define C;;
as the opposite of the marginal profit of product ¢ for discretization interval index j. In mathematical
terms:

_ —90bj
C” - Guij

2kiuij + ki(wijp + vij1) + Gijs (17)

where Obj is defined in Proposition 1.

We define m;; as the opposite of the marginal profit of product 7 for discretization interval index j at a
zero production level. That is, m;; = k;(usj+1 + uij—1) + gij- Therefore, Cyj = my; + 2kju;;. We further
introduce the upperscript index & to denote the number of iterations of the algorithm. Hence, at
iteration k, our goal is to determine, for every product ¢, and for every discretization interval index j,
the production levels uf] Moreover, we introduce C’fj = Qkiufj+mfj, where mf] =k; (ufj;11+ufj_1)+gij.
Note that the production levels uf] will be computed in increasing order of the discretization interval
index j in the algorithm. Hence, in the expression of mfj, u;j—1 is evaluated at iteration &k while u;;4,
is evaluated at iteration £ — 1. This approach makes the problem separable at each iteration, which
allows us to solve easily.

We introduce an n X (N + 1) matrix with elements order(z, j) that sorts the opposite of the zero-
production marginal profits m%,, i € {1,2,...,n} in a non-decreasing order. That is, for j and k fixed,

k k k
morder(l,j)j S morder(Z,j)j S S marder(n,j)j'

1]
At every iteration k, the equilibration algorithm computes for every discretization interval index j,
an index /; and a vector afj by equilibrating the corresponding opposite of the marginal profits, that
is,
k _ ik _ ok k k k
Corder(l,j)j — e Corder(lj,j)j - ao'rder(lj,j)j < Corder(lj+l,j)j’Corder(lj+2,j)j’ Ht] < Corder(n,j)j
L
k k k
Uorder(l,5)j = 0,..., Yorder(lj,5)i = 0, Zu’mder('i,j)j = CFR;
=1

k ok _ Lk _
Uorder(;+1,5)7 = Yorder(l;+2,)i — = = Yorder(n,j)j = 0.

Figure 6 provides a network representation of the equilibration algorithm described above. There is an
interesting analogy between this equilibration algorithm and static traffic equilibrium (see [14], [33]).
Indeed, for a fixed discretization interval index j, we select (i) which products we should produce, and
(i1) how much of each of the selected products we should be producing, so that all selected products
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have equal and minimum opposite marginal profit. In static traffic equilibrium, we select (i) which
paths should be used, and (ii) how much traffic should flow on each of the selected paths, so that all
selected paths have equal and minimum travel times.

< > Produc{ 1

T : e
“187 £y, | Product? ?\‘?{;f
Mg e T R SN
/ sy P i IR
/ /—f"f’ ~ 0 Produd 3 RN
f;/(:f'”“‘“;i : : ‘“**:
R 1 ' B
10 i : (D
LR R S : : e AT
: \ “ e 7 ’; R
DN Tlmll L Producin-l T
\\g : j“mit v /// :
‘ \?‘\c.‘: N —
\ Yo Preductin e
Pi=0 ol =1 j=2 Pj=N
b . - e——————
&M M 35M N&M (N+1DEM
CFR,;

Figure 6: Network representation of the discretized Dynamic Pricing Model

Let € be our tolerance level:

Iterative Relaxation Algorithm:

Step 0: for every time index j € {0,1,..., N} and product i € {1,2,...,n}

0 CFR;
ui ;= .
J n

Step k: for every time index j € {0,1,..., N},
CFRj+Zi orderig.z!]

k _ P=1 2Korder(p,j)
Let Qprgeriyy = —57
P=1 2korder(p,i)

k

If eg; = argmin{i such that o,

Otherwise, set I; = n.

k . _
der(ii)j < Merder(i+1,5);) €Xists, then set I; = eg;.

If i > I;, then u’;der(i,j)j =k 0.

k
E __ Gorder(t;,5)i _Morder(i,i)j
order(i,j)j — 2kord¢r(i,j)

Otherwise, u

Convergence criterion:
Ifforall j € {0,1,...,N} and 7 € {1,2, ..., n},
all uf; = 0 satisfy Cf; > af, 4., jy; — € then stop.
Otherwise, set kK = k + 1 and go to Step k.

Below, we establish that this algorithm converges to the optimal solution of the DQPM Model.
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Theorem 1 The Iterative Relazation Algorithm converges to the unique optimal solution of the
DQPM Model.

Proof:

The Iterative Relaxation Algorithm is based on considering a separable approximation of C;; (equa-
tion (17)) in terms of production levels u;;. For ¢ fixed, let vector W;(u) = (2.u;0, 2.%;1, ..., 2.u;x) and
let Z; be the (N + 1) x (N + 1) matrix defined by

(0 1 0 07

1010 0
0101
010

Zi: . . -

.10

1010

. 0101

0 0 0 1 0

Notice that matrix Z; = Vu[(%i)je{o,_”,,v}] is the Jacobian matrix of the opposite of the zero-

production marginal profits of product i and W;(u) = (_i%@i)je{o,...,N}- We will use the following

result from Nagurney [30] to prove that the Iterative Relaxation Algorithm converges.

Lemma 2 (9], [30]) Assume that there exist a scalar v > 0 and a scalar A € (0,1) such that:
(F1) For every j € {0,...,N}, %ﬁ > 7.

(F2) |1 Z:||| < Ay, (where ||| Z;]|| denotes the mazimum eigenvalue of matriz Z;)

Then, the Iterative Relazation Algorithm converges to an optimal solution.

In order to use the result of thr above lemma, we will show that vector W;(u) and matrix Z; verify
conditions (F1) and (F2) of Lemma 2 with y = 2.

For every j € {0, ..., N}, notice that gg%}l = 2. Hence, condition (F1) is verified with v = 2. Since Z;
is a symmetric matrix, it has NV +1 real eigenvalues (not necessarily distinct). To show that condition
(F2) is verified, it suffices to show that every eigenvalue o of matrix Z; is strictly less than 2.

If o is an eigenvalue of matrix Z;, there exists a vector z* # 0 such that
Z;x® = az®. (18)

We will assume that o > 2 and try to reach a contradiction. If z* verifies equation (18), then —z°
also verifies it. Hence, without loss of generality, we can assume that z§ > 0. Using an induction over
the rows of equation (18), it follows that 0 < z§ < z¢ < ... < z%. Therefore, z® is a non-negative
vector.

Summing up the rows of the vectors in both sides of Equation (18) gives rise to
N-1 N

x§+zy+2. ) 2= ) zf.
=1 =0
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Therefore, (a —1)(z§ + z%) + (@ — 2). T3 = 0. Since a > 2 and z“ is non-negative, it follows
that 2§ = 2% = 0. Through an induction argument over the rows of equation (18), it follows that
¥ =5 = ... = z%_; = 0. Hence, * = 0, which contradicts our earlier assumption that z* # 0.

Therefore, o < 2, which in turn implies that ||| Z;||| < 2. Therefore, there exists a scalar A € (0, 1) such
that condition (F2) is verified. Lemma 2 implies that the Iterative Relaxation Algorithm converges
to an optimal solution.

Furthermore, the quadratic terms of the objective function can be rewritten as

_N-—
Q(u) = Z uzg + 2u11u‘lj+1 + u1]+1) + uzO + u ]

«.
1l
—
o

[ (i + wijn)? + vl + uly].
=0

29

1
-
[
Il

M:
o | w|3?‘

I

Notice that Q(u) is a strictly convex quadratic function in terms of the production levels u;;. Hence,
the DQPM Model has a unique optimal solution. Therefore, the Iterative Relaxation Algorithm
converges to the unique optimal solution.

O

Notice that the iterative relaxation algorithm belongs to a family of linearly converging algorithms
(see [10], [30] for more details). It easy to see that by enhancing the algorithm with a binary search,
each iteration of the algorithm requires computations of the order of n.N.log(N).

4.5 Determining Optimal Production/Pricing Policies

In this subsection, we show how we can extend the Iterative Relaxation Algorithm to determine both
the optimal production levels and the optimal pricing policies.

We introduce the minimum allowable price parameter ¢ defined as ¢ = p™" — p™". Assumptions
AT-A11 give rise to the following relations:

p:mn — ——mm +¢’
pit =m0 - 819"( $)lgl7,
AaT — Xma:c ﬁ:nm
1 p}nm + ¢’
—ma:r: =min
=P —si o —p - 31’gn(¢)[¢|4 -
pi(ls) = P — sign(6)|o]: e I

s

As a result, in the formulation of the DQPM Model in Proposition 1, the objective function depends
on the minimum allowable price parameter ¢ through the parameters k; and g;; that can be rewritten
as:

H”MazT N _
PRI il ¢ SZ_ng‘Ln(qﬂ)I«zﬁl" ¢ and
2 X’fnﬂ,z p;
] —:’mn+¢
._mag; — h"l + hl
gij = =8B — sign(@)|¢l — iy — ~L—5-T0).
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Hence, for every value of the minimum allowable price parameter ¢, we can perform the Itera-
tive Relaxation Algorithm (IRA) and obtain an optimal production policy u(¢) that yields a profit
ITRApi(¢). Therefore, solving the overall DQPM Model is equivalent to maximizing I RAp,(¢) for
¢ € (—p™n, pe® — Pt} such that p™"(4) < p™*®(¢). Notice that this problem is a one-dimensional
maximization problem.

As a result, by embedding the Iterative Relaxation Algorithm in a line search procedure for the
one-dimensional objective function IRA,,(¢), we are able to solve the Discretized Dynamic Pricing
Model and determine optimal production levels and pricing policies.

4.6 Test Example

In this subsection, we apply the Iterative Relaxation Algorithm in a small test example. We consider
5 products and 10 discretization intervals (i.e. n =5 and N = 9). We use as inputs the minimum
reference prices p™™ and their corresponding reservation prices ™ outlined in Table 1, the shared
capacity flow rate vector CF R outlined in Table 2, the production costs c;; and the holding costs h;;
provided in Tables 3 and 4 respectively.

};i»’ﬁai' .-;,,mf—'z

J5 25 1256 | Froduct i
1325 Q30 Froduct 2
12238 9 36 FProduct 3
325 956 Product 4
1483 1116 | Product 5

Table 1: Minimum allowable unit reference prices and their corresponding reservation prices

Discretization 0 1 2131415 617 8 9

Interval Index

CFR, 1912112312512712913113335|37

J

Table 2: Shared capacity flow rate per discretization interval

We first assume that the unit price function is fixed (that is, p/" = p™" and p*** = p"*®). We
apply the steps of the Iterative Relaxation Algorithm outlined in the previous subsection. For our
computations, we used a PC with a Pentium III, 366 MHz, 128 MB RAM, and implemented the
algorithm in MATLAB. We chose a tolerance level of ¢ = 107 in the convergence criterion. In this
example, the algorithm converged in 102 iterations. The running time was 4.2 seconds. Table 5
provides the optimal production levels. The optimal profit associated with these production levels is
$1,539.
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0

i’?gj ; 5.4000
C3 41698
cy 49209
o5 . 7.6599

; 8.5938 B.7500

t 2 3

-5.6209 5.7905 59333
4.4405 4.6481 4.8231
3.2333 34731 3.6751
$.0093 82772 8.5033

.l

6.0593
49772
5.8533
8.7022

5 6

6.1731 6.2778
51167 5.2449
6.0142 6.1622
8.8823 9.0478

Table 3: Production costs c;;

78 9

8.83698 8.9709 9.0599 0.1405 9.2144 9.2833 9.3481 9.4093

6.3751 6.4667 6.5533
33642 54762 3.5823
6.3000 6.4293 6.5317
92017 93465 9.4833

Table 5: Optimal production levels

21

oy 0 vz 3 4 5.6 7 8 9

h;il 1.6037 1.5135 1.4865 1.4236 14107 1.3568 1.3504 1.3013 1.2987 1.2528

hjyl 14138 1.2862 1.2482 1.1591 1.1409 1.0647 1.0556 0.9861 0.9825 0.9176

hyi1 12331 1.0770 1.0302 0.9213 0.8989 0.8057 0.7944 0.7095 0.7049 0.6254

hy11.0574 0.8770 0.8230 0.6972 0.6714 0.5637 0.5507 0.4526 0.4474 0.3556

hs; 0.8846 0.6830 0.6226 0.4820 0.4532 0.3326 0.3182 0.2085 0.2027 0.1000
Table 4: Holding costs h;

0 i 2 3 4 5 8 7 8 ..°%
! 0 0 0 0 11412 00627 37224 00544 62184 0
2 0 01635 27467 08505 48769 14403 63578 20120 77943 25721
wy 136804 11.6337 135364 14.4020 129029 17.1538 116776 19.9317 10.4424 227265
ug| 53196 92028 67169 94N 77320 10341 82041110020 26057 117015
®g| 0 0 0 0 03469 0 10381 0 1.8492 0
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Figure 8: Optimal profit as a function of the slope of the unit price function
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Figure 9: Optimal profit as a function of the minimum allowable price of product 1
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Furthermore, Figure 7 illustrates, in this example, the corresponding demand rate A3(t) and the
corresponding sales flow rate vs(¢) for product 3. Note that, as established in Lemma 1, while the
profiles of the demand rate and the sales flow rate are different, the two areas under the curves of
As(t) and vs(t), depicted in Figure 7, are equal.
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Figure 7: Profile of Demand Rate and Sales Flow Rate of Product 3

Next, we incorporate the pricing aspect in the algorithm as we described in Subsection 4.5. We
perform a line search procedure by varying the minimum allowable price parameter ¢. For every
value of ¢, we run the Iterative Relaxation Algorithm to obtain an optimal objective value IRA,: ().

Figures 8 and 9 show that the profit of the company under study, for this instance of the Discretized

. . . AT __pyman . .
Dynamic Pricing Model, is a quasi-concave function in terms of the slope &_E-&— of the unit price

function, and a quasi-concave function of the minimum allowable price of prodﬁct 1. Notice that the
optimal profit is attained for a slope of 0.025 at a value of $1,549.5.

5 The General Dynamic Pricing Fluid Model

In this section, we consider the General Dynamic Pricing Model without considering a discrete approx-
imation, and without imposing the assumptions of Section 4. In particular, we examine key properties
of the General Dynamic Pricing Model as formulated in Section 3. In Subsection 5.1, we first study
the analytical properties of the feasible region of the Dynamic Pricing Model. Furthermore, in Sub-
section 5.2, we establish, under weak assumptions, the existence of a pricing/production/inventory
control policy that maximizes the profit of the company under study over the feasible region.
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5.1 Properties of the Feasible Region of the Dynamic Pricing Model
5.1.1 Unifying Analysis for Non-linear and Linear Sojourn Time Functions

Under sufficient conditions on the production flow rate functions and the sojourn time functions, we
prove in this subsection that the feasible region of the Dynamic Pricing Model (F(DPM)) is not
empty. Furthermore, we provide a unifying analysis of the F(DPM) region for both non-linear and
linear sojourn time functions.

In Subsection 5.1.2, we show that if the conditions of Theorem 2 are violated, then the FIFO property
is also violated. In this sense, the conditions of Theorem 2 are tight.

In the model presented in Section 3, the production flow rate functions u;(.) are control variables.
In an effort to establish general results, we assume that these functions are Lebesgue integrable. A
function is said to be Lebesgue integrable if the set of points where this function is discontinuous is
Lebesgue negligible. A set is Lebesgue negligible if its Lebesgue measure is 0.

Definition 3 A solution is unique (or respectively differentiable) almost everywhere if and only if the
set of points where this solution is not unique (or respectively not differentiable) is Lebesgue negligible.

Later in this paper, we show that the cumulative flow variables are differentiable and the solution to
the problem is unique “almost everywhere”. We refer to “almost everywhere” by “a.e.”.

In what follows, we provide a unifying analysis for both linear and nonlinear sojourn time functions.
Corollary 1 shows how linear sojourn time functions can be interpreted as a limit case of nonlinear
sojourn time functions and why linear sojourn time functions lead to stronger results.

Theorem 2 If the pair (D;(.),ui(.)) satisfies the following conditions:

(B1) The product sojourn time function D;(.) is continuously differentiable, and there exist two non-
negative constants By; and Boy; such that for every iventory level I;, 0 < By; < Di(I;) < Ba;.

(B2) The production flow rate function u;(.) is Lebesque integrable, non-negative and does not exceed
32;13“ (that is, the inverse of the mazimum variation of the sojourn time of product i in terms of its
inventory).

Then, the feasible region F(DPM) has the following properties:

(1) F(DPM) is well-defined, (that is, the product inventory I;(.), the sales flow rate v;(.), and the
cumulative variables can be uniquely (a.e.) determined by the product sojourn time function Dy(.) and
the production rate u;(.) on the analysis period [0, Ty)).

(2) The Strong FIFO property holds.

Proof: See Appendix 7.3.

Remarks:

e Conditions (B1)-(B2) are the minimal conditions to ensure that the FIFO property is verified.
Intuitively, this is true since By; — By; represents the maximum variation of the sojourn time in
terms of inventory. During a time interval At of inventory decrease, the variation of inventory

I;(t) — Ii(t + At) is bounded by the quantity B%i 5;;-At. Therefore, the variation of sojourn

time D;(1;(t)) — D;(Z:(t + At)) is bounded by (Bs; — Bu).g;i—BT.At. As a result, this variation

is bounded by At. Hence, s;(t) =t + D;i(I;(t)) < t + At + D;(L(t + At)) = s;(t + At), which is
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the FIFO property. Moreover, during a time interval At of inventory increase, since the sojourn
time functions are non-decreasing, D;(1;(t)) < D;(I;(t + At)). Therefore, s;(t) < s;(t + At),
which is the FIFO property.

e Notice that if the product sojourn time function D;(.) is linear, then conditions (B1)-(B2) of
Theorem 2 simplify significantly. Indeed, in this case, D}(.) = cst = Bj;. Moreover, for any
arbitrarily small positive scalar €, by introducing Bs; = Bjy; + €, Condition (B1) of Theorem 2
is verified. Furthermore, since Condition (B2) can be rewritten as u;(¢) < %, which allows us to
consider production rates that are arbitrarily large. Therefore, the following corollary follows.

o This result suggests that the maximum variation of the sojourn time of a product in terms of its
inventory connects with the production rate of the product. In particular, when the maximum
variation of the sojourn time of a product in terms of its inventory is large (or small), then
the production rate of the product should be small (or large) in order to sell the units of this
product using FIFO.

Corollary 1 If the pair (D;(.), u:(.)) satisfies the following conditions:
(C1) The product sojourn time function D;(.) is linear and non-negative.

(C2) The production flow rate function u;(.) is Lebesgue integrable and non-negative.
Then, conditions (B1)-(B2) of Theorem 2 also hold.

In summary, the results of this subsection establish that by constraining the production capacity with
the maximum variation of sojourn time with inventory:

e The effect of the variation of inventory with time can be limited, so that the FIFO property holds.

e When the FIFO property holds, the feasible region F(DP M) is non-empty, and we can uniquely
determine the sales flow rate and inventory in terms of the production flow rate.

5.1.2 Tightness of the Conditions of Theorem 2

In this subsection, we illustrate using a counter-example that conditions (B1)-(B2) in Theorem 2 are
tight.

Theorem 3 For any arbitrarily small positive scalar §, there exist a product sojourn time function
D;(.) and a production flow rate function u;(.) that verify the following conditions

(D1) D;(.) is continuously differentiable and nondecreasing;

(D2) u;(.) is non-negative, Lebesgue integrable and bounded from above by M;;

(D3) 3 < Maz{D}(L;), L; € R} - Min{D{(L;),I; € R} < 3+,

violating the FIFO property.

Proof: To show this, we will construct a production flow rate function u;(.) and a product sojourn
time function D;(.) such that (u;(.), D;(.)) verify conditions (D1)-(D3) of Theorem 3, violating the
FIFO property.
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Let 6 and M; be any positive scalars, By; and 3 be any non-negative scalars, and ¢ and a be any two
positive scalars such that: € < a. Let w be a positive scalar such that w € (o, 2 — €).

We first construct the product sojourn time function D;(.). We define D;(.) on three contiguous
intervals: [0, (o — €)M;], (( — €)M;, aM;) and [aM;, +00). On the first and third intervals, D;(.) is
affine with a slope on its first affine piece less than the slope on its second affine piece. On the second
interval, D;(.) is an exponential, nondecreasing and contmuously differentiable function. Let I;;, v,
Iia, yi2, i1 and 7i; be given by:

Iil = (Ot — G)Mi and, Yixr = D,’(Iil) =a+ Bu(a - E)Mi,

Ii2 = aMi and, Yiz = Di(IjQ) = ,8 -+ (Bl,: + ML, + J)C!M,',
Biiti-+6 .

Ta = : yrz - Inzlu and’ Yz = % - qu i2”

Consider the following product sojourn time function D;(.):

o + Bq;l; y if I e [0, (a - C)Mi]
Di(L) = | ve(f=5)? 67“(1’ To) 4y (fidiz)2ereimlo) it I € ((a — ) M;, aM;)
ﬂ‘l’ (Blz + Mi +(5) i R if I,‘ S [GﬁMi,+OO).

Notice that D;(.) is continuously differentiable and nondecreasing on [0, +00).
Consider the production flow rate function u;(.) given by:
m M,' ; if te [0,0J),
wi(t) = { 0 ,if t€ [w, +o0).
Notice that functions u;(.) and D;(.), as defined above, verify conditions (D1)-(D3) of Theorem 3.

In what follows, we solve constraints (4)-(7) of the F(DPM) on intervals [0, @ — ¢€) and [, w]. That
is, we express the variables U;(.), v;(.), Vi(.), L(.), and s;(.) in terms of the data above. Then, we
show that the FIFO property is violated at t = w.

Notice that for t € [0, — €), u;(t) = M;. Hence, U;(t) = M;t. Furthermore, since a — ¢ < a =
D;(0) = t,, it follows that V;(¢) = 0. Thus, ;(t) = U;(t) — Vi(t) = M;t.

For t € [a,w], there exists z € [0,a — €) such that si(z) = t. Hence z + D;(I;(z)) = t. Thus,
z+a+ ByM;z = t. It follows that z = s]71(t) = 1+B - Using equation (8) of the DPM formulation,
that describes the relationship between the cumulative sales and the production flow rate, we obtain

V(t) . /Sz_l(t) ( )d . /1+B]1 i M d _— (t - a) M
t N 0 dalwjaw = 0 = +BliMi v

. A2
Hence, v;(t) = m Therefore, we obtain [;(t) = M;t — T;ﬁﬁMi = a?;g?:;f't Since t>a,it

follows that I;(t) > aM;. Hence, by definition of D;(.), it follows that Dj(;(t)) = (B + 3 + 9).
Next, we show that s}(w) < 0. Indeed, since s}(t) = 1 + D;(L;(t))(ui(t) — v;(t)), it follows that
siw) = 1+ Di(Liw))(ui(w) — vi(w))

1 M;
= 1+(Bli+M+5)(0“m)——6m<o'

This implies that the exit time function s;(.) is strictly decreasing at ¢ = w. Hence, the FIFO property
is violated for t = w.

M;

o
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5.1.3 Properties of the Feasible Region

In this subsection, we present some properties of the F(DPM). These properties are not only useful
in understanding the structure of the model, but will also be useful in Subsection 5.2 in order to prove
the existence of a solution to the Dynamic Pricing Model.

Let D = (Dy,...,D,), p = (p1,--,Pn), and u = (us, ..., u,) denote respectively a vector of product
sojourn time functions, a vector of unit price functions, and a vector of production flow rate functions.

D(.),p(.),u(.)) is feasible if each component (D;, p;, u;(.)) verifies conditions (B1)-(B2) of Theorem 2
as well as capacity equation (7). In this case, using Theorem 2, the product inventory functions
I;(.), the sales flow rates v;(.), and the cumulative variables can be uniquely determined through the
product sojourn time functions D;(.), the unit price functions p;(.), and the production rates u;(.) on
the analysis period [0, T)-

Proposition 2 Assume that for every product i, the unit price function p; is bounded by a scalar
p. Then, the feasible region F(DPM) is non-empty and bounded.

Proof:
First, notice that (D(.),p(.), 0) lies in the feasible region F(DPM).

Further, let CFR denote the minimum total capacity, i.e. CFR = mingpr(CFR(t)). We as-
sume, without loss of generality, that CFR > 0, and show that we can construct a feasible solution
(D(.),p(.),u(.)) with u(.) # 0. Given a vector of product sojourn time functions D(. ) and a vector
of unit price functions p(.), let M denote the scalar M = min(CFR

? maz( gy, (Bai— Blz){z Ba;—By;>0}
Let (a1, ...,a,) denote a finite sequence of non-negative scalars such that 37 ; o = 1. For every
ie{l,... n} and for every t € [0,7], let u;(t) = a; M. It follows that vector (D(.),p(.),u(.)) as well
as every vector (D(.),p(.),u(.)), with 0 < @(.) < u(.), are feasible.

Moreover, from the proof of Theorem 2, it follows that the flow rate functions u;(.) and v; are bounded
by CFR, the cumulative flow rate functions U;(.), V;(.) and I;(.) are bounded by CFR.T, and the
sojourn time functions D;(.) and the exit time functions s;(.) are bounded by Ty. Furthermore, by
assumption, the unit price functions p;(.) are bounded. Therefore, the F(DPM) region is bounded.

O

), 4(.), w(.)) are feasible, then, for every A € [0,1],

Proposition 3 If vectors (D(.), p(.), u(.)) and (D(.
(.)) is also feasible. In this sense, the feasible region

vector (D(.), Ap(1) + (1 — A)g(L), du() + (1 = ANw
F(DPM) is convex.

Proof:

We assume that (D(.),p(.),u(.)) and (D(.), g(.),w(.)) are feasible. For any A € [0, 1], it is easy to see
that (D(.), Ap(.) + (1 = Ng(.), Au(.) + (1 — Nw(.)) verifies conditions (B1)-(B2) of Theorem 2 as well
as capacity equation (6).

O
Proposition 4 If a sequence (p’(.))jex of vectors of unit price functions converges to (p(.)), and
a sequence (u’(.))jex of vectors of production flow rates converges to (u(.)), and, if for every j,

vector (D(.),p?(.),u?(.)) is feasible, then, the limit (D(.),p(.),u(.)) is also feasible. In this sense, the
F(DPM) region is closed.
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Proof:
Let us assume that for all j € R, vectors (D(.),p(.),u’(.)) are feasible. Then, it is easy to see that
the limit (D(.), p(.), u(.)) verifies conditions (B1)-(B2) of Theorem 2 as well as capacity equation (6).

O

5.2 Existence of an Optimal Production/Inventory Control Policy

In this subsection, we establish one of the fundamental results of this paper. That is, we illustrate
that under weak assumptions, the DPM Model possesses an optimal solution.

Theorem 4 "Assume that the following conditions hold:

(E1) The price inventory functions p;(I;) are continuously differentiable and bounded from above by
scalars p™*®.

(E2) The product sojourn time functions D;(.) are continuously differentiable, and there exist two
non-negative constants By; and By; such that for every inventory level I;, 0 < By < Di(I;) < Bay;.
(E3) The shared capacity ﬂow rate function CFR(.) is Lebesque integrable, non-negative and bounded
from above by min; __, ET—,‘

Then, the Dynamic Pricing Model has an optimal solution.

In order to establish the above result, we first formulate the DPM Model as a variational inequality
problem.

5.2.1 A Variational Inequality Formulation for the Dynamic Pricing Model
The DPM Model introduced in Section 3 can be summarized as the problem of finding a vector
e* () = (uf (), vi (), I (), pi ())ieqt,...ny € F(DPM) that maximizes the objective function:
n Teo
Fe() = 3 [ 7 flei®)dt
=1

= 3 [ nUO 0 - a@u - oL
If G;(t, e;(t)) denotes the gradient V fi(e;(t)) of fi(ei(t)), then notice that
Gi(t,ei(t)) = (—ci(®), pi(L:(2)), i (Li(B)vi (2) — (), wi(2))-

Therefore, the DPM Model is equivalent to solving the following variational inequality problem: Find
a vector e* € F(DPM) satisfying

o S (—ea®), I (), (I (B3 (8) — ha(2), wi(8)).-
(ua(t) = uj (), vilt) — v (t), Li(t) — I} (), pa(£(2)) — p; (£} (£))) "t < 0, (19)
for all vectors e(.) € F(DPM).

Variational inequality (19) can be written in compact form as: Find a vector e* € F(DPM), such
that for all vectors e(.) € F(DPM),

G(e*), e —e><0, (20)
where < z,y > denotes the scalar product Y7, [ z;(t).y;(t)dt of two vectors = and y.
In what follows, we will refer to G(.) as the Dynamic Pricing Map.
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5.2.2 Properties of the Dynamic Pricing Map

In this subsection, we establish some properties of the Dynamic Pricing Map G(.). These properties
will be useful in establishing that the General Dynamic Pricing Model has a solution. We first
introduce a definition from functional analysis (for more details, see Kirillov [22], Kolmogorov and
Fomin [23], and Rudin [32]).

Definition 4 (Weak Continuity):

(1) A sequence (up)nex in a normed space is said to converge weakly to u, if, for every bounded linear
map LM (.), (LM (un))nex converges to LM (u).

(i) A map M P from a normed space to another is said to be weakly continuous if, for every sequence
of functions (un)nex weakly converging to u, the sequence (||M P(u,) — MP(u)||)nex converges to 0.

We establish the weak continuity of the Dynamic Pricing Map.

Theorem 5 If the price inventory functions p;(I;) are continuously differentiable and bounded from
above by scalars pi***, then conditions (B1)-(B2) of Theorem 2 imply that the Dynamic Pricing Map
G(.) is weakly continuous.

Proof: See Appendix 7.4.

We now define the notion of pseudo-monotonicity introduced by Brezis [6] and show that the Dynamic
Pricing Map G(.) is pseudo-monotone.

Definition 5 (Pseudo-monotonicity) A bounded map M P is pseudo-monotone over X if, whenever
a sequence (u*)gen € X™ weakly converging to u satisfies limsup < MP(uf),v* —z ><0,Vz € X, it
also satisfies liminf < MP(u*),u* — 2 >>< MP(u),u —x >, Vz € X.

Lemma 3 The Dynamic Pricing Map G(.) is pseudo-monotone over the F(DPM) region.

Proof: Notice that G(.) is weakly continuous on the F(DPM) region, and from Proposition 1, the
F(DPM) region is bounded. Therefore, G(.) is a bounded map. Let diam(F(DPM)) denote the
diameter of the F/(DPM) region and let (ex)xex denote a sequence of elements of the F(DP M) region
weakly converging to e. Then, for y € F(DPM),

1G(ex) — G(e)|]-[lex — |

< Glex) —Gle),ex —y> <
< diam(F(DPM)).||G(ex) — Gle)ll-

Since G(.) is weakly continuous on the F(DPM), it follows that the sequence (||G(ex) — G(€)||)rex
converges to 0. Hence limy_,0o < G(ex) — G(e), ex — y >= 0. It follows that:

limg 00 < G(ek)a €r — y > = limgp,e < G(e):ek -y>
<Ge),e—y>.

Hence, the Dynamic Pricing Map G(.) is pseudo-monotone over the F(DPM) region.
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5.2.3 Existence of An Optimal Solution for the Dynamic Pricing Model

We are now ready to prove Theorem 4 which establishes the existence of solution for the Dynamic
Pricing Model.

Proof of Theorem 4: Under conditions (E1)-(E3), Theorem 5 holds, that is, the Dynamic Pricing
Map G(.) is weakly continuous. Using Lemma 3, it follows that the Dynamic Pricing Map G(.) is
pseudo-monotone over the F(DPM) region. From Propositions 2-4, the F(DPM) region is non-
empty, bounded, closed and convex. Using Lemma 4 with K = F(DPM), A(.) = G(.) and z = 0,
and the variational inequality formulation (20), it follows that the Dynamic Pricing Model has an
optimal solution.

Lemma 4 (Brezs [6], [7])

Let K be an non-empty, bounded, conver and closed set. Let A(.) denote a map from K to L that is
pseudo-monotone map over K. Then, for every vector z € L, there exists a vector e* € K such that
< A(e*),e —e* >>< z,e — e* > is verified for every vector e € K.

For more details on the above lemma, see [6], [7], [25], [26], and [27].

6 Conclusions

In this paper, we studied a continuous-time fluid dynamics model for dynamic pricing and inventory
management. We formulated the model as a continuous-time non-linear optimization problem. The
key characteristic of this model is that it incorporates the delay of price and level of inventory in
aﬁ"ecting demand By considering the case of a hyperbolic average delay function for product 4%,

Ai(Li(Y) = 1, (t) (this corresponds to linear demand arrival rates ); in terms of the unit price), linear
unit price functions p;(/;(t)) in terms of the inventory, and finally, plecew1se constant production cost,
inventory cost and shared production capacity functions (c;(t), h;(t), and CFR(t) respectively) we
were able to reformulate the model as a quadratic optimization problem. This allowed us to propose
a solution algorithm that solves this version of model in this case. We tested this algorithm on a small
example and reported on the computational results. We generalized our results to the general DPM
Model. In particular, we provided a unifying analysis for both linear and non-linear product delay
functions. Under sufficient conditions on the production flow rate functions and the product sojourn
time functions, we established that the feasible region of the Dynamic Pricing Model (F(DPM)) is
non-empty, and that the FIFO property holds. We showed that in the case of linear product sojourn
time functions, the assumptions we imposed for non-linear product sojourn time functions simplify
significantly. We provided a generic counterexample illustrating that the assumptions we imposed,
to ensure that FIFO holds, are the tightest possible. We established key properties of the feasible
region, such as boundedness, closedness and convexity. Furthermore, for this general DPM Model, we
established under weak assumptions the existence of an optimal pricing/production/inventory control
policy that maximizes the profit of the firm over the feasible region.

In summary, some of the insights obtained from the analysis of this paper are the following:

e The fluid model we considered describes the selling rate of a unit of product through its sojourn
time in the system. Our motivation is based on the belief that delay (sojourn time) data is easy
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to acquire but also due to the fact that it is internally controlled by the manufacturer. This
approach allowed us to describe the system in greater detail by accounting explicitly how each
unit of product waits in inventory before being sold.

e The model studied in this paper connects and is consistent with traditional demand models
when the demand-price relationship is linear.

e The discretized version of the model is a Quadratic Programming Model. Its special struc-
ture allowed us to devise a solution algorithm that determines efficiently the optimal pric-
ing/production/inventory control policy in a capacitated environment. This policy is dynamic
and is based on the equilibration of the marginal profits of the products.

e Furthermore, we generalized our approach without considering a time discretization. We estab-
lished key properties of the general Dynamic Pricing Model that allowed us to establish that
the general model also has a solution.

e For example, the general continuous time Dynamic Pricing Model has a solution when the
shared capacity (which is an upper bound on the total production rate) is small (or large) and
the maximum variation of the delay in terms of the inventory is large (or small).

We hope that the results of this research will lay the foundations for the use of the delay of price and
level of inventory in affecting demand in supply chain and inventory management systems.

7 Appendix

7.1 Lemmas

A diffeomorphism is a continuously differentiable function that has a continuously differentiable
inverse. The following lemma gives sufficient conditions for a function to be a diffeomorphism. This
result will be used to establish, under certain assumptions, that the Dynamic Pricing Model leads to
product exit time functions that are diffeormorphisms.

Lemma 5 Let g(.) be a continuously differentiable function on [0,T]. If for every scalar xz € [0,T)
g'(z) # 0, then g(.) is invertible on [0, T}, its inverse function g~*(.) is continuously differentiable on

[min(9(0), 9(T)), maz(g(0), 9(T))] and, g7"(2) = sy

Proof: Since g(.) is a continuously differentiable function, then ¢'(.) is continuous. Since for every
z € [0,T)], ¢'(x) # 0, then ¢'(.) has a constant sign. Hence, g(.) is either strictly increasing or strictly
decreasing. Since every strictly monotone function is invertible, it follows that g(.) is invertible. Let
g~ 1(.) denote the inverse function of g(.). Then, g(¢~*(z)) = z. If we differentiate both sides of the

above equality, we obtain: g~V(z)g'(¢~(x)) = 1. Since ¢'(z) # 0 on [0,T], ¢'(¢7"(z)) # 0. It follows
that g-ll(.’E) = Wg_lf(‘m

O

Remark: In the proof of Theorems 1 and 2, we use Lemma 5 where g(.) is replaced with the product
exit time function s;(.).
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Lemma 6 Let f(.) be a continuous and strictly increasing function on interval [a,b]. For z €
[f(a), F(b)], the set W, = {w € [a,b]|f(w) < z} is the interval [a, f~1(z)].

Proof: The proof follows easily.

Lemma 7 If 9:()isa continuously differentiable function over a compact set [0,Y], then, there ezists
a scalar By; such that: By = Maz{gi(z),z € [0,Y]}.

Proof:
Since g;(.) is continuously differentiable, gj(.) is continuous over the compact set [0,Y]. Therefore, gi(.)
attains its maximum.

O

Remark: In the proof of Theorems 1 and 2, we use Lemma 7 where g;(.) is replaced with the product
sojourn time function D;(.) and z is replaced with the inventory level I;.

7.2 A Preliminary Result

The following theorem is needed in the proof of Theorem 2 of Subsection 5.1.1.

Theorem 6 If the pair (D;(.),u;(.)) satisfies the following conditions:

(A1) The product sojourn time function D;(.) is continuously differentiable, and there ezist two non-
negative scalars By; and By; such that for every inventory level I;, 0 < By; < Di(I;) < Boy;.

(A2) The production flow rate function u;(.) is Lebesgue integrable, non-negative and bounded from
above by M; = 1_4(_131\11:71 on [0,T], where M; is a positive scalar.

(A3) M; < g5

Then, the feasible region F(DPM) has the following properties:

(1) F(DPM) is well defined (that is, the product inventory I;(.), the sales flow rate v;(.), and the
cumulative variables can be uniquely determined by the product sojourn time function D;(.) and the
production rate u;(.) on the analysis period [0, Ty ).

(2) The Strong FIFO property holds.

Before providing the proof of Theorem 6, we establish additional preliminary results. Condition (A3)
of Theorem 6 can either hold as an equality or as a strict inequality. The following lemma shows that
the proof of Theorem 6 can be reduced to an easier proof where condition (iii) can be replaced by
Byi — Bii = 77

Lemma 8 In Theorem 6, one can assume that By; — By; = _1\%17

Proof: If By;—B;; < M%, let Bs; = Bl,-+M%. For every scalar I, it follows that 0 < By; < Di(I;) < Ba,,
since By; < Bs;.

O

Consider the following sequence of time instants defined by: ¢t = 0, t; = s;(¢p) and ¢;41 = si(t;). We
prove the results of Theorem 6 by induction over the index j of interval [t;,¢;,,). We first establish
that the induction proof is valid.
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Lemma 9 For every non-negative integer j, tj11 —t; > D;(0) > 0. Furthermore, there ezists an
integer n, such that T € [tn, tny1).

Proof: For a given non-negative integer j, t;;1 = s;(t;) = t; + D;(L;(t;)). Therefore, tj41 —t; =
D;(I;(t;)). Since D;(.) is a nondecreasing function and since for every ¢, I;(t) > 0, it follows that
D;(1;(t;)) > D;(0). Since by assumption D;(0) > 0, it follows that t;1, —t; > D;(0) > 0.

If ng = [%0—)], it follows that t,, > T. Hence, Max{j|t; < T} exists. Let n = Max{j[t; < T}. It
follows that n < ng and T € [tn, tnt1)-

O

Let Y be defined by Y = [] u;(w)dw. Y represents the total number of units of product i that are
produced. Since the product delay function D;(.} is continuously differentiable and bounded, using
Lemma 7, there exists By; such that By; = Maz{g!(z),z € R}. Below is a series of three lemmas
that we need in the induction proof of Theorem 6. The following lemma shows that there exists a
constant @ that will serve to construct a lower bound on the product exit time function s;(.).

Lemma 10 For every By; € [Bai, Bi) and for every t € [0,T), it follows that 8 + Bayu;(t) € (0,1],

o~

where § = 1 (Bu—Ba)M;

1+ B M;
Proof: Since for every I; € [0,Y], Di(I;) < By, and since By; = Max{Dj(I;),I; € [0,Y]}, it follows
that By < Bg;. Let By € [By, By;). From condition (A2) of Theorem 6, 0 < u;(t) < Tﬁ;”m
Therefore,
ByM;

1<1 E’i't <14 ———.
S+ Bauu(t) < 1+ 5

By subtracting % from each side of these inequalities, it follows that:

By M, ByuM,;

o TET o AT L Bt < 1
2B = " 17 B T Bau®) <

1

Using Lemma 8, we can assume that By; = By; + X}T Since Bg,- < By;, it follows that EQ,- < By + M%

By M; _ _ByM;
Hence, ;7475 Thor <L Thus, 1 - 7 Boar > 0 Therefore,

_ Bo M; < 1+ (Bu — B M;
1+ BuM, = 1+ By,

It follows that 0 < 6 + Bau(t) < 1.

0<1 + EQiui(t) <1

Lemma 11 For everyt € [to,t1), the set W = {w|s;(w) < t} is empty and hence V;(t) = 0.

Proof: For every t € [to,t1) and for every w € [0, ],

s,-(w) =w+ DI(I,(UJ)) > 0+ D,,(O) >t >t
Hence, the set W defined by W = {w : s;(w) < t} is empty for ¢ € [tp,¢1). From equation (5), it
follows that V;(t) = 0, for t € [to, t1)-
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The following lemma, is needed in the induction step of the proof of Theorem 6.

Lemma 12 Fort € [tj41,t542),

W) M,
Boui(s7'(t)) +6 — 1+ BuMy’

Proof: Let t € [tj+1‘,tj+2). From condition (A2) of Theorem 6, u;(s;'(t)) < M; = mﬁ’ﬁ—]‘—l—‘ By
multiplying each side of the inequality by By; — B,;, we obtain that

(Ba: — B M;

14+ BuM;
1+ (B — Ba)M;
- 1+ By M; ’
8, (by definition of 6).

B?iui(f,:x(t))
Baiui(s; " (t)+0

(where 0 = —————ﬂ};}i}’)M’} (21)

(B — Bai)ui(s7'(t)) <

( from Lemma 8 )

IA

Since 8 > 0 and Bg,u,( 1(t)) > 0, it follows that: > 1. Hence, from Lemma 8, we

. ui(s; (t)) 1 M;
obtain that 7\—‘———32'“1(3_1 )50 2 B 2 TTBL

We are now ready to provide an induction proof that establishes the results of Theorem 6.

Proof of Theorem 6:

The induction proof is over the index j of interval [t;,¢;,1). The induction hypothesis for interval
[tj,tj+1) is that the following properties hold:

(i) si(.) is differentiable (a.e.) and continuous over [t;,t;41), and si(t) > Boyu(t) + 6 > 0;

(i) vi(.) is differentiable (a.e.) over [t;,ti + 1);

(i) For every t € [t;,t;41), vi(t) < M]; and

(iv) the F(DPM) has a solution on [O tj+1) and this solution is unique (a.e.).

We first examine the base case on interval [to, t;). We then assume that the induction hypothesis holds
for [t;,t;+1) and prove that it holds for [¢;41,%;42). The proof of the base case is an easy application
of Lemma 11.

We assume that the production flow rate functions u;(.) are given. Hence, they are unique (a.e.).
Since the integral operator is unique, the integral U;(.) is also unique (a.e.). In order to prove the
uniqueness (a.e.) of a solution to the F(DPM) on each interval of the induction, it remains to prove
that V;(.) and s;(.) are unique (a.e.) on these intervals. Then by uniqueness of the differentiation
operator, v;(.) is unique (a.e.). Furthermore, using equation (4) and the initial conditions, it follows
that I;(.) = U;(.) — V;(.). Hence, I;(.) is unique (a.e.).

Base Case: Time interval [tg, ;).

Forte [to,tl),

Li(t) = Ui(t) - Vi(t)
= Ui(t) -0 (Vi(t) =0, from Lemma 11 )

= /Ot ui(w)dw.
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Hence, /;(.) is differentiable (a.e.) and continuous on [ty,?;). Moreover, since the integral operator
is unique and U;(.) is unique (a.e.), it follows that I;(.) is unique (a.e.). Furthermore, the function
si(t) = t + D;(I;(t)) is continuous, since I;(.) and D;(.) are continuous. The exit time function s;(.)
is differentiable and unique (a.e.) on [ty,t,), since I;(.) is differentiable and unique (a.e.) and D;(.)
is differentiable and unique. By differentiating each term in the expression of s;(t), we obtain, for
t € [to, t):

i) = 1+ D) =Y

= 1+ui(t)D:~(1 (®).

Since u;(t) > 0 and Dj(Ii(t)) > 0, it follows that si(t) > 1. Using Lemma 10, we obtain: s}(t) >
0 + Baysui(t) > 0. Therefore, the product exit time function si(.) is differentiable (a.e.) and strictly
increasing on [ty, ;). Furthermore, from Lemma 11, V;(.) = 0. Thus, V;(.) is both differentiable and
unique (a.e.) over [to,t;) and for t € [to, 1), v;(.) is unique (a.e.) and v;(t) = 0 < M!. Hence, the
F(DPM) has a solution on interval [0,¢;) and this solution is unique (a.e.).

Induction Step: Time interval [¢;;1,¢;42).

From the induction hypothesis, we know that the product exit time function s;(.) is differentiable and
unique (a.e.), continuous and strictly increasing on [¢;,¢;41). From Lemma 5, it follows that s;*(.)
is differentiable and unique (a.e.), and continuous over [s;(t;), si(tj4+1)) = [tj+1,¢j42). Using Equation
(8) in the model formulation, it follows that:

s; (1)
Vt € [tj+1,tj+2), Y,(t) = /0 u,(w)dw

Since s;'(.) is differentiable and unique (a.e.) on [tj1,%42), Vi(.) is differentiable and unique (a e.).
By differentiating V;(.), we obtain: v;(t) = (s;')'(t)u:(s;*(t)). Using Lemma 5, s;Y(t) = T
Therefore,

ui(si ' (t))
vilt) = 7= (22)
si(s (1)
Furthermore, from the induction hypothesis, si(s;7*(t)) > 0 + By > 0. Hence, 0 < W <
! . Since for every t € [tj11,%j42), 0 < ui(s7(t)) < M., it follows that:

Bg,"ui(s:l (t)+6

ui(sy ' (t))
Bowui(s71(t)) + 6 (23)

Vt € [tj41,tj42), v (t) <

Using Lemma 12, it follows that v;(.) is unique (a.e.) and v;(t) < M]. Therefore, both the production
and sales flow rate functions u;(.) and v;(.) are bounded from above by M. This shows that if an
upper bound is verified at the entrance of a link, it is also maintained at its exit.

If t;;; > T, the induction ends and the proof is complete. Otherwise, ¢;4; < T, and

Li(t) = /Ot u;i(w)dw — /()tvi(w)dw

Hence, I;(.) is differentiable (a.e.) and continuous on [¢;41,¢;42). Moreover, since the integral operator
is unique and both u;(.) and v;(.) are unique (a.e.), it follows that I;(.) is unique (a.e.). Furthermore,
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the function s;(t) = t + D;(I;(t)) is continuous, since both I;(.) and D;(.) are continuous. The exit
time function s;(.) is differentiable and unique (a.e.) on [tj11,%;42), since [;(.) is differentiable and
unique (a.e.) and D;(.) is differentiable and unique. By differentiating each term in s;(¢), we obtain:

dI;(t)

si(t) = 1+ Di(L(t)) ;t =1+ (u;(t) — v;(£))Di(L:(t)), (from equation (4) ).

We discuss two cases: u;(t)—wv;(t) > 0 and u;(t)—v;(t) < 0. First, we consider the case u;(t)—v;(t) > 0.
Since D}(I;(t)) > Bj; > 0, from Lemma 10, it follows that:

si(t) > 1> Byus(t) +6 > 0.
Now, consider the case u;(t) — v;(t) < 0. Since D(I;(t)) < By < By, it follows that:
si(t) > 1+ Bos(ui(t) — vi(t)).

Since v;(t) < M' = —2i__ we obtain:

14 B1; M;?
. B,
') > 1+ Bou(t) — — 2
sit) 2 1+ Baiui(?) 1+ B MM,
, ~ 1+ (By; — By) M;
() > Boult
silt) 2 Baua(t) + 1+ By,

Hence, we have showed that properties (i)-(iii) of the induction hypothesis hold on interval [t;;1, 42)-
Furthermore, we have proved that the F(DPM) has a solution on interval [0,%;42) and that this
solution is unique (a.e.).

O

Next, we show that the induction terminates after a finite number steps. This means that a con-
struction algorithm, based on the induction proof of Theorem 6, will determine a feasible point of the
F(DPM) region in a finite number of steps.

Lemma 13 The induction terminates after a finite number of steps, i.e. Ty, s finite.

Proof: Let ng = Maz{n € N,t, < T}. From Lemma 9, ng exists and T € [t,,, tno+1).- The induction
proof, at all steps ¢ < ny, ensures that s;(.) is continuous and strictly increasing over [0, ¢,,+1). Hence,
Maz{s;(t),t € [0,T]} = s;(T) exists and is finite. Since T, = Maz{s;(t),t € [0,T]}, it follows that
T is finite. Hence the induction terminates after a finite number of steps.

a
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7.3 Proof of Theorem 2

If B;; = 0, then M] = M;. In this case, both Theorem 6 and Theorem 2 have the same conditions
and provide the same result of existence and uniqueness (a.e.) of a solution to the F/(DPM). Next,
we only consider the case where By; > 0.

Since Theorem 6 and 2 have in common the first and the third conditions, using Lemma 8, one can
assume By, = By; + 1\_147 in the proof of Theorem 2. In the proof to follow, we will assume that: By; > 0

and Bgi = Bl-i + ML1

Consider now the following sequence of time instants defined by: to = 0, t; = s;(to) and ¢j+1 = si(t;).
We prove the results of Theorem 2 by induction over the index j of interval [t;,t;11). Let Y be the
defined by Y = fOT u;(w)dw. Below, we provide two preliminary results that we use in the proof of
Theorem 2.

Lemma 14 There exists By € [By;, Ba;) such that 0; = 1+31;[(f532‘()£4 a € (0,1).
1d e=o(B2i

Proof: From condition (B1) of Theorem 2, VI; € [0,Y], D!(I;) < Bo;. Using Lemma 7, By; < By

~ .. . +By .
Let By; = Maz(But8a, L‘JT—Q—) From Lemma 8, we can assume that By; = By; + Ml-‘ Since By; > 0,

it follows that By; > M% Hence, By; € [Bai, Ba;).

Since ﬁgi < By, it follows that By — By; < By — By;. Using CoAndition (B3) of Theorem 2, we obtain
that By, — By; < W}E Thus, 1+ (By; — By)M > 0. Since By;, By; and M are positive, it follows that
the denominator of #; is greater than 1, and hence §; > 0. Furthermore,

1+ (Bli - Bzi)M <14 Bh'M <1+ Bh’M + Z(BgiM)k.
k=2

1+(Bli—_§2i)M

Since 8; = BT (B it follows that 8; < 1.
O
Lemma 15 is essential for the induction step in the proof of Theorem 2.
Lemma 15 For any interval indez j, and for every t € [tj11,t42),
-1
u;(s; (¢
'L( 1 ()) < ai+1, (24)

Boui(s7H(t)) + ;

M Zz;l‘)(ﬁz&M)k
4B M+, (BauM)*’

where a; =

Proof: By replacing a;4, with its value given above, inequality (24) is equivalent to:

w(si'(1) M ¥y _o(BaM):
Boui(s7H (1)) +0; — 1+ BiM + Y i, (BuM):
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It follows that ui(s;7(£))(1 4+ ByM + SiL (B M)¥) < (ui(sy (2)) Bai + 0;) Mk _ o (BoiM)*. Through
algebraic manipulations of the above expression, inequality (24) can be equivalently rewritten as

ui(s; (1)) (1 + BuM +§(Bzz )*) < ui(sit t))f BauM)* +6; MZ By M)E.
k=2 k=1 k=0

Hence, (s (£))(1 + ByM) < ui(s71(t)) BuM + 6; MYi_o(BoiM)*. Thus, it follows that:

wi(s71(®)) (1 + (Bu — Bai)M) — 0;M 5" (B M)k < 0.
k=0
Using Lemma 8, 1+ (By; — Bu)M = (Byi — Bai)M. Since By < By = Bui + 35,0 it follows that:

S mo(BaiM)

< 1. Hence, we obtain:
14+Bu M+ o (B M)k = ’

ui(s71(t))(Boi — By )M — (14 (By — Bo)M)M < 0.

Thus, u;(s7'(t))(Ba — Bm) (By — By;)M < 0. By dividing each term of the inequality with the
positive scalar By — By, it follows that u;(s;(t)) < M. Using Condition (B3) of Theorem 2, we
verify the inequality.

O

We are now ready to provide an induction proof that establishes Theorem 2.

Proof of Theorem 2:

Recall that the induction proof is over the index j of interval [t;,¢;11). The induction hypothesis for
interval [t;,t;11) is that the following properties hold:

(i) si(.) is differentiable (a.e.) and continuous over [t;,t;41), and si(t) > Bou(t) + 0;;

(11) Vi(.) is differentiable (a.e.) over [t;,t;i1);

(1ii) Vt € [t;, tj11), vi(t) < @j; and

(i) the F(DPM) has a solution on [0,t;11) and this solution is unique (a.e.).

Base Case: Time interval [to, t1).

From Lemma 11, for every t € [to,%1), Vi(t) = 0. The proof of this Base Case is similar to the proof
of the first Base Case of Theorem 6. As a result, we do not provide it here.

Induction Step: Time interval [t;i1,;42).

From the induction hypothesis, we know that the link exit time function s;(.) is differentiable and
unique (a.e.), continuous, and strictly increasing on [t;,;41). From Lemma 5, it follows that s;(.)
is differentiable and unique (a.e.), and continuous over [s;(¢;), si(tj+1)) = [tj+1,tj+2)- Using equation
8 in the model formulation, it follows that

s
Vet V= [T  w(w)de

Since s;'(.) is differentiable and unique (a.e.) on [t;;1,%;42), Vi(.) is differentiable and unique (a.e.).
By differentiating V;(.), we obtain: v;(t) = (s;1)'(¢)u;(s;*(t)). Using Lemma 5, it follows that:

'U,-(t) = %@ﬂfﬁ

(57" ()
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Furthermore, from the induction hypothesis, si(s71(t)) > 6; + Byui(s7(t)) > 0. Hence, 0 <

1 —
5 < ST Note that for every t € [tj11,t42), 0 < u;(s;7'(t)) < M. Thus,

1
=
si(s7(

| | . Ui(s;}(t))
Vt € [tjz1,tjt2), vilt) < Bgiui(sfl(t)) + 9]-.

(25)

Using Lemma 15, it follows that v;(.) is unique (a.e.) and v;(¢) < @;41.

If ¢;41 > T, the induction ends and the proof is complete. Otherwise, ¢;;1 < T, and

L(t) = /Ot w;(w)dw — /Ot vi(w)dw.

Hence, I;(.) is differentiable (a.e.) and continuous on [t;11,t,42). Moreover, since the integral operator
is unique and both u;(.) and v;(.) are unique (a.e.), it follows that I;(.) is unique (a.e.). Furthermore,
the function s;(t) = t + D;(I;(t)) is continuous, since both I;(.) and D;(.) are continuous. The exit
time function s;(.) is differentiable and unique (a.e.) on [tj11,;42), since [;(.) is differentiable and
unique (a.e.), and D;(.) is differentiable and unique. By differentiating each term in s;(t), we obtain:

40 = 1+ D) Y

= 1+ (w(t) — w(t)Di(Li(t))-

We discuss two cases: u;(t) —v;(t) > 0 and u;(t) — v;(¢t) < 0. First, consider the case u;(t) — v;(t) > 0.
Since D;j(L;(t)) > By; > 0, it follows that si(f) > 1 > 6;. Now, consider the case w;(t) — v;(t) < 0.
Since D}(I;(t)) < Bg; < By, it follows that: si(t) > 1 4 Bo;(u;(t) — vi(t)). Since v;(t) < 41, we
obtain:

M 5o BaM)¥
1+ ByM + St (BoM)*

1+ (B — Boy) M
14 BuM + S (BuM)*
si(t) > Bowu(t) + 041 > 0.

s;(t) > 1+ f?zz‘ui(t) — By

S;(t) Z Bziui(t)+

Hence, we have showed that properties (i)-(iii) of the induction hypothesis hold on interval [t;41,tj42)-
Furthermore, we have proved that the F'(DPM) has a solution on interval [0,t;,5) and that this
solution is unique (a.e.). The proof of Theorem 2 is now complete.

O

From Lemma 13, T, is finite and the induction terminates after a finite number of steps. This means
that a construction algorithm, based on the induction proof of Theorem 2, will determine a feasible
point of the F(DPM) region in a finite number of steps.
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7.4 Proof of Weak Continuity of the Dynamic Pricing Map

The proposition below summarizes some results from functional analysis that are useful to prove
Theorem 5 (for more details, see Kirillov {22], and Kolmogorov and Fomin [23]).

Proposition 5 [22], [23]
(2) If f and g are two weakly continuous maps, then the maps f+g, f.g and f(g) are weakly continuous.

(ii) If f is a weakly continuous map on the set of real numbers and has a constant sign, then the map

% 1$ weakly continuous.

(iii) The integral operator from the space of bounded functions on L*([0,Tw]) to L*([0,Tw)]) defined
as u(.) = fy u(w)dw is weakly continuous.

Proof of Theorem 5: Property (iii) of Proposition 5 implies that u;(.) + U;(.) is weakly continuous.
We will prove by induction over the time intervals [t;,¢;.1) (defined in the proof of Theorem 2), that
the maps u;(-) = Vi(.), w(.) = L), wil() = s:(), wel-) = wi(), wi() = s7'() and wi() = (s7)'()
are weakly continuous.

We first need to establish a preliminary result.
Lemma 16 Under conditions (B1)-(B3) of Theorem 2, if the product ezit time operator u; = s;(.) is

weakly continuous on the interval [t;,t;41), then its inverse operator u; — s; ' (.) is weakly continuous
on the interval [tj11,tj42)-

Proof: We assume that the product exit time operator u; — s;(.) is weakly continuous on the interval
[t5,t41)-
From the proof of Theorem 2 in Subsection 7.3, we know that for every ¢t € [t;,t;11), si(t) < 65,

where 6, € (0,1) as defined in Lemma 14. Hence, s;'(.) is Lipschitz continuous on [t;y1,2;42) With
parameter ol,-'
Furthermore, for every t € [t;,tj11),

si(t) = 1+ Di(Li(1) (ui(t) —wi(t)) < 1+ Di(Li(t))wa(t),
< 1+ BQ,’M;‘.
Hence, s;(.) is Lipschitz continuous on [t;,t;41) with parameter 1 + By; M;.

Let (u¥(.))kex denote a weakly converging sequence of product flow rate functions to u;(.). Let s¥(.)
denote the product exit time function corresponding to uf(.).

Furthermore,

[ 1 w) = s )b =

ti+1

si(tj41)
i(t5)

= [P ) () — s (ss(w) P

t

= [P ) - wPsl )i

tj

[ )~ (51 ) Pl

1 BiMi t;
< DM O b ) — su(a) P
91 t;

[(s5) 71 (w) — 57 (w) [Pdw
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Since u; + s;(.) is weakly continuous on the interval [¢;,%;11), it follows that u; — s72() is weakly
continuous on the interval [¢,41,%;42).

O

Induction Proof:

Base Case: Time interval [tg,1).

On [ty, 1), vi(t) = Vi(t) = 0 and I;(¢t) = U;(t). Hence, the maps u;(.) = Vi(.), ui(.) = I;(.), and
u;(.) = vi(.) are weakly continuous. Furthermore, since s;(t) = ¢+ D;(I;(t)), and D;(.) are continuous
functions (and therefore weakly continuous), using property (i) of Proposition 5, it follows that the
map u;(.) — s;(.) is weakly continuous. Using Lemma 16 and property (i) of Proposition 5, it follows
that the map u;(.) = s;!(.) is also weakly continuous on [¢1, ).

Moreover (s;")'(£) = ;g = 1+DI;(1,.(5;1(t)))(uf(s;l(t))_v,.@;l(t))-

sition 5, we obtain that u;(.) — (s;")'(.) is also weakly continuous on [t;, t2).

Using properties (i) and (ii) of Propo-

Induction Step: Time interval [t;;1,%;42). From the induction hypothesis, we know that the
maps u;(.) — s7'(.) and u;(.) — (s;')'(.) are weakly continuous on [t;11,%;42). Since v;(w) =
u;(s7H(w)).(s; ') (w), using property (i) of Proposition 5, it follows that the map wu;(.) — v;(.) is
weakly continuous. Property (iii) of Proposition 5 implies that u;(.) — V;(.) is weakly continu-
ous. Since I;(.) = Ui(.) — Vi(.) and s;(t) = t + D;(I;(t)), property (i) of Proposition 5 implies that
ui(.) — Li(.) and u;(.) — s;(.) are weakly continuous.

Using Lemma 16, it follows that u;(.) — s;'(.) is also weakly continuous on interval [t;,2,%;,3).
Moreover, since (s;')'( ! using properties (i) and (ii) of Proposition

t) = 1+ D (T () (ua(s7 T (8)—vi(s7 (1)
5, we obtain that u;(.) — (s;')’(.) is also weakly continuous on [t;42,%;13). The induction proof is
now complete. Since the price inventory function p;(/;) is continuously differentiable, both p;(;) and
pi(1;) are continuous (and hence weakly continuous). Property (i) of Proposition 5 implies that the
Dynamic Pricing Map G(.), defined in Subsection 5.2.1, is weakly continuous.

O
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