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1. Introduction

A major reason for the widespread use of LP models is the exis-
tence of simple procedures for performing sensitivity analyses. These
procedures rely heavily on LP duality theory and the interpretation it
provides of the simplex method. Recent research has provided a finitely
convergent IP duality theory which can be used to derive similar procedures
for IP sensitivity analyses (Bell and Shapiro [3]; see also Bell [1],
Bell and Fisher [2], Fisher and Shapiro [6], Fisher, Northup and
Shapiro [7], Shapiro [18]). The IP duality theory is a constructive
method for generating a sequence of increasingly strong dual pro-
blems to a given IP problem terminating with a dual producing an optimal
solution to the given IP problem. Preliminary computational experience
with the IP dual methods has been promising and is reported in [7].

From a practical point of view, however, it may not be possible when
trying to solve a given IP problem to pursue the constructive pro-
cedure as far as the IP dual problem which solves the given problem.
The practical solution to this difficulty is to imbed the use of IP

duality theory in a branch and bound approach (see [7]).



The IP problem we will study is

v = min cx
s.t. Ax + Is = b (1)

x. = 0 or 1, si = 0’1’2""’Ui’

3

where A is an m x n integer matrix with coefficients aij and columns
b is an m x 1 integer vector with components bi’ and ¢ is alxn
P
T}
P=

aj,

real vector with components cj. For future reference , let F = {xp,

denote the set of all feasible solutions to (1).

We have chosen to add the slack variables explicitly to (1)

because they behave in a somewhat unusual manner unlike the behavior

of slack variables in LP. Suppose for the moment that we relax the
integrality constraints in problem (1); that 1s, we allow O S_xj <1

and 0 <s, < U Let u,* denote an optimal dual variable for the 1th

i i’ i
constraint in this LP, and let si* denote an optimal value of the slack.
By LP complementary slackness, we have ui* < 0 implies si* = 0 and
ui* > 0 implies si* = Ui' In the LP relaxation of (1), it is possible
that 0 < si* < Ui only 1if ui* = 0. On the other hand, in IP we may
have a non-zero price ui* and 0 < Si* < Ui because the discrete nature

of the IP problem makes it impossible for scarce resources to be
exactly consumed. Specific mathematical results about this phenomenon

will be given in section 2.



2. Review of IP Duality Theory

A dual problem to (1) is constructed by reformulating it as

follows. Let g be any finite abelian group with the representation

where the positive integers qy satisfy 4 > 2, qifqi+l’ i=l,...,r=-1,

and Zq is the cyclic group of order q- Let G denote the order of

i T
g; clearly G = 1£1qi and we enumerate the elements as 03073991
with 60 = 0. Let S ERRRELM be any elements of this group and

for any m—vector f, define the element ¢(f) = o € g by

]
o(f) = f.e,.
=1 171

The mapping ¢ naturally partitions the space of integer m-vectors into

G equivalence classes SO’Sl""’S where fl,f2 € S, 1f and only 1if o, =

G-1 k k

¢(fl) = ¢(f2). The element ¢, of g is associated with the set §

K K
that is, ¢(f) = o, for all integer m-vectors f ¢ S

k K

It can easily be shown that (1) is equivalent to (has the same

feasible region as)



v = min cx (2a)
s.t. Ax + Is = b (2b)

n m
Z o.x, + 2 €8, = B (2c)

=139 =

X, =0o0orl
3 (2d)

85 = 0,1,2,...,U;

where aj = ¢(aj) and B = ¢(b). The group equations (2c) are a system
of r congruences and they can be viewed as an aggregation of the linear
system Ax + Is = b. Hence the equivalence of (1) and (2). For future
reference, let Y be the set of (x,8) solutions satisfying (2¢) and (2d).

Note that F <€ Y.

The IP dual problem induced by g is constructed by dualizing
with respect to the constraints Ax + Is = b. Specifically, for each

u define

L(u) = ub + min {(c-uA)x - us}. (3)
(x,8)eY
The Lagrangean minimization (3) can be performed in a matter of a few
seconds ‘or less for G up to 5000; see Glover [10], Gorry, Northup

and Shapiro [11]. The ability to do this calculation quickly is



essential to the efficacy of the IP dual methods. If G is larger than
5000, methods are available to try to circumvent the resulting numerical
difficulty (Gorry, Shapiro and Wolsey [12]). However, there is no
guarantee that these methods will work, and computational experience

has shown that the best overall strategy is to combine these methods

with branch and bound.

Sensitivity analysis on IP problem (1) depends to a large extent

on sensitivity analysis with respect to the group g and the Lagrangean

L. Let
n m
G(oju) =min ) (c, ~ua )x, + ) - us
PR M S T
% m
s. t. o.x, + Y es, = o (4)
jgmp 330 g5
x, = 0or 1l
J
8; = 0,1,2,...,Ui.

Then L(u) = ub + G(B;u). Moreover, the algorithms in [10] and {11] can be
used ta compute G(o;u) for all ¢ € G without a significant increase in compu-
tation time.

It 1s well known and easily shown that the function L

is concave, continuous and a lower bound on v. The IP dual problem
is to find the greatest lower bound

w = max L(u)

5
s.t. u e Rm. (3)



If w = +o, then the IP problem (1) is infeasible.
The desired relation of the IP dual problem (5) to the primal

IP problem (1) is summarized by the following:

OPTIMALITY CONDITIONS: The pair of solutions (x*,s*) ¢ Y and u* ¢ "

is ®said to satisfy the optimality conditions if

(1) L(u*) = u*b + (c-u*A)x* - u*s

(1i) Ax* + Is* = b.

It can easily be shown that a pair satisfying these conditions is
optimal in the respective primal and dual problems. For a given IP
dual problem, there is no guarantee that the optimality conditons can
be established, but attention can be restricted to optimal dual solu-=
tions for which we try to find a complementary optimal primal solution.
If the dual IP problem cannot be used to solve the primal problem,

then v > w and we say there is a duality gap; in this case,.a stronger

IP dual problem is constructed.

Specifically, solution of the IP problem (1) by dual methods is
constructively achieved by generating a finite sequence of groups
{gk}§=0, sets {YK}E;O’ and IP dual problems analogous to (5) with
maximal objective function value wk. The group go = Zl’
© = {(x,S)[xj =0orl,s, = 0,l,2,...,Ui} and the corresponding IP

dual problem can be shown to be the linear programming relaxation of



(1). The groups here have the property that gk is a subgroup of gk+l,

implying directly that Yk+l Q_Yk and therefore that v vak+l 3»wk.

Sometimes we will refer to gk+1 as a supergroup of gk.

The critical step in this approach to solving the IP problem
(1) is that if an optimal solution to the kth dual does not yield an
optimal integer solution, then we are able to construct the supergroup

gk+1 so that Yk+

l,?.Yk. Moreover, the construction eliminates the
infeasible IP solutions (x,s) ¢ Yk‘which are used in combination by
the IP dual problem to produce a fractional solution to the optimality
conditdons. Since the set YO is finite, the process must converge in
a finite number of IP dual problem constructions to an IP dual problem

ylelding an optimal solution to (1) by the optimality conditions, or

prove that (1) has no feasible solution. Details are given in [3].

The following theorem exposes how this IP duality theory

extends the notion of complementary slackness to IP.

Theorem 1l: Suppose that (x*,s*) ¢ Y and u* ¢ R" satisfy the optimality
conditions. Then
1) ui* < 0 and si* > 0 implies e 4 0.

* *
(ii) ug* > 0 and s * < Ui implies €y # 0.



Proof: Suppose u,* < 0 and si* > 0 but e; = 0. Recall that (x*,s*) € Y

i
n m
implies that 2 o,X,% + z €,8,% = B and L(u*) = u*b + (c-u%A)x* -u*s.
s 43 g e
Since €y = 0, we can reduce the value of si to 0 and still have a

solution in Y. But this new solution in the Lagrangean has a cost of

L(u*) + ui#s * < L(u*) contradiciting the optimality of (x*,s*). The

i

proof of case (ii) is similar. ||

The IP dual problem (5) is actually a large scale linear

t.T

programming problem. Let Y = {xt,s } be an enumeration of Y.

t=1
The LP formulation of (5) is
W = max Vv
v _ub + (c—uA)xt - us® (6)
t=1,...,T.

The linear programming dual to (6) is
T

w=min )} (cxt)wt
t=1

. T .
s.t. ) (Ax + Is )w_=b N
t=1 t

i
w, =1
t=1 °

w > 0.

The number of rows T in (6), or columns in (7), is enormous. The

gsolution methods given in Fisher and Shapiro [6] generate columns



as needed by ascent algorithms for solving (6) and (7) as a primal-
dual pair. The columns are generated by solving the Langrangean

problem (3).

The formulation (7) of the IP dual has a convex analysis
interpretation. Specifically, the feasible region in (7) corresponds

to

{(x,8) |Ax+Is = b, O < %, <1, 0<s <U}N Y]

where the left hand set is the feasible region of the LP relaxation

of the IP problem (1) and "[ ]" denotes convex hull. Thus, in effect,
the dual approach approximates the convex hull of the set of feasible
integer points by the intersection of the LP feasible region with the
polyhedron [Y]. When the IP dual problem (5) solves the IP problem
(1), then [Y] has cut away enough of the LP feasible region to approxi-
mate the convex hull of feasible integer solutions in a neighborhood

of an optimal IP solution.
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3. Sensitivity Analysis of Cost Coefficients

Sensitivity analysis of cost coefficients 1s easier than
sensitivity analysis of right hand side coefficients because the set
F of feasible solutions remains unchanged. As described in the previous
section, suppose we have constructed an IP dual problem for which the
optimality conditions are satisfied by some pair (x*,s*) ¢ Y and u*.
The first question we wish to answer is
In what range of values can c, vary without changing
the value of the zero-one variable X, in the optimal
solution (x%*,s%)?
We answer this question by studying the effect of changing cl on the

Lagrangean.

Theorem 2: Let (x*,s*) and u* denote optimal solutions to the primal
and dua’. IP problems, respectively, satisfying the optimality conditions.

Suppose the zero-one variable xz* = 0 and we consider varying its cost

coefficient c, toc, + Acz. Then (x*,s*) remains optimal if

Ac2 > min{0,G(B;u*) - (cl—u*ag) - G(B—az;u*)}, (8)
where G(¢,u*) is defined in (4).

Proof: C(Clearly, if xz* = 0 and (8) indicates that Ac, > 0, or c

L L

increases, then x* remains optimal with xz* = 0. Thus we need consider

only the case when G(B;u*) - (Cl—u*az) - G(B—az;u*) < 0. Let

G(o;u*|x2=k; Acz) denote the minimal cost in (4) if we are constrained
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to set x, = k when the change in the %th cost coefficient is Acg. If

Ac, satisfies (8), then

%
G(Bsuk|x=1; Ac))
=cCc

- u* —-o su*|x =0;
+ Acz u*a + G(B agsu Ixﬂ 0; Acg)

2 L
= - * — IRTL.] =)+
cy + Ac2 uta, + G(B ap3u ng 0; 0)
- u* —o T uk
> cy + Acz u*a, + G(B @y )
> G(B;u*)

= G(B;u*|x£=0; 0)

G(B;u*|x2=0; ACR)’

where the first equality follows from the definition of G(B;u*]x =1;

ACE)’ the second equality because the value of Ac, is of no consequence

'3
1f X, = 0, the first inequality because G(B-az;u*) may or may not be

achieved with X, = 0, the second inequality by our assumption that (8)
holds, the third equality because G(B;u*) = (c-u*A)x* — u*s and x*z = 0,
and the final equality by the same reasoning as the second equality.
Thus, as long as ACZ satisfies (8), it is less costly to set x2 =

rather than xk = 1.

On the other hand, marginal analysis when xz* = 1 1s not as easy
because the variable is used in achieving the minimal value G(Bju*).

Clearly x* remains optimal if co is decreased. As o is increased,

X, should eventually be set to zero unless it is uniquely required for

feasibility.
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Theorem 3: Let (x*,s*) and u* denote optimal solutions to the primal
and dual IP problems, respectively, satisfying the optimality conditions.
Suppose the zero-one variable xz* = 1 and we consider varying its cost
coefficient cy to cy + Acl. Then (x*,s*) is not optimal in the

Lagrangean if

1 3 = - - X
Ac, > mln{cj—u*ajlj e J(a,) and xj* 0} = (c, - u*a ) (10)

where

3(ay) = {ileGap = ¢(ay) = ok

We assume there is at least one xj* 0 for j ¢ J(al) because otherwise

the result is meaningless.

Proof: Note that we can order the elements jl’jz""’jv in J(al) by
increasing cost cj - u*aj with respect to u* such that xj* = 1,
j=l,...,jv, Xj* =0, j= jv+1""’jV' This is because all these variables

x, have the same effect in the constraints in (4). By assumption,

h|
X = i - * - * =
there is an xj 0, and if o + Acg u*a, > Cj u aj, then xj 1
will be preferred to X, = 1 in (4). 1In this case, (x*,s*) is no longer

optimal in the Lagrangean and the optimality conditions are destroyed.[l

The inequality (10) can be a gross overstatement of when (x%*,s%)
ceases to be optimal in the Lagrangean. Systematic solution of
G(B;u*) for increasing values of cy is possible by the parametric

methods we discuss next.



13

A more general question about cost coefficient variation in the

IP problem (1) is the following

How does the optimal solution change as the objective
function ¢ varies in the interval [co,cl]?

Parametric IP analysis of this type has been studied by Nauss [15],
but without the IP duality theery, and by the author in [21] in the
context of multicriterion IP. We give some of the relevant results
here. The work required to do parametric IP analysis is greater than
the sensitivity analysis described above which is effectively marginal
analysis.

For 6 € [0,1] define the function

v(8) = min((l—e)cO + Scl)x

Ax + Is = b
x, = 0or 1
J
8y = 0’1’2""’Ui'

It 18 easy to show that v(0) is a piecewise linear concave function of
8. The IP dual objective function can be used to approximate v(6) from
below. Specifically, suppose (11) is solved by the IP dual at 6 = 0

and we consider increasing it. From (7), we have

B 0 1.t
w(8) = min z ((1-8)c™ + B )x W,

t=1
I t t
s.t Y (Ax~ + Is )w_ =b (12)
t=1
)
w =1
t=1 ©
w: >0
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where w (0) is also a plecewise linear concave function of 6, and
w(0) = v(0) because we assume an IP dual has been constructed which
solves the primal. Without loss of generality, assume (xl,sl) is the

optimal IP solution for 6 = 0. Then, w, = 1, w_= 0, t > 1 is the

1

optimal solution in the LP (12), and we can do parametric variation

t

of 6 >0 to find the maximal value, say 6%, such that v(8) = w(8) for
all 6 € [0,6%]. The difficulty is that the number of columns in (12)
is enormous. For this purpose, generalized linear programming can be
used to generate columns as needed for the parametric analysis.

Included is the possibility that when w, = 1, w

1

non-optimal, another feasible IP solution will become the optimal

e = 0, t > 1, becomes
solution in (12).

When a sufficilently large 6 is reached such that v(8) - w(8) > O,
then we can use the iterative IP dual analysis described in section two
to strengthen the dual and ultimately eliminate the gap. Numerical
excesses may make this impractical. However, any IP dual can be used
to reduce the Work of branch and bound in the parametric analysis of
the interval [co,cl] being studied. These IP duals give stronger lower

bounds than the LP and related lower bounds used in [15].
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4. Sensitivity Analysis of Right Hand Side Coefficients

This is a rich area of research which needs continuing investi-
gation, Nevertheless, we can report on some results already obtained.
Again we suppose that the IP duality theory has yielded an IP dual
problem for which the optimality conditions hold for (x*,s*) ¢ Y,

u* ¢ R'. As in LP, constraint i is not binding if ui* = 0. Specifi-

cally, it can easily be shown that x* is optimal in IP(1) with the

n n
right hand side bi equal to any of the numbers zaijxj*’ z aijxj* +
n j=1 j=1
1,..., z aijxj* + Ui’ for any row i with ui* = 0. The optimal value
j=1 - n
of the slack variable on such a row is b, - Z a,.x. %,
i j=1 1373

To study further the effects of varying b, we define the

perturbation function for b in a finite set B

v(b) = min cx

s.t. Ax+ Is =b
(13)

»
I}
o
R

n
1
o
-
'—A
-
[
.
=

Attention is limited to a finite set rather than all integer vectors
in R© because a finite set is more likely to be the type of interest,
and also because it avoids troublesome technical difficulties. For

a finite set of integer right hand sides, universal upper bounds on
the slacks can be found and used. The function v(b) is poorly behaved,
except for the property that b' > b implies v(b') < v(b), which makes

it difficult to study. Note also that v is defined only on the integers
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and it is not differentiable, unlike perturbation functions in nonlinear
programming.

For each right hand side b ¢ B, the finitely convergent duality
theary given in [3] produces an IP dual problem which solves (13) by
establishing the optimality conditions. These IP duals are related
but specific results about their relationship are difficult to obtain.
Instead, we consider the IP dual which solves (13) with the given right
hand side bo, aﬁd investigate its properties with respect to the other
b € B.

Let g denote the group usgd in the construction of the IP dual
solving (13) with b = bo. This group induces a family of G related
dual problems defined on each of the G equivalence classes of right

hand sides S For b € Sgs we have

0?51+ 251"

w (b) = max LU(U)
14
s.t. u € Rp, (14
where
Lc(u) = ub + G(oju).

By assumption

v(bo) = cx* = WBO(bO) = LBO(u*),

where Bo = ¢(b0). The solution of problem {4) for all right hand
sides o gives us optimal solutions to a number of other IP problems
(13). Let (x(c¢),s(0)) denote the optimal solution to (4) with right

hand side o when u = u*. It is easy to show by direct appeal to the

G
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optimality conditions that (x(¢),s(c)) is optimal in (13) with

n
b, = Z a, ,x,(0) + s,(06), 1=1,...,m Moreover, for i such that
i j=1 ij 3 i
ui* = 0, x(0) and the corresponding slack values are optimal in (13)
with
n n
b, = ) a,x (0),..., ) a,x (o) +U,.
i 3=1 ij ] j=1 ij 3 i

Thus, we may immediately have optimal solutions to some of the IP
problems (13) for b ¢ B, In addition, x(o) is a feasible but possibly
non-optimal solution in (13) with b € B if Ax(c) < b and

n
by - jzlaijxj(o) € {O,l,...,Ui}.

Note, however, that not all constraints of an IP problem can
be allowed to vary parametrically. For example, a constraint of
the form X1 + xlz_j 1 indicating that project 1 can be started in
period 1 or period 2, but not both, makes no sense when extended to
the constraint X1q + X9 < 2. Some constraints of this type can be
included in the Lagrangean calculation.

Marsten and Morin [14] have devised schemes for parametric analysis of
the right hand side of IP problems. The duality results here can be integrated
with their approach to provide tighter lower bounds for the branch
and bound procedure. They consider b to be a real vector and observe
jumps in the function v(b). The selection of integer data for A and
b in effect limits attention to the paints where v(b) might change

value.
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5. Sensitivity Analysis of Matrix Coefficients

This analysis is similar to the cost coefficient analysis since
the dual approach is to convert constraints to costs. The question
we address is:

In what range of values can a coefficient ai vary without

L

changing the value of the zero-one variables X, in the

optimal solution (x*,s%)?

As before, the answer to this question is easier if xl* = 0.

Theorem 4: Let (x*,s*) and u* denote optimal solutions to the primal
and dual IP problems, respectively, satisfying the optimality conditions.

Suppose the zero-one variable XQ* = 0 and we consider varying the

coefficient a to + Aai2 where Aa

18 % 34y
) satisfies

ie is integer. Then x* remains

optimal if da

-u *ta, ) > min{0,G(B;u*) ~ (c,-u*a,) - G(B-a,-Aa

1 %49 u*) }

12543

There is no restriction on Aaiz if ui* = 0.

Proof: The proof is identical to the proof of Theorem 2. The change
Aail causes the change —ui*Aai£ in the cost coefficient analggous to

the change Acg‘in Theorem 2, and the group identity of a, is changed

|

L

to ax + Aaizei'

A result similar to Theorem 3 for the case when xl* = 1 can be

obtained. We omit further details. A more general type of IP matrix

coefficient variation is the problem of IP column generation. Such a

(15)
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problem would arise, for example, if there were a subproblem to be
solved whose solution provided a candidate column a with cost coeffi-
cient ¢ to be added to IP(1l). A construction to do this using the

IP duality theory appears possible but will not be developed here.

6. Conclusions

We have presented some results for performing IP sensitivity
analyses using IP duality theory. More research into these methods
is needed, particularly a more extensive study of the family of IP
dual problems which result as the right hand side in (1) is varied.
Computational experience with these methods, in conjunction with branch
and bound, is crucial and will suggest important areas of research. We
mention that the work of Burdet and Johnson [5] appears to provide uw
analytic formalism for combining duality and branch and bound. Finally,
the IP duality theory has been extended to mixed IP in [20] indicating
that the results here can be readily extended to sensitivity analysis

for mixed IP.
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