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LIST OF SYMBOLS

a planetary

cp specific heat at constant pressure

g gravity

h vertical length scale

i

j index for vertical grid

k horizontal length scale
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n degree of spherical harmonic

P hydrodynamic pressure

t time
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x eastward Cartesian coordinate

y northward Cartesian coordinate

z vertical (upward) coordinate

n 4 W -,

G thermal forcing parameter = AT
T,

H cos
n

L( ) meridional derivative operator = cos 4 a

Lm( ) mth Fourier component of L



M truncation wavenumber

P complex amplitude of eddy pressure

Pm normalized associated Legendre polynomial

Pr Prandtl number

Q dimensionless magnitude of the heat flux boundary

condition

R gas constant

S weighting function for stretched vertical coordinate

T complex amplitude of eddy potential temperature

T reference value of (potential) temperature

U u coso, relative angular momentum

V v cosf

V horizontal velocity vector = (u, v)

Ym surface spherical harmonicn

2W2  momentum frequency parameter = __

Sv

vertical component of relative vorticity

2 2 thermal frequency parameter =

e deviation of potential temperature from reference

value

KV vertical thermal diffusivity

kH horizontal thermal diffusivity



N longitude

Ssin 4

%V vertical kinematic viscosity

%H horizontal kinematic viscosity

stretched vertical coordinate

Pi

Ro reference density

Siteration variable

DIFF diffusion time constant

latitude

velocity potential

streamfunction

dry adiabatic lapse rate =

Z ( ) top to bottom contrast of ()

( ) equator to pole contrast of ()

pressure scale

4Z vertical grid length

AT temperature scale

a stretched vertical grid length

Froude number = % / 2

frequency of the heat source = ku

V7 two-dimensional del operator

() zonal mean of ( ), = I4,,

( )' deviation from zonal mean



[ ( transform operator = ( ) C

()3 horizontal mean of (), =)

(o> global mean of ( ) , = C( d
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A STUDY OF THE MOVING FLAME EFFECT IN THREE DIMENSIONS
AND ITS IMPLICATIONS FOR THE GENERAL CIRCULATIONOF THE

UPPER ATMOSPHERE OF VENUS

by

STEPHEN BRENNER

Submitted to the Department of Meteorology and Physical
Oceanography on October 28, 1981 in partial fulfillment

of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

Schubert and Whitehead (1969) suggested that the moving
flame effect could possibly explain the rapid retrogrademean
zonal flow in the Venus stratosphere because of the relatively
slow overhead diurnal motion of the sun. This mechanism is
investigated by developing to Foussinesq models with heating
supplied as a longitudinally moving periodic heat flux bound-
ary condition at the bottom. Foth models are three dimensional
so as to allow comparable diurnal and meridional heating
contrasts.

The first model is a linearized model derived in Cartesian
coordinates. The mean meridional circulation '1MC) driven by
the mean meridional heating contrast consists of a Hadley cell.
The diurnal motion of the heat source produces tilted eddy
convection cells which transport retrograde momentum upward
and therefore provide a retrograde mean acceleration of the
upper layers of the model. The maximum retrograde mean zonal
flow occurs at the latitude of maximum cooling. All of the
horizontal velocity components are at most of the same order
of magnitude as the phase speed of the heat source.

The second model is nonlinear and derived in spherical
coordinates. This model also produces a retrograde mean zonal
flow with maximum velocities occurring at the top near the
equator. Once again all horizontal velocity components are
at most the same order of magnitude as the phase speed of the
heat source. It is shown that to obtain meaningful results,
a minimum spectral truncation of M= 6 is required. From
these results it appears unlikely that the moving flame mech-
anism alone can consistently explain all of the observed
features of the circulation of the Venus stratosphere.

Thesis Supervisor: Peter H. Stone

Title: Professor of Meteorology



CHAPTER 1

INTRODUCTION

1.1 The Moving Flame Effect

The concept of fluid motion induced by a moving,

periodic heat source is not new to the science of meteorology.

Halley (1686) proposed this mechanism in an attempt to ex-

plain the existence of the very steady easterly trade winds.

According to his theory, the zonal wind would follow the

dirnal motion of the sun. Thompson (1892) agreed that a

zonal velocity could develop as a result of thermal forcing

due to the relative solar motion, but he was not convinced

as to the direction of such a flow. To check the validity

of Halley's theory, Thompson suggested a simple experiment

in which a heat source would be rotated beneath a pan of

water and the resulting motions studied. It was not until

some 67 years later than Fultz et al. (1959) carried out

such a study. They conducted a series of laboratory experi-

ments, using a cylindrical container of water with various

heat source arrangements, aimed at simulating various features

of the general circulation of the earth's atmosphere. The

so-called "moving flame" experiments were actually conducted

as will experiments merely to determine what effects, if any,

the motion of the heat source might have on their other

results. In the course of this investigation, they found a

general tendency to develop a weak retrograde mean zonal



flow at the top surface of the water. By retrograde we

mean that the fluid flow is in a direction opposite to that

of the heat source motion. Fluid flow in the same direction

as the heat source motion will be referred to as prograde.

The results of Fultz, et al. will be discussed in more

detail in section 1.2.

To understand the underlying physics of this process,

we begin by considering the simple descriptive model illu-

strated in Figure 1.1. We assume a channel of infinite

horizontal extent bounded above andbelowby rigid plates

with heating applied at the boundaries (as indicated in the

diagram) in the form of a periodic source moving to the

right. The motion of the heat source will induce a thermal

wave in the fluid and this in turn will drive convection

cells. Figure l.la shows the case of heating from below.

The induced thermal wave and resulting convection cells will

tilt upward to the left due to the finite thermal diffusion.

Reynolds stresses (velocity component correlations) arising

from such a pattern will act to transport leftward or

retrograde momentum upward thereby driving a retrograde mean

zonal flow. For heating from above (Figure l.lb) the iso-

therms and convection cells tilt upward to the right result-

ing in a prograde mean zonal velocity. In addition, there

will be phase shifts among the source, the thermal wave, and

the velocity wave components which will also contribute to

the Reynolds stresses.
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In all previously published studies of the moving

flame effect, the behavior of the flow has been discussed in

terms of certain dimensionless parameters. To facilitate a

comparison between our results and the results of others,

we will use the following three dimensionless numbers: a

thermal forcing parameter, G = gh A a thermal frequency
u2 To a thermal frequency

2 h 2  uo o
parameter, 2 - , which is the ratio of the vertical

heat diffusion time scale to the heat source time scale

(i.e. a solar day), and the Prandtl number, Pr = Y (this

introduces the alternative momentum frequency parameter

2 Onh2  2n2
2- Pr ) . A detailed derivation of the appropriate

equations and the parameters mentioned above will be pre-

sented in Chapter 2 (also see list of symbols). Qualita-

tively we should expect the strength of the mean flow to:

(a) increase with thermal forcing, (b) increase as the

Prandtl niumber decreases, since large Pr implies strong

momentum diffusion which will tend to eliminate any velocity

shears, and (c) reach a maximum for some intermediate value

of the frequency parameter, since a very large value (high

speed source) allows insufficient time for the fluid to

react to the heating contrasts while a small value implies

strong diffusion which will reduce temperature and velocity

contrasts. Before any further consideration of theoretical

aspects of the problem, we will briefly review the experi-

mental results.
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1.2 Laboratory Experiments

As was mentioned in the previous section, the first

moving flame experiments were carried out by Fultz, et al.

(1959) as part of their study of the general circulation of

the earth's atmosphere. Their apparatus consisted of a

cylindrical pan of water heated from below at the outer rim

by a rotating Bunsen burner. For varying values of the

dimension parameters (see Table 1.1) and for differing

initial conditions, their results were always the develop-

ments of a mean zonal flow in a direction opposed to the heat

source motion. The maximum observed velocities were at most

only a few percent of flame speed. The radial profile of the

zonal flow indicated a state of roughly constant absolute

angular momentum. Finally, the meridional circulation con-

sisted of a Hadley cell, but unfortunately, they neglected to

give any numerical values or any comparisons of the relative

intensities of the zonal and meridional flows. As a point

of interest, we mention that the Hadley cell appeared very

quickly, but the mean zonal flow required several flame

rotations (i.e. "solar days") to reach a steady state. The

fairly small observed magnitude of U/ is due to their selec-

tion of values of the dimensionless parameters, as discussed

in the previous section. Clearly their choices of weak

thermal forcing, G ,%0(1), high frequency, 2n2 ,0(10 3 ) , and

Pr % 5 would all contribute to limiting the strength of the

mean zonal velocity.



2 2
INVESTIGATOR G 2\ Pr 2 mAY

Fultz et al. (1959) 135 2.1 9900 6 1650 0.06 -0.05

Stern (1959) 49 0.5 1100 4.1 270 0.02 -0.01

Schubert and 5
hitehead (1969) 1.47 x 10 7400 0.35 0.027 13 0.02 -4.0

Whitehead (1972) 6.5 x 104 9100 0.52 0.027 19 0.02 -4.5

Douglas et al. 4
(1972) 6.4 x 10 1400 5500 14 460 0.27 -0.5

Venus 2750 0(10 ) 0(1) - 0(.1) - 0(1) - 0.01 -25
0(10) 0(1) 0(100)

TABLE 1.1: Values of the dimensionless parameters
for various laboratory experiments and
for Venus. All values of L- are retro-
grade.

*These values are uncertain; see discussion in Appendix B.

uo



Stern (1959) also conducted some moving flame experi-

ments using a circular annulus filled with water and heated

from below. The goal was to eliminate radial (i.e. meridion-

al) convection and to see if a retrograde mean zonal flow

would develop in the case of two-dimensional channel flow

forced by the motion of the heat source. He observed a

retrograte rotation of the water but with maximum speeds of

only 0.1 to 1.0 percent of the flame speed. Unfortunately

he did not give any details as to the parameter range of

his experiments.

Schubert and Whitehead (1969) carried out a series of

moving flame experiments using a circular annulus filled with

liquid mercury instead of water. The main purpose of their

study was to examine the moving flame response of a fluid

with a small Prandtl number. In the course of their in-

vestigation, they observed retrograde mean zonal velocities

that were up to four times as large as the heat source

speed. The development of a mean flow that was two to three

orders of magnitude larger than previously observed in the

water experiments is consistent with their choice of ex-

tremely strong thermal forcing, very small Prandtl number,

and a thermal frequency of order one. A comparison of the

parameter values and the resulting u for the various water

and mercury experiments is given in Table 1.1. Based on

these results, it was then suggested that the moving flame

mechanism might explain the existence of the relatively

1 . ^-1i.i-.-3-~~--~ -411CI*
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rapid retrograde zonal winds in the upper atmosphere of

Venus. This would be especially true if radiative transfer

is the dominant method of heat transport since in that case,

one would expect the effective Prandtl number to be smaller

than unity.

Whitehead (1972) repeated and refined the mercury ex-

periments for a wide range of values of the thermal forcing

parameter, G. However, he was still limited to thermal

frequencies less than one. Once again, he observed retro-

grade zonal velocities that increased in magnitude with the

thermal forcing. The maximum speed attained by the fluid

was more than four times the speed of the heat source. Based

on a linearized analysis of the problem, he concluded that

surface tension effects, rather than bouyancy induced

Reynold's stresses, were responsible for the retrograde flow.

He also pointed out that the phase lag of the velocity field

(i.e., tilted convection) resulting from either surface

tension or bouyancy is qualitatively the same. In his par-

ticular apparatus, the surface tension appeared to be the

dominant tilting mechanism.

Douglas, et al. (1972) conducted a series of experiments

using a relatively deep annulus filled with water and driven

by internal (electrical) heating. By deep we mean that the

aspect ratio of their apparatus was much larger than any of

the others (see Table 1.1). The heating was supplied by

passing an electrical current through the fluid. The inner



electrode consisted of the copper wall of the inner cylinder

while the outer electrode consisted of several equally spaced

vertical tapes connected to a switching network. Each tape

was periodically activated by a rotating cam in the switching

system. The low resistance of the tapes allowed for a poten-

tial difference (heating) that was uniform with height.

This arrangement was chosen in an attempt to imitate the

strong thermal diffusive properties of a low Prandtl number

fluid such as mercury. As expected, they observed a retro-

grade mean zonal flow with velocities that increased with

thermal forcing. In addition, they noted that the maximum

mean zonal velocity occurred when the eddy velocities were

approximately equal to the speed of the heat source. In

this case, the maximum retrograde u was typically one-third

to one-half the speed of the heat source.

1.3 Theoretical Studies

Over the past two decades, quite a few theoretical

studies of the moving flame effect have appeared in the

literature. All but two of these followed the experiments

of Schubert and Whitehead (1969) and consequently, most of

them considered the possible role of the moving flame in

driving the four day circulation on Venus. Both linear and

nonlinear models have been presented and all have been two-

dimensional. As will be indicated in Chapter 2, it becomes

convenient to consider the various quantities (temperature,



velocity, etc.) as the sum of a zonal mean part, indicated

by an overbar (), plus a eddy or perturbation part, indicated

by a prime (').

1.3.1 Linear Models

In a linear model, it is assumed that the dimensionless

variables are of at most order one. It is further assumed

that mean quantities are smaller than wave quantities and

therefore all mean flow self interactions and wave-mean flow

interaction can be neglected. Also, in the wave equations,

all wave self interactions are neglected.

The first theoretical analysis of the moving flame

effect was the linear model presented by Stern (1959), used

to explain his experimental results. He considered a two-

dimensional, Boussuesq fluid, with small aspect ratio bounded

above and below by rigid, no slip surfaces. Heating was

supplied as a sinusoidal temperature wave moving with uniform

speed at both boundaries. The fluid was also assumed to

have infinite thermal conductivity in the vertical (Pr + 0)

so that the induced thermal wave is independent of height.

In the limit of very large values of the frequency parameter,

2y2 >> 1, he found that the vertically averaged mean zonal

velocity was retrograde and given by

u_ 1 2 1/2 2 2 2
u 41 ( 2y2)1/2 G , 2y >> 1 (2n + 0)
u 48
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where the second overbar indicates a vertical average. When

applied to his own experiments, this expression yielded a

value of - 0.1 which is one to two orders of magnitude
UO -

larger than actually observed. The main reason for this

discrepancy was the unrealistic assumption of Pr = 0 (see

Table 1.1).

Davey (1967) reconsidered Stern's problem, but relaxed

the assumption of zero Prandtl number. The thermal forcing

was appliedasa sinusoidal temperature wave at both horizontal,

rigid boundaries. For very large values of both frequency

parameters, 22 , 2y2 >> 1, the vertically averaged mean

zonal velocity was retrograde and given by

u G2  1
u 4Pr(1+Pr) 2n2

3 P r 2 + pr3/2 + 10Pr + Pr I / 2 + 3 1 1

/2(l+Prl/ 2 ) (l+Pr) (2n2) 1/2 2n 2

2n2 , 2y 2 >> 1

He also solved the linear problem with heating applied as a

temperature wave at the lower rigid, no slip boundary and

with a free insulating upper boundary. In this case, the

high frequency solution was the same as the rigid-rigid

solution but with an extra term in the square brackets



2' _

Pr 1 A

2(l+Pr 1 2 ) (2n2 ) 2 A-i

This corresponds to retrograde flow as long as the Fronde

number, A, is not too close to one. When A = 1, resonance

occurs at the free boundary in which case surface gravity

wave that move at the heat source speed will be generated.

The forcing of the mean flow will then be dominated by the

gravity waves and not the Reynolds stresses.

Schubert and Young (1970) also approached the problem

with a two-dimensional, Bonssinesq model with infinite ther-

mal conductivity (Pr + 0). To solve the equations, they

also considered the limiting cases of very large and very

small values of the frequency parameter, 2 , and then

determined the first and second order terms in an assymptotic

series expansion of the eddy velocity components. Their

discussion then focused upon the Reynolds stresses that arise

from interactions between the first order and second order

terms (what they refer to as primary and secondary flows,

respectively). For the temperature boundary conditions, the

mean zonal velocity varied as

G2 (2y2 ) 1 / 2  2y2 4 L 1

( 10

G2 (2y2) 2 2y 2 >- 1



They then pointed out that for the more realistic problem of

heat flux boundary conditions, the frequency parameter

dependence changes to

u G2 (2y2) -2  2y 2 >> 1u

which implies a very different behavior for the two types of

heating. By comparing the relevant parameters for the ter-

restrial and major planets, they found that the value of G

for Venus was at least four orders of magnitude larger than

the others, thus indicating that Venus is the most likely

planet to exhibit any significant response to a moving flame

type of thermal forcing. The frequency parameter for Venus

was estimated to be 2y2 " 0(100) which would therefore

classify Venus as a "high frequency" case. The values for

the other planets were estimated to be at least two orders

of magnitude larger so that when compared to the others, Venus

is at the lower end of the high frequency range. If we

2 -2
consider this in view of the variation of u " (2y-2 for the

heat flux boundary conditions, then we once again see that

Venus is the most likely planet to develop a retrograde mean

zonal flow in response to the motion of the sun (i.e., a

moving periodic heat source).

Malkus (1970) solved the linear Boussinesq equations

with a rigid, no slip, insulating bottom and a flat, stress



free lid with heating from above specified as a heat flux

boundary condition. In the limits of large and small fre-

quency values, he found a retrograde mean zonal flow at the

top given by

4 1 llPr + 91 2 2 2 2 2
1 -i [4 G (2n ) 2n, 2y << 1

6 Pr 175
u = (1+Pr)
uo 1 1 1 Pr G2  2 -2 2 2

Pr 2 [  + 1/22 G (2 ) 2 , 2y >> 1.(l+Pr 1 / 2 )

Although the parameter dependences are correct, the direction

of the flow is incorrect due to a sign error in one of his

equations. Recalling our simple qualitative model further

confirms the directional error since we predicted that

heating from above would force a prograde zonal flow. Based

on his solution, he then used the Oseen approximation to find

-i
a maximum zonal velocity of magnitude 42 ms + 100%.

Schubert, Young, and Hirch (1971) reconsidered Malkus'

problem (no slip bottom, stress free top, heating fromabove)

and the dependence of the mean zonal flow on heat flux

versus temperature boundary conditions. In the limit of both

frequency parameters being small (22 , 2y2 << 1) it was found

that the direction of the mean zonal velocity at the top

and the direction of the vertically averaged mean zonal

velocity depended upon the value of Pr. For values greater

than the "critical" Prandtl number, Prc , the flow was pro-

grade while for Pr < Prc the flow was retrograde. This
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occurred for both temperature and heat flux boundary condi-

tions, and the critical value was always between 0.1 and 0.3.

In the limit of large frequencies (22 , 2y2 >> 1) the mean

flow was always prograde. They also considered the limit of

large momentum frequency 2y2 >> 1 with small Prandtl number

so that 2n2 << 1 (they indicate this case as (2y 2 )-1 / 2 ,

2n2 << 1) and again found a direction reversal depending on

the Prandtl number for both temperature and heat flux boun-

dary conditions. The explanation for this behavior is that

heating from above will tend to tilt the isotherm and convec-

tion cells in a prograde sense (Figure 1.1) while momentum

diffusion from a lower no slip boundary wall cause a phase

lag of the streamfunction in the interior so as to transport

retrograde momentum upward. The relative importance of these

two effects is indicated by the Prandtl number which is the

ratio of the kinematic viscosity to the thermal diffusivity

(Pr = /k ). For small values of Pr, heat will be well

diffused and the thermal tilting effect will be minimal so

that momentum diffusion becomes the dominant process in

determining the retrograde direction of the mean flow. For

large values of Pr, the opposite is true, so that thermal

tilting is the major factor in determining the prograde

sense of the mean zonal velocity. In the latter limit of

their problem ((2y 2 )-1/2 , 2P2 << 1) the critical Prandtl

number varied as (2y2 -3/2 so that extremely large values of

the momentum frequency will correspond to regrograde flow



22)

only if the Prandtl number goes to zero. As an example of

results, for 2y2 = 100 the critical Prandtl number is

Pr = 0.025.

Stern (1971) analyzed the effects of rotation and sta-

tic stability in the moving flame effect in a cylindrical,

radially unbounded fluid. In his model, a Boussenesq fluid

with constant static stability (s) is initially at rest in

a coordinate frame which rotates with angular velocity f/2.

This state is then perturbed by an arbitrary distribution

of heat sources and sinks which propagate azimuthally with

frequency 2. He found that Q-directed (prograde) angular

momentum is pumped to the far field (infinite radius from

the axis of rotation) if the quantity (2 -f2)/(gs- 2) is

positive, and as a result, the fluid near the radius of the

heat sources experiences a compensating torque which forces

it to rotate in a retrograde sense. Accordingly, retrograde

zonal flows could be generated in the case of rapid rotation

(f2> 2>gs) or in the case of strong stratification (gs>2>f 2 ).

Upon reviewing all of the above linear solutions, we

discover some interesting properties of the problem. We find

that within the context of linear theory, the motion of the

heat source is able to force a retrograde mean zonal flow

under various conditions. Furthermore, the mean zonal velo-

city increases with the thermal forcing, varying as G 2, and

it increases as the Prandtl number becomes small. Both of

these results were qualitatively predicted by the simple
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descriptive model illustrated in Figure 1.1. The dependence

of u upon the frequency parameters is not quite as simple

and obvious. This relationship is a function of the limit

of frequency (large or small) and it also varies with the

choice of thermal forcing -- i.e. temperature versus heat

flux boundary conditions. As an example of this behavior we

recall that for large values of momentum and thermal fre-

quency (2y2,2n2>>1) with heat flux boundary conditions, the

dependence is u (2y2)- 2 , while for large momentum frequency

and small thermal frequency (2y2>>l with Pr-+0) the dependence

is u C (2y 2 )1/2 . One of the questions that is not answered

by the previous linear solutions is what type of behavior

does the mean flow exhibit in the transition from low to

high frequency values. This problem will be addressed in

Chapter 2 where we present some complete analytical-numerical

solutions which are valid for all frequency values.

1.3.2 Nonlinear Models

Several nonlinear solutions have already appeared in

the literature. Some have dealt with the moving flame ef-

fect in general while others have been specifically concerned

only with Venus. For simplicity, we will review both types

in this section in chronological order of publication.

In their report of experimental results using liquid

mercury, Schubert and Whitehead (1969) presented some numeri-

cal solutions of the two-dimensional, Boussinesq, mean field
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equations subjected to temperature boundary conditions.

In the mean field approximation, it is assumed that the zon-

ally averaged variables are larger than the wave amplitudes

and thus the wave-mean flow interactions are retained but

the wave-wave interactions are neglected in the eddy equa-

tions. For fixed values of the thermal forcing parameter

and the thermal frequency parameter they found that u/uo was

proportional to (Pr)- 15/ 4 for Prandtl numbers between 1 and

0.1, and u/u 0 0(l) for Pr O 0(.1). Schubert (1969) also

solved the mean field equations with rigid no slip boundaries

and temperature boundary conditions except he considered the

case of Pr = 0. He found the strongest retrograde mean

zonal velocity to be at the center of the channel and that

2 2u/u = 1 for 2y = 16. For 2y between 10 and 16, the

dependence of the centerline flow was u/u = 7.5 exp

[-32/2y2 , and based on this relationship, he attempted to

extrapolate to larger values of the frequency. Based on our

linearized calculations in Chapter 2, we seriously question

the validity and real physical meaning of this extrapolation.

We find that for the more realistic problem with heat flux

boundary conditions, u peaks for some intermediate value of

the frequency parameters and then weakens as the frequency

gets large.

Gierasch (1970) presented the first nonlinear model

designed specifically to study the role of the moving flame

effect in driving the four day circulation on Venus. The



major difference between his model and previous studies is

that he supplied thermal forcing as internal radiative

heating in place of forcing as a boundary condition. The

heating term in his thermodynamic equation contained a time

constant that decreased exponentially with height and this

would cause a prograde tilt in the isotherms, similar to

heating from above. The problem was then to find a mechanism

that could counteract this tilting and still produce the phase

lag between the convection cells and the forcing necessary to

drive a retrograde mean zonal flow. He accomplished this by

neglecting the viscosity terms in the perturbation and mean

zonal velocity equations based on scaling arguments. By

considering this inviscid situation, the Reynolds stress

term u'w' was effectively forced to be zero and therefore any

tilting in the isotherms and convection cells due to heating

must be eleminated by a mean zonal flow which advects heat in

a retrograde sense in the upper levels of the model. Conse-

quently in his steady state, inviscid solution, Gierasch

found that the convection cells and the isotherms had no tilt

and were exactly in phase, and the isotherms lagged behind the

thermal forcing by 820 at all levels. Since the isotherms

would tend to show a smaller phase lag at higher elevations

(i.e.,the radiative time constant decreases with height) and

therefore tilt, the mean zonal velocity must be retrograde

and increase with height in order to produce a steady state

with untilted isotherms. The main objection to this solution
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is that in general a flow with vanishingly small viscosity does

not necessarily converge to the inviscid solution (Stone, 1975).

Furthermore, this inviscid solution will be unstable to even

the slightest amount of viscosity since the introduction of

viscosity will allow a prograde tile in the convection cells

and this in turn would produce Reynolds stresses that would

act to destroy the retrograde mean zonal flow.

Thompson (1970) proposed an alternative nonlinear insta-

biliey mechanism by which the necessary Reynolds stresses could

be produced. The process brgins with steady state, untilted convec-

tion cells that have been produced by a stationary heat source (Fig.

1.2b) and if viscosity is not too large, then the mean zonal wind

will tilt the convection cells as illustrated in Figure 1.2c. This

will result in an upgradient transfer of zonal momentum by Rey-

nolds stresses thereby ampligying the mean zonal wind. The full

nonlinear equations for a two-dimensional Ibussinesq fluid were

solved numerically and the results indicated that a retrograde mean

zonal velocity of the correct order of magnitude could develop

through this mechanism. Thompson then suggests that the over-

head motion of the sun could supply the required initial mean

zonal wind and as the instability mechanism takes over, solar

motion becomes unimportant. It is not clear from his solutions

that the instability mechanism and the moving flame effect will

work together effectively since his heating function is equiva-

lent to heating from above and the motion of such a heat source would
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FIGURE 1.2 Nonlinear instability mechanism
proposed by Thompson (1970) (a) untilted
convection cells, (b) perturbation mean
zonal flow, (c) tilted cells due to u.
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tend to produce a prograde mean flow and not the required

initial retrograde flow. This is evidenced in his inability

to achieve any steady retrograde moving flame solutions.

Furthermore, even his steady state non-moving flame results

are inconclusive because the vertical grid in the model is

too coarse to properly resolve the horizontal boundary layers

(Stone, 1975). For example, his choice of frequency param-

2 2
eter values 2n2 = 2y = 100 implies a dimensionless boundary

-i
layer thickness of 0(10-1 ) while his first grid point is at

a dimensionless height of 0.1 which is roughly the top of the

boundary layer.

Hinch and Schubert (1971) considered the same problem

as Schubert (1969), i.e., the mean field equations for a

Boussinesq fluid with Pr = 0 and with heating specified as

temperature boundary conditions. By using the method of

matched asymptotic expansion, they also found that strong

retrograde flow would be possible only in the limit of large

values of the momentum frequency parameter, 2y2 >> 1. In

fact, their mean field solution predicted exactly the same

behavior as the linear solution considered by Schubert and

Young (1970), i.e.,

U G2 (2y 2) /22y >> 1
0



Once again we contrast this solution to the solution with heat

flux boundary conditions which in the high frequency limit pre-

dicts a decrease in u as the frequency parameter increases. For

the stratosphere of Venus, the frequency parameters appear to

be within the intermediate range of values (i.e., 0 (1) - 0 (10)),

or at most at the low end of the high frequency range. There-

fore the temperature boundary conditions can only force a strong

zonal flow for frequency values that are irrelevant to Venus.

Consequently, any further attempts at simulating the roleof the

moving flame effect in driving the four day circulation should

incorporate the more realistic heat flux boundary conditions.

Young, Schubert, and Torrance (1972) presented some numer-

ical solutions of the full nonlinear equations for a Boussinesq

fluid. They considered the effects of varying parameter values

and dynamical boundary conditions by solving the equations for

various situations and were able to produce only weak retro-

grade mean zonal velocities. In all of the cases, the depen-

dence of u on the thermal forcing was rather close to the G

behavior predicted by linear theory. The sets of boundary con-

ditions they used were both boundaries rigid and no slip sub-

jected to the same temperature wave; both boundaries rigid and

stress free subjected to the same temperature wave; a no slip,

isothermal bottom and a stress free top subjected to a temper-

ature wave. For the two symmetric cases, the maximum retro-

grade mean zonal velocity occurred at the channel center

.D~g- -J~'~U~IIIIIIirr
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with the rigid-rigid flow being roughly three times as strong

as the free-free flow. This is due to the fact that in the

free-free case, the fluid cannot acquire any net momentum if

there is none initially and thus the retrograde flow at the

channel center must be balanced by an equal amount of pro-

grade flow at the edges. In the rigid-rigid case, however,

the flow is retrograde at all levels, except at the boundaries

where u = 0. It is clear that in both of these cases, the

symmetric heating causes a tilt that supports retrograde

momentum transport towards the channel center. Both sym-

metric solutions were fairly insensitive to the value of the

Prandtl number. The free-rigid case exhibited the same

Prandtl number dependence as in the linear problem consider-

ed by Schubert, Young, and Hinch (1971). In this case, the

direction of the mean zonal velocity was found to be retro-

grade for Pr less than the critical value, Prc, and prograde

for Pr greater than Prc as explained above. The maximum

value of u showed a weak increase as the momentum frequency

parameter was increased from 10 to 50. This behavior is

undoubtedly due to the use of temperature boundary conditions

rather than heat flux forcing. Unfortunately they did not

perform any computations for the more realistic problem with

heat flux boundary conditions. In all of the cases they

considered, the maximum horizontal eddy velocity, lu' maxmax

turned out to be larger than the mean zonal velocity, u.

For G = 1 (i.e., weak forcing), lu max was typically two ormax
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three orders of magnitude larger than lu maxi. For

G = 100, the difference was only one order of magnitude with

u max/uol = 1.

Young and Schubert (1973) numerically solved the two-

dimensional, mean field equations subjected to thermal forc-

ing in the form of internal radiative heating. The main

difference between their model and the one used by Gierasch

(1970) was that viscosity was included in their momentum

equation. Once again, the structure of their thermal forcing

is equivalent to heating from above and consequently, they

must rely on some other process to reverse the tilt of the

isotherms and convection cells. It appears from their calcu-

lations that a strong stratification is able to accomplish

the necessary tilt reversal. The numerical marching consist-

ed of starting at small values of the Fronde number, , and

iterating to larger values. Unfortunately, the method failed

to converge when reached values between 200 and 300 (the

appropriate value for Venus is 3000); nevertheless, they

were able to produce retrograde mean zonal velocities that

were ten to fifteen times faster than the overhead speed of

the sun. In addition to the numerical problems, there are

several assumptions made in their model which may seriously

affect the results. First, and most important, is the way

they handled the net stratification and the mean temperature

of the atmosphere. One inconsistency, which they recognized,

was the assumption that the mean temperature, T, is equal to
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the constant background temperature while in the thermody-

namic equation they assumed a constant mean lapse rate of

=-40 C/km. By making these assumptions, they forced thedz

mean temperature structure to be independent of the dynamics

of the circulation, and thereby artificially forced true mean

state to remain statically stable. Furthermore, upon noting

the inconsistentcy between a constant mean temperature and

a constant non-zero lapse rate, they comment that "the only

place this discrepency is likely to be important is in the

net stratification term of" the thermodynamic equation; but

this positive static stability is precisely the process they

relied on to reverse the tilt of the isotherms. Furthermore,

while the positive net stratification may provide the required

tilt reversal, it will also tend to supress the intensity

of the convection and therefore limit the effectiveness of

the Reynolds stress momentum transport. The other question-

able assumption in their model, which may be partially re-

sponsible for the numerical difficulties, was the neglecting

of thermal diffusion. This is valid only if the thermal

4 2 -1
diffusivity is less than 10 cm S - . Prinn (1974) has shown

that the eddy diffusion coefficients above the visible cloud

5 2 -1deck may be as large as 2 x 10 cm S . Such a value would

make thermal diffusion at least as effective as radiative

heating in vertically transporting heat. It could also force

the development of a significant thermal boundary layer.
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1.4 Venus

While Venus and the planet Earth differ only slightly

in size and in magnitude of thermal forcing in the form of

net absorbed solar radiation, the other physical parameters

that determine the general circulation of these atmospheres

show quite a large contrast (see Table 1.2). The very long

Venus rotation period of 243 days leads one to expect that

Coriolis forces will be relatively unimportant in shaping

the atmospheric motions. Consequently, approximations such

as quasigeostraphic flow do not apply, and the balance in the

equations of motion will be primarily among the non linear

terms. Since Venus' axis of rotation is very close to being

perpendicular to its orbital plane, seasonal variations and

their effects on the state of the atmosphere should also be

negligible.

Based on a time scale analysis (radiative, dynamical,

and length of a solar day), Stone (1975) divided the atmo-

sphere of Venus into two distinct dynamical regimes. Below

an altitude of 56 km , and especially below 40 km, the radia-

tive time constant is longer than the length of a solar day

and thus diurnal effects will be relatively unimportant in

the lower atmosphere. The deep atmosphere will be driven

primarily by equator to pole temperature contrasts associated

with latitudinal variations in solar heating. The global

circulation should consist of a weak Hadley cell with rising

in equatorial regions and sinking in the polar regions. This



hypothesis is consistent with the observed near adiabatic

temperature structure (Figure 1.3). The high surface temper-

ature is most likely maintained by a strong greenhouse effect.

Above 56 km, the radiative time scale becomes less than

or equal to the length of a solar day, the lapse rate is sub-

adiabatic, and horizontal motions are very strong. At these

elevations, diurnal and latitudinal temperature contrasts are

comparable, and are both important in driving the observed

rapid zonal flow (i.e., the Four Day Circulation). For this

reason, three-dimensional modelling is necessary if we are to

understand the general circulation of the atmosphere of Venus.

At all elevations below 80 km the dynamical time scale

is shorter than both the radiative time constant and the

length of a solar day. Consequently we should expect ad-

vective processes (nonlinear terms) to play a major role in

determining the thermal structure of the entire atmosphere

(See Figure 1.4).

The latest data from the Pioneer Venus probes has con-

firmed the existence of several distinct cloud layers below

70 km. Knollenberg and Hunten (1979) have identified four

regions referred to as upper (68-58 km), middle (58-52 km),

and lower (52-48 km) clouds, and lower haze (48-31 km). Each

region contains particles of various sizes consisting of

mostly elemental sulfur and sulfuric acid droplets (except

no sulfuric acid in the lower haze).
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1.4.1 Observational evidence for the 4-day circulation

During the past twenty years, the existence of the re-

trograde superotation of the upper atmosphere of Venus,

commonly referred to as the four day circulation, has been

confirmed through several independent methods of observation.

Dollfus (1975) has summarized the results of the many earth-

based ultraviolet images of Venus. These photographs show

the presence of several Y- or psi-shaped dark cloud features

with lifetimes of several weeks. These features move in a

retrograde direction and reoccur every four days. If in

fact this is an indication of fluid motion, then the wind
-1

speeds at the cloud tops must be on the order of 100 m s-

On the other hand, Young (1975) has shown that the motion

of these UV markings could also reflect the presence of

some type of wave phenomenon propagating with a phase

speed of 100 m s-1, and this motion is therefore not neces-

sarily indicative of high wind speeds. Consequently, addi-

tional and alternative observations would be necessary to

confirm the existence of the four day circulation. Murray

et al. (1974) also found these Y features in the Mariner 10

images of Venus. Because of the greater resolution of the

satellite photographs, they were also able to indentify

several small scale cloud features which also move with re-
-i

trograde speeds of about 100 m s . The general picture

painted by the Mariner 10 data indicated the presence of

strong retrograde zonal winds near the equator, increasing



in magnitude to a jet in mid-latitudes (possibly exhibiting

a conservation of angular momentum), and then decreasing

magnitude in high latitudes (solid body rotation). The

meridional component of the wind was much smaller and highly

variable.

Traub and Carleton (1975), also detected retrograde
-i

mean zonal winds of 83 m s-1 by analyzing spectroscopic ob-

servations of Doppler shifts of CO2 lines. The meridional

-lvelocities were found to be much weaker ( 30 m s - 1 ) than

the zonal flow. Further conclusions about the meridional

flow could not be drawn since the magnitude of the velocity

was comparable to the measurement uncertainties.

The other method available to measure wind velocities

involves atmospheric entry. The spacecraft is tracked

during its descent by means of measuring the Doppler shift

of a continuous radio signal that it transmits. From this

information, the horizontal component of the probe's drift

(presumably due to wind) can be determined. Using this

method with Venera 8 data, Marov et al. (1973) measured wind
-i

speeds as high as 100 m s . The strongest velocities were

found above an altitude of 50 km.

More recently, the Pioneer Venus spacecraft has con-

firmed the presence of strong zonal winds through UV cloud

photographs from the Oribiter and through radio tracking

of the entry probes. Rossow et al. (1980a) have presented

a detailed analysis of the UV cloud images for a three



month period. By tracking small scale features, they were

able to deduce a retrograde zonal flow with speeds of

roughly 100 m s-1 near the equator and decreasing in magni-

tude with increasing latitude. The latitudinal profile of

the zonal wind is very close to the theoretical profile of

solid body rotation (Fig 1.5). Furthermore, the mid-latitude

jet observed in the Mariner 10 photographs was not present,

thus suggesting a temporal change in the structure of the

four day circulation possibly due to some instability mechan-

ism. The meridional flow was poleward and weak with velo--l -i
cities of 2 m s-1 and 5 m s-1 in the southern and northern

hemispheres respectively. Counselman et al. (1979) have

presented preliminary results from the radio tracking of

two of the Pioneer Venus entry probes. The measurements

reveal fairly large retrograde zonal winds ( 50 m s-1) at

altitudes as low as 30 km, and velocities of up to 200 m s-1

near cloud top levels. This data tends to confirm the ori-

ginal hypothesis of a four day circulation as suggested by

the motion of cloud features observed in the various UV

images.

1.4.2 Other theoretical studies of the Venus atmos-
pheres

In addition to the moving flame studies discussed

above, there have been several other theoretical studies of

the atmosphere of Venus. These include a few general circu-

lation models and some investigations of other mechanisms
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that might drive the four day circulation.

Kalnty de Rivas (1973, 1975) presented some results

from a series of two-dimensional Boussinesq and quasi-

Boussinesq general circulation models. Because of the two-

dimensional nature of these studies, they are only valid

for the lower atmosphere (i.e., well below the cloud tops)

where diurnal heating contrasts are negligible. In general,

the flow consisted of a Hadley cell between the subsolar

and antisolar points in the nonrotating cases and between

the equator and pole in the rotating cases. The intensity,

vertical extent, and other smaller scale features of the

flow depended upon the choice of parameter values such as

eddy viscosity coefficients and total optical depth of the

atmosphere. Retrograde zonal velocities appeared only in

the rotating models as a result of the presence of a small

coriolis force. The maximum speeds attained were less

than 20 m s , and in most cases, the zonal flow consisted

of a polar jet confined to the top of the atmosphere. Un-

fortunately, these models could not be used to examine the

role of forcing mechanisms that are asymmetric in longitude.

The three-dimensional model that was described (Kalnay de

Rivas, 1975) has not yet been fully developed and tested.

Chalikov et al. (1975) reported on some three-

dimensional simulations of the lower atmosphere of Venus.

Their model was also incapable of producing a four day

circulation. Two of the major reasons for this are the very



limited vertical resolution (only two or three levels for

most runs), and the relatively low altitude of the upper

boundary (38 km). The maximum integration period was only

two solar days which is very short, especially for the lower

atmosphere.

The only other general circulation model for Venus

that is currently in use was developed by Pollack and Young

(1975). The rather large values of the vertical and hori-

5 2 -1zontal diffusion coefficients (4 x 10 cm s and 4 x 10"

cm2 s-1 respectively) and the relatively short integration

time (1.4 solar days) prevented the development of any

significant mean zonal velocities. In a more recent version

of their model (Young and Pollack, 1977), the diffusion terms

were modified in such a way as to provide damping that

increases according to roughly the fourth power of the wave-

number.** Consequently, this formulation applies very strong

dissipation to the shortest resolved scales, an effect which

is somewhat desirable since it helps in eliminating the

problem of energy cascade to the highest wavenumbers. How-

ever, in the Young and Pollack (YP) model the truncation

value of total wavenumber four means that a significant part

of their spectrum is subjected to extremely strong

**Ordinary viscosity can be expressed in terms of u while
Young and Pollack formulate diffusion as - 4u. In a spher-
ical harmonic exoansion, the Laplacian has the simple form
2Um = -n(n+l) Un where m is the order (zonal wavenumber)

and n is the degree of the harmonic, and thus viscosity
depends on n(n+l The Young-Pollack diffusion operater be-
comes -4Unm = -(~ 2 Um) = -[n(n+l)I 2 and therefore depends on
roughly n4. U
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dissipation. A simple calculation (Table 1.3) shows that

for truncation at wavenumber four, more than one half of the

retained modes are being subjected to Y-P dissipation which

is one order of magnitude larger than ordinary viscosity.

Because of this diffusion formulation, it is also not sur-

prising to find that their results are relatively insensi-

tive to a moderate increase in horizontal resolution (i.e.,

from wavenumber 4 to 6). The reason is that in the higher

resolution experiments, wavenumbers 3 and 4 are damped at

the same rate as in the lower resolution computations and

thus the presence of wavenumbers 5 and 6 (which experience

Zonal Wavenumber (m)
YP diffusion
Viscosity

-94Um
- n (n+l)

TABLE 1.3: Ratio of YP diffusion to ordinary viscos-
sity as a function of zonal wavenumber.
These ratios are the minimum values, since
for any fixed m, we have the relationship
n >Im.

n



even stronger dissipation) will be of little important. An

attractive alternative, which we will use in Chapter 3, is

to periodically apply a filter which can selectively elimi-

nate the shortest waves without adversely effecting the long

waves. Another difficulty with the YP model arises from
4u

the 4 form of the vertical diffusion and the required
8z

additional boundary conditions. Rossow et al. (1980b)

showed that spurious forces could be generated as a result

of an error made by YP in specifying the extra upper boun-

dary condition (for a full discussion of these problems,

the reader is referred to Rossow et al.(1980b), and Young

and Pollack, 1980). Nevertheless, under certain conditions,

the model was able to produce retrograde zonal winds as
-i

large as 90 m s-1 . On the basis of their computations,

Young and Pollack have tentatively indentified the driving

mechanism as a nonlinear instability involving the mean

meridional circulation and the planetary scale eddies.

Planetary rotation appears to be the source of the initial

retrograde flow necessary for the instability. We will pre-

sent a more detailed discussion of their results in Chapter

3 by comparing them to our nonlinear solutions.

'Several driving mechanisms for the four day circula-

tion other than the moving flame effect have also been pro-

posed. Thompson's (1970) nonlinear shear instability theory

has already been discussed above in section 1.3.2. Gold

and Soter (1971) considered the possible role of solar



thermal tides in driving the observed zonal winds. This

mechanism depends on the effect of the semidiurnal tide

on the atmospheric mass distribution. If the magnitude and

the phase lead of the induced wavenumber 2 mass wave are

within the proper range, then a net retrograde torque could

develop and accelerate the atmosphere in the correct direc-

tion. Unfortunately, neither of these quantities are known

for Venus. Furthermore, their computations of the required

torque are very sensitive to the value of the kinematic

viscosity, and in fact, the mechanism can only operate if

the diffusive momentum transport is molecular. For large

scale motions and turbulence, it is more likely that eddy

viscosity will be the dominant form of diffusion. In this

case, the appropriate values of the coefficients would

reduce the effectiveness of the tidal forcing by several

orders of magnitude.

Fels and Lindzen (1975) proposed another possible.

mechanism which involves vertical momentum transport by

thermally excited internal gravity waves in a vertically

semi-infinite atmosphere. They found that these waves will

carry prograde (i.e., direction of solar motion) momentum

away from the level at which solar heating occurs and thus

cause a net retrograde acceleration of that layer. The

prograde flow that develops ,in the adjacent layers will not

grow beyond the phase speed of the waves because of critical

layer absorption. As the shear increased, further wave



activity will produce turbulence and a tendency for the

critical layers to converge towards the level of maximum

retrograde velocity and therefore inhibit the further growth of

the retrograde flow. While this mechanism can account for a

significant amount of retrograde acceleration, it can gen-
-i

erate 100 m s winds only in the presence of an initial
-i

retrograde mean zonal flow of 25 m s-

The approach taken by Leovy (1973) and Gierasch (1975)

to explain the four day circulation is quite different

from the above mechanisms. They have considered the role

of meridional temperature contrasts rather than longitudinal

contrasts in maintaining the mean zonal flow. Leovy sug-

gested that the four day circulation represents cyclostrophic

balance between the meridional pressure gradient and centri-

fugal force. In Leovy's model, an initial latitudinal

temperature contrast would drive a Hadley cell. It is known

(e.g., Starr, 1968), that a Hadley cell on a slowly rota-

ting sphere will produce a mean zonal circulation in which

the zonal flow in the upper levels of the fluid will be in

the same direction as planetary rotation. For Venus, the

retrograde rotation is the source of the initial retrograde

zonal flow. The next stage in the development of the rapid

retrograde flow requires some alternative mechanism to con-

tinually accelerate the upper atmosphere. Unfortunately

Leovy skipped this part and proceeded directly to the equi-

librium flow. Since the mean zonal flow is now in
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cyclostropic balance, any small deviations that arise will

excite gravity waves as part of an adjustment process

(analogous to geostrophic adjustment). He then suggested

that these gravity waves would be similar to equatorial

Kelvin waves on earth and could therefore transport retro-

grade momentum upward. This would occur because Kelvin

waves provide an upward transport of momentum of the same

direction as atmospheric rotation, which in this case is

retrograde.

In an extension of Leovy's theory, Gierasch (1975)

showed that under certain conditions, the meridional Hadley

cell could supply the upward momentum flux necessary to

support the rapid rotation of the upper atmosphere. This

requires the presence of some other mechanism that can main-

tain a retrograde angular momentum surplus in equatorial

regions relative to polar regions. In the steady state,

there would be a vertical balance between the upward trans-

port by the Hadley cell and the downward transport by eddy

and diffusive processes. There would also be a horizontal

balance between the poleward flux of angular momentum by the

upper branch of the Hadley cell and the equatorward flux by

the unspecified process mentioned above. Two possible

mechanisms that were briefly discussed are vorticity mixing

and momentum transport by horizontal Reynolds stresses.

Eventually, Gierasch decided to model this unknown process

by an unrealistically strong horizontal diffusion. Kalnay

L_~II



de Rivas (1975) conducted some numical experiments to test

this mechamism and found that very strong horizontal diffu-

sion would weaken the meridiurnal temperature gradient and

consequently supress the Hadley cell and its resulting mo-

mentum flux. This mechanism was also shown to work only if

the effective Prandtl number of the horizontal mixing pro-

cess is several orders of magnitude larger than unity.

The most recent theoretical study of the Venus stratos-

phere by Rossow and Williams (1979) focused on the possible

role of two-dimensional (horizontal) turbulence and barotro-

pic instability in maintaining the four day circulation.

Based on scale analysis, they argued that the circulation

of the Venus stratosphere is quasi-nondivergent and that the

forcing that maintains the circulation is only weakly coupled

to the flow. Consequently, they studied the properties of

two-dimensional vorticity conserving flows as well as the

solutions of the two-dimensional vorticity equation with

various types of simple forcing functions (e.g., axisymmetric,

localized, etc.). In the former case, the free inertial de-

velopment of an initial flow field led to a relaxed state of

solid body rotation with weak planetary scale waves.

For the forced solutions, the model was subjected to

continuous forcing, drag, and dissipation. In the experiments

labeled "strong forcing", an equilibrated flow developed as

a result of a balance between the forcing and the drag. The

nonlinear inertial effects were only of minor importance.



On the other hand, in the "weak forcing" cases, the final

flow field consisted of a relaxed state similar to a vor-

ticity conserving flow in which the nonlinear inertial ef-

fects shaped the solution. Once again, the relaxed state

was predominated by the largest scales of motion.

Based on these results and the differences between the

meridional profiles of u in the Pioneer Venus and in the

Mariner 10 observations, Rossow et al., (1980a) have pro-

posed a cyclic mechanism involving the mean meridional cir-

culation and barotropic instability which could explain

many of the features of the four day circulation. In the

first step of the process, the Hadley cell in the lower

atmosphere (driven by equator to pole heating contrasts)

provides an upward transport of retrograde angular momentum

(Gierasch, 1975). The lower atmosphere receives its retro-

grade angular momentum from frictional coupling to the slow-

ly (retrograde) rotating solid planetary surface. The

Hadley cell will also transport retrograde angular momentum

poleward, leading to the development of a mid-latitude jet.

This point in the cycle corresponds to the Mariner 10 ob-

servations (Murray, et al., 1974). As the jet grows, it

becomes barotropically unstable, breaks down, and supplies

kinetic energy to the large scale eddies. The eddies trans-

port retrograde angular momentum equatorward and lead to

the relaxed state of solid body rotation as in the Rossow

and Williams model. This corresponds to the Pioneer Venus

1~1_~ --_-L_----.il---.-. -



observations. As this cycle reoccurs, the upper atmos-

phere will slowly be accelerated in a retrograde sense

so that over a long enough period of time, the rapid zonal

winds associated with the four day circulation could de-

velop and be maintained.

Even though Pioneer Venus has brought us one step

closer to understanding some of the features of the general

circulation of the atmosphere of Venus, it is quite clear

that many more extensive observations and numerical simula-

tions will be necessary to help us identify the actual

processes that are forcing and maintaining the flow. This

is especially true if the circulation is dominated by iner-

tial effects as suggested by Rossow and Williams.

1.5 Objectives and Organization

From our discussions of the many experimental, obser-

vational, and theoretical studies, it is evident that our

knowledge and understanding of the Venus atmosphere is

rather limited and that each new piece of information brings

us one step closer to solving the puzzle. Within the con-

text of this investigation we certainly could not hope to

devise an overly complex general circulation model of a

poorly understood planetary atmosphere. What we can do

however, is to examine one very particular forcing mechanism

(i.e., the moving flame effect) and to determine whether or

not it plays a significant role in driving the four day



circulation.

In the past, all of the theoretical moving flame in-

vestigations have been restricted to two space dimensions

and have concentrated exclusively on the effects of diurnal

heating contrasts. Our main objective in this thesis is to

consider the more realistic problem in three dimensions with

both diurnal and equator to pole differential heating. We

are interested is studying the role of the meridional

circulation and its interaction with the zonal flow.,

To accomplish our goal, we develop two models of dif-

ferent complexity. In Chapter 2 we consider a linearized

model of a Boussinesq fluid in Cartesian coordinates.

The thermal forcing, in the form of a moving (in longitude)

periodic heat source with meridional variations, is speci-

fied as a heat flux boundary condition. Our linearization

consists of neglecting the eddy self interaction terms in

the equations for the mean meridional circulation and in

the equations for the eddies. All wave-mean flow interac-

tion and mean flow self interactions are retained. To obtain

the steady state circulation, we first solve for the steady

state mean meridional circulation that is driven exclusively

by equator to pole differential heating. This solution is

then used in the remaining equations to solve for the large

scale eddies and the mean zonal velocity.

In an effort to more closely model the role of the

moving flame mechanism in a planetary atmosphere, we next



develop the more complex model of Chapter 3. We derive

the equations in spherical coordinates also with a boundary

heating function. We numerically solve the fully nonlinear

equations and allow for greater horizontal resolution as

compared to the linearized model.

In both cases we find that the moving flame mechanism

does in fact drive a retrograde mean zonal flow but with

horizontal velocities that are only of the same order of

magnitude as the speed of the heat source. It appears

therefore that the moving flame mechanism alone cannot

adequately explain the very rapid motions that are asso-

ciated with the four day circulation of the stratosphere

of Venus.



CHAPTER 2

THREE-DIMENSIONAL LINEARIZED MODEL

2.1 Introduction

The general circulation of the atmosphere of Venus,

especially the four day retrograte rotation of the stra-

tosphere, is indeed a quite complex system that cannot be

accurately simulated until much more observational data is

gathered. The difficulties in this respect are twofold.

First, the extremely slow planetary rotation rate implies

that the dominant terms in the equations of motion are

associated with nonlinear advective processes. Second, our

limited knowledge of the atmosphere of Venus does not

allow us to precisely identify the nature of the physical

and dynamical processes (e.g., barotropic vs. baroclinic

instability) that control the circulation. Nevertheless,

we can still speculate about some of the phenomena that

might play a role in maintaining the observed dynamical

state of the atmosphere. As was discussed in the previous

chapter, Schubert and Whitehead (1969) suggested that the

relatively slow overhead motion of the sun may in fact pro-

duce planetary scale convection cells which would in turn

drive a retrograde mean zonal flow that could exceed the

speed of the sun by one or two orders of magnitude. All of

the subsequent theoretical investigations of this phenomenon

concentrated exclusively on the importance of the diurnal



heating contrasts and thus neglected the effects of the

meridional circulation that would inevitably exist in a

planetary atmosphere. It is therefore one of the main goals

of this thesis to examine the meridional circulation that

will develop in a simple three-dimensional model with lati-

tudinal heating contrasts and to study the ineractions that

will occur between a steady mean meridional circulation and

the longitudinal convection cells of the two-dimensional

moving flame mechanism. It should once again be emphasized

that this is a study of only one very specific physical

process and therefore cannot completely explain all of the

observed features of the dynamical state of the upper atmos-

phere of Venus.

2.2 Details of the Model

In this section we describe the linearized model that

is used for our initial investigation of the moving flame

mechanism. The equations are derived and solved for a

three-dimensional channel of fluid in rectangular coordinates.

We realize that by using this geometry the model is not

directly applicable to a planetary atmosphere. It also impli-

citly neglects certain effects, such as cyclostrophic flow,

which appear only in spherical geometry. Nevertheless, our

simple model will still give us some interesting insight

into the relative importance of day-night and equator-pole

heating contrasts in forcing a moving flame type



circulation. The investigation consists of two stages.

First, we determine the steady state mean meridional

circulation (MMC) driven exclusively by the analog of an

equator to pole heating contrast. This part of the solution

is similar to the various axisymmetric models of Hadley

type circulations that have appeared in the literature (e.g.,

Stone, 1968 and Kalnay de Rivas, 1973). The MMC is solved

for in the absence of planetary scale waves and with no

planetary rotation. Thus the first part of our lineariza-

tion consists of neglecting the wave-wave interaction terms

in the MMC equations. For this approximation to be strictly

valid, we require the following relationships between the

zonal (and time) mean variables, indicated by an overbar

( ), and the eddy variables, indicated by a prime ( )':

Il 1 , lwl , ,\e'l

While eddy momentum and heat fluxes might modify the MMC,

we will verify a posteriori that these fluxes are of minor

importance when compared to advection by the MMC (Figure 2.19).

Therefore the equator to pole differential heating and the

mean flow self interactions are the dominant processes that

force and shape the steady state MMC, and as a first approx-

mation we may solve for the MMC that is independent of the

eddies. Having determined the steady state MMC, we then use

these solutions as fixed coefficients in the equations for
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the large scale eddies and the mean zonal velocity. The

wave equations will also be linearized according to the

mean field approximation so that any terms that are nonlinear

in the eddy variables are neglected. In the equation for

the mean zonal flow, however, we must retain the second or-

der wave terms (the so-called Reynold's stresses) since

they provide the forcing function for u.

An alternative way of approaching the linearization

process is to consider a low order spectral representation

of the dependent variables. If the trucation is set at

zonal wavenumber 1 (M=l), then the wave-wave interaction

terms in the eddy equations are automatically eliminated

since such terms can only produce higher harmonics. The

wavenumber 1 self interactions which contribute to m = 0 are

exactly the Reynolds stress terms that we wish to examine

and are therefore retained in the u equation. The Reynolds

stress terms in the MMC equations are neglected since, as

mentioned above, we are concerned only with the first

order MMC driven by equator to pole heating contrasts.

We begin with the equations of motion in rectangular

coordinates for a fluid confined between two flat horizontal

plates. The channel is assumed infinite and periodic in

both horizontal coordinate directions. The model geometry

is illustrated in Figure 2.1. The heating varies as cosy

(latitude), corresponding to a subsolar point at y = 0
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and an antisolar point at y = T. A zonal Fourier analysis

of the heat flux (Appendix A) provides the m = 0 component

which drives the MMC and the m = 1 component which is the

moving flame type forcing. With reference to Figure 2.1,

the periodic motion of the heat source is in the positive X

direction (prograde) with speed uo, wavelength L = 21Ta

(or wavenumber k = 21/L), and frequency .fL= ku .

We will also use the following simplifying assumption:

no planetary rotation, the Boussinesq approximation, and the

hydrostatic approximation.

Planetary rotation is neglected based on the observation

that Venus requires 243 terrestrial days to rotate once on

its axis. For this reason, Venus has always been considered

the classical example of a nonrotating planet.

Ogura and Phillips (1962) have shown that the

Boussinesq approximation is appropriate in situations where

the vertical scale of the motion is less than the density

scale height. Clearly, the deep atmosphere of Venus cannot

be precisely simulated with an incompressible model. However,

a Boussinesq model is attractive for two reasons. First,

the Boussinesq equations take on a rather simple format.

And second, previous experience has shown that a Boussinesq

model provides a qualitatively good first approximation to

the more complicated problem of compressible fluid flow (e.g.,

Kalnay de Rivas, 1973). By using the Boussinesq



approximation, we neglect density variations except when

associated with bouyancy forces. For convenience and simpli-

city we will consider a neutrally stratified basic state and

we will replace density fluctions with potential temperature

fluctuations according to the equation of state for a

Boussinesq fluid, i.e.,

where p, T, and G are the deviations of density, temperature,

and potential temperature from their respective reference

values o, To, O . The upward heat flux at the bottom is

assumed to be a result of turbulent processes and therefore

related to the gradient of potential temperature. Finally,

within the context of the Boussinesq approximation we will

use constant values for the coefficients of eddy viscosity

and thermal diffusivity.

The hydrostatic approximation is used since we are con-

sidering only the largest horizontal scales of motion in a

fluid layer with small aspect ratio.

With this, we begin by writing the equations in dimen-

sional form (an asterisk indicating a dimensional quantity):

horizontal momentum equations

I----ii~ur~--ar~- -~uuxr- ~ri ..~I-~I ~- IE-P-m-16i
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hydrostatic equation

where u*, v*, w* are the velocity components in the x*, y*,

z* directions respectively, and 9* and ,* are the departures

of potential temperature and pressure from the constant

reference values To and \o respectively. There is no
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internal heating term in the thermodynamic equation since

the thermal forcing will be supplied through the boundary

conditions.

Ve next proceed to put the equations into dimensionless

form and thereby develop the dimensionless parameters

appropriate to the problem. The variables in the equations

are scaled as follows (quantities without an asterisk are

dimensionless):

LT

Ua,

where uo, k, j(= kuo ) are the speed, wavenumber

-1(= 21 (wavelength)) , and frequency of the moving heat

source, and h is the depth of the fluid. The scale for the

vertical velocity is naturally suggested by the continuity

equation. The pressure scale, At, is suggested by the hydro-

static equation, i.e.,

b To



The temperature scale, aT, will be determined from the

mangitude of the heating in section 2.3 where the boundary

conditions are discussed. Upon performing the appropriate

substitutions and divisions in equations (2.2.1) - (2.2.5),

we obtain the following set of dimensionless equations:

4r 
4

++

S + - -V4

1A a1-~3
-t -4.+ c

(2.2. la)

(2.2.2a)

(2.2.3a)

(2.2 .4 a)

(2. 2.5 a)

where I -- \)

and the three dimensionless parameters appearing on the

right-hand sides of the momentum and thermodynamic equations

are given by

a9. f:
a~i4



which are the three parameters that formed the basis of our

discussion of the moving flame effect in Chapter 1. The

thermal forcing parameter, G, is the ratio of bouyancy forces

to inertial forces. Some authors have considered G to be

two separate parameters - an inverse Froptde number, _A-- /

times a thermal forcing parameter, .'T The thermal fre-

quency parameter, Z., represents the ratio of the vertical

heat diffusion time scale to the period of the heat source;

the viscous frequency is similar except it contains momentum

diffusion in place of thermal diffusion. The Prandtl number,

Pr = -- , is simply the ratio of the thermal and viscous

frequencies, Pr= 2 /L -.

kb continue by expanding each of the five dependent

variables into a zonal (and temporal) mean part plus a

perturbation which is a function of time and of all three

space variables, so for example u (x,y,z,t) = u (y,z)

+ u' (x,y,z,t). The equations for the mean variables can

be obtained by making the appropriate substitutions in

equations (2.2.2a) - (2.2.5a) and then averaging over x and t.

Upon noting that the zonal average of a perturbation is zero,

we find that
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where the terms that are an average of the correlation of
two perturbations are called Reynolds stresses and they
represent the transport of momentum and heat by the eddies.
If equations (2.2.6) - (2.2.10) are subtracted from the
expanded equations (2 .2 .1a) - (2 .2.5a), we obtain the fol-
lowing for the perturbations:
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Ve now apply our linearization process (i.e., neglecting

terms nonlinear in the perturbations) to (2.2.7) -

to obtain the equations for the steady state MMC

(2.2.16)

(2.2.17)
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in which the advective flux terms (e.g., - ) have been

expanded with the aid of the continuity equation. The

method of solution of these equations will be described in

detail in section 2.4.

The next step is to expand each of the eddy variables

as a truncated Fourier series of the phase (x-t) , so for

example

where U (y,z) is the complex amplitude and U represent the

complex conjugate of U. If we pick the truncation value

M = 1, then we retrieve the mean field equations for the

eddies in which terms that are nonlinear in the perturbations

drop out. Therefore forced solutions for the waves will

exist in the form
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Thus we have the simple relationships

Le)' ) t -'

and the perturbation equations (2.2.11)

be written in their "linearized" form

i L-\ L) 3 aU_ -+ u i+J N , V

C-7 +

+ +

L+ L ( -
_ 

-
a(? .,-V ,-

- (2.2.15) can now

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

.~~I1~Y~l~l~b- r-^r~-Wgr(*a~LP_7LII~~IP



These equations along with the necessary boundary conditions

(see section 2.3) will be solved in section 2.5 (note that

the advective flux times have been expanded).

The eddies as determined by (2.2.20) - (2.2.24) can

now be used to compute the Reynolds stresses u'v' and u w'

that appear in equation (2.2.6) for the mean zonal velocity

u. The assumed harmonic form for the eddies allows us to

determine the Reynolds stresses directly from the complex

amplitudes according to the relationships

where Re indicates the real part of a complex quantity. Thus

our set of model equations is completed by the following

equation for u

- 3 (2.2.25)

To summarize our proceedure, we first solve for the

steady state MMC (section 2.4) as determined by equations

(2.2.16) - (2.2.19) and the necessary boundary conditions

which include the thermal forcing. Ve then solve the linear-

ized equations (2.2.20) - (2.2.24) for the large scale eddies



and equation (2.2.25) for the mean zonal velocity (section

2.5) . Once again, our linearization consists of neglecting

wave-wave interaction terms in the MMC equations as well

as in the eddy equations. The former part of this linear-

ization essentially means that we are specifying a fixed MMC

which is unaffected by the presence of planetary waves.

This assumption will be verified a posteriori by comparing

eddy fluxes and MMC advection (Figure 2.19) . The latter part

of the linearization is simply a consequence of the low

zonal resolution. In all other respects, the equations are

nonlinear.

2.3 Boundary Conditions

To complete our model, we must specify thermal and

dynamical boundary conditions at the horizontal and vertical

boundaries of the channel. Vb first consider the boundary

conditions for the thermodynamic equation since therein will

be the only source of thermal forcing for the model. It will

be assumed that the moving periodic heat source supplies

heating at the lower boundary in the form of a heat flux.

The top is taken to be an insulating surface. This type of

thermal forcing at the bottom is quite obviously relevant

to the laboratory studies. For Venus, we must present addi-

tional justification. ecause of the rather deep extent of

the atmosphere of Venus, our model is designed and limited

to simulating the region of the atmosphere that includes



the cloud tops (our lower boundary and sunlight absorbing

surface) and the adjacent layer of the stratosphere. By

considering only heating from below, we are in effect assum-

ing that the stratosphere is transparent to solar radiation

and that a major portion of the unreflected sunlight is

absorbed in the upper cloud layer. Many of the available

observations confirm this hypothesis. Using earth based and

Venera 8 measurements, Lacis (1975) found the maximum heating

rate due to solar energy deposition to occur near the top

of the visible cloud deck. More recently, an analysis of

the Pioneer Venus LSFR (solar net flux radiometer) data

reveals that the net solar flux decreases by roughly seventy

percent in the l-yer from 47 to 65km (Tomasko et al., 1980).

Finally, the presence of a statically unstable layer between

52 and 56km (Seiff et al., 1979) , and the presence of a

turbulent layer at 60km (Woo, 1975) tend to indicate strong

absorption of sunlight at these altitudes.

In our model, the thermal forcing at the heated boundary

can be transmitted to the fluid only through vertical dif-

fusion. As mentioned above in section 2.2 we will assume

that this heat transfer is accomplished by turbulent processes

and therefore the heat flux is directly related to the ver-

tical gradient of potential temperature. At and above the

Venus cloud tops, radiative processes most likely account

for a significant portion of the vertical heat flux. However,



it is not our intention to develop a highly complicated

general circulation model for the Venus stratosphere. Our

goal is to investigate only the role of a moving periodic

heat source with both diurnal and meridional differential

heating and the capability of such a heat source to force a

retrograde mean zonal flow. Thus we ignore differences be-

tween the radiative and turbulent transport mechanisms, and

for simplicity we choose the turbulent heat flux and eddy

diffusion parameterization.

TVb can estimate the magnitude of the differential

heat flux from observations of the thermal emissions from

the Venus cloud tops. Apt et al., (1980) found horizontal

variations in the thermal emissions that are typically 10%

of the mean flux. This corresponds to a fluctuation::

4 -2 -1 -2
amplitude of roughly 10 erg cm s (or 10 Wm ). The

relationship between the heat flux perturbation, F :,y,t) ,

and the fluctuating potential temperature gradient is

simply

(2.3 .1)

(recall that an asterisk stands for a dimensional quantity).

For diurnal variations, we will assume that F has the struc-

ture of a moving localized heat source analogous to the sun

or a laboratory heat source (bunsen burner) , i.e.,
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(2.3.2)

where (x-t) is the local time of day measured from zero at

local noon (note that time has already been scaled by the

period of the heat source,J) . Finally, to introduce meri-

dional differential heating that is of the same magnitude as

the diurnal heating we simply assume that F(y) varies as the

cosine of latitude. Combing (2.3.1) , (2.3.2) and the

assumed latitudinal variation provides the lower boundary

condition for our model

- Lv uc-t) Co\-t L

0-tl 1 1 (2.3.3)

where the amplitude Q* is given by

and F is the magnitude of the observed flux variations.

If we nondimensionalize (2.3.3) using as h a scale for z*, T



as a scale for V* and if we assume that the dimensionless

boundary condition is 0(1), we obtain

(2.3.4)

as well as an estimate for the potential temperature scale

Po c \C V

which for the Venus values of the physical constants is

roughly aT _ 1200 K. We also note that because of the

rectangular geometry of our model, y ranges from 0 to W .

This means that the heating from y = 0 to y = T/2 is bal-

anced by an equal amount of cooling between y = 1r/2 and

y = -Tand thus the global mean potential temperature fluc-

tuation, (0) = 0, will be preserved.

In all cases, we assume there is no heat flux across

the top so that =0 . Finally, a zonal Fourier anal-

ysis of (2.3.4) (see Appendix A) provides the necessary

mean and eddy boundary conditions
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(2.3.5a)

(2.3.5b)

where T(y,z) is the complex amplitude of 'y i) -t ) " .t

and T(y,z) is the complex conjugate of T.

The dynamical boundary conditions required for model-

ling only a relatively thin layer of the upper atmosphere are

not quite as easy to determine. Ideally, one would prefer

to impose boundary conditions only where real physical

boundaries exist (i.e., at the planet's surface) . Unfor-

tunately, within the context of our Boussinesq model, we

cannot accurately treat a very deep atmosphere, such as the

one on Venus, and thus it becomes necessary to impose arti-

ficial horizontal boundaries which hopefully have some

physical relevance to the real situation. We will

concentrate on the results obtained using the free-rigid

boundary conditions where the bottom is a rigid, no slip

surface and the top is a flat, stress free surface so that
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(2.3.6)

These boundary conditions are immediately applicable to a

laboratory experiment but require some justification for

Venus. The best argument that we can present is based on

observations. Recent data collected by the Pioneer Venus

probes indicate the presence of a zone of strong wind shear

in the upper and middle cloud layers so that the winds at

the base of the middle cloud layer (52km) are weaker than

the winds above by a factor of at least two or three

(Counselman et al., 1979) . By assuming a no-slip bottom,

we are confining the entire wind shear to the region at and

above the cloud tops. Furthermore, the use of a rigid, no-

slip bottom will effectively eliminate any interactions that

might occur between the stratosphere and the troposphere

(e.g., vertically propagating waves) and thus we can be

confident that the circulation that develops in the model

will be a result of only the moving flame type thermal

forcing. This isolation of the stratosphere can also



partially justified by the apparent natural separation of

the Venus atmosphere into two distinct dynamical regimes

(Stone, 1975). The assumed periodicity of the forcing and

the resulting flow implicitly includes boundary conditions

at the imaginary vertical walls (i.e., at x = 0 21T and at

y = 0,7) . All of the eddy variables are periodic in x with

period 2T. Since the forcing is symmetric about the points

y = 0 andl , the potential temperature, zonal velocity and

vertical velocity will all preserve symmetry while the meri-

dional velocity will be antisymmetric. Thus we have the conditions

We conclude this section by once again mentioning that

our model is designed to simulate only one very specific

physical process (i.e., the moving flame) and is not in-

tended to be a general circulation model for Venus. It

would appear that our model more closely resembles a labora-

tory experiment than the stratosphere of Venus. Or, we

can even view our model as simulating a thin transparent

atmosphere lying over a deep quiescent ocean that absorbes

solar radiation in a thin layer near its surface. The only

interaction between the atmosphere and this ocean is the

upward turbulent heat flux that drives the atmospheric cir-

culation. While this discription may not exactly simulate

the relationship between the stratosphere and troposphere



of Venus, we have nevertheless presented some justifications

for the relevance and applicability of our model as at least

a first approximation to the dynamical state of the upper

atmosphere of Venus.

2.4. Steady State Mean Meridional Circulation

2.4.1 Method of Solution

Having described the necessary equations and boundary

conditions, we are now ready to proceed with obtaining the

solutions. The first step we take is to determine the steady state

mean meridional circulation (MMC) that is driven by a lati-

tudinal heating contrast. Equations (2.2.16) - (2.2.19)

along with boundary conditions (2.3.4) and the appropriate

parts of (2.3.7) comprise this part of the problem. We

begin by expanding each of the dependent mean variables in

a series of orthogonal functions of y. The rectangular

coordinate system allows us to use complex Fourier series

and thus the variables can be written in the form

e. 
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Substitution of these expansions into (2.2.16) - (2.2.14)

reduces the equations to a system of ordinary differential

equations in z for the harmonic coefficients n n' v n , wn

The nonlinear terms can be simply computed as follows: given

any two functions, say (y) and q(y) , that can be expanded

in Fourier series

w13 ZI
Yy=- rJ

2 e"%

then their product can also be written as a Fourier series

Y(:'-I2t ,, e '

where the coefficients r are given by the formulan

4 M Jr V
"-I

Strictly speaking, the summation limit should be N =00, how-

ever, since we are interested is the largest scales of

)j

% , e



motion we will truncate our series at N = 2. The choice of

this value limits the number of equations and-computations

yet it still allows simulation of the first order effects of

nonlinear distortion. Ey nonlinear distortion we mean that

Tr
the MMC need not be symmetric about the line y ~ . In a

completely linear system (i.e., no advection terms in the

equations) the MMC must be symmetric about y = 2 . We also

note here that our approach is equivalent to the first order

asymptotic solutions obtained by Stone (1968) . IN both

methods, the horizontal resolution is exactly the same and

the results are quite similar as we will shortly see.

Eauations (2.2.16) - (2.2.19) can now be written in

spectral form:

r( .

(2.4.1)

N' (2.4.2)
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and the boundary conditions

(2.4.3)

(2.4.4)

are

-±\I c,

(2.4.5)

Even after replacing the y derivatives with algebraic expres-

sions, we are still left with a quite complicated set of

Y\\
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nonlinear ordinary differential equations in z for the spec-

tral coefficients. We choose to solve the equations numeri-

cally since a numerical model has two major advantages.

First, it produces solutions that are valid for any parameter

values (unlike asymptotic or limit solutions which are valid

only for extreme values of the parameters) . Second, it al-

lows one to quite easily conduct various experiments such as

varying parameter values and changing boundary conditions.

To implement the numerical method, we will use an iteration

technique in which we introduce a new independent variable,

T (the iteration variable which is equivalent to time) and

we add the operators '2 and to the left hand side of

equations (2.4.1) and (2.4.3) respectively. The model

equations can then be treated as a time marching problem with

the "prognostic" variables &n , v n and the diagnostic variables

and Wn. The time derivatives are approximated by

centered differences (the so called leapfrog scheme) so for

example we have

(9Z T-

(2.4.6)



where ADV(T) represents the advection terms computed at time

Z and DIFF(t-at) represents the diffusion terms computed

at time (t-4t) . Ey computing the diffusion terms at the

backward time step, we avoid the absolute computational in-

stability that is associated with the leap frog solution of

the so-called hear or diffusion equation of the form

Every so often, a forward time of the form

t / t (2.4.7)

is used. This helps to eliminate the uncoupling of solutions

at odd and even time steps which tends to occur when using a

leap frog scheme.

The vertical derivatives are also approximated by

finite differences. To improve the resolution near the

boundaries without drastically increasing the number of

levels, we make use of a stretched vertical coordinate and

its associated continuously varying grid as suggested by

Kalnay de Rivas (1972) . Given the appropriate choice of a

stretching function, this method can produce a grid with

very fine spacing in any desired region of the domain and a

coarser spacing elsewhere. This can be especially useful



if one expects the presence of various localized phenomena

such as boundary layers. In practice, the stretching is

accomplished by defining a function, say f, which maps the

physical space z into the stretched space I (where a

regular grid is used) according the relationship J= f (z).

The first and second derivatives of any quantity, q, in the

two coordinate systems (z and Y ) are related by

24
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Kalnay de Rivas (1972) showed that the second order finite

difference approximations of these derivatives are given by
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(0

dzwhere we have defined S =- . The relative locations ofdy
the three points denoted by j - 1, j, and j + 1 are illu-

strated in Figure 2.2.

q j-I qj q i

/ I zj .+12 I

Sj- 1/2 Sj Sj1/2

Figure 2.2: Variable grid in z as defined
through the stretched coordinate T.
Note regular spacing of the grid in
(from Kdlnay de Rivas, 1972).

In our model, we will use the stretched coordinate defined

by

I
! styS -d_

t-- s-'T2-
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FIGURE 2.3 Physical height, z, defined by
the function z = sin 2 ( - ) . Note the
regular spacing in .2
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which is nearly linear in the interior and provides fine

resolution near both the upper and lower boundaries. This

behavior is shown clearly in Figure 2.3 and Table 2.1. To

increase the computational efficiency, we use a staggered

vertical grid (Figure 2.4) in which u, v, 0, and P are

carried at full levels and w is carried at the half levels.

One additional grid level is defined outside of the physical

boundaries to easily accommodate derivative boundary condi-

tions.

U V PJM+I

- - - WM+1 = O

U) v e , PJM

U Ve Ple

u, V,)e pj
Wjve

U, v, e Pjl

Lij

Azj - 1/Z

j I U )v,)e,p1

j =0 u,v, e, P

Figure 2.4: Staggered vertical grid

J+I

ii

j-I

II I

~ ~ ~ ~ II c~t-lO



Using the staggered grid of Figure 2.4, we express a typical

vertical advective term at level j as

(2.4.8)

where q represents any one of the three prognostic variables

u, v, 9 . This scheme has been widely used in numerical models

because of its quadratic conserving properties (Arakawa and

Lamb, 1977) . The other advantage of the staggered grid is

that (2.4.8) , which consists of an average of the advective

terms at two adjacent half levels, is second order accurate,

i.e., the truncation error is proportional to (dJ )2

The procedure we follow is to first advance 8On to the

new time step. Using these values, tn is computed diagnos-

tically from the hydroststic equation (2.4.2) . The values

of Pn will contain an arbitrary function of y since we have

no boundary condition for the pressure (i.e., in solving

the hydrostatic equation, we assume that the boundary value

of n is zero). This arbitrary function can be determined

from mass continuity considerations as described below. We

can now use this uncorrected pressure in equation (2.4.3)
u

and determine the uncorrected values of vn at the new time

-u
step. The actual value of v and the uncorrected value v



are related by the expression

-LkVCF
%I%%= IN -t i , -V

(2.4.9)

where the arbitrary function R(y) is given by

and (z=l) is the value of 9 at the top of the model. From

the continuity equation and the boundary conditions on w,

we know that

so 0 )?

Substituting the expression
- -u dR
V = v + dy gives an

equation for R(y)

(2. 4.10 a)

or in terms of our harmonic coefficients (recall that

~Y ~ln)

_ ---- --- --L11L"TrCi'lYi~-

4~

R'y',



% (2.4. 10b)

and finally, the correct values of vn are given by

V V%

This proceedure is the equivalent of having a prognostic

equation for the "surface" (boundary) pressure. VIth the

new values of v we can now determine w, diagnostically

from the continuity equation (2.2.4) . Finally, as a con-

venient tool for presenting the results, we can define a

mean meridional streamfunction y (based on the two-

dimensional form of the mean continuity equation) such that

In the numerical model, p is defined at the same vertical

grid points as w. ty using the boundary condition y = 0

at z = 0 we can easily compute the harmonic coefficients 4n

from the relationship



2.4.2 Results

The results for the MMC presented in this section are

2 1
given for the values 2. = 15.5, Pr =2 = E = 0.1

All of these are appropriate for the Venus atmosphere based

on the numerical values of the physical parameters listed

and discussed in Appendix B. For completepess, we will

consider the solutions for several different values of the

thermal forcing parameter G since it is a measure of the

importance of nonlinear interactions in shaping the circula-

tion. In all cases, a steady state was reached after the

equivalent of 1.5 solar days.

In Figures 2.5, 2.6, and 2.7 we show the steady state

MMC for G = 10, 100 and 1375 (Venus) respectively. Each

of the three solutions consists of a single, thermally

direct Hadley cell. In general, we notice that the circula-

tion is not symmetric about the point of zero heating (y=/2).

The rising motion is always confined to regions of heating

(06 y4j/2) while the sinking motion tends to occupy the

entire region of cooling ( 7if ) and extends into
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the heated region.

As G increases, the most noticeable feature is the

leftward shift of the streamlines. Stone (1968) demon-

strated that this asymmetry is due to nonlinear effects.

For heating from above, he found that nonlinear interactions

tend to concentrate the horizontal temperature contrasts

towards the lower boundary and the point of maximum heating,

y = 0. This effect is further illustrated by the values

in the second column of Table 2.2 where we indicate the

location of the center of the Hadley cell. For heating

from above, the temperature contrasts and the flow are

concentrated near the top towards the point of maximum cool-

ing, y = 77 (see Figure 2.9).

Table 2.2

Center of w+/
G Hadley Cell max y

10 y=88 ° z=.53 .025 0.133 1.07

100 y=76 ,z=.50 .207 0.125 1.40

1375 y=63 ° z=.48 .828 0.094 1.88

Closely associated with the leftward shift of the

streamlines is an increase in the relative intensity of up-

ward velocities. In the last column of Table 2.2 we show

the ratio of the maximum upward velocity, w+, to the maximum
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downward velocity, w_ . As the area covered by rising motion

decreases, mass continuity requires a proportional increase

in tw+/w_ . For G = 10, the solution is very close to being

symmetric about y = T/2. Consequently, the maximum upward

and downward velocities are roughly the same. By the time

we reach G = 1375, \w+/w_ is nearly two thus reflecting the

decrease in the region of rising.

In Figure 2.8 we have plotted the dimensionless quanti-

ties -Ymax (maximum value of the streamfunction) and A 8

(Horizontal temperature contrast from y= 0 to y=7T at the

lower boundary) as functions of the thermal forcing parameter,

G. These values are also listed in Table 2.2. The overall

behavior of Vmax and 6 e is as one might expect. The inten-

sity of the circulation (i.e., max ) increases with G. Fur-

thermore, this increase in p reflects an increase in the velo-

city components. Ye also note that as G increases AyO decreases.

Consequently, as G becomes larger, the stronger velocities be-

come more effective in mixing the fluid and eliminating the

horizontal temperature contrasts. A more detailed examination

of these two curves reveals that the most rapid variations occur

for G 4 500. As G goes to larger values both curves flatten out

and it appears that a significant increase in G causes only a

minor strengthening of the circulation. However, we hesitate

to extend this conclusion to highly nonlinear cases such as for G>>1000.

We now return to Figure 2.7 for a brief discussion of the

MMC solution valid for the Venus values of the dimensionless
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parameters. The concentration of the circulation towardsy = 0

has already been explained in terms of the nonlinear effects.

In Figure 2.7a we notice that the strong horizontal temperature

contrasts appear only in the lower boundary layer (z: .25)

which is understanable since the heating. is being applied at

the bottom. In the interior, the departures of the temperature

from To are quite small thus implying that the model does not

deviate significantly from a state of neutral stratification.

The solution is statically stable everywhere except in the lower

part of the channel in a narrow region around y= 0. This area

of instability will presist since the model has no small scale

convective adjustment process to eliminate superadiabatic lapse

rates. Nevertheless, the upward heat transport by the MMC (see

Figure 2.19 below) will produce a stable horizontally averaged

9 profile (Figure 2.9) . The top to bottom average static sta-

bility is Az91= 0.021 corresponding to a dimensional value of

0.50 K/km. The global average (&>I Se " remains zero.

In Figures 2.7c and 2.7d we show the meridional (v) and

vertical (w) velocities for the Venus values solution. The

line between the poleward flow in the upper levels and the

equatorward flow in the lower levels appears slightly below

the channel center. The strongest meridional velocities

occur just below the top of the lower boundary layer with a
-i

maximum dimensional magnitude of 12 ms . The line between

upward and downward motions appears near y = 600 meaning

that roughly one third of the atmosphere is rising

Y
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and two-thirds is sinking. The maximum dimensional magni-
-I

tude of the upward flow is 0.39cm s-1

Upon comparing our solutions to other Hadley cell

studies we find that our model agrees quite well with the

theoretical conclusions proposed by Stone (1968) concerning

the role of nonlinear interactions and with the nonrotating

Boussinesq model developed by Kalnay de Rivas

(1971, 1973) (subsequently denoted, EKR) . In EKR, the

strongest horizontal temperature gradients and the strongest

meridional velocities appeared in the upper boundary layer.

The vertical velocity field consisted of weak rising motion

between y = 0 and y = 1200 and sinking between y = 1200 and

y =180, with very strong downward motion at the antisolar

point. All of these features as compared to our results

are easily understood in terms of Stone's nonlinear theory

since we use heating from below while Kalnay de Rivas used

heating from above. There are also several other differences

between the two models. EKR contained a more realistic

heating function which consisted of a roughly uniform

cooling plus a heating that varied as

Cos ri

and thus the resulting meridional heating contrast is only one

half of the contrast in our model. On the other hand, the

_
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heat flux boundary condition in EKR was scaled according to

the amount of shortwave radiation absorbed by the entire

atmosphere which is forty times stronger than our heat flux.

However, since EKR considered the entier atmosphere from

the surface to the cloud tops, she used a reference density

that was approximately 43 times larger than our value. The

conbination of these two factors means that both our model

and EKR's model are forced by comparable heat fluxes.

Since EKR considered a much deeper atmosphere than we

do, her height scale was approximately ten times larger

than ours. This also means that the thermal forcing param-

eter, G, in her model was ten times larger than ours. This

would lead one to expect a much more intense circulation

in her results. However, the flow in EKR is restricted by

relatively strong horizontal diffusion (her horizontal dif-

fusion coefficients are two orders of magnitude larger

than ours). One other important difference between her

model and ours is the greater horizontal resolution in EKR.

Vith all of these factors in mind, we find that the

results of the two models agree in many respects:

EKR's values

\~,\ 7.5rlo Chi 5)



our values

-~ - 2. w 6- I=W A - O10. 14 cv,

The very large difference in the values of wmax is directly

related to the greater horizontal resolution in EKR. The

presence of a very narrow region of strong vertical motion

(termed a "mixing region" by Goody and Robonson, 1966) can-

not be adequately resolved in our model because of the low

order truncation. We also notice the similarity in the

overall intensity of the Hadley cell in both models as

indicated by the values of IV maxt and m-* It appears

that the stronger forcing and stronger dissipation in EKR

counteract one another so that both models experience a

similar balance between forcing and dissipation. The other

factor that contributes to the slightly stronger flow in

her solution is that her Hadley cell was concentrated

near the upper stress free boundary while ours is displaced

towards the lower no-slip boundary.

Py comparing these two models we can see that except

for missing the "mixing region", our limited model does

indeed reproduce many of the features of the results of

a set of highly nonlinear computations.

ir I_)__//__~/~_Y_____Ij_ ~mE__~
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WV conclude this section with Figure 2.10 which is the

solution for the MMC for heating from above with G = 100,

2 1
2Y = 15.5, Pr = 2-. Vithout going into detail, we simply

point out that a comparison of Figures 2.9 and 2.6 once

again demonstrates the nonlinear concentration effects.

The isotherms in the two figures closely resemble a re-

flection of one another about the lines y = 7T/2 and z = .5.

However, the streamlines for heating from above are not

the reflection of those for heating from below. The circu-

lation in Figure 2.9b is slightly more intense and further

displaced from the center as compared to its counterpart in

Figure 2.6b. The reason once again is related to the fact

that the heating from above circulation is concentrated

towards the stress free top while the heating from below

solution is concentrated near the no-slip bottom.

2.5 Large Scale Eddies and the Mean Zonal Wind

2.5.1 Method of Solution

From equations (2.2.20) - (2.2.25) we can immediately

see that the eddies and the mean zonal wind are coupled to

one another by various nonlinear interactions. The eddies

provide the forcing for u through the Reynolds stresses u'v'

and u'w' while the structure of the waves is affected by

the mean zonal flow through the zonal advection term. For

this reason, the five eddy variables and u must be determined

simultaneously. The numerical method we will use to solve

il*-~-yrrrrrr~-L YL-I-9'1*-C ~ ~L-"~



(2.2.20) - (2.2.25) is quite similar to the one used for

the MMC equations in the previous section. We begin by.

introducing the iteration variable and add -the operator

- to the left-hand side of the eddy momentum equations

(2.2.20) , and (2.2.21), the eddy potential temperature

equation (2.2.23) , and the u equation (2.2.25) . The eddy

vertical velocity and pressure are determined diagnostically

at each iteration from the continuity equation and the hydro-

static equation, respectively. Latitudinal variations are

removed from the equations by expanding each variable in a

Fourier series and then performing the appropriate transfor-

mation. As in section 2.4, we expand u as a complex

Fourier series so that

and we again choose the truncation value N = 2. For the

eddies, we allow comparable zonal and meridional resolutions

and thus we retain only meridional wavenumber 1. Tb will

see below in equation (2.5.7) that when the eddies are trun-

cated at N = 1, they will be able to force up to meridional

wavenumber 2 in the expansion of u. This is due to the

nonlinear nature of the Reynold's stresses. Since the ther-

mal forcing is symmetric about y = 0 (i.e., the forcing

varies as cos y) , 8', u', and w' will preserve symmetry
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while v' will antisymmetric and therefore we can separate

the y dependence as follows

T )

Vwhere T, P, U,
where T, I P, U, VT

V C)

'4

co5L

V are the complex amplitudes of (9', ', u',

w', v' respectively. If these expansions are substituted

into (2.2.20) - (2.2.24) and the appropriate Fourier

Transformation is carried out, we obtain the following

set of model equations

9G P
-t\ R L,-W C,-t + ;=-I

t" I?21
(2.5.1)

T27

4- 1-"

(2.5.2)
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where the complex amplitudes are now functions of only z

and ' , and Re( ) and Im( ) stand for the real and imaginary

parts, respectively of a complex quantity. The "prognostic"

equations for the un components aren

a~t.
A-

-~'5~~-(R)h (2.5.6)

where (RS) n is the nth component of the Reynold's stresses

given by

(2.5.4)

(2.5.5)

(2.5.3)

z~a" ra7ra2



(2.5.7)

The spectral coefficients of 8, v, and w are already

known from the MMC solution. The time stepping of T, U,

and V is performed with the modified leap frog scheme

described by equation (2.4.6) with an occasional forward

time step. The vertical derivatives and advective terms

are computed with the finite difference scheme in stretched

coordinates as discussed in section 2.4.

The procedure used here is once again similar to the

one used for the MMC. We begin by advancing T to the new

time step t+&-t by solving the finite difference analog

of (2.5.4). W_ then use the updated values of T in the

hydrostatic equation (2.5.5) to determine the "uncorrected"

pressure (uncorrected since it contains a boundary value

which is an arbitrary function of x and y only). The un-

corrected pressure is then used in (2.5.1) and (2.5.2) to

compute the uncorrected values u'u vu at the new time

step. The actual values of u ' and v' are related to the

uncorrected values according to
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where the arbitrary function R(xy) is given by

2 G&Z Z-=I

and '(z=l) is the value of ' at the top of the model.

From mass continuity and the boundary conditions on w' we

know that

If we now replace u' and v' by the expressions involving the

uncorrected values we find

71 LLk
+u

a_ "
'V1 V_

(2.5.8) .

Recalling the spectral representation of the x and y depen-

dences, we find that the coefficient of R(x,y) is given by

116
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and finally the corrected vertical structure of u' and v'

is given by

U CZ=) U\K) 1

We complete the calculations for the eddies at the new

time step T + 6T by solving for W in (2.5.3).

The time stepping routine for u is straightforward.

The Reynolds stresses are computed from the values of u',

v', and w' at time T. Equation (2.5.6) is then advanced

in time using these Reynolds stresses and the modified leap

frog time scheme. There is no correction term analogous

to (2.5.8) since the pressure gradient does not appear

in the equation for u.

2.5.2 Results - Two-Dimensional

Vi begin the results section by presenting the solution

of the two-dimensional moving flame equations in which

there are no y variations. Consequently, equation (2.5.2)

is dropped and all terms involving the MMC in the remaining

Y __IIY_______II_*C____~II~- -I~ -------i--~a- II



equations are exactly zero. In Figure 2.11 we show the

dimensionless eddy variables 0', w', and u' for G = 1375,

1 2Pr = -, 2 2 = 15.5. The isotherms and the convection cells

tilt upward to the left as predicted by our simple qualita-

tive discussion in Chapter 1. This tilting is due to the

finite rate of upward diffusion of heat from the heated

lower boundary. Not surprisingly, the strongest horizontal

temperature gradients are confined to the lower boundary

layer with a maximum day-night contrast of A ~= 0.12,x

corresponding to a dimensional values of 140 K. At the

lowest model level z = 0.006 (z = 30 m) , the highest

temperature lags behind the hot spot of the heat source by

150. The lag in the temperature field increases with height,

thus producing the observed tilted isotherms. The maximum

lag of 1600 occurs at the top of the model.

The large scale eddy circulation, represented by the

velocity compoennts u' and w', consists of two large convec-

tion cells that move with the heat source. Because of dif-

fusion, the cells tilt upward to the left just as the iso-

therms. Also due to diffusive processes, the vertical

velocity field lags behind both the heat source and the

temperature field. The net result is that the cellular over-

turning is between the terminators with the most intense

rising motion near the evening terminator and sinking near

the morning terminator. The strongest vertical velocities
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occur near z = .50 with a maximum magnitude of w' = 0.61max

corresponding to a dimensional value of 0.20 cm s - . Finally,

we notice that the eddy zonal velocity field u', also

demonstrates the tilting of the convection cell. Typical

values of u' are on the order of the speed of the heat

source. e notice, however, that the largest values
' -l

u max = 2.3 (d9mensional value of 9.2 ms appear in

the lower boundary layer. This phenomenon, which was also

observed in the MMC solution (see Figure 2.7) , depends

upon the location of the heat source (above or below). The

strongest horizontal velocities tend to occur in the

boundary layer adjacent to the heated boundary. For a given

set of values of the dimensionless parameters, heating from

above will produce larger maximum horizontal velocities

because of the stress free nature of the upper boundary.

A set of computations for the values G = 1375, Pr = 1,

2 2 = 15.5 with heating from above produced a maximum

horizontal eddy velocity at the top boundary with magnitude

\u'ax\ = 4.2 corresponding to a dimensional value of 16.8

-1m s

We next turn our attention to the solution for u in the

two-dimensional problem. In Figure 2.12 we show the verti-

cal profile of u determined in conjunction with the eddies

of Figure 2.11. The no-slip bottom and the stress free

top are immediately obvious in the profile of u. The
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variation of u within the boundary layers is rather small

as compared to the change in the interior. We also notice

that in terms of u, the lower boundary is "stress free"

in addition to being no-slip. The reason for this can

easily be seen from the two-dimensional equation for the

steady state mean zonal flow

In the two-dimensional problem, there is no MMC, no v', and

no horizontal diffusion of u so that the mean zonal flow

represents a balance between the vertical Reynolds stress

term and vertical diffusion. Using the stress free top boun-

dary condition, we can integrate this equation once to obtain

I LA-

(2.5.9)

Since the lower boundary is specified as rigid and no-slip,

at z = 0 the left-hand side of (2.59) is zero and therefore

O at z = 0. We point out, however, that this pseudo-

stress-free behavior at the bottom applies only to u and is

purely mathematical in nature. In reality, the bottom is not

always stress free since 2- is not necessarily zero at z= 0.



Because of the tilt of the eddy isotherms and convection cells,

there will be a net upward flux of retrograde zonal momentum

and therefore the strongest retrograde mean zonal flow will

appear at the top of the model. The maximum value is umax
-1

-1.15 corresponding to a dimensional value of -4.6 m s-1

In Figure 2.13 we have plotted the two-dimensionalu(z=l)

as a function of the thermal frequency parameter, 2 for sev-

eral values of the thermal forcing parameter G. The most ob-

vious feature in all three curves is the peak at 2 = 25.

As one goes to smaller values of 2 %, the maximum value of u

drops off very quickly, especially for 2V 4 15. We recall

that as the frequency parameter becomes smaller, viscous forces

tend to dominate the weaken the flow. As one goes to larger

2
values of 2r , the decrease in u is not quite as rapid. In

this range, u weakens since the fluid is not able to quickly

respond to the rapidly moving heat source, due mainly to the

ineffectiveness of the weak diffusive processes. The main

point of interest here is that the Venus value of 2= 15.5
point of interest here is that the Venus value of 2 = 15.5

is fairly close to the peaks in the u curves. As mentioned by

2
Schubert and Young (1970), the value of 2 2 for rapidly rota-

ting planets such as the Earth, Mars, and Jupiter is typically

on the order of 104, and thus of the terrestrial and major plan-

ets, Venus is the one most likely to exhibit any significant

large scale response to diurnal heating contrasts.

The dependence of u upon the thermal forcing parameter,

G is also as predicted by out discussion in Chapter 1. An



increase in the value of G represents an increase in the

intensity of the physical forcing mechanism and thus results

in a stronger flow. E~tween G = 100 and G = 500, the varia-

tion is u 1 96 while between G = 500 and G = 1375, the

variation is u - G1 .59 as compared to the G2 dependence pre-

dicted by the various linear models described in Chapter 1.

The change in the G exponent means that for very large values

(G. 1000), subsequent increases in G become less effective

in increasing the magnitude of u. Once again, we return to

Schubert and Young's (1970) estimates of G for the various

planets and we find that the value for Venus is larger than

all others by at least two order of magnitude. And once again

we are led to the conclusion that the Venus atmosphere is the

one most likely to exhibit any significant response to the

moving flame type forcing. As to the overall effectiveness

of the moving flame mechanism, we have found that it is

capable of forcing horizontal velocities (eddy and mean) that

are at most of the same order of magnitude as the phase speed

of the moving heat source.

2.5.3 Results - Three-Dimensional

We have now come to the major focus of this investigation

- the solution of the moving flame problem in three-dimensions.

Using the MMC solution shown in Figure 2.7 (for the Venus

values of the parameters G = 1375, Pr = , 2
values now solve equations (2.5.1) - (2.5.6) for the eddies and, we

now solve equations (2.5.1) - (2.5.6) for the eddies and the



mean zonal velocity.

In Figures 2.14a - d we show the height-longitude struc-

ture of the four, eddy fields ', w', u' (at y=0O) and v'

(at y= /2), respectively. Upon comparing the three-

dimensional (3D) isotherms and their two-dimensional (2D),

counterparts (Figure 2.11a) we note several interesting

simplarityies and differences. In both cases, the strongest

horizontal temperature gradients are confined to the lower

boundary layer since heating is being supplied from below.

The day-night temperature contrasts, Ax 0 , are also roughly

the same, here having a value of .11 as compared to .12 in

the 2D solution.

On the other hand, there are some important differences

between the two sets of isotherms. As we will see later,

these contrasts will have an important bearing on the result-

ing convection cells and the mean zonal velocity. At the

lowest model level, z = 0.006, the maximum temperature lags

behind the hot spot of the heat source by 90 (longitude) as

compared to 150 in the 2D case. wn also recall that in the

2D solution, the lag increased with height to a maximum of

1600 at the top. Consequently, the 2D isotherms and the

convection cells tilted upward to the left throughout the

entire vertical extent of the model. In the 3D case, the

situation is quite different. Fetween z = 0 and z = 0.3

the lag between the maximum temperature and the hot spot also

increases with height, but only very gradually. The maximum
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lag at z = 0.3 is 200. Thus the isotherms in the lower

portion of the model tilt slightly upward to the left. Above

z = 0.3, however, the sense of the tilt reverses so that the

lag in the temperature field decreases with height. In

fact at the top of the model, the maximum temperature leads

the heat source by 450. The reason for this tilt reversal

is the weak stable mean stratification of the MMC (Figure

2.9) . Young and Schubert (1973) observed an analogous behavior

in their 2D model with heating from above. In their case,

a strong mean static stability was specified for all time.

This net stratification was the mechanism responsible for

reversing the tilt of the isotherms and convection cells

in such a way as to produce Reynolds stresses that would

force a retrograde mean zonal flow. Ve see therefore that

the role of stratification in determining the tilt of the

convection cells and the direction of the mean zonal flow

depends upon the magnitude of the mean (positive) static sta-

bility and the location of the heat source (above or below).

In our model, the isotherms in the lower boundary layer

retain their tilt upward to the left despite the presence

of a positive mean stratification. Since this is the region

of maximum thermal forcing (i.e., strongest horizontal temper-

ature contrasts), the resulting longitudinal convection cells

will also tilt upward to the left as evidenced by the distri-

bution of w' and u' in Figures 2.14b and c. Once again, when



compared to the 2D solution (Figure 2.11), the 3D results

show less of a tilt and a smaller phase lag relative to the

heat source. In the 2D eddy vertical velocity field, the

net tilt, expressed as the phase of w' near the top relative

to the bottom, is approximately 500. For the 3D w' the net

tilt is only 180, and thus we expect a weaker forcing of u

by the vertical Reynolds stress term u'w'. We also notice

that the phase lag of w' relative to the heat source is

roughly 400 (at z=.5) as compared to 900 in the 2D case.

Thus the longitudinal convection pattern consists of a cellu-

lar overturning with the most intense rising motion occurring

at the local midafternoon and the most intense sinking

motion in the region of local pre-dawn. The above descrip-

tion is valid for 0 ± yL W7/2. Since u' and w' both vary as

cos y, the longitudinal convection pattern for

will be similar except for a 1800 phase shift. In any event,

the maximum vertical velocity is w' = 0.9 (dimensionalmax

value of 0.3 cm s-l) The strongest eddy zonal velocities

appear at the top of the lower boundary layer and have a

-1
magnitude of u' = 1.7 or 6.8 m s .max

The meridional eddy convection also consists of two

large scale convection cells. On the night side, the cell

consists of sinking at y=0, poleward flow in the lower half

of the channel, rising at y=7Tand an equatorward flow in

the upper portion of the channel. On the day side, the sense



of the circulation is reversed so that rising occurs at y=O

and sinking at y=r. Once again, the strongest horizontal flow ap-

pears near the top of the boundary layer with a magnitude of

-1
v' = 1.4 or 5.6 m s .max

Having described the MMC and the large scale eddies, we

are now ready to examine the mean zonal velocity that develops

in our simple three-dimensional model. From equation (2.5.6)

we can see that the structure of the mean zonal flow will be

strongly influenced by the momentum transporting properties

of the MMC and the eddies. In Figure 2.15a u is shown as a

function of height and latitude. The velocity is everywhere

retrograde except for the two regions of much weaker pro-

grade flow between y=0 and y= /4 and in the lower boundary

layer near y=i'. The strongest velocities occur at y= rat a

height of z = .69. From Figure 2.15b we see that umax = -.38

-1
or 1.5 m s . The structure of u can easily be understood

in terms of the fluxes of zonal momentum due to the MMC and

the eddies. In Figure 2.16 we have plotted the horizontally

integrated vertical momentum fluxes as a function of height.

The dotted line represents the vertical Reynolds stress

termt U d/ which clearly corresponds to an upward

transport of retrograde momentum at all levels. This is

precisely the moving flame effect that arises from the tilt

of the eddy convection cells. Obviously the overall effect

of the eddies is to force a retrograde mean zonal flow that

increases with height.

_~__~Y~ ill l.~~~lli li~~lq~~
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Since our model is three-dimensional we must also con-

sider the role of the MMC. The dashed line in Figure 2.16

represents the horizontally integrated vertical flux of

zonal momentum due to the MMC, S LL-A . We can im-

mediately see that this expression corresponds to a downward

flux of retrograde momentum. Gierasch (1975) discussed the

possibility of an upward flux of retrograde momentum by the

MMC. However, this can occur only in the presence of some

other mechanism which provides a very strong equatorward

flux of retrograde momentum and thus maintains a surplus of

retrograde momentum in equatorial regions. Recently, Rossow

et. al., (1980) have suggested that barotropic instability

in the Venus stratosphere might provide this necessary momen-

tum flux. Base on Mariner 10 photographs of Venus, Travis

(1978) has found that the observed zonal wind profile with

a midlatitude maximum is barotropically unstable and appears

to feed energy to stratospheric eddies with wavenumbers in

the range 3-10. Because of limited spectral resolution, the

model in this chapter cannot possibly reproduce this behavior.

The solid line in Figure 2.16 represents the total ver-

tical transport of retrograde momentum (i.e., the sum of the

eddy and MMC fluxes). From z=0 to z = .75 there is a net

upward transport with the strongest flux occurring near the

top of the boundary layer which is the level of maximum u'.

Eetween z = .75 and the top of the model there is an extremly

weak downward flux. Vith this in mind it is easy to

I -i---- i r..---rrm~-----rrr* -Z.I~C~-l~
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understand the vertical profile of u shown in Figure 2.15b.

The strong upward flux of retrograde momentum in the lower

part of the model causes a momentum deficiency below z = .25,

thereby producing a thin layer of prograde flow. These

prograde velocities cannot become too large, however, due to

the no-slip bottom. The transition from an upward flux to

a weak downward flux at z = .75 causes the jet to appear at

z = .69. Comparing Figure 2.15b to the 2D vertical profile

of u (Figure 2.12) reveals three differences. The magnitude

of u in the 3D case is only one third the size of its 2D

counterpart. This is due to the tilt reversal of the 3D

isotherms. Next, we notice that the 3D profile does not

exhibit the pseudo stress free behavior in the lower boundary

layer since the simple relationship

is no longer valid. Finally the 3D jet occurs at z = .69 as

compared to the 2D jet which occurred at the top of the model.

This again is due to the MMC and its effect on the structure

of the eddies.

In Figure 2.17 we have plotted the vertically integrated

meridional transport of zonal momentum by the MMC and the

eddies as a function of y. The MMC (dashed line) produces a

IIIW_^I.I-l^m_~l*LLi.. 11II_-~-~1~_ _-~~~



poleward flux of retrograde momentum for I 4

and an almost negligible equatorward flux for O r

The poleward transport is due to the fact that the maximum

retrograde zonal flow occurs in the upper layers and is thus

correlated with the poleward branch of the Hadley cell.

The dotted curve represents the flux due to the Reynolds

stress / and corresponds to a transport of

retrograde momentum towards y 2-. The flux of retrograde

momentum is poleward between y=O and 7E and equatorward

between and Tf . The net flux (solid line) is a

poleward transport and thus the largest values of u in

Figure 2.15a appear near y =T1.

As a comparison, Figure 2.18 shows the mean zonal flow

for a 3D case with G = 1375, 2 = 15.5, and Pr = . The two

1
main differences between this run and the case of Pr = are

2

the larger magnitudes of u and the higher altitude of the

jet. In this case, the jet occurs at z = .83 with a value

-Lof u = -2.46 or -9.8 m s- . The overall solution is quali-

tatively similar in both cases. Again the main differences

are the increased velocities in the case of small Prandtl

number. For Pr = the maximum velocities are listed in the

second row of Table 2.3.

le have also run the model for Pr = with the same

values of thermal forcing and thermal frequency as above.

Once again we find that all of the velocity components exhibit
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an increase in magnitude as the Prandtl number goes to

smaller values. For this case, the maximum velocity magni-

tudes are listed in the third row of Table 2.3.

Pr= .5 2.9 ; 11.6 1.2 ; 0.39 1.7 ; 6.8 1.4 ; 5.6 0.38 ; 1.5

Pr= .25 3.9 ; 15.6 1.6 ; 0.52 2.5 ; 10.0 2.1 ; 8.4 2.5 ; 10.0

Pr= .1 4.9 ;19.6 2.5 ; 0.82 7.4 ; 29.1 5.3 ;21.2 5.0 ; 20.0

Table 2.3: Magnitude of maximum velocity
components as a function of Pr for
G = 1375 2 2 = 15.5. The first value
in each box is the dimensionless mag-
nitude and the second value is the
dimensional value. The units for the
dimensional values are cms - 1 for w and
ms-1 for all others.



2.6 Discussion

In this chapter, we have developed a highly simplified

Eoussinesq model for a study of the moving flame mechanism

in three dimensions. We began by solving for the steady

state mean meridional circulation that develops as. a result

of equator to pole heating contrasts. As expected,

the circulation consists of a thermally direct Hadley cell

with rising motion in regions of heating and sinking in

regions of cooling. In agreement with other theoretical

studies (e.g., Stone, 1968) in the case of heating from below,

the nonlinear interactions cause the flow to be concentrated

near the lower boundary and near y=0. This MMC solution was

then used to determine the large scale eddies and the mean

zonal flow. In all cases considered, we found that the eddies

produced an upward flux of retrograde momentum which sup-

ported a retrograde mean zonal flow. The MMIC produced a

weaker downward momentum flux so that the net transport was

upward. There was also a net poleward flux of retrograde

momentum by the MMC and thus the strongest zonal flow occurred

at y = 7T.

We realize that the model has some simplifications

which if removed could alter our conclusions. The two most

questionable approximations are the geometry of the model

and the low spectral resolution. ?y considering a rectangular

coordinate system we are automatically eliminating certain

geometrical phenomena such as cyclostraphic balance. On the

__C CI I~I~L-~XIL-IIWI-~



From the values in Table 2.3 we can clearly see that by de-

creasing the value of the Prandtl number we do indeed in-

crease the magnitude of the retrograde mean zonal velocity.

In fact, it was this small Prandtl number behavior of liquid

mercury that led Schubert and Whitehead (1969) to suggesting

that the moving flame mechanism could drive the four-day

circulation on Venus and that the effective Prandtl number

of the Venus stratosphere might be quite small. However

if we again examine Table 2.3 we find that all other velocity

components show a similar increase as the Prandtl number goes

to smaller values. For Pr = .25 and Pr = .1, all of the

horizontal velocity components are within a factor of two of

each other. For Pr = .5, u is smaller than the other com-

ponents by at least a factor of four.

Since this behavior is contrary to the observed velocity

fields on Venus (i.e., for the four-day circulation, u is

typically one or two orders of magnitude larger than v, u',

or v'), we must seriously question the role of the moving

flame mechanism in driving the rapid retrograde zonal flow.

Furthermore, in all of the cases considered, u was not signif-

icantly larger than the speed of the heat source. Consequently,

we must conclude that if the moving flame type forcing is

confined to the cloud tops, then this mechanism alone cannot

adequately explain the observed features of the four-day

circulation.



other hand, based on the magnitude of u in the above results,

it is unlikely that cyclostrophic balance will occur as a

result of moving flame forcing since the motion of the heat

source only seems capable of producing velocities that are

much too weak.

As discussed in the previous section, the low spectral

resolution renders the model incapable of simulating poten-

tially unstable modes with higher wavenumbers. Both the

geometric and resolution problems will be eliminated in the

next chapter.

Finally we return to the linearization used in this

model, namely the neglecting of Reynolds stresses and eddy

transport terms in the MMC equations. This linearization

allowed us to determine and fix the MMC independent of the

eddies and u. In Figure 2.19 we have plotted the vertical

heat fluxes due to the MMC (dashed line) and the eddies

(dotted line) for the two 3D cases presented above. In both

cases, the eddy flux is smaller than the MMC flux by a

factor of two so that the neglecting of eddy transport

terms in MMC equations should not adversely affect the

overall results. If anything, the upward heat flux due to

the eddies would probably strengthen the mean static sta-

bility and thereby prevent the eddies and u from growing

any larger than their current values.

Eased on the results of this chapter, we must tentatively

ml_
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conclude that if the thermal forcing is confined primarily

to the cloud tops, then the moving flame mechanism cannot

consistently explain the existence of the rapid retrograde

zonal circulation and the weak MMC and eddy velocities ob-

served in the stratosphere of Venus.
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CHAPTER 3

NONLINEAR SPECTRAL MODEL

3.1 Introduction

The results of the previous chapter indicate that

within the context of a cartesian coordinate system, the

moving flame mechanism can maintain a retrograde mean zonal

flow. For the parameter values appropriate to the Venus

stratosphere, the model produced horizontal velocities that

were of the same order of magnitude as the speed of the heat

source. In general, however, u tended to be smaller than v,

u', and v' by at least a factor of two. We recall that for

the 4-day circulation of the Venus stratosphere, u exceeds

the overhead speed of the sun by an order of magnitude.

Thus it appears that the moving flame effect by itself cannot

completely explain the rapid retrograde flow on Venus.

Among the assumptions used in developing the linearized

model, the two that we intend to relax are the restrictions

imposed by rectangular geometry and low horizontal resolu-

tion. To accomplish this, we will numerically (spectrally)

solve the full nonlinear equations written in spherical co-

ordinates. In section 3.2 we will derive the appropriate

equations of motion. Section 3.3 contains a description of

the numerical methods followed by section 3.4 with the results.

I



3.2 'Details of the Model

The model described in this section will be used to

investigate the effects of a moving periodic heat source

upon a thin spherical shell of fluid. In deriving the

equations of motion, we will retain some of the simplifica-

tions used in the previous chapter. We still assume:

(a) the fluid is. Eoussinesq and in hydrostatic balance;

(b) no planetary rotation;

(c) thermal forcing by the moving, periodic heat

source is specified as a boundary condition at the bottom;

(d) a rigid, no-slip bottom and a flat stress free

top.

The justification and relevance of these characteristics has

already been discussed in Chapter 2. As was mentioned in the

introduction to this chapter, the present model represents an

improvement over the linearized model in several ways:

(a) the equations are written for spherical geometry;

(b) greater horizontal resolution (i.e. higher harmonics);

(c) a more realistic heating function;

(d) retains higher order nonlinearities due to greater

resolution.

These changes are motivated by the desire to more realistically

simulate the applicability of the moving flame mechanism to

a planetary atmosphere. The other major difference between

the two models is that in the nonlinear spectral model, the
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FIGURE 3.1 Coordinate system and velocity compounds
for spherical geometry. The heat source moves in the
positive direction (i.e., counterclockwise when
viewed from the north pole).
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horizontal momentum equations are replaced by prognostic

equations for the vertical component of vorticity, 5 =A*vxv

and the horizontal divergence, = S.V . The reason for this

is numerical convenience since vorticity and divergence are

directly expandable in series of surface spherical harmonics,

and the resulting prognostic equations are easier to march in

time than are the spectral momentum equations. With these

factors in mind, we now proceed with the description of the

model and the derivation of the necessary equations.

The coordinate system we use is the standard longitude,

latitude, height system, (),,,z), where X is the azimuthal

angle measured in the direction of the heat source motion,

is the latitude measured from the equator (positive north

and negative south), and z is the height above the lower

boundary (the unit sphere in terms of dimensionless variables).

In Figure 3.1, we show the coordinates (X, ,z) and the re-

spective velocity components (u, v, w). Vhen viewed

from the north pole, the sun (i.e. heat source) moves counter-

clockwise and the planet Venus rotates clockwise.

We begin our derivation of the dimensionless vorticity

and divergence equations by first writing the dimensionless

horizontal momentum equation in vector form

4v + (3.2.1)
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where V = (u,v) is the horizontal velocity, V=- ( . )

is the horizontal del operator, G and 2Y2 are the thermal

forcing and momentum frequency parameters (see Chapter 2),

and

is the diffusion term where V 2 is the horizontal Laplacian

operator and k= ( . The procedure and scales for

making the equations dimensionless are the same as in the

linearized model except for one minor difference. In

spherical coordinates, the horizontal length scale must be

redefined as k = and the resulting horizontal

velocity scale uo is identified as the overhead speed of the

sun at the equator.

Following Bourke (1972), we use the vector identity

to rewrite the momentum equation as

V V (3.2.2)



where k = (0,0,1) is the unit vector in the vertical direc-

tion and = k.TJ is the vertical component of relative

vorticity. We next apply the operator k.VX to (3.2.2) and

after rearranging terms we are left with the vorticity

equation

+ ± , (I( +Y_)+ (3.2.3)

where = V.V is the horizontal divergence.

To obtain the divergence equation, we apply the opera-

tor 7. to (3.2.2) and upon rearranging terms we have

1--,- (3.2.4)

The third prognostic equation for our model is the

thermodynamic equation which can immediately be written

+ ,

(3 . 2.5)

~~ie_~~



where once again 9 is the deviation of potential temperature

from the reference value TO , 2. is the thermal frequency

parameter and 1 1
YV

To complete our set of equations we need the following

diagnostic relationships for the pressure deviations,

velocity components, streamfunction, and velocity potential:

the hydrostatic equation

(3.2.6)

the continuity equation

+ = 0 (3.2.7)

the relationships between streamfunction,V , and vorticity

and between velocity potential, 3 , and divergence

(3.2.8)

and finally, an expression for V



O In (3.2.9)

We now proceed with expanding the vector equations in

spherical coordinates. At this point we introduce the alter-

native horizonal velocity components U, V defined by

U = A c0o

(3.2.10)

V = v cos

This substitution was first suggested by Robert (1966) since

the scalars U, V are directly expandable as series of spherical

harmonics whereas u, v are not. This is a consequence of the

dependence of V upon Y and 1, expressed by (3.2.9) , and

the presence of a factor of cost in the denominator of the

operator.

Using these new velocity components, we can now

write (3.2.3) - (3.2.5) and (3.2.9) in spherical coordinates:

vorticity and divergence equations

V7L -(3.2.11)

24t u i
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thermodynamic equation
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equations for U and V
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The remaining diagnostic equations (3.2.6) -

left unchanged. In all cases we have not expanded the V2

CO Lf
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operator because of its rather lengthy form. VW will see in

section 3.3, however, that it has a particularly simple

representation in the spectral equations.

3.2.1 Boundary Conditions

As was mentioned in the introduction to this chapter,

we will assume the same dynamical boundary conditions as in

the linearized model. The bottom is taken to be a rigid,

no-slip surface and the top is considered to be flat and

stress free. This gives us the following conditions:

%3- i- V= o =o

-) L £ (3.2.15)

In terms of vorticity, divergence, U, and V these boundary

conditions are

(3o 

at16)

(3.2.16)
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As in the linearized model of Chapter 2 we again assume that

the boundary conditions consist of heating from below by a

moving periodic heat source and an insulating top. The

vertical heat flux is assumed to be due to turbulent pro-

cesses and therefore related to . Following the discus-

sion in section 2.3 we consider diurnal variations that

follow a heat source analogous to the sun and meridional

variations following cos . Such a flux would be given by

'1 -

In spherical geometry, however, the range of is from 0

to 1 so that the horizontal integral of F is nonzero and

thus the global mean value 0 = 0 would not be preserved.

To avoid this unrealistic possibility, we will balance

the heating by subtracting out the global mean flux (F)= -- .

te point out that this is primarily a mathematical tool

to maintain an equilibrium state and does not necessarily

lend itself to a simple physical interpretation (although

the boundary condition to be presented does resemble a

balance between uniform longwave cooling and shortwave

heating). Furthermore, since we are really interested in

the horizontal heating contrasts, removing the global mean

flux should not adversely effect our results. The final



dimensionless thermal boundary conditions for the spherical

model are therefore given by

I

2 \-t 'aa (3.2.17)

where (.-t) is the local time of day measured from zero at

local noon. As in Chapter 2 the temperature scale deter-

mined from the heat flux boundary condition is

AT , - \"mO

From (3.2.17) we immediately notice that the diurnal and

meridional differential heating contrasts are of the same

order of magnitude so that we might expect comparable zonal

and meridional velocities in our results.

Using the zonal Fourier analysis of the diurnal heat-

ing from Appendix A, we find that the zonal mean heat flux

at the bottom is given by

r...L~ , -xa~----a~-------I^ ~nru~grrr~ -~1~
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which corresponds to net heating between the equator and

Z- 380 and net cooling between c -2 380 and the pole. If

we next apply the operator

to (3.2.18) we can see that. the net horizontally integrated

heat flux is zero so that the global mean of 8)0> O

remains unchanged.

Having now derived the necessary equations and boundary

conditions, we may turn our attention to the spectral

method of solution.

3.3 Numerical Methods

To solve our model equations (3.2.11) - (3.2.14) and

(3.2.6) - (3.2.8) we will follow a spectral or Galerkin

approach in the horizontal and finite differencing in the

vertical. In the spectral method, each of the dependent

variables is expanded in a series of orthogonal functions

of the two space coordinates > and , . After expanding the

variables, each equation is multiplied by the appropriate



function and integrated over the entire domain. The result-

ing set of equations for the harmonic coefficients contains

derivatives with respect to time and height only since the

horizontal derivatives are replaced by algebraic expressions.

For our problem, the natural choice of expansion functions

is the set of surface spherical harmonics which represents

the set of orthonormal eigenfunctions of the two dimensional

Laplacian operator on the surface of the unit sphere.

The spherical harmonic of order m and degree n is

defined as

Y (3.3.1)

where i($~)is the normalized associated Legendre polynomial

of order m and degree n.

From Appendix C we have the orthonormality condition

where ( ) stands for the complex conjugate. Ve also have

the following expressions for the space derivatives
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and we have the very simple expression for the Laplacian

(3.3.3)

T next expand each of the dependent variables as

a truncated series of spherical harmonics

e(>4' , t~)

.5

w

A'
V 'I

(3.3.4)

Y(';bi)

(3.3.2)
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and

where M is the truncation wavenumber for triangular

truncation. We note that the series for U and V are

truncated at n = M + 1. This is a consequence of the fact

that U and V are determined diagnostically from the

streamfunction and velocity potential. The precise

reason for this will become clear after we present the

spectral equations. In Figure 3.2 we show the domain of

the harmonic coefficients in wavenumber, (m,n) , space for

triangular truncation. As an example, for M = 6, the

expansions in (3.3.4) include all components on and within

triangle ABD while the expansions in (3.3.5) include all

components on and within triangle ACE. The source of the

term triangular truncation is now quite obvious from the

diagram.

To obtain the equations for the harmonic coefficients,

we substitute (3.3.4) and (3.3.5) in the model equations

and then apply the transform operator

~~1_1____ I _ _l_______l~s~lC~_
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The three prognostic equations in spectral form are:

vorticity equation

~1 'J

(3 . 3.7)

+ (-4 n 2()+1 5"

divergence equation

- 8 2, c ->) -E' (L)v)

*. a

thermodynamic equation

-K 9) - (9)+

F (I)

+ V%(V\t-t

(3.3.8)
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( o

where the nonlinear terms are given by

q l(3.3.10)

where q and r are any of the dependent variables and the

operator is defined in (3.3.6). In general, each of

the nonlinear terms will contain an integral over latitude

of a product of three different associated Legendre poly-

nomials. Such expressions have been termed interaction

coefficients and are rather cumbersome and time consuming

to compute. To avoid explicitly calculating these



interaction coefficients, we will evaluate the nonlinear

terms according to the transform method as suggested by

Elissen et al. (1970) and by Orzag (1970) . This method con-

sists of evaluating the nonlinear products in grid space

and then transforming the resulting expression into harmonic

coefficients. The technique is described in more detail in

Appendix D. Next, we present the spectral form of the diag-

nostic equations of our model. Since all of the equations

are linear, application of (3.3.6) is straightforward.

The spectral equivalents of (3.2.6) - (3.2.8) and (3.2.14)

are

the hydrostatic equation

\ (3.3.11)

the continuity equation

+ O (3.3.12)

expressions for streamfunction and velocity potential

(3.3.13)

and expressions for U and V
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where )- . From (3.3.14) we can now see

why U and V must be truncated at a value of n = M + 1. If

n = M + 1 is substituted into (3.3.13) then there will be a

nonzero contribution from the first term on the right-hand

side of each equation since these terms are within the trun-

cation limit of M for L and .

In the vertical, we once again use the stretched

coordinate defined by

along with the staggered grid with ten levels described in

Figures 2.3 and 2.4. The vertical derivatives and advective

terms are approximated with the finite difference scheme

described in section 2.4 and will not be repeated here.

The time integration of the three prognostic equations

is performed in accordance with the moditied leap-frog

scheme described in Chapter 2. The diffusion terms are

evaluated at the backward time step to avoid computational

instability. Also, a forward time stepping scheme is used



every so often to avoid the separation of the even and odd

time step solutions that tends to occur when exclusively

using a centered time differencing scheme. The procedure

we use is analogous to the method of Chapter 2. First,

we advance ~ and g to the new time using equations

(3.3.7) and (3.3.9) respectively, with the nonlinear terms

evaluated at the central time step and the diffusion terms

evaluated at the backward step, e.g.

'(t--- 26 NOWLIN

Using the latest values of O , we then diagnose the

"uncorrected" pressure from the hydrostatic equation (3.3.11).

By "uncorrected" we mean that r is computed by assuming

that C=i) =o . The uncorrected pressure is then sub-

stituted into (3.3.8) and we calculate the uncorrected

divergence at the new time, i.e. sY )

As in Chapter 2, we use the relationship

j >.15)

(3 .3 .15)

where 2&t d Cj)



is an arbitrary function of (>,() only. In spectral space,

this relationship is simply

(3.3.15a)

where Rm is the (m,n)th harmonic coefficient of R(>,)n

and Rm is a constant. From mass continuity and the boundaryn

conditions w(z=l) = w(z=O) = 0 we know that if we integrate

(3.3.15) or (3.3.15a) over the entire depth of the fluid,

the left-hand side must be zero and the second term on the

right is independent of z and thus we have the necessary

experssion for the correction term

0

and the actual divergence is obtained by substituting this

expression into (3.3.13a) . Given the vorticity and diver-

gence, we finally diagnose Vm, Um , and Vm from equationsn n n

(3.3.13) and (3.3.14) . We complete the time stepping by

applying the spectral equivalents of the boundary conditions

on 3, S, and&.

In this section, we must also address the problem

of the spurious growth of the amplitudes



of the harmonics close to the truncation wavenumber. This

problem has been termed spectral blocking (Puri and Bourke,

1974) and is the spectral equivalent of the cascade of

energy to the smallest scales in a finite difference numeri-

cal model. The difficulty is especially noticeable for

fairly low truncation values of M 4 10. The two methods

that have been previously used to damp this undesirable

growth have both involved the diffusion terms. Upon using

a -Z formulation of diffusion, Pollack and Young (1975)

found it necessary to fix the diffusion coefficients at the

unrealistically large values of

5 2 -1 11 2 -14 x 10 cm s 4 x 10 cm s

The problem here is that such strong diffusion supresses

all scales of motion and therefore only allows a very weak

circulation to develop. To make the damping more scale

selective, Young and Pollack (1977) tried a 9 diffusion

operator. Vhile they were able to use smaller effective

4 2 -1 9 2 -1diffusion coefficients (0,,10 cm s - 0 cm s )

the V 4 still provided too much damping of the medium scale

waves and artifically stabilized certain potentially unstable

modes (see discussion in Chapter 1, especially Table 1.3).



To avoid the problem of excessive long wave damping,

we use a diffusion operator coupled with a linear

Shapiro (1970) filter that damps according to the zonal

wavenumber. The Shapiro filter is an ideal filter in the

sense that it operates only on the amplitude of the wave

and thus it does not effect the phase. Consider an arbi-

trary field represented by a truncated Fourier series, e.g.,

:=-rq (3.3.16)

To apply a .-t order filter, we simply multiply the ampli-

tude of each wave component by the appropriate response func-

tion defined by

I2M

(3. :3 .17)

Thus the filtered field, ) , is given by

where - 4



The main advantage of the Shapiro filter is that one may

make the filter as selective as desired by choosing the

order of the filter. As an example, in Figure 3.3 we show

the response function for an eighth order filter for various

spectral truncations. Ve note that the response function

is fairly flat (and close to one) for the long and medium

waves and drops off sharply only near the truncation wave-

number. Thus the shortest resolved waves are effectively

eliminated while the longer waves are only minimally damped

by the filter. V- have found that a V diffusion operator

coupled with an eighth order zonal filter applied every

fifth time step is quite effective in controlling the cas-

cade of energy to the smallest resolved scales and the

associated spurious amplitude growth of the short waves (i.e.,

the problem of spectral blocking) . The numerical value of

the horizontal diffusion coefficient, Q , depends upon the

truncation wavenumber, M and it is reduced as M is in-

creased. For example, for M = 6 we use a value of %4 =

9 2 -1
5 x 10 cm s . Since horizontal diffusion

is included only as a numerical tool and not necessarily

for its physical significance, we will simply set K = 

Finally, we point out that since the thermal forcing

described by (3.2.17) is symmetric about the equator, the

solutions to the equations will also exhibit certain symmetry

properties. More specifically, a, 0, V, w, and U will be

L---~-aar~~XY1~"UI--rrr~-* i -rrsl --- ar
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symmetric about the equator while U and V will be anti-

symmetric. This allows us to reduce our computation time

and memory requirements by a factor of two since the spec-

tral expansions for the symmetric variables will include

only even modes (i.e., harmonics for which the sum of the

indicies, m + n, is even) . Similarly, the expansions for

the antisymmetric variables will include only odd modes

(i.e., m + n odd) . Integrations of this type are commonly

referred to as hemispheric as compared to global integrations

which retain all harmonics for all variables.

Rossow et al. (1980b) have pointed out that the YP

model cannot account for possible barotropic instabilities

because of the combined effects of low order truncation

(M=4) , hemispheric representation, and strong damping of

any mode with n >- 3 (their criterion for strong damping

is a horizontal diffusion time scale much less than 100

days) . This deficiency can be significant if the MMC -

barotropic instability cycle discussed by Rossow et al. (1980a)

plays a major role in driving the 4-day circulation. Their

comments on the YP model were based on the results of Baines

(1976) where it was shown that any mode with n < 3 is

always barotropically stable. A mode with n ?. 3 will be

unstable if its amplitude exceeds a certain critical value.



Furthermore any particular mode can become unstable as a

result of interacting with certain other destabilizing modes.

Concerning Rossow et al.'s comments on the YP model and their

relevance to our model we can make the following statements:

a) the hemispheric representation does indeed

eliminate some of the important destabilizing modes.

However if the resolution is high enough and the damping is

weak enough some of the retained potentially unstable modes

can grow to and beyond the critical amplitude.

b) The resolution and the damping (diffusion) are

the key factors that determine whether or not the model

allows barotropic instability. Using Rossow et al.'s

(1980b) criterion for strong damping (diff 4 100 days) it

was shown that in the YP model 04=4) only three of the ten

retained modes were not strongly damped. Of these three,

none are potentially unstable since n < 3 for all of them.

Our M = 4 solution suffers this same deficiency. For our

M = 6 solution six of the twenty one modes are not strongly

damped. Of these six modes, three are potentially unstable.

For the M = 8 solution ten of the thirty-six modes are not

strongly damped. Of these ten, seven are potentially un-

stable. Thus it is clear that our higher resolution

experiments (M=6 and 8) do in fact allow for the possibility

of barotropic unstability. Conversely, we see that M = 6

is the minimum resolution required to simulate any of the



potentially unstable modes.

Having completed our description of the mathematical

formulation and the numerical aspects of the model we

continue by presenting the results of our computations.

3.4 Results

In this seciton we present the results from our non-

linear spectral model. Unless otherwise noted, all var-

iables (e.g. velocity components) are dimensionless.

Because of the complexities of a three-dimensional non-

linear model and the inherent long time scale nature of our

problem we were limited as to the number of numerical ex-

periments that could be conducted. In each case, the

computations were stopped when we reached what appeared

to be a steady state as determined by the curves in

Figure 3.4. From the curves we can see that for u to

reach a steady state typically requires an integration time

of four solar days (r04 x 107 s or 468 terrestrial days).

In our model we have parameterized the vertical heat trans-

port as a diffusion term. Thus we must be sure that the

steady state integration period is longer than the ver-

tical diffusive time scale. For our values of h = 5 x 105 cm

and = 10 4 cm2 s-1 the diffusion time scale is C= h2 /

= 2.5 x 107 s. Thus our integrations have exceeded the

important time scales in our model (i.e., the length of a
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solar day and the vertical diffusion time).

The strongest retrograde mean zonal velocity in all

runs was at the top of the model at the equator. The max-

imum value of u, as shown in Figure 3.4a, was achieved

after 3.5 solar days (SD). On the other hand, the mean

meridional circulation (MMC) reached a quasi steady state in

less than half of that time, i.e., in 1 to 1.5 SD, as

indicated by the top to bottom contrast of the horizontally

averaged potential temperature. As a point of interest,

we note that Fultz et al. (1959) observed a similar behavior

in their laboratory experiments, i.e., the MMC developed

rather quickly (less than one flame rotation) while the

mean zonal flow required a much longer time to appear

(several flame rotations).

Because of the complexities of a three-dimensional

nonlinear model and the inherent long time scale nature of

our problem, we were limited as to the number of numerical

experiments that could be conducted. For the sake of

completeness, we carried out a parameter study for only the

lowest order spectral truncation of M = 2. For the higher

order truncations, we used our best estimates for the Venus

values of the parameters (Appendix B) and focused our

investigation on the effects of spectral truncation.

Thus, unless otherwise specified, we used G = 1375,

2 1
22 = 15.5, Pr = 2'



Once again, we emphasize that our model is highly

simplified and designed to specifically study the moving

flame mechanism. It is not meant to be a general circula-

tion model for Venus. Consequently, when we compare our

results to the general circulation simulations of Young

and Pollack (1977) (referred to as YP) we can make only

qualitative comparisons. Nevertheless, the two models

do exhibit several important similarities. These are also

several interesting differences between the two models

which lead us to raise some serious questions as to the

validity and relevance of their results.

3.4.1 Low Order (1M=2) Computations

As mentioned above, we include these low order com-

putations and parameter studies for completeness. We

hesitate to extend these results and conclusions to the

higher order nonlinear cases. Since zonal wavenumber 2 is

filtered out the eddy fields exhibit only a wavenumber 1

variation and thus do not show any of the interesting

higher order nonlinear effects.

In Figure 3.5 we show the maximum retrograde mean

zonal velocity as a function of the thermal forcing

parameter, G, for 2 = 15.5 and Pr . For comparison

we include the analogous curve for the linearized calcula-

tions of section 2.5.2. The most obvious difference between

the two curves is that the linearized model exhibits a
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much steeper slope for G 4 1000. More specifically for

G .. 0(100) , the M = 2 curve varies as G1/ 2 while the
1 .6

linearized curve varies as G . In both cases, however,

as G exceeds 1000, the curves flatten out implying that in

the Venus range of values additional thermal forcing alone

will not significantly increase the maximum u.

In Figure 3.6 we show the maximum retrograde u as

a function of the thermal frequency parameter for G = 1375,

Pr = 1. .Once again, the behavior is similar to that

predicted by our linearized model (Figure 2.13) and by

our simple qualitative discussion in section 1.1. The

2
maximum u occurs for some intermediate value of 2r - 0(10).

2 2
In this case it is 2\ = 12 as compared to 2 = 25

for the linearized case. For 2q2 4 10, the velocity drops

2
off very quickly. This happens because as 2r2 gets

smaller, diffusion becomes much more efficient at elimi-

nating temperature contrasts and wind shears. As 2r2

increases beyond 0(10) the period of the heat source be-

comes short compared to the diffusive time scale so that

the fluid is not able to significantly react to the rela-

tively rapidly moving heating variations. Wle note that

this process is much more gradual (in terms of changes in

222fusio than the rapidly increasing effectiveness of dif-

fusion for 2 2 4 10.I



We must mention that the M = 2 parameter study is

analogous to the linearized study of Chapter 2. The main

difference between the two is that the M = 2 spectral model

includes a greater meridional resolution of the zonal

wavenumber 1 eddies. Thus by comparing the linearized

and M = 2 parameter studies we can see that the behavior

of u is determined primarily by m = 0 and m = 1 interac-

tions. Greater meridional resolution of these zonal modes

seems to be unimportant. -we must also point and that the

validity of the M = 2 behavior cannot necessarily be

extended to higher truncations.

Since the primary goal of this chapter is to inves-

tiage the role of nonlinear interactions, we will focus

the rest of our discussions on the higher trunction exper-

ments. 1e will present results for the steady state M = 4

and 6 simulations (approximately 3.5 solar days) and for

the M = 4, 6, and 8 integrations after 1.5 solar days (SD)

(time limit on M=8 run).

3.4.2 Mean Meridional Circulation (MMC)

In Figure 3.7 we show the steady state MMC for trunca-

tions M = 4 (Figure 3.7a) and M = 6 (Figure 3.7b) . In

Figure 3.8 we show the MMC after 1.5 SD for M = 6 (Figure

3.8a) and M = 8 (Figure 3.8b) . As expected, in all cases

the flow is dominated by one large Hadley cell between

the equator and the pole. The circulation is driven by
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the meridional flux contrasts at the bottom. The inten-

sity in all cases, as indicated by the streamfunction,

is quite similar with a typical value of k max = .12 or

7 2 -1
2.4 x 10 cm s . The strongest meridional velocities

occur near the top of the lower boundary layer (Zt.25) and
-i

are at most 2 - 3 m s -1. Maximum vertical velocities occur
-i

at the equator and are typically 0.15 cm s- . The weak

reversed cell near the top at high latitudes is driven by

a weak reversed temperature gradient at the top (note that

this gradient is too weak to appear in our isotherm patterns

except in the M=8 case).

Once again, we immediately notice the role of the

nonlinear interactions in distorting and concentrating

the flow towards the equator and the bottom. This phen-

omenon was predicted by Stone (1968), as well as others,

and by our linearized calculations. It has already been

discussed in section 2.4. The main effect of higher re-

solution on the MMC is to allow for a more pronounced

meridional concentration of the flow. In all cases, the

cell is centered around Z = .4. For the steady solutions

the M = 4 cell is centered at = 300 while the M = 6

cell is centered at c = 220. For the 1.5 SD solutions

both the M = 6 and M = 8 cells are centered at = 220

By comparing the four different Hadley cell solution

we can draw two important conclusions: 1) the Hadley cell

___I~~__~I_ I_~~_~* _



reaches a quasi steady state in a relatively short time

period (roughly 1-1.5 SD) , and 2) to properly simulate

the important nonlinear interactions we need a minimum

resolution of M = 6.

The mean potential temperature structure in all of

the cases is remarkably similar. Once again we find that

the strongest gradients (horizontal and vertical) appear

in the lowest quarter of the model. The equator to pole

temperature contrasts at the bottom are:

M = 4 (steady) # = .032 or 3.80K

M = 6 (steady) .046 5.50

M = 6 (1.5 SD) .048 5.70

M = 8 (1.5 SD) .046 5.50

And again we see that M = 6 seems to be the minimum resolu-

tion required for accurate simulations even in our simpli-

fied model.

3.4.3 Large Scale Eddies

We begin this section by showing horizontal maps of

the complete flow for the steady state M = 4 and 6 cases

(Figures 3.9 and 3.10) and for M = 6 and 8 after 1.5 SD

(Figures 3.11 and 3.12). Specifically, we show the

zonal velocity, u, at the top of the model and the vertical

velocity, w, at Z = 0.39. Starting with Figure 3.9a for

u for the steady M = 4 case we can see that the flow is

dominated by the lowest zonal and meridional wavenumbers.
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Most of the flow at the top of the model is clearly retro-

grade as indicated by the negative values of u. The

strongest retrograde flow occurs at the equator at 900

local time (LT) with a maximum value of -3.8 or -15 m s-

The prograde flow is restricted to high latitudes in the

morning with a maximum value of 2.4 or 9.6 m s-1. We point

out that the prograde flow covers a relatively small part

of the planet. The size of this region appears exaggerated

because of the map projection. There is also a region of

very weak prograde flow at the equator near the antisolar

point (local midnight).

For the steady M = 6 case (Figure 3.10a) the overall

appearance is quite similar. The main differences are:

1) the strong retrograde flow at the equator occurs a bit

later in the morning, at 1000LT, and is more intense
-i

with a maximum of -4.1 or -16.4 m s ; 2) the region of

prograde flow at the equator covers a larger area; 3) in

high latitudes there is another relative maximum

region of retrograde flow centered at 2100 LT. In both the

M = 4 and M = 6 cases the dominance of the retrograde

flow is reflected in the horizontally averaged angular momen-

tum. The value is -1.8 for M = 4 and -1.2 for M = 6.

For the flow after 1.5 SD we see that the overall

zonal flow for M = 6 (Figure 3.11a) and M = 8 (Figure 3.12a)

are quite similar. The main differences between the 1.5 SD
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flow and the M = 6 steady flow are: 1) the appearance of

a second region of maximum retrograde flow at the equator

at 1630 LT and 2) the maximum values of u are slightly

larger in the 1.5 SD flow. As in the case of the MMC, we

find that the differences between M = 6 and M = 8 are

not nearly as pronounced as the differences between M = 4

and M = 6.

We now return to the steady state vertical velocity

patterns for M = 4 (Figure 3.9b) and for M = 6 (Figure 3.10b).

In both cases, the pattern is dominated by one solar locked

region of strong rising motion. A large portion of the

rest of the planet experiences relatively weak sinking

motion. For M = 4, the core of rising motion is quasi-

elliptical, centered at the equator at 1400 LT, and has
-1

a maximum vertical velocity of 3.2 or 1.1 cm s . It is

interesting to note that our M = 4 vertical velocity field

is remarkably similar to the one in YP solution I (their

Figure 18b). Their solution I is analogous to our experi-

ments in the sense that it represents the development of

the forced flow from an intial state of rest and neutral

static stability. The main differences between their w

field and ours are that their core of rising motion is

centered at 1240 LT (i.e., closer to the subsolar point)

and their maximum w is larger than ours by a factor of

three. The reason for these differences is probably linked



to the fact that their map is plotted at a height of 56 km

above the surface which is right in the midst of the region

of strong shortwave absorption and so we might expect the

strong vertical motion to be closer to the subsolar point.

Recall that our model is forced by boundary heating and thus

the location of the core of rising motion is dependent

upon the vertical diffusion process.

The M = 6 steady w field (Figure 3.10b) is a very

striking example of planetary scale Y shaped feature. As

in M = 4, the dominant feature is a solar locked core of

strong rising motion occurring at 1400 LT. In addition to

the very obvious shape difference there are several other

important differences between this pattern and the M = 4

case. The M = 6 core is more intense and covers a smaller

-i
area. The maximum value here is 4.1 or 1.4 cm s which

is roughly 27% stronger than the M = 4 value. This increase

in magnitude and decrease in area indicates that the

higher resolution model is better able to represent smaller

scale localized features. The other interesting difference

is that for M = 6 we see a second V shaped region of weak

rising motion indicating that zonal wavenumber 2 is play-

ing a more significant role than in the M = 4 case.

Finally, comparing the M = 6 and 8 w fields after

1.5 SD (Figures 3.11b and 3.12b) we again see the dominant

core of rising motion near 1400 LT. As might be expected,



the core for M = 8 is more intense and smaller in area

than for M = 6. We also notice the appearance of two other

bow shaped regions of weak rising motion indicating the

importance of zonal wavenumbers 1, 2, and 3. We note

however that we cannot be sure about the future behavior

of the M = 8 fields because of the relatively short inte-

gration time. We next turn our attention to the structure

of the steady state eddies since we are ultimately

interested in their ability to drive the mean zonal flow.

In Figures 3.13 and 3.14 we show vertical cross sections

of the eddies for M = 4 and 6 respectively. We do not show

the M = 8 eddies becuse of the shorter integration time and

the fact that we cannot be absolutely sure that they

will converge to a steady state similar to M = 6. The

cross sections for 0', u', and w' are at the equator while

the cross section for v' is near 250 latitude. All four

fields in both figures clearly reflect the dominance of

wavenumber 1. The higher order nonlinear interactions

are forcing the circulation to concentrate near the sub-

solar point. This phenomenon is analogous to the effect

of the nonlinear interactions on the MMC. By comparing

the two figures it is again obvious that the higher trunca-

tion allows greater resolution of the nonlinear distortion

and concentration of the flow near the subsolar point.
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Starting with e', we see that the strongest gradients

(horizontal and vertical) are confined to the lower boundary

layer on the daylight side of the planet. The day to night

temperature contrasts are 0.14 or 170 K for M = 4 and 0.16

or 190 K for M = 6. IBth of these values are significantly

larger than their respective meridional contrasts of 3.80

and 5.50 even though the diurnal and meridional heating

variations are comparable. The reason for this behavior

becomes clear in view of the u' fields (Figures 3.13 and

3.14c) . The diurnal temperature contrasts are closely

linked to u' since u is comparatively small in the lower

boundary layer (Figure 3.15) . For both M = 4 and M = 6,

in the lower boundary layer, u exhibits a region of strong

horizontal convergence during the afternoon and much weaker

flow during the rest of the day. Thus the eddy zonal

velocity is maintaining the strong diurnal temperature

contrasts on the daylight side of the planet. The maximum

temperature at the lowest model level lags behind the

heat source by only 150 for both M = 4 and 6. The lag shows

only a very modest increase with height, i.e., a very weak

retrograde tilt. This is further confirmed by the w'

fields. The point is that in the nonlinear cases, we can-

not predict the vertical zonal momentum fluxes from a simple

visual inspection of the isotherms and convection cells.

VJ also notice that near the point of maximum e' there is



a region of very weak negative stratification. From

our results, we can see that this is not a significant prob-

lem i.e., our steady state solutions are not destroyed by

small scale convective instability. Clearly the vertical

heat diffusion term can account for this sub grid scale

convection and thus a parameterized convective adjustment

process is not needed in the model.

By comparing w' for M = 4 (Figure 3.13b) and M = 6

(Figure 3.14b) we once again see the importance of resolu-

tion in accurately treating the higher order nonlinear

interactions that cause the flow to concentrate in a rela-

tively narrow region. For M = 4, the core of rising motion

has a width of 1200 of longitude and a maximum vertical

-i
velocity of 2.7 or 0.9 cm s . For M = 6 the corresponding

values are 780 of longitude and 3.8 or 1.3 cm s- 1

Unlike our linearized computations, the eddy circula-

tion pattern is more nonlinear and three-dimensional and

cannot be simply described in terms of longitudinal and

meridional convection cells. As was mentioned above, for

M = 4 and 6, the u' field exhibits a region of strong con-

vergence in the lower boundary layer in the early afternoon.
-i

In both cases, the maximum velocities are 3.2 or 13.6 m s-1

Near the top of the model we see a region of fairly strong

divergence centered around the morning terminator. The

main difference between M = 4 and M = 6 appears in this
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region where M = 6 shows stronger velocities and a cor-

responding stronger divergence. For M = 4 the maximum
-l

velocity is 2.4 or 9.6 m s-1 while for M = 6 the value is

-i
3.4 or 13.6 m s . We will see in section 3.5 that this

seemingly small difference has a very important impact on

the kinetic energy spectra (Figures 3.21 and 3.22).

Finally, the meridional eddy flow also exhibits greater

activity on the daylight side of the planet. The main

effect of increased resolution is once again to produce

a narrower region of maximum activity. In both cases

the maximum value of v' is 2.4 or 9.6 m s-i

3.4.5 Mean Zonal Velocity

Finally in this section, we have come to the main

focus of this thesis -- the mean zonal velocity, u, that

is driven and maintained by the moving flame mechanism.

In Figure 3.15 we show height-latitude cross sections of

the steady state u for truncations M = 2, 4, and 6. In all

three cases we do indeed see a retrograde mean zonal flow

with maximum values that are 0(1). Thus in no case do we

find any u that significantly exceeds the speed of the

heat source. Recalling that on Venus the 4-day circulation

corresponds to a maximum u that is twenty-five time larger

than the speed of the sun it appears that it is unlikely

that the moving flame mechanism alone can force the 4-day

circulation. This is further confirmed by the fact that in

.. -1-1 I-I. ,(,Wljol"" ur1---. lip--- .1p.
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our calculations we find eddy and mean velocities that are

of the same magnitude which appears to be contrary to the

observations of the circulation of the Venus stratosphere.

Furthermore, if we assume that our thermal forcing is too

weak (even as much as order of magnitude too weak) , from

our M = 2 parameter study (Figure 3.5) we see that a large

increase in G would result in only a moderate increase in

the maximum value of u.

Returning to our results, the cross sections in

Figure 3.15 are for M = 2, 4, and 6. In all three cases,

the circulation consists of retrograde mean zonal flow with

an equatorial jet at the top of the model. For M = 2

(Figure 3.15a) the entire model exhibits retrograde flow.

In fact, each model layer is in solid body rotation, i.e.,

-l
u varies as cos 4. The maximum value of u is -1.2 or-4.8ms

For M = 4 (Figure 3.15b) most of the model exhibits

retrograde flow except for a small region in the lower one

third near the equator. The prograde flow in this region

is much weaker than the retrograde flow. The maximum value

of u is -1.45 or -5.8 m s-1

The M = 6 cross section also shows retrograde flow,

but in this case it is confined to the top half of the

model. However, the prograde flow in the lower half of

the model is much weaker than the retrograde flow above.

The maximum value of u is -1.2 or -4.8 m s-1

_ _^_III _I~L__



We can see additional interesting features of the

steady state mean zonal flow in Figure 3.16 where we have

plotted the vertical profile of u at the equator (Figure 3.16a)

and the meridional profile of u at the top (Figure 3.16b).

From the curves, it is again immediately obvious that the

maximum retrograde mean zonal velocity for all truncations

considered at the top of the model near the equator. Con-

sidering the vertical profiles (Figure 3.16a) we can now

clearly see the region of weak prograde flow in the lower

part of the model for the higher truncation cases. It is

more pronounced in the M = 6 case. The increase in retro-

grade u is roughly linear in the interior of the model for

all three trunctions. The stress free top is also clearly

visible in the vertical profiles.

From the meridional profiles of u (Figure 3.16b) we

can see that the higher harmonics (with indicies 5 4) do

indeed play an important role in resolving the structure

of the mean zonal flow. As mentioned above, the M = 2

solution represents exactly solid body rotation, i.e.,

u varies as cos . For M = 4, the profile deviates slightly

from solid body rotation so that u drops off a bit faster

than cos , especially in midlatitudes.

The M = 6 profile shows a much sharper equatorial

jet than M = 4. Etween the equator and 450 latitude,

u decreases quite rapidly. The profile then flattens out
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in high latitudes. The reasons for this behavior will

become more apparent later when we discuss the Reynolds

stresses (Figures 3.19 and 3.20).

In Figures 3.17 and 3.18 we present the vertical

cross sections and the vertical and meridional profiles

of u after 1.5 SD for M = 4, 6, and 8. As in the steady

state solutions, we again find that the maximum retrograde

mean zonal flow occurs at the top of the model near the

equator. The maximum values of u are -1.1 (-4.4 m s - 1

-1 (-4 m s-1), and -0.9 (-3.6 m s-1 ) for M = 4, 6, 8

respectively. We note that the M = 4 and 6 values are

roughly 80% of their corresponding steady state values.

The cross sections for M = 4 and 6 (Figure 3.17a and

b) are quite similar in appearance to the steady state

cross sections (Figures 3.16 b and c). The main difference

is that during this developmental stage, the prograde flow

covers a larger area than in the steady state (for both

M = 4, and 6). For M = 8, the retrograde flow is confined

to the upper part of the model between the equator and 600

latitude. If we may be so bold as to extrapolate in time,

we can quess that for M = 8, the steady state u will

consist of retrograde flow in the upper half of the model,

except possibly in higher latitudes where there will be

very weak prograde flow. The maximum retrograde u will be

at the top at the equator and will have a value of approx-

imately - 5 m s- 1. The lower half of the model will
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exhibit weak prograde flow at all latitudes. This des-

cription is quite similar to the steady state M = 6 case

and is probably very reasonable in view of the similarity

between the M = 6 and 8 profiles in Figure 3.18 (by simi-

larity we mean that there is a much closer resemblence

between M = 6 and M = 8 than there is between M = 4 and

M = 6)

By comparing the vertical profiles of u at the equator

(Figure 3.18a) we find that the differences between M = 6

and 8 are quite small as compared to the much more signifi-

cant differences between M = 4 and M = 6. Ve also note that

the M = 4 and 6 profiles appear quite similar (except in

amplitude) to their steady state counterparts. Thus it

appears that the 1.5 SD profiles represent a resonable

prediction of the steady state profiles and therefore wemiaht

expect the steady state M = 8 profile to be similar to the

1.5 SD M = 8 profile.

As for the meridional profiles (Figure 3.18b) we again

see that the M = 4 flow is close to solid body rotation

(the dashed line represents cos4 and is included for

reference) . Both M = 6 and 8 show a fairly sharp equatorial

jet. In higher latitudes, the M = 6 profile flattens out

(as in the steady state) while the M = 8 profile changes

sign corresponding to weak prograde flow with a relative

maximum near 650 latitude. Had we integrated the M = 8

._ . - lrrrrr ira~ - - I ~ r^~-~a~rr~---u- Y- llax~
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case for a longer time, we might expect the prograde flow

in higher latitudes to further weaken and possibly even

change to weak retrograde flow as in the M = 6 case.

In view of the cross sections and profiles of u that

we have presented (steady state and 1.5 SD) we point out

some interesting similarities and differences between

our model results and the observations of the 4-day

circulation. The similarities are: 1) the model does

produce a retrograde mean zonal flow with an equatorial

jet, corresponding to the recent Pioneer Venus results

(Rossow et al., 1980); 2) the mean meridional flow at

the top is poleward and the maximum value of v is typically

Amaller than the maximum u by a factor of two or three.

On the other hand, the differences between our results and

observations are: 1) u is too small by an order of magni-

tude; 2) the eddy velocity components in our model typically

exceed the zonal mean values by a factor of two or three,

contrary to observations where u is dominant.

At this point, based on our results we must also con-

clude that model resolution can have a drastic effect on

the details of the resulting flow. In particular it ap-

pears that the transition from M = 4 to M = 6 is much more

significant than changing from M = 6 to M = 8. The details

of these differences will be discussed in more detail in

the next two sections. The main point is that any further
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general circulation simulations of Venus must have a resolu-

tion of at least M = 6 and thus we must seriously question

the validity and relevance of YP computations.

3.4.6 Reynolds Stresses

Through. all of our results we have clearly demonstrated

that the moving flame mechanism can indeed drive a retro-

grade mean zonal flow. The final question is: exactly how

is this accomplished? The answer can be easily explained

in terms of the Reynolds stresses which are simply the

angular momentum transport terms in the equations of

motion. We are specifically interested in the vertical and

horizontal fluxes and the role that each plays in maintaining

u. We will focus our discussion on the net angular momentum

fluxes defined by:

1) net vertical flux across a given height level

2) net horizontal flux across a given latitude circle

0



where the overbar, ( ), indicates the zonal mean. We

will also be discussing the contribution to the angular

momentum transport by the MMC in which case we replace uw

and uv by uw and uv respectively. Similarly for the contri-

,bution by the eddies we replace uw and uv by u'w' and u'v'

respectively (Reynolds stresses) .

In Figures 3.19 and 3.20 we show the net vertical and

net horizontal angular momentum fluxes for the M = 4 (Figure

3.19) and the M = 6 (Figure 3.20) steady state solutions.

Ve begin by first recalling that the retrograde flow at

the top exhibits an equatorial jet in all cases. For M = 4

the meridional variation of u is close to the profile for

solid body rotation. For M = 6, the meridional profile

shows a farily sharp equatorial jet with u decreasing

rapidly between the equator and 500 latitude.

e now compare the vertical Reynolds stresses for

M = 4 and 6 (Figures 3.19a and 3.20a) . In both figures

we show the contributions to the net flux from: 1) the MMC

(curve 0) , 2) zonal wavenumbers 1 and 2 (curves 1 and 2),

3) all eddies combined (curve E) , and 4) the total net

flux (dashed line) which is simply equal to O + E.

For both truncations we can clearly see that the total

eddy flux represents an upward transport of retrograde

angular momentum. Thus the eddies that are forced by the

moving flame type heat flux do indeed produce a retrograde

acceleration of the upper part of the model. In linear
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theory and in our linearized calculations, this conclusion

was easily reached based on the tilt of the eddy convection

cells. For the current nonlinear calculations, the upward

eddy flux of retrograde angular momentum is due to the

phase shift of w' relative to u' (Figures 3.13 and 3.14),

i.e., the core of rapid upward motion is generally correlated

with retrograde eddy zonal flow. However, there is no

simple and obvious tilt in the convection pattern as in the

linear problem.

As a point of interest, we also show the vertical

retrograde momentum transport by zonal wavenumbers 1 and 2

(curves 1 and 2 respectively) . For both trunaction we

observe a similar behavior: the moving flame effect

(i.e., upward eddy transport of retrograde momentum) is

dpe primarily to zonal wavenumber 1. On the other hand,

zonal wavenumber 2 causes a downward flux of retrograde

momentum (except in the lowest quarter of the model) and

therefore counteracts the desired effect. The total eddy

flux is determined primarily by the difference between the

contributions from wavenumbers 1 and 2, although for M = 6

it is clear that higher wavenumbers are not negligible.

The major difference between the M = 4 and M = 6

results lies in the relative importance of the momentum

transport terms associated with the MMC (i.e., zonal

wavenumber 0; curve 0) . 'For both truncations, the overall

_ __ ~L



structure is similar -- downward flux of retrograde momentum

in the lower part of the model and an upward flux in the

upper part. However, the difference between M = 4 and

M = 6 is the magnitude of the MMC flux and its relative

importance in determining the net vertical angular momentum

flux (dashed line in figures) . In the lower part of the

model the M = 6 downward flux is twice as large as the

M = 4 downward flux. This explains the larger net upward

flux in the lower part of the model for M = 4.

In the upper part of the model, the difference in the

upward MMC fluxes for M = 4 and M = 6 are much more pronounced.

The M = 4 flux is larger than the M = 6 flux by a factor

of three to four. By comparing the combined effects of the

eddies and the MMC in the upper part of the model., we see

that for M = 4 the net upward flux of retrograde angular

momentum receives two-thirds of its magnitude from the

eddies and one-third from the MMC. For M = 6, the net flux

is due almost entirely to the eddies (85% from the eddies

and only 15% from the MMC) . Thus, we see that the lower

spectral truncation of M = 4 results in an overestimate

of the importance of the role of the MMC in driving the

retrograde mean zonal flow.

We next turn our attention to the horizontal angular

momentum fluxes (averaged over height) for M = 4 (Figure

3.19b) and for M = 6 (Figure 3.20b) . Here we show the net



flux (dashed line) and the contribution of the MMC (curve

0) and the total contribution of the eddies (curve E) . For

M = 4, the MMC provides. a poleward flux of retrograde

angular momentum between the equator and 550 latitude.

The maximum flux occurs near 270 latitude. Such a profile

would lead to the development of a mid or high latitude jet.

However, balancing this is a strong equatorwa'ed eddy flux

of retrograde angular momentum with a maximum near 480

Between the equator and 300 latitude, the MMC flux and the

eddy flux are roughly in balance resulting in an almost

negligible net poleward flux of retrograde momentum.

Beyond 300 latitude, the equatorward eddy flux becomes im-

portant and by 500 latitude the net flux curve follows the

eddy curve quite closely. The maximum net flux occurs at

550 latitude. This net equatorward flux of retrograde

angular momentum is what maintains the equatorial jet

profile of u (Figure 3.16b) . As in the vertical fluxes,

we again find that for M = 4, the maximum MMC flux is roughly

one-half of the maximum eddy flux so that both the role of

MMC and the role eddies are comparable in terms of their

effect on u.

For M = 6 we see that the MMC provides a poleward

flux of retrograde angular momentum between the equator

and angular momentum between the equator and 450 latitude

and a weak equatorward flux beyond 450. The eddy
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transport is dominated by a strong equatorward flux with

a maximum near 350. As in the case of the M = 6 vertical

fluxes we again find that the eddy transport is the dom-

inant term in the net flux and the MMC plays only a minor

role in the angular momentum balance. The maximum net

equatorward transport of retrograde momentum occurs near

350 latitude. Since the peak equatorward net flux is 200

closer to the equator than in the M = 4 case we now can

see why the M = 6 profile of u (Figure 3.16b) shows a sharper

jet structure than the M = 4 profile.

In view of these results, we are immediately lead

to one conclusion concerning model resolution: the role

of the MMC in driving and maintaining the mean zonal flow

is severely overestimated in the M = 4 case. Related to

this, we point out that YP results also indicated that

both the MMC and the large scale eddies play an important

role in the angular momentum balance. This agrees with our

M = 4 results. Based on the differences between our M = 4

and M = 6 computations we can see that a truncation of

M = 4 is not enough to accurately simulate all of the non-

linear interactions of even the largest scale waves (m=l

and 2) and consequently we again must question the validity

of YP as being a correct representation of the general cir-

culation on Venus.



3.5 Discussion

Before discussing our results, we again want to

emphasize that we have investigated only one very specific

physical process -- the moving flame mechanism -- in a

simplified Ibussinesq model. We have not developed a

highly complex and detailed general circulation model for

Venus. Nevertheless, we do see some interesting similar-

ities and differences among our results, YP results, and

observations of Venus. While we cannot make an in-depth

comparison between our computations and YP simulations

we can compare certain overall features of the two models.

We can also make some important and interesting

inferences and raise some crucial questions concerning

current and future modelling efforts related to Venus.

The discussion that follows in the rest of this

section is presented in the same order as the results of

the previous section. From a numerical point of view,

our problem is complicated from the outset by the inherent

relatively long physical time scales. Therefore, to reach

any type of steady solution, the model must be integrated

for fairly long periods, typically three solar days (cor-

responding to roughly one terrestrial year). For this

reason we are limited in terms of the spatial resolution

of the model as well as in terms of the number of possible

numerical experiments. Thus we have carried out limited

parameter studies for only the lowest order truncation
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of M = 2. The main purpose of these studies is to compare

the low resolution nonlinear results to linear theory and

to the linearized calculations of Chapter 2. From Figure

3.5 we see that the nonlinear results agree with the

linearized results and linear thedry to the extent that all

three predict an increase in the maximum retrograde u as

the thermal forcing parameter, G, is increased. The main

difference is that as the degree of nonlinearity increases,

the effectiveness of varying G becomes less noticeable.

According to linear theory, the maximum value of u varies
2

as G For the low order spectral model, for G10(100) the

maximum u varies as G /2 while for G0O(1000), it varies
1/3

as G . Thus even if our thermal forcing is too small

by an order of magnitude, our maximum u would be off by

at most a factor of two.

By comparing Figures 2.13 and 3.6 we see that the

dependence of the maximum u upon the thermal frequency param-

eter, 2 , is similar for both the linearized and the

nonlinear models. The most important feature of these

2curves is the relative maximum that occurs for 2r -0(10).

For the linearized calculations the peak is at 2r 25For the linearized calculations the peak is at 2 = 25

while for the nonlinear calculations the peak is at

2 = 12. The most interesting point here is that if the

4 2 -1widely used estimate of IC = 10 cm s is correct, thenv
at the Venus cloud tops we have 2 = 15.5. Consequently



for a fixed thermal forcing, G, the moving flame mechanism

exhibits its maximum effectiveness for the estimated Venus

value of the thermal frequency parameter.

As mentioned above, because of the relatively high

cost of running a fully nonlinear model we were limited

as to the number of experiments that could be carried out.

Thus after examining the results of the low order truncation

parameter studies, we chose values of the dimensionless

parameters that seemed reasonable for Venus and concentrated

our time and effort on studying the effects of spectral

truncation (i.e., spatial resolution). We also note that

the spectral truncation is in a sense a measure of the

degree of nonlinearity of the model (i.e., higher trunca-

tion allows more accurate representation of nonlinear

interactions).

In view of our linearized solutions and the results

of Stone (1968) the sensitivity of the MMC to spectral

truncation is as one might expect. The nonlinear inter-

actions force the Hadley cell to be concentrated near the

point of maximum heating (in our case towards the bottom

and the equator). For M = 4 (Figure 3.7b) the Hadley cell

is centered at = 300 while for M = 6 (Figures 3.7b and

3.8a) and for M = 8 (Figure 3.8b) it is centered at 4= 220

Thus we again see that the transition from M = 4 to M = 6

is quite significant in terms of the treatment of
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nonlinear interactions. The differences between M = 6

and M = 8 are not nearly as pronounced. It is also inter-

esting to note that the MMC reaches a quasi steady state

1
rather quickly -- after 1 - 12 SD -- as compared to the

mean zonal flow which requires roughly three solar days

(the vertical diffusion time scale).

From the horizontal maps of the total flow (Figures

3.9 to 3.12) and the height-longitude cross sections of the

eddies (Figures 3.13 and 3.14) it is quite clear that the

circulation is dominated by the largest scales of motion --

primarily zonal wavenumbers 1 and 2. Here, the role of

the nonlinear interactions is to concentrate the circula-

tion near the subsolar point (local noon) . Furthermore,

this nonlinear concentration becomes more pronounced as the

model resolution (truncation) is increased. This effect

is especially noticeable in the vertical velocity patterns

shown in parts (b) of Figures 3.9 - 3.14. In all cases,

the vertical velocity field is dominated by a relatively

narrow core of rising motion near the subsolar point.

This feature is analogous to the "mixing region" concept

(i.e., an internal vertical boundary layer) introduced by

Goody and Robinson (1966) and discussed by Stone (1968).

and Kalnay de Rivas (1973) . From our figures we can

clearly see that the size and intensity of the mixing region

is quite sensitive to the model resolution. As an example

we consider the eddy vertical velocity fields, w', for



M = 4 (Figure 3.13b) and M = 6 (Figure 3.14b) . For M = 4

the mixing region has a width of 1200 of longitude and a

maximum w' of 1.9 cm s- . For M = 6, the width is only

o 2 -178° of longitude and the maximum w' is 1. -cm s

By comparing the horizontal structure of the total

vertical velocity fields (Figure 3.9b for M = 4, Figure 3.10b

for M = 6) we see an additional role of the higher trunca-

tion -- the ability to capture some important smaller scale

details of the circulation. By this we specifically mean

the shape of the mixing region. For M = 4 it resembles a

distorted ellipse. For M = 6 it appears as a very prominent

Y shaped feature with a meridional extent of+ 45latitude.

Furthermore, in the M = 6 map there is a hint of a second

Y shaped feature, extending from pole to pole, with its

vertex near the morning terminator. The similarities

between this pattern and the observed UV features at the

Venus cloud tops are quite remarkable. If in fact the

dark Y's on Venus are related to convective activity

within the clouds, then our solutions seem to imply that

these observed phenomena must be at least partially re-

lated to the response of the atmosphere to the overhead

motion of the sun (i.e., the moving flame effect).

The additional horizontal details that appear

in the higher truncation (i.e., M=6 and 8) experiments

are related to the assumed form of the diurnal differential

heating. A zonal Fourier analysis (Appendix A) of our



heating function (which is analogous to the diurnal varia-

tions in solar heating) shows that the bulk of the thermal

forcing is confined to those modes that have zonal wave-

numbers : 4. Thus to obtain any meaningful results, the

resolution (trunction) must be chosen so as to allow the

model to accurately simulate all of the important directly

forced modes (i.e., those with M - 4). Clearly in our M = 4

solution and in all of the YP results this criterion is not

satisfied since the dissipation terms at the high end of

the resolved spectrum are forced to be artificially large 0

to prevent spectral blocking. In our case this is due to

the Shapiro filter while in YP this is due to the V4 dif-

fusion operator. Either way, for M = 4 we can be sure that

zonal wavenumbers 3 and 4 are being misrepresented by the

model. However, for M = 6 it is very likely that all

waves up to M = 4 are treated fairly accurately since our 4

eighth order filter (Figure 3.3)leaves 90% of the

amplitude of wavenumber 4 and 99.6% of the amplitude of

wavenumber 3. Thus we see significant differences between

the M = 4 and M = 6 results but much less significant

differences between M = 6 and M = 8.

Turning our attention to the temperature field

(Figures 3.13a and 3.14a) we again notice that the strongest

temperature gradients are confined to the lower boundary

layer. V@ also notice that the diurnal temperature contrasts



are larger than the mean equator to pole contrasts (Figures

3.7 and 3.8) by a factor of three. This is surprising

since the diurnal and meridional differential heat fluxes

are comparable. However, the reason for this behavior is

easily understandable in view of the velocity fields. v in

the lower boundary layer is consistently equatorward (i.e.,

the Hadley cell) with dimensionless magnitudes less than one.

On the other hand, u' in the lower boundary layer (Figures

3.13c and 3.14c) exhibits a region of strong convergence

on the daylight side of the model with maximum dimensionless

magnitudes of three. Thus the strong eddy circulation is

maintaining the strong temperature gradients on the day-

light side.

Next we turn to the results for the mean zonal velo-

city. In all cases we find a significant retrograde

mean zonal flow with the maximum u -) 0(1) occurring

at the top of the model at the equator. The details of

the vertical and meridional profiles of u depend upon

the truncation (Figures 3.15 - 3.18). For M = 2 u is

retrograde at all levels with a meridional profile at each

level corresponding to solid body rotation. For M = 4

u is retrograde except in a small area near the equator

in the lower part of the model. At the top, the meridional

profile is very close to solid body rotation. For the

higher truncations (M=6 and 8) the retrograde flow is



confined to the upper half of the model. Also, the

higher truncation solutions show a more pronounced

equatorial jet. Upon comparing the M = 4, 6 and 8 profiles

in Figure 3.18 we again see that the differences between

M = 6 and M = 8 are much less significant than the differ-

ences between M = 4 and M = 6. And once again we must con-

clude that M = 4 is insufficient resolution.

By comparing the Reynolds stresses for M = 4 (Figure

3.19) and for M = 6 (Figure 3.20) we immediately notice

that the processes that maintain u are different for the

two truncations. For M = 4, both the eddies and the MMC

contribute significantly to the angular momentum balance.

For M = 6, the nMC is much less important in maintaining

u.

To further confirm our conclusion concerning trunca-

tion and the inaccuracies of the M = 4 solution, we have

plotted some kinetic energy spectra in Figures 3.21 (steady

state solutions) and 3.22 (1.5 SD) . These spectra are

computed at the top of the model at the equator, i.e., the

location of the maximum retrograde mean zonal flow.

Since we are considering a point at the equator, the

kinetic energy involves only the zonal velocity component,

u. For the spectra the kinetic energy is thus defined as



Ey taking advantage of the spectral form of our model we

can immediately write

so thqt the contribution of each mode to the spectra is

simply

By comparing the results for the various truncations

"M=2, 4, 6, and 8) we observe one very definite difference

between cases with M 4 4 and those with M > 4. This dif-

ference is the wavenumber of the most energetic mode.

It is quite clear that for the lower truncation runs (Mc_4)

the mean flow contains the largest portion of the kinetic

energy. However, for the higher truncation cases (M;4)

zonal wavenumber 1 is the most energetic mode. Once

again this truncation related problem is intimately

associated with the inability of the M - 4 runs to

accurately simulate the most important directly forced

modes. The zonal Fourier analysis of the diurnal heating

contrasts (Appendix A) immediately reveals to us that
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the mode subjected to the strongest direct thermal forcing

is zonal wavenumber 1. And once again the conclusion is

unavoidable: if the forcing for the 4-day circulation

is related to the diurnal differential heating then any

simulation of the flow must accurately treat all modes

with M 1. 4 and therefore the model truncation must be

greater than four.

Finally, we would like to say a few more words com-

paring our results to YP results. We repeat that any

direct quantitative comparisons are not possible due to the

differences between the two models. However we can make

some interesting qualitative comparisons that raise some

important questions concerning the validity of the YP simu-

lations and their relevance to Venus. Furthermore we can

only compare our results with their solution I (i.e.,

development of the forced flow from a state of rest).

In general, their velocity components are two to

five times larger than ours (theirs are 25-30 m s-1 while

-lours are 6-12 m s-1) . In view of the different complexi-

ties of the two models, these differences are not unreason-

able. However, a more valuable comparison is to do an

internal check of the results for each model. In their

results u, v, u', v' are all of the same order of magnitude.

Similarly in our results, all of the horizontal velocity

components are all of the same order of magnitude.



Furthermore, for both our results and theirs the horizontal

flow is moderately larger than the overhead speed of the

sun but not an order of magnitude larger.

In their solution II, they observed a strong retro-

- -1
grade mean zonal flow with u = -90 m s . This was the

product of a finite amplitude instability which they induced

by arbitrarily multiplying the T) mode (after 1.5 SD) by

a factor of 36. We also tried this but the model quickly

blew up. Alternatively, we multiplied this mode by a

factor of six three times over the course of one-half of

a solar day. In this case the perturbation of the mean

zonal wind disappears rather quickly. Thus the finite

amplitude instability observed by YP in their results

-l
does not occur in our model and u does not grow to 100 m s

through this mechanism. It is possible that for this in-

stability to occur in our model requires a perturbed value

of u greater than some threshold value that we never ex-

ceeded.

A more interesting question is why do we observe an

equatorial jet in all of our simulations while they observe

a midlatitude jet in their solution I. We can tentatively

identify twfo factors that could explain this difference.

One is related to truncation, and the other is related

to their formulation of the vertical diffusion term and

its associated upper boundary conditions.



Concerning the truncation question, we again mention

the overestimated role of the MMC in maintaining u in the

M = 4 case. YP state that in their solution I the primary

forcing for u involves the MMC, planetary rotation, and to

a lesser extent the planetary scale waves. It is well-

known that a Hadley cell on a slowly rotating planet will

transport planetary angular momentum poleward thus leading

to the development of a mid or high latitude jet flowing

in the same direction as planetaiy rotation. Furthermore,

Kalnay de Rivas (1973) has shown that in a two-dimensional

axisymmetric model for Venus a Hadley cell coupled with

planetary rotation can force a retrograde high latitude
-I

jet of 10 - 20 m s-1 at the top of the model. If the MMC

is the dominant transport mechanism (as indicated in our

M=4 case and YP) , then it is not surprising that YP observe

such a situation and we do not since we have neglected

planetary rotation. However, we repeat once again that

these results are for M = 4 in which case the role of the

MMC has been overestimated. It would be interesting to see

if they find similar results for higher truncations.

Unfortunately they do not adequately discuss any of their

M = 6 simulations.

One puzzling feature of their mid latitude jet is

that it only appears in the layer from 55 - 64 km, i.e.,

at dimensionless heights between 0.86 and 1.0. Below
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Z = .86 their u field is close to solid body rotation which

is the profile we observe. Furthermore, they state that

the mid latitude jet only appears much later in the develop-

ment of the flow. Thile we do not know exactly what

they mean by "later", we can only guess that they mean

after 10 solar days. This situation is what leads us to

suspect that their -pp diffusion operator and its asso-

ciated upper boundary conditions may be contributing to

forcing the midlatitude jet in a relatively thin layer

near the top. Rossow et al. (1980b) have shown that the

additional upper boundary condition specified by YP does

not correspond to the assumed stress free top. Furthermore,

their mid latitude jet appears only when the integration

time (10 SD) approaches the vertical diffusion time scale

(1,12 SD). Prior to that time, they observe near solid body

rotation even at the top of their model. Therefore, based

on this evidence we suspect that u in their upper "boundary

layer" is being distorted by the erroneous boundary condi-

tion while the interior flow, which appears to be insensi-

tive to the error, reflects the correct solution in their

model.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

The main goal of this thesis was to investigate the

moving flame mechanism in three space dimensions -- i.e.,

a system which contains both diurnal and meridional heating

contrasts of comparable magnitude. The motivation for this

problem is to determine whether or not the overhead (diurnal)

motion of the sun plays a significant role in driving the

circulation of the Venus stratosphere as suggested by

Schubert and Phitehead (1969).

To study this process, we constructed two models of

different complexities -- a linearized model in Chapter 2

and a nonlinear spectral model in Chapter 3. loth models

are Boussinesq and hydrostatic with thermal forcing pro-

vided as a heat flux boundary condition at the bottom.

The linearized model (which is simply an extension of

previously published two-dimensional models) is written in

cartesian coordinates. The two horizontal coordinates are

infinite and the flow is assumed to be periodic in both

x and y with period 2r. The linearization consists of

neglecting all terms that are quadratic in the eddies except

for the Reynolds stress terms in the equation for the mean

zonal flow. The relative simplicity of this model allows

us to inexpensively: a) examine the first order nonlinear

effects (wave-mean zonal flow interaction), and b) carry out
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fairly extensive parameter studies.

The most important effect of the nonlinear interactions

upon the mean meridional circulation is to concentrate the

Hadley cell near the point of maximum heating (i.e., the

bottom near the equator). This result was anticipated in

view of Stone's (1968) conclusions from his study of the

properties of Hadley cells. For the assumed Venus parameter

values we found that the maximum mean meridional wind is

-I
^j12 m s and the maximum mean vertical velocity is

-i
0.39 cm s .

Because of the longitudinal resolution of M = 1, the

linearized eddy circulation consists of a subsolar to anti-

solar convection cell. Again due to the resolution the

cell shows no longitudinal asymmetries. For the two-

dimensional case (no MMC) the eddy convection cell exhibits

significant retrograde tilting. In the three-dimensional

case the tilt is still retrograde but not as pronounced.

The reason for this is that the Hadley cell maintains a

stable mean stratification which acts to reverse the tilt

of the convection pattern. Nevertheless, the effect of

heating from below is the dominant process in terms of de-

termining the retrograde tilt of the convection cell. The

-i
maximum eddy velocities are: zonal 6.8 m s , meridional

5.6 m s- and vertical 0.35 cm -5.6 m s , and vertical 0.35 cm s



Consequently, in both cases considered, the eddy cir-

culation produces Reynold's stresses that transport retro-

grade momentum upward and thus the moving flame mechanism

does indeed drive a retrograde mean zonal flow in the upper

layers of the model. In the three-dimensional case the

Hadley cell is the dominant horizontal momentum transport

mechanism. Thus, as one would expect, in this case the

maximum retrograde mean zonal wind occurs where the heating

-lis a minimum and has a value of -2 m s 1

The other purpose of the linearized model was to carry

out parameter studies. Ve are most interested in the de-

pendence of u upon the thermal forcing parameters, G, and

upon the thermal frequency parameter, 2 2 . e found that

u increases with G, however as G becomes large (j0 (1000))

the effectiveness of increasing thermal forcing becomes

less noticeable.

2For the 2 2 behavior, we found that u reaches a

2 2maximum for an intermediate value of 2 2 = 25. For 2 2 4 25

2u drops off quite rapidly while for 2v2 > 25 it drops off

gradually. It is interesting to note that if our estimated

4 2 -1
value of 4v= 10 cm s is correct then the Venus value of

2 222 = 15.5 is quite close to the peak in the 22 curve. We

note that these parameter dependencies are qualitatively

similar to those in previously published linear studies

(e.g., Schubert, Young, and Hinch, 1971) in which heat flux



boundary conditions were used. There are two differences

between our results and other linear studies. The linear

solutions are only valid for relatively small values of G,

i.e., for G 4 0(1), while ours our valid for a larger range

of values. The other difference is that linear solutions

were usually presented as limit solutions for very large

and for very small values of the frequency parameter, i.e.,

for 2 2 >> 1 and 2 2 44 1. Since our solutions were obtained

numerically (i.e., without any assumptions concerning the

value of 2j and the corresponding asymptotic series ex-

pansions of the dependent variables) they are valid for all

values of 2 2

Having completed the linearized study we then pro-

ceeded to develop a nonlinear spectral model for spherical

geometry. The main goals were to make the simulations

more realistic by using spherical coordinates and by allow-

ing for greater horizontal resolution and higher order

nonlinear interactions. Because of the high expense of

running a nonlinear model we studied particularly the effects

of spectral truncation to see what was the minimum resolu-

tion necessary to get meaningful results.

For the lowest order truncation, M = 2, we conducted

a limited parameter study and found that the results quali-

tatively agreed with the linearized results -- the maximum

mean zonal wind was retrograde and it increased with the

~"m~Y,



thermal forcing parameter, G, and peaked for an intermediate

value of the thermal frequency parameter, 2 2 = 12. We

must bear in mind however that these results may not neces-

sarily be valid for the higher resolution simulations.

We then chose what seemed to be reasonable estimates

of the Venus values of the dimensionless parameters and

then carried out experiments for truncations M = 4, 6, 8.

In all cases the mean meridional circulation (MC)reached a

quasi steady state in a relatively short time of 1.5 solar

days. For M = 4 and 6 the eddies and the mean zonal velocity

reached steady states after roughly three solar days.

The M = 8 integration was terminated after 1.5 solar days

(i.e., it reached a steady state for the MMC but not for

the eddies and u).

In terms of the MMC, the nonlinear interactions have

the same effect as in the linearized model except here

they are more pronounced, i.e. * they force the Hadley cell

to concentrate even more near the point of maximum heating.

We also note that the differences between trucation M = 4

and M = 6 are quite significant -- the center of the Hadley

cell shifts from 300 latitude (M=4) to 220 latitude (M=6

and M=8) . For all three truncations, the maximum mean

-I
meridional velocities are similar with values of 42.5 m s 1

The maximum mean vertical velocities are also similar with

-1
values of 40.15 cm s



Since the spectral model retains higher zonal harmonics

(i.e. m>l) we are now able to see the effects of nonlinearity

upon the eddy circulation. Interestingly we find an effect

analogous to the effect upon the MMC -- i.e., nonlinear

interactions force the flow to concentrate near the point of

maximum heating. The best example of this is the vertical

velocity field which consists of a relatively narrow core

of strong rising motion which is centered near 1400 LT

at the equator. Most of the rest of the model area exhibits

weak sinking motion. As the resolution increases the

width of the core decreases and the maximum upward velocity

increases (compare figures 3.13 b and 3.14 b). For M = 6

and 8 the resulting w fields produce y shaped patterns very

much like those observed in the ultraviolet cloud top photo-

graphs of Venus. We specifically refer the reader to

figures 2 u and v and 3a all in Rossow et al. (1980a) . We

note the remarkable similarity between these photographs

and the horizontal map of our M = 6 steady state vertical

velocity field (figure 3.10 b).

Turning our attention to the mean zonal flow, we find

that the phase shifts between the eddy zonal and vertical

velocity components, u' and w', do indeed provide an upward

flux of retrograde angular momentum and thus these resulting

Reynold's stresses drive a retrograde mean zonal flow in

the upper layers of the model. We emphasize here that the



Reynold's stresses are produced by phase shifts and not by

any obvious tilting of the convection cells. In all cases

considered we found that the maximum retrograde u appears

at the top of the model near the equator. The maximum

values are -5.8 m s- 1 for M = 4 and -4.8 m s- 1 for M = 6.

The most important effect of higher resolution is to allow

for a more pronounced equatorial jet structure in the mer-

idional profile of u. We note here that we connot make any

definitive statements concerning the possible role of the

barotropic instability mechanism suggested by Rossow et al.

(1980a) since our M = 6 and M = 8 runs do contain a few

potentially unstable zonal flow modes (those with m=0 and

n?-3) but the hemispheric representation eliminates the most

unstable disturbances for those retained zonal flow modes.

We can sum up our results by reviewing our two most

important conclusions. First, it appears that the moving

flame mechanism does play a role in driving the circulation

of the Venus stratosphere. The strongest evidence we have

for this is the remarkable similarity between some of our

computed Y shaped vertical velocity fields and some of the

recent Pioneer Venus cloud top ultraviolet photographs

(see discussion and reference above). However, if the

effectiveness of the moving flame type forcing is confined

to the upper cloud layers then this mechanism alone cannot

consistently explain the simultaneous existence of both the
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100 m s-1 retrograde mean zonal winds and much weaker eddy

velocities. Vb base this on the fact that in our results

the horizontal eddy and mean velocity components are all

of the same order of magnitude. In fact, in our nonlinear

results we find that the maximum eddy zonal velocity is
-I

- 12 m s- which exceeds our maximum mean zonal flow by

a factor of 2.5. This is not consistent with the observations

of Venus. We therefore must conclude that the 4-day circula-

tion is being driven by other processes that are not explicitly

included in our model.

Our second conclusion is important for future modelling

efforts. We have clearly shown thatM= 4 is insufficient

resolution for modelling a nonlinear system like Venus.

We can quite confidently state that any future simulations

of the general circulation of the Venus atmosphere must be

able to accurately represent at least the large scale eddies

with zonal wavenumbers £4. This condition requires a

resolution of at least M = 6 since any numerical dissipation

term (e.g., diffusion) will inevitably distort the waves

with the highest retained wavenumbers. The observations and

analysis presented by Travis (1978) and the barot~rpic in-

stability cycle proposed by Rossow et al. (1980a) seem to

suggest that model truncations may have to be as high as

M = 10 with global spectral representations of the dependent

variables. Considering the current state of numerical model-

ling, computer technology, and our understanding of Venus

B4Lill* L-r.~.rP~la~ira~**%_C~_~~L1- in



this may indeed turn out to be quite an extensive time

consuming undertaking.
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APPENDIX A

FOURIER ANALYSIS OF THE DIURNAL

DIURNAL HEATING FUNCTION

The purpose of this appendix is simply to provide the

details of the zonal Fourier analysis of the diurnally de-

pendent differential heat flux defined by equations (2.3.2)

and (3.2.17) . For simplicity we consider only the diurnal

variations as defined by

o >(A 1)

where > is longitude , t is dimensionless time (scaled

by the period of the heat source s) , and the phase >-t

represents the local time of day measured from a value of

zero at local noon. The periodic function defined by (A.1)

can be expended as

j e_(.j>1tr t) (A.2)
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Each coefficient, fm, in (A.2) can be rewritten as the

sum of a real part plus an imaginary part

,r S cos(>-) sy -0A)) Qk.3)

from which it is imm.ediately obvious that the imaginary

part of fm is zero for all m. Furthermore, we need only

evaluate (A.3) for m - 0 since cos[-m(>-t)] = cos m( -t)

and thus f = f . Upon carrying out the integration, (A.3)-m come

becomes

2-71
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In Figure Al we have plotted f(>,t) as given by (A.1) and

its Fourier representation (A.2) truncated at values of

M = 1, 2, 4. From the curves we see that M = 2 represents
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significant improvement over M = 1. The M = 4 curve is

nearly indistinguishable from f(>,t) except in a narrow

region around the terminators. Thus we see that the forcing

is confined primarily to planetary waves with zonal wave-

numbers 4 4.

Finally, (A.2) must be slightly modified for use in the

spectral model of Chapter 3. The expansion given by (A.2)

can be rewritten as

4(A. 5)

where the time dependent coefficients are given by

and therefore the coefficients for the Fourier expansion in

longitude only are given by the product of (A.2) times the

-imtappropriate factor of e
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APPENDIX B

PHYSICAL CONSTANTS AND DIMENSIONS

PARAMETERS FOR VENUS

a = 6.1 x 108 cm

6 -1 -1c = 8.8 x 10 erg gm K
p

4 -2 -1 -2
F = 10 rgcm s (10W m )

-2
g = 880 cm s 2

h = 5x 10 5 cm

Vo = 210 mb
-l

u = 400 cm s

Pr variable from 0.1 to 1.0 depending on experiment

6 -1 -1
R = 1.9 x 10 erg gm K

T = 240 0 K
0

AT = 1200 K

-= variable from 2.9 x 10 to 2 x 1010 cm2 s-

depending on M.

KV  = 10 cm2 s-I

%H = rH

SV = KV/Pr

-4 -3
Yo = 4.6 x 10 gm cm

V - 100 K/km

-7 -1
S2 = 6.2 x 10 s

In the above list, the most uncertain values are the

ones for the vertical eddy diffusion coefficients. The value

4 2 -1of 10 cm s is widely accepted as an appropriate value for



a stable atmosphere. Furthermore, based on the vertical

distribution of cloud particles, Prinn (1974) has estimated

an upper limit for the vertical eddy diffusion coefficients

in the Venus stratosphere. Near the cloud tops, the value

5 2 -1he gives is 2 x 10 cm s . In some of our experiments

we vary the Prandtl number as part of our parameter studies.

Unless otherwise noted we assume a value of Pr = 1. A

value of Pr-JO(1) is appropriate if the dominant transport

mechanism is turbulent diffusion. In constructing our model

we assumed this to be the case.

Horizontal diffusion terms are included primarily as

a numerical tool to control spurious growth of the high

wavenumber harmonics. The value of the horizontal diffusion

coefficient is chosen according to the truncation -- i.e.,

as resolution is increased the diffusion coefficient is de-

10 2 -1
creased. The values we use are 1 x 10 cm s 1 for M = 4,

5 x 10 cm s for M = 6 and 2.9 x 109 for M = 8.

Based on the values of the physical constants we can

compute the appropriate Venus values of the dimensionless

parameters:

the Frode number 2=1 ~- = 2750
u

o

the thermal forcing parameter G =A- = 1375

2 2
the thermal frequency parameter 2 2  15.5.

V
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APPENDIX C

SURFACE SPHERICAL HARMONICS

In the spectral model in CHapter 3, the horizontal

dpatial variations are represented by expanding each of the

dependent variables in a truncated series of surface spher-

ical harmonics in which the spectral coefficients are

functions of time and height only. As shown in (3.3.4) ,

a typical variable can be expressed as

where /,= sin .

The spherical harmonic of order m and degree n is

defined by

VIc~p

where



is the normalized associated legendre polynomial of order

m and degree n. The shperical harmonics are the solutions

of Laplace's equation on the unit sphere. From (C.2) we

immediately see that the order of the harmonic, m, is

simply the zonal wavenumber. The degree n is the degree

of the associated Legendre polynomial and the quantity

n-\m\ is the number of nodes between the two poles.

Because of the order of the derivatives in (C.3) , the

spherical harmonics are defined only when n > \ml. For

n < \m\, the harmonics are exactly zero. The orthonormality

condition is given by

21T I (C.4)

where ( ) stands for the complex conjugate. Given a func-

tion N which is expandable in a series of spherical harmonics
and the orthonormality condition for Y , the expansion

14d~BOhlPllllllPsCIYY~-~~LO""I~~P"~~
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coefficients \m can be obtained by multiplying (C.1) by

m
the appropriate Y and integrating over the entire surface

of the unit sphere. This procedure can be carried out

in two steps. First, we obtain the zonal Fourier coeffi-

cients

eV% A>

and then we obtain the harmonic coefficients

-IT SI \ke%)t) L~) df

The reality of T require that

and the definition of the associated Legendre polynomials

requires that

VA VIA
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The horizontal spatial derivatives of the dependent

variables are given by the derivatives of the spherical

harmonics. From (C.2) , the zonal derivative is found to

be

A- (C.5)

and from the recurrence relations for the associated Legendre

polynomials, the meridional derivative is given by

C'A -' (C.6)

where

Finally, since the surface spherical harmonics are solutions

of Laplace's equation on the unit sphere, we have a very

simple expression for the two-dimensional (horizontal)

Laplacian

For computational purposes, the normalized associated
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Legendre polynomials and their derivatives are computed

once at the beginning of an experiment and then saved on

a mass storage device. To generate the polynomials, we

begin by computing the non-normalized polynomials Pm

defined by-(C.3) without the quantity in the square root,

i.e., the normalizing factor) . The order of computation

is as follows:

a) the diagonal (n=\m\) polynomials are generated

from the relations

PO (I) = 1

Pm )= (2m-1) (1- m-1 (.7)

b) the diagonal +1 polynomials (n=\mt+l) are gener-

ated from the relation

(c.8)

c) all other polynomials for a fixed m are

generated from the polynomials of the two pre-

ceeding degrees according to

VA-2V%_ (C.9)
V\ Y\- 'Y 4 Y\_NV\-V



d) all of the polynomials are then normalized by

multiplying by the appropriate normalization

factor

_ + mI. (C. 10)

Finally, the derivatives of the normalized polynomials are

generated from the relation given by (C.6)

where

r '4

and obviously the first term on the right hand side of

(C.11) is zero for n = \m\.

The values of pm and Hm are generated in double pre-n n

cision arithmetic (i.e., approximately 16 digits) and

the accuracy was checked in two ways. First, we compared

our values to those in the tables published by Belousov

(1962) . The agreement was exact for polynomials of order

and/or degree as high as thirty (the maximum degree we

computed) . Then, we computed the orthonormality integrals



using a Gaussian quadrature (see Appendix D) . We point

out that a Gaussian quadrature is exact for any polynomial

of degree L 2K-1 where K is the order of the quadrature.

The values of the integrals computed by this method were

correct to sixteen decimal places.



APPENDIX D

TRANSFORM METHOD FOR COMPUTING

NONLINEAR TERMS

Originally suggested by Eliasen et al. (1970) and

independently by Orszag (1970) , the transform method pro-

vides a way to compute the nonlinear terms in the spectral

equations of motion without having to explicitly calculate

the interaction coefficients. The main advantage of this

technique is that it reduces the number of calculations by

a factor of roughly M2 where M is the truncation wave-

number. Basically, the method consists of three steps:

1) transforming the spectral (i.e., spherical

harmonic) coefficient of the dependent variables into grid

space to obtain grid point values of the variables and/or

their derivatives (this step is referred to as the forward

transform) ;

2) multiplying the grid point values of the variables

to form the required nonlinear terms (e.g., advection terms);

3) transforming the grid point values of the non-

linear products into spectral space to obtain the required

spectral coefficients (referred to as the inverse transform).

The forward transform of step 1 can be further divided into

two parts:



la) transforming the spectral coefficients to zonal

Fourier coefficients at the Gaussian latitudes (i.e.,

latitudes required for a Gaussian quadrature) ;

lb) transforming the Fourier coefficients to physical

grid space consisting of equally spaced longitudes and the

Gaussian latitudes.

Steps la and lb are referred to as the forward Legendre

and Fourier transforms, respectively, Similarly, the inverse

transform of step 3 consists of the two corresponding

inverse transforms. For computational purposes, the Fourier

transforms (forward and inverse) are carried out by using a

Fast Fourier Transform algorithm. Unfortunately, there is

no analogous fast Legendre transform so that the forward

Legendre transform is carried out by actually summing over

the associated Legendre polynomials while the inverse Legendre

transform is computed by using a numerical quadrature. For

reasons to be explained below, the preferred choice is a

Gaussian quadrature.

Machenhauer and Rasmussen (1972) further distinguish

between the full transform method and the half transform

method. The full transform consists of steps la, lb, 2, and

3 as described above. The half transform consists of the

forward Legendre transform, formation of the nonlinear

products of the Fourier coefficients at the Gaussian lati-

tudes, followed by the inverse Legendre transform. In our
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model, we use the half transform method since it uses less

computer time than the full transform for low resolution

(M4 2) experiments.

We now will demonstrate this method for the thermo-

dynamic equation (3.2.13)

-3 + T2. i32oe+ (D.)

or in spectral form

(C.2)

where the nonlinear advective terms are

cos"

ae

A': n o -11

Ji

o \I- 0 -0
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S+WI'
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To obtain the spectral coefficients of the nonlinear terms,

one would usually substitute the appropriate expansions,

e.g.,

into the expressions for A and B and then carry out the

integrations in the expressions for Am and Bm . The zonal
n n

integral is farily easy to evaluate however the meridional

integral will involve the integration of the product of

three different associated Legendre polynomials and are

quite cumbersome and time consuming. These integrals are

the so-called interaction coefficients. The transform

method is designed to specifically avoid computing the

interaction coefficients. To accomplish this, we begin the

transform method by forming the required Fourier coefficients

at the Gaussian latitudes. We do this by taking the known

spectral coefficients at time t and summing over the asso-

ciated Legendre polynomials (the forward Legendre transform) ,

L (D.4)
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where the subscript k indicates the kth Gaussian latitude

and the operator Lm (9) is the mth Fourier coefficient of

the meridional derivative operator

Since A and B consist of terms that are the products of

quantities expanded as truncated zonal Fourier series, then

A and B can also be expanded as truncated Fourier series

with truncation wavenumber 2M, i.e.,

Z2L~

(D. 5)

and the coefficients are given by

L~~2

(D.4)
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Given the Fourier coefficients of the dependent variables

in (.4) it is a simple matter to form the coefficients

A and B of the nonlinear terms. Furthermore, we onlym m

need to compute A and B for 0 4 m 4 M. The lower limit

m = 0 follows from the fact that A = A . The upper-m m

limit m = M is a consequence of the truncation of the time

derivative on the left-hand side of CD.2) . Since

is truncated at m = M, we must be consistent and also trun-

cate the right-hand side of cD.2) at m = M. By consistently

truncating the nonlinear terms in this manner we automati-

cally eliminate the problems of aliasing and nonlinear in-

stability that are commonly associated with finite differ-

ence models. To complete our computations of the non-

linear terms, we must determine the spectral coefficients

Am and Bm by applying the inverse Legendre transform, i.e.,n n

At% \ (si ~) S,, s" 4) Cos4A (D.7)
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Recalling that Am(&) and Bm(u) were formed as products of

polynomials ofA, we see that the integrands in (D.7) are

also polynomials of/ . In this case, the integrals in

(D.7) can be evaluated exactly with a Gaussian quadrature

of order K (i.e., a K point quadrature)

1, ( L -Z I A ?oM ( 8)

provided the integrand A Pm is a polynomial of degreem n

i! 2K - 1 (Isaacson and Keller, 1966) . In (D.8) the K

Gaussian latitudes (frl,. /K) are the zeros of the Kth

Legendre polynomial, PK() , and (I'. K) are the

Gaussian weights (values were taken from Kronrod, 1965).

The Gaussian quadrature is chosen since it requires fewer

points to be exact as compared to any other quadrature

formula. Finally, the minimum number of Gaussian latitudes

necessary can be determined from the degree of the integrand.

A will be at most of degree 2M + 2 since V contains
m m

m m m
polynomials up to PM+ and H also contains P Thus

A Pm will be at most of degree 3M + 2 and the quadrature
m n

I__ _1_1_1___11__~1~ __EX--I -_.- _--il_~~



will be exact if

_3M + 2- 2+1

and we must therefore have KI '3M + Gaussian latitudes2

(obviously K must be an integer).

Having obtained the nonlinear contributions to the

spectral tendency, the time integration of (D.1) is

straightforward since the linear terms are readily evaluated

given the spectral coefficients 8 . A similar analysis can

be carried out for the vorticity and divergence equations

with the only difference being the presence of other non-

linear terms in addition to advection.


