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ABSTRACT

The atmospheric and oceanic parameters of sea-surface

temperature, air temperature, wet-bulb temperature, cloud

cover, and wind speed are used to compute monthly average

values of the incoming radiation, the effective back radia-

tion, the latent and sensible heat transfers, and the total

heat transfer across the sea surface over the North Pacific

Ocean from 200N to 550N for the period extending from 1951

through 1957.
The yearly average of the total heat flux across the

surface is integrated over the ocean from 15
0N to 600N, and

it is found that the ocean loses 7 x 1014 cal/sec in this

area on a yearly average basis.

The 12 monthly 7-year mean or normal values for each

heating term are Fourier analyzed, and it is found that each

term has a regular yearly cycle with maxima and minima sepa-

rated by 6-month intervals. The yearly cycles of the sea-

surface temperature are compared to the yearly cycles of the

total heat transfer across the ocean surface, and it is found

that the sea-surface temperatures have their maximum values

near the end of the heating cycle (August or September) and

have their minimum values at the end of the cooling cycle

(February or March). These results agree with the theoretical

results of a one-dimensional model of the seasonal thermocline.

The normal values of the 12 monthly means of the heat

advection in the surface layer of the ocean are determined as

residuals from the surface layer heat balance equation. The

results obtained agree fairly well with what is known about

current patterns of the North Pacific and also with the results

of another independent investigation.
The departures of each monthliy value fro thLe normal val-

ues, i.e. the monthly anomalies, are computed for each of the

heating terms and also for the sea-surface and air temperatures
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for all 84 months. It is found that the sea-surface tempera-

ture anomaly patterns are geographically coherent, that they

can be fairly extensive in geographic size, and that on the

average they persist in time to about three months or slightly

longer. The air temperature anomalies are greater in magnitude

but are closely related in time to those of the sea-surface

temperature. The persistence of sea-surface temperature anom-

alies is related to the dynamics of forced and free convection

within the upper mixed layer of the ocean and to the transfer

of heat through the seasonal thermocline.
The anomaly patterns of the heating terms also show geo-

graphic coherence but have little month-to-month persistence.
Correlation studies between the anomaly series of the

month-to-month change in sea-surface temperature and those of

the total heat transfer across the sea surface and also those

of the horizontal temperature advection due to wind drift show

that there are statistically significant relations between

these quantities. The positive correlation is improved by
adding the temperature change due to surface heat transfer to

the temperature change due to horizontal advection and corre-

lating the results with the observed sea surface temperature
changes.

A multiple linear correlation analysis between the three

terms, (1) the observed change in sea-surface temperature,
(2) the sum of temperature change due to surface heat transfer

and that due to horizontal advection, and (3) the vertical

velocity induced beneath the Ekman layer, shows that the per-
centage of variance of the first term accounted for by relation

to other variables is increased from 20 to 25 per cent in win-

ter, 13 to 18 per cent in spring, 12 to 18 per cent in summer,
and 13 to 19 per cent in fall by including the effects of the

third term as well as the second.
A statistically significant positive correlation is found

between the anomaly series of the sea-surface temperature and

those of the specific humidity of the air, indicating that

the amount of moisture in the surface layer of the atmosphere
over the ocean is a function of the sea-surface temperature.

A statistically significant positive correlation is also

found between the anomaly series of the latent heat transfer

between ocean and atmosphere and those of the atmospheric water

vapor divergence field. It is felt that this type of analysis,

if applied to a smaller area with better data, would be helpful

in obtaining a better transfer formula for the latent heat flux.

Thesis Supervisor: Hurd C. Willett
Title0: pro fess soo- f
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I. Introduction

A. Review of Sea-Surface Temperature Fluctuation Studies

In 1920 Helland-Hansen and Nansen conducted their pioneer-

ing investigation into the causes of large-scale fluctuations

in sea-surface temperatures. Since then numerous studies have

been made concerning this intriguing and elusive problem. In

each case, an attempt was made to relate large-scale anomalies

of sea-surface temperature to fluctuations in space and time

of various meteorological and oceanographic parameters, wind

speed, surface drift currents, solar radiation, etc. Helland-

Hansen and Nansen began by correlating sea-surface temperature

changes in the North Atlantic Ocean with anomalies of the north-

south component of the geostrophic wind. Their results indicated

that the temperature anomalies were strongly related to the wind

anomalies and that they were not transported to any great degree

by the motion of sea-surface currents. These results were

supported by the work done by Neumann, Fisher, Pandolfo and Pierson

(1958) and by J. Bjerknes (1962) in the same region.

Bjerknes demonstrated that it is probably the interplay

between the time changes in Qa, the net transfer of heat to

the atmosphere including both latent and sensible heat, and

those of Q and Qd, the advective heat supply and heat supply

due to up-welling, that regulates the trends of sea-surface

temperature. He found that a long trend of cooling north of
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500 N extending from the 1890's to the early 1920's is accompanied

by a strengthening of the Icelandic low, and the warming trend

of sea-surface temperatures until the early 1940's is accompanied

by a weakening of the Icelandic low. Superposed on the long

cooling trend, rising and falling trends of 2 to 5 years durations

were found. In these trends the ocean always cooled when the

prevailing west wind strengthened and warmed up when the wind

weakened. During the long trend of northern cooling from the

1890's to the early 1920's, the surface water warmed up west

and north of the subtropical high pressure zone, presumably

because of increased wind and Gulf Stream advection.

The statistics presented by Bjerknes indicate only that

increased wind speed is accompanied by a cooling of the under-

lying surface waters and vice versa in some regions of the

North Atlantic. The other mechanisms postulated for the

strengthening or reversal of these trends must depend upon

physical explanations which are based upon experience obtained

from further investigations. At present, there is no way to

test the hypothesis that the trend of cooling of the sea sur-

face due to increased west winds is reversed by an increase

in Gulf Stream advection, since heat transport cannot be

determined from the mean mass flow, which is the only quantity

that can be computed from wind-driven current theory.

The results obtained by Neumann et al indicate that the
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same negative correlation exists between the zonal index of

atmospheric circulation over the North Atlantic and the surface

temperature anomaly on a monthly time scale. Their work also

supports the idea that the temperature anomalies are not ad-

vected to any great extent by surface drift. Correlations

between anomalies (departure from a normal value for a given

month) of sea-surface temperature for adjacent areas at time

lags in 2-month increments from 0 to 24 months were computed.

The coefficients were significantly highest when simultaneous

anomalies were correlated. This indicates that processes

causing simultaneous changes over large areas, such as evap-

oration and surface divergence, are probably more important

than advection.

Namias (1959) has attempted to explain the warming of the

surface waters of the Eastern North Pacific Ocean during 1957

and 1958 by relating it to the abnormal velocity components of

the atmospheric circulation. Although he obtained some of the

gross features of the observed temperature distribution, his

method is open to at least two objections. The first is that

he considered a normal (time average) state of the atmosphere

for a particular region to correspond to a normal state of the

sea-surface temperature distribution for the same region.

From the anomalous wind components, he computed the anomalous

surface water displacements which, when placed over the normal
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pattern of sea-surface temperature for the period in question,

enabled him to compute the anomalies of temperature due to

advection of the surface water. The second objection is that of

using only the surface water advection term from the heat

budget equation for a local surface layer (see Chapter II).

Namias (1965) modified this procedure somewhat and com-

puted the anomalous drift of surface water as before but

used an observed set of isotherms instead of the normal set

in order to compute the advection of temperature anomalies.

His correlation coefficients were improved somewhat over those

of the previous work. However, the horizontal advection term

was still the only term evaluated, although he did mention the

possible effects of up-welling associated with the divergence

of the wind field and the transfer of latent and sensible heat

across the sea surface.

Arthur (1966) has extended Namias' work to include the

effects of the normal and anomalous wind drift currents on the

anomalous temperature gradients that occur within a specified

period of time. His method thus takes account of all terms in

the horizontal temperature advection equation,

_ f f
SL~ J~ a
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where the capital letters denote the basic or normal values,

the primes denote the anomalies, and tl and t2 denote the

beginning and end of the period in question. The first

and third terms on the right-hand side of the equation are

identified as the steps in Namias' method, while the second

term represents Arthur's extension. Again, both the effects

of local changes in surface heat transfer and of vertical

velocities are neglected. In fact, the assumption is made

that

dtt Qr d (1.2)

in which the normal change in sea-surface temperature is

balanced by the effects of the normal surface heat transfer,

Q. At present, evaluations of the extension are being carried

out at the Extended Forecast Division of the U. S. Weather

Bureau.

A much more rigorous approach was adopted by Berson (1962)

in which he attempted to determine from both theory and data

the two major effects on the heat balance in the surface layer

of the ocean, the effect on latent and sensible heat transfer

from the ocean, and the effect on the intensity of vertical

mixing and on horizontal transport within the upper mixed layer

from variable large-scale surface wind systems. His results



-6-

(determined from data for a middle latitude zone of the North

Pacific Ocean during September 1959 through August 1960)

indicate that in the central longitudes and during autumn

and winter when anomalies of net radiation are small, a large

proportion of the anomalous evaporation and turbulent heat

conduction is generally tapped from the accumulation of heat

due to the effect of wind stress anomalies on advection.

He also developed a numerical method, including both advection

and surface heat transfer, for computing sea-surface temperature

anomaly changes when the wind stresses are given.

Berson concluded that feedback from ocean to atmosphere can

be treated numerically by subtracting the thermal energy equation

of the troposphere from the thermal energy equation of the active

layer of the ocean and obtaining a differential equation express-

ing the exchange of heat across their common boundary. The main

problem in this method is in determining the changes in the depth

of the mixed layer or seasonal thermocline of the sea. Since

very little data on this quantity exists, he is forced to use a

linear relationship between wind speed and layer depth determined

from various ocean stations in the North Pacific. This relation-

ship holds only for the monthly changes during a particular year

and not for changes in the same month over many years. During

the study presented below, data from ocean station PAPA (50*N-

145°W) was looked at and it was found that the linear relationship
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varies from year to year and that no simple relationship holds

for changes from year to year for a particular month.

Roden (1962, 1963) has made a number of studies on the

power spectra of various meteorological and oceanographic

variables. In his 1962 paper, he investigated records of sea-

surface temperature, cloudiness and wind speed for eight ocean

areas between Europe and South America. He looked at the

frequency range between zero and six cycles per year and found

that most of the power of temperature anomalies is concentrated

at low frequencies and that there are no periodicities, that

a significant and inverse relation exists between temperature

and wind anomalies in the NE trade wind regions, and that along

the Brazilian coast there is a direct relation between tempera-

ture and north wind anomalies and an inverse relation between

temperature and east wind anomalies. He found no relation

between temperature and cloud cover, implying that solar

radiation anomalies are not important in determining sea-sur-

face temperature changes.

Probably the most ambitious program being conducted at

present is that of the Fleet Numerical Weather Facility (FNWF)

at Monterey, California. Based on the theoretical work of

Laevastu (1960) and data collected on a world-wide basis from

naval vessels, analyses and forecasts are made of wave structure,

surface currents, thermal structure, surface heat transfer,

mixed layer depth, and sound channels. The analyses are made



-8-

twice daily at 00Z and 12Z and 24-hour forecasts are made on

a daily basis. The results are sent out via high-speed

computer data links to the Fleet Weather Centrals where they

are plotted on local area charts and transmitted in facsimile

or message form to fleet users.

The synoptic oceanographic analyses made at Monterey show

that pronounced changes in the surface layers of the ocean are

quite common. The sea-surface temperature (SST) changes can

frequently be of the order of half the annual range and, in

some areas, can even exceed the total annual range. The studies

indicate that the average period of the SST changes is shorter

(a few days) in higher latitudes, the areas of passing cyclones,

than in the lower latitudes where semi-permanent anticyclones

predominate. The magnitudes of the changes are usually largest

near the stronger gradients of SST (current boundaries) and

smallest in areas of small horizontal gradients. The explanation

of these synoptic changes can, in most cases, be found in the

atmospheric driving forces affecting both the dynamics of the

ocean surface layer and the surface heat transfer.

The advective changes by surface currents, computed according

to a method derived by Whitting in 1909 and described in Chapter

V., are quite apparent on the analyzed charts and account for a

major part of the SST anomalies in some areas. Changes

caused by surface heat exchange and vertical velocities in the

mixed layer can be as large as 1.50 F in a 24-hour period, and
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as large as 5*F at middle and high latitudes during the summer

season. These driving forces change in the same way as the

weather conditions at the surface. Thus, the changes in the

surface layers of the sea normally change at least as rapidly

as does the surface weather, and it is concluded that ocean-

ographic analyses and forecasts should be carried out with the

same frequency as those of the surface weather.

In working with their data, the FNWF define three types

of SST anomalies: (1) a deviation in a given region at a

specified time from the normal or long-period average for

the same region, (2) the difference between a temperature

actually observed and some reference temperature, and (3)

deviations of SST values at given places from smoothed latitud-

inal values for the same period of time. Some conclusions

drawn regarding the first type of anomaly are that they are

relatively large in horizontal extent, that some of them

can be persistent over long periods while some appear and

disappear quite rapidly, and that some of the anomalies migrate

with the average surface current.

The computation of the third type of anomaly is done

numerically by scale and pattern separation. The method

consists of repeated application of a smoothing operator which

reduces first-the amplitudes of the shortest wave lengths

and gradually affects longer and longer wave lengths. Removal
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of small-scale disturbances from the initial analysis leaves

the large-scale pattern; finally, removing the zonal portion

of the large-scale pattern gives the large-scale anomalies.

The large-scale anomalies change slowly from season to

season with fluctuations occurring as the surface weather

changes over the areas, while the small-scale anomalies can

be classified into two additional groups. The first of these

corresponds to changes induced by local up-welling, heat ex-

change, and mixing. The second group consists of those caused

by advection and meanders along current boundaries and eddies;

analysis of the advection anomalies at major current boundaries

shows that they are persistent to the extent that changes

occur according to the prevailing local winds. In general,

warming occurs ahead of cold fronts (when southwesterly

winds are prevalent), and cooling occurs after frontal pass-

ages (when northerly winds prevail).

In addition to oceanographic analyses and forecasts, sur-

face weather forecasts are also made on a daily basis which

take into account the exchange of heat between the ocean and

atmosphere. Thus, we have an operational system that uses the

information obtained from detailed studies of air-sea inter-

action processes.
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B. Review of Ocean Surface Layer Heat Transfer Studies

An extensive review of this subject is given by Malkus

in Volume I of The Sea, Chapter 4. The following will briefly

touch on the works mentioned in this review as a background

to the description of air-sea interaction studies that have

been conducted since the publication of The Sea in 1962.

The transfer of heat between ocean and atmosphere by tur-

bulent conduction and the flux of water vapor may be determined

indirectly by two independent methods. The first is that of

using energy and mass budget requirements, while the second

method depends upon the use of exchange formulas that have

been developed from the laws of small-scale molecular and tur-

bulent transfer.

In the energy budget method of determining the heat flux,

the following equation is used to express the balance between

the amount of heat absorbed by the sea surface due to radiation,

the amount of this heat transported by ocean currents, and

the amount of heat supplied to the atmosphere:

R =O + Qe + S + , (1.3)

where R is the radiation surplus and equals the solar radiation

minus that which is reflected from the surface and that which is

reradiated back into space; Qs is the amount of sensible heat
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that is transferred between ocean and atmosphere; Qe is the

amount of latent heat given up by the sea due to evaporation;

S is the amount of heat stored in the ocean; and Qv is the

amount of heat advected by ocean currents. The total exchange,

Qs + Qe', between ocean and atmosphere may then be computed

from the relation,

Qs + Q = R - S - Q (1.4)

The main studies using this procedure have been conducted

by Sverdrup (1942), Jacobs (1951), Budyko (1956), London (1957)

and Houghton (1954), each of whom attempted to evaluate

Qs + Qe using various methods of computing R. The critical

variable affecting R is the amount and type of cloud cover

in the area- under investigation. In his work, Budyko showed

that the incoming radiation is approximately a linear relation

of the mean cloudiness, while the long-wave back radiation

decreases in a non-linear fashion with the mean cloudiness.

For annual averages, the storage S and the flux-divergence

v were considered negligible in comparison to the other

terms.

According to Malkus (1960),the most important demonstration

in marine meteorology of the past twenty years (Jacobs, 1951;

Montgomery, 1940; Bunker, 1960; Riehl et al, 1951) is that the
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transfer of latent and sensible heat and momentum from sea

to air is governed largely by two parameters, the air-sea prop-

erty difference of temperature or vapor pressure and the

prevailing wind speed averaged over some time period. Thus,

while the average air-sea fluxes over long periods and large

regions are computable from planetary heat and mass budget

requirements, the fluctuations which build this picture and give

rise to the enormous departures from it are directly related

to transient atmosphere phenomena.

The basic premise underlying this development is that

turbulent exchange is the dominant mechanism affecting the

vertical distribution of a property from the air-sea interface

to a distance of several tens of meters above it, so that

the fluxes obey the equation,

F = -K dp (1.5)
p p dz'

where F is the flux of the property p, dp/dz is the vertical

gradient of the property, and K is the eddy transfer coeffic-
p

ient which is many orders of magnitude larger than the corres-

ponding molecular transfer coefficient. Thus, using the above

equation and making several assumptions about the nature of

the turbulence, equations can be derived relating the flux of

momentum, water vapor and sensible heat to a wind speed at
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some height and the difference between the property at that

height and at the sea surface (see Chapter II).

The main works using this method that are reviewed by

Malkus are those of Budyko (1955, 1956), Drozdov (1953), Jacobs

(1951, 1951a), Sverdrup (1957), London (1957) and Houghton

(1954). The annual mean distribution of Qe and Qs and the

other heat-balance components of the sea surface are presented.

The resulting annual heat budget of the ocean forms a found-

ation for discussing the global heat and water budgets, the

climatological picture of air-sea heat exchange, and the

average seasonal variation in several regions of this exchange.

She also reviews a study done by Colon (1960) in which he used

both the energy budget method and the transfer equation method

to investigate the monthly and seasonal distribution of the

various components of the surface layer heat balance equation

for the Caribbean Sea.

As a result of the observations of solar radiation made

during the International Geophysical Year, Budyko (1963) has

completed a new Atlas o the heat balance of the earth. The

Atlas contains 69 world charts including the annual means of

solar radiation reaching the earth's surface, the radiation

balance of the earth's surface, and the heat exchange between

ocean and atmosphere due to evaporation and turbulent heat

conduction. It also contains charts of the mean annual con-



ditions of the redistribution of the heat in the oceans due

to ocean currents, of the radiation balance of the surface

atmosphere, of the heat of condensation, and of the redistrib-

ution of heat in the atmosphere due to atmospheric motion.

The charts are considered to be more accurate and are more

detailed than those presented in the Atlas prepared in 1956.

Some of the results obtained from this study are that the

meridional transfer of heat in the world oceans is about

60 per cent of the heat transfer of the atmosphere, that the

components of heat balance of the Atlantic, Pacific, and

Indian Oceans differ slightly from each other, and that for

each ocean the main part of the heat of the radiation bal-

ance is expended on evaporation. It was also determined that

the earth absorbs 168 kcal/cm2 annually. Two-thirds of this

amount, 112 kcal/cm2/yr, is absorbed at the earth's surface,

while the rest is absorbed by the atmosphere. The earth's

surface loses 40 kcal/cm2 per year by effective long-wave rad-

iation, and, as a result, its average radiation balance is

equal to 72 kcal/cm2 /yr. Of this amount, 59 ,cajcm /yr

is expended on evaporation, and 13 kcal/cm2/yr is expended on

the turbulent loss of heat to the atmosphere.

Wyrtki (1965, 1966) has used climatic data obtained from

the U. S. Bureau of Commercial Fisheries to calclate the heat

exchange at the surface of the Pacific Ocean north of 200 S
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for the period 1947 to 1960. In the 1965 study, the average

annual components of the surface heat transfer are given

along with the implications of their distribution with

regard to ocean circulation. It was found that the North

14
Pacific gains heat at a rate of 3 x 10 cal/sec. The heat

gain occurs mainly along the eastern side of the ocean and south

of 250N, while the main heat loss occurs in the region of the

Kuroshio Current. From a simple theoretical model, Wyrtki found

that the average temperature distribution in the range of the

subtropical anticyclone is maintained in the presence of these

heat sources and sinks by a horizontal circulation of the order

of 10 million m /sec in a shallow surface layer.

The 1966 study is an atlas of the monthly variation of

heat exchange and surface temperature north of 200 S in the North

Pacific Ocean. He used the same data as that of the 1965

study and averaged them over two-degree latitude-longitude

squares and by months for the 1947 to 1960 period. For each

ten degree square, the seasonal variation of the heat transfer

components, the total heat exchange at the surface, and the

sea-surface temperature were presented.

The U. S. Bureau of Commercial Fisheries at La Jolla,

California, began to publish monthly charts of meteorological

variables and heat transfer at the air-sea interface in 1965

(Johnson, Flittner and Cline; 1965). The data are collected
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from synoptic marine radio weather reports from ships at sea

and analyzed by electronic computer. The analyzed results

are prepared in chart form covering the entire North Pacific

Ocean and distributed to participating and interested agencies.

In 1965 Garstang reported the results of a project designed

to study the role of diurnal variations of sensible and latent

heat over the tropical ocean. The transfer equations used

incorporate a drag coefficient that is linearly dependent upon

wind speed and atmospheric stability. It was found that pro-

nounced diurnal variations in sens.ible heat transfer occur

along with semi-diurnal oscillations in cloudiness and precipi-

tation. Within synoptic scale disturbances the transfer of

either sensible or latent heat may increase by an order of

magnitude. Integrated over the entire disturbance, the energy

flux is found to double the undisturbed values. Since the role

of the energy input to the systems is fundamental to under-

standing the structure and behavior of both synoptic and meso-

scale systems, he concludes that emphasis should be placed on

including these variable quantities in prediction schemes.

Due to the fact that the distribution of energy transfer

is strongly dependent upon the frequency of synoptic scale

systems, mean maps based on climatological data bear little

relation to the actual synoptic maps of energy flux. The

transfers also differ in magnitude in the tropical regions
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from the values given by previous investigations (e.g. Budyko,

1956) and indicate that a revision may need to be made

on the current estimates of the heat balance of the world

oceans.

Kraus and Morrison (1966) have conducted a statistical

analysis of wind, air, dew-point, and sea-surface temperature

records from all nine weather ships in the North Atlantic Ocean.

The study showed that local variations between years are highly

significant when compared to variations within months. The

fluctuations show a consistent pattern of more that 500 miles

in the atmosphere and a persistence over several months. The

horizontal extent of sea-surface temperature anomalies appears

to be small; however, they tend to be more persistent than

the air temperature anomalies. It was also found that short-

period variations in the flux of latent and sensible heat are

due predominantly to atmospheric variations. This effect is

greatest in the winter; during the summer the effect of sea-

surface temperature anomalies is somewhat greater. The values

obtained for the heat fluxes were higher than those given by

Jacobs (1951) and may be due to the different record periods

used or the absence of a correction term in Jacobs' work due

to the covariance between the meteorological variables of wind

speed and air-sea temperature difference and between wind

speed and air-sea vapor pressure difference on a daily basis.
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C. Purpose of Thesis

The purpose of this work is to determine what relation-

ships, if any, exist between the atmospheric parameters of

wind speed, water vapor content, cloud cover and radiation and

the monthly and seasonal fluctuations of sea-surface tempera-

ture and of heat transfer between the ocean and atmosphere.

The data used in this study are much more extensive (7 years,

1951-1957, of data covering the North Pacific Ocean from 200N

to 550 N) than any that have been analyzed previously, and it

is felt that much information has been obtained concerning

the interaction of the two media.

It is obvious from the review of previous studies that

it is necessary to include the effects of both surface

advection and local heat transfer in order to account for

fluctuations in time and space of the sea-surface temperature.

An attempt is made in this report to relate fluctuations in

the transfer of heat between ocean and atmosphere and fluctua-

tions in the surface advection of heat due to wind-drift to

fluctuations in the sea-surface temperature.

Chapter II of the report outlines the theoretical consi-

derations behind the transfer formulas used in the study.

Chapter III describes the type of data available and the pro-

cedures used to put the data into a workable form. Chapter

IV discusses the results of the heat transfer computations

and also the relations between the yearly cycle of the total
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heat transfer across the sea surface and the yearly cycles of

the sea-surface and air temperatures. Chapter V describes

the spatial and temporal scales of anomaly patterns (an

anomaly is the monthly departure of a value from some cal-

culated mean or normal value) of the heat transfer terms

and of the sea-surface and air temperatures; it also discusses

the results of correlation studies made between the time

series of the heat transfer term anomalies and those of the

sea-surface temperature anomalies. Chapter VI describes the

results of further correlation studies made between other

atmospheric and oceanic paramteres. Finally, Chapter VII

summarizes the results of the previous chapters and discusses

areas of possible future studies of this and other types.
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II. Theory

A. Development of Surface Layer Heat Balance Equation

For a column of water of unit cross-sectional area and of

depth -D (z positive upwards), the heat balance equation may

be written as

v o 0 t o oo -D 0 0 o -b o

where Ts is the temperature of a unit volume of water, Qr is

the radiation surplus, Qa is the sum of latent and sensible

heat transfer between ocean and atmosphere, Q is the horizontal

advection of heat into the column, and QD is the vertical flux

of heat into the column at the depth -D. This equation expresses

the relationship that exists over the time interval t between

the storage of heat in the column of water and the total exchange

of heat energy between the column and its environment.

B. Development of Heat Transfer Formulas

1. The radiation balance Qr may be broken up into three

terms, Qi, QR and Qb where

Qr = Qi - QR - Qb and (II.2)

Qi is the incoming solar radiation reaching the earth's surface,

and Qb is the effective back radiation equal to the difference
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between the long wave radiation from the sea surface and the

long wave :radiation from the atmosphere.

The incoming radiation Qi (cal/cm2 / day)is determined

from the following equation proposed by Berliand (1960),

2
Q = Qio (1- ac - bc) , (II.3)

where Qio is the incoming solar radiation with a clear sky,

c is the fractional cloud cover, b is a constant equal to .38,

and a is a function of latitude varying from .37 at 200 to .41

at 55° . The values of Qio are taken from a table given by

Berliand (1960) as a function of latitude and month.

The amount of radiation reflected from the sea surface

QR is determined from

QR =  i r , (II.4)

where r is the percentage of radiation reflected and given in

a table by Budyko (1965) as a function of latitude and month.

Cox and Munk (1955) have calculated r taking into account the

effect of wind speed on the nature of the reflecting sea sur-

face. However, between 20'N and 550N their values do not

differ significantly from those of Budyko.

2. The effective back radiation Qb (cal/cm2/day) is

determined from the semi-empirical equation proposed by Berliand
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and Berliand (1952),

= A(3T)( k 0> f-5Q~ ( Ga)) (11.5)

where S = .97 is the ratio of the radiation of the sea to that

of a black body;

-7
-= 1.75 x 10 is the Stefan-Boltzmann constant;

Sea' e D are the absolute temperature5(') ;sea air

e is vapor pressure of the air in mb;

c is the fractional cloud cover; and

k is a function of the latitude.

The first term, which takes into account the effect of

sea-surface temperature, humidity, and cloudiness, varies

between 20 and 200 cal/cm2/day. The constant k has been

evaluated considering the vertical extent of clouds as well

as the height of the cloud base from the earth's surface;

it varies from .51 at the equator to .75 at 55*N due to the

decrease in cloud base height in the polar regions. The

second term represents the effect of stability on the back

radiation and varies between -20 and 20 cal/cm2/day.

3. The exchange of latent and sensible heat between ocean

and atmosphere may be determined from the theory of turbulent

transfer and some assumptions about the nature of the wind

field just above the sea surface.
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If turbulent exchange is the dominant mechanism affecting

the vertical distribution of a property near the surface,

then the vertical flux of the property p obeys the equation

dp (11.6)
Fp = -Kp dz11.6)

where Kp is the eddy transfer coefficient. For neat and water

vapor, Fp is constant in the vertical in a thin boundary layer

in which heat and water vapor are not accumulating. In the

lowest few tens of meters over the sea surface, the air is

well-stirred, shear-turbulence dominated, neutrally stable

and barotropic. Under these conditions, the following

exchange formulas may be used to determine the flux of momentum

, sensible heat Qs and latent heat Qe

Km du (11.7)
dz

dT
Q = -cpKs -- , and (11.8)
s dz

Q = LE = -LK (11.9)
e e dz

where Km, Ks and Ke are the eddy exchange coefficients of

momentum, sensible heat and water vapor, u is the wind

speed, T is the temperature of the air, and q is the specific
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humidity of the air.

When turbulent shear flow is the dominant process, the

assumption that Km = Ks = Ke = K is made, and

K = / du (II.7a)
dz

may be substituted into (11.8) and (11.9). In addition, the

relation

To= f (II.10)

may be obtained from either observations or from the work on

turbulence done by Rossby and Montgomery (1935). In this

equation, the drag coefficient CD is a function of surface

roughness, anemometer height, and von Karman's constant.

If the vertical derivatives of (11.7) -- (11.9) are

expressed in terms of finite differences between the heights

z and o,a

u = u - o = u ,
a a

T = T - T , and (II.11)
a s

9 = - qs'

then the transfer equations may be written as
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It =  CDua ,2 (11.12)

Q = p C D (Ts - Ta) ua , and (II.13)

Qe = LE = LC (qs - q ) u . (11.14)

The drag coefficient CD depends upon the wind speed close

to the sea surface and is, therefore, not a constant. Deacon

and Webb (1962) have derived a linear relationship between the

drag coefficient and wind speed measured at a height of 10

meters above the sea surface from the observational results

of various investigations. This relationship,

C = (1.00 + 0.07 ) x 10 - 3  (II.15)

is applicable for near neutral stability conditions and shows

a comparatively slow increase of drag coefficient with wind

speed.

Since winds are measured at heights of around 10 meters,

the drag coefficient is dependent upon the effect of atmo-

spheric stability. For a wL at meter above thl ,urface,

the 10 meter speed will be greater under stable than under

unstable conditions. Therefore, the drag coefficient should

be smaller for stable conditions thah. that determined from

I,.r1 r d l~ f ir unst1 . e conditinns. In his study

VI.L l.J a.LLLJ_ A .-- - --- is

on heat transfer between ocean and atmosphere over a tropical

ocean, Garstang (1965) used some theory of Monin and Obukov
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(1954) to obtain a relationship between the drag coefficient

at 6 meters C6, the wind speed u6 , and the bulk Richardson

number RBg

C6 = (1.46 + 0.07,&6 - 4.2 RB) x 10- 3  (11.16)

In the present study, however, (11.15) is used to determine

the drag coefficient since the measurements necessary to use

the Monin-Obukov procedure were not available.

C. Error Analysis

The accuracy of the exchange formulas in determining the

transfer of heat depends upon the validity of the assumptions

underlying the theory, the accuracy of the observational data,

and the manner in which the formulas are used to calculate the

heat transfer.

If we accept the theory as valid, then the effect of

observational errors is shown in Table I. (Part of the table

is taken from Roden (1959) as he used some of the same exchange

formulas that were used in this study.)

Since the exchange formulas are non-linear in nature, using

monthly mean data instead of daily or hourly values in deter-

mining the heat transfer may lead to errors. In order to

determine the magnitude of these errors, daily values of
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Table I

Ts - Ta Error b/Q

OC (T -T ) %
S a

1.0

2.0

3.0

4.0

5.0

6.0

+ 0.1

+ 0.1

+ 0.1

+0.1

+ 0.1

+ 0.1

+1

+1

+1

+1

+1

+1

Wind
Velocity Error

m/sec A ,,

+1

+1

+1

+1

+1

+1

+1

+1

Humidity Error / / ' Qe/Qe
S 4%

+ 56

+ 30

+ 22

+ 17

+ 14

+ 12

+ 11

+9

+ 56

+ 30

+ 22

+ 17

+ 14

+ 12

+ 11

+9

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+ 2

+3

+ 3

+4

+ 5

+7

+ 10

+ 20

Cloud
Cover

C

0.0

0.2

0.4

0.6

0.8

1.0

Error
AC

+ 0.1

+ 0.1

+ 0.1

+ 0.1

+ 0.1

+ 0.1

4 Qi/Qi

%

+4

+6

+9

+ 13

+ 22

+ 48

+ 0

+1

+3

+ 5

+ 8

+ 17

SQs/Qs

+ 10

+ 5

+3

+ 3

+ 2

+ 2

6 Qe A QsQs
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sea surface temperature, air temperature, dew-point temperature,

cloud cover and wind speed were obtained for weather ship

stations NOVEMBER (30N - 140W) and PAPA (50N - 145W) for the

period of January to December of 1962 (see Chapter III).

Monthly average values of Qi' Qb' Qs, Qe and the sum of these

four heat transfer terms QBAL were computed first from the daily

values and averaged over the number of days in the month; in

the second case, the variables were averaged over the number

of days in the month and the heat transfer terms computed from

these averaged values. The results are shown in Tables II

and III. Q(v) denotes heat transfer averaged over the daily

values, and Q(v) denotes heat transfers computed from the

monthly averaged variables.

For Station NOVEMBER, the yearly average per cent differ-

ences between the two methods of computing the monthly average

heat transfers are 1.4 for Qi, 1.7 for Qb' 4.8 for Qe, 7.8

for Qs and 17.7 for QBAL. For Station PAPA, the per cent

differences are 1.4 for Qi, 1.9 for Q6 9.5 for Qe, 45.1 for

Qs and 10.4 for QBAL'

The accuracy of the exchange formulas increases as the

value of the heat transfer increases since the errors resulting

from both observational and averaging effects are inversely

proportional to the heat transfer. The teoretica accuracy

of the formulas is also higher when large heat transfers occur.
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Ship Station NOVEMBER (30N - 140W)

North

January
% dif

February
% dif

March
% dif

April
% dif

May
% dif

June
% dif

July
% dif

August
% dif

September
% dif

October
% dif

November
% dif

December
% dif

Qi(v) Qi(V) Qb(V)

217 221 128

1.4 1.9
307 313 141
1.8 1.9

355 359 145

1.3 1.4

432 440 134

1.7 2.5
466 471 141

1.1 1.1
456 462 125

1.3 1.7

465 472 129
1.5 2.0

499 507 129

1.7 2.4
437 444 132

1.6 2.3
346 350 136

1.2 1.3

287 289 155
.8 .7

205 209 136

1.7 1.4

131

144

147

137

143

128

131

132

135

137

156

138

Q (v)

266
3.4
313
3.0
217
4.8
194
5.0
247
3.3
198
3.3
258
2.7
192
4.2
210
11.2
306
1.7
263
4.9
319
10.0

Qe (V)

257

303

207

184

238

192

251

184

187

311

250

350

Qs(v ) Qs(v ) BAL(v) %AL(v)

31
14.8
40
1.6
30
12.4
17
10.6

38
7.9
16
16.4
28
.4
13
.6
10
.0
26
2.4
31
5.9
29
20.1

-208

6.8

-186
6.9

-38
43.9
87
18.0
40
36.4
117
10.9
52
22.4
165

8.1

84

32.9
-121

3.0
-162

9.8

-278
12.9

-193

-173

-21

103

55

130

63

178

111

-125

-147

-314



Table III

Ship Station PAPA (50N - 145W)

North

January
% di if

February
% dcif

March
% dif

April
% dcif

May
% di f

June
% dif

July
% di f

August
% dif

September
% di f

October
% dif

November
% di f

December
% dif

Qi(v)

59
1.8
121
2.1
201
1.7
334
1.4
357
1.2
355
.7

346
.7

286
1.1
236
1.4
153
1.4
79
1.3
50
1.8

Qi(V) (V) b(v)

60 105 108

2.1
124 121 125

3.4

204 118 120
2.3

338 136 139
2.2

362 112 113
1.4

357 100 101

.8
348 94 95

1.3
289 95 97

1.7
240 119 121

1.9

155 124 126
1.5

80 132 134
1.6

51 121 124
2.4

Q (v)
e

40

55.1
56

18.4

104
2.7

114

2.7

77
3.0

57
3.9

28
1.9

52

5.5

159
1.9

191

7.6
355

7.1

116
4.6

Qe(v)

62

45

101

117

75

55

28

55

162

176

330

110

Q(v) Q (v) QBAL (v) %AL (v)

-29

44.8
10
8.6

30

4.8

44
17.3

8
11.5

5
.6

-7
41.4
-1
382.2
22
9.0

23

5.1

110
9.6
30

5.8

-16

10

29

36

9

5

-4

2

20

22

99

32

-57
63.5
-65

12.1
-52

9.5

40
15.6
160
2.5

193

1.9
231

.6
140
3.0
-63

.1
-185
8.6

-517
6.7

-217
.7

-93

-57

-47

46

164

197

230

135

-63

-169

-482

-216
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Since large transfers occur at times of strong winds, the wind

shear keeps the atmospheric stratification close to neutral

values, and these are the conditions for which the formulas

were derived.

It is also seen from Tables II and III that the errors

resu -ing from averaging procedures are smaller for Qi and

Qb than for Qe and Qs. This result is due to the fact that

there is a correlation on a daily basis between the wind speed

u and the air-sea temperature difference T - T and between
a s a

the wind speed u and the air-sea specific humidity differencea

qs- qa If the monthly average heat transfers are given 
by

Qe s (qs - qa) ua + CV (qs - qa) Ua (11.17)

and

Qs C (T - T ) u + CV (T - T ) U (11.18)

where the bar denotes an average over daily values and CV

denotes "covariance betwe en" the second terms in (11.17)

and (11.18) represent the contributions of the correlations

between the variables and the first terms the contributions

of the monthly averaged variables. If only monthly averaged

variables are used, the second terms are neglected, and small

errors are produced.

Since monthly averaged variables were the only ones avail-
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able over a long time period (see Chapter III), they were used

in this study to compute the heat transfer values. However,

the investigation of the data from the two weather ships

indicates that the errors involved in this procedure are, in

the average, only 10% of the actual values. The work of Malkus

(1962) and Kraus and Morrison (1966) also support this con-

clusion.
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III. Data Preparation

A. Monthly Averaged Data

Monthly averaged values of sea surface temperature, air

temperature, wet-bulb temperature, cloud cover and wind speed

were obtained for an 84 month period, January 1951 to December

1957, from Dr. O. E. Sette of the Bureau of Commercial Fisheries

at Stanford University. The data are in the form of averages

for two-degree latitude and longitude squares and cover the

North Pacific Ocean from 200 S to 600N. However, in this study

only those values north of 200N were used since the coverage

is excellent in this region; usually more than 500 observations

per two-degree square were available for the 84 month period,

and in some squares more than 5000 observations were given.

The data were first copied onto Marsden Square sheets

(10-degree latitude-longitude squares with subdivisions for

each 2-degree square within them) and those values obviously

in error were eliminated. Overlapping averages of 9 values in

each quadrant of the 10-degree square were taken, and these

values were plotted in their respective positions on a map of

the North Pacific. The 4 values in each of the 10-degree

Marsden Squares were then averaged to obtain a value at each

5-degree latitude-longitude intersection. Finally, the 162

resulting values were punched onto cards for further use on

a 7094 IBM computer.
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For the computation of geostrophic winds and heat transfer

terms, monthly average sea-level pressure values were taken from

charts supplied by the Extended Forecast Division of the U. S.

Weather Bureau and were also punched onto cards.

The 162-point network of points, extending from 20*N to

550N and from coast to coast, gives a picture of the large-

scale features of each of the variables used in the computations

and each of the computed heat transfer terms. It is felt that

this network is adequate for one to be able to learn something

about the large-scale interaction of ocean and atmosphere

on a monthly and seasonal time scale.

In his work using the same data, Wyrtki (1965, 1966) sub-

tracted 1.2*F from all of the sea-surface temperatures. This

correction was suggested by Saur (1963) to convert injection

temperatures to actual ocean temperatures. This correction was

not used in this study, however, since the reported air and wet-

bulb temperatures are probably also biased on the high side due

to radiational effects of the ships on which the measurements

were made. Since no information on this effect was available

and since the temperature values always appear as differences

in the exchange formulas, it was decided to use the sea surface

temperatures as reported.

The values of the specific humidity at the sea surface

were computed from the saturation vapor pressures over water
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at the reported sea surface temperatures with the following

relationships:

_ e
q = s , (III.1)s p

and

e = .98e , (111.2)
s o

where qs is the specific humidity, E = .622, es is the

saturation vapor pressure over the sea, e is the saturation.

vapor pressure over fresh water taken from the Smithsonian

Meteorological Tables (1958), and p is the sea-level pressure

in millibars.

The values of the specific humidity of the air were

obtained from the following relationships:

(T - T w ) (Cp + wCp) = (w' - w) L, (111.3)

e = i (111.4)
a w+e

and
e

a p

where Ta is the temperature of the air approaching the wet-

bulb, T is the temperature of the saturated air leaving the

wet-bulb, C is the specific heat at constant pressure of theP
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dry air, C is the specific heat of water vapor, w is the mixing

ratio of the approaching unsaturated air, w' is the mixing

ratio of the saturated air, L is the latent heat of vaporization,

and qa is the specific humidity of the unsaturated air.

B. Daily Averaged Data

Daily averaged values of sea surface temperature, air

temperature, dew-point temperature, cloud cover, and wind speed

were obtained for the 12 months of 1962 for weather ship stations

PAPA (500 N - 1450 W) and NOVEMBER (300N - 1400W) from Dr. Glenn

Flittner of the Bureau of Commercial Fisheries at La Jolla,

California. The data were first tabulated by month and then

punched onto cards for further analysis and use.
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IV. Heat Exchange Calculations

A. Results Using Monthly Averaged Data

Values of Qi', Qb' Qe Qs and the total heat transfer across

the sea surface

Q = Qi = Qb - Qe - Qs (IV.l)

were computed for each of the 84 months of the period under

investigation, using the formulas developed in Chapter II.

The results were averaged over the 7 years for each quantity

and each month and are shown along with their respective

standard deviations in Figures A12 through A71. They were

also averaged over all of the 84 months in the period, and

these results are shown in Figures Al through All.

1. The values of Qi (incoming radiation corrected for

cloud cover) averaged over the 84-month period are shown in

Figure Al. They range from 124 cal/cm2/day at 55
0N to

432 cal/cm2/day at 200 N and show a strong dependence upon lat-

itude; variations along a latitude circle represent variations

in the average cloud cover. Maximum incoming radiation occurs

between 200 N and 300N from the Hawaii Islands to the Philip-

pines due to the comparatively low cloud cover in this area

as shown in Figure A8. The values of the standard deviation
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at each of the 162 points reflect the fluctuations in Qi due

to the yearly cycle of incoming radiation and to the fluctuation

in the cloud cover from year to year during the 7-year period.

The values of Qb (effective back radiation) averaged over

the 84 months are shown in Figure A2. They range from 87

cal/cm2/day at 50*N to 143 cal/cm2/day at 350 N and show

little seasonal change. Effective back radiation is high in

the region of the Kuroshio Current due to the large sea-air

temperature difference and low in the high latitudes due to

the large amount of cloud cover in this region. The standard

deviations of Qb are all comparatively low and indicate that

there is little seasonal or year-to-year change in the back

radiation.

The 84-month averages and standard deviations of Qe

(latent heat transfer) are presented in Figure A3. The average

values range from 84 cal/cm2/day at 55*N to 384 cal/cm2/day

at 35*N. The amount of heat lost from the sea surface due to

evaporation is lowest in the high latitudes due to the low

vapor pressure difference in this region and highest in the

region of the Kuroshio due to the large vapor pressure differ-

ences there. The relatively large values of the standard

deviations reflect the large seasonal fluctuations of Qe'

especially in the area of the Kuroshio Current. The average

values of Qe show the same distribution over the map as those
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computed by Wyrtki (1965). However, the magnitudes are larger

than his values due to the fact that Wyrtki subtracted 1.20 F

from the sea-surface temperature values, giving him lower

values of the sea-surface vapor pressure. Part of the differ-

ences may also be attributed to the use of a drag coefficient

in this study that is a function of the wind speed and not a

constant value as was used by Wyrtki.

The values of the 84-month averages and standard deviations

for Qs (sensible heat transfer) are shown in Figure A4. The

average values range from 6 cal/cm2/day at 40*N - 125 0W to 106

cal/cm2/day at 350N - 145 0 E. The largest values occur in the

region of the Kuroshio, where the air-sea temperature differ-

ence is large, while the smallest values occur along 20'N

and the California coast, where the sea-air temperature

difference is small or reversed. The large values of the

standard deviations reflect the seasonal variation of the

sensible heat transfer, especially off of the Asian coast,

where large masses of cold air move out from the continent

during the winter months.

The 84-month averages and standard deviations of the total

heat transfer across the sea surface SLHT or Q are shown in

Figure A5. The average values range from -328 cal/cm2/day

at 350N - 145 0E to 117 cal/cm2/day at 30*N - 115 0W. The

preponderance of negative values indicates that during the

year the North Pacific Ocean loses more heat than it gains
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at the surface above 200N. The largest amount of heat is lost

in the region of the Kuroshio, where back radiation, evapora-

tion and sensible heat loss are high. There is a small heat

gain along 200N between 1450E and 165 0E due to high incoming

radiation and another heat gain along the California and

Mexican coasts which is caused by small values of evaporation

and sensible heat loss. In comparing these values to those

given by Wyrtki (1965), it is seen that his map shows much less

heat loss above 200N. This result is due to the larger values

of sensible and latent loss used in this study, giving larger

values of total heat lost at the surface. The extremely large

values of the standard deviations in Q indicate that there are

large seasonal and year-to-year variations in the total heat

transfer.

The values of the total heat transfer were integrated over

the North Pacific north of 200N. The result indicates that the

14
ocean loses 7 x 10 cal/sec through the surface north of

200 N. Wyrtki (1965) calculated the total integral of heat

transfer over the entire North Pacific from the equator pole-

ward and found that the ocean gains 3 x 1014 cal/sec, or

about 10 per cent of the incoming radiation. The difference

between the two calculations shows that there is a heat gain

of 10 x 1014 cal/sec between the equator and 20
0N and that it

is this region that accounts for the yearly heat gain of the

North Pacific. The magnitude of this heat gain between the
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equator and 200N is uncertain, however, due to the different

values of latent and sensible heat used by Wyrtki and this

study. Since the values in the latter were larger, resulting

in a larger heat loss above 200N than Wyrtki's work would

show, the magnitude of the heat gain should be smaller than

calculated.

The 84-month average values and standard deviations of

sea-surface temperature, air temperature, cloud cover, observed

wind speed, specific humidity and Bowen Ratio are shown in

Figures A6 through All. They are given here as reference

maps and will not be discussed.

2. The values of Qi, Qb, Qe, Qs, and Q averaged over 7

years for each month are shown in Figures A12 through A71.

The values of the standard deviations over the 7-year period

are shown in order to give some idea of the variability of

each of the heat transfer terms on a year-to-year basis.

In order to facilitate the analysis of these maps, the

first 2 harmonics (first harmonic has a period equal to one

year or 12 months) of the Fourier Series for each transfer

term were computed at each of the 162 points on the map.

Along with the 2 Fourier coefficients, the percentage of the

series variance accounted for by each of the harmonics was

also computed. This type of analysis was found to be extremely

useful in interpreting the.monthly and seasonal cycles of the
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data, since the 2 harmonics together usually accounted for over

95 per cent of the variance at each point; in fact, over most

areas of the map the first harmonic or yearly cycle accounted

for over 90 per cent of the variance. By determining the phase

of each of the harmonics and printing them in map form, it was

also possible to compare the relative times of maximum and

minimum values of each series at each of the points.

The values of Qi averaged over the 7-year period for each

month are presented in Figures A12 through A23. The largest

values of Qi at each latitude occur in June, while the smallest

values occur in December due to the motion of the earth around

the sun and the tilt of the earth's axis of rotation with

respect to the plane of revolution. The Fourier analysis shows

that there is a regular yearly cycle as expected. The first

harmonic accounts for over 90 per cent of the variance at most

points, with the exception of the area from 200 N to 30*N and from

110ow to 1400 W, where the percentage is reduced to 60 due to

the effect of cloud cover variation without a uniform yearly

cycle.

Figures A24 through A35 show the 7-year average values and

standard deviations of the effective back radiation Qb. Due

to the low values of cloud cover and the large values of the

sea-air temperature differences, the largest values of Qb

occur in January. The Fourier analysis again shows a regular

yearly cycle with the maximum values occurring in December



and January and the minimum values in June and July. Relativ-

ely low values of the standard deviations indicate that there

is little year-to-year variability of Qb* The low values of

the amplitude of the first harmonic in the Fourier analysis

also show that there is only a small range between the max-

imum and minimum values of Qb throughout the year.

The 7-year average values and standard deviations of Qe

for each month are given in Figures A36 through A47. The

results of the Fourier analysis show that there is a pronounced

yearly cycle in Qe and that the maximum values occur in

December, while the minimum values occur in June. The first

harmonic accounts for more than 90 per cent of the series

variance in all areas except from 200 N to 250 N and 110 0W

to 1700 W, where the percentage falls to as low as 5. This

result is due to the fact that both the specific humidity diff-

erence and the observed wind speed fail to have regular yearly

cycles in this area. The amplitude of the first harmonic and

the 7-year standard deviations are largest in the area from

300 N to 450 N and 180 0 E to 125*E, reflecting the effect of the

large masses of cold, dry air that move off of the Asian

continent during the winter months.

Figures A48 through A59 show the 7-year average values

and standard deviations of Qs for each month of the year.

Again, the Fourier analysis shows that a regular cycle occurs

with the maximum values in November and December and the
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minimum values in May and June. This yearly cycle is due to

the fact that both the sea-air temperature difference and the

observed wind speed also have regular yearly cycles with max-

ima and minima in the same months. Negative values of Qs

(heat gained by sea surface) occur in the high latitudes from

May through September, reflecting the fact that the air tem-

peratures are warmer than the sea temperatures during these

months. The relatively large values of the standard deviation,

especially in the summer months, indicate the large year-to-

year variability that occurs in Qs!

Figures A60 through A71 show the 7-year averages and

standard deviations of the total heat transfer through the

surface Q. It is seen that negative values of Q, implying

heat loss from the ocean surface, occur from September through

April, while positive values, implying heat gain by the sur-

face layer, occur from April through September. The results

of the Fourier analysis show that there is a regular yearly

cycle in Q with the maximum values occurring in June and the

minimum values occurring in December. The first harmonic of

the series accounts for over 95 per cent of the variance in

all areas except those in which there are no regular cycles

of Qi' Qb) Qe' and Qs"

In looking at the maps for the different months, it is

seen that heating of the surface layer begins first in March
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along the 200 N latitude from 130 0E to 165 0E and begins last

in the region of the Kuroshio Current in the latter part of

April. The heating continues in all areas from May through

August except in the region between Hawaii and Baja California,

where some cooling occurs due to the high evaporation in all

months. Cooling of the surface layer first begins in August

at 200N and 125*E to 135 0E, then in the region of the Kuroshio

during September, and finally spreads to all regions by Oct-

ober. The cooling continues from October through March, with

the largest values occurring in December and January off of

the Asian coast, where over 700 cal/cm2/day are lost due to

the high latent and sensible heat transfer from ocean to atmos-

phere. The large values of the standard deviations reflect

the large year-to-year variability in Q due to the corresponding

large variability in Qe and Qs"

3. The values of the sea-surface temperature SST, the

surface air temperature SAT, and the change in sea-surface

temperature from month to month4 SST averaged over the 7-year

period for each month are shown in Figures A72 through A107.

Figures A72 through A83 show the average values and the

7-year standard deviations for SST. Fourier analysis of the

data at each of the 162 grid-points shows that there is a

regular yearly cycle in all areas, with the first harmonic



accounting for over 95 per cent of the variance at all points.

The maximum amplitudes of the yearly cycle occur in the area

of the Japan Sea and the Kuroshio Current, where the yearly

range of the sea-surface temperature is 18 to 240F. The

minimum values of the amplitudes occur in the area from 120 0W

to 170°W and 200N to 300N, where the yearly range is only

4 to 70F.

The Fourier analysis also show that the maximum values of

sea-surface temperature occur in the latter part of August and

the early part of September and that the minimum values occur

in the latter part of February and the early part of March.

In comparing the yearly cycles of the total heat transfer

across the sea surface Q and the sea-surface temperature SST,

it is seen that the two are strongly related. In all areas

of the maps except the southeast corner, the sea surface reaches

a maximum temperature at the end of the heating cycle (positive

Q) and a minimum temperature at the end of the cooling cycle

(negative Q).

Figures 1 through 4 show the cycles of Q and SST at various

points along the latitudes 200N, 35N, 400N and 500N. (For

a more extensive presentation of this type of analysis, see

Wyrtki, 1966.) Large changes in Q throughout the year produce

corresponding large changes in SST, whereas small changes in

Q produce small changes in SST. This relationship between
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the average or normal values of the total heat transfer across

the sea surface and the sea-surface temperature suggests that

the year-to-year changes in the total heat transfer for a

particular month will be accompanied by year-to-year changes or

anomalies in the sea-surface temperature for the same month.

This is indeed the case, as will be shown in Chapter V.

Figures A84 through A95 show the 7-year average values and

standard deviations of the surface air temperature SAT. The

results of the Fourier analysis show that a regular yearly

cycle is also present in the air temperature, with over 95

per cent of the series variance accounted for by the first

harmonic. The maximum and minimum values of SAT occur at the

same times as those of the sea-surface temperature, August

through early September and February through early March

respectively. In both the sea and air temperatures, the

maximum values tend to occur somewhat earlier (early August)

in the western part of the ocean than in the eastern part

(early September). This result is also reflected in the fact

Lthat thLLe heaLLig cyLe Lasts approximately 1 month LIonger in

the eastern part of the ocean than in the western part; there

is a definite shift from August to September in the time when

the heating cycle ends as one moves eastward across the ocean.

The strength of the California Cuirrent and t-he accomp-

anying cold advection in the months of June, July and August
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may play an important role in determining the end of the heating

cycle in the western part of the North Pacific. During these

months, the strong advection of cold water keeps the sea-sur-

face temperature somewhat lower than it would be if there were

no advection. These lower temperatures, in turn, keep the tran-

sfer of latent and sensible heat down and let Q remain positive

(heat gain by sea surface) throughout August and early Sept-

ember. As the advection weakens, the ocean temperature rises

until the incoming radiation is balanced by the heat lost from

the surface due to back radiation and latent and sensible

heat transfer. At this point, the surface layer of the ocean

begins to lose more heat than it gains, and the sea-surface

temperature begins to fall.

The relationship between the yearly cycles of the

normal values of SST and SAT indicate that year-to-year

fluctuations or anomalies in SST will be accompanied by corres-

ponding fluctuations in SAT. From correlation studies between

the anomalies of the two data series, reported on in Chapter

V, it was found that this is exactly what occurs.

Figures A96 through A107 show the 7-year average values and

standard deviations of the month-to-month change in the sea-

surface temperature ASST. These values were computed by taking

the difference between the average value of a particular month

and the following month and the average value of the same

month and the preceding one. We thus have linear approximations
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to the change in SST across each of the 84 months in the data

series. The results of the Fourier analysis show that there

is a regular yearly cycle inL SST, especially in the lower

latitudes. Above 350 N the second harmonic becomes important

and accounts for approximately 15 per cent of the variance in

these areas. The maximum increase of the sea-surface temperature

over a month occurs from the middle of May to the middle of

June, while the maximum decrease occurs from the middle of

December to the middle of January. During the times of little

or no change in the sea-surface temperature (early march and

early September) the heat content of the ocean surface layer

changes very little, and a balance must exist between the

transfer of heat across the sea surface and the advection within

the surface layer.

The monthly mean values of the observed daily wind speed

were averaged over the 7-year period and subjected to Fourier

analysis. The results show that there is a regular yearly

cycle over most of the ocean areas with the exception of the

area 200N to 3001Vand from 110*W to 170 0 E. Over the rest of

the ocean, the first harmonic accounts for over 90 per cent

of the variance and, in the central and western parts, for over

95 per cent. The largest amplitudes, 250 cm/sec, occur

between 350 N and 500n and from the Asian coast eastward to

longitude 1750 E. Large amplitudes also appear in the Gulf

of Alaska, a region of frequent cyclogenesis. As expected,
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the largest values of the wind speed occur during January and

the minimum values in July.

The values of the Bowen ratio (Qs /Qe) were also averaged

over the 7-year period for each month and Fourier analyzed.

The results show that a regular yearly cycle occurs only in

the middle latitudes of the western part of the North Pacific.

In this area the ratio has-an annual range of .4 to 1.4 with

the maximum values occurring in January and the minimum values

in July. In the other areas, the Bowen ratio has a value

of about .1 with little annual variation.

4. Using the heat balance equation in the form

dk-

where H is the depth of the upper mixed layer of the ocean,

v is the velocity within the mixed layer, T is the temperature

of the mixed layer, and Q is the total heat transfer across

the sea surface, an estimate of the total heat advection within

the mixed layer, or the left-hand side of the equation (IV.2),

can be obtained using the observed values of the change in

heat content of the layer and the calculated total heat trans-

fer.

Using the values of JT/4t, orA SST, and Q determined

previously and values of H taken from a study of the thermal
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condition of the North Pacific Ocean by Pattullo and Cochrane

(1951), estimates of the heat advection within the mixed layer

were determined at each of the 162 grid-points for each of the

12 months. The values are given in Figures A108 through A119.

Due to the uncertainties in the monthly distributions of

the mixed layer depths H, not much confidence can be placed

in these computed values of heat advection. However, several

features of the monthly maps appear to be in agreement with

what is known about the current patterns in the surface layer

of the North Pacific, especially during the months from Oct-

ober through May. During these months, there is strong advec-

tion of warm water from the lower latitudes to the higher lat-

itudes in the western part of the ocean; this is particularly

true in the region of the Kuroshio Current. In the eastern

part of the ocean off of the California and Mexican coasts,

there is a weaker advection of cold water from the higher

latitudes to the lower ones. This is also the case from June

through September. However, during these 4 months the maps

show that there is cold advection of water within the surface

layer in the region of the Kuroshio in contrast to what is

expected due to the transport of the geostrophic and wind-

drift currents. The reason for this discrepancy probably lies

in the fact that the monthly charts of the mixed layer depth

for the region show a marked decrease from June through Sept-

ember, going from 250 feet in May to 50 feet in June. Looking
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at the first term on the right-hand side of equation (IV.2),

it is seen that for positive values of Q and JT/Jt, small

values of H can give negative values or cold advection for

the left-hand side.

Another uncertainty in the method is the amount of heat

that is lost from the mixed layer across the seasonal thermo-

cline. Since this heat loss is believed to be compensated by

an up-welling of cold water through the region of the thermo-

cline, the large negative values calculated for the advection

could reflect this heat loss or up-welling. In the following

simple model of the surface layer, it will be shown that the

heat received or lost at the surface is balanced by a change

in the temperature of the surface layer, horizontal advection

of heat into or out of the layer, and loss of heat across the

region of the thermocline.

The equation of heat flow may be written as

where T is the temperature, u, v and w are velocity components

in the x,y and z directions, and K is the vertical heat ex-

change coefficient (only vertical mixing considered). Using

the equation of continuity in the form

C) (IV.4)
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and placing the direction of flow along the y-axis (u = o),

we get

' (IV.5)

Integrating over the mixed layer depth H in which T is

independent of z and letting V = fvdz, then

-CP

since w = o and/k T/Jz = Q/ cp at z = o.

In the discontinuity layer or the region of the seasonal

thermocline, we assume that the downward flux of heat due to

thermal conduction is balanced by water ascending with the

constant velocity w. We can then write the relation

JT
w (T - TD ) = A- (

in which (T - TD ) is the temperature gradient across the

discontinuity layer.

Substituting equation (IV.7) and the vertically integrated

continuity equation,

-H
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or JV -

into equation (IV.6) we obtain

4V7 - (IV.8)

This equation states that the total heat transfer across the

ocean surface (Q) is balanced by the change in temperature

of the mixed layer, horizontal advection within the layer,

and a loss of heat into the region of the thermocline. The

last mechanism heats the water ascending from below, which

passes into the horizontal flow within the surface layer.

Using a value of 2 x 10- 5 cm/sec for the vertical velocity

through the discontinuity layer (Wyrtki, 1960) and 200C for

T - TD, a value of 35 cal/cm2/day is obtained for the heat

loss from the surface layer due to vertical mixing at the

bottom of the layer. Although this value is not large, it

would reduce the magnitude of the right-hand side of equation

(IV.2) and help to give more reasonable values for the horiz-

ontal heat advection.

The values of the heat advection determined from the heat

balance equation were integrated over each latitude circle

at 5-degree intervals from 200N to 550N and also over the
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entire North Pacific Ocean from 17.5 0 N to 57.5 0 n. The results

of the calculations are shown in Table IV. It is seen from

the table that warm advection occurs over the ocean from Jan-

uary through May, with the largest values occurring in March

where 14.6 x 1014 cal/sec is advected into the surface layer.

Cold advection occurs from June through December, with 6.6

14
x 10 cal/sec being advected out of the surface layer above

17.50 N in September.

As was mentioned above, the values of cold advection during

the summer months are uncertain due to the unreliable nature

of the mixed layer depth values, especially in the western

part of the ocean. In a study on the meridional heat transport

by ocean currents, Bryan (1962) used a method combining

hydrographic station data and climatological values of surface

wind stress to compute the meridional transport of heat across

various latitudes in the Atlantic and Pacific Oceans. Using

data obtained during August of 1955 at 320N in the North Pacific

Ocean, he calculated that there was a southward transport of

heat by large-scale motions of approximately 2.8 x 1014

cal/sec. From Table IV it is seen that a southward transport

of heat of 2.2 x 1014 cal/sec occurs at 320 N. . While

the magnitudes of the two calculations differ by a factor of

1.3, the direction of heat transport is the same for both studies.

Bryan concludes that more east-west sections are needed to

determine whether this southward heat transport is characteristic



Table IV

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

.2

.2

.3

1.0

1.0

-. 3

-. 4

.2

2.1

.1

.4

•7

1. 3

.7

.4

.6

.8

1.2

2.3

2.9

2.7

2.4

1.8

.4

.5

.5

1.2

1.6

1.3

1.1

.9

.3

.2

-. 1

.4

.9

.4

.3

.7

-. 1

-. 2

-. 4

-. 2

.0

-. 3

-. 5

.2

.0

.0

-. 2

-. 2

-. 5

-. 6

-. 4

-. 3

-. 1

-. 1

-. 3

-,6

-1.1

-. 4

.5

-. 3

-.7

-1.1

.7

-.6

-1.0

-2. *I

-2.I

-. 2

-.9

-1.4

-.7

-.4

-.1

-.6

-.8

-. 3

-. 4

.2

-. 4

-1.2

-. 2

-. 5

-. 5

.1

-. 1

-1I.4

-. 1

55 0N

50 N

45 0oN

40 ON

35 0 N

300 N

250 N

20 0 N

Total
Area
Integral

Units: 1014 cal/sec

LAT

7.3 14.6 7.5 3.2 -1.5 -2.2 -3.3 -6.6 -5.6 -5.8 -3.8
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of other years and other seasons. The results of the present

work indicate that this transport is not characteristic of

all seasons, since a northward transport of heat occurs

during the winter and spring months at all latitudes above

200N.

B. Results Using Daily Averaged Data

In order to find out how much variability occurs during

a month in the heat transfer terms and in the sea-surface

temperature, daily values of certain meteorological parameters

were obtained for ocean stations PAPA (500N - 145*W) and

NOVEMBER (300N - 1400 W) in the North Pacific Ocean for 1962

(see Chapter III). The data were used in the heat transfer

equations developed in Chapter II to compute Qi Qb' Qe' Qs

and Q on a daily basis. These daily values of the heat

transfer terms were then averaged over each of the 12 months

to get monthly averaged values; in addition, the standard

deviations for each of the terms were calculated for each

month.

1. The monthly averaged values of Qi, Qe + Qs , and Q

are shown in Figure 5 for station NOVEMBER and Figure 6 for

station PAPA; at the bottom of each of the Figures, the

value of the sea-surface temperature for each month minus the
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yearly mean is also given. At each of the stations the heating

cycle begins in March and ends in September. The variations

in the total heat transfer Q during the summer months at

station NOVEMBER reflect the variations in the latent and

sensible heat flux Qe + Qs throughout these months. At station

PAPA the large negative value of Q in November is a consequence

of the large value of Qe + Qs during this month. The values

of the effective back radiation show little monthly variation

and have values of about 120 cal/cm2/day for station PAPA

and 135 cal/cm2/day for station NOVEMBER.

2. Tables V and VI show the monthly averaged values and

standard deviations over the daily values of Qi, Qb' Qe' Qs' Q

and SST for stations NOVEMBER and PAPA respectively. The

values of the standard deviations for Qi are comparatively

low and reflect the fluctuations in the cloud cover during

the individual months. The standard deviations for Qb are

also low (approximately 20 per cent of the average values)

and again reflect the fluctuations in the daily cloud cover

values. However, the standard deviation values for Qe and

Qs are extremely large, at times exceeding the magnitudes

of the average values themselves. These large fluctuations

throughout each of the months are due to the combined effects

of fluctuations in the vapor pressure or temperature differ-

ences between sea and air and the daily values of the surface
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217

41

128

21

266

169

31

34

-208

221

18.7

.5

307

61

141

31

313

235

40

39

-186

296

18.5

.0

355

64

145

24

217

134

30

27

-38

170

18.1

.2

432

84

134

23

194

103

17

20

87

157

18.8

.0

466

76

141

27

247

115

38

27

40

152

19.8

.3

456

81

125

16

198

103

16

17

117

147

20.2

.7

465

90

129

17

258

116

28

12

52

167

21.5

.3

499

84

129

16

192

105

13

10

165

157

22.6

.9

437

72

132

17

210

192

10

15

84

233

23.3

.4

346

51

136

20

306

138

26

13

-121

178

23.0

.5

287

33

155

22

263

147

31

24

-162

184

22.0

.7

205

42

136

32

319

199

29

37

-278

233

20.2

1.0

Monthly averaged values and standard deviations of Qi ', Q0, Qs Q

and SST for station (NOVEMBER) 30
0 N - 1400 W);

Units: cal/cm 2/day for Q's and 00 for SST.
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59

15

105

36

40

98

-29

58

-57

173

5.9

.2

121

30

121

29

56

84

10

36

-65

125

5.9

.4

201

47

118

29

104

94

30

58

-52

160

5.9

.3

334

68

136

25

114

71

44

65

40

129

6.2

.5

357

77

112

28

77

75

8

36

160

99

7.2

.5

355

61

100

20

57

69

5

23

193

94

9.0

1.0

346

59

94

15

28

37

-7

12

231,

59

11.6

1.0

286

60

95

20

52

52

-1

15

140

73

13.1

.6

236

50

119

27

159

153

22

51

-63

202

13.5

.8

153

32

124

32

191

177

23

45

-185

218

10.3

.6

79

17

132

33

355

240

110

117

-517

367

8.6

.6

50

12

121

37

116

158

30

97

-217

271

6.9

.3

Monthly averaged values and standard deviations of Qi' %# Qe, Qs' Q

and SST for station PAPA (500N - 1450W).

Units: cal/cm2 /day for Q's and oC for SST.
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wind speed. However, since the transfer equations are non-

linear in nature, it is not possible to determine which of

the terms is primarily responsible for the large daily

variations in Qe and Qs"

The large standard deviation values for Q are a result

of the combined effects of daily fluctuations in Qi Qb'

Qe and Qs. However, since Qe and Qs have such large standard

deviation values with respect to their average values, it is

these 2 terms that are primarily responsible for the large

daily variation of the total heat transfer Q.

Compared to the heating terms, the standard deviations

of the sea-surface temperature are quite low. This result

suggests that the large variability of the total heat transfer

on a daily basis is compensated by fluctuations in the depth

of the mixed layer and by fluctuations in the strength of the

horizontal advection within the mixed layer caused by the wind

stress on the ocean surface. A study of the mixed layer

depth values for station PAPA during 1962 by the Pacific Ocean-

ographic Group of the Fisheries Research Board of Canada shows

that the standard deviations of the daily layer depth values

over a month can be as large as 40 per cent of the monthly

averaged values; the yearly average of the standard deviation

values is 17 per cnt of the monthly mean layer epths. A

study of the daily values of the total heat transfer across the
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surface and the daily change in sea-surface temperature at

stations NOVEMBER and PAPA showed that there was very little

correlation between the two terms.
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V. Discussion of Sea-Surface Temperature

and Heat Transfer Anomalies

A. Spatial and Temporal Scales of Anomalies

1. In addition to the 7-year average values of SST and

SAT for each month, the departures of each yearly value for

a given month from the average or normal value also were

computed. These departures or anomalies were printed out in

map form for each month and each quantity and also punched

onto cards for further analysis. Figures 7 and 8 show typical

maps for the sea-surface and air temperature anomaly patterns.

(Many of the results reported below first appeared in a

report written in 1966 by Dr. Hurd C. Willett and myself

for the National Science Foundation. This report will be

quoted extensively, especially when discussing the magnitude

and duration of the SST and SAT anomalies.)

In looking at the anomaly maps of both SST and SAT for

the 7-year period, it is seen that values of the same sign

and magnitude occur in fairly extensive geographical areas.

The magnitudes of the SST anomalies have values of 2
0F to

40F except in the coastal areas and particularly off of the

Asian coast in winter, where larger values occur. The SAT

anomalies are slightly higher than those of SST; however,

this difference is usually not greater than 50 per cent. Ex-



ANCPALY OF SEA SLRFACE TEMP. 195 7

JANUARY

55h

-6 - 4 3 1

-2 -2 - 1 -2

J 0 e a 6 N

14 17 25 23 18 14 16 0 4 9 8 4

7 18 18 17 12 12 1 17 19 24 19 16 18 22 19

4 2 5 4 1 2 4 6 16 19 0 24 25 2

4 -6 -7 -S -9 -7 -4 -2 6 13 19 21 19 14

3 - -15 -17 -16 -13 -10 -12 t9 1 7 13 13 1

6 13 -19 -18 -13 9 -8 -14 -1 -1 2 7 6 2 -4

5 -7 -8 -6 -4 -2 1 - 3 8 8 16 12 3 -5

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure 7. Anomaly pattern of sea-surface temperature. December 1957. (OF x 10)
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cept for these coastal regions, there is no outstanding

difference between anomaly magnitudes for the different

months and seasons.

Although there is a large degree of month-to-month

persistence in the SST anomaly patterns, in many cases

geographically extensive areas of large anomalies are elimi-

nated or even reversed in sign in a single month's time. It

is apparent that the effect of even a strong anomaly pattern

in SST is not sufficient in some cases to prevent a change

in the large-scale wind pattern and other meteorological

parameters from completely destroying the anomalies.

In contrast to the month-to-month persistence, year-to-

year persistence of the large-scale features of the anomaly

patterns is not at all apparent. There appear to be no more

cases of notable year-to-year persistence of a strong anomaly

pattern than there are of complete elimination or even

reversal of such a pattern. This conclusion applies to both

sea-surface and air temperatures. For weak anomaly patterns,

the year-to-year comparison generally suggests that a random

relationship exists.

For a more objective analysis of the persistence of the

monthly mean SST and SAT anomalies, a selection was made of

15 points, the intersections of the 25th, 35th and 45th

parallels with the five meridians 1500E, 1700 E, 170 0W,
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1500W and 1300 W. This group of points covers most of the

central North Pacific and permits a reasonable north-south

and east-west comparison of conditions to be made.

For each of the 15 grid-points, a count was made of the

total number of changes of sign of the anomalies that occurred

during the 84-month period and also of the longest unbroken

period of months for which the sign of the anomaly remained

unchanged.

The average number of changes of sign of the SST anomalies

over the period is 25, indicating that the average duration of

an anomaly of the same sign is 3 and 1/3 months. The corres-

ponding figures for the monthly mean anomalies of SAT are 28

and 3 months, respectively. For the SST anomalies, the

average maximum period of consecutive months without change

of sign is 14, with the maximum number of months at a point

being 20. The same numbers for the SAT values are 13 and 19

months, respectively, and indicate that there is no significant

difference between the stability of the sea and air temperature

anomalies on a monthly mean basis.

There is no latitudinal variation in the stability of

the anomaly values of SAT. SST anomalies, however, show a

tendency toward maximum stability at 350N and toward minimum

stability at 250N.

In addition to the "count study", auto-correlations of

SST and SAT anomalies were made at 1, 2 and 3 months lag for
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all 162 points on the map over the 84-month period. For the

SST anomalies, the average value of the correlation coefficients

over the 162 points is .53 at 1 month lag, .35 at 2 months lag,

and .28 at 3 months lag; the maximum values of the individual

coefficients occurred at 350N for all 3 lags. For the SAT

anomalies, the corresponding values are .40, .28 and .25,

respectively; the latitudinal averages were approximately the

same at all latitudes. These results tend to support the

conclusions obtained from the "count study".

Lag correlations at 1 and 2 years also were computed for

the SST and SAT anomalies on a seasonal basis, i.e. the 3

individual months of a season were correlated with the corres-

ponding 3 months of the same season 1 and 2 years later. There

is a consistent negative auto-correlation at all of the 15

selected points mentioned above at both the 1 and 2 years lag

for both the sea and air temperature anomalies. This negative

correlation again supports the conclusion of the "count study"

that there is no year-to-year persisitence of these anomalies.

In order to determine how the sea and air temperatures are

related to one another, contemporary correlation coefficients

between the SST and SAT anomalies were computed for the entire

162-point network on a monthly seasonal, yearly, and 84-month

basis. The following discussion of the results will concern

the 15 selected grid-points for the monthly, yearly and 84-month

period basis and the entire 162 grid-points for the seasonal
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basis.

The average value of the correlation between SST and SAT

anomalies over the 12 months and the 15 points is .75, with

only 4 of the 180 coefficients slightly negative. By month

the coefficients ranged from .53 for January to .88 for May

and September. The only significant variation of the corre-

lation by latitude or longitude is that the average value of

the 36 coefficients on the 1500E meridian is .67, while the

average value of the other 4 meridians is .77. This difference

reflects the effect of the Asian continent on the air masses

that move over the ocean during the winter months.

For the correlations computed on a seasonal basis, the

162-point average values are .51 for winter, (December, Jan-

uary and February) .69 for spring, (March, April and May)

.83 for summer (June, July and August) and .78 for fall

(September, October and November). For all seasons except

winter, the largest values occurred along 350 N.

When the correlation between the anomalies is computed by

the 12 months of each of the 7 years separately, the average

value of the 15 points is largest in 1957 (.76) and smallest in

1953 (.55). Again the largest values tend to occur along the

35th parallel.

The combination of all 84 months of the period raises the

overall average correlation to .77 and reduces the geographical

range of the coefficients. The latitudinal averages go from
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.73 on the 25th parallel to .80 on the 35th, and the meridional

values from .69 on the 1500 W meridian to .79 on the others.

The principal facts learned from the above studies are

that there is very little long-term persistence of both the

sea and air temperature anomalies and that the anomaly patterns

of both aea and air temperature are strongly related to each

other. As Dr. Willett points out, "If feedback from ocean to

atmosphere is to be accepted as a primary factor in the main-

tenance of long-term persistently anomalous patterns of the

general circulation, then the water temperature anomalies must

be markedly more stable (persistent) from month-to-month and

year-to-year than are those of the atmospheric circulation.

We know that the large-scale anomalies of the atmospheric cir-

culation fluctuate in large amplitude in relatively short

periods of time. To maintain a long-term persistent anomaly

of the general circulation, we require some factor of control

that is stable over correspondingly long periods, to the extent

that it can pull the general circulation back into line when

it goes off on a tangent." From the investigation of the

persistence of the sea-surface temperature anomalies in the

North Pacific Ocean, it does not seem that these anomalies

provide the required control factor.

2. Monthly departures from the 7-year average values

of the heat transfer terms Qi, Qb' Qe' Qs and Q also were
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computed, printed out in map form, and punched onto cards.

The monthly departures or anomalies of the incoming

radiation Qi reflect the year-to-year variability in the cloud

cover over the ocean. Their spatial scales are not as ex-

tensive as those of the sea-surface and air temperatures and

are not as geographically coherent, i.e. high and low values

as well as those of opposite sign occur close together at times.

The magnitudes of the anomalies range from 5 to 20 per cent

of the monthly average values and show very little month-to-

month persistence.

Auto-correlations of the Q. anomalies at 1, 2 and 3

months lag were computed over the 84-month period. The

average value of the 162 correlation coefficients on the map

is .04 at 1 month lag with very little latitudinal variation;

a maximum value of .12 occurred at 200N, 25*N, and 30*N and

a minimum value of -.08 occurred at 550 N. The average values

at 2 and 3 months lag were both negative, indicating that

there is very little persistence in the Qi anomalies due to

the lack of persistence in the cloud cover anomalies.

The anomaly patterns of the effective back radiation Qb

also show very little geographical size or coherence, although

they are more extensive than those of Q.. As was shown by

the size of the standard deviation values of Qb discussed in

Chapter IV, the magnitude of the anomalies are comparatively

small, ranging from less than 1 per cent to 10 per cent of the
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monthly average values. The average value of the correlation

coefficients is .02 at 1 month lag and negative at both 2 and

3 months lag. These results show that there is very little

persistence in the Qb anomalies, as is the case for those of

Q..

The anomaly patterns of the latent heat transfer Qe are

much larger in geographical size and magnitude than those of

Qi and Qb and also tend to have more geographical coherence.

At times, 25 per cent of the entire map is covered by an

anomaly pattern of the same sign and magnitude. The magnitudes

of the anomalies vary widely over areas of the map and from

month to month, ranging from less than 1 per cent to over

75 per cent of the monthly average values. There is surpris-

ingly little persistence in the latent heat anomaly patterns,

with the average value of the auto-correlation coefficient

at 1 month lag being -.15; the coefficients at 2 and 3 month

lags are also negative.

It would be interesting to know which factor in the trans-

fer equation is primarily responsible for the month-to-month

and year-to-year fluctuations in the latent heat transfer.

However, due to the non-linear nature of the equation, it

is not possible to separate the effects of fluctuations in

the vapor pressure difference and in the surface wind speed.

A perturbation analysis of the transfer equation was tried in

which the equation was written as
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QeoC - -  + U q' + u + q'u' (V.1)

where Qe is a monthly value of the latent heat transfer, -

and U are the 7-year averages of the specific humidity and

wind speed for a particular month, and q' and u' are the

departures of particular monthly values from the average

values. If the 4th term and either the 2nd or 3rd terms on

the right-hand side of equation (V.1) were small compared to

the other 2 terms, we could say that the remaining 2nd or

3rd term was responsible for the fluctuations in Qe since

q u is a constant. However, it turns out that the last 3

terms are about the same order of magnitude and no information

is gained.

One can find out something about the relative importance

of the ocean and atmosphere in fluctuations of the vapor

pressure or specific humidity, since the variance of the

difference can be written as

V (qs -a ) = CV qs(q s - qa )  + CV qa' (q-a q) , (V.2)

where V denotes "variance of", CV denotes "covariance

between", and qs and qa are the specific humidities of the

sea and air, respectively.



-81-

The two covariance terms were computed over the 7-year

period for the mid-season months of January and July. For

the month of January, it was found that fluctuations in the

specific humidity of the air account for 2/3 or more of the

variance in (qs - qa) at 135 of the 162 points on the map,

that fluctuations in the specific humidity of the sea surface

account for 2/3 or more of the variance of (qs - qa) at 14

of the 162 points, and that the fluctuations of both quan-

tities are of approximately equal importance at 13 of the 162

points. For the month of July, fluctuations in qs account

for 2/3 or more of the variance in (qs - q a) at 69 points,

fluctuations in qa account for 2/3 or more of the variance

at 67 points, and the fluctuations of qs and qa are of equal

importance at 26 points. From this it is concluded that

fluctuations in the specific humidity of the air are more

predominant than those of the sea surface during the winter

months, and that the two fluctuations are of equal impor-

tance during the summer months.

The anomaly patterns of the sensible heat transfer Qs

are similar to those of Qe in that they are geographically

coherent and can cover a large portion of the entire map

during some months. Their magnitude also varies widely from

month to month, ranging from less than 1 per cent of the

monthly average values to over 100 per cent during the summer

months when the sensible heat transfer is small. The
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anomalies also have very little month-to-month persistence;

the average auto-correlation coefficient at 1 month lag is

-. 15 and the values at 2 and 3 months lag are also negative.

The same type of perturbation analysis of the transfer

equation for sensible heat was attempted as was done for the

latent heat equation. Again, the 4 terms of the expansion

were of approximately equal magnitude, and nothing was learned

about the relative importance of fluctuations in the sea-air

temperature difference and the wind speed in determining

fluctuations in the sensible heat transfer. However, a

covariance analysis of the sea-air temperature difference

was done with the following results: for January, fluctuations

in the air temperature Ta account for 2/3 or more of the var-

iance in the sea-air temperature difference (Ts - T a) at

132 points, fluctuations in T account for the same amount of
s

variance in (T - T ) at 20 points, and the fluctuations ofs a

T and T are of equal importance at 10 points; for the months a

of July, the corresponding numbers are 99, 45 and 18,respecti-

vely; as for the specific humidity, air temperature fluctuations

are more predominant during the winter months while both air

and sea temperature fluctuations are of approximately equal

importance during the summer months.

The anomaly patterns of the total heat transfer Q vary

widely over the map for a particular month and from month-to-

month during the 84-month period. Since the anomalies of
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Qi and Qb are comparatively small, these fluctuations are

primarily due to the fluctuations in Q and Q . The magni-
e s,

tudes of the Q anomalies range from less than 1 per cent of

the monthly average values to over 200 per cent, with the

largest values occurring in the summer months. Although

there is some geographical coherence in the anomalies, it is

not as great as that for Qe and Qs. From the values of the

auto-correlation coefficients computed at 1, 2 and 3 months

lag over the 84-month period (-.14, -.14 and -.09), there

appears to be very little persistence in the anomaly patterns.

This result is not surprising, since there was also very little

persistence found in the 4 quanitities that make up the total

heat transfer.
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B. Relationships Between Sea-Surface Temperature Fluctuations

and Heat Transfer Anomalies

In Section A we saw that sea-surface temperature anomalies

of fairly extensive geographical size occurred in all of the

84 months under investigation. The magnitudes of the anomalies

varied widely from area to area and from month to month. It

was also noted that the anomaly patterns exhibited some per-

sistence in that the auto-correlations at the individual

points remained positive on the average to about 3 months lag.

Two questions arise from these observations: (1) What

causes the anomaly patterns of sea-surface temperature to be

so different from year to year during the same month and in

the same area; and (2) What accounts for the month-to-month

persistence of the anomaly patterns. The first question will

be dealt with below in sub-sections 1, 2, 3, 4 and 5, in which

the results of correlation studies between anomalies in the

heat transfer between ocean and atmosphere and anomalies in

the sea-surface temperature will be discussed. The second

question is not easily answered, but will be discussed in

sub-section 6.

1. In an attempt to account for the large-scale anomaly

patterns that occur in the sea-surface temperature, a series

of correlation studies was made in which the 7-year average

values of Qi, Qb' Qe' Qs' Q and6SST for each month were

subtracted from the individual monthly values and the results
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correlated against each other over the 7-year period. The

correlation coefficients were computed in 3 ways: (1) using

the 7 pairs of anomaly values for each of the 12 months;

(2) using the 21 pairs of values for each season of the 7

years; and (3) using all 84 pairs of values for the 7-year

period. The anomalies of the change in sea-surface temperature

over a monthASST were used instead of the SST anomalies since

it is the change in temperature over a time period that is

affected by heat transfer during a particular month; using the

SST anomalies themselves would not be correct since part of

the anomaly could have been caused by heat transfer during

a preceding month.

The results of correlating the anomalies of the individual

heat transfer terms Qi' Qb' Qe and Qs with the anomalies of

ASST show that no one term is primarily responsible for pro-

ducing fluctuations in the sea-surface temperature. However,

when the anomaly patterns of the total heat transfer across

the ocean surface Q were correlated with the anomaly patterns

of6 SST, significant results were obtained.

On a seasonal basis, i.e. using 21 pairs of values in

each correlation coefficient, the average values of the

162 coefficients on the map are .36 for winter (December,

January, and February), .21 for spring (March, April and May),

.27 for summer (June, July and August) and .27 for fall

(September, October and November). The largest individual
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values occur in winter, in which there are 67 points at which

the coefficients are larger than the 5 per cent confidence

limit. The corresponding numbers for the other seasons are

49 for spring, 41 for summer, and 40 for fall. The latitudi-

nal averages of the correlations for winter are shown in

Table VII along with those for the other three seasons.

Although the magnitudes of the coefficients are not very

large, the fact that they are positive over the entire map

in each of the seasons indicates that the sea-surface tempera-

ture anomalies are related to anomalies in the total heat

transfer across the sea surface.

In addition to the seasonal correlations, all 84 months

were combined and a correlation was computed at each of the

162 grid-points over this period. The results are shown in

Figure 9. Of the 162 coefficients on the map, 102 reach the

5 per cent confidence level of .22 and 86 reach the 1 per

cent level of .28.

In order to get some idea of the variability of the re-

lation between anomalies of Q and those ofA SST, pattern

correlation coefficients between the two quantities for

each of the 84 months of the period were computed. They range

from -.27 in March of 1953 to .73 in December of 1953. Over

the 7-year period, the month of December has the largest aver-

age value of .43, while the month of March has the lowest

average value of .10.
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Table VII

Winter

.20

.34

.38

.40

.45

.45

.27

.35

Spring

-.18

.18

.24

.24

.35

.27

.32

.26

Summer

.29

.31

.. 26

.40

.31

.21

.20

.18

Fall

.16

.31

.36

.42

.34

.25

.20

.09

Average latitudinal correlation coefficient

between anomalies of total heat transfer Q

and anomalies of change in sea-surface

temperature 6 SST.

55 0N

50 0 N

45 0N

40 0N

35 0 N

30 0 N

25 0N

20 0N

Year

.12

.28

.31

.36

.36

.30

.25

.22
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There is very little variability between years in the

12-month average value of the pattern correlation coefficients;

they range from .21 in 1951 to .28 in 1953, 1955 and 1957.

Whether averaged over the 7-year period for each month or over

the 12 months of each of the 7 years, the pattern correlation

coefficients are all significant at the 5 per cent confidence

level and many are significant at the 1 per cent level.

2. Another method of changing the temperature of the sea

surface is by the horizontal advection of surface water across

sea-surface temperature iso-therms, Adopting a method first

proposed by Namias (1959, 1965), in which he considers that

the advection of surface water is about 450 to the right of

the surface geostrophic flow, the change in sea-surface tempera-

ture was computed at each grid-point for each month using

the north-south and east-west gradients of sea-surface tempera-

ture and the north-south and east-west components of the surface

geostrophic flow. The present method differs from that of

Namias in that contemporary values of the sea-surface temperature

gradient were used instead of previously determined "normal"

values.

Using the empirical expression for the transport of water

450 to the right of the surface wind stress proposed by

Ekman,

v/w = 0.0127/(sin# )1/2 (V.3)
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where v is the velocity of the surface water, w is the velocity

of the geostrophic wind, and 0 is the latitude, the advection

of temperature can be determined from the relation

v .V T (V.4)

where v is the water velocity and V T is the gradient of sea-

surface temperature at a grid-point.

In computing the values of the east-west and north-south

components of the geostrophic wind, u and vg, monthly

averaged values of the sea-level pressure were used. The

components were computed at each of the 162 grid-points using

finite difference approximations to the geostrophic wind

equations in spherical coordinates. The horizontal gradients

of the sea-surface temperature (Ts) and (Ts) were

computed by applying finite difference approximations to the

gradient relationships in spherical coordinates,

1 JT ST
1 __s 1 s(Ts) = R(T s1 Rcos jI R cos( AA

and (V.5)

1 Ts 1  Ts
(TR R

where R is the radius of the earth and A and 0 denote

longitude and latitude in radians. The grid spacing was 50
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and A and A were 100 or T/18 radians.

Once the components of the geostrophic wind were known,

the surface water velocity components, u and v , were then

determined from

0.0127Us =/ (ug + vg) (V.6)

and

0.0127
v = (v- U).
s W2(sin )l/ 2  g g

The surface temperature advection was then computed from

-v . -T - u s (T (T) . (V.7)

Anomalies of the surface temperature advection were com-

puted for each of the 84 months in the same manner as for the

heat transfer and temperature terms, and the results correlated

with the anomalies ofA SST on a seasonal and an 84-month

basis.

On the seasonal basis, the average values of the 162

coefficients on the map are .22 for winter, .19 for spring,

.10 for summer, and .21 for fall. As in the case of the surface

heat transfer correlations, the largest values occur in winter,

where there are 35 values reaching the 5 per cent confidence
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level. The corresponding numbers of the other seasons are

25 for spring, 17 for summer, and 27 for fall. The latitudinal

averages of the correlations for each season are shown in

Table VIII. The correlations are consistently highest. at

45*N and lowest at 200N during all of the seasons.

The correlation coefficients based on the 84-month data

series are shown in Figure 10. Of the 162 values on the map,

74 reach the 5 per cent confidence level and 44 reach the 1

per cent level. By and large, the best results were obtained

between latitudes 300N and 500N and in the central part of

the ocean away from coastal boundaries. The poor results at

the latitudes 200N and 250N agree with those found by Namias

(1965) and may be due to the low variability of temperature

in this region, in which observational errors could be as large

as the anomalies themselves. The area of low correlation in

the western part of the map is probably due to the effect of

the variability in the Kuroshio Current. This current's

large northward transport of water and its meanders could

easily overshadow the effect of temperature advection due

to surface wind-drift in this area.

Pattern correlations between each of the two sets of

anomalies were also computed for each of the 84 months in the

period. The values range from -.18 in January of 1955 and

July of 1953 to .55 in January of 1956. If the correlation

values are averaged over the 7-year period for each month,



-93-

Table VIII

Spring

.12

.32

.40

.23

.25

.26

.04

-.07

Summer

.20

.12

.18

.16

.05

.06

.08

-.04

Fall

.22

.34

.41

.31

.20

.01

.08

.12

Year

.16

.27

.33

.26

.22

.16

.07

-.02

Average latitudinal correlation coefficients

between anomalies of horizontal temperature

advection and anomalies of change in sea-

surface temperature L SST.

Winter

55N

50O0N

45ON

40O0 N

350N

30 0N

25 0 N

200 N

.11

.29

.33

.34

.39

.32

.09

-.12
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Figure 10. Correlations between the anomalies of horizontal temperature advection and the anomalies of6 SST based on 84 months

of data from 1951 through 1957.
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September has the largest value of .32, while June has the

lowest value of .04. There is a great deal of variability

between years in the 12 month average values of the pattern

correlations, with the results ranging from .08 in 1954 and

1955 to .28 in 1951. About half of the average values are

significant at the 5 per cent confidence level.

Several other methods of computing horizontal temperature

advection were also tried. The empirical formula of Witting

(1909),

v = K ,v (V.8)

where v is the velocity of the surface water, v is the
s g

geostrophic wind averaged over some time period, and K is a

constant equal to 4.8 was used to compute the u and v com-

ponents of the surface drift. However, when the results of the

sea-surface temperature advection anomalies computed from these

components were correlated with the anomalies ofASST, no

significant correlation patterns were obtained for any

season. This method is the same one that is used by the U.S.

Fleet Numerical Weather Facility (FNWF) at Monterey, California,

to compute temperature advection due to wind drift. They

base their calculations on daily rather than monthly averaged

data, however, and this may account for the difference between

their success in using the method and our failure.
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An attempt was also made to compute the vertically inte-

grated horizontal heat advection in the upper mixed layer of

the ocean due to Ekman transport and to correlate the results

with the observed changes in the temperature of the layer

eSST. In order to determine this advection,

-cp (v 'T) dz (V.9)
p ) e

-D

where ve is the horizontal velocity vector, T is the tempera-

ture at depth -z, and -D is the depth of the mixed layer,

the assumption was made that T is independent of z and equal

to the surface temperature T s. Then (V.9) can be reduced to

-cp v edz .Ts . (V.10)

Using the relationships

f dz = Ue =~/f

and

to
j ,-rdz = Ve = -T/f, (V.11)

-D

where U and V are the vertically integrated east-west and
e e

north-south components of the Ekman transport, rA and l

are the east-west and north-south components of the surface

wind stress, and f is the Coriolis parameter, the vertically
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integrated horizontal heat advection was then computed from

-c pfTdz VT = -c Ue(Ts) + (T (V.12)p e s p+e e

where (Ts) and (Ts) are the east-west and north-south com-

ponents of the sea-surface temperature gradient. The com-

ponents of the wind stress ? andS were determined from

C =  2 + V- 21/2 (V.13)

and

2 2 1/2
' = Y CDCt4 s ) s/2

where, is the density of air, us and vs are the components of

the surface wind velocity, and CD is the drag coefficient and

a function of the surface wind strength.

The results of correlating the anomalies of the hori-

zontal heat advection due to Ekman transport and the anomalies

of4 SST also showed no significant correlation patterns in

any of the seasons or over the entire 84-month period.

From the above studies on the effect of surface current

advection on changes in the sea-surface temperature, it seems

as if surface winds are capable of driving a shallow surface

layer of the ocean at 450 to the right of the wind direction

quite freely back and forth over the sea surface, at least in

the central parts of the ocean. Although the results of this
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study are based on monthly averaged data, it seems reasonable

to assume that the same type of movement can occur on a daily

basis due to the passage of storm systems. The work of the

FNWF at Monterey supports this idea, since their temperature

analyses and forecasts are made on a daily basis, and their

results have been verified to some degree by actual observa-

tions.

3. In an attempt to improve the correlations between

the large-scale anomaly patterns of the sea-surface temperature

and the possible physical mechanisms responsible for these

anomalies, the changes in sea-surface temperature during a

month due to heat transfer across the sea surface were added

to the changes in sea-surface temperature due to horizontal

wind-drift temperature advection.

The change in temperature of the upper mixed layer

(assumed equal to the change in the sea-surface temperature)

can be computed from the relation

Q (V.14)
C 'H

where Q is the total heat trnasfer across the sea surface,

is the density of sea water, C is the specific heat of

sea water, and H is the depth of the mixed layer. The change

in temperaturedT over a period of timent can then be
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written as

tT Q
A t v V T , (V.15)

CHP

where - v VT is the contribution due to horizontal advection.

Since the year-to-year variations in the monthly values of

the mixed layer depth H are not known over large areas of the

North Pacific, the "normal" values of H given by Pattullo

and Cochrane (1951) were used in all of the computations.

This procedure could lead to considerable errors in deter-

mining the monthly values of Q/y CpH, since the results of

data taken at weathership stations in the North Pacific

(see Chapter IV) have shomwn that large variations in H can

occur between years for the same month. As was also mentioned

in Chapter IV, there is some doubt as to the validity of the

mixed layer depth values for some months in the eastern part

of the ocean. (This uncertainty may be cleared up in the near

future, however, since Mrs. Margaret Robinson at the Scripps

Institution of Oceanography is presently preparing maps of

the seasonal thermocline depth for all areas of the North.

Pacific based on all available bathythermograph observations.)

Again, monthly anomalies of the computed temperature

change were calculated and the results correlated on both a

seasonal and an 84-month basis. On the seasonal basis, the

average values of the 162 correlation coefficients on the map
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are .38 for winter, .22 for spring, .28 for summer and .28

for fall. For the winter season, 78 values reach the 5 per

cent confidence level and 44 reach the 1 per cent confidence

level. For the other 3 seasons, the corresponding numbers

are 51 and 24 for spring, 43 and 19 for summer, and 45 and

18 for fall. The latitudinal averages of the correlations

are shown in Table IX.

The correlation coefficients based on the 84-month data

series are shown in Figure 11. Of the 162 values on the map,

112 reach the 5 per cent confidence level and 91 reach the

1 per cent level. Again, the best results were obtained bet-

ween the latitudes 300N and 500 N and in the central part of

the ocean away from the coastal boundaries. The results near

the coasts and along the 20th and 25th parallels are better,

however, than those obtained using only the horizontal tempera-

ture advection equation, indicating that anomalies in the total

heat transfer across the sea surface play an important role

in determining sea-surface temperature fluctuations in these

areas.

The pattern correlations computed between the anomalies

of the computed change in temperature andL SST range from

-.27 in March of 1953 to .75 in December of 1953. When the

pattern correlations are averaged over the 7-year period for

each month, December has the largest value of .41 and March

has the lowest value of .07. As in the previous two correla-
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Table IX

Winter

.21

.38

.43

.44

.49

.48

.28

.35

Spring

-.09

.14

.23

.28

.41

.27

.31

.25

Summer

.30

.32

.27

.40

.33

.22

.21

.18

Fall

.20

.36

.41

.42

.32

.26

.20

.09

Average latitudinal correlation coefficients

between anomalies of A SST and anomalies of

the sum of sea-surface temperature change

due to heat transfer through the sea surface

and that due to horizontal wind-drift advec-

tion.

Year

55N

50O0 N

45 0 N

40 0N

35 0N

30 0 N

25 N

20 0N

.16

.30

.34

.38

.39

.31

.25

.22



.15 .130.

.28 .26 .12

.27 .28 .11-.01 .1

.03-.02 .29 .29 .33 .48 .52 .49 .47 .34

".13 .15 .24 .17 .24 .31 .42 .44 .25 .29 .36 .52 .49 .47 .49 .41 .46 .38 .21

.22 .31 .31 .11 .18 .37 .49 .49 .38 .41 .48 .57 .58 .47 .39 .40 .53 .51 .331

.23 .33 .26 .29 .35 .39 .44 .49 .46 .52 .56 .57 .51 .46 .47 .47 .49 .49 .33

.22 .26 .21 .36 .28 .15 .19 .22 .39 .41 .36 .54 .54 .50 .29 .22 .30 .35 .36 .37 .31 .15 .05 .07 .06

.39 .28 .20 .35 .42 .32 .27 .21 .15 .26 .34 .48 .42 .33 .18 .24 .33 .47 .44 .10 .06-.04-.01 .14 .13

20N .39 .40 .38 .42 .36 .21 .16 .13 .14 .22 .27 .24 .12 .16 .09 .31 .36 .17 .09 .17 .14 .08 .04 .15 .27 .33

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure 11. Correlations between the anomalies of the sum of the change in SST due to heat transfer across the sea surface and to

horizontal temperature advection and the anomalies of6 SST based on 84 months of data from 1951 through 1957.
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tion studies, there is little variability between years in

the 12-month average values of the pattern correlations; the

results range from .24 in 1951 to .29 in 1955.

The results obtained by combining the effects of heat

transfer across the sea surface and those of horizontal tempera-

ture advection are somewhat better than using either of the

terms by itself. The main problem in this method is that the

temperature differences computed from the surface heat trans-

fer term are much larger in magnitude than those determined

from the advection term. When the two are added together,

the former term greatly overshadows the effect of the latter

and not much information is gained. The temperature differ-

ences or anomalies computed from the surface heat transfer

term are, in fact, larger by an order of magnitude than any of

those observed in the 84-month period under investigation. The

reasons for this discrepancy probably lie in using unreliable

values for the depth of the mixed layer H and in the fact that

there is a loss of heat through the bottom of the mixed layer

due to vertical eddy diffusion, which is unaccounted for in

this study. Before more reliable values of temperature

anomalies in the mixed layer can be obtained, much will have

to be learned about the causes of fluctuations in the mixed

layer depth and about the nature of heat loss across the thermo-

cline region.



-104-

4. An attempt was made to see if vertical velocities

induced at the bottom of the Ekman surfac layer had any effect

upon the sea-surface temperature anomalies. These velocities

were computed from the relation

w - (V - V), (V.17)
e f e

where we is the vertical velocity beneath the layer, f is the

Coriolis parameter, f is the latitudinal variation of the

Coriolis paramater, V is the vertically integrated total meri-

dional transport, and Ve is the vertically integrated Ekman

meridional transport. (A derivation of this equation is given

on pages 43 through 45 in the report prepared by Willett

and Clark for the National Science Foundation in 1966.)

The monthly averaged values of V and Ve were taken from

the work done by Fofonoff (1960-1963) on transport computations

for the North Pacific Ocean for the Fisheries Research Board

of Canada.

The vertical velocities were computed at each of the 162

grid-points for all 84 months, and the monthly anomalies were

obtained by subtracting the 7-year average value for each

month from the 7 individual monthly values. These results

were then correlated with the anomalies of4 SST on a seasonal

basis.

The results of the correlation study show that anomalies
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in the vertical velocity beneath the Ekman layer, alone, have

little effect on the sea-surface temperature anomalies. The

average values of the 162 grid-point correlation coefficients

are -.06 for winter, .00 for spring, -.11 for summer and -.15

for fall. The slight negative correlation between the two

anomaly patterns for three of the seasons indicates that an

anomalous upward transport of water from beneath the Ekman

layer tends to lower the temperature of the surface layer.

The relationship is not very strong, however, since the aver-

age correlation coefficients are very small for each of the

four seasons.

In order to test the combined effects of heat transfer

across the surface layer, horizontal temperature advection,

and vertical transport of water beneath the Ekman layer, a

multiple linear correlation analysis was computed for the

three terms,,ASST, the sum of temperature change caused by

heat transfer across the ocean surface and of temperature

change caused by horizontal advection (TTD), and the vertical

velocity induced at the bottom of the Ekman layer (VV). The

computations were done at each of the 162 grid-points and for

each of the seasons using the relationship

2 2
2 r3 1 + r3 2 - 2r31 r32 r12

R 3.21 2, (V.18)
1 - r12
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where R is the percentage of the variance ofA SST
3.21

accounted for by relation to TTD and VV, r3 1 is the linear

correlation coefficient between4 SST and TTD, r3 2 is the

linear correlation coefficient betweene SST and VV, and rl2

is the linear correlation coefficient between TTD and VV.

The results of the analysis are shown in Table X. It

is seen from the table that the percentage of the variance of

A SST accounted for by relation to the other variables is

increased from 20 to 25 per cent in winter, 13 to 18 per cent

in spring, 12 to 18 per cent in summer, and 13 to 14 per cent

in fall by including the effects of the vertical velocities

beneath the Ekman layer. The magnitudes of the increase are

the largest in the higher latitudes, indicating that up-

welling associated with Ekman layer divergence may be an

important factor in determining the temperature of the surface

layer in this region.

As for the statistical significance of the results of

the multiple correlation analysis, 58 of the 162 values on

the map reach the 5 per cent confidence level and 36 reach the

1 per cent level for winter, 45 of the 162 values reach the

5 per cent level and 15 reach the 1 per cent level for spring,

34 of the 162 values reach the 5 per cent level and 10 reach

the 1 per cent level for summer, and 36 of the 162 values

reach the 5 per cent level and 13 reach the 1 per cent level

for fall. By chance alone, it is expected that 8 of the 162
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Table X

Winter

TTD

TTD and
VV

12 19

19 25

22 30

23 27

28 31

25 30

16 21

14 18

Average 20 25

Spring

TTD

TTD and
VV

13 18

Summer

TTD
TTD and

VV

'll 17

14 20

11 16

20 25

17 23

10 14

7 12

8 14

12 18

Percentage of variance of A SST accounted

for by relation to TTD and to TTD plus VV.

55 0N

50O0N

450 N

400 N

35 0N

30 0 N

25O0 N

20 0 N

Fall

TTD
TTD and

VV

7 19

15 22

20 24

22 27

15 19

10 12

10 15

7 12

13 19
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values on the map would reach the 5 per cent level and 2 of

the 162 values would reach the 1 per cent level.

5. In order to see how large the errors are in computing the

temperature of the mixed layer, the observed values ofASST

(6 SSTO) were subtracted from the computed values of4 SST (A SSTC)

for all grid-points and all months. These results were averaged

over the 7-year period for each of the 12 months and 162 points;

the departures from these mean or normal values were then computed

and punched onto cards for further analysis.

From the maps of the normal values of (6 SSTC-ASSTO), it

is seen that the errors are all an order of magnitude larger than

the observed values and have the largest values in all 12 months

in the western part of the ocean. This last fact is probably due

to having neglected the transport of heat by the Kuroshio in cal-

culating the SSTC values. In fall and winter, the (ASSTC-aSSTO)

values are negative for all points, indicating that the temperature

decreases due to heat loss were over computed. During the summer

months, the (A SSTC-L SSTO) values were positive at all points,

indicating that the temperature increases due to heat gain were also

over computed. During the spring months, the (A SSTC-A SSTO) values

were of smaller magnitude and mixed in sign; this indicates that the

computed changes in temperature are closer to the observed values

and that over computation occurred for both heat loss and heat gain.

If the computed heat transfers and the observed tempera-
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ture changes are the correct order of magnitude, then there

must be heat advection occurring in both horizontal and verti-

cal directions. In his 1965 paper, Wyrtki, using the same

data as in this report, calculated that the heat gain of

3 x 1014 cal/sec of the surface layer of the North Pacific

Ocean must be compensated by deep water ascending with an

average velocity of 1.25 x 10- 5 cm/sec. This upward transport

of cold water and an outflow of warm deep water of 8 x 106

m /sec, partly through the Indonesian waters and partly in

the eastern tropical Pacific from the counter current to the

south of the equational current, maintains the thermal struc-

ture of the ocean in the presence of a net heat gain.

In order to maintain the temperature distribution of

the ocean in the presence of horizontal inequalities of

heat exchange, there must be a horizontal advection of heat

6 3
in the surface layer of about 10 x 10 m /sec. Wyrtki

comments that this is a weak circulation in comparison to the

6 3
Kuroshio transport of 65 x 10 m /sec and is, therefore,

relatively sensitive to transient changes in the strength

of the heat sources and sinks. From Wyrtki's study and the

present one, it has been shown that pronounced changes in

these sources and sinks do occur on a seasonal and monthly

basis and could help to account for the anomalies of sea-

surface temperature by influencing the horizontal surface

currents.
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In spite of the deficiencies of the methods described

above, it appears that heat transfer across the sea surface,

horizontal temperature advection due to wind drift, and ver-

tical velocities induced beneath the Ekman layer profoundly

affect the temperature of the ocean's surface, at least on a

monthly and seasonal basis. In order to improve our knowledge

of sea-surface temperature fluctuations, more and better obser-

vations of oceanographic and meteorological parameters are

needed, especially at shorter time scales; we need to develop

better equations to express the transfer of heat between ocean

and atmosphere and also between the surface layer of the ocean

and its lower regions; more information is needed concerning

the variations of the surface wind stress at all time scales

and the response of ocean surface currents to these variations;

and, finally, a theory is needed that treats the ocean and

atmosphere as two interacting media, from which the transfer of

various properties across their common boundary can be computed.

6. In section A of this chapter, we found that there was

a fair degree of persistence in the sea-surface temperature

anomaly patterns at 1, 2 and 3 months lag. We did not,

however, find any significant persistence in the anomalies

of the total heat transfer across the sea surface or in the

anomalies of the horizontal temperature advection. This per-

sistence in the sea-surface temperature anomalies must then be
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related in some way to the dynamics of forced and free con-

vection that occur in the upper mixed layer of the ocean.

Following the reasoning of Kraus and Rooth (1961), we

consider that the sea is cooled at the surface by evaporation,

conduction and infra-red radiation. However, heating by the

absorption of solar radiation extends to an appreciable depth,

and, therefore, there must be a layer in which heat is trans-

ported upwards. This turbulent upward flux of heat is associat-

ed with free convection and tends to produce a layer of nearly

constant potential temperature. In addition to this free

convection, the surface layer is stirred by the action of the

wind, which also tends to produce a layer of constant potential

temperature through forced convection. Thus, changes in the

heat transfer across the ocean surface and the accompanying

changes in the surface wind stress should have a profound

influence on the temperature and depth of the ocean's upper

mixed layer.

Using data obtained from weathership station Echo (350N-

480W) for July, August and September of 1958 and 1959, Kraus

and Rooth computed 10-day means of the heat loss B across the

surface layer and the heat added to the surface layer through

solar radiation S. The difference between S and B is the heat

balance of the quasi-isothermal of mixed surface layer. Com-

paring the values of (S-B) with the values of the mixed layer

depth, they found that there is a direct relation between the
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two quantities. In other words, when (S-B) is small, indicat-

ing large cooling of the surface, the depth of the mixed layer

increases; when (S-B) is large, indicating small cooling or

heating of the surface, the depth of the mixed layer decreases.

In periods of large cooling, the increased effects of free and

forced convection combine to increase mixing in the surface

layer and to deepen the effects of this mixing. In periods of

small cooling, when the winds are usually reduced in magnitude,

free and forced convection are weakened, and their effects are

confinced to a shallower surface layer.

This relation between the heat transfer balance at the

ocean surface and the depth of the mixed layer may offer a

clue to the persistence of sea-surface temperature anomalies.

An increase in the cooling rate of the ocean surface, due

primarily to increases in sensible and latent heat transfer,

causes an increase in the intensity of mixing in the surface

layer and also in the depth of the mixed layer. Even though

the temperature of the mixed layer does decrease due to the

increased loss of heat, this decrease is not as large as it

would be if there were no change in the layer depth. The

increased mixing and the associated increase in layer depth

allow the heat loss to be tapped from a greater volume of

water, thus reducing the change in temperature of the sur-

face layer. This process would tend to keep both positive

and negative temperature anomalies more stable than would be
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expected if no fluctations in mixed layer depth occurred,

On the other hand, a decrease in the cooling rate or an

increase in the heating of the ocean surface causes a decrease

in the intensity of mixing and in the depth of the mixed layer.

The corresponding change in temperature of the mixed layer is

therefore larger than it would be if there were no change in

the layer depth, since a smaller volume of water is affected

by the heat transfer. This process would tend to stabilize

negative temperature anomalies and unstabilize positive anoma-

lies when (S-B) is negative, When (S-B) is positive, it would

tend to stabilize positive temperature anomalies and unstabilize

negative anomalies.

From the remarks made in the above two paragraphs, it is

concluded that fluctuation in the mixed layer depth may play

an important part in the persistence of sea-surface temperature

anomalies on a month-to-month basis. These fluctuations may

also help to explain the pronounced changes in anomaly patterns

that were observed at times during the 84-month period, since

some changes in the total heat transfer across the sea surface

can render the sea-surface temperature anomaly patterns more

unstable than would be expected if no fluctuations in the mixed

layer depth occurred.

The effects of horizontal heat advection due to wind drift

may also be an important factor in the persistence of se-sur-

face temperature anomalies. However, the auto-correlations of
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the temperature advection anomalies for the 84 month period show

no persistence at 1, 2 and 3 months lag (the average values of

the 162 grid points on the map were negative for all 3 months).
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VI. Additional Results

A. Comparison of observed sea-surface temperature and total

surface heat transfer cycles with theoretical results.

After this thesis had been completed, two papers were

found in the January, 1967, issue of Tellus by Kraus and

Turner in which a general theory of the seasonal thermocline

is presented. The results of the theory give the depth of

the mixed layer or seasonal thermocline and the temperature

of the layer as a function of time and quite general external

energy inputs. The backbone of the theory is two equations,

a thermal energy balance equation for the mixed layer and a

mechanical energy balance equation for the layer, which are

as follows:

dT
h- + (T- T ) S + B - S -B' S + B (VI.l)

dt s hdt e

where h is the depth of the layer, Ts is the temperature of

the layer, Th is the temperature below the layer, S is the

penetrating component of the solar radiation, 8 is the

extinction coefficient, B is the heat exchange between ocean

and atmosphere due to back radiation and latent and sensible

heat transfer, andA is the Heaviside unit function, defined

as
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S dh) dhO7 0
1 )= for-

and

dT
1 s 2 dh SdTs h +A (T - Th) dh G - D + (VI.2)
2dt dt

where the first term on the left-hand side represents the

potential energy change associated with the change in tempera-

ture of the layer, the second term on the left-hand side

represents the potential energy change due to the entrainment

of water as the depth of the thermocline increases (dh/dt : 0),

and the terms on the right-hand side represent the energy

change due to mechanical stirring by the wind, dissipation of

energy within the layer, and convection due to internal

heating.

Equations (VI.1) and (VI.2) can be transformed into

dT 2 (S + B)h - (G - D + ) (VI.3)
n

and

Sdh (G - D + - (S + B)h (VI.4)
S LI L .
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When the thermocline is rising,.A = 0 (dh/st O) and

2 G - D + S/ (V5)h S+B (VI.5)

Substituting (VI.5) into (VI.3), we get

dT 2
s 2 G- D + S/ 1 (S + B)

G. (VI.6)
dt- h 2  2 G - D + S/ "

Differentiating (VI.5) with the assumption that seasonal

variations of the solar radiation S are larger than the

corresponding changes of G and D, we get

dh , 1 2 dSdh( 2 - h) . (VI.7)
dt (S + B) p dt

Since h)2/p , we find that h and -S are in phase and

that the layer depth h has a minimum at the time of the summer

solstice when dS/dt = 0. Equation (VI.6) shows that the tempera-

ture Ts is still increasing when dS/dt = 0 and that, in fact,

the warming is most rapid (dTS/dt has maximum values) when

h is close to its minimum. The temperature Ts reaches its

maximum value later in the season.

When the thermocline is falling, the depth h is large,

and the product (S + B)h will always exceed the stirring terms

in equations (VI.3) and (VI.4). Since (S + B) is negative

at this time, this product will account for most of the rates
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of increase of layer depth and decrease in temperature.

Using a symmetrical saw tooth heating function for (S + B)

and letting D = 0 andP =oo , Kraus and Turner calculated the

variation of T and h with respect to time throughout one
S

complete heating and cooling cycle. The results obtained look

just like the curves for the heating and sea-surface tempera-

ture cycles presented in Figures 1 through 6 of this thesis

(see Chapter IV). In fact, the observed results, (1) that

the heating cycle reaches a maximum in June, (2) that the

maximum change in temperature occurs between May and June,

(3) that the sea-surface temperature reaches a maximum some-

what before the end of the heating cycle (August vs. September),

and (4) that the minimum of sea-surface temperature occurs at

the end of the cooling cycle, agree almost exactly with the

theoretical results. We thus conclude that during the heating

part of the cycle, the depth of the mixed layer and its tempera-

ture are controlled by a combination of wind stirring and

penetrative radiation; during the cooling part of the cycle,

they are controlled primarily by surface cooling. In other

words, during the heating cycle both terms inside the square

brackets of equations (VI.3) and (VI.4) are important; during

the cooling cycle, the first term in the square brackets of

equation (VI.3) and the second term of equation (VI.4) are

predominant.
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B. Relationship between anomalies of the sea-surface temperature

and anomalies of the specific humidity of the air.

Since the values of the specific humidity of the air qa

had been computed for each of the 84 months in order to obtain

the values of the latent heat transfer, the anomalies of q

were computed and the results correlated on a contemporary

basis with the anomalies of SST. The results of the correlation

analysis on a seasonal basis are shown in Table XI.

It is seen from the table that a strong relationship exists

between the two anomaly series; the average values of the 162

coefficients on the map are .36 for winter, .46 for spring,

.61 for summer and .58 for fall. Of the 162 coefficients on

each of the maps, 86 reach the 5 per cent confidence level and

60 reach the 1 per cent confidence level for winter, 112 reach

the 5 per cent level and 71 reach the 1 per cent level for

spring, 122 reach the 5 per cent level and 102 reach the 1

per cent level for summer, and 130 reach the 5 per cent level

and 107 reach the 1 per cent level for fall. In all of the

seasons, these numbers are significantly larger that those

expected by chance alone (8 for the 5 per cent level and 2 for

the 1 per cent level).

Pattern correlations also were computed between each of

the anomaly series for all of the 84 months. The monthly

values of the coefficients averaged over the 7 years range from

.37 in February and March to .60 in june. If the pattern
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Table XI

Winter

-.16

.35

.59

.39

.36

.38

.48

.47

Spring

.24

.41

.45

.51

.52

.59

.54

.45

Summer

.54

.77

.79

.73

.72

.59

.35

.40

Fall

.52

.58

.64

.68

.63

.65

.54

.38

Average latitudinal correlation coefficients

between the anomalies of SST and those of

the specific humidity of the air.

55 0N

50 0N

450 N

400 N

35O0 N

30 0N

25 0 N

20 0 N

Year

.28

.53

.62

.58

.56

.55

.48

.42
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correlations are averaged over the 12 months of each year,

these average values range from .38 in 1951 to .62 in 1957.

The above results suggest that there is a direct relation-

ship between the temperature of the sea surface and the amount

of moisture in the air directly above it, especially during

the summer and fall months. This result is not surprising

since the vapor pressure of the sea surface also increases

as the temperature increases and this, in turn, causes an

increase in the amount of evaporation that occurs between

the ocean and atmosphere. The fact that the correlations

are highest during the summer months probably reflects the

fact that, during the winter months, the water vapor is carried

away by relatively strong winds. During the summer and fall

months, the winds are weaker (see Chapter IV, Section A.3)

and the moisture is allowed to build up over the area of the

sea surface from which it evaporated.

C. Relationship between the anomalies of the latent heat flux

computed from the transfer equations and the anomalies of

atmospheric water vapor divergence.

Following the derivations given by Barnes (1965), for a

column of air one square centimeter in cross-sectional area

and extending from the surface of the earth to the top of the

atmosphere, we have
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dw + A
- + ' Q = E - P , (VI.8)dt

where W = - q dp = total water vapor in column,
g a

Q = - q V dp = integrated vector transport of

water vapor,

qa = specific humidity,

p = pressure

po = surface pressure,

E = evaporation,

P = precipitation, and

g = acceleration due to gravity.

Exapnding equation (VI.8) in geographical coordinates

(A , , p, t), we get

JW 1 o 1 dQ _ Oi:tan$-W + ++ (VI.9)
d t a cosd 8j a d a

where A and / are longitude and latitude, respectively, and

a is the radius of the earth.

If d W/dt is small compared to the other terms (total

water content of the column remains nearly constant during a

period of timed t), and since
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S-- q a d = 0, (VI.iY

p p a p

whereW = p/ t, then

Q = + cos ) E - P . (VI.11)a cosA JA

Equation (VI.//) states that the divergence of the vertically

integrated vector transport of water vapor is equal to the

difference between the amount of evaporation and precipitation

occurring at the earth's surface.

Since the values of the latent heat flux or evaporation

(Qe) computed from the transfer equations developed in Chapter

II were available, it was decided to compute the values of

V • Q for the 84 months of the period from 1951 through 1957 and

compare the anomaly patterns of the two quantities. However,

an extremely crude method had to be used in computing the

values ofV Q , since the data were available on only a

monthly average basis and only for the surface layer of the

atmosphere. Other investigators have found that daily and

hourly values have a large effect on the monthly average

values ofV' Q.

Using the u and v components of the surface geostrophic

wind found previously and the monthly averaged values of

qa, the values of V- Q were computed at each of the 162 grid-

points by the following method: we let
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Q = qug u and Q= qa v ,

then

.4 1 ] QA a (Q Cos )
V Q a cos - - +  , (VI.12)

a cos r a

where.A andA/ are 100 or7T/18 radians.

The average vlaues of the 162 correlation coefficients on

the map between the anomalies of Qe and those of V7 Q are

.36 for winter, .25 for spring, .10 for summer and .22 for

fall. For winter 78 of the 162 coefficients reach the 5

per cent confidence level and 58 reach the 1 per cent level;

the corresponding numbers for the other three seasons are

56 and 27 for spring, 22 and 6 for summer, and 37 and 20 for

fall, The latitudinal averages of the correlations are given

in Table XII.

From the table it is seen that the largest correlations

occur during the winter months and between the latitudes

25"N and 509N. The relatively high correlations during the

winter and fall months are probably due to the fact that the

transfer formula used to determine the latent heat flux most

accurately represents the actual heat flux when the magnitudes

of this quantity ar large . Then the heat flux is small, as it

is during the spring and summer months, the conditions under
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Table XII

Winter

.15

.46

.57

.50

.50

.35

.24

.07

Spring

-.02

.23

.26

.38

.40

.37

.29

.07

Summer

-.03

.20

.22

.28

.23

-.02

-.02

-. 04

Fall

.11

.26

.31

.39

.31

.19

.14

.02

Latitudinal averages of the correlation

coefficients of the anomalies of Q and
e

those of V * Q.

550 N

500 N

450 N

40 0 N

35 0N

30 0N

250N

20 0N

Year

.05

.29

.34

.39

.36

.22

.16

.03
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which the transfer formula was developed are not fulfilled,

and the values computed become less reliable.

The poor results obtained at the latitudes 200N and 550 N

in all of the seasons probably reflect the fact that there

were no values of Q given at the latitudes 15oN and 600N,

and a linear approximation had to be introduced in order to

get these quantities. (The values of6 Q/,/in the divergence

equation at 200N and 550N were computed by taking the difference

between the values of Q at 25*N and 150N and between the

values of Q ; at 600 N and 500n and dividing the results by

7/18 radians.)

-S,

Another source of error is the fact thatv " Q is the

difference between the amount of evaporation and the amount

of precipitation that occur in a given area. In correlating

the anomalies of Qe with those of V* Q , this fact was not

taken into account, since the values of the precipitation

were not available.

In spite of the deficiencies of the method in determining

S Q , the results of the correlation study between the

anomalies of 0 andV" Q show that there is a statistically

significant relation between the two series, i.e. when there

is a stronger or weaker than average value of the latent

heat flux between ocean and atmosphere, there is also a

stronger or weaker than average value of the atmospheric

water vapor divergence field. It is felt that this type of
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analysis would be a valuable tool in helping to develop a

better transfer formula for the latent h#eat flux between

ocean and atmosphere, especially if it were applied to a

smaller area over which daily and hourly values of the

necessary meteorological and oceanographic paramters could

be obtained.
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VII. Conclusions

A. Summary of Results

1. Evaluation of the Transfer Formulas

a. In Chapter II, the effect of observational errors

and the effect of using monthly averaged data rather

than daily or hourly data on the accuracy of the

exchange formulas for determining Qi, Qb' Qe and

Qs were investigated. It was found that the accuracy

of these formulas increases as the values of the

heat transfers increase, since the errors resulting

from both observational and averaging effects decrease

with increased heat transfer. The theoretical accuracy

of the formulas for determining Qe and Qs is also

higher when large transfers occur; since large trans-

fers occur at times of strong winds, the wind shear

keeps the atmospheric stratification close to neutral

values, and these are the conditions for which the

formulas were derived,

b. A comparison was made of monthly average heat

transfers determined by using the monthly averages of

daily heat transfers and by using monthly average

variables in the exchange formulas. It was found
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that the errors involved in using the latter method

are, on the average, about 10 per cent of the actual

values due to correlations on a daily basis between

the wind speed and air-sea property differences.

2. Heat Exchange Calculations

The study concerning the 7-year means of-the monthly

averaged heat transfers produced the following results:

a. The values of Qi, Qb' Qe' s and Q show large

seasonal and year-to-year variability, especially

those of Q e Qs and Q.

b. The 84-month averages of the total heat transfer

across the sea surface (Q) were integrated over the

North Pacific from 200N to 550n. The result shows

that the ocean loses 7 x 1014 cal/sec through the

surface north of 200 N. Wyrtki (1965) calculated

the total integral of heat transfer over the North

Pacific from the equator poleward and found that the

ocean gains 3 x 1014 cal/sec. The difference between

the two calculations shows that there is a heat gain

of 10 x 1014 cal/sec between the equator and 200N

and that it is this region that accounts for the

yearly heat gain of the North Pacific.
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c. Fourier analysis of the 12 mean monthly values of

each of the heat transfer terms showed that there are

regular yearly cycles in each of the terms over most

of the North Pacific Ocean from 20'N to 550N. The

maximum values of Qi occur in June, those of Qb in

January, those of Qe in December, and those of Qs in

November, and December. There is also a regular

yearly cycle in Q, with cooling of the ocean surface

layer occurring from September through April and warm-

ing of the surface layer occurring from April through

September.

d. Fourier analysis of the 12 mean monthly values of

the sea-surface temperature (SST) showed that there is

also a regular yearly cycle in this term, with the

maximum values occurring in August and September

and the minimum values occurring in February and March.

e. By comparing the yearly cycles of SST and Q,

it was found that the maximum values of SST occur

near the end of the heating cycle (positive Q) and

that the minimum values occur at the end of the cooling

cycle (negative Q).

f. There is a regular yearly cycle in the surface
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air temperature (SAT), and the maximum and minimum

values occur at the same times as those of SST. The

maximum values of SST and SAT both occur earlier in

the western part of the North Pacific than in the east-

ern part; this difference may be due to the effect of

the cold advection towards the equator by the Calif-

ornia current.

g, Fourier analysis of the change in SST from month

to month (A6 SST), showed that there is a regular

yearly cycle in this quantity. The maximum increase

of SST occurs from the middle of May to the middle of

June and the maximum decrease of SST occurs from the

middle of December to the middle of January. During

March and September, when the ocean surface layer

temperature does not change very much, there must be

a balance between the heat transfer across the sea

surface and the advection that occurs within the

surface layer.

h. Fourier analysis of the mean monthly values of

the observed wind speeds showed that a regular

yearly cycle is present, with the maximum values

occurring in January and the minimum values occurring

in June. The same type of analysis showed that there
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is also a regular yearly cycle in the Bowen ratio

(Qs/Q e) in only the middle latttudes and only then in

the western part of the ocean, where the annual range

of values is from .4 to 1.4;,in the other areas the

Bowen ratio has values of around .1 with very little

annual variation,

i. Using the values of Q and A SST, the mean monthly

values of the total heat advection within the mixed

layer were computed. The results obtained agree with

what is known about the current patterns of the North

Pacific during the winter and spring months. During

the summer and fall months, the values show that there

is cold advection of water in the region of the Kuro-

shio current, in contrast to what is expected. This

discrepancy may be due to the fact that the heat lost

from the surface layer across the thermocline region

is neglected.

j. The integrated values of the heat advection from

17.5N to 57.50 N show that warm advection occurs over

the ocean from January through May and that cold

advection occurs in the remaining seven months.

Compared to a study done by Bryan (1960), the cold

advection of about 2.2 x 1014 cal/sec at 320N.
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agrees with the direction of heat transport calculated

by him using other methods.

k. The monthly mean values of Qi, Qb' Qe' Qs and

Q were determined from daily data taken at stations

NOVEMBER (300 N - 1400 W) and PAPA(50°N - 145 0W)

in 1962. The yearly cycles of these quantities were

found to show the same type of variation as the results

using the monthly average data. The large daily fluctua-

tions in Q are not accompanied by large fluctuations

in SST, which indicates that large fluctuations in

the depth of the mixed layer may occur. Very little

correlation was found between the daily fluctuations

of Q and those of SST on a contemporary or lag basis.

3. Discussion of Sea-Surface Temperature and Heat

Transfer Anomalies

The results of studying the anomaly patterns of the

heat transfer terms and of SST and SAT are as follows:

a. The anomaly patterns of both SST and SAT can occur

in fairly extensive geographical areas. The magnitudes

of the SST anomalies are about 20F to 4
0F, while

those of the SAT anomalies are slightly larger.
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b. Although some month-to-month persistence is found

in the SST anomalies, patterns can be eliminated or

reversed in a month's time. The average of all auto-

correlations of the SST anomalies is down to .28 at

3 months lag; for the SAT anomalies, the autocorrelations

are down to .25 at 3 months lag.

c. There is a high degree of correlation between

the anomalies of SST and SAT: the average maximum

correlation (.83) occurs in the summer months and

at the 35th parallel.

d. It is concluded from the above results that

there is very little long-term persistence of both air

and sea temperatures (negative autocorrelations

occur at 1 and 2 years lag) and that the anomaly pat-

terns of both air and sea temperatures are strongly

related. To maintain a long-term persistent anomaly

of the general atmospheric circulation, a control

factor is required that is stable over long time

periods so that it can pull the general circulation

back into line when it goes off on a tangent. It

does not seem that sea-surface temperature anomalies

can provide this control factor.
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e. There is very little persistence in the anomaly

patterns of the heating terms Qi , Qb Qe, Qs and

Q. (Autocorrelations are negative for all terms at

1, 2 and 3 months lag.) The anomaly patterns can be

large geographically, especially those of Qe and Qs"

f. The magnitudes of the Q anomalies vary widely

over the map for a particular month and from month

to month during the 84-month period under investiga-

tion. Their values range from less than 1 per cent

of the mean monthly average values to over 200 per

cent in the summer months.

4. Relationships Between Sea-Surface Temperature Fluctua-

tions and Heat Transfer Anomalies

The results obtained from studying the relationships

between the anomaly patterns of SST and those of the

heat transfer terms are as follows:

a, By correlating the anomalies of the total heat

transfer across the sea surface (Q) with the anomalies

of the change in SST from month to month (4 SST), it

was found that the two series have a significant

positive correlation for all seasons, the largest of

which occurs in the winter months. This fact indicates
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that sea-surface temperature anomalies are related to

anomalies of the total heat transfer across the sea

surface.

b. The anomaly series of the horizontal temperature

advection due to wind drift currents are also signifi-

cantly positively correlated to the anomaly series of

A SST in all seasons. The largest average seasonal

correlation coefficient occurs in winter; the coeffi-

cients for all seasons are lower than the respective

values for the surface heat transfer anomaly series.

c. From the study on the effect of surface current

advection on changes in the sea-surface temperature,

it seems as if surface winds are capable of driving

a shallow surface layer of the ocean quite freely

back and forth over the sea surface in a direction of

around 450 to the right of the wind stress.

d. By adding the changes in SST due to heat transfer

across the sea surface to the changes in SST due to

horizontal wind-drift advection and correlating the

anomalies of the results with the anomalies ofb SST,

the average seasonal correlations were imporved some-

what over those obtained by using either of the two
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anomaly series alone. The main difficulty in this

method is that the temperature changes computed from

the surface heat transfer term are much larger in

magnitude than those determined from the advection term.

In fact, the temperature changes computed from the sur-

face heat transfer term are larger by an order of mag-

nitude than any of those changes observed in the 84-

month period under investigation. The reasons for

this discrepancy probably lie in using unreliable

values for the depth of the mixed layer and in the

fact that there is a loss of heat through the bottom of

the mixed layer due to vertical eddy diffusion, which

is unaccounted for in this study.

e. An attempt was made to see if vertical velocities

induced at the bottom of the Ekman surface layer had

any effect on the SST anomalies. The results of the

correlation study showed that these velocities, alone,

have little effect on the SST anomalies. There is a

small negative correlation between the two anomaly

series for all seasons except winter, indicating that

an anomalous upward transport tends to lower the

temperature of the surface layer.

f. In order to test the combined effects of heat

tI,
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transfer across the surface layer (Q), horizontal

temperature advection (HTA), and vertical transport

of water beneath the Ekman layer (VV), a multiple

linear correlation analysis was computed for the three

terms,, SST, the sum of the temperature change caused

by Q and HTA, and VV. The analysis showed that, by

including the effects of VV, the average percentage of

the variance inA SST accounted for by relation to

other variables is increased from 20 to 25 per cent

in winter, 13 to 18 per cent in spring, 12 to 18 per

cent in summer and 13 to 19 per cent in fall.

g. The differences between the computed and observed

changes in SST are all an order of magnitude larger

than any of the observed values and have the largest

values in the western part of the ocean in all 12

months of the year. The computed values of A SST are

closer to the observed values ofA SST during the spring

months and farthest from during the summer months.

h. The small month-to-month persistence of the SST

anomalies must, in some manner, be related to the

dynamics of forced and free convection in the mixed

layer. Fluctuations in the strength of mixing within

the layer and the associated fluctuations in the depth



-139-

of the layer can stabilize some anomaly patterns and

unstabilize others. There is very little persistence

in the anomaly patterns of the surface heat transfer

and in those of the horizontal heat advection, and

it is concluded that these have little effect on the

persistence of the SST anomalies.

5. Additional Results

a, It was found that the observed results concerning

the cycles of the total surface heat transfer and of

the sea-surface temperature [(1) that the heating

cycle reaches a maximum in June, (2) that the maxi-

mum change in temperature occurs between May and June,

(3) that the sea-surface temperature reaches a maxi-

mum somewhat before the end of the heating cycle

(August vs. September), and (4) that the minimum of

sea-surface temperature occurs at the end of the cool-

ing cycle] agree almost exactly with the theoretical

results of a one-dimensional model of the seasonal

thermocline.

b. It was found that there is a strong relation

between the anomaly patterns of SST and those of the

specific humidity of the air over the ocean surface;
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this relation is particularly strong during the

summer and fall months. From this, it is concluded

that the amount of moisture in the air increases with

the temperature of the sea surface below it and

decreases as the ocean surface temperature decreases.

c. A statistically significant correlation was found

between the anomalies of the latent heat flux from

ocean to atmosphere and those of the atmospheric

water vapor divergence in the surface layer of the

atmosphere. When there is a stronger or weaker than

average value of the latent heat flux, there is also

a stronger or weaker than average value of the atmos-

pheric water vapor divergence field. It is felt that

this type of analysis would be a valuable tool in

helping to develop a better transfer formula for the

latent heat flux between ocean and atmosphere.

B. Suggestions for Further Study

The suggestions for further study can be divided into the

following three categories:

1. Use of available data and theory. It is felt that

further information about the interaction of ocean and

atmosphere could be obtained by using the data and trans-

fer formulas that are presently available. Studies of
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the type presented in this paper could give a better in-

sight into the heat exchange processes and their effects

if applied to other areas of the world oceans, especially

in the tropics. (At present, it is planned to continue

this study in the tropical areas of the North and South

Pacific Oceans during the next year.) The studies could

concentrate their efforts on large or small-scale processes,

since the data to do this are available. Probably the

hardest part of any endeavor of this type would be to

organize the data into a workable form, since their pre-

sent form,as it stands, is almost useless for any statisti-

cal analysis.

2, Develop new transfer formulas to be used with old or

new data. In order to develop new transfer formulas,

experimental work will have to be done on the nature of

turbulent transfer between the ocean and atmosphere.

Since most experimental work is done on small-scale pro-

cesses, it is felt that new data on oceanic and atmospheric

parameters should be obtained in order to test the new

theories. A good example of this type of analysis is

the work done by Garstang (1965) concerning the effects

of small-scale sensible heat transfer on synoptic scale

weather systems. He found that diurnal variations in

the sensible heat flux influence the energy flux of synop-
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tic scale systems; integrated over the entire disturbance,

the energy flux is found to be double the undisturbed

values. The inclusion of this synoptic scale energy

flux profoundly affects the large scale energy flux patterns,

and casts some doubt on the validity of the present

relative magnitudes of the various terms in the heat

budget of the ocean and atmosphere. This type of result

suggests that new studies should be made with new formulas

and new data in order to eliminate these uncertainties.

3, Develop a theory that treats the ocean and atmosphere

as two interacting media. At present, there is a need to

develop a theory that treats the ocean and atmosphere

as two interacting media, from which the transfer of

various properties across their common boundary can be

computed. A good example of this type of analysis is

the work of Kagan and Utina (1963) in which they develop

equations for describing the ocean and atmosphere and

solve them numerically by using the same boundary con-

ditions for both systems at their interface. In this

way, they are able to calculate the relative parameters of

ocean and atmosphere when different driving conditions

are applied, Admittedly, this is a difficult problem,

but it is one which must be solved before long-range pre-

dictions can be made for both atmospheric and oceanic

properties.
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Figure A7. 84-month average values and standard deviations of the surface air temperature. (OF x 10)
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Figure A10, 84-month average values and standard deviations of the specific humidity of the air. (g/kg x 10)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

JANUARY 1951-1957
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Figure A12. 7-year average values and standard deviations of the incoming radiation. January 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

FEBRUARY 1951-1957
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Figure A13. 7-year average values and standard deviations of the incoming radiation. February 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATTON OF Qi

MARCH 1951-1957

126 125~127 125 134 143 145 155,
16 3 22 29 17 32 39 56

145 147 147 155 161 157 153 151 152 154 157 161 157 185C
36 33 28 21 19 15 19 19 20 16 21 29 35 33

'226 212 !2 179 176 179 179 18t 195 192 184 179 181 187 194.193 197 213 227
0 39 26 16 22 20 22 25 35 22 22 16 17 1 4 15 15 20 20 29

278 267 249 226 204 206 2')8 208 208 205 2)9 215 216 210 214 223 219 217 222 249 29.
34 34 32 16 10 13 22 20 23 14 18 14 18 11 9 18 22 19 16 12 17

33 317 298 28 264 250 245 252 251 250 250 248 248 254 257 249 249 248 243 245 250 271 322 361
52 43 6& 34 15 7 13 11 9 11 16 17 11 1) 13 17 23 28 18 14 16 11 25 '32

308 309 323 332 330 332 329 337 334 320 314 316 323 322 312 309 308 299 293 286 274 233 319 372 407
43 22 22 21 26 19 12 19 20 26 32 22 13 17 22 23 30 26 19 17 26 11 33 29 1

316 350 385 405 412 404 400 411 404 382 380 398 396 388 380 377 364 351 339 317 292 ?87 312 358 412
19 24 38 30 31 28 27 32 35 44 45 26 19 20 34 30 33 26 26 29 32 33 55 37 23

415 425 446 452 456 447 442 446 437 423 418 422 419 414 410
44 35 21 20 27 24 33 40 39 36 36 32 27 31 43

394 380
48 32

358 332 328 337 286 305 345 436 482
33 55 43 47 52 68 47 27 33

130 140 150 160 170E 1.8 170W 160 150 140 130 120 110

Figure A14. 7-year average values and standard deviations of the incoming radiation. March 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

APRIL 1951-1957

K)
V

220 2384228 224 242 237 254 268
55 69 64 75 40 25 38 62

188 193 205 213 217 237 249 240 239 238 241 260 240 3151
59 51 38 25 22 28 29 34 34 23 26 32 40 48

J348 320 283 247 229 225 230 251 258 253 249 242 245 257 273 289 294 306 322
\-80 57 50 37 28 23 23 17 28 27 31 36 29 18 22 24 32 24 33

373 340 302 285 271 262 261 275 23) 270 270 270 272 230 294 318 318 330 355
50 28 35 24 17 11 12 2C 24 16 23 29 29 24 27 27 11 14 261

348 330 319 316 310 306 3tO 31C 320 320 327 326 321 319 324 336 344 345 374
24 26 21 13 17 22 17 19 22 18 19 22 31 37 37 24 12 17 40

30N 363 367 371 381 390 389 389 380 375 380 384 38' 376 381 389 384 386 385 374 368 3,51 365 385 398 422
53 24 27 22 21 23 24 18 16 27 25 29 31 29 39 40 25 22 28 31 ?6 24 44 57 51

25N 377 407 428 453 470 474 473 457 A42 453 463 446 431 429 433 437 440 430 407 386 372 367 364 373 426S31 35 48 38 53 43 32 26 37 36 35 34 26 21 -4 47 38 20 31 54 47 44 77 59 35

20N 466 484 499 500 503 507 5C6 5C4 489 477 477 481 472 453 441 433 444 431 387 370 369 349 324 353 426 490
34 32 28 36 37 28 23 19 4,1 26 42 37 42 41 48 45 38 38 53 52 44 49 56 51 25 27

130 140 150 160 170E 180 170W 160 1959 140 1 3 120 110

Figure A15. 7-year average values and standard deviations of the incoming radiation. April 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF 01

MAY 1951-1957
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Figure A16. 7-year average values and standard deviations of the incoming radiation. May 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERACE AND STANDARD DEVIATION OF QI

JUNE 1951-1957
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Figure A17. 7-year average values and standard deviations of the incoming radiation. June 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

JULY 1951-1957

225 2?6 220 220 2331
41 34 43 50 37

0 o 0e
o wc

182 182 176 177 178 184 190 199 232 2)5 238 212 226
21 19 17 17 18 14 19 11 13 15 14 22 16

265
36

'261 2?6 215 210 2v2 202 205 2'06 21) 216 219 222 224 230 240 247 264 316 389
\.52 40 20 26 19 16 12 13 19 20 26 21 2J 14 18 25 29 31 37

332 306 284 269 258 274 293 302 310 321 330 329 322 311 310 3)3 331 334 397
38 42 38 33 36 33 39 3 36 38 41 38 36 30 36 33 23 37 52

422 400 374 361 365 395 418 4?7 437 444 441 437 422 399 374 342 311 317 353
46 55 59 54 42 37 52 48 34 20 26 33 40 45 59 54 33 42 63

(2'

439 467 481 487 483 464 450 457 468 487 499 501 507 512 498 492 482 437 387 3430 316 312 328 383 453'
52 49 40 40 51 50 54 42 18 18 27 22 25 21 32 30 40 32 33 36 23 24 61 45 26

530 504 512 517 518 502 498 509 513 511 508 515 528 532 516 514 503 445 383 335 318 306 317 4 2 489
58 54 57 31 31 47 65 46 31 31 41 39 32 23 30 28 29 '2 23 22 23 25 80 65 49

20N 460 469 482 494 508 5U5 498 494 492 491 493 500 512 511 497 497 86 439 400 358 324 308 320 399 471 475
64 55 43 32 16 38 39 40 40 50 66 43 33 32 30 21 13 35 36 41 55 16 40 34 48 31

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A18. 7-year average values and standard deviations of the incoming radiation. July 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

AUGUST 1951-1957
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Figure A19. 7-year average values and standard deviations of the incoming radiation. August 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

SEPTEMBER 1951-1957
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Figure A20. 7-year average values and standard deviations of the incoming radiation. September 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

OCTOEER 1951-1957
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Figure A21. 7-year average values and standard deviations of the incoming radiation. October 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

NOVEMBER 1951-1957
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Figuire A22. 7-year average values and standard deviations of the incoming radiation. November 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QI

DECEMBER 1951-1957
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Figure A23. 7-year average values and standard deviations of the incoming radiation. December 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QB

JANUARY 1951-1957
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Figure A24. 7-year average values and standard deviations of the effective back radiation. January 1951-1957. (cal/cm
2
/day)

45N

40



7-YEAR AVERAGE ANC STANDARC DEVIATION OF QB

FEBRUARY 1951-1957
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Figure A25. 7-year average values and standard deviations of the effective back radiation. February 1951-1957. (cal/cm2/day)



7-YEAR AVERAGE AND STANDARD DEVIATION OF QB

MARCH 1951-1957
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Figure A26. 7-year average values and standard deviations of the effective back radiation. March 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QB

APRIL 1951-1957
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Figure A27. 7-year average values and standard deviations of the effective back radiation. April 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF QB

MAY 1951-1957
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14 15 11 7 9 6 7 4 6 7 11 Ii 11 9 6 6 5 2 3 4 6

35N 9 106 10Z 107 105 100 95 92 93 95 97 101 103 103 104 105 108 110 110 110 110 113 121 1 5
210'1 3 9 6 9 10 8 7 5 6 4 6 IC 13 9 8 10 7 2 4 8 10
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13 13 8 6 4 4 7 5 5 4 5 5 5 8 11 6 4 7 8 6 7 9 11 13 1

25N 9C 92 96 101 104 105 107 107 109 113 117 119 118 123 123 120 123 123 120 119 119 120 116 118 123S 9 9 9 5 5 7 8 5 2 5 7 8 9 12 16 7 6 7 10 10 11 20 19 16 14

20N 92 94 98 101 102 103 104 99 98 102 105 107 105 105 108 112 115 119 117 11ii 109 112 113 117 126 128
8 8 8 7 6 5 4 6 IC 8 5 9 14 12 12 11 7 6 12 14 10 18 19 14 11 8

130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A28. 7-year average values and standard deviations of the effective back radiation. May 1951-1957. (cal/cm
2
/day)



7-YEAR AVERAGE AND STANDARC DEVIATION OF QB

JUNE 1951-1957
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130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A29. 7-year average values and standard deviations of the effective back radiation. June 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QB

JULY 1951-1957
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130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A30. 7-year average values and standard deviations of the effective back radiation. July 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF QB

AUGUST 1951-1957
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130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A31. 7-year average values and standard deviations of the effective back radiation. August 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF QB

SEPTEMBER 1951-1957
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130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A32. 7-year average values and standard deviations of the effective back radiation. September 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QB

OCTOBER 1951-195
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16 I 144 130 124 122 119 118 116 114 116 118 119 120 120 121 119 119 122 122 121 122 125 125
21 20 10 10 10 10 6 9 11 1C 11 7 6 9 8 4 7 9 7 9 10 10 10
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Figure A33. 7-year average values and standard deviations of the effective back radiation. October 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE ANG STANDARC CEVIATION OF Q8

NCVEMBER 1951-1957
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24 23 24
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130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A34. 7-year average values and standard deviations of the effective back radiation. November 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD OEVIATION OF QB

CECEMBER 1951-1957

124 122 119
11 12 7

133 1290'14 113 121 118 116 118"
23 30 23 28 22 22 25 26

117 114 116 114 111 1C8 106 106 104 105 109'
11 15 13 16 13 10 13 16 18 19 17
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1 19 17 16 15 16 20 17 16 15 11 9 7 6 15 15 14 13 19

182 168 157 150 145 139 134 128 125 122 118 116 113 112 112 109 111 118 128
12 9 13 18 18 16 15 14 13 12 9 6 7 13 14 12 11 10 14

9T 178 168 158 148 142 138 135 133 130 127 124
11 16 14 16 18 20 17 14 13 12 9 7

3CN 187 191 185 173 160 152 144 141 139 136 136 136 133 132 130
18 17 18 13 .11 12 11 9 10 12 12 10 8 10 11

25N 142 147 145 143 141 136 133 135 134 132 135 135 131 129 127
12 8 14 14 12 12 11 5 6 7 10 8 8 10 14

20N 119 118 117 118 119 119 122 127 127 126 125 122 118 117 114
17 13 8 6 9 11 11 9 8 12 12 7 5 8 10

Ul
122 121 121 121 121 121 125 131 141

9 14 16 13 12 11 8 12 2

128 130 130 130 128 126 128 132 144 15
7 10 9 7 9 9 10 12 12 1

126 129 129 129 125 120 117 122 140 154
9 6 5 4 9 15 18 17 15 13

117 121 119 115 114 111 110 113 126 i35 139
7 7 5 8 11 10 14 16 15 11 6

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A35. 7-year average values and standard deviations of the effective back radiation. December 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QE

JANUARY 1951-1957

87 94 92

* 6'
*0B

107 91 115 118 132
69 44 49 51 70

152 147 158 138 132 149 152 128 104 121 147 170 179 168S
43 32 30 36 56 59 53 39 34 35 35 63 96 96

'335 269 236 245 266 232 178 180 171 152 147 147 131 144 170 188 186 171 165
"255 115 66 37 80 65 45 34 50 33 35 50 47 39 48 67 68 60 62

483 419 426 435 450 402 325 289 260 215 186 191 187 196 205 216 215 180 15
213 73 71 35 98 94 60 46 49 34 42 48 51 38 47 50 46 68 67

697 656 605 563 532 481 401 346 301 259 235 226 229 232 225 219 219 183 149
60 81 1C6 116 144 120 96 82 63 48 66 81 94 72 60 65 69 72 62

522 5C5 537 563 556 535 535 670 412 405 387 367 344 334 338 306 276 275 256 234 223 201 190 154 13
140 14 98 93 82 87 89 87 1C6 96 84 86 66 68 83 97 94 90 79 73 64 39 51 30

565 512 460 423 405 417 412 161 341 367 377 398 365 366 357 323 310 296 269 257 232 238 248 225 191
115 118 76 9 100 101 112 85 76 62 74 106 71 57 64 51 73 71 65 83 56 49 77 55 32

20N 467 460 418 383 381 370 351 '67 405 394 353 344 322 322 323
151 111 73 66 95 89 E88 85 91 1CO 112 87 52 61 91

335 306
100 95

276 294 316 293 316 340 345 295 224
90 100 125 134 134 113 108 85 72

130 140 150 160 170E 18C 17C0 160 150 140 130 120 110

Figure A36. 7-year average values and standard deviations of the latent heat transfer. January 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIA ICN OF QE

FERRUARY 1951-1957

50 54(
35 _46

134 133 156 132 104
38 42 73 63 40

'70 86 92 113 130
47 43 38 58 50

84 69 87 97 106 129 141 129 1001
29 17 11 24 29 41 44 44 40
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8 67 73 56 44 39 75 77 66 54 47 33 46 44 41 36 39 35 23

319 9 344 339 369 -69 368 349 305 251 216 193 163 149 142 131 135 140 139 130 10
131 86 63 54 76 50 32 45 82 97 e8 68 62 60 63 52 36 33 42 32 31

22 32 433 52 596 546 493 465 453 397 347 301 275 248 229 207 185 182 181 186 172 155 133 1 2
15 67 70 102 84 61 59 53 29 54 80 85 95 85 81 70 42 33 30 33 45 38

419 428 458 472 470 457 425 281 367 336 317 291 282 282 286 261 252 261 265 246 215 183 155 126 127
222 118 65 59 64 66 57 64 80 52 16 35 60 62 68 66 91 73 46 22 46 53 51 37 30

431 411 392 365 373 353 336 121 289 288 292 296 291 313 347 337 316 320 324 300 249 200 155 128 137
194 133 92 71 68 70 93 88 79 66 50 79 84 67 95 100 101 52 51 70 92 86 69 44 50

20N 331 351 384 360 342 305 290 309 305 315 320 301 282 303 342 344
93 1C7 108 70 70 62 74 89 86 78 79 72 71 61 96 90

313
39

290 322 320 283 248 217 188 187 184
60 118 158 112 88 75 57 57 27

130 140 150 160 170E 18C 170W 160 150 140 130 120 110

Figure A37. 7-year average values and standard deviations of the latent heat transfer. February 1951-1957. (cal/cm
2
/day)

55N

50N

2 co,



7-YEAR AVERAGE AND STANDARD DEVIATION OF QE

MARCH 1951-1957

1Co 101
71 86 26

150 139 135 133 127 121 114 100
73 51 14 19 34 4C 40 26

71 61 84 96 10
41 35 32 43 51

87 83 99 105 108 111,
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\-70 68 34 34 45 47 51 37 26 41 44 43 59 48 36 35 38 23 28

207 246 291 289 267 255 245 220 190 174 164 152 141 143 158 165 169 157 135)
55 46 56 59 68 76 85 5e 52 54 62 68 66 59 49 41 46 33 341
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$
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49 60 73 59 46 61 74 73 94 151 161 113 98 116 108

9
ODc

313 333
83 86

342 300 289 284 249 254 245 202 186
77 78 75 71 44 56 62 47 47

130 140 150 160 170E 18C 170W 160 150 140 130 120 110

Figure A38. 7-year average values and standard deviations of the latent heat transfer. March 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERACE AND STANDARD DEVIATION OF QE

APRIL 1951-1957

79 
7
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39 .49 56 76 47 26 24 28
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130 140 150 !60 170E 18C 170W 160 150 140 130 120 110

Figure A39. 7-year average values and standard deviations of the latent heat transfer. April 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QE

MAY 1951-1957
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13r 141 150 160 170E 18C 170W 160 150 140 130 120 110

Figure A40. 7-year average values and standard deviations of the latent heat transfer. May 1951-1957. (cal/cm2/day)



7-YEAR AVERAGE AND STANDARD DEVIATION CF CE

JUNE 1951-1957
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Figure A41. 7-year average values and standard deviations of the latent heat transfer. June 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QE

JULY 1951-1957
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Figure A42. 7-year average values and standard deviations of the latent heat transfer. July 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIA ION OF QE

AUGUST 1951-1957
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Figure A43. 7-year average values and standard deviations of the latent heat transfer. August 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATIOf CF QE

SEPTEMBER 1951-1957
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Figure A44. 7-year average values and standard deviations of the latent heat transfer. September 1951-1957. (cal/cm
2
/day)
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7-YEAR AVEFAGE AND STANDARD DEVIATION OF QE

OCTCeER 1951-1957
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Figure A45. 7-year average values and standard deviations of the latent heat transfer. October 1951-1957. (cal/cm
2
/day)
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7-YEAR AVEPAGE AND STANDARD DEVIATION OF QE

NOVEMBER 1951-1957
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Figure A46. 7-year average values and standard deviations of the latent heat transfer. November 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QE

DECEMBER 1951-1957
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Figure A47. 7-year average values and standard deviations of the latent heat transfer. December 1951-1957. (cal/cm2/day)



7-YEAR AVEPAGE AND STANDARD DEVIATrIO CF CS

JANUARY 1951-1957

85 6
7c 93 78 61 92 112 1711

81 .73 94 69 31 51 59 100

130 116 98 81 81 68
63 52 52 48 50 55

250 256 207 172 131 95 83 71 52
82 107 65 48 45 34 27 26 23

282 292 294 257 216 163 129 1
64 57 65 44 51 34 24

79 301 284 244 20' I'
47 38 51 55 64

231 198 179 168 148 135 122 99
73 40 47 41 28 26 2C 19

164 132 105 81 69 67 60 51
72 45 26 21 22 21 21 16

90 74 6; 47 41 40 39 39
45 23 20 11 12 10 13 13

53 47 34 34 53 79 98 103
55 45 27 23 26 32 41 43

42 42 33 38 54 67 73 70
26 32 34 28 37 44 47 42

09 93 70 56 50 43 44 53 59 59 49 381
23 26 26 23 26 38 32 31 37 34 37 2B

80 142 112 98 83 72 63 51 44 43 45 47 47 35 24
73 45 30 27 25 24 28 30 34 33 33 29 28 30 25

86 81 75 71 67 60 59 52 45 45 42 41 40 37 37 25 '19I
24 21 20 18 13 14 23 16 17 23 22 25 24 18 15 12

46 47 49 56 55 47 40 40 39 38 36 38 35 38 42 35 26
9 10 20 23 17 13 13 7 10 12 17 24 21 15 10 13 13

44 42 38 41 39 32 28 28 20 25
13 10 18 16 12 10 11 12 15 15

35 35 29 36 43 45 37 23
19 23 24 14 10 13 10 5

130 143 150 160 170E 18C 170W 160 150 140 130 120

Figure A48. 7-year average values and standard deviations of the sensible heat transfer. January 1951-1957. (cal/cm
2
/day)
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7-YEAR AVEiAGE AND STANDARD DFVIATION OF QS

FEBRUARY 1951-1957
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Figure A49. 7-year average values and standard deviations of the sensible heat transfer. February 1951-1957. (cal/cm
2
/day)
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7-YEAR AVFRAGE AND STANPDRD DEVIATICN CF CS

KARCH 1951-1957
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Figure A50. 7-year average values and standard deviations of the sensible heat transfer. March 1951-1957. (cal/cm
2
/day)



7-YEAR AVERAGE AN\ STA;NDARO DEVIA 7
ICNF OF CS

APRIL 1951-1957
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Figure A51. 7-year average values and standard deviations of the sensible heat transfer. April 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATICN OF CS

MAY 1951-1957
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Figure A52. 7-year average values and standard deviations of the sensible heat transfer. May 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF QS

JUNE 1951-1957

17 21
-8 -5 -1 7 61
8 13 12 5 10

-11 -13 -13 -11 -9 -10 -12 -12 -14 -13 -9 -1 3 5S
15 13 10 7 7 9 6 5 9 10 10 5 7 6

-14 -8 -4 -3 -5 -11 -14 -12 -13 -18 -19 -18 -18 -18 -14 -9 -5 -4 -413
37 7 11 11 9 9 10 12 8 8 8 10 12 13 11 9 9 6 4

-5 1 3 5 3 -2 -6 -5 -3 -8 -13 -12 -10 -8 -4 -1 1 -4 2
11 9 13 10 9 7 9 11 9 8 9 8 7 6 8 8 6 7 12

6 5 2 3 4 1 -3 -2 3 1 -3 -2 -1 2 5 6 8 5 -9
8 5 5 6 8 10 12 11 10 7 7 4 6 5 6 6 4 6 17

-3 1 3 2 1 4
19 11 6 5 3 4

-c 2 4 3 4 6
11 4 4 4 3 4

7 7 8 P 7 6
4 4 5 4 - 4 4

5 5 4 2 1 1 2 1 00 7 10 10 12 13 11 6 5 \1
4 5 4 5 6 7 9 8 10 8 7 4 4 7 7 7 8 10 12

7 7 7 6 3 C -1 0 1 2 10 15 18 21 20 10 9 9 3
4 5 5 4 3 5 9 8 13 14 8 6 12 18 17 17 18 16 14

5 6 6 4 -2 -4 -0 4 5 14 23 23 25 32 29 17 16 19 17 10
6 7 7 6 12 14 11 9 15 19 19 18 17 22 20 18 19 11 6 5

130 140 150 1]6C 170E 18C 170W 160 150 140 130 120 110

Figure A53. 7-year average values and standard deviations of the sensible heat transfer. June 1951-1957. (cal/cm
2
/day)
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7-YEAR AVEPAGE AND STANDARD DFVIATICN OF CS

JULY 1951-1957
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Figure A54. 7-year average values and standard deviations of the sensible heat transfer. July 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD DEVIATICN CF QS

AUGUST 1951-1957
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Figure A55. 7-year average values and standard deviations of the sensible heat transfer. August 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDRC DEVIATION OF QS

SEPTEMBER 1951-1957
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Figure A56. 7-year average values and standard deviations of the sensible heat transfer. September 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DFVIATION OF QS

OCTOBER 1951-1957
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Figure A57. 7-year average values and standard deviations of the sensible heat transfer. October 1951-1957. (cal/cm2/day)

45m

$
20 k



7-YEAR AVEPAGE AND STANDARD DEVIATION CF QS
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Figure A58. 7-year average values and standard deviations of the sensible heat transfer. November 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARC DFVIA'TION OF QS

DECEMBER 1951-1957
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Figure A59. 7-year average values and standard deviations of the sensible heat transfer. December 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARD OEVIATION OF SLHT

JANUARY 1951-1957
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Figure A60. 7-year average values and standard deviations of the total heat transfer. January 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

FEBRUARY 1951-1957
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Figure A61. 7-year average values and standard deviations of the total heat transfer. February 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

MARCH 1951-1957
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Figure A62. 7-year average values and standard deviations of the total heat transfer. March 1951-1957. (cal/cm2/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

APRIL 1951-1957
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Figure A63. 7-year average values and standard deviations of the total heat transfer. April 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STA:J)4RI' DEVIATION OF SLHT

MAY 1951-1957
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Figure A64. 7-year average values and standard deviations of the total heat transfer. May 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

JUNE 1951-1957
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Figure A65. 7-year average values and standard deviations of the total heat transfer. June 1951-1957. (cal/cm2/day)

55N

50N

45N

42



7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

JULY 1951-1957
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Figure A66. 7-year average values and standard deviations of the total heat transfer. July 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF SLHT

AUGUST 1951-1957
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Figure A67. 7-year average values and standard deviations of the total heat transfer. August 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

SEPTEMBER 1951-1957
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Figure A68. 7-year average values and standard deviations of the total heat transfer. September 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF SLHT

CCTOBER 1951-1957
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Figure A69. 7-year average values and standard deviations of the total heat transfer. October 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE ANC STANOARC DEVIATION OF SLHT

NOVEMBER 1951-1957
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Figure A70. 7-year average values and standard deviations of the total heat transfer. November 1951-1957. (cal/cm
2
/day)

55N

50N

45N

2



7-YEAR AVERAGE AND STANDARC DEVIATION OF SLHT

DECEMBER 1951-1957
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Figure A71. 7-year average values and standard deviations of the total heat transfer. December 1951-1957. (cal/cm
2
/day)
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7-YEAR AVERAGE ANC STANDARC CEVIATION OF SST

JANUARY 1951-1957
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Figure A72. 7-year average values and standard deviations of the sea-surface temperature. January 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF SST

FEBRUARY 1951-1957
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Figure A73. 7-year average values and standard deviations of the sea-surface temperature. February 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANCARC CEVIATION OF SST

MARCH 1951-1957
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Figure A74. 7-year average values and standard deviations of the sea-surface temperature. March 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANh STANDARC DEVIATION OF SST

APRIL 1951-1957
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Figure A75. 7-year average values and standard deviations of the sea-surface temperature. April 1951-1957. (OF x 10)



7-YEAR AVERAGE ANC STANDARC CEVIATION OF SST

VAY 1951-1957
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Figure A76. 7-year average values and standard deviations of the sea-surface temperature. May 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANCARC CEVIATION OF SST

JUNE 1951-1957
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Figure A77. 7-year average values and standard deviations of the sea-surface temperature. June 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANCARC CEVIATION OF SST

JULY 1951-1957
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Figure A78. 7-year average values and standard deviations of the sea-surface temperature. July 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARE DEVIATION OF SST

AUGUST 1951-1957
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Figure A79. 7-year average values and standard deviations of the sea-surface temperature. August 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC CEVIATION OF SST
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Figure A80. 7-year average values and standard deviations of the sea-surface temperature. September 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF SST

CCTOBER 1951-1957
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Figure A81. 7-year average values and standard deviations of the sea-surface temperature. October 1951-1957. (OF x 10)
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Figure A82. 7-year average values and standard Beviations of the sek-Surface temperature. November 1951-1957. (oF x 10)
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7-YEAR AVERAGE ANC STANDARC OEVIATION OF SST

CECEEER 1951-1957
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Figure A83. 7-year average values and standard deviations of the sea-surface temperature. December 1951-1957. (
0
F x 10)
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7-EAR AVEFAGE AND SIANARD DEVIATION OF SAT

JANUARY I551-1957
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Figure A84. 7-year average values and standard deviations of the surface air temperature. January 1951-1957. ( oF x 10)



7-YEAR AVEPAGE AND STANDARC DEVIA ION CF SAT

FEBRUARY 1951-1957

_352 3480'
19 24

- ~ *et~

237 351
25 24

i58 368 373 376
28 23 10 10

365 376 384 389 394 399 403 406 409
20 19 18 14 13 14 13 12 12

)3 305 325 336 56 376 398 419 434 443 451 452 453 455 459
12 29 28 25 27 26 23 21 18 16 15 13 12 11 11

40A 399 3
22 24

35t 4 9 474 494 512
60'45 F26 18

30A 558 574 592 603
26 19 16 11

25A 659 6172 679 687
29 15 14 9

20 741 746 749 755
12 11 9 9

130 140

391 396 415 434 449 466 481 495
21 17 20 24 25 23 21 21

520 522 535 547 .555 562 568 57C
12 11 14 18 18 15 14 15

614 620 625 631 634 637 638 639
8 9 10 12 10 8 8 e

695 698 703 7C7 708 708 706 705
9 13 13 11 9 11 13 iC

760 762 764 781 758 755 752 752
8 10 9 7 8 10 13 IC

150 160 1708 lC

502 507 512 513 517 520 523
20 16 13 10 10 10 10

571 573 575 579 585 587 586
15 13 9 8 9 11 10

640 639 639 642 643 643 638
10 9 10 12 13 9 7

704 700 697 697 696 692
10 9 11 11 9 8

751 744 736 734 731 726
8 7 1. 10 7 4

17.% 160 150

628 615
6 5

684 671 658
10 9 7

601 593 595 608"
4 . 11 13

645 641 641 643
7 16 21 23

720 709 696 686 64 -92 -703 726
9 10 .14 13 16 21 23 19

140 130 120 110

Figure A85. 7-year average values and standard deviations of the surface air temperature. February 1951-1957. (OF x 10)
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7-YEAR AVEFAGE ANC STANCARC OEVIA'TION CF SAT

MARCH 1951-1957
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Figure A86. 7-year average values and standard deviations of the surface air temperature. March 1951-1957. (OF x 10)



7-YE'R AVEFAGE ANC STANDARO OEVIATICN CF SAT
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Figure A87. 7-year average values and standard deviations of the surface air temperature. April 1951-1957. (oF x 10)

55

501

45N



7-EAR AVEFAGE AhC STANCARC DEVI~1TION CF SAT

MAY 1951-1957
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Figure A88. 7-year average values and standard deviations of the surface air temperature. May 1951-1957. (OF x 10)
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7-'EAR AVEFACE ANC STANCDRC CEVIATICh CF SAT
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Figure A89. 7-year average values and standard deviations of the surface air temperature. June 1951-1957. (OF x 10)
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7-YEAR AVEFAGE AC STANCARD DEVIATION CF SAT

JULY 1951-1957
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Figure A90. 7-year average values and standard deviations of the surface air temperature. July 1951-1957. (oF x 10)



7-YEAR AVERAGE ANC STANCARO DEVIA'TION CF SAT

AUGUST 1951-1957

539 531 533
24 25 22

504 509 525 541 552 560 568 577'
9 2 11 13 14 15 17 18

534 535 539 546 554 564 571 576 585 594 597t
17 10 4 9 11 13 15 15 15 16 13

600 594 594 592 590 592 598 601 604 609 613 616 61'8 617 618 618 613 601
20 15 16 24 28 30 23 15 10 15 17 17 15 15 17 18 12 12

704 696 694 690 6E8 688 688 687 686 6e88 689 686 679 671 661 649 631 606
14 9 12 21 23 23 17 12 11 16 16 13 13 15 16 18 14 14

785 779 774 770 764 762 757 753 748 745 742 735 724 711 694 675 650 622
7 6 7 10 10 10 5 4 7 9 9 9 12 14 14 13 13 13

815 824 827 822 816 813 809 PC6 802 798 795 791 787 778 770 764 754 738 723 706 690 670 64e 660 701'
13 6 4 4 8 5 5 5 4 6 7 6 6 6 11 9 9 7 6 6 8 10 13 12 11

839 824 834 833 828 826 826 826 823 820 817 813 807 797 786 776 763 747 731 717 705 691 81 698 739
5 4 3 6 9 8 7 8 9 10 9 7 8 10 15 12 7 7 8 10 12 15 17 14 15

'0
20 837 835 835 835 834 833 834 833 831 827 825 822 814 808 799

4 5 3 4 6 5 5 4 6 6 4 4 6 6 6
785 773

8 8
764 754 743 733 728 733 753 783 817

3 6 8 13 16 18 13 9 10

130 140 150 '60 170E 18C 17Ck 160 150 140 130 120 110

Figure A91. 7-year average values and standard deviations of the surface air temperature. August 1951-1957. (OF x 10)
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7-YEAR AVEFAGE AND STANCARD DEVIAFION CF SAT

SEPTEMeER 1951-1957
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Figure A92. 7-year average values and standard deviations of the surface air temperature. September 1951-1957. (OF x 10)
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7-V'EAR AVEFAGE ANC STANCARO DEVIATION OF SAT

CCTCEER 1951-1957
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Figure A93. 7-year average values and standard deviations of the surface air temperature. October 1951-1957. (OF x 10)



7-YEAR AVEFAGE ANh STANCARD DEVIATIC CF SAT
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Figure A94. 7-year average values and standard deviations of the surface air temperature. November 1951-1957. (oF x 10)
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7-'EAR AVEFAGE ANC STNCARD CEVIATIC CF SAT
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Figure A95. 7-year average values and standard deviations of the surface air temperature. December 1951-1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF 4SST
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Figure A96. 7-year average values and standard deviations of the change in sea-surface temperature between months. January 1951-

1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF A SS
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Figure A97. 7-year average values and standard deviations of the change in sea-surface temperature between months. February 1951-

1957. (OF x 10)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF LI SST

MARCH 1951-1957
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Figure A98. 7-year average values and standard deviations of the change in sea-surface temperature between months. March 1951-

1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARD DEVIATION OF A 157-

APRIL 1951-1957

8 20 18 15 16 201
5 5 4 3 3 5

'6' N"#
7 7 8 8 9 10 11 12 13 14 14 16 20 20C
6 4 2 3 4 3 3 4 4 3 4 4 5 8

35 26 17 14 11 8 7 6 6 5 5 6 7 9 12 14 17 18 16
11 7 5 5 5 4 3 3 5 4 4 5 6 6 6 6 6 6 7

40 40 35 29 19 15 12 10 10 10 9 8 8 7 7 9 10 12 13 13 11
11 8 7 4 4 4 5 5 4 6 6 4 1 3 6 5 5 3 3 3 4

38 34v 31 27 22 1 17 17 17 18 17 16 15 14 12 11 11 11 10 10 10 1Q 10
27,'13 8 5 7 5 5 4 6 6 7 7 6 6 7 8 8 6 4 2 3 3 3 4

32 31 31 28 24 24 23 23 23 23 23 21 19 17 16 15 13 11 10 10 10 9 8 8 6
14 5 5 6 8 7 7 7 9 8 7 6 5 6 7 8 7 5 3 4 4 5 6 5

31 27 27 26 24 24 23 22 20 18 16 15 14 13 13 12 11 10 9 9 10 9 7 5 1
5 4 4 7 8 6 5 6 P 8 7 5 5 5 4 5 5 4 5 8 7 7 6 4 7

do

25 22 20 19 16 14 12 12 11 9 8 8 8 9 9 11 13 11 7 7 9 8 5 3 8

5 4 4 4 3 4 3 4 5 4 5 4 4 4 5 7 7 8 7 10 12 7 4 5 7 5

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A99. 7-year average values and standard deviations of the change in sea-surface temperature between months. April 1951-

1957. (OF x 10)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF 4 SS3T

MAY 1951-1957
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Figure A100. 7-year average values and standard deviations of the change in sea-surface temperature between months. May 1951-

1957. (OF x 10)
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7-YEAR AVERAGE AND STANDARD DEVIATION OF ;S S
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Figure Al01. 7-year average values and standard deviations of the change in sea-surface temperature between months. June 1951-

1957. (OF x 10)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF 4 SST
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Figure A102. 7-year average values and standard deviations of the change in sea-surface temperature between months. July 1951-

1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF JS'
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Figure A103. 7-year average values and standard deviations of the change in sea-surface temperature between months. August 1951-

1957. (OF x 10)
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7-YEAR AVERAGE ANE STANDARC DEVIATION OF -SST
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-14 -150:-24 -26 -25 -28 -27 -22
10 12 10 7 8 9 9 12

6 ,o

-18 -18 -19 -20 -20 -20 -21 -23 -23 -21 -20 -19 -18 -15(
8 9 9 7 5 4 5 6 6 6 8 8 8 7

'-37 -29 -24 -20 -16 -19 -22 -24 -25 -27 -28 -27 -25 -22 -17 -14 -11 -10
"23 18 12 8 6 9 11 7 3 5 8 9 10 9 9 8 7 5

-34 -28 -21 -19 -18 -21 -25 -28 -29 -31 -31 -28 -25 -19 -14 -10 -6 -2
13 10 10 9 8 10 10 8 5 7 10 10 9 8 7 6 6 4

-46 -35 -31 -28 -22 -21 -17 -17 -18 -21 -24 -26 -27 -25 -23 -19 -15 -10 -7 -4 0 4 6 \-2
9 7 \ 5 3 8 9 9 9 9 8 7 7 7 6 7 7 5 4 4 4 4 3 3 4

-30 -23 -21 -19 -14 -13 -12 -12 -14 -14 -15 -16 -15 -12 -9 -6 -4 -1 2 4 5 6 8 0 -4
9 6 4 5 7 6 6 6 5 4 4 4 5 5 7 6 4 3 2 3 4 5 5 4 11

-17 -12 -11 -10 -8 -7 -7 -8 -8 -7 -7 -6 -4 -2 0 1 1 3 5 5 6 8 9 5 0
4 4 5 4 4 4 4 6 5 6 6 5 4 4 5 5 3 2 2 3 4 6 8 7 11

-8 -5 -4 -5 -5 -4 -4 -5 -5 -4 -3 -1 -0 -1 -1 -1 -2 -1 1 2 3 3 3 -0 -2 -4
5 5 6 7 6 5 4 4 4 5 5 5 6 5 4 3 5 5 5 5 6 5 9 7 9 7

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A104. 7-year average values and standard deviations of the change in sea-surface temperature between months. September

1951-1957. (oF x 10)
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Figure A105. 7-year average values and standard deviations of the change in sea-surface temperature between months. October 1951-

1957. (OF x 10)
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7-YEAR AVERAGE AND STANDARC DEVIATION OF DSS7-

NCVEMBER 1951-1957

\ ) 0
V

) -31C&35 -38 -40 -37 -35 -35'
9 11 8 5 6 8 6 9

0 0,, 0

-46 -39 -35 -33 -32 -33 -35 -36 -39 -41 -41 -40 -39 -361
11 10 6 3 3 4 6 6 7 8 9 7 6 5

-59 -54 -52 -49 -42 -37 -36 -36 -36 -36 -38 -40 -42 -43 -42 -41 -36
12 10 8 7 8 11 10 8 6 7 7 8 8 10 .9 7 4

N -53 -50 -52 -52 -50 -48 -45 -40 -37 -36 -37 -37 -38 -40 -42 -41 -39 -37 -34 -29 -2
11 6 8 7 8 11 12 13 12 9 9 9 8 8 6 8 8 7 3 4

N -50 -48 -45 -42 -43 -44 -44 -43 -39 -38 -37 -36 -36 -37 -38 -38 -38 -35 -31 -28 -25 -23 -21 19
13 9 6 5 6 7 7 9 9 8 8 7 7 8 7 6 5 5 4 4 3 4 5

N -38 -36 -34 -35 -37 -37 -37 -37 -35 -33 -32 -31 -30 -30 -30 -28 -25 -24 -22 -20 -19 -19 -20 -21 -23
8 7 6 4 6 6 3 4 4 4 5 5 5 5 6 5 4 4 4 2 3 4 4 4 7

N -29 -27 -27 -26 -26 -25 -25 -27 -26 -25 -25 -24 -22 -22 -21 -18 -15 -15 -15 -15 -16 -20 -22 -21 -24
4 3 4 4 5 4 3 3 3 5 5 4 4 4 3 5 5 3 3 2 5 8 9 7 7

N -20 -19 -17 -16 -15 -16 -17 -17 -16 -17 -18 -17 -16 -14 -13 -12 -9 -10 -12 -13 -14 -18 -20 -17 -16 -19
3 4 5 5 5 3 2 3 2 3 4 4 4 3 3 3 6 5 4 3 5 7 9 6 4 4

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A106. 7-year average values and standard deviations of the change in sea-surface temperature between months. November 1951-

1957. (OF x 10)
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7-YEAR AVERAGE ANC STANDARC DEVIATION OF A-SSE
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2 2 4 5 4 4 4 3 2 3 4 4 4 6 5 4 4 4 4 6 7 5 6 9
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Figure A107. 7-year average values and standard deviations of the change in sea-surface temperature between months. December

1951-1957. (OF x 10)
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HEAT ACVECTICN FRCM BALANCE EQ ,. (CALCM-21,AY-1)

JANUARY 1951-1957

61 33 54 86 20'

107 -29 29 3

289 248 218 183 16

505 443 257 163 10

9 78 25 10 7 19 -7 -32 -59 -48 25 96 151 177

6 -15-109 -75 -20 -12 -12 -10 -9 -8 73 105 113 128 154

,2 87 -10 -33 -10 -28 -43 -26 -8 -6 28 30 18 20 48

3 35 -17 -42 -64 -92 -86 -95 -76 -80 -83 -88 -97 -82 -41 22 c

346 206 187 169 107 32 -!4 -96-132 -87 -90 -87 -94 -81 -39 -51 -64 -68 -78-102-124-112 -54 -76-108'

459 235 41 -61 -99-122-147-171-171 -84 -53 -10 -13 -21 4 -22 -33 -15 -20 -18 -34 8 52 -81-166

20K 285 131 13 -14 6 -50 -96 -58 -14 -29 -26 -11 -49 -55 -32 -11 -60 -48 60 86 39 105 172 92 -23-131

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A108. 7-year average values of heat advection determined from the heat balance equation. January 1951-1957. (cal/cm2/day)
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HEAT ACVECTICN FRCV BALANCE EQ%. (CALCM-2AY-1)

FEBRUARY 1951-1957

-9-10C5 9 -36 43 113 187 17(

115 86 114

V 64 63 19 131 82 86 124

319 275 297 269 209 204 163

538 453 3-2 240 240 192 130

379 370 323 317 301 217 129 77 67 27 7

437 285 174 141 123 69 '8 4 -22 -17 -1

20N 174 123 152 134 93 22 -35 -19 -49 -35 -24 -52 -39

85 37 43 14 31 41 60 71 84 82 90

70 50 51 61 66 104 68 33 19 15 58 65

86 70 77 39 52 64 18 -7 -11 -12 5 12

92 103 87 43 44 15 9 -4 -37 -59 -48 -53 56

7 38 49 61 52 60 23 19 2 -64 -51 -72-101-125

4 14 33 71 72 45 49 83 60 -3 -46 -91-173-189

-2 60 69 50
-2 60 69 50 49 117 116 55 7 -24 -80-117-155

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A109. 7-year average values of heat advection determined from the heat balance equation. February 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCM BALANCE EQN. (CALCM-20AY-1)

MARCH 1951-1957

169 14
7
c1

3 8
171 103 146 214

206 154 132 131 101 125 117 93 74 94 85 87 143

-150 189 227 225 185 154 151 138 125 111 113 89 42 59 68

311 356 4C0 369 294 228 221 223 201 143 125 108 87 90 97

508 474 447 348 285 230 225 217 220 180 156 140 111 125 113

248 337 325 350 362 295 246 230 214 203 216 258 226 178 154 165 162 158 119

371 323 253 229 231 201 168 165 184 187 181 206 172 108 111 143 148 158 113

68 81 77

91 93 60 -6

94 74 55 -23

99 65 33 -4 -81-151

89 89 70 -9 -76-145

182 213 181 179 105 88 97 84 80 111 123 124 130 127 114 112 126 142 109 101 125 108 84 33 -69-147

130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A110. 7-year average values of heat advection determined from the heat balance equation. March 1951-1957. (cal/cm2/day)
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HEAT ADCVECTICN FRC BEALANCE EQJ. (CALCM-2CAY-1)

APRIL 1951-1957

176 131 95 90 13

42 65 103 70 55

' 69 65 63 97 88 59 74 64 45

187 215 192 190 165 157 165 146 111

353 295 236 209 197 145 1

99 214 239 237 187 154 112 102 103 81

2C4 149 85 76 33 38 '~ 90 123 68

95 24 -19 15 27 13 -12 20 3t 14

66 73 75 76 86 77 89 121 85

17 6 10 16 33 42 61 81 60

64 50 31 31 50 48 58 56 20

71 148 107 78 60 62 68 71 67 46 43 19 -27 -97

76 99 108 75 77 92 81 61 55 51 35 21 -11 -88-153

29 79 103 93 124 111 84 76 66 68 60 50 27 -47-148

-2 37 44 6" 101 125 136 157 143 78 61 125 155 72 -60-135

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A111. 7-year average values of heat advection determined from the heat balance equation. April 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCP BALANCE EQN. (CALCM-2jAY-1)

MAY 1951-1957

66 114 141 205 21

V - a , . 0 ! 0 -ku

-52 -44 -20 -31 -44 -35 -27 39 44 62 80 155 156 1591

-75 -48 -50 -57 -54 -35 -51 -55 -57 -39 16 23 32 61 100 105 94

24 9 -16 -7 -22 -30 -28 -39 -46 -39 -14 61 75 118 113 104 79 35

235 332 118

8 111 54 25 15 27

5 -70 -63 -49 -22 -12

227 184 -40 -98-109 -73 -46 -57 -13

25 -70 -99 -37 3 15 47 22 25

15 -16 -34 -53 -41 41 112 140 176 133

-3 13 -3 -15 19 91 111 98 97 67

27 61 71 53 68 100 88 59 74 74

51 5C 63 72 78 43 30 60 99 106

94 53 -3 -95-

35 -3 -27 -45

36 13 -8 3 -19-143

85 76 117 118 68 -15 -64

130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A112. 7-year average values of heat advection determined from the heat balance equation. May 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRC BeALANCE EQN. (CALCM-20AY-1)

JUNE 1951-1957

-37 -21 -1355N

50N

45N

-57 47 -53-119-

25N -66 -21-149-181-

2CN -32 -32-103 -98

-13 -34 -41 -40 -55 -55 -57 -40 -13 -26

-69 -38 -36 -45 -50 -58 -64 -87 -96 -90 -62 -25 -15

1 -1

2 19 -3 -21

24 18 15

-96 -44 3 27 13 -8 -7 -15 -27 -40 -63 -57 -5 4 23 46 54 15-128

-33 -19 3 37 79 69 56 49 45 36 34 15 8 16 27 26 23 17 -99- 11

130 -81 -48 -5 1 -9 -27 -31 -35 -12 -2 11 66 71 47 9 25 32 -11 -59-182

139 -90 -31 -53 -68 -60 -68 -77 -66 -35 9 3 57 83 104 105 82 45 34 32-105

-73 -62 -39 5 11 -2 -29 -33 2 35 19 36 81 77 117 218 171 80 53 9 -7-135

130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A113. 7-year average values of heat advection determined from the heat balance equation. June 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCP BALANCE EQN. (CALCM-20AY-1)

JULY 1951-1957

1 4 23 64 30 -1

-15 -0 -8 -3 -20 -6 3 9

-53 -36 -9 -17 -33 -42 -54 -38 -42 -44 -15 -6

-27 -21 18

35-109 -19 18

38 35 19 -22 -38 -54 -52 -56 -43 -22

25 26 17 -1 -18 -34 -45 -46 -42 -7

-17C-119-167-127 -90 -50 -29 -27 -26 -31 -20 -19 -27 -30 -17 10 9

-123-108-126-131-123 -72 -35 -69-104 -85 -27 -25 -27 -5 34 54 66

-95 -90-108-113-129 -81 -51 -61 -49 -36 -33 -16 -30 -27 27 43 66

31 62 56 22 -33

29 61 61 48 -12-168

18 45 53 70 13-14 1

0 13 10 45 47 -37-

33 45 24 51 63 25

53 70 102 131 122

79 124 174 160 117

130 140 150 160 i70E 180 17CW 160 150 140 130 120 110

Figure A114. 7-year average values of heat advection determined from the heat balance equation. July 1951-1957. (cal/cm2/day)
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HEAT ACVECTICN FRCM BALANCE EQN. (CALCM-2CAY-1)

AUGUST 1951-1957

-21 -61 -53 -25 -5(

-14 -20 -29 -38 -40 -33 -25 -5 6 1 6 -1

-45 -28 -16 -27 -41 -38 -47 -51 -29 -19 -14 -5 6 5 7

92

-129-136-103-1C0-

-124 -60 -49-102-

14 31 16 -35

-73 -63 -24 -15 -36 -40 -32 -38 -52 -48 -55 -53 -45 -53 -48 -46 7 -26-15

-54 -38 -32 -47 -56 -49 -56 -83-103-107-110-112 -89 -75 -57 -28 1 -6 -57-101

103 -82 -!0 -87 -90-100-112-106-110 -94 -97 -93 -60 -17 10 27 46 60 42 -43-152

107 -64 -?0-123-134-132 -98 -56 -45 -9 6 8 52 65 104 115 125 116 92 22-114

-37 -30 -66 -98 -76 -77 -62 1 28 16 17 76 132 154 207 227 202 159 89 -3 -87-128
-37 -30 -6 -98 -76 -77 -62 1 28 16 17 76 32 154 207 227 202 159 89 -3 -87-128

130 140 150 160 170E 180 17CW 160 150 140 130 120 '110

Figure All5. 7-year average values of heat advection determined from the heat balance equation. August 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCM BALANCE EQN.

SEPTEMBER 1951-1957

(CALCM-2DAY-1)

-64 -570o 97-115-126-127-101 -6

-109 -94 -79 -85 -99-108-123-126-123-120-125-121 -76-106

214-170-114 -74 -53 -55 -48 -56 -96-138-184-174-162-141-113 -78 -54 -77-14

'103 -81 -7 1 -4 -3 -3 -24 -73-123-146-143-121 -60 -24 -18 -24 -58-11

14 -22 -16 -17 6 6 -20 -33 -72 -90-118 -98 -80 -74 -51 -46 -26 -47 -8

23 -44 -72 -57 -44 -87 -78 -40 -16 -36 -75-106 -93-103-109 -65 -56 -53 -33 -30 -23 -20 -36-133-197'

-62-107-151-139-115 -94 -77 -65 -5C -69 -96-104 -81 -67 -61 -26 -18 -20 3 0 26 42 -13-117-208

20N -46 -95-104 -90 -85 -73 -A6-121-131-121-110 -63 -44 -74 -92 -72 -76 -74 -26 20 51 73 58 -68-117-136

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A116. 7-year average values of heat advection determined from the heat balance equation. September 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCM BALANCE EQN. (CALCM-2CAY-1)

OCTOBER 1951-1957

-134-162-165-128-122-104-120-151-188-163-163-132 -59 -5

)182-205-129 -62 -60 -92-110-139-146-158-2C4-257-266-200-164-108 -62 -83 -60

-46 -38 38 57 22 8 -8 -27 -82-124-179-232-202-151-102 -75 -60 -65 -57

158 117 72 10 -25 -18 -39 -60 -75 -84-122-123-118-106 -99-111 -91 -47 -74

178 72 -18 2 10 -39 -49 -75 -91 -78 -61 -80 -79 -89 -86 -85 -91 -85 -86 -93 -44 -6 -10 -61 -92\

145 -20 -75 -51 -83 -94 -76 -91 -82 -61 -41 6 -53 -48 -27 -51 -48 -45 -48 -28 27 27 -12 -61-108

20N -29 -54 -6 -17 -40 -60 -63 -78 -77 -95 -33 -19 -31 -35 -34 -15 -38 -51 -42 1 42 3 -15 -71-122-153

130 140 150 160 i70E 180 17CW 160 150 140 130 120 110

Figure A117. 7-year average values of heat advection determined from the heat balance equation. October 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCM BALANCE EQN. (CALCM-20AY-1)

NCVEMBER 1951-1957

-128-105-101 -95-108-162-217-235-278-271-236-199-139 -69

-16 -73 -27 -12 -82-109 -83 -94-186-286-331-368-426-349-270-235-156 -63 3

132 1 4 181 180 247 225 103 45 32 2 -78-156-237-305-327-277-226-176-163 -64 -1

-45 5 12 206 342 389 340 239 165 99 33 7 -3 -91-131-187-222-188-186-186-143 -80 -62 8

20C 193 159 1C4 106 77 47 -4 -16 -8 -15 -44 -51 -54-115-128-118-122-161-141-103 -94 -91-102 -90

284 147 36 -42 -94-107-138-186-167-119 -81-104 -97-106-125-120.-74 -51 -45 -54 -28 -96-110-106-118

20h 122 23 -32-102-109-128-147-169-160-155-154-132-126-124-105 -52 13 -4 -6 25 17 -20 -19 -15 -62-105

130 140 150 160 170E 180 170W 160 150 140 130 120 110

Figure A118. 7-year average values of heat advection determined from the heat balance equation. November 1951-1957. (cal/cm
2
/day)
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HEAT ACVECTICN FRCM 8ALANCE EQN. (CALCM-2AY-1)

CECEMBER 1951-1957

-40 -95-112-153-102 24 55 3

co

-85 -91 -65 -51 -53 -61-119-146-166-136 -80 -71 -47 7T

-31 -11 q2 11-123-122 -4C -66 -78 -71 -86-120-144-138-121-104 -78 48

208 188 159 -5 -88 -31 -24 -62 -46 -98-101-122-144-123 -92-119 -82 -31

279 208 1 -33 -87-115-143-136-133-152-179-9-159-180-168-156-129-108 -99

342 165 -2 -29 -54 -97-173-209-179-165-2C1-182-159-148-127 -95 -73 -86-107 -91-121-153-122-100 -A61\

384 153 -33-152-178-196-265-250-205-194-137-100 -68 -54 -48 -10 51 33 33 -15 -61-125-107 -55 -75

20 298 101 -4 -8q-127-113-113-100 -51 -36 -24 -17 -60 -65-115 -39 74 66 87 93 63 41 31 60

130 140 150 160 170E 180 17CW 160 150 140 130 120 110

Figure A119. 7-year average values of heat advection determined from the heat balance equation. December 1951-1957. (cal/cm
2
/day)
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