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Abstract

Differential equations are one of the primary tools for modeling phenomena in chemical
engineering. While solution methods for many of these types of problems are well-
established, there is growing class of problems that lack standard solution methods:
partial integro-differential equations. The primary challenges in solving these problems
are due to several factors, such as large range of variables, non-local phenomena, multi-
dimensionality, and physical constraints. All of these issues ultimately determine the
accuracy and solution time for a given problem.

Typical solution techniques are designed to handle every system using the same methods.
And often the physical constraints of the problem are not addressed until after the
solution is completed if at all. In the worst case this can lead to some problems being
over-simplified and results that provide little physical insight. The general concept of
exploiting solution domain knowledge can address these issues.

Positivity and mass-conservation of certain quantities are two conditions that are difficult
to achieve in standard numerical solution methods. However, careful design of the
discretizations can achieve these properties with a negligible performance penalty.
Another important consideration is the stability domain. The eigenvalues of the
discretized problem put restrictions on the size of the time step. For "stiff' systems
implicit methods are generally used but the necessary matrix inversions are costly,
especially for equations with integral components. By better characterizing the system it
is possible to use more efficient explicit methods. This work improves upon and
combines several methods to develop more efficient methods.

There are a vast number of systems that be solved using the methods developed in this
work. The examples considered include population balances, neural models, radiative
heat transfer models, among others. For the capstone portion, financial option pricing
models using "jump-diffusion" motion are considered. Overall, gains in accuracy and
efficiency were demonstrated across many conditions.

Thesis Supervisor: Gregory J. McRae
Title: Hoyt C. Hottel Professor of Chemical Engineering
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1.0 Introduction

1.1 Thesis Statement

Modeling natural phenomena as systems is one of the primary aspects of chemical
engineering. Differential equations have been one of the primary tools and their usage in
chemical engineering has lead to not only to better understanding of physical systems but
also to advancements in mathematics. Indeed, much of the work of chemical engineering
can be applied in a diverse array of fields.

The challenge of modeling systems ultimately comes down to solving systems of some
class of differential equations. And of course, the systems that are of interest today are
the most challenging. There are many characteristics that cause these challenges:

- Large number of variables: Interesting systems are described by many interacting
factors

- Non-local phenomena: Some physics require considering effects over the whole
solution space, requiring integral equations

- Wide range of space and time scales: The variables can take values over many
orders of magnitude

- Physical constraints: The results must be bounded by known constraints and the
solution method must capture these facts

- Solved numerous times: Parameter estimation and optimization may involve
solving the same system with slightly perturbed values repeatedly

While a great body of work already exists on solving differential equations, many of the
above issues have not been fully addressed. For example, most solution techniques do
not exploit all available information about the problem domain. If as much as possible is
known about this, then a solution method can be developed that is as efficient as possible
for the situation at hand. Of course, determining all of the relevant information is not
available without computational cost. But this up-front cost can become more than
worthwhile in situations where the same system is solved a large number of times.

This illustrates the main focus of this work. This thesis demonstrates the development of
solution techniques that exploit problem domain knowledge for the solution of estimation
and optimization problems, particularly in partial integro-differential equation systems.

1.2 Rationale

1.2.1 Problem Domain Information

The concept of problem domain information can be explained with a simple example.
Consider a third degree polynomial, shown in Figure 1.1 below. Determining the zeros
of the equation can be found using a standard Newton-Rhapson type method.



f(x)
Correct solution

x

Initial guess must be in this region

Figure 1.1: Problem Domain

However, it may be the case that physical reality constrains the solution to be positive.
So a good initial guess is important not only in obtaining a quick convergence but in
assuring convergence to the correct solution.

Clearly there is a benefit to taking a more advanced approach to solving these types of
problems. First off one can use information about the physical situation the problem
represents. As mentioned above, positivity is a common physical property. Knowing
that fact immediately allows for a better initial guess to be selected. Knowledge of the
problem domain is also useful. In this case, the problem domain amounts to recognizing
the function as a third order polynomial the roots of which are determined by the
coefficients.

All of this information is essentially represented in the figure above. The solution can be
achieved much faster with the information than simply plugging into a Newton-Rhapson
solver with an arbitrary guess. And if this problem were repeatedly solved with slightly
different parameters, the final answer from the first solution could be used as an initial
guess for the next solution, likely leading to a very fast solution.

Now if this were a vector problem, a matrix inversion would be required.

x(n+) = x(n) _ af f(x(n))

The numerical iteration used to find this inverse could also be employed in the next
solution since the matrix structure would be fairly similar. Overall, using information
about the previous solution in each succeeding solution could make the entire process of
optimization or estimation much more efficient.



While this is a trivial example, the very same concepts can be applied to differential
equation systems. As will be shown throughout, problem domain information is one of
the primary tools employed in this thesis.

1.2.2 Solution Domain

The location of the eigenvalues of a generalized system of differential equations

dw = Aw
dt

are essential to determining a practical solution technique. Effectively, the eigenvalues
determine the maximum step size that can be used to obtain a convergent solution.
Solution methods can be categorized by region in the complex domain to which the
product of the timestep and the eigenvalue must be constrained. Clearly, maximizing this
region for a given configuration of eigenvalues is desirable. The conventional route is to
use implicit methods which have an effectively infinite stability domain. However, they
are very computationally intensive. Explicit methods have a limited stability domain, but
recent methods, e.g. [Hundsdorfer & Verwer, 2003], have shown that these domains can
be modified to contain more of the negative real line.

Im(z)

5-

0 Re(z)

-5 -

-40 -30 -20 -10 0

Figure 1.2: Modified Stability Domain

By solving the eigenvalue problem for the system initially, a solution method can be
developed that efficiently captures the eigenvalues and will remain stable to small
changes in the problem structure at each iteration of different parameters. This would
lead to a very efficient solution once the up-front cost of finding the eigenvalues has been
completed.

1.2.3 Parameter Estimation

Parameter estimation is characterized by solving similar systems a multitude of times. In
control theory tools such as Kalman filters use previous measurements to estimate current
parameter values. To be effective for control the problems need to be solved in real time.
Thus the system needs to be solved as efficiently as possible.



Using standard methods would require solving the entire system each time a new
estimate is needed. However, it is generally the case that the parameters only change
slightly as time progresses. Such information effectively constitutes the problem domain.
A solution method that takes advantage of information about the solution domain can
solve the similar problem very quickly once the problem domain is initially calculated.

This same concept can be applied to any situation that needs to be solved repeatedly with
similar parameters. The only major cost is the initially time and effort to fully
characterize the initial problem domain.

1.3 Overall Contribution

This thesis has developed several important techniques that can be applied to a wide
range of systems of both partial differential and partial integro-differential equations.
Methods from several sources have been enhanced and combined and applied to a variety
of examples. The end result is a numerical method that exploits problem knowledge to
achieve solutions that are accurate, preserve positivity, and perform in a computationally
efficient manner.

Specifically, the methods developed in this thesis were applied to systems in population
balances, neuron impulses, and radiative heat transfer, as well as option-pricing models.
The results show significant speed advantages over standard Runge-Kutta and BDF
methods. Additionally, the methods can be scaled up to n-dimensional systems.

The thesis follows the following outline:

* Background, covering the basics of numerical solution techniques
* Overview of integral equations
* A brief discussion of the links to equations used in finance
* Overview of novel solution techniques serving as the basis for the methods

developed in this thesis
* Development of spatial discretization and time integration methods
* Implementation and results of methods
* Population balance example
* Neural example
* Radiation example
* Capstone Paper: Financial examples



2.0 Background

2.1 Systems of Interest

There are a plethora of systems that can be modeled with some class of differential
equations. For most of the development of this thesis the focus will be on transport
equations, but several examples will go beyond this. The underlying structures of many
systems are quite similar when arranged properly, so the strategies discussed throughout
can be readily applied to many diverse situations.

The transport equations are one of the most important concepts in the study of chemical
engineering (and in the physical sciences in general). The basic relationships apply to the
transfer of heat (temperature), mass (concentration), and momentum (velocity). For the
purposes of this section, the equations are developed such that they can be applied
directly to heat or mass transfer. This form will elucidate the analogy that is being put
forth in the main body.

In heat transfer, temperature (7) is the measured variable of interest and in mass transfer,
it is species concentration (c). These two phenomena are similar enough that they can be
developed simultaneously using a common variable, b, which represents the
"concentration" of either energy or a species. The total flux (flow per unit area) of b is
represented by F. Note that b and F are both functions of position and time and that F is
a vector quantity.

It can be observed that heat flows from regions with high temperatures to regions of low
temperatures and mass flows from regions of high to low concentrations of a given
species. This is known as diffusive flux, f, (and generally referred to as conduction for
heat transfer and diffusion for mass transfer). These phenomena occur on the molecular
level, and required empirical observation for the development of equations. This was
first done by Fourier for heat transfer and later by Fick for mass transfer. In general
terms, the relationship between flux and concentration is

f = -aVb

Where V is the gradient operator, and a is either the thermal conductivity of a material

(k) or the diffusion coefficient of a given species in a medium (D). Note that this
assumes the conductivity or diffusion is the isotropic. If not, a must be represented by a
tensor. Note also the negative relationship, to account for the transfer from high to low
concentration regions. Finally note that the above D represents a tensor in general; in the
one-dimensional case it is replaced by d hereafter.

Using the concepts of diffusive flux, the general conservation equations can be developed
from first principles. This development is the most general possible, and is based on that
of [Deen, 1998]. Consider a control volume of arbitrary shape with volume V and
surface area S. This control volume could change with time. Any point can be defined in



terms of a position vector, r, and time, t. Define n as a vector normal to the surface and
pointing outward. The velocity at a given point is y(r, t) and the velocity of the surface is
vs(r, t). Note that if v = vs, there is no fluid flow across the surface. The term B(r, t)
represents generation of b within the control volume. F(r, t) is the total flux of b at a
given point.

To maintain the conservation of energy and mass,

Accumulation = Input - Output + Generation

must be maintained. For a fixed control volume (vs = 0), this gives

d J b dV=-J FJ-n dS+ ff B dV
V S V

The negative sign on the middle term is necessary since n points outward. Since the
integral is over the whole surface, it encompasses input and output. To account for the
volume swept out by the surface if the control volume is changing with time, one more
term must be added

ff b dV=- Fn dS+ B dV+ f bv-.ndS (2.1)
V(t) S(t) V(t) S(t)

To simplify this expression, the Leibniz rule is employed

B(t) B(t)

d f(x, t) dx = J - f(x, t) dx + f(B(t), t) -A f(A(t), t).
dt A(t) A(t) at dt dt

Taking A and B to be the outer positions of the surface, the difference of their derivatives
amounts to an integration of surface velocities (in a direction normal to the surface) over
the surface. This gives

d ffIb dV =ffab d+ fb -n dS
dttv(t) v(t) t S(t)

Now (2.1) can be simplified to

Sab d=- F ndS+ fBdV.
V() at S(t) V(t)

To evaluate this equation at a point, the limit V - 0 must be taken. First, though, the
surface integral must be transformed into a volume integral. This is accomplished using
the divergence theorem,



fJ V-F dV= f n-F dS
v(t) s(t)

to give

f ab
+V-F-B dV =O.

V(t)

Any integral must equal the average value of the integrand times the value of the region
of integration. Therefore,

K ab +V.F-B V=oat a

For this to be true for any volume, the bracketed value must always be equal to zero. In
the limit as V -- 0, the bracketed value must equal its value at the point on which it is
centered. This gives the general conservation equation,

db
- =-V.F+B .
at

The total flux, F, is the sum of the diffusive and convective fluxes. The diffusive flux
was defined above. Convective flux is transport of a given quantity due to bulk motion
of a fluid. If the mass-average velocity is used, the total flux is

F= f+bv.

With this, the conservation equation is now

ab
+ V. (bv)=-V.f+B . (2.2)at

While this equation seem fairly innocuous, its actual solution can prove quite challenging
when all of the dependencies and interactions of the variables are considered. This
equation can be directly applied to situations involving heat or mass transfer. In heat
transfer, b becomes energy, pcpT, where p is mass density, c, is constant pressure heat
capacity per unit mass, and T is absolute temperature and B becomes heat generation per
time, H. If p and c, are constant in space and time, the one-dimensional energy
conservation equation is

aT T =k 2T
pc, + ocpv, k + H

at x Ox 2



When considering a stagnant medium (bulk velocity is zero) and there is no energy
generation, this simplifies to the heat equation,

aT 82TS= a 2T (2.3)
at x2

Where a = k/pcp is the thermal diffusivity.

In mass transfer, b becomes molar concentration of a species ci and B becomes the rate of
reaction, R. For a first order consumption of species i, with rate constant ki, the one-
dimensional mass conservation equation is

c, Sac. a2c
S+ Vx ' = di  - kc, (2.4)

&t ax x2

These are both linear forward parabolic partial differential equations. They are second
order in space and first order in time.

To be unique, these equations need boundary conditions. Specifically, they need two
boundary conditions in space and one initial condition in time. The spatial boundary
conditions generally refer to either a concentration, flux, or both of a given conserved
quantity. Defining b as the conserved quantity, rs as a position vector of the boundary, n
as the vector normal to the surface, and t as time, three common types are as follows:

Dirichlet: b =j(rs, t)

Neumann: n-Vb = g(rs, t)

Robin: n-Vb + hi(rs, t) b = ho(rs, t).

Initial conditions take the form

b =T(r, to)

where r is any position vector and to is the initial time.

As mentioned above, the generic transport variable will be b(t, x; 0); here 0 represents the
parameters of the equation. From this point on, the one-dimensional case will be
considered with expansion to multiple dimensions for cases of particular interest (where d
replaces D since it is no longer a matrix quantity). A generic reaction term, r(-) is also
used, giving the default equation

ab+- vb = d- b +r(b)
at ax x x



The simplest case has constant coefficients (i.e. v and d are invariant with respect to time
and position). In such cases it is often advantageous to non-dimensionalize the equation
using the Peclet and Damk6hler numbers. Note that the bars over variables indicate that
they are the dimensionless counterparts of the original variables.

.0b a2 b -Ob - Pe +Dab .
aj' aX-

2  
a

Even this simple equation presents challenges to solve. The basic structure will serve as
the base case for many of the concepts developed in this thesis.

For the sake of comparison, consider the Black-Scholes equation used in financial option
price modeling

-V + 1 o2S2 2V +rS V -rV =
at 2 as2  as

which is described in more detail in Chapter 0. Note the similar structure. As will be
seen later the techniques developed in this thesis can be applied to these types of
problems as well.

Of course the more interesting problems can become much more complicated as well.
For example, consider the number distribution equation for a population balance

8n(m) 0I n(m) n(m)nn) + Vx -vn(m) = - + .. f(m-m',m')n(m-m ')n(mn')dm'+
at -m

This will be explained more fully in Chapter 9.0 but it is readily apparent that standard
solution techniques are unlikely to work on such equations. The two most relevant points
about this equation are the integral terms and the dimensionality. The integral terms,
discussed in the next chapter, present a departure from normal chemical engineering
problems. Most problems only involve phenomena that are influenced by local
perturbations; but the integral terms represent effects that can occur over the entire
solution domain. The dimensions over which the dependent variable can vary is of an
arbitrarily high number. This is because the dependent variables, besides space and time,
can also include size and other physical characteristics. Overall this results in more
dimensions than the three spatial ones seen in standard problems and adds to the
problem's complexity.

The techniques developed in this thesis can and will be applied to many different
systems, but it will all start from the basic equation structure mentioned above.



2.2 Numerical Solution Methods

In broad terms, the solution of partial (integro)-differential equations occurs in two
(generally interrelated) parts: The spatial derivative (and integral) terms can be
discretized to give a first order ordinary differential equation. This can then be integrated
through time to obtain the variable of interest as function of the temporal and spatial
variables.

However, each type of numerical method has its own drawbacks; they must be chosen to
meet predetermined criteria. For this thesis, the criteria are physical correctness,
computational efficiency, and numerical accuracy. Of course, these factors are often at
odds with one another. And overlying all of these is robustness. The systems mentioned
in the previous section are fairly disparate in terms of the range of inputs and outputs, but
the methods developed should work on both of them; focusing on the underlying
structure of the methods in a ground-up approach is the key here.

Partial differential equations (PDEs) are a standard modeling tool. However, the
inclusion of integral terms (resulting in partial integro-differential equations, PIDEs)
allows for more correct models in many situations. But including them will require
forging new ground. While there is a great deal of theory dedicated to PDE solutions and
several software packages designed for solving such systems, PIDE solution methods still
do not have a common framework. There are many promising approaches, but they are
often situation-specific, limiting their overall utility.

For clarity, the one-dimensional, one-species system with constant coefficients is
considered here,

a b+v -- b=d a2 b+r(b) (2.5)
at ax x 2

where x is the dimension of interest and b(t, x) is the transported quantity (e.g. mass,
heat, momentum). Note that diffusion coefficient is noted with a lowercase d here to
avoid confusion with the diffusion matrix D.

The technique of discretizing spatial terms first and then integrating over the time
variable is known as the method of lines (MOL) approach. The ODE system resulting
from the spatial discretization can be written as

w'(t) = F(t, w(t)) w(to) = wo  (2.6)

where w is a vector representing the spatially discretized concentration and wo is the
initial value and the tick indicates the first derivative in time. Note that w is a vector
here. (Throughout this thesis vectors are not written as bold or underlined to make them
easier to read. A note will be made if there is some potential for ambiguity.) It is
important to point out that b represents the true quantity of interest and w is the spatially
discretized approximation. If the system is linear it can be written as



w'(t) = Aw(t) + g(t), w(to) = wo (2.7)

with A some matrix which is generally square and non-singular, with the same
dimensions as w. g is some source term which is absent in many examples.

2.2.1 Spatial Discretization

Spatial discretizations involve approximating the first and second order derivative terms
on a grid separated by a distance h.

h
I t . -

0 x1 x2 x=l

For the first derivative term, one simple method is the first-order upwind

b(x)= 1 b(x)-b(x-h) +O(h).
ax h

(2.8)

Note that this equation is a first order approximation meaning that the error is order h (see
Section 2.2.5). Also note that this approximation requires velocity to be in the positive x-
direction (the point x+h is used if the velocity is negative). For the basic advection
equation,

b +vab =0
8t 8x

with periodic boundary conditions b(x + 1, t) = b(x, t), the semi-discrete system is

w(t)= w. _ wj(t)- w(t) , j=1,2,...m, W(t) = w(t) .h m

The matrix A for this method is

A=Ih
1 -1
1 -1

1

For the second-order central scheme the approximation is



Ob (x) = 1 b(x+h)-b(x-h) +O(h2).
ax 2h

The corresponding semi-discrete system is

w (t) = ' wj,(t) - W (t) , j = 1,2,...m, wo (t) = Wm(t),
2h

(2.9)

Wm.,(t) = w (t)

with matrix

0 -1 0 1
1 0 -1

A=v
h 1 0 -1

-1 0 1 0

For the diffusion term, a second-order discretization is

2b (x) = b(x-h)-2(x)+b(x+h) +O(h 2 ).
x2 h2

For the diffusion problem

b _ d 2b
d

at x 2

with periodic boundary conditions b(x ± 1, t) = b(x, t), the semi-discrete system is

j = 1,2,...m, Wo(t) = w,(t), m, (t) = wi(t)

and the matrix is

1-2

1
-2

There are several other higher order schemes that exist, using more grid points to obtain a
more accurate approximation, but the basic idea is the same.

(2.10)

w d w_, (t)-2wij(t) + w (t) ,S(t) 2 Jw+t

-2

A = dI
h2

1



2.2.2 Mass Conservation

When considering the conservation of mass (or other quantity that can be represented by
b) it is useful to think in terms of the values midway between the points in space, i.e. w.
1/2 and wj+1/2. This allows the consideration of a cell centered at thejth point (where a
"cell" can be one, two, or three dimensions). All of the above forms can be written in
this manner, but when both concentration and velocity are variable with position there is
the issue of whether to evaluate the velocity with the velocity at the middle points (the
flux form) or evaluate it at the standard points (the advective form). In the upwind
scheme these two forms are, respectively

wy(t) = h v(x1_)wl (t) -v(x )w (t) , v(x)

-v(x ) wj_(t)-w,(t) , ifv(xj)>O

h

Both forms have different properties, but only the flux form conserves mass. This is so
because the flux form effectively balances the fluxes into and out of thejth cell,
maintaining the requirement

M(t)= b(x,t)dx = constant.

This can be tested by evaluating the m-length vector at each time step and ensuring that

h wj (t) = constant.
j=1

Throughout this thesis, mass conservation will be considered an essential requirement.

2.2.3 Time Stepping Methods

With systems of equations discretized and in the form of (2.6) a method must be used to
evaluate the solution through time. The basic concept is similar to the spatial
discretizations: evaluate the derivative using information adjacent to the point of interest.

Time is divided into segments i units of time apart. The numerical approximations w,
estimate the exact values, w(tn) at the points t, = nT. Methods can be categorized as either
implicit or explicit, depending on whether they require an evaluation of the function, F, at
the point of interest or not, respectively. For a gross generalization, explicit methods are
less expensive to solve at each time step whereas implicit methods are more useful for
stiff systems (see below). The simplest method is the (forward) Euler method,



This is a first-order explicit method. The notion of order can be understood by
considering the Taylor series expansion,

w(t,+1) - w(t,) = rw'(t,) + O(r2).

The approximation is accurate up to r' so it is first order. (See also Section 2.2.5.)

The simplest implicit method is the backward Euler method,

w,+1 = w, + rF(t,,l, w 1+)

which is also first order. Note that determining wn+ in general involves solving a
potentially nonlinear system of equations.

2.2.4 Convergence

The only useful methods are those that converge to the correct solution. This requires
both consistency and stability.

Consistency essentially means that the error of a given method with go to zero as the time
step size goes to zero. Ifp is defined as the local truncation error (see Section 2.2.5),
consistency requires that

lim P" = 0.
t=to +nr

The limit requires that t = to + nr remain constant, i.e. it must be that n -- oo. Every

solution method must be formulated in such a way that it fulfills this criterion. For more
detail, see [Lambert, 1991].

Stability essentially means that the overall global error will not "blow up." Consider the
ODE problem

w'(t) = F(t, w(t)) w(to) = w o .

Also, consider I I to be some type of vector norm. The Lipschitz condition requires that

IF(t,) - F(t, w) I L Ii -

for all t, -v , t, w on some well defined space, D,

Wn,+1 = Wn + rF(tn,, wn) .



D= (t,w)eRxR" : 0t T,Dw-wollIKo, Ko >O.

While meeting the Lipschitz condition ensures stability, in practice the solution may
require prohibitively small timesteps.

2.2.5 Error Estimation

Quantifying the error is important both in testing the accuracy of a method and
optimizing the step sizes. For the purposes of comparison to a known solution there are
many choices. In this thesis, three types are employed. The first two types are termed
the absolute and relative errors. Note that the names of these error types given here are
by no means standard, but the underlying method can be defined in terms of vector
norms, where the p-norm is defined by

p-norm - wi, HI

where w is an m-length vector. The errors are then defined as

absolute error Ilw - w 1
m

relative error =- 1
m IWexact 12

The other type of error used herein is the peak error, which is useful since peaks are
typically difficult to reproduce numerically. It is defined as the difference between the
highest point of the exact solution and the corresponding approximate point, divided by
the exact value.

A more rigorous definition of order and error is as follows. If an exact solution can be
represented as a polynomial, the order of a numerical method is essentially the highest
degree of polynomial for which the method obtains the exact answer. For a simple
example, consider the general ODE system

w' = F(t, w), w(to)= w0, F:Rx Rm -> I (2.11)

and define w(t,) as an m-length vector representing the exact solution at time t, and w, as
the corresponding approximate solution.

Note that before any numerical method can be attempted, the system itself must meet
certain general criteria, the most important of which being the Lipschitz condition, as
discussed above.



Every time step r results in some amount of error. For example, the explicit Euler
scheme gives

w(t,+l) = w(t) + rF(t, w(tf)) + rp

with p, as the local truncation error. By comparing this to a Taylor series expansion

w(t.1) = w(t,) + rw'(t,)+ + r2 w"(tn)+ O(T2)

the error is clearly

P, = rw" (t ) + O(r2)

Alternately, if |- is some vector norm, it can be shown using the mean value theorem
that the local error can be defined by

p I ll- max IIw"(s)II.

The error term can be more complex, but often it is the order of the method that is of
greater interest. In general, if the exact solution and the approximate solution differ only
by terms of order greater than T then the method is considered to be of order p. So the
explicit Euler is clearly a first order method. Usually, the higher the order, the greater the
accuracy, but this is by no means rigorously true.

Thus far only the error between steps has been considered. The global error up to the nth
time step

E, = w(t,)-w,

is what determines the true accuracy of the solution. This error can be expressed in terms
of the Lipschitz constant by

eD eL lo+ 1 e' -1 max llp, .
L o0j<n

However, this bound can often be so large as to be meaningless; in practical error control
techniques it is the local truncation error that is the basis for estimation.

Error control is an important part of any algorithm. The ideal way to measure error is to
compare the solution from a given approximation with the exact solution. But of course,
this is impossible when solving systems where the exact solution is unknown, which are
the only solutions of interest. As such, various approximations of error are necessary.



One such method is Richardson extrapolation. The basic idea is to perform an evaluation
with two different time steps and use the difference between them as an estimate of the
local truncation error.

Consider, w,+1 to be an estimate with step size r and z,+l to be an estimate with step size
2r. Then, for some constant C, we have

w(t,+l) = + Cr P + O(rp+l)

z(t,,+) = z.,, + C(2r) P + O(r p +l )

Note that the two O(TP' ) terms are different. Solving for the two unknowns, the exact
solution and C gives

2Pw w - zw(t,,+) = 2 + -+ 1 + O(rp.l )2P -1

C = Wn+l - Zn 1 + O(rP+l)
(2r) ' - rP

So the local truncation error is

w.+l -z+l
P = w(tn+l)- Wnf+l 4 Z=

2 P +1 -1

This error estimate is accurate to order -r, which is the same as the order of the method.
In practice more advanced error estimation techniques can be employed, but the basic
concepts are similar.

Richardson extrapolation (or some similar technique) serves as the basis for most error
correction methods used in numerical solution programs. The most important feature is
that they do not require any knowledge of the true solution. They simply compare the
error between two different estimates of the solution.

These error estimation techniques do not give a true estimate of the total error but rather a
practical value that can be used within an algorithm itself. In general, the most important
goal of the error estimation is to control the time step size when variable time steps are
used.

2.2.6 Stability Domain

The stability provides a region where the solution will converge in terms of the time step
size. Consider the scalar test equation

w'(t) = Aw(t), w(0) =1



with solution

w(t) = e".

Any one-step method (a method that estimates the next value (n+1) from function
evaluations at the previous point and the point itself) can be written in terms of a
recursion involving a stability function R(z) where for the simple scalar case z = TX, and
we have

w,+1 = R(z)w .

Since this recursion is repeated n times, stability requires that

R(z)l < 1.

Formally, this is

DEuler= zeC:1+zl<l <1 (2.12)

The values for z for which this inequality holds are mapped out on the complex plane.
For two examples, consider the explicit Euler method and the implicit trapezoid rule (also
called the Crank-Nicolson method)

w,+1 = wn + rF(t.,w) and w. 1 = Wn +-F(t,w )+ 2rF(t+1,+ 1)

with respective stability functions

R(z)=l+z
1+ z

and R(z)= 2

1- z
2

The stability regions for these methods are shown in the following figure.
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Figure 2.1: Stability Domains for Explicit Euler (left) and Trapezoid Rule (right)

Note that for the trapezoid rule, the stability region is the entire left hand side of the
complex plane. Methods that contain this region are referred to as A-stable. From a
practical standpoint, this means that there is no limitation on the time step imposed by the
stability requirement. More types of stability regions are discussed below.

For values of z that fall outside of a method's stability region, the solution will diverge
(often strongly) as the time steps progress, even if the ODE satisfies the Lipschitz
condition. For an example, see the next section.

The stability domains remain the same for systems of equations as well. For the linear
system

w(t) = Aw(t) + g(t), w(to) = Wo

the same criterion for the stability function R(z) applies, but now with z = TA. If A is a
normal matrix, the stability requirement amounts to setting z = ,ri for all i, where Xi
represents the ith eigenvalue of A. Nonlinear systems can be analyzed similarly with the
Jacobian of F(t,w(t)) replacing A. However, the same guarantees of stability often do not
apply and any stability analysis with non-linear systems must be done with care.

There are several different types of stability beyond those discussed above. The most
desirable type is clearly one with a stability domain that encompasses the entire left had
side of the complex plane. As mentioned before, this is called A-stability and is formally
defined by

DD z Re(z)<0 .

Since the eigenvalues must be negative for convergence of the system in general, A-
stability imposes no restriction on u. Of course, this stability requirement also places the
most restriction on the method. (As can be seen in above, Euler's method is not A-
stable.)



Another type of stability is A(a)-stability, which is defined by

DD z|-a<r-arg(z)<a , aE(,Or/2).

To restrict the domain to only the real negative axis, Ao-stability is used:

D = z I Re(z) < 0, Im(z) = 0 .

When the eigenvalues responsible for the slower transients are clustered close to the
origin, stiff-stability may be useful,

D z IRe(z) <-a u z -a < Re(z) <O,-c< Im(z) <c , a,ce .

The following figure shows these stability domains.

I Re

Figure 2.2: A-Stability; A(a)-Stability; Stiff Stability

Strong A-stability requires that for a rational function, R(z), limro [R(z)l < 1. L-stability

is an even more restrictive type that requires limA,,, R(z)l = 0. Stability on the

imaginary axis, limAo IR(iz) < 1 is known as I-stability.

There are several other types of stability that are more specific to different methods. For
example implicit Runge-Kutta methods (see Section 2.2.8) require that, for some
perturbation of the system, the condition

11_k+1 - W 115Ilk. - wn11



is met. This applies to nonlinear methods. G-stability is similar but applies to one-leg
methods.

Not all authors use exactly the same name for all of these stability types, but the basic
concepts allow for a classification of numerical methods into categories based on these
definitions.

The key point of all these stability domains is allowing the largest time step possible for
the given structure of the problem. A special challenge arises in the vector case when
there is a large spread in the eigenvalues. This leads to the concept of stiffness.

2.2.7 Stiffness

Stiffness manifests itself by forcing a numerical method to use a very small time step
despite the relative smoothness of the solution. A good definition is the following:

If a numerical method with a finite region of absolute stability, applied to a
system with any initial conditions, is forced to use in a certain interval of
integration a step length which is excessively small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval.

[Lambert, 1991]

It is somewhat unsatisfactory that there exists no rigorous mathematical definition to
determine if a system is stiff, but there are certain features that can be indicative of
stiffness. These can often enable the prediction of a stiff system ab initio.

Consider a general, linear, constant coefficient initial value problem

w'= Aw+g(t), w(to) = w (2.13)

where, as before, w is an m-length vector, A is an m x m matrix, and g is some function

of t. Define wp(t) as the particular integral and wc(t) as the complementary function of
(2.13). In general, this complementary solution has the form

m

w, (t)= k exp(t)r,
i=1

where ki are arbitrary constants, 2i are eigenvalues of A and ri are the corresponding
eigenvectors. The solution to (2.13) is then

m

w(t) = w, (t) + w, (t) = k, exp(2At)r + wp, (t) .
i=1



If all of the eigenvalues have negative real parts, the solution will go to wp as t -) co, so
this can be thought of as a steady state solution. The decay of the transient portion is
determined by the eigenvalues. Large negative eigenvalues will decay quickly, while
smaller values will persist as time progresses. Consider the IRe 2 |max and IRe Amin as the
eigenvalues of the largest and smallest real parts, respectively. A small value for IRe 21 min
will cause a large number integration steps to be taken until its effects are negligible.
However, the stability region is determined by the magnitude of the eigenvalues, i.e. we
must have TA E Dstable . Therefore, a large IRe l max may require a very small r depending
on the size of the stability domain. This naturally gives rise to the stiffness ratio

SR_ IRe
ReI.A

as a potential indicator of stiffness. It is neither necessary nor sufficient for a system to
exhibit stiff behavior, but it provides an indication that stiffness may be an issue.

Another way to consider the cause of stiffness is to consider the fact that any numerical
method has some error, and therefore relies on function evaluations of the integral curves
surrounding the true solution. If the function is evaluated on a nearby curve with a
gradient that differs significantly, it is easy to see how errors could quickly accumulate.
In such a situation, only by taking a large number of time steps is it possible to remain
faithful to the real solution.

Both of these ways of considering stiffness obviate the superiority of implicit methods in
their solution. In the first case, they generally have larger stability domains, allowing for
a larger value of t. In the second case, implicit methods do not rely entirely on previous
evaluations of the function. By using evaluations at the new solution point as well, the
error of the widely different gradient can be mitigated more easily.

It's worth pointing out here that most systems of interest in engineering exhibit stiffness
to some extent. This can occur due to the physics of the problem having parameters that
are far apart or from the spatial discretization and desired accuracy. For a simple
example of stiffness that arises purely from the physics of the problem, consider the
chemical reaction

k, k2
A-+B--A

which gives the ODE system

wl, = -kw,(t) + kw 2 (t)

w2' = kw, (t) -k 2 2(t)



The Jacobian matrix of this system is

A = - k2I

If kl is 1 and k2 is 100, the eigenvalues, X, are -101 and 0, which means the stiffness
ration is effectively infinite. The real solution to this system is two well-behaved curves.
However, when the explicit Euler method is used, the time steps, r, need to be quite small
to obtain a useful solution. For large enough time steps, the solution actually diverges
completely.
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Figure 2.3: Instability of Explicit Euler Method Solutions, Concentration vs. Time.

The analytical solution is dashed, the approximate solution is solid. The time steps, t, are
1/100, 1/55, 1/50, respectively, while all other conditions are the same

The divergence can be understood when considering the stability domain of the explicit
Euler method (see Figure 2.1). Recall that the rX needs to be in this region for all of the
eigenvalues. Clearly, the zero eigenvalue is acceptable for any T, but the larger-
magnitude eigenvalue needs a value of T I -2/-101 = 1/50.5 to remain stable. Implicit
methods such as the trapezoid rule attain stable results for any time step and can achieve
good accuracy with larger time steps than corresponding explicit methods.

I i , _



In terms of spatial discretizations, stiffness is almost always an issue. Consider the heat
equation

w -2w with w(t, 0) = O, w(t,1) = 0, w(O, x) = 1.
at aX2

Using central finite differences on the second derivative to construct a grid of N points
yields the following equation:

w'= -h- 2 Aw

where h is the discretization size in the spatial grid and A is an N x N matrix defined by

2

-1
A=

-1

2 -1

-1 2 -1

-1 2

The eigenvalues and eigenvectors of A must satisfy

(2.14)

Also, noting that the second derivative operator is an eigenfunction, we have

d2 r(x) = Ar(x)
dx2

with r(O)= 0, r(1)= 0 .

The solution to this differential equation yields

r(x) = sin(krx) with 2= r2 k 2, k= 1,2,...

d
2

since A is just a discretization of the operator - , the elements of the eigenvectors can

be represented as follows. Note that the subscripts indicate thejth element of the kth
eigenvector and xj = jh and h = 1/(N+ 1).

rj = sinm( N +
\N+1j

j = 1,2,...,N .

(2.14) can then be written as



-rk,jl + 2rki -r,j+ = Akrk,j

and after substitution as

+ 2 sin -sin
(N+1 -

kr(j + 1) =A

N+I
sin ( ' .

.N+l

Now define

a =(kij and = kjr
(N+1) N+1

to obtain

-sin a-fl +2sin a -sin a+fl =Aksin a.

Using the trigonometric identity sin af± = sin a cos f/ +cos a sin f

dividing by sin(a) gives

-cos f +sin f +2-cos 6 +sin f =2 1-cos / =Ak.

The trigonometric identity cos 20 = 1- sin 2 0 results in

2k = 4sin2 k N

S2(N + 1)

The largest eigenvalue clearly occurs for k = N and the smallest for k = 1,

Rela = 4sin 2  N)
(2(N +1)

ReAl. =4sin2 2(N+) 1  42(N+1)

So the stiffness ratio is

N 2

SR - 4N 2

;R 2

and

-sin 
kr (j - 1)

(N+1 )

4 sin'2 i) = 4
S2)



indicating that systems with a large number of grid points are likely to be quite stiff. This
becomes increasingly problematic as greater accuracy is required. This is just one area in
which the tradeoff between accuracy and solution speed is readily apparent.

2.2.8 Runge Kutta Methods

Thus far it seems that implicit methods have some advantages in terms of stability and
explicit methods in terms of speed. However little has been said about accuracy of
solution methods. Indeed, the two mentioned above are only of first order accuracy. It is
therefore worthwhile to consider more advanced methods. These methods not only
change the order of accuracy but also the solution domain.

Runge-Kutta time integration methods are one of the most frequently used tools in
evaluating ODEs. As their basic structure is used in many portions of this thesis, a brief
overview is worthwhile.

The basic idea behind Runge-Kutta methods is to gather information about the family of
integral curves that surround the unique solution to an initial value problem. The unique

solution (for an m-length vector) is represented by a single solution curve in Rm+'. But

truncation and round-off errors will result in adjacent integral curves affecting any
numerical solution. By considering the effects of these curves, a more accurate solution
can often be achieved. The downside of Runge-Kutta methods is that the error structure
can become somewhat complex.

Runge-Kutta methods are one-step methods, meaning that a numerical estimation
depends only on the value of the one previous numerical estimation. Each step uses
values from s stages, which generally are not on the solution curve, to estimate the value
of the next step.

Consider the general initial value problem of the form

w' = F(t, w), w(t 0) = w0, F : Rx Rm --> R" (2.15)

where w(t) is an m-length vector and w' is its first derivative with respect to t. The
general Runge-Kutta solution has the form

W,+1 = wn + rJbki
i=1

ki =F t+r,w, k (2.16)

j= 1

where wn is the nth step, T is the step length, and the coefficients satisfy the following
conditions:



c, = a.,  i = 1,2,...,s
j=1

1= -b,
i=1

A Butcher array can be used to keep track of the coefficients. It has the form

C1  a11  a12 as
C2 a21  a 22  a2s

Cs asl as2 ... ass
b b2  ... b,

which can be abbreviated as

cA

bT

Note that in (2.16) if the coefficients au are zero for allj>i, then each ki can be solved
explicitly with respect to previously calculated k's. For such methods the Butcher array
is strictly lower triangular. When this is the case, the system is said to be an explicit
Runge-Kutta method. If some of the diagonal elements are non-zero the method is semi-
implicit, and if there are non-zero elements in the upper triangle the method is implicit.

The coefficients of a Runga-Kutta method cannot be chosen arbitrarily. For scalar
problems, the basic derivation consists of matching up terms of the expansion of the
Runge-Kutta method with a Taylor series expansion of the exact solution. This, however,
can become quite tedious for orders higher than two. Also, there is a loss in generality in
assuming that a scalar initial value problem is autonomous.

To determine the coefficients, the methods of Butcher [Butcher, 2003] are the best
resource. That work also determines the order conditions for Runge-Kutta methods. The
order conditions establish the maximum order that can be attained for a method with a
given number of stages. The most important result is that for order greater than four, the
number of stages must be greater than the order.

One way to think about (some) Runge-Kutta methods is in terms of interpolation
polynomials. Consider P to be a polynomial of degree s with real coefficients and
distinct collocation points {tn + cjt, i = 1,2...,s}. Determine P such that it satisfies



P(t,) = w

P'(t + c,r) =F t, + c,r, P(t, +cr) , i=1,2,...,s. (2.17)

This can be seen to be in the form of a Lagrange polynomial by defining
k i = P'(t + cr), i = 1,2,...,s and t = tn + xt and writing

P'(t+ xT) = Lj(x)k where
j=1

L,(x) = HX-
i=1 C.- Ci

Integrate (2.17) with respect to t from t = t, to t = tn + cit to get

S

P(t, +r)P(t.)=r I'L,(x)dx k, i= 1,2,...,s
j=1

and integrate (2.17) from t = tn to t = t, + T = t,+s to get

P(t,, + r) - P(t,,) = r Lj (x)& kj.
j=1

Now define

a,= 'L(x)&d, i=1,2,...,s and bj= fL(x)d . (2.18)

This gives

ki = P'(t, + c,r) = F t + cr,P(t,, + cr) = F t,, + qr,, w + rf ak
j=1

w,+1 - wn = P(t + r) - P(tn) = TE bk i
i=1

which is exactly (2.16).

Not all Runge-Kutta schemes satisfy (2.18); those that do are referred to as collocation
methods. The determination of Runge-Kutta coefficients via orthogonal polynomials is
the basis for the explicit methods with enhanced stability domains (see Section 5.1).



2.2.9 Linear Multistep Methods

In contrast to Runge-Kutta methods which use only the values at the previous time step
(and possibly the current one), multistep methods can use many values from both past up
to the current time step. They are usually expressed as

k k

aw,+j = 7 L jF(t,+j, w,,) . (2.19)
j=O j=O

which indicates that there are k past values used in the computation of the current value.
If the coefficient fk is zero then the method is explicit.

The procedure for designing a method relies on choosing the coefficients to obtain as
high an order as possible. This can be demonstrated by inserting an exact value into all
of the wk values and determining how the error term, Pn+k-1 is propagated. Solving this
linear system gives the standard order conditions to obtain order p,

k k k

La, =0, aj' =i/ljj for i=1,2,...,p
j=0 j=0 j=0

as long as ~ is constant.

The stability of multistep methods depends on considering the characteristic polynomial
defined by

j=0

where the ys are determined by the scalar linear recursion formula

k

YjWn+j = 0.
j=0

If 1, 2,..., , refer to the k zeros of the characteristic polynomial, then the root condition
is satisfied if

< 1 for all i, and I 'I <1 if 4; is not simple.

This effectively bounds the solution for n -4 o steps. For the general formula (2.19) first
test for stability is called zero-stability which tests for the simple case when F=0. Then
the characteristic polynomial is

k

j=0



and the root condition for this must be satisfied for any method (it holds trivially for all
one-step methods). After this the root condition for the general characteristic polynomial
can be considered.

There are two primary challenges of multistep methods. First of all, when taking the first
few time steps, there clearly need to be k-1 values available in addition to the initial
conditions for the method to begin working. Additionally, allowing for variable time step
sizes will require changing the a and P coefficients at each time step.

Common multistep methods can be grouped into two broad categories. Adams methods
define the a coefficients by

ak =l, ak-1= , a1 =0, j=0...k-2

and choose the 03 coefficients to maximize the order. In contrast backward differentiation
formulae (BDF) define the / coefficients by

k =l, , = 0, j=0...k-1

and choose the a coefficients to maximize the order. There are many other methods that
do not fit into these categories and some are even defined differently than (2.19), but the
same underlying theory applies for the most part.

2.2.10 Fourier Decompositions

There is one more topic that requires a brief overview in this section. Fourier
decompositions are useful not only in solving many PDE systems but also in determining
where the difficulties will arise in numerical solution methods. Define the Fourier series
as

f(x) = ke 2z

k=-oo

with Fourier modes, pk(x), defined by

Pk(X) = e

and Fourier coefficients defined by

ak f= f(x)e - 2 dr.



Since (almost) any function can be represented as an infinite sum of Fourier modes it
often suffices to look at just one mode and then expand the results to the general case.
For example, consider the advection equation with an initial condition defined by a single
Fourier mode,

a b(x, t) = -v - b(x, t), b(x, 0) = (ok (x).
at ax

By making the assumption up front that this PDE is separable it can be solved to give

b(x, t) = e -2, k (x) = k (x - t) .

Similarly, the diffusion PDE,

- b(x, t) = d 2 b(x, t), b(x, 0) = q(k (x)
at dx2

can be solved to give

b(x, t) = e- 4 2k ( (x).

Note that the Fourier decomposition has revealed the key characteristics of each equation.
Thinking of the Fourier mode as a wave, it is seen that pure advection leads to a shift in
space proportional to velocity and that pure diffusion leads to dissipation of the wave.
Both of these results agree with the physical interpretation of the equations. And this can
be extended to the general case by considering an infinite series of Fourier modes.

2.2.11 Boundary Conditions

Boundary conditions (BCs) are often overlooked in the development of numerical
techniques. However, they often present significant challenges when attempting to design
and implement a solution method.

The theory that is developed regarding the order of accuracy, convergence, and other
properties often breaks down when actual boundary conditions are implemented. Most of
the time the reduction is not too great but it is always important to realize that there is the
potential for unexpected results when applying boundary conditions. The key, as always,
is to analyze a given system of interest thoroughly.

A few commonly used boundary conditions are discussed in terms of their
implementation in standard finite difference discretizations. As in the previous sections,
w is the vector of the discretized values of the quantities of interest, j is a given grid point,
and A is the matrix that contains the coefficients that approximate the functions. First off
are the so called periodic boundary conditions first mentioned in Section 2.2.1. They



amount to setting the value at one end to the solution domain to be equivalent to the value
at the other end. Numerically this results in applying the coefficients for a given
discretization that would extend beyond the one end point to be at the other end point. To
clarify this, consider a matrix that results from a discretization that spans three grid points
with coefficients a-l, ao, and al. In the periodic BC case the A matrix then has the form

ao a a-1

A = a o .9 ]
a_1 ao a,

a, a_1 ao

The important feature of this matrix is that it is now circulant. This fact allows for much
of the theory regarding the standard discretizations to be developed and allows for the
exact characterization of the eigenvalues by Fourier analysis.

Of course, these periodic boundary conditions do not correspond to any actual physical
situations. In real situations the most common types of boundary conditions are Diriclet
which specifies the value at the boundaries and Neumann which specifies the value of the
gradient at the boundaries. One other type of BC, the open boundary condition, becomes
important in numerical methods. If the function being approximated is only a first
derivative then only one spatial BC can be specified. The other boundary cannot be
specified which presents a challenge since the numerical approximation must have some
value at the other point.

The boundary conditions can be specified in some vector, g(w), that is added to the
product of w and A. The boundary conditions are denoted BC 1 and BCu for the lower and
upper boundary conditions. To keep things simple consider a discretization that spans
three grid points with coefficients specified as above. The grid runs from 1 to m so the
boundary values correspond to points w and wm+1. The Diriclet conditions are the easiest
to handle since they specify these two values,

wo = BC, and wm+I =BC,

The equation for the mth discrete approximation is

a_-wM_ + aowm + alwm+.

Since the A matrix is only m x m the rightmost portion must be handled in the boundary
vector, g. The value for the 1st row can be handled similarly finally giving us

g, = a-lBC and g, = aBC

For Neumann conditions the situation is a bit more challenging as we need to consider
how to handle the gradient discretely. In this case the boundary values must be specified



indirectly by the choice of discretization of the 1"st derivative. Take the upper boundary
and consider the upwind discretization,

1
- W,+i -W = BC,h

where h is the grid spacing. Rearranging this gives a value for wm+1 which can then be
multiplied by the al coefficient. Handling the lower bound similarly we have

g, = -a-1 hBC, - w, and g, = a hBC, -w,

The open BC can be considered as extrapolation to a virtual point. We basically want the
value at Wm+1 to be the same as the values preceding it. The basic extrapolation is

Wm+ 1 = OWm + (1- O)w,,

where 0 can be 1 or 2. The simplest way to incorporate this is to treat Wm as the virtual
point and just modify the last row of the A matrix so that the last two entries of the row
are 0 and -0.

Most of the boundary conditions used in this work are based on one of the above types.
The actual implementation varies depending on the discretization method and other
factors but most of the concepts remain the same.

2.3 Transport Example Problem

As a summary of this section a basic transport example is solved. This serves to
demonstrate some of the principles described above and justify the need for new
techniques.

Consider transport in a very long tubular reactor of length with narrow aspect ratio (e.g. it
can be approximated as one dimensional) and length L = 2.0 m. The species of interest, i,
has a diffusion coefficient of d = 1E-4 m2/s in the surrounding fluid. The fluid is moving
through the reactor with a mass-average velocity of 0.3 m/s. In the reactor, i is created by
a first order reaction with rate constant kl = 0.2 s-1 in the presence of a homogeneous
catalyst. The transport is thus described by the familiar equation

+ v c = d 2+ kc .
at x aX2

The initial condition defined such that there is a spike in the concentration of i at / = 1.0
m.



max(0, 0.4 -x - 3) x < e
max(0, -0.4. x + 5), x >

The boundary conditions are no-flux at the outlet and a zero concentration at the inlet,

ci (O, t ) = 0 mol
m

3

-d Lc' (oo, t) = 0 mol
ax m2s

The variables can be non-dimensionalized as follows:

dimensionless position: x = X
L

dimensionless time: t =td
L2

dimensionless concentration: b(x, t) )= c(x,t)
Cref

Damk6hler number: Da = kL2

d

Peclet number: Pe = v
d

With these transformations, the equation is now

b = 2b Pe. b + Da b (2.20)

with initial and boundary conditions

b(, O)= f(1/c,.)max(0,0.4.EL -3) e/L

(1/cre)max(O,-0.4-L+5), > f/L

b(0, t) =0

ab (1, ) = 0

To solve this numerically, the second derivative is approximated with the second order
central scheme and the first derivative with the first order upwind scheme (see Section
2.2.1). This leads to a right hand side of equation (2.20) that is approximated with the
matrix (note the approximated values for b are represented by w).



-2- +Da

h+ Pe
h2 2h

1 Pe
h2 2h
-+ Da
h2

1 Pe
h2 . h

1 +Pe- 2 +Da
h 2 2h h2

1+ Pe
h2 2h

1 Pe
h2  h

2+ Da
h
2

The boundary conditions can be handled via the vector

g = Pe b(0, t), 0,., 0,1 _Pe 2h -O (1,- ) + w-,1
h2 2h h2 h a

to give an equation of the form

W(t) = Aw(t) + g(t), w(to) = wo.

The solution was integrated via a fourth order Runge-Kutta method over a time of 10
seconds (corresponding to a span of T = [0, 0.00025]) and transformed back into the
original variables.
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Figure 2.4: Transport Example, initial condition (dashed line) and apporximation

This figure plots concentration against position for both the initial condition and the final
approximate solution. The results of this simple example largely agree with intuition.
The peak moves through the reactor and spreads slightly due to diffusion. Also, there is a
slight increase in concentration due to the first order reaction. However, note that there
are also some oscillations in the middle that result in negative values for concentration.



This is clearly unphysical and demonstrates some of the shortcomings of these numerical
approximations.



3.0 Integral Equations

Integral equations are a powerful but often overlooked tool. Though they have been
around in some form for hundreds of years, their solution still represent a field of very
active research, with new techniques being developed in many publications. Integral
equations are very useful when describing phenomena of a hereditary nature or
considering quantities that must be averaged over some space. In actuality, many
boundary value problems based on differential equations can be formed in terms of
integral equations where the integral itself naturally includes the boundary conditions
without them needing to be imposed as separate equations. And when integral equations
are mated with differential equations, forming partial integro-differential equations
(PIDEs), they allow for the inclusion of history dependent factors, uncertainty in
parameters, and other considerations that allow for more advanced physical and chemical
models.

What defines an integral equation is an unknown function, g(x), that appears under
integral sign

g(x) = f(x)+ fK(x,u)g(u)du,

where K(x,u) is called the kernel of the integral equation. This can also be written as

g(x) = f(x) + (Kg)(x) ,

where K is an integral operator that maps the input function g to an output over some
given range.

Integral equations are often divided into two categories. Volterra integral equations take
the form

h(x)g(x) = f(x) + fK(x,u)g(u)du.

They are called Volterra integrals of the first kind or second kind if h(x) is zero or one,
respectively. Fredholm integral equations have a constant limit of integration,

h(x)g(x) = f(x) + K(x,u)g(u)du,

and are referred to as first or second kind if h(x) is zero or one, respectively. In both
classes of integral equations, they are called homogeneous iff(x) = 0.

Integral transforms are a simple example of integral equations. For the Laplace
transform,

L f(t) = F(s)



the functionf(t) is known, while for the inverse transform, L' F(s) , F(s) is known. So

the inverse transform requires solving the integral equation

F(s) = f es f(t)dt

forJ(t). Fourier transforms can be considered in a similar way. Using these and other
transforms allows the solution of some types of integral equations.

Overall, though, there are only a small number of problems that can be solved
analytically. For problems that are currently of interest, numerical methods must almost
always be used. In this thesis analytical solutions do serve as a point of comparison for
numerical methods.

3.1 PIDE Solution Methods

Even for this small sampling of examples, the solutions are handled using various
numerical techniques. Unfortunately, these techniques for solving PIDEs do not fit into
nearly as well a defined framework as PDE techniques discussed throughout this
document. Each new situation can involve a new technique to obtain useful results
within the constraints of the system. Indeed, novel methods are being published all the
time. This is both the challenge and excitement of PIDEs: They represent a field of
research that is very much at the frontier.

While outlining the solution methods employed even in this small sampling would take
many more pages, there are a few common elements that are taken from basic integral
equation methods. Consider the Volterra integral equation

g(x) = x- (x-u)g(u)du

The integral can be represented as a sum of N terms via some basic method such as a
midpoint rule of Simpson's rule. Taking sample values for x and these points gives N
equations for the unknown function g(x). Using an interpolation (e.g. Lagrange
interpolation) can then provide a functional approximation for g(x). Note that in this
simple example, Laplace transforms can show that the true solution is in fact g(x) =
sin(x). These types of integral approximation and collocation methods represent one way
to attack integral equations and can often be meshed with time-stepping PDE methods
when the integral is taken with respect to the time variable. As mentioned above, there
are many solution methods in use, but collocation of some form does often serve as a
basis.

This basic solution technique works well in many cases, but one of the main challenges in
solving integral equations is that the integral is often taken over a large range. This
means that the values of the solution at a given grid point depend on the values of many



surrounding points. This definitely is the case in population balances where the particle
size can form from the fragmentation of particles up to an arbitrarily large size, resulting
in an integral over a very large range of masses. Consider the generic integral equation

w(x) = K(x, x')w(x')d' .

If the integral is approximated via some type of quadrature rule, x will then be discretized
over the range of the integral with the number of points, M, dependent on the level of
detail required. The function is now

M

w(x,)=JrK,w(xj), i = 1,2,...M
j=1

where the r's are the coefficients due to the quadrature rule and the Ki~'s are the
approximations of the kernel at various x-values. Now w(x) is a vector and the value at
each point, w(xi) may depend on any number of the surrounding values of w(xi-I), w(xi+l),
etc. depending on the form of the kernel. When put in matrix form,

Lw(x)L rMKrK JLW(XM)J ,

it becomes clear that a matrix inversion will be necessary to solve for w(x). The problem
is that A may be very dense depending on how far the non-local effects are significant.

Now consider a transient version of this problem resulting in a PIDE. The resulting
temporal integration method will require solving the above equations at every time step.
Recall that the matrices resulting from spatial discretization are rather sparse but still
presented challenges to invert; the dense matrices of integral equations may be
impractical to invert in the same context. This makes explicit methods all the more
attractive in this context.

There are two common issues with the majority of PIDE solution methods. The first is
that they often do not preserve the positivity of the underlying physical process. The
second is that the time integration is not very efficient. These two issues can be
addressed by the methods developed in this thesis.

3.2 Examples

There are many examples of integral and partial integro-differential equations in the
literature. Presented below are several interesting examples which emphasize interesting
aspects of these classes of equations. In Chapter 10.0 some of them are explained in
more detail and solved using the methods developed in this thesis. First off, a basic
integral equation is explored.



As mentioned above, there is a natural link between integral and differential equations.
Consider the steady-state convection-diffusion-reaction equation in dimensionless form,

a2 b 5D
2 -PeY+Da-b =0

with boundary conditions

b(a)= O, b(z)=0.

Integrating the equation gives

.b
' -Pe.b(-)+Da. fb(u)du+C, =0

and integrating again gives

b(G)-Pe. b(u)du + Da. (u)dud + C,+C 2 =0.

Using the identity

f (u)dud =[ f(u)du] f f()d = xf f(u)du - 0 - f f()d (x - u)f (u)du

allows the simplifications

b()-Pe. b(u)du+Da. ( -u)(u)du+C1 +C 2 =0

and

b(-)= -Da( -u)+Pe b(u)du-C-C 2 . (3.1)

Applying the first boundary condition gives

b(a)= 0= 0-C a-C 2  C2 =-Ca ,

while applying the second boundary condition gives



b(z) =O= 0 -Da(z-u)+ Pe b(u)du - Cz +Ca

-= C1 _ 1 -Da(z-u) +Pe b(u)du
z-a

Putting these values for the constants of integration into equation (3.1) gives

b()=F -Da( -u)+Pe b(u)du x-a f -Da(z-u)+Pe b(u)du.
z-a

Splitting the last integral into two parts allows further simplification,

b(X) = -Da(f -u)+Pe b(u)du - -a -Da(z-u)+Pe b(u)du
z-a

x -a -Da(z-u)+Pe b(u)du
z-a

= x-a 1 Da(Y-u)-Pe b(u)du+ x-a Da(z - u)-Pe b(u)du
z-a z-a-

and if the kernel is written as

Sz-a 1) Da(J - u)-Pe, a u

K(x,u)=

S- a Da(z - u) - Pe , < u < z

the equation for b can be written as

b() = K(, u)b(u)du,

which is the form of a homogeneous Friedholm integral equation.

The real potential utility of integral equations comes when they are combined with
differential equations to form PIDEs. This allows for an extension of standard transport
models to more complicated systems and overcome certain shortcomings in the standard
models.

3.2.1 Population Balance PIDEs

One of the most interesting type of systems that can be handled with PIDEs are those of
agglomerating particles. These so called population balance systems are characterized as
follows.



There are many systems where particles interact with each other to form larger
agglomerates and degrade to form smaller ones. Such interactions may or may not be the
result of chemical reactions, but they can often be treated in a common manner. For
example, consider the coalescence of water droplets or the formation of polymers.
Population balances are a tool that allows for the analysis of these effects.

Often times the most natural variable to use to describe these phenomena is mass, since it
is conserved, while particle volume, diameter, etc. are not. With this, the variable nN(m)
can describe the number density of particles over a distribution of masses. Generally, this
term is considered to have units of #/mass. If a constant volume system is being
considered then the units could be #/mass/volume. Integrating this term would then give
the concentration of particles in a given mass range. There are several phenomena that
are of interest in population balance systems. The explanation given here follows that of
[Obrigkeit, 2001]. This explanation is elaborated upon in Chapter 9.0.

First considered is coagulation. This refers to two particles colliding to form a larger
member of the same species. In a process with a large number of species, such
interactions are continuously occurring. It is also generally assumed that ternary
collisions are relatively rare so that only binary interactions need to be considered. For
such binary interactions, the rate is similar to a first order reaction process, but with the
reaction constant being a function of particle sizes. Consider two particles of sizes a and
b. The rate of their coagulation is

rate = 6(a, b)cacb,

where the c's represent concentrationss and P(a,b) is known as the coagulation kernel. It
will soon become obvious that this is an integration kernel as defined in the previous
section.

If a particle of mass m is considered, the particles that create it can be of sizes a and m - a
where a can range from 0 to m. The rate of increase of particles of mass m due to
coagulation is then the product of the kernel and the concentrations of particles. To
properly consider the concentration of particles, the range of masses, Am must be
multiplied by the number density, nN(m). The product nN(m)Am then represents the
number of particles between size m and m + Am. This gives the following rate equation:

dnN ( Am = p(m - a, a)nN (m - a)A(m - a)nN(a) a .
dt

Taking the delta values down to infinitesimal size results in da and d(m-a). Dividing the
whole equation by dm and recognizing that d(m-a)/dm = 1 gives

dnN(m) = (m - a, a)nN(m - a)n,(a)da .
dt



To account for all of the particles up to size m, the right hand side must be integrated.
However, note that this basic form would double count all of the interactions so the final
expression should be

dn, (m) m
= ( J/f(m-a,a)nN(m- a)n,(a)da.

dt o

Note that this is an integro-differential equation of Volterra type.

Particles of a given size also can also be decreased due to coagulation with other
particles. In this case, there is a collision of a particle of size m with a particle of size a
where a can now be arbitrarily large. This results in the equation

dnN(M) Am = -f(m,a)nN(m)A(m)nN(a)Aa
dt

which for infinitesimal deltas can be simplified to

dn(m) - (m,a)nN(m)nN(a)da.
dt

This can be integrated of all possible a values to give

dn, (m) 0
= nN(m) fl(m,a)nN(a)da .

dt o

Note that infinite particle size can be interpreted as representing a distinct phase.

Fragmentation represents the reverse process of coagulation. A particle splits into an
arbitrary number of smaller particles. The loss of particles of a given size is a first order
process that depends upon the removal rate expression g(m). Loss of particles in this
manner is described by a simple first order differential equation,

dnN(m) = -g(m)n, (m).
dt

Increase in particles of a given size due to fragmentation is more complicated. The rate
of fragmentation, the number of particles created and the distribution of particle sizes all
factor into the equation. The rate of fragmentation is g(a) as described above. The
amount of particles generated is described by v(a). The distribution of sizes depends on
both the fragmented particle size and the size of interest. Another kernel, the
fragmentation kernel, y(a,m), is used to describe this. Similarly to above, the product of
all these factors and the respective number densities and mass ranges. So to describe the



increase in particles of size m due to the fragmentation of particles of an arbitrary size a
the expression is

dnN(m) Am = g(a)n, (a)Aa -v(a). y(a, m)n, (m - a)Am .
dt

Taking infinitesimal deltas and simplifying results in

dnN () = g(a)v(a)y(a, m)n, (a)da.
dt

To consider all sizes a that could result in a particle of size m, the right hand side must be
integrated to give

dnN(m) = Jg(a)v(a)y(a,m)n, (a)da.
dt

Any of the above phenomena could occur in a given system possibly leading to several
different integral terms in the same expression. And the above expressions consider only
one species with only one attribute of interest (mass in this case). Adding species would
require additional equations and adding attributes would require multiple integrals, both
of which would add to the challenge of solving these already challenging systems.

3.2.2 Other Examples

The standard derivation of the transport equations effectively reduces any dependencies
down to the immediately surrounding points in space and time. This works well when
particles are very small and can interact only with their immediate neighbors, but this
doesn't allow for more complicated interactions that may depend on the surrounding
elements. Also, there is an inherent lack of time delay between cause and effect that can
lead to some incorrect behavior when the standard equations are solved. A few examples
are given here that exemplify some of these issues.

The standard transient reaction-diffusion equation,

ac = d 2c + f(c)
at aX2

is known as the Fisher equation when the reaction term is given by

f(c) = k(c - c2).

However, when there is an initial condition in the form of a step function, there are some
unphysicalities that arise in the solution. In the solution, it is known that a traveling wave



will result with velocity equivalent to ,4dk but for very fast chemical reactions, this
wave can propagate faster that the transport processes. To remedy this discrepancy with
reality, a flux with memory term is introduced,

J= e- c (x,s)ds ,

to give an integro-differential equation for transport,

= d d c (x,s)ds + k(c-c 2 ).

at r f x 2

This is known as the generalized Fisher-Kolmogorov-Petrovski-Piskunov equation. It's
solution is discussed in, for example, [Araujo et al., 2004].

Radiative heat transport can also involve PIDEs. A problem considered in [Frankel &
Osborne, 2000], among others is a fairly common example. Consider a one-dimensional
absorbing region, bounded by black walls. The cooling has the familiar fourth-power of
temperature relationship. When the terms are all non-dimensionalized, the partial
integro-differential equation for dimensionless temperature, 0, is

aO (x, t)= 1 E2 (x)+O 4E 2 (L -x) - 0 4 (x,t)+ , E(I x'-x _X)0 4(x,,t)d'
at 

2

where 00o is the initial condition and E,(-) is the nth exponential integral function,

E, (x) = e-xtdt
tn

Examples exist in biological systems as well. In [Mogilner & Gueron, 2000], a model is
developed that considers pattern formation in bacterial swarms. The basic formulation
considers the cell density, C(x,t) and a chemoattractant and chemorepellent (Si(x,t) and
S2(x,t), respectively). The transport equations describing this system are

C =db 82C a S C +A S2 C)

at bx 2  ax a & x

S, d as,S=i da, - - aC - b,S,, i= 1, 2
St aX2

where Ai represents the magnitude of the chemotactic responses, ai represents the
secretion of chemical by the bacteria, and bi is the decay of the chemicals. When the
diffusion of the chemicals is much faster than that of the bacteria, a quasi-stationary



distribution of chemicals in space develops. This simplification allows a solution for the
chemical concentrations,

s, = Li 2Lf exp- L xx'i C(x')c' ,
Li 2b, . L 

where

L =L2 d2
b2

and x and t are now non-dimensionalized. Finally, defining

C= (2d 2b2)/(Aa 2 ), A=- ,
A2a2b

and defining the kernel

K(x, x') = sgn(x) Ae- x-xil -e-Ix-xl ,

the entire system can now be represented by the PIDE

_ K~ 2 ~:(x,x')A(x')'.
at ax 2  a x

These are just a few examples of problems represented by PIDEs. Other examples will
be explored more fully in Chapter 10.0.

A = ,



4.0 New Applications: Finance

4.1 Comparison with Chemical Engineering

Chemical engineers develop skills that can be readily applied across many scientific
fields. It is well known that problems in physics, chemistry, biology, and other natural
sciences often solved by people in the field of chemical engineering. Financial
engineering is in its infancy compared to other scientific and engineering disciplines. As
such, there is tremendous opportunity to apply the capabilities of chemical engineering to
this area. This provides the opportunity to merge the main portion of this work with
finance as the capstone portion of this PhDCEP thesis.

Though transfer of heat and mass through a medium and the rise and fall of option prices
seem to be quite disparate phenomena, the mathematics that describe them are quite
analogous. Even in following the development of the transport equation and the Black-
Scholes equation, the similitude is not evinced until the denouement of the derivations
(see below). It is this relationship that forms a basis for much of this thesis.

A quantitative treatment of transport phenomena has existed almost as long as calculus
itself. Beginning with Newton's Law of cooling in 1701 and continuing with works by
Fourier in 1822 and countless others, there is an enormous body of work dedicated to this
topic. Despite existing in a traded form since 1848, financial derivatives received
rigorous quantitative treatment only in 1973 with the celebrated papers of Merton and of
Black and Scholes. Their theories stimulated a great increase in the trading of options
and led to the development of increasingly complicated financial instruments.

The great interest in financial derivatives today notwithstanding, the body of work of
solution methods developed for transport equations is both larger and more advanced.
With this being the case, the field of chemical engineering has a great deal to offer to the
study of financial derivatives.

At its heart, trading involves the exchange of a financial risk for a specified payment
either now or at some future date. These transactions can take place explicitly between
two parties or on an exchange.

There are two broad categories of derivatives relevant to this thesis. The first category
encompasses forward and futures contracts. In a forward contract, one party agrees to
buy an asset from another party at some future date for a specified amount. An important
feature is that it requires no money to exchange hands initially. The same basic
principles apply to futures as well, but they are usually traded on exchanges and have
certain standardized features. In addition, they require a margin to protect both parties
from default.

Option contracts are also based on the purchase (or sale) of an underlying asset at some
future date for a set exercise or strike price. The key difference is that there is a right
rather than an obligation to buy (or sell) an asset. With this flexibility, there must of



course be a premium to enter into such a contract, which is paid up front. Some basic
terminology is necessary to describe options. The terms call and put refer to options to
buy or sell an underlying asset, respectively. An option that is "in the money" is
favorable to exercise. For a call option, this means that the asset price is above the
exercise price. The option allows the holder to buy the asset at the exercise price and
immediately sell it at the market price for a profit. A put option requires the asset price to
be less than the exercise price to be in the money. The two simplest option types are
European and American. European options can only be exercised at the expiration date
whereas American options can be exercised any time prior to expiration. Beyond these
two types, there are a large number of options with increasingly complex structures.

Clearly, financial derivatives allow for speculation. For the same amount invested,
derivatives allow a holder to make greater profits than he would by buying the underlying
asset itself. Of course, they also expose the holder to a greater loss potential as well.
More importantly for the purposes of this thesis, though, financial instruments enable the
mitigation or transfer of risk. For example, consider a portfolio of an asset and a put
option on that asset. Clearly as the value of one increases, the value of the other
decreases. At a given instant, some specific portfolio ration ensures that small
unpredictable movements in asset price do not result in unpredictable changes in the
portfolio price. Determining this relationship and adjusting the portfolio ratio
accordingly is called hedging. By selling this portfolio for more than it is worth and
hedging away risk throughout the life of the option, a risk-free profit can be made.

Undoubtedly, being able to quantify the relationship between asset price and derivative
value is of great importance. The study and development of these models are central
aims of this thesis.

Like any other model, the development of the mathematics necessary to analyze financial
derivatives necessitates some assumptions. For many of these assumptions, analogies
can be drawn with transport phenomena.



Table 4.1: Financial Assumptions
Financial Assumptions Transport Analog

Investors always prefer the trading strategy Heat flows from hot to cold regions
earning the greatest profit
No arbitrage opportunities: If such
opportunities existed, they would be A system with no net external influences
exploited until a new market equilibrium returns to a single equilibrium state
was established
Infinite liquidity of market Species transport are considered

continuous despite discrete nature of
Continuous trading is possible molecules

No counterparty risk: The instrument's Indistinguishability of particles
seller is not relevant to the price
No transaction costs No friction, e.g. inviscid flow
The following parameters are deterministic
and constant: interest rates, volatilities,
dividend yields Constant physical properties
The relationship between risk factors are
not stochastic

The fundamental model for determining the value of a European option is the Black-
Scholes differential equation.

aV(S,t) 1 2 _2V(S,t) + V(S,t)
+ 2S +rS - rV(S, t)= 0 (4.1)t 2 S2  as

where V represents option value, t is time, S is underlying asset price, a is the volatility of
the asset, and r is the risk-free interest rate. It was developed in a 1973 paper by Fisher
Black and Myron Scholes. Its derivation and solution are attached in Section 4.2.

It is worth pointing out the similarities between (4.1) and the transport equations
discussed in the previous section. After a change of variables, (4.1) becomes

= 2.. + (k- 1) vk
ar -ax 2

which is in the same form as

b = a 2b _ Pe. 2b +Da .

It is this similarity that will allow the methods developed in this thesis to later be applied
to financial equations.



As with any differential equation, the key to a unique solution is the boundary conditions.
Note that since the value is known exactly at expiry, final conditions are used instead of
initial conditions. For example, a European call option has the following conditions:

V(, t) =0

V(S,t)- S
S--+0

V(S,T) = max(S - E, 0)

where T is the expiration time and K is the exercise or strike price. Alternately, Neumann
boundary conditions can be used to give

8V(S,t)a =0

aV(S,t)
aS s.,

European puts have similar boundary conditions.

An analytical solution of this differential equation is possible, as shown below. The final
result is

V(S,t) = SN(d,) -Ke-r(T-)N(d 2) with

In(S / K) + (r + 2)(T - t)
S-t (4.2)

In(S / K)+(r - a 2)(T - t)
d2 2

As the financial derivatives become increasingly complex, their descriptive equations
become more and more difficult to solve analytically. This leads to the development of
numerical solutions. Numerical solutions can be advantageous even when analytical
solutions exist since these solutions can involve infinite series or other functions that are
difficult to manipulate. Also, numerical solutions are much more useful when
considering boundary conditions that need to be considered at each time step (such as
American options). Overall, the discrete nature of price quotes makes numerical
solutions a natural choice.

MATLAB code was written for the numerical solution of the Black-Scholes equation for
European options. An example of the output is given below for a European call option.
The intrinsic value (which is also the final condition) is plotted as well. Note that the
option has a value still has a small region where it is still greater than zero even if when
the asset value is below the exercise price. This represents the fact that there is



uncertainty about the future price of the underlying. As the time gets closer to expiry,
this region becomes smaller and smaller.
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Figure 4.1: Value of a European call option

For this figure, the strike price is 10, the interest rate is 5%, the volatility is 20%, and
there are 6 months to expiry.

4.2 Derivations of Fundamental Equations

When following this derivation it is worthwhile for the reader to refer back to Section 2.1
to consider the derivation and final form of the transport equation.

The Black-Scholes option pricing model determines the value of an option as a function
of the underlying asset and time. By making a few assumptions (see Table 4.1) about
stock price movements and market efficiency, a model is obtained that accurately
represents the option price movements that are actually observed. The equations
developed here are based on a single underlying asset, but the concepts can be readily
extended to multiple assets (see equation (4.12)). The development here is based on
European options. To price more exotic options generally involves a change of boundary
conditions, but the solution becomes more difficult.

The return on an asset is the change in price divided by the original value, dS/S. This
return can be modeled as a random walk with drift. The drift is the deterministic portion
of the return. It is simply the average rate of growth of the asset and is denoted P. The
stochastic portion of the return is based on the volatility of the returns, a. The drift is
multiplied by an infinitesimal time, dt, while the volatility is multiplied by a Wiener
process, dX. This gives a stochastic differential equation for the asset value,



dS = pdt +odX (4.3)
S

The Wiener process is defined such that for the time interval t-s, X(t)-X(s) is a random
variable normally distributed with zero mean and variance t-s. Each step is independent
of the previous steps. In the infinitesimal case, dX, the variance becomes dt. Note that
since Xhas a mean of zero,

E[dS] = E[flSdt + crSdX] = pSdt .

The variance of a random variable is the accumulation of independent effects over an
interval of time, which in this case is dt. The standard deviation is thus proportional to

-- t . This allows dXto be written as

dX = D--v (4.4)

where D is a standard normal random variable.

The next result relies on Ito's Lemma. Consider some variable z described by the
stochastic differential equation

dz = a(z, t)dX + b(z, t)dt.

Ito's Lemma states that, for some functionf(z),

f = adf d + b df + z2 ad dt .
dz 2 dz2

For the case at hand, definef(S, t) as some smooth function of S. A Taylor series
expansion of df gives

f(S, t) = f(a,b) + b) (t-b) +f(at) (S -a) + f(ab) (S - a)(t -b) + f(S,b) (t - b)2

ft aS aS)t 2 at2

1 2f(at )
+ (S - a)2

2 8S2

As the change in S and t (and thereforej) becomes infinitesimal, we have

df= dt + f dS + f dSdt+ - a2 f dt2 + 1 dS2 +_
Ot aS dS8t 2 at 2  2 aS2

Inserting (4.3) for dS and (4.4) for dX gives



df=f dt+L uf /Sdt + aSeDII + 2f 2 u Sdt +oSIt dt + l 2 fdt2 + 2f Sdt+oSi 2
at as asat 2 at 2  2 dS2

and further expansion results in

df = dt+ S 'f - dt + odt 1/2 +S jdt + odt 3 2 +1 dt2
at aS aSat 2 at2

+ I2f 4
2dt2 + 2p5Sdt3/1 2 + U2S2 2dt +"

2 aS2

Since powers of dt higher than unity will vanish in the limit of infinitesimal dt, this
equation can be simplified to

df = f dt + Sf tdt +o dt2 + 1S2 2f 22dt
at as 2 aS2

Since E[d] is 0, and E[F 2 ] is (E[(])2 + var(F) = 1, the deterministic portion of df is

E[df= E [ dt+Sf dt+oDdtl/2 +1S 2 02f cr2(D2 dt +.. =f dt+pSf dt+acr2S2a2 fdt

at as 2 aS2  at aS 2 aS 2

The stochastic component of df is given by

yf US(dtl/2 +1 2f 2S2 2dt
as 2 aS2

The dt term is simply dX, and the ( 2dt term is dX2 . However, dX2 would have a
variance proportional to dt2, which means that it would disappear in the limit of
infinitesimal dt. This means that, for infinitesimal dt, dX2 is equal only to its
deterministic portion and thus is not stochastic. This gives the final expression for df

df=af dt + f S dt +_2S 2fdt +aS dX . (4.5)
at as 2 as 2  as

Consider now V(S, t) to be some option based on an underlying asset S. Also consider H
to be a portfolio consisting of the option and the underlying asset. Since V is a function
of S, they are correlated, and their random components are proportional. Therefore, some
linear combination of V and S will allow this randomness to be eliminated. Write l as

I = V-AS.

For constant A we have



dr = dV - AdS

= V dt + pS.V dt+ '& 2S 2 V dt +CS O V dX- ApSdt - ASdX
at as 2 dS2  as

-V dtS V dt+ 2S2V dt++AS !V A dX
at as 2 as 2  as

Since this equation resulted from a Taylor series expansion, all of the differentials are
evaluated at a point. Therefore, they are constant for a given t and A can be set equal to
aV/as. This will then eliminate the randomness from the equation and give

dl- = (avV + 2S 2Vdt (4.6)
at 2  as2

The return on an amount II invested at the risk free rate, r, is given by the differential
equation

d = rrI,
dt

so dI would grow by an amount rldt in a time dt. If no arbitrage opportunities exist,
then the right hand side of equation (4.6) must equal rlIdt. This is because the right hand
side of (4.6) is deterministic so it should not be any greater (or less) than an investment at
the risk free rate. If it were greater than rfldt, an investor could make a risk-free profit by
borrowing an amount II and investing it in the portfolio. If the right hand side were less
than rlIdt, an investor could short the portfolio and invest the II in the bank. Therefore,
equation (4.6) can be written as

r V-AS dt= V 22 2
at 2 as2

with A = aV/iS. Dividing by dt and rearranging gives

+a 2S2a 2_+rSV-rV =0. (4.7)
at 2 as2  as

This is the Black-Scholes partial differential equation. Note that it is a linear backward
parabolic partial differential equation.

The boundary conditions depend on the type of derivative (or combination thereof) that V
represents. Note that there are final conditions rather than initial conditions since the
equation is a backward parabolic equation. With E representing the exercise price, T
representing expiry date, and r representing the risk free interest rate, the boundary and
initial conditions for European options are as follows:



For a European call option:

C(O, t) =0

C(S,t) s S

C(S, T) = max(S - K, 0)

For a European put option:

P(O,t) = Ke-r(T-1

lim P(S,t) = 0
S-+-->oo

P(S,T) = max(E - S, O)

Note that these boundary conditions are Dirichlet. Neumann boundary conditions can be
used as well:

aC(S,t) =0
as = 0

aC(S, t) =1

as S-+0

for a European call option and

aP(S,t) =-1

as s=o

aP(S,t) =

as S-->

for a European put option.

Further mathematical manipulation can make the differential equation simpler. Consider
a European call option, C(S, t), with boundary conditions as defined above. Define new
variables by

S = Kex

t=T-r/ocr2

C = Kv(x, r)

Where x is dimensionless asset price, r is dimensionless time, and v is dimensionless
option value. Substituting these new variables in gives



aC(S,t) = ar aC v 1= 2K av
at at av Zr 2 ar

aC(S,t) = ax aC v 1 K

as as av ax S ax

a2C(S,t) a C(S,t) =L= 1 v
as2  as as ) as s ax

S
2

x
2

O)

K(1 12 1 N =K
S aSax S2 &x

1 a2v 1 V
S ax

2
as / ax S

2
ax

With these new values, equation (4.7) becomes, after rearrangement

=- 2v+(k1) -k
ar X 2  ax

where k is defined as r / 0.2. Note that this equation is very similar to the convection-

diffusion-reaction equation (2.4).

Defining u(x,r) = ve- ax- f with a = -(k-1) and fl= -(k + 1)2 gives

au 02U -o < x < co, r>O with
(4.8)

e (k+l)x I(k-1)x
u(x,0) = max e2 +)-e 2  ,0 , limu(x,t) =0

X--.±-o

Note that this equation is very similar to the heat equation (2.3).

This equation can be solved using a similarity solution. Such solutions are possible when

the equation depends on x only through the combination ( = xl . The fundamental
solution is of the form

us (x,r) = r-11 2Us(4). (4.9)

Differentiation of (4.9) shows that

aUd . r-1/2U()

ar 
( 1 -3/2U, + -1/2Ut -1 -3/2 - 1 -3/2 r

- + T 2 5 + 2u,

a 2 
u 3  

2 r-1/2 ) =-1/2 -1/
2 

= r
- 3

/
2
U

ax2  ax2  ax5

where primes denote differentiation with respect to 4. The T's cancel and equation (4.9)
now satisfies the ordinary differential equation



U; + I U, =0

which has the solution

U,(()= Cle - /4 +C 2 .

Setting C2 = 0 and normalizing such that udx =1 gives

1 -x
2 /4ru"(x,r)= e

Note that the fundamental solution has the initial value

u, (x, 0) = S(x)

where 6 is the Dirac delta function.

A general initial value problem for equation (4.8) can be
solution. The initial value for u can be written as

solved using the fundamental

u(x,0)=uo(x)= Juo(s)3(s-x)ds.
-00

Due to symmetry, we also have

u (s -x,r) = 1 e-(s-x) 2/4r

with initial value

u5(s -x,0) = 8(s -x).

So, for a fixed s, the function

uo (S)U6 (S - X,r)

satisfies equation (4.8). Integrating over all values for s gives the general solution to
equation (4.8),



u(x,r)= 21 f o(s)e-(X-s)2 /4 ds.

To apply this equation, it is convenient to define the new variable

x'= (s- x)/ => dr'= ds/ J2. This gives

u(x, r) = 1 uo( + x)e-2X /4dx,

Since the initial condition is given by (4.8), this can be plugged in for uo. Note that the
lower bound on the initial value is zero, which corresponds to x = 0. Then we have

1 Y e-(k+lXx'-r+x)e-1X'2/4r , 1 -(k-lIx' X +X) -X'2/4r ,
u(x, r) = e e e J 2

v -x/41F7 -xlr

Each integral can be evaluated by completing the square in the exponent and defining

,= x'-(k +1)-r and p2 = x'- I (k-1)--r to give

(k+)x+ (k+1)2r _ 2(k-1)x+.(k-1) r 2

-Xk+x/x+I(k+ 1(2  
r 1) 4 x -, (k-1)U(X,)= j e Pidpe j e-d 2

Now define d, = x +(k+1) and d2 = x + I(k -1) . Due to the symmetry
- -- -+ - .2- 2

of the normal distribution, it is clear that the integrals are simply N(di) and N(d2), where
N is the cumulative distribution function of the normal distribution.

Reverting back to the original dimensional variables and parameters gives

C(S, t) = SN(d) -Ke-r( Tr-)N(d2) with

In(S / K)+(r + 12)(T-t)

a T -t (4.10)

In(S / K) + (r - laZ)(T - t)
d 2

= oT - t

This is the Black Scholes equation for a European call option. Due to put-call parity, a
European put has the form

P(S, t) = Ke-r(Tr-)N(-d 2) - SN(-d,). (4.11)



Note that the equations thus far apply to a single underlying asset. Multiple assets would
result a (integro-)differential equations with many more terms. The most important
change is that the correlation between each asset must be considered. For example, the
Black-Scholes PDE for n assets is

a V(S,t) n a2V(S,t) rS av(S,t)
+ oipSS, Si +  rV(S,t)= O (4.12)

=j=1 asiasi i=1

where S is now an n-length vector and pj, is the correlation coefficient between assets i
andj. This is similar to an increase in dimensionality in a transport PDE but there can be
many more than three dimensions in this case. The solution of these multi-asset
equations is generally handled via some sort of simulation, such as Monte Carlo, as
PDE/finite difference approaches have often proven impractical in such situations
[Pacelli et al., 1999]. If the approaches developed in this thesis for chemical engineering
problems have difficulties when applied to more advanced finance problems, these
simulation techniques can be considered more thoroughly. This may even allow methods
developed for financial systems to be applied to chemical engineering systems.

4.3 Jump Processes

The story does not end with Black-Scholes. There are several underlying problems that
make the model incomplete and can lead to difficulties when actually applied. Many of
these can be addressed by jump processes.

Jump processes allow for a more accurate model of the movements in asset price. At the
most basic level, asset prices are quoted discretely. Naturally, where considering a long
enough time interval, such a process has the appearance of a continuous phenomenon,
and this is the basis for many of the financial models that are used in derivative pricing.
However, there are several problems that cannot be well incorporated into continuous
diffusion models. For example, large sudden price movements can occur and losses are
generally concentrated in a few large downward moves. Another issue is that perfect
hedges do not exist in reality and some hedging strategies are better than others, but in
the model, all hedging strategies lead to zero risk. These flaws in the models can lead to
large problems when they are put into use.

These shortcomings led to the development of new types of models, such as jump
processes. Jump processes can be divided into two main categories. In infinite activity
models, every movement in time is essentially a jump. These give the most accurate
representations of how prices actually move, but can be difficult to use in practice.
Jump-diffusion models use an underlying Brownian model with jumps at random
intervals. Such models can be incorporated well with the standard Black-Scholes model.

The Levy process is the basis for these jump models. In essence, they are the discrete
time analog of random walks. Also, they can be written as a superposition of a Wiener
process and an infinite number of independent Poisson processes; indeed, Wiener and



Poisson processes are themselves Levy processes. Levy processes, (Xt)?o, have the
following properties:

* Independent increments: for every increasing sequence of times to,..., tn, the
random variables Xto , X1- Xto,..., X," -X, are independent.

* Stationary increments: the probability law of Xt+h - X, does not depend on t.

* Stochastic continuity: Vs > 0, limP I Xt+h -X , 1E =0.
h--0

A simple example of a Levy process is a compound Poisson process.

i=1

where the Yi are independent and identically distributed (i.i.d.) random variables and Nt is
a Poisson process with intensity X. The probability law for Yi determines the jump size
and the jump times are determined by the Poisson process, Nt.

The Levy measure, v(A), is the expected number of jumps per unit time whose step size
belongs to A.

v(A) = E[# t E [0,1]: AX, X, EA, A

where (Xt)>o is a Levy process, AXt means jumps size, and # means "number of
elements." Using v provides the most general way to characterize Levy processes.

The Levy-It6 decomposition allows a Levy process to be represented in terms of a
covariance matrix, A, and drift vector, y. This gives rise to a characteristic triplet (A, v, y)
as a way to characterize a Levy process. The Levy-Khinchin representation is a compact
way to represent a Levy-process in terms of its characteristic function and characteristic
triplet. For one dimension, this is

E e"] = e(Z) with

I/(z) = A2+iyz+ e'- 1-izxl_, v(dx)

where e is some arbitrary step size limitation.

An abbreviated derivation gives a partial integro-differential equation describing option
prices that is similar to the Black-Scholes equation. The main difference is that the Levy
process replaces the random walk. Using the risk-neutral assumption, the asset price can
be represented by



St = Soee"r x ,

where r is the risk-free interest rate and Xt is a Levy process with characteristic triplet (72,
v, Y).

The value of a European option can be defined as a discounted conditional expectation of
its terminal payoff, H(ST). Representing the value of the option by V(S, t),

(4.13)V(S,t) = E [e-r(Tr-H(S) I S, = S].

Using the following change of variables

x = In(S / K) + rr

r=T-t

where K is the strike price, and defining

h(x) = H(Kex) / K

u(x, r) = er(T-t)V(S, t) / K

allows equation (4.13) to be written as

u(x, r) = E h(x + XT)

Using the concept of the infinitesimal generator, L, (and assuming that h is in the domain
of Lx), we have

u = LXu, u(x, O) = h(x)

and Lx is defined as

LXf(x)=y7 +-C +22 f(
ax 2&2

y) - f(x) - yl y<l
f(x) (dy).

Ox)-,

Changing the variables back gives

V(St) + r2S 2 2V(S,t) + rS V(S,t) rV(St)

at 2 S 2  as

+ V(SeY',t) - V(S,t)- S(e -1) V(St)( dy ) = 0



Note that this is very similar to the Black-Scholes PDE except for the integral term,
which of course represents the jump process.

4.4 Option Example Problem

To make the above concepts more concrete, the following sample problem is formulated
and solved. It outlines the basic method of attack for numerical solution of PDEs and
further elucidate the underlying similarities between transport and finance equations. For
comparison, recall the transport example in Section 2.3.

Consider a European call option on a stock with a strike price, K, of 10 $. The volatility
of the underlying asset is a = 0.25 yr-1/2 and the risk-free interest rate is r = 0.08 yr-1'. The
time to expiry is T = 0.5 year. For more details on the variables and parameters, see
Section 4.2. The final condition is the standard

V(S, T) = max(S -K, 0)

meaning that the option is worth the amount the strike price exceeds the underlying stock
price and is worthless if the stock price is lower than the strike price. The following
boundary conditions are used

V(0, t) = 0

aV(S,t) =1
dS s,,

meaning that the option becomes worthless if the stock price drops to zero and the option
value will change exactly as the stock price changes as the price becomes very high. For
convenience of solution, the non-dimensionalization discussed in Section 4.2 is
employed:

dimensionless asset price: = ln(S

dimensionless time: t = 1a2 .(T-t)

dimensionless option price: v(x, ) =V
K

parameter: k = r
2

The equation is now

&= 2 + (k -1) -kv (4.14)
a r x2 a



with the initial and boundary conditions

v(O,t) = max eX -1,0

v(0, ) = 0

Ov(i, )
-00

Note that for practical purposes, the infinities in the last boundary condition are
approximated by sufficiently high asset prices (usually around 10 times the strike price).
Observing the similarity to equation (2.20), the discretization of (4.14) is as follows with
the discrete approximations for v being replaced by wi:

2 k
h2

1 (k - 1)
r2 2h

1 (k - 1)
h2  2h

2 -kh
h.2

1 (k- 1)
h2  . 2h

1 (k-l)
h2 2h

2 -k
h 2

1 (k-l)
h2 2h

1 (k-l)
h2 2h

2 -k
h2

and the vector g is defined to handle the boundary conditions

g = - 1) v( )0..., , 2h - 2h (1, T) +

giving the equation

w'(t) = Aw(t) + g(t), w(to) = wo .

This equation was also integrated using a fourth order Runge-Kutta method and then
transformed back into the original variables to give the following graph:
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Figure 4.2: Payoff function (dashed line) and approximate option value vs. asset price

There is fairly close agreement with the analytical solution (see Figure 4.1). The presentvalue of the option increases with option price and the amount that it exceeds the finalprice reflects the time value of money and uncertainty in the underlying asset price in thefuture.

As in the transport case, there are some problems with the solution. For underlying assetprices near the strike price, the solution yields option prices that are less than zero whichis clearly impossible. Also, there are a few places where the solution predicts the presentvalue of the option would be less than the future value, which can be refuted by anarbitrage argument.

While the need for accuracy is of general importance, these two examples immediatelyobviate the need for positivity preservation. The nonsensical negative values forconcentration and price are easy to catch when comparing to known solutions, but ifthese methods were employed in a larger process, the negative values being input couldcause problems from severe divergence in the overall solution to incorrect decisionsdownstream.

Similar to the transport example in Section 2.3, it is relatively easy to eliminate theseerrors by using a different spatial discretization and/or implicit time integration method.But as the systems become more complicated (e.g. multiple non-linear reactions, exoticoption types with multiple underlying assets, etc.) the challenge of avoiding suchinaccuracies becomes much greater. The underlying causes of (and some remedies for)these errors are discussed in the next section. Solution methods that can both eliminatethese errors and remain efficient are one of the central goals of this thesis.
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5.0 Novel Solution Techniques

There are many methods used for solving the types of challenges outlined in the previous
sections. Presented here are several new tools that have been incorporated into the
methods developed in this thesis.

5.1 Runge-Kutta Chebyshev

Implicit numerical methods depend on the evaluation of the function at the time step
currently being calculated, so some type of numerical solution method must be employed.
As these solvers can be costly, recently developed techniques allow explicit techniques to
be used on systems that would normally rely upon BDF-type methods.

Developments of explicit methods that have larger stability domains [see, e.g. Zhang,
2004; Ascher et al., 1997] allow for somewhat stiff systems to be handled. Based on
Runge-Kutta methods, they still require a greater number of time steps than a
corresponding implicit method, but the simpler computation at each time step more than
makes up for this.

The basic concept of Runge-Kutta Chebyshev methods is to construct an explicit method
with stability domain extended as far as possible along the negative real axis in the
framework of Runge-Kutta. This can allow certain systems to be solved that would
generally require an implicit method to be solved more efficiently.

Any explicit Runge-Kutta method has a stability region that encompasses some section of
the negative real line. The largest magnitude value that is included is referred to as the
real stability boundary, fiR. This value is determined by the stability function of the
method, which takes the form

R(z)=yo+yz+72z 2 +..., z=TrA (5.1)

where r is the time step size and k is an eigenvalue of the matrix from the general ODE
system w' = Aw + g(t). Note that to remain first order consistent, the first two

coefficients must be one. To see this, recall that the solution to the scalar test problem,

0 w(t) = Aw(t) w(t) = e'A

ot

and the approximation

ez =1+z+ 1 2 +...
2

The form of the stability polynomial is determined by the stages, s, of the Runge-Kutta
method. As it turns out the polynomial, Ps(z), that maximizes fR is a shifted Chebyshev
polynomial of the first kind,



where Ts is the Chebyshev polynomial of degree s, defined as

T, (x) = cos(s arccos(x)), x -1,1 or

To(x) = 1, T(x) = x, T,(x)= 2xT_)l(x)-Tj-2(x), 2 j <s, xe C

Recall that R(z) must be less than or equal to one for stability. With this constraint, it

turns out that the largest value for fiR that can be achieved is 2s2 as the following graph

illustrates.

(Z)

--- j

-30 -25 -20 -15 -10 -5 0

Figure 5.1: Shifted Chebyshev polynomial, s=4

To prove this is true, consider a hypothetical polynomial of order s the form of (5.1) that

meets the same requirements and has fR > 2s2. Such a polynomial would intersect Ps(z)

s- times since Ps(z) has s- points of tangency with the lines ± 1 for z<0. There is then a

difference polynomial of the form z2 ( 2zz2 + . s -2) since the first two coefficients

are the same. But such a polynomial can have at most s - 2 roots which contradicts the

previous statements, so there is no difference polynomial since the best achievable is

Ps(z).

Using shifted Chebyshev polynomials to define the stability function results in the

following stability domain.
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Figure 5.2: Stability domain for shifted Chebyshev polynomial, s=4

Note that the upper and lower bounds in the imaginary direction of the stability domain
exactly coincide with the real line at s-1 locations. This can be problematic as slight
perturbations in z could lead to instabilities. For this reason, damping is added by slightly
modifying the polynomials

T coo + o, z
T (oo)

T, ( coo)

where )0o>1 is a parameter often chosen to be coo = 1+/s 2Z where the damping

coefficient c is some small positive number. col is necessary to obtain first order
consistency. This new polynomial results in the following stability domains.

Im(z)

Re(z)

I ! i __

-40 -30 -20 -10 0
Figure 5.3: Stability domain for damped, shifted Chebyshev polynomial, s=4, E=2/13

Note that now the stability domain is now much less restricted along the real axis. The
damping coefficient can also act as a parameter to capture eigenvalues that are some
distance from the real line. Of course, there is some price to pay for this: The real
stability boundary decreases linearly with e. The reduction can be approximated as

2cooTs'(coo)
T, (mo) C 4c1Js 2

3

-50

-5-



So far the discussion has been limited to first order, but second order consistency and
higher is readily achievable. As above, though, the price paid for higher order
consistency is a reduction in the real stability domain. There are no known analytical
expressions for the optimal coefficients for order greater than one, but numerical
approximations exist.

The same notions about damping also apply to higher order methods. One form for the
damped polynomial is

T" co + coq z T'(O)
P (z) = 1+ 2 T(w + 1 z)-T (c() +, , )1

For higher order versions and other variations, see [Hundsdorfer & Verwer 2003].

The implementation of these methods in the Runge-Kutta framework is the next major
hurdle. As it turns out, stability must be considered on each intermediate stage as well as
in the standard overall context. A full explanation of this can be found in [Hunsdorer &
Verwer 2003], but the important result is that the Runge-Kutta coefficients must be
chosen with respect to this new set of constraints. The method of van der Houwen &
Sommeijer is one of the best implementations to date and has been employed in several
different contexts.

There are a few other methods that fall into the category of explicit extended stability
domain methods. The most promising of theses is the Orthogonal Runge-Kutta
Chebyshev method of Abdulle. It allows for order consistency of four and includes a
somewhat larger portion of the imaginary axis in its stability region than does RKC.
Currently, it is not as well-developed as RKC, but may become an important option as its
development continues.

5.2 Positivity Preservation

Maintaining positivity of the solution is an important property of any numerical method
developed in this thesis. It presents challenges in both the spatial and temporal
discretizations. The prevention of unphysical diffusion is another desired trait that is
often at odds with positivity. These two phenomena are first briefly discussed in terms of
spatial discretization on the simple constant coefficient convection equation

+b b(,t)=b sin(;rx) , XE 0,1

at Ox 0, otherwise

The initial graph of this solution is as follows.
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Figure 5.4: Convection Equation, Initial Condition

The solution of this equation is simply

b(x, t) = sin(r(x - vt)) ,

a shift of the solution along the x-axis without any change in shape (If v is an integer
value, the graph will shift one period and be indistinguishable from the initial conditions).

Consider first the first-order upwind approximation (see Section 2.2.1)

h

and assume periodic boundary conditions on the interval [0,1].

Also the second-order central approximation

i (t)= v w__1(t) - ., (t) , j= 1,2,...m
2h

under the same conditions. These systems were solved using an implicit trapezoid rule
with a very small time step so that all of the errors are due to the spatial discretizations.
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Figure 5.5: Concentration vs. Position, Smooth Profile

The approximation (solid line) with h=1/50 using a 1st order upwind scheme (left) and a
2 nd order central scheme (right).

The upwind method has an absolute error of 0.0660, a relative error of 0.0045 and a peak
error of 0.4679, while those same respective errors for the central scheme are 0.0618,
0.0049, and 0.2990. The definition of these errors was put forth in Section 2.2.5.

It is immediately clear that these two methods introduce significant errors, and this brings
up several important points. Firstly, note that the second order scheme does not seem to
be especially more accurate than the first order scheme. This demonstrates that although
higher order usually results in a better solution, this is not guaranteed to be the case.

The first scheme exhibits an inaccurate spread in the solution that seems to act as if there
is some type of diffusion. The reason for this can be seen be further expanding the
underlying difference formula (2.8) to give

Sb(x)=h 'b(x)+ 1 b(x)-b(x-h) +O(h 2

ax ax' h

So by using the first order upwind approximation a diffusion term is introduced into the
solution method leading to the spreading of the solution. This phenomenon is known as
"numerical diffusion."

The second scheme shows fairly large oscillations leading to negative values for
concentration. However, the overall character of the solution is reasonably well
preserved. A similar expansion of the second-order central approximation (2.9) yields a
spatial third derivative. This dispersion term manifests itself as waves that travel at
different speeds than the actual waves in the system, thereby causing oscillations.

While there are spatial discretization schemes that utilize more points and can provide
more accurate results, they only mitigate the two problems discussed above: no basic
method can remain completely positive and retain a very high level of accuracy. To



maintain positivity more advanced techniques are often needed, each with their own

drawbacks.

One example here is implemented here for expository purposes. It was developed by
[Hundsdorfer et al., 1995]. It is designed to solve an advection equation of the form

b + avb =0.
at ax

Its implementation in MATLAB was undertaken to demonstrate the properties of such

methods in general. While the above equation is fairly simple, it was shown to be

applicable in two and three dimensions as well. More importantly, this method serves as
a starting point for the more advanced positivity preserving methods developed within
this thesis.

Formally, positivity requires that for any positive initial condition {wj(to)},

wj(to) 0, Vj the solution over time {wj(t)}, must remain positive for all t > to. In

practice, a lack of positivity manifests itself as over- and under-shoots of the real solution
due to spurious oscillations. Note that here, as in the rest of this thesis, w values
represent numerical approximations while b values are the exact quantity.

When using the method of lines (MOL) approach, the spatial and temporal steps are
considered independently. They are still, however, closely related, especially in the
context of positivity preservation. As mentioned above higher order methods are
generally more accurate, but only the first order upwind approximation is inherently
positivity preserving. This fundamental problem leads to the concept behind this (and
many other) positivity preserving schemes: Use a high order discretization as large a
region as possible and employ decreasingly accurate (but increasingly positivity
preserving) discretizations as the variations in the solution become increasingly strong.

For simplicity of implementation, it was assumed that the velocity, v, was constant.
However, it is fairly straightforward to evaluate the velocity along with the concentration
at each point.

The stencil width of this scheme is five, meaning that values from the (j- 2 )th through
(j+2 )th spatial points are used to estimate the value atj. Wider stencils can add more
accuracy, but cause more difficulty when applying boundary conditions.

The final semi-discrete form is

w'(t= 1+ 2 12 1 -W . (5.2)
h rj-1/2

where rj-1/2 is the slope ratio,



j j_-1
j-1/2 -

Wj-1 - j-2

and qj-1/2 is the positivity preserving filter. The slope ratio is the method for determining
regions of strong variation in the positivity filter. To maintain positivity, the limiter must
have the following properties

j-1/2 O if rj-1/2 0

0 5~ j-1/2, j-1/2 -<  , forsome > 0. (5.3)

1j-1/2 2rj-1/2

In its final implementation it takes the form

O(r) = max(0, min(2r, min(5, K(r)))) (5.4)

where

K(r)= k + +k r.
2 2

The k's take values of values of 1, -1, and 3, to obtain second-order central, second-order
upwind, and third-order upwind biased discretizations, respectively.

After the spatial discretization, the temporal integration must also be constructed so as to
maintain positivity as well. The key factor when considering positivity in time is the
Courrant number at the most basic level. Later we will see a more thorough analysis of
the limits on time step size in terms of stability domains but this is the method employed
in this paper. In this case the requirements on the time step are

voh
Iv

where t is the time step size and vo is the critical Courrant number,

1

1+8/2

For testing purposes, Runge-Kutta methods meeting the above requirements were
employed to integrate the discretization (5.2) & (5.4) through time with time step based
on 90% of the maximum Courrant number. The results are shown below. Additional
results can be seen in Section 6.3.
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Figure 5.6: Concentration vs. Position, 3 profiles

This plot shows the approximations (solid lines) for square (h=1/50), smooth (h= 1/150),
and triangular (h=1/250) profiles using the scheme of Hundsdorfer.

Explicit Runge-Kutta methods from order 1 (which is just the forward Euler method) to
order 4 (the classical Runge-Kutta method) all showed similar results, with the fourth
order method being the most accurate, as expected. However, the relative advantage was
fairly small. This indicates that the time step size restrictions from the Courant number
are greater than what is normally needed to obtain sufficient accuracy in the temporal
integration.

As expected, the square peak is easily reproduced, while the sinusoidal and triangular
peaks require an increasing number of space points to obtain an accurate solution.
However, the results are far superior to the simple upwind discretization while still
maintaining positivity. The square profile is noteworthy in that there appears to be no
Gibbs phenomenon (overshoot on the approximation of step-like profiles). This
demonstrates that the underlying feature of the positivity preserving method is a
prevention of over- and under-shoots.

5.3 Operator Splitting

Ideally, the above large-domain explicit methods are able to solve the systems of interest.
However, it is possible that there are some terms in equations of interest that have



characteristics that make implicit methods necessary. For example, in the general
convection-diffusion-reaction equation,

ab,-+ V. vbi = V- DVb + f(b,,t),
at

the stiffness ratio of the convection and diffusion terms scale with the square of the
number of grid points in the spatial discretization (see Section 2.2.7). This may remain a
manageable amount within the context of the explicit methods mentioned above.
However, the reaction terms can, depending on the reaction constants, have stiffness
ratios that are several orders of magnitude larger than for the other terms.

Operator splitting techniques are designed to use different solution methods on each term.
This can allow for the efficient solution of most of the equation with explicit methods
while only employing implicit techniques where necessary, thereby resulting in a much
more efficient solution. The key point is that solving the system of equation twice (or
more) at each time point may be much more efficient than attempting to solve it only
once but with a computationally intensive method.

The actual splitting can occur term-wise or even for each spatial dimension within a term.
This is done to allow the one dimensional techniques to be easily applied to
multidimensional systems. An interesting challenge presents itself when, for example,
the matrix of diffusion coefficients contains off-diagonal terms, resulting in cross-
derivative terms. This also occurs in systems such as equation (4.12). See [Mitchell &
Griffiths, 1980] for more on this topic.

Of course, as with any other technique, there are several aspects that must be considered
in the implementation. One of the primary challenges lies in the splitting error. If for a
system of the form

w'(t) = Aw, w(to) = wo

the matrix A can be split into two terms, A = A + A2, an approximate solution would have
the form

w,+1 = e e w,

This is inexact since for the exact solution we have

w(t,+,) = erAw(t)

and the difference between the two can be seen by expanding the exponentials



erA =I+ +- A + A2 2 4 2

e er =I+r A +A, + r2 A2 +2A2A +A2 + "

The second term in each expression is different unless the commutator,

A, A2 = A 2 - A44

is zero. Unfortunately, this discrepancy leads to an order consistency of only one, as the
above expansion showed.

There are many different ways of recombining the matrices, notably the method of
Strang,

i rA
w,+1 = e e 2 e e w,

which, due to a symmetric cancellation of some of the error terms, has a local truncation
error is of order two.

The same logic applies to non-linear problems as well. For Strang splitting method, the
form becomes

d w* (t) = F (t, w* (t)), t. < t t+, w* (t.) = w,
dt

d w**(t)=F2(t,w**(t)), t, < t t.+,, w**(t,) =w*(t+, )
dt

d w***(t)=F(t,w***(t)), t,- <t <t,,n+, w***(t ,_) = w**(t,,)
dt 2 2

which leads to w.+l = w***(t,+1). This also has a consistency of order two.

When considering what type of splitting is to be used, the commutator should always be
considered, since when it is identically zero, a simpler splitting method can be employed.
For example consider a general PDE that can be split into two parts

W(t) = f(w)+ f 2(w).

The commutator is then defined as

f,, (w)= f(w) (w) f2 w)f(w)
0w 8w

In most real-world situations, this is not zero, but when this is the case, it can be quite
beneficial.



Boundary conditions usually cause the greatest amount of ardor when attempting to
implement a splitting scheme, often resulting in a reduction of order in the method. Stiff
terms can lead to similar issues. Consider the linear equation

w'(t) = Aw(t) + g(t) = Aw(t) + g(t) + A 2w(t) + g 2(t)

where the boundary conditions for each of the two main terms are contained within the g-
i(t) terms. But when evaluating the commutator, it can be seen that there are other terms
that manifest themselves:

Fl,F 2 (w)= A4,A 2 w+A,1g2 - g1 .

Even if the A matrices commute, the total commutator may be large. For this total
commutator to be zero depends on certain compatibility constraints about the specific
boundary conditions being satisfied that are independent of the general problem.

Unfortunately, there remain still no general procedures to handle the error induced by
boundary conditions. Knowledge of the specific situation being analyzed can allow the
integration of some specific techniques into the actual code, but this of course limits the
overall robustness of the method.

There are four major classifications of operator splitting methods that are of interest in
this thesis: LOD, ADI, IMEX, and AMF. Each has advantages and drawbacks and the
system being solved dictates which one will be the most useful.

Locally one dimensional (LOD) methods select a fixed low order one step method with a
step size x and apply it to each of the split terms. The simplest scheme is the LOD
Backward Euler method. For the nonlinear system

w' = F(t, w(t))

consider the splitting

F(t, v) = F(t, v) + F2(t, v)+.. + F(t, v) .

The method is then

Vo = Wn

vi = vi -1+r-(t,,,vi), i= 1,...,s,

wn+1 = V

where the vi terms are internal vectors between each full time step. These internal vectors
do not give consistent approximations to the exact solution. This issue becomes



important when considering steady-states of a system, as this method cannot return the
exact steady-state solutions. Despite the implicit basis for the internal steps in this
function, the stability of this method requires product of the eigenvalues and the time
step, Xr to have a modulus less than one.

There are several more advanced LOD methods based on the Crank-Nicolson method and
the implicit trapezoid rule that follow the same basic pattern. These methods are of order
two and some techniques allow boundary conditions to be handled without order
reduction.

The original alternating direction implicit (ADI) method uses a splitting of only two
terms,

F(t, v) = F(t, v) + F2(t, v) .

It takes the form

w+,1 = wn + rF, (t., w,) + F2 (t +, w+.)

F22W,+I n+ + (tn+ Wn+ )+IlrF(tn+l,Wn+l)

It is from this method that the general class of ADI methods derives its name since the
implicit use of F1 and F2 alternates between the two stages. In contrast to the LOD
methods, the internal framework does give consistent approximations so steady-state
systems can be solved exactly.

More advanced methods can handle a splitting of more than two terms while retaining the
features listed above. The Douglas method actually has unconditional stability for two-
term splitting, though it becomes more restrictive as the number of split terms increases.

There are several methods that can be characterized within the implicit-explicit (IMEX)
framework. The IMEX-0 method illustrates the basic concept. In this method division is
by portions of the entire function with implicit or explicit characteristics. Define Fo as
the non-stiff portion and F1 as the stiff portion:

w'(t) = F(t, w(t)) = F(t, w(t)) + F(t, w(t)) .

The time stepping rule is then

w,+l = w, + rF(t,, w) + (1- )rF2 (t,, w) + 0rF (t,,+, w,,+,) .

This is effectively a forward Euler step on the non-stiff portion and a theta method step
on the stiff portion. Note that this only requires one time step, so IMEX methods can
generally be applied to multi-step methods, which is not true of the above two method
types. As expected from the underlying methods, this scheme is only of order one. Also,



there is some restriction on the stability domain that must be balanced between the two
different portions.

IMEX methods can be extended in many different ways in the context of multi-step or
Runge-Kutta methods. However, the stability analysis is ultimately very specific to the
actual implementation. For examples, see [Kennedy & Carpenter, 2003] and [Zhang,
2004].

Approximate matrix factorization (AMF) methods employ a similar splitting scheme to
the IMEX, but with s implicit terms

w'(t) = F(w(t)) = Fo (w(t)) + F (w(t)) + . . + Fs (w(t)) .

Note that this is based on an autonomous system, but a non-autonomous system can be
easily modified so it can be written in the above form. The most basic example is the
following:

w,+1= + I-yrA, --- I-yrA -1rF(w)

where

Ai =' (wn)+O(r) ,  i= l,..s

is an approximate Jacobian and y is a free parameter. These methods retain the property
of accurately representing the steady state.

Second order methods exist as well and are more useful in many situations. There are
actually many such methods that maintain A-stability for the implicit portion, while
exhibiting reasonable stability domains for the explicit portion.

5.4 High Dimensional Systems

In basic transport systems there is obviously a maximum of three dimensions. However,
in many systems, the "spatial" coordinates can refer to any number of things that are not
constrained to a set amount. For example, in population balances, there can be any
number of attributes that are treated the analogously to the coordinates of space. In
option pricing, the problem is very well known, as the underlying assets take the place of
spatial variables. This "curse of dimensionality" can be an issue in terms of the
achievability of storage and computation, as is outlined below.

Consider a general linear discretized expression for w,

i = Aw.



If m is the number of spatial discretization points and there is one species, the dimensions
of A are mxm. If there are r chemical species, there must be r times as many spatial
discretization points so the matrix now has dimension rmxrm. In terms of memory, the
matrix now has r2m2 data points to store. If the evolution of the data is important then
this storage requirement must be multiplied by the number of time steps.

The issue of additional attributes can present greater challenges. Basically, the A
matrices considered so far correspond to the one dimensional case. When another
dimension is added the number of terms in the spatial vector must be squared. This
means that the number of terms in the matrix increases by the fourth power. For a system
with k dimensions this results in an A matrix with an increase of 2kth power number of
terms. So for a general system with m discretization points, r components and k
dimensions, the resulting a matrix has up to (rm)2 k number of data points to be stored.
And of course the lack of sparseness in integral equations (if all the dimensions have
some integral evaluated over them) may require the storage of the full number of data
points.

These challenges have resulted in different approaches to solve these types of problems.
The most common choice is using some type of Monte Carlo simulation since the
conversion rate is (rm)-112 regardless of the number of dimensions. More advanced
methods that still use the finite difference/finite element framework have been developed
as well, see e.g. [Berridge & Schumacher, 2004]. Finally, more advanced coding
techniques exploiting parallel processors can help with this difficulty as well.



6.0 Spatial Discretization Methods

As the method of lines (MOL) approach is taken in this thesis, the spatial and temporal
solution parts are discussed in different chapters. This one focuses on the former and the
next chapter on the latter. Of course the interaction between the parts is non-trivial and is
discussed in portions of this and later sections.

There are many practical details in the implementation of the spatial discretization. The
overall goal of the method is to be able to easily adapt to as many different situations as
possible where the "space" variable can in fact be many different things. This means it
should be able to handle the inclusion of multiple species and multiple dimensions and
other items of this nature. Also it needs to be able to handle entirely different systems
such as population balances and financial models. Obviously there will be some large
changes in the specific situations but the framework should be as compatible as possible.
Most of the discussion here will focus on the transport problem with the understanding
that many of the concepts have broader applications.

6.1 Implementation of the Positivity Preserving Method

Positivity preservation is an important consideration when developing numerical
solutions. There are a few different methods that can achieve the desired properties of
mass conservation, efficiency, etc. The choice employed in this work is based upon the
method of [Hundsdorfer, 1998]. This method was chosen since it fits in well with the
finite difference framework and it is possible to adapt it to more advanced situations such
as variable velocity and multiple dimensions.

This method was discussed in Section 5.2 in some detail. Here a similar method is
developed from a different starting point to result in what is (hopefully) a more lucid final
form.

Recall that the positivity preservation is needed on the advection equation,

+ = 0
at ax

where b in discretized form corresponds to w. To more easily incorporate variable
velocity, flux is chosen as the variable of interest rather than concentration. As was noted
in Section 2.2.2, mass conservation requires that the flux form of the standard
discretization be used so this offers another incentive to work with flux. The flux form is

w' 1/(t) = f -1)2 t _fj+112(t,w(t)) (6.1)
h

where the values forf+1/2 refer to the flux between two cells, or halfway between adjacent
grid points. In general, flux is simply the product of velocity and concentration at a given



point. This form can actually represent all of the standard spatial discretizations. For
example the first order upwind discretization has the flux values

f-1/2 (t, w) = max(vj 1 /2, O)wj 1 + min(vj-1/2,O)wj

fj+1/2 (t, w) = max(vj 1/2, O)wj + min(vj+1/ 2, O)w+l

where vil/2 = V(Xj,/2, t). Recall the maximum and minimum functions are necessary to

account for negative velocities.

The upwind scheme remains positive for any scheme but is plagued by artificial
diffusion. Any other higher order schemes can result in spurious oscillations as discussed
in Section 5.2. These effects show up in regions of strong variation which can be
characterized by the slope ratios

wj -w w -w w -w
Sj-1 wj-1 j-2 j+ -+1

I+i -. W - W-1 W+2 Wj+

Other standard discretizations can be handled in the same form via the K-method of [van
Leer, 1985]. The values of 1, -1, and 3 for K correspond, respectively, to the second
order central, second order upwind, and third order upwind biased spatial discretizations.
This method is expressed in terms the slope ratio which can allow us to see where the
higher order methods cause negative values. The K and r dependencies can be expressed
through the function (p as

p(r) = (1+ c) + (1- c)r

and p is placed in the flux equations as

f-1 12 jW) =Vj-1/ 2 [Wj-1 +jrj)(W -w 1i-)]

fi+1/2 (t, w) = v 1 /2 [w + P(r)(W1 - w)]

for positive velocities and

j-1/2(t, W) = Vj-1/ 2 [W -+ (ri 1
)(wI - Wj)]

f +1/2(t, W)= Vj+1Y 2 [Wj 1+ ((+ )(Wj - Wj+

for negative velocities. Note that for the negative velocities the arrangement of the
bracketed terms is "reflected" around the j±1/2 point relative to the positive velocity
version.



Removing the second term in the brackets of the above expressions reduces the equations
back to the upwind differencing method. Therefore this second term can be thought of as
a correction to the artificial diffusion which plagues the basic method. In this context, if
this correction is too large it can result in negative values. Tempering the effect is known
as flux limiting and it amounts to bounding qp(r) by prescribed values.

To see how negativity can show up, we write out (4.14) with the full fluxes. First assume
that velocity is constant for simplicity.

h1! I = ( v[Wj.1 ) + IQ 1 ()r(w1 )-+ - wi)]

h r -

This makes it apparent that the bracketed term must be greater than zero for the solution
to remain positive. Indeed this actually guarantees positivity as shown in [Hundsdorfer &
Verwer, 2003 (p.116)]. This can be ensured with the following bounds,

0 < q(r) 1, 0 < 1 p(r) < 3
r

where 8 is a parameter that can take any positive value. Making it too large can increase
the eigenvalues of the problem domain and effectively limit the time integration. To
show this, first express the bracketed term as yj(w). Rearranging the positivity bounds
shows that the restriction for y is

0 y(w) l+ .

Now recall the explicit Euler method and apply it to this problem,

w.n+ =w.+ rjT y.(W) W - W

To ensure stability we note that this is effectively an upwind approximation multiplied by
an extra term that has a maximum value of 1+6. Therefore the stability restriction here is

h 1+5

where u is the Courant number. In the case where variable velocities are involved
equation (4.14) must be expanded for all the possible combinations of signs of vj-1/2 and
vj-1/ 2 and compared to ensure positivity. It turns out that the restriction then becomes



<V 1 2  1 and +1/2 -1/2r < and r -
h 1+, h 1+6

where the first restriction applies to velocities with the same sign and the second applies
to the case of opposite signs.

If it is assumed that the value of yj(w) remains constant between every given interval t, <
t _ t,+1, it can be shown that the same Courrant number restriction applies to all Runge-
Kutta methods with number of stages and order equal (see Section 2.2.8). In practice the

actual eigenvalues of the discretized and filtered system may need to be considered to
ensure stability in more advanced time integration methods. This will be discussed
further in the next chapter. Overall, it turns out that 1 is generally an acceptable choice
for 6 to allow for stability.

With these restrictions on the function (p, it can be restated as follows

p(r)= max 0,min o8,-(1+tK)+ (1- T )r,r

For the actual implementation of this filter there are a few practical considerations. First
off, the ratio r has many situations that could result in dividing by zero. One solution is
to add a small perturbation to the denominator. This has the disadvantage of introducing
more error into the system and can still result in small negative values. The method
adopted in this work is to consider each case that could result in divide by zero errors and
catch them in the program and assign them a value based on certain conventions. For
example, zero divided by zero becomes one and anything else divided by zero is infinity
times the sign of the numerator, where infinity is a value defined either by a built-in part
of the programming language or as some constant in the program.

Additionally, there is a directionality associated with the method in terms of time. If the
integration occurs in the direction of decreasing time the method needs to be altered.
This can be accomplished most easily by changing the sign of the velocities right before
the method and then reversing the sign for all the results.

Some care also needs to be taken when considering the boundaries since the formulae
depend upon values as far as 2 grid points above and below the current point. This is also
important when handling the boundary conditions. The way that these issues have been
handled in this work is to revert to the upwind method at the extreme grid points. This
allows for the boundary conditions to be applied in the same manner as in the non-limited
case.

Application of positivity preservation to the multidimensional case is fairly
straightforward to explain. Along each row of each dimension the same process as the
one-dimensional case is run. For example, in the 2-D case below the positivity algorithm
would be run along each column with respect to the points above and below a given
point, and then along each row with respect to the points left and right of a given point.



While this concept is quite simple the implementation is quite challenging, especially
when written to allow for an arbitrary number of dimensions. The details are discussed in
the next section.

6.2 More Details of the Implementation

Almost all of the standard methods are based around one dimensional one component
models. Theoretically it is easy to scale up these implementations to more complicated
systems. However there are many practical details that must be considered.

The arrangement of the w vector is of great significance to the efficiency of the solution
method. This vector must contain the quantity of interest for every species at every grid
point in the solution space. To start out consider the case when there are multiple species
in the system. The best way to arrange them in the vector is to have all the species at
each grid point be listed successively, followed by all the species at the next grid point.
So if the species are A, B, and C, and the grid points are denoted withj then the vector
would have the form

I.. Wj-1 W 1 1 W 3 W 3  W1  W3 +1  j+1+1 I*]

This arrangement is advantageous when there are reactions with disparate coefficients
that result in stiff systems. The reaction system at each grid point can be handled
individually with an implicit method thus avoiding the need to invert the entire matrix.
This is discussed further in Section 7.1.4.

The multi-dimensional case presents more of a challenge. These systems can be very
large as the number of grid points increases as the power of the number of dimensions
and all of the points must be arranged in the w vector. First off consider a two-
dimensional system (xy). Say there are mx grid points in the x-direction indexed by i,
and my grid points in the y-direction indexed by iy. There many ways to index the grid
points to the w vector, for example:



w= (xI,y ) (x,y 2) (x2 ,y 1) (x,y 3) (x,y ) ...

To choose the most efficient one we consider the arrangement that the coefficients would
need to take in the A matrix. We want the points labeled in some regular pattern so that
points that are adjacent in the grid are as close as possible in the w vector. This is useful
because it makes the coefficients in the A matrix as close to the diagonal as possible. The
closer an matrix is to being diagonal the more efficient it is to invert if that is necessary in
the solution process. It turns out that the best arrangement to meet these conditions is

which can be obtained with the indexing rule, wherej is the index of w

j=(i -1)xmy +i,.

The challenge now is to figure out how to apply this to an arbitrary number of
dimensions. Let us consider a case with four dimensions, (x,yz,a) where the number of
grid points and index names for the new dimensions are m, and iz and ma and ia,
respectively. The same basic pattern expanded to four dimensions can be achieved with
the following indexing rule

j=(i-l1)xmm.ma +(iy -1)xmzma +(ia -1)x ma +a

The overall pattern is evident at this point and can be expanded to d>2 dimensions as

j = I (i - 1) M + id '+d+ (6.2)

wherej is the index of the w vector corresponding the to the grid point (i1,...,id) in the
problem space.

To ensure a clear implementation in an actual program it is worthwhile to explore a few
ways to think about how to visualize the set up. The key challenge of using these indices
is setting up all of the discretization coefficients via the A matrix or positivity formula.

To better understand the patterns that show up let us first consider a three dimensional
system (x,y,z). Each dimension is discretized with a stencil width of three; for
compactness of notation denote the discretization coefficients

x_, xo,X+



and the other dimensions similarly. Let the system be defined with only 3 grid points in
each dimension so that there are a total of 27 grid points in the problem space. A portion
of the A matrix then looks as follows:

D z+ y+ x+
z D z+ y

z D y

y_ _ _ D z y

y- _ z D z+ y

y _ - z_ D _ y
y_ _ _ D z _

y_ _ z D z
y_ _ z_ D

x D

where D = x0 + + zo. Using the formula (6.2) to assign values to the w vector it is seen
that multiplying the vector by this A matrix will result in the coefficients being multiplied
by their appropriate corresponding values.

In practice in an actual program the conversion formula can be used at the beginning and
end so the problem can be set up as an array of arbitrary dimension and then converted
for the solution procedure. This does, however, make some of the logic inside the
program more difficult.

For example, in the iterative portion of the program it is most efficient to cycle through
each dimension when assigning values. Because of this it is helpful to assign index
values that map the adjacent points in solution space to the corresponding values from the
w vector (using a formula based on (6.2)) at the beginning of the loop. This allows for
the rest of the code in the loop to work with the same indexed variables. For example,
looking at the above A matrix portion it is seen that one point upwind of the z-dimension
is 1 point away, for y its upwind point is 3 points away and for x it is 9 points.

These same ideas work well for the more complicated flux-based positivity preserving
methods. Overall, this same logic is used throughout the program to allow the any
number of dimensions to handled using the same code.

6.3 Results

The implementations of these ideas in various contexts are discussed in a bit more detail
in the following chapters. As mentioned above there are relatively few changes in the
basic structure. These methods are tested along with the Runge-Kutta-Chebyshev
methods developed in the next chapter. The results of problems solved using these
methods are discussed together.



7.0 Implementation of the Runge-Kutta Chebyshev Method

A time integration scheme based on the one developed in [Sommeijer & Verwer, 2006]
(which is itself based on several earlier works) has been implemented in MATLAB.
Given below is a detailed explanation of the method as well as a discussion of its
practical uses and performance.

7.1 Detailed Development of the RKC Method

7.1.1 Standard RKC

As discussed in Section 5.1, the Runge-Kutta Chebyshev method is based on using
internal stages to increase the stability domain along the real axis. For most applications
accuracy order of at least two is needed so the second order method will be considered
from here on. The stability domain of the second order perturbed method is the
following:

) " co, + wz T'(O,(o T (coo +CO, Z) - , (co0), O, )
T (z) =1+ o2 0  1+wz)-( )

where Ts represents a Chebyshev polynomial of degree s and oo>l is a parameter often
chosen to be oo = 1+ / s 2 where the damping coefficient E is some small positive
number. wl is chosen to maintain second order consistency. To consider the actual
formula for the integration scheme, it is fist necessary to discuss a bit more about the
internal stages.

Recall the basic Runge-Kutta form discussed in Section 2.2.8:

S

Wn+1 = W. + biki
i=1

ki . F t +c,r,w4 +r akJ
j=1

where the a, b, and c represent the coefficients from the used in the method. To consider
the stability of the internal stages, the above method can be rewritten in the following
form for explicit methods:

Wo = Wn
j-1

,j = w, + r aF t, + ck, wn, j=, .w..
k=O

Wn+1 = Wns



where wnj indicates the value of w at time step n, stagej. Note that a and c (and later b)
have been redefined to include a value at index zero which does not correspond to
anything on the standard Butcher array. For the cs, this is actually just a shift down one
of every index. The new a values amount to shifting the A portion of the butcher array
down to include the b row at the bottom (basically shift both indices of a down one).
This modified butcher array now looks like this:

Cl al 1  a 12  als

c 2  a 21  a 22  a2s

Cs asl as2  "'" as

b b2 ... bs

C1

Cs-I

a10

as-1,0 as-,1

as, a,,2

To determine these coefficients for the Runge-Kutta Chebyshev
stability must be analyzed.

method, the internal

Consider the general linear system

w(t) = Aw(t) + g(t), w(to) = wo.

Also consider a perturbed version of the above explicit solution method,

j-1

-w=w +r ajkF t+ckr,w k +r, =...
k=0

Wn+1 =Wns

where the rj represents local perturbations, e.g. round-off errors. Step-wise and stage-
wise errors can be denoted, respectively,

e. = w~ -Wn

n=w -w.

The error for each stage can be written in terms of matrix
subscripts indicate the degree of the polynomial) as

e, = Rj rA e, + Qi-k rA rk,
k=1

so the total error for a step, e,+1 = ens, is

polynomials Rj and Qk-j (the

.. as,s-
1



S

e+, =R, A re,+n , + rA r .
j=1

This equation captures the error for a single step. R is the standard stability polynomial
defined in Section 2.2.6 that relates the error propagation from step to step and Q is the
internal stability polynomial. The internal stability refers to the accumulation of stage
perturbations, rj, within a single step. Assuming A is a normal matrix, the error norm for
each step can be bounded by

Ie.,,l<maxIR, z llenll + maxiQsj z IIIr
z=rA j=1 z=rA

where 2 is an eigenvalue of A and I I is some vector norm. Even if the error is
acceptably small with respect to R, error can quickly accumulate on the internal stages
through Q. This becomes especially problematic in cases with a large number of stages
such as the Runge-Kutta Chebyshev methods.

Both R and Q are of course determined by the coefficients of the method. When
choosing coefficients in a manner different that the method of Butcher (see Section 2.2.8)
it becomes important to address the internal stability issue. A natural choice for Q is to
make its stability domain the same as (or similar to) that of R so that same stability
required of the overall method is sufficient at each stage as well. [Houwen & Sommeijer,
1982] demonstrated that if the stability domain R is defined by coefficients as

R,(z) = a, +bjTj o0 +o,z , a, =1-bT(o0)

(note that this a and b are different than those defined previously) then the Q polynomials
will be defined by the recursion

b
Q,_j(z)= -U,_, Co z , j=1 ... ,s

where U is the ith degree Chebyshev polynomial of the second kind. The bounds of this
type of polynomials are similar to the polynomials of the first kind and it can be shown
that the error is bounded by

Il+lll Ile ll+ss s+1 Kmax r

where K is some constant of moderate size independent of A, r, and s, as long as z = rA
stays within the stability domain defined by R. Basically this means that the error r
grows at most quadratically with the number of stages. See [Hundsdorfer & Verwer,
2004] for more details.



With Rj defined by the Chebyshev polynomials as above, it is now possible to determine
the coefficients bj. Since the Chebyshev polynomials can be defined by the recursion,

To (x) = 1, T (x) = x, T (x) = 2xjT_, (x) -T._2(x), 2 j 5 s, x C

it follows that R can also be defined recursively. We know that Rj(O) = 1 for allj.
Directly calculating the first two R polynomials gives

Ro(z) = 1- boT (o) + boTo(coo + coz)= 1-bo +bo = 1,
R,(z) = 1- 4T(co)+ b,T(coo + co z) = 1+bAco z

and we can now apply the recursion:

R,(z) = 1- bj [2cooTj_1(o ) -Tj-2 (01)] + bj [2(to + coz)Tj-_1(o + oz) - Tj-2 (C0 + C 1Z)

2boo b1  (2bw o  2bo 1  [ -bT ( + z)]
=1 + b + + bj_, z [bj-,_ Tjl(oo)-by,_lf;-(mo +cozz)I

b2 bj-2 b_-1 b_ -

- [bj-2Tj-2 () - bj-
2T

j-2 ( + 
1z)] - b_ [ - T (o)

bj-2

= 1-j - vj + ,uRj,(z) + vjRj-2 (Z)+ jRj_Rj(z) + Y

where the new coefficients are

2bcoo  -bj 2b co,
/ =b1 b, IUj= , vj = , - ' , =-a/,

bj-1  6j-2  bj_1

IfRs is the earlier-defined polynomial Ps, then Coo and cwl are as defined above. To define
the bj coefficients for a second order formula, one method is to ensure that all of the
internal stages remain second order consistent. To do this, first do a Taylor series
expansion of Rj about the origin. This gives

Rj (z) = 1 + bco,'(ooT)z + bjcoTj"(coo)z 2 + O(z3 )

which must match the expansion for ec,

ecz = 1+ cz + cz 2 + O(z3 )

for each component to the second term so we have

b.j = (")
T1 2



This gives, with the damping parameters discussed above, the following stability function
for each internal stage:

T." coo + CO, z
Rj(z)=1+ T  2 Tj(C0 +, z)-Tj(o0) , j=2,...,s (7.1)

The first stage does not have high enough powers ofz to support any higher than first
order, so there is more freedom in defining the values of b0 and bl. The following
convention is used,

bo=b,, ==1/ o0,

which will be discussed further below.

Now that all of the coefficients are specified the actual formula for each stage can be
written. By noting that by the definition of the stability function,

w, = Rj(z)w. and rFj = zw,

where

F = F(t, + cjr, w,) ,

the formula for each internal stage is as follows:

Wn0 = Wn

Wn1 = Wo + itrF
(7.2)

j = (1- pj -v)wo + Pyw,;j-1 + r Wn,-2 + irFj_1 + (j7rFo

Wn+I = Wn,

This is the basic form of the Runge-Kutta Chebyshev method. However, its usefulness is
limited to simple diffusion problems. The next consideration is for the case when
advection is present as well.

7.1.2 RKC for Advection-Diffusion

The most important difference between advection and diffusion problems from a
numerical solution perspective is the location of the eigenvalues that result from spatial
discretization. While the eigenvalues resulting from the discretization matrices for
second-order or fourth-order approximations of the second derivative extend along the
real axis, the commonly used discretizations for the advection term lead to eigenvalues



with imaginary values. Consider a case with d = 0.001 approximated with a second-order

approximation and a case with v = 0.1, both with 100 grid points:

10 . . 10

0 -0

-10 -- -10

-40 -30 -20 -10 0 -40 -30 -20 -10 0

Figure 7.1: Eigenvalues for typical diffusion (left) and advection problems

Recalling the stability domain provided by the standard RKC method (cf. Figure 5.3), it is

clear that the standard Runge-Kutta Chebyshev method would need very small time steps

to capture the imaginary eigenvalues thus negating the primary benefit of the method.

The only free parameter available for changing the shape of the stability domain is the

damping coefficient, e. Increasing it extends the stability domain in the imaginary
direction at the expense of a reduction in stability along the real axis. After a certain
point, however, increasing e further has little effect on the shape of the stability domain

as can be seen below.

5 L L

O 0

-5 -5
-15 -10 -5 0 -15 -10 -5 0

100
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-5- ..- 5-
-15 -10 -5 0 -15 -10 -5 0

Figure 7.2: Effect of increasing e on stability domain; 5 stages, e = 2/13, 5, 10, 100

Modifying the stability domain to solve advection-diffusion problems with various spatial
discretizations has been explored extensively in [Verwer et al., 2004]. Their approach
was to use Fourier analysis of the to determine the eigenvalues for the system being
solved and then use a method conceived of by [Wesseling, 2001] to determine critical
values for the time step to ensure that the eigenvalues remain within various geometric
shapes. These shapes were then inscribed in the stability domain so that the critical time
step for stability could be determined with simple algebraic equations.

This method was advantageous for many advection-diffusion problems but it was still
inadequate for systems with eigenvalues near the imaginary axis and completely useless
for systems with purely imaginary eigenvalues, such as centrally-based discrete
approximations of the first derivative. To resolve this difficulty an enhanced two-step
method was developed by [Sommeijer & Verwer, 2006].

The two step method can be written as follows

Wn+1 = a- 1W,_-+ +GoWn aq+ w,,, (7.3)

where the as are determined to achieve maximal order and r is a factor adjusting the time
step size. w,,+ represents a normal one-step Runge-Kutta Chebyshev step taken with

time step size qr.

To satisfy second order consistency the a's must be adjusted based on a Taylor series
expansion of the all the terms involved. Note that the expansion of the RKC step is as
follows

l = w+qr7 w' + w"+cqr 3 +O(r), w= w(t,).

Since it is only second-order accurate there is an additional term, c, in front of the third-
order term. This can be found by expanding the equation for the polynomial of the
stability domain,
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P (z) = 1 - b,T (o) + b,T (w + co z)

and expanding it to give

P(z) = P(0) + '(0)z +2(0o)z 2 + + 0) O(z4)

=1+z+'+Z + s 3 + 0(4
2 6 T'() 2

to determine the value for c.

Expanding the rest of the terms in equation (7.3) gives

_1 2 W 1 3 n+ 4
wn+1 =w+rnw' + -t nw+fr+O(r)

w = w+ O(r4)

-=Vw+r,, +Iw'+ r _w2 _ w+O(r )' z2 " 13 0(. .4_
W, 1 - W n-+, 6 W, + 

-
W

where w here means w(tn). Inserting these expansions into (7.3) shows that clever use of
the q tern allows for order of up to three to be obtained. If the ratio r, = tn/T,_n is defined
then to obtain agreement for each power of r, the following algebraic conditions must be
met:

1 = a o +a_ 1 + a

r, = -a-1 + 7qr,,

-a-12 2

, = -a_, + c73r a

Solving this system of equations returns

ao -1- r, + r. +

1
Sl+r

, = (1+ 17r.)
2r- (1- q)

1 + r/r,

r= -1+ r 2 - 2r ++ 4r,c
2r,,c

where c is as defined above. Note that r must always be positive so the positive root is
the correct choice in the final equation. It is important to note here that the first three
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equations result in second order consistency for any system, non-linear or linear. The

fourth condition guarantees stability only for linear differential problems. The conditions

for second order consistency can be shown to be globally valid over the entire time

integration for general non-linear problems. Beyond the second order, general non-linear

problems can only be shown to be consistent locally, but not globally. That being said,
there are many non-linear equations that would end up bring third-order consistent using

this method, but there is no overall guarantee. Overall this third order consistency is

more of a bonus rather than the primary purpose of using this method.

Indeed, the primary purpose of this two-step method is to achieve a more favorable

stability domain. Firstly, recall the root condition requirement of the characteristic

polynomial discussed in Section 2.2.9. The characteristic polynomial of the two-step

method under consideration is

;ao) = + a,,(Qz) -a

where Ps is the polynomial function of the s-stage Runge-Kutta Chebyshev method. This

quadratic function has two distinct roots,

ao + a, P, (rz) + aa - 2a0a P, (qz) + aP, 2 (qz)+4a_,

2

so the root condition requires I( 1< for each (. If q is defined in terms of c as above then

this equation has all the parameters known for a given time step ratio. Thus the stability

domain can be solved for by plotting out in the complex plane the values of z satisfying

this equation.

As mentioned above, the free parameter is the damping coefficient e. This still remains

the case for the above equation (assuming q is defined by c). Using this parameter allows

for the adjustment of the stability domain. Consider the examples shown in below:

5 5
00 0

-5 -5 -

-50 -40 -30 -20 -10 0 -50 -40 -30 -20 -10 0
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Figure 7.3: Stability domains for 2 step RKC; 3, 4, 7, 10 stages

By adjusting e a consistent upper bound on the imaginary height of the stability domain
can be obtained for any number of stages.

As it turns out, there is a limit to how far the stability domain can be extended in the
imaginary direction even as e 4 0o. And the more e is increased, the greater the decrease
in stability along the real axis. For convenience the notation of [Sommeijer & Verwer,
2006] is employed which denotes the real and imaginary stability domains as fRe(S) and

AIm(S), respectively. Technically it is possible to extend fim(S) more by leaving r as a free
parameter. However, it was found that this only increased flim(S) by around 10% at the
expense of greatly reduced fiRe() [Sommeijer & Verwer, 2006] and then the third order
consistency is lost.

The bounds on the stability domain bring up the concept of embedded shapes within the
stability domain. Note that any of the stability domains discussed thus far, such as in
Figure 5.3 have rather irregular boundaries. It is rather difficult to guarantee eigenvalues
are contained in such regions, especially when most eigenvalues for advection-diffusion
problems (and many other systems) are in elliptical or linear arrangements. The idea of
embedding shapes was conceived of by [Wesseling, 2001] and applied to the Runge-
Kutta Chebyshev method by [Verwer et al., 2004].

The basic concept came from performing a Fourier-von Neumann analysis (see below) on
the spatial discretization scheme and then determining what values for the physical
coefficients and grid size will ensure the eigenvalues all remain within various simple
geometric shapes. For the two-step method being discussed the most natural shape to
embed is a rectangle. The dimensions of this rectangle are simply fRe(S) by 2 fi m(S).
Now it is very easy to ensure stability. All that is needed is for the magnitude of the real
part of every eigenvector (multiplied by r) to be less than or equal to fRe(s) and the
imaginary part to be less than or equal to fiim(S). If the eigenvalues of the system are
known then the maximum value for the time step can be determined.

Since there is a limit to how large fiLm(S) can be made to be, it is logical to choose some
reasonable target value and then use e to make fiRe(S) as large as possible for a given
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number of stages. The desired value for stability in the imaginary direction chosen by
[Sommeijer & Verwer, 2006] was film(s) = 3.

Of course for pure diffusion problems it makes sense to go back to using the one-step
method with e = 2/13 and not worrying about the size of fim(s). The underlying similarity
between the one-and two-step methods allows this to be easily implemented
algorithmically.

7.1.3 Mapping Out Eigenvalues

With the stability domain well defined it now remains to determine the locations of the
eigenvalues of the differential equation system in the complex plane. There are a couple
of ways to approach this problem. Recall the general system being solved:

w'(t) = F t, w(t) .

For the general non-linear case the Jacobian must be considered but ultimately the system
that matters for the solver time steps is the familiar relationship

w'(t) = Aw(t)

where the A matrix could be a function of time. The eigenvalues can be characterized in
several ways. Obviously they can be found by many different numerical techniques, but
with the stability region defined by the rectangular region described above the only
concern is the largest real and imaginary parts of the eigenvalues. With this being the
case there are two strong contenders for use in the next step.

One option is to use Gershgorin's Theorem. Simply put, Gershgorin's Theorem allows
the definition of a region that will encompass all of the eigenvalues of a square matrix. A
radius is defined by summing the off-diagonal elements of each row,

M

j=1
j#i

Then the eigenvalues all lie within one of the regions defined by z: z-a,, <: .

Practically this means that the upper bound for the real and imaginary eigenvalues can be
determined by finding

min Re(a - ri)

maxIm ai riI
i
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and defining r such that z remains contained in the stability boundary defined above.
This approach would work for any system being solved as long as some square matrix A
as defined above can be constructed.

However, it is possible to use knowledge of the spatial discretization used to define
tighter bounds on the eigenvalues. Fourier analysis determines the eigenvalues of a
system based on the propagation of Fourier modes induced by a given difference scheme.
It technically only applies to linear systems with spatially periodic boundary conditions,
but the results can be used to estimate the upper bounds for the eigenvalues on more
complicated systems.

Recall the Fourier series, modes, and coefficients as they were expressed in Section
2.2.10. Now consider the semi-discrete system w'(t) = Aw(t) with an initial condition

given by a single Fourier mode, w(0) = Ok. The solution of this system is

w(t) = e 'pk

wj (t) = e Ake 2; k '

where the Ak is the eigenvalue of A corresponding to the Fourier mode and thej subscript
indicates the element of the vector/grid.

For the advection equation, the exact PDE has the solution

w(xj, t) = e-2n e 2 ib •

The eigenvalues of the exact solution, -2rikv, now need to be compared to the
eigenvalues of the approximation. To determine the eigenvalues of the approximate
solution the Fourier mode is put into the spatial discretization scheme. The eigenvalues
are then as follows:
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Table 7.1: Eigenvalues for common advection schemes

1st order upwind

v vv
(t (t) Wj (t) t) 4 = cos(21rkh)- -- sin(2,kh)

h h h
2nd order central

V iv
w1= -- w-  - w+l 4 = sin(2zkh)

2h h

2 nd order upwind

w = -- 2w_1 -wJ = -4L sin4(rkh)-i sin(2;'kh) 2-cos(2;rkh)

3rd order upwind-biased

w - j-2 + wj- 1  W W3 +1  3 o sin4(kh)- sin(2gkh) 4-cos(2rkh)

4 th order central

w, 1 2 W wj+ 2 3 h sin(2zkh) 4 - cos(2zkh)

In all cases j = 1,...,m In all cases k = 1,..., m

The diffusion equation can be handled similarly. Its exact solution is

w(xj,t) = e-4 "2k' dt e 21 xi

and the eigenvalues for the discretization schemes are as follows:

Table 7.2: Eigenvalues for common diffusion schemes

2 nd order central
d 4dw = w._ - 2wi + wI-+ sin2 ('kh)

4
th order central

d 1 4 5 4 1 ld 8d 5d

2-h212 -2 wj-1 2 3 j 12 6 h2 s(4 3 h2 2 h2

In all cases j = 1,..., m In all cases k = 1,...,m

With the eigenvalues so defined the maximum real and imaginary parts are easily found
so it is straightforward to choose a time step r that will ensure the z values remain in the
stability domains described above.

As noted above, these eigenvalues are only explicitly correct for systems with periodic
boundary conditions and discretizations as described above. Using different boundary
conditions will change the matrix as will using positivity preserving filters. The different
boundary conditions are not too much of a problem since from a practical standpoint this
just means going from a sparse circulant matrix to a matrix with the same elements near
the diagonal, but without the zeros in the corners, as depicted in this example:
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-2 1 1 '-2 1

1 -2 1 1 -2 1

1 -2 1 -+ 1 -2 1

1 -2 1 1 -2 1

1 1 -2 1 -2

Intuitively we might expect the circulant matrix to have larger eigenvalues than the non-
circulant matrix. While this has been shown to be true for several test cases, it cannot be
rigorously proven, despite much effort. For all of the cases tested, the largest real part
and the largest imaginary part of the eigenvalues for the non-circulant matrix has been
shown to be less than or equal to the corresponding values for the circulant version.
Overall, using the same estimates for the eigenvalue range seems to be acceptable for the
standard boundary conditions.

The greater challenge lies with the use of a non-linear filter to preserve positivity. The
positivity preserving filter is discussed in Section 5.2. The important result for the
current discussion is that after the application of the filter a new matrix is formed relating
w and its derivative. So the new system is

w'(t) = A(w)w(t)

where A+(w) indicates the new matrix, which is a function of w. Clearly the Jacobian is
now different at every time step unlike in the standard linear case. The challenge with
this new system is that there is no longer a convenient formula to calculate the
eigenvalues of A+. As discussed in earlier the filter operates only on the advective
portion since it is these discretizations that can lead to non-positive results. As such, the
positivity filter is still based on one of the given advection schemes so looking at the
eigenvalues for the corresponding matrix from the non-filtered method can provide a
rough idea of their location. Unfortunately, the range of the real and imaginary parts can
be somewhat different for the filtered results.

For example, consider a simple sine hill as well as a sharply peaked function over some
interval in space.
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Figure 7.4: Example initial conditions, conc. vs. position

For both of these situations the positivity preserving filter will result in significant
changes to the standard A matrix for a given advection scheme. To demonstrate the
effect on the eigenvalues consider the following two cases. Case 1 sets d to zero, v = 0.1
and h = 1/100 (101 grid points). The initial condition is a sine hill. Case 2 keeps the
same values for h and v but adds d = 0.001 and gives the sharply peaked function
mentioned above as its initial condition. All of the several advection schemes available
show a change in the maximum real and imaginary eigenvalues. (Note that the 1st order
upwind scheme is not seen since it is positivity preserving by construction.)

Table 7.3: Eigenvalues due to positivity filter
Sine Hill Random Peaks

Adv. Scheme Unfiltered Filtered Unfiltered Filtered
0 10 39.99 70.14 Max Re Part

2nd order central 10 9.99 10 10.89 Max Im Part

d order upwind 39.86 38.85 79.86 63.32 Max Re Part
21.96 21.35 21.95 10.17 Max Im Part

3rd order upwind 13.29 13.8 53.28 68.24 Max Re Part
biased 13.71 13.68 13.71 10.45 Max Im Part

Clearly there are some eigenvalues resulting from the filtered version that are greater than
their counterparts in the unfiltered version. If only the expected bounds from the
unfiltered method were used to predict the bounds for the filtered version, instabilities
would result. One interesting point is that the largest eigenvalue part of all the unfiltered
schemes exceeds the largest eigenvalue part found in any of the filtered schemes. This
makes some intuitive sense since the filtered matrix is essentially derived from
combinations of the various advection schemes. Though this cannot be proven rigorously
proven, several numerical tests have shown this same behavior. Overall it seems that
using the global maxima of all the various advection schemes is a better estimator of the
eigenvalues for a given filtered method than the method on which the filter is based.
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To be absolutely safe, Gershgorin's Theorem is the only reliable way to completely
bound the eigenvalues. But using the global maxima from all of the advection schemes
seems to be another reliable option. Of course both of these methods will overestimate
the true maximum eigenvalues by some amount thus requiring a smaller time step than is
technically necessary for stability. The benefits of using the Fourier analysis estimates
corresponding to the method underlying the filter (which often underestimates the
maxima) and catching instabilities with the error correction method versus the more
conservative methods just discussed in the next chapters.

Once the boundaries on the eigenvalues are satisfactorily set, the time step is chosen to
ensure that z remains in the stability region. As mentioned previously the imaginary
stability boundary of the two step Runge-Kutta Chebyshev method does not change
greatly with e so it is logical to choose a reasonable desired bound as the first step and
determine r and the rest of the parameters. The bound chosen by [Sommeijer & Verwer,
2006] is fim(s) = /3 for all s.

With fim(S) specified, e can be adjusted to maximize fiRe(S) for a given s. Next, z can be
chosen such that its product with the largest eigenvalues remains in the stability rectangle
defined by tm(s) and fiRe(S). If the restriction is found to depend on the imaginary
boundary, then s can be reduced to encompass the largest real part.

7.1.4 Reaction Problems and the IMEX Method

With advection-diffusion problems considered, it remains to discuss the inclusion of
reaction terms. As has been mentioned in previous sections, the eigenvalues due to
reaction terms can be arbitrarily stiff and this stiffness depends on the physics of the
problem rather than the spatial discretization technique. As such there is generally a need
to handle such terms implicitly.

In the two-step Runge-Kutta Chebyshev equation (7.3) -v,, contains all of the implicit

terms so it suffices to consider this part first. The equation is split as follows

w'(t)=F t,w(t) = FE t,w(t) +F, t,w(t)

where the E and I subscripts refer to the explicit (advection-diffusion) and implicit
(reaction) portions of the equation. Now consider the first step of the v,,7 portion which

is simply the standard Runge-Kutta Chebyshev method with time step rz,

w11 = w, + ArlF(t,w, )+ +ArrF(t, + Arlz, wn)

where the constants are as defined in Section 7. 1.1 and recall that the second subscript on
w refers to the stage number. To determine stability, use the standard scalar test equation,
this time defined as
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w'(t) = 'Ew(t) + Aw(t) .

Now the two scalars XE and X1 correspond to the eigenvalues of the Jacobians the
respective functions. Plugging in the X's to the equation for w,l and rearranging gives

Wn, = R qZE ,77z I wn

1+ 7qzE
R 77ZEZ +bllrlzE 0R, lzE ,,z =

1-b0,rz, 1Cqz,
) 0

where ZE = t XE and z, = X1 . Note that this is basically the stability region of the implicit
Euler method. To achieve the stability function for thejth term, the ansatz is made that
the following is the correct form:

Rj 17zEI,rlz =1-bjTj( 0o)+bjTj Co+ I COZE
1- - zz1- f7z 1

COO0

(7.5)

To see that this is in fact correct, the previous equation is written as

-a. R.19 (x) = ,
b.

I

a = 1- T(o)), x=O o + COqzEX=

COO

and the Chebyshev recursion is inserted for Tj(x) to give

-aJ + CO + 1ZE -aj- Rj_ -1
b+ bi _ 1 z bb1_ bl 1bj bj I--77z)

0)0

C-aj-2 +Rj-2

bj-2 bj-2)

which can be rearranged to give

-- qz =1
00 )

aj 1 L)7z
COO

+ baj-2 

b. b.+2-2 -R 1 1 (00 + m qzE -2-a (o- 1 aiZE

SI-1 j-2 0(01 ~JbJl (1ZI 12

Wo~~ibi2Y
Recalling the definition of the stability function,
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ZFr,j = zwnj

where

and F,j = F(t, +c, w,w)

the previous function can be multiplied by wn to give

wj -_ArlE,j = aj _Pjj-1 jaj-2 WnO +-jWj-1 +Vj j-2 + jlrFE,j-1 j+ lrFE,O

-vjrFI,j-2 -A aj --vja 2 7rFJ,o

Finally, using the fact that aj - pjaj 1 - vaj 2 = 1- - the final form of the algorithm

can be written as

Wo = + W F, 0

Wl = whO n
t " rFE, o + AlrFzj

W,= (1- Pj -vj)w.o + j,j 1 + Vj,j-2 + ArFE,j-1 jqrFE, . (7.6)

+ rj -(1-P -v,), rzrF,o - vArF,j-_2 +AirF,j

wn+e = Wns

Given the stability function for each stage (7.5) the overall stability function for ,+,, is

Rs 77zez, =l-bTs(0o)+bsTs|o+ OZ ES1- 772rlz

oo

The stability requirement is that R, qzE, ,7z I 1 for all allowable z's. Since the (only)

requirement on rlzE is that it is non-positive, it is apparent that

O + Co17ZE 1O+)7ZEI

1- 77z,
CO

So as long as rlzE is bound by the two-step Runge-Kutta Chebyshev stability domain
defined for z previously, the stability requirement will be met.
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There is still a new issue of consistency to address.
Euler which is only first-order consistent. To see th
of e"z, with z= zE+z Z. Recall that A = bco = co, / q

coo + xZ = +)01r 7,

1-) r )zOWo

The implicit term is based on implicit
is effect, consider the approximation
o. Rewriting the term of interest as

- z
1- Arzi

allows for the expansion for small z,

R, rz, = R (0) + R (0)q., + , R,(0)(q7i) 2 + , R(0)(q~) + O(( Z)4)

=1+ qi+ 1 ( )2 + 1 )T7 (c )3 + ((17Z)4+
2 6 '(co0)

= 1+ i +1 )2 + C() 3 + O((i)4)

2 6
for large s

where c is as defined in Section 7.1.2. This now can be written as

Rs 77Eg, 7zi

=1+r7z+ -'17z +
1-,&jiqz1 ) 2

1 177 I
2 -I -,&I qz

I 2  2

2 1- ;Az,)
(7.7)- 2- 2 2

1 1 i722 1 I;72+-c(z)' +-c(z)2 A iz +1 C(Pz 1 z
6 6 ! 1- qz 1) 6 1- z,

+Ic ji1'zz +O(44 43 422 4 22 3 4 4)6 
0ll77Z

IZ

Note that all of the denominators will go to one for small z. Even with that simplification
the error compared to the expansion for e" z is still order two. However, all of the
parenthetical terms are multiplied by a leading , which is proportional to 1/s2 . This
means that all of those terms will disappear for reasonably sized s leaving the error as

e " -R, RzEr I1 (z)3 1 c O(q) 4 4 43 4 2 2 4 3 4 4

6 6

where the third order terms can be eliminated by the proper selection of c as discussed
previously. So when the full two-step Runge-Kutta method is used the order can be as
high as three even after the IMEX extension.
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Since the each reaction term has no underlying spatial grid connectivity, each of the
stages in (7.6) consists of Mdecoupled systems of r equations where Mis the number of
grid points and r is the number of reactants. Obviously this is a clear advantage over the
need to solve the entire system at each step, which is the reason for using the IMEX
method.

The overall result is that the IMEX procedure can be integrated into the complete two-
step Runge-Kutta Chebyshev method with no change in the stability domain for portion
of the system that is handled explicitly. As long as the implicit portion has negative
eigenvalues, the method will remain stable.

7.1.5 Error Control

Error control is necessary for two broad reasons. Firstly, it is necessary to determine if a
time step has caused the solution to become unstable, usually indicated by a large change
in the solution vector between two successive time steps. Ideally this is avoided by the
use of a method that adjusts the time step based on the time step as the one outlined
above does. However, even with this type of error accounted for there is still the
possibility of error due to the need for an accurate approximation for the integral. For
example, implicit Euler is stable for all time step sizes, but it is unlikely to get an
acceptable solution by simply taking one step over the entire interval of integration.

The fundamental concepts of error control were discussed in Section 2.2.5. For the two-
step method it suffices to consider the error at each time step so the error analysis can be
evaluated identically to the one-step Runge-Kutta Chebyshev method.

The first consideration is the expansion of the Runge-Kutta Chebyshev function for one
time step. The most straightforward way to do this is to start from the approximate
expansion of R, in equation (7.7) which can be written more simply as

2 1 21 2R, qz,qzrz, =1+q z+ ~j2 zIz +-(qz)2 +-z Z 2z1z +
2 2

+1c(z)+O(q4 4 Z3Z 4 2 2 4 3 4 4

6

Recall that w(t,) means the exact correct solution at t = tn. Expansion about a step of size
zr where rn, 0 can be reckoned from the above equation by noting a few relationships:

d aFJ aF dw
w,+, = R,w,, zkW = k (k) (t), F, (t, w(t)) = F, d

dt at ow dt

Then by multiplying the expansion for R, by wn becomes
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), +"A (17 I _ 1 d2
., = w(t.) + + + I7 + (rn) F,

W at &w 2 2 dt

+ (r.) w(t)+ O(4 4 4 z3 z4 z2 2 4 ZZ3 4 4 )
6

To ensure that the error approximation is accurate for both linear and non-linear systems,
a more conservative approach is taken wherein error is assumed to occur at the second
order and higher terms. Then the error at each step is approximated as

est, 1 = q )2 (t) +4 (qr)2 F + O(q3)
2 ( t aw

This estimation for error brings up several points. First of all, the error terms above must
be approximated in some form. The simplest way to do so is as follows:

w"(t.) = dF 1  F(t.lw,+l)-F(t.w.)
dt rn

~ +. F - = FI F 1 FI (t,+1W,1)- F(tnW)
at aw dt r

The next consideration is the application of a filter for stiff reaction term. A filter is
needed due to the potential for very large z values resulting from the large eigenvalues in
stiff problems.

The general design of error estimators is based around the assumption that the z value
goes to zero. When this is not the case (e.g. stiff problems) the error will often be
overestimated. When such relatively large values are possible, the error estimation
should be adjusted so that unnecessarily small time steps are not imposed. [Shampine &
Baca, 1994] discuss an approach to remedy this problem. Their idea is fairly
straightforward.

Most error estimators compare a test time step to a step based on some other method and
use the difference to estimate the error (see Section 2.2.5). In general this gives

est, = wn.+l - Wn+1

where ws, is a step taken with an alternate method. The difference between two
methods can be expressed in terms of their stability polynomials:

est, = R., (z)w,
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where Res, (z) = R* (z) - R(z). This can then be compared to the actual error due to the

difference between the actual time step and the real solution (recalling that the
approximation should match the exponential up to the order of the method), which leads
to the definition

Re, (z) = ez - R(z) .

Clearly Rer, and Rest should have the same behavior for the error estimate to be
meaningful. This is always achieved for the case z40 for every error method used. But
for the case Iz -40o, the agreement is often not met. For example, if the solution method is
backward Euler and the error estimation is implicit trapezoid, the real and estimated
errors are

Rr (z) = ez  1
1-z

Res, (z) = + z / 2  1
1-z/2 1-z

Both of these go to zero as z-0 as expected. But for the case when !jz|--o, Re(z)<O, the
equations become

Rerr (z) - 1

z

Rs, (z ) -1

indicating that the estimated error is much greater than the actual. Indeed any case where
the ratio

R
est kz m , jZ -> x, Re(z) < 0

Rerr

has a positive integer m the error will be over-estimated for large steps. The solution to
this problem proposed by the authors is to employ a filter to the error estimation of the
form (I- yr,A) -m where y is generally chosen to correspond to the solution method so
that the same decompositions can be reused for the filter. This filter effectively lowers
the order of z in the above ratio so that the error estimate scales with the real error even
for large z.

In the context of the IMEX RKC method the filter has the form (I- yr,F',)- ' where F'
is the Jacobian of the implicit function, F,, = F(t,, w(t,)). The coefficient y is a free

parameter and is used to ensure the error will be of moderate size. It can be chosen by
considering the scalar test equation (7.4). The error estimate becomes
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1est.+1 2= n E )Wn+ -(A E + nI)Wn + Arn AiWn+l Wn= 1 E + (1+ 2)z w+1 - w.
2

and by applying the filter it is

1 ZE + (1+2 2)z
est.+1  Wn+1 - Wn

2 1- 7z,

To decide on a value for y it is important to consider the behavior of the stability function
for large z,

R, qzE,- = lim 1 -bsT bT-b, T(c)-T(0)

All of these terms remain of moderate size, so it is important that the error estimate
remains so also. Setting y = A is tempting since then the matrix inversion of the filter

would be able to use the same LU decomposition as for the system being solved at each
stage. However, using this value for y can be problematic since ii scales with 1/s2.
Consider the error estimate with zj -- -oo:

estn+ = 1 1+ 2A b T(m) - T(0) w .
2 y

If y = A then the error will increase with the number of stages which will obviously
cause problems since having many stages is often desirable. The value chosen by
[Shampine et al., 2005] was y = 1 which leads to a bounded error and thus fulfills the
purpose of filtering the stiff components in the error estimate.

The final form of the error estimation is then

I-l7r.Fj'(ty) est.n+ = I r- F(t.+lyn.+)-F(tnyn) +A qr F(t.+ly+n) -FI(tnyn)
2

where this system must be solved for each error estimation. However, as with the
formulae for the stages, this system actually needs to be solved only at each grid point, so
each system is only this size of the number of species.

Now the actual step size can be selected based on the error estimate. First of all, the
absolute and relative error tolerances (atol and rtol, respectively) must be specified. The
absolute error could be the same for all points in the vector or it could change at every
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point. The relative error tolerance is a scalar. It should be noted that the error tolerances
cannot be very small since this method is at best third order accurate.

As mentioned above the error can be calculated one block at a time. Hereafter the
number of species is denoted q and the number of grid points M. The error at each grid
point m is based on the by the L2 norm of the error estimates for all species at that point
with each error estimate normalized by the respective w value. That is to say it is the
square root of

errm n+l,merrm = La.e()() ]2

i atol +rtolmaxw , wm

The total error estimate can then be represented by the norm

est 1 112 err,.
q m=1

The acceptance of the current step is determined by this norm. If it is greater than unity
then the step is rejected and recalculated with a smaller time step size r,. To determine
the step size such that the number of rejected steps is minimized the method of
[Sommeijer et al., 1997] is employed, with slight modifications. It determines the step
size based on the restriction

0. 1, fac <- < 6
I-n

where the termfac is determined by comparing the previous error norms and time steps
as

fac = 0 .8 eSt1 1
Iestn 111/2 n 

12

et,,ll li , est li

The upper bound for the ratio of step size increase has been decreased from 10 to 6. This
is because the ratio has a large effect on the size of the stability domain for the two-stage
method.

The size of the initial step is also of significance. The initial guess is determined by the
limitations by the eigenvalues and the stability domain as discussed above. This is
actually an important point. Often times the initial step is very difficult to obtain
efficiently, but with the stability domain and maximum eigenvalues well established the
very first guess for the initial time step is often accepted.
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For comparison, a different error estimation method has been implemented based on
[Zhang, 2004]. Recalling the expansion for the explicit version

wk+7 = w+ qw' 2 .+ rn3+O(r), w= w(t.)

the difference between this and a full Taylor series expansion of w around t, is clearly
just dependent on the c value. This value can be adjusted to allow for agreement up to
third order for the linear case but the error estimation in this case will be conservative and
allow for c to be as high as unity. The error estimate is then

est, I C3 3

which can be approximated as

est, =1c 12(Wn -w+,,)+6ir,(F(t,,w,)+F(t,, w+,l) )

This considers the explicit portion. To consider the implicit portion depends on its
derivative multiplied by a factor dependent on the number of stages. The total estimated
error then becomes

3
est,= c 12(w, -w,+) + 6, (F(t,,w) + F(t,, ,, W,+)) -2 F'(t,, w)F (t,, w)

s -1

This error estimation vector is then used similarly to the one outlined above. The only
difference is the exponents are now adjusted to become 1/3 instead of 1/2 due the
increase in order consistency of one in the explicit case.

This estimation method suffers from the shortcomings mentioned above for methods that
do not have any sort of filter to compensate for relatively large time steps in the implicit
portion. However, it is still useful as a point of comparison since it avoids the necessity
of an extra LU decomposition at every step and so may be worth the price of more
conservative time steps.
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8.0 Actual Implementation and Results

8.1.1 Two-Step RKC IMEX Function

The current implementation of the two-step IMEX Runge-Kutta Chebyshev method has
been completed in the MATLAB file rkc2stepIMEX5.m. The program can solve
problems both in purely explicit or IMEX format using either the two-step of one-step
methods. There are several inputs to the program and most of them depend on the
external function that defines the problem to be solved. They are summarized in the
following table:

Table 8.1: Inputs for rkc2steplMEX5.m
Input Description
odefcn exp portion of the function to be solved explicitly
odefcn imp portion of the function to be solved implicitly
Jacfcn imp function of the analytical solution of the Jacobian of the implicit portion
lambdafcn function returning the largest real and imaginary eigenvalues
tspan interval in time
w0 initial condition vector
q number of different species
opt structure containing several options

There are several options passed to the program given by a list of logicals in the structure
opt. timeron is toggled to report the elapsed time for many of the internal operations in
the function. largescale causes the LU decomposition to be solved grid point by grid
point. This is needed since it turns out that MATLAB's built-in LU decomposition
function is more efficient at solving the whole matrix at once despite the block nature of
the matrix. But at a certain size the storage requirements become too great so the
decomposition must occur on a block by block basis. onestep determines if the basic
one-step method is used and progind displays the progress after each time step. keepallw
allows for the storage of all intermediate vectors instead of just the initial and final
conditions.

The option errcorr identifies the error correction method, defined from a list. "0" results
in no error correction, i.e. relies only on the stability bounds. "1" results in choosing the
time steps from a prescribed vector, tauvect, irrespective of any other assignments within
the program. "2" uses the error method of [Zhang, 2004] that follows a fairly standard
Richardson-type approach. Finally, "3" employs the method of [Shampine et al., 2005]
that "filters" the error estimate to offset the effect of large z values in the implicit portion
due to stiffness.

The relative and absolute error tolerances are represented by rtol and atol, respectively
and atol can be a scalar or a vector the same length as wO. The default values of 1/100
for the relative tolerance and 1/1000 for the absolute tolerance are usually a good starting
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point. Setting them too much lower is not advisable as the method is at best third-order
accurate.

A few of the next variables require some further explanation. S_Im is the imaginary
stability bound limit as discussed in Section 7.1.3. maxr is the largest jump in time step
size allowed. The variable Mg is the number of gridpoints being described by the w
vector. smax is the largest number of stages allowable by the machine precision. taumax
is arbitrarily set to be 1/10 of the time span and taumin is limited by machine precision.
Next the time parameters are initialized and the function evaluation counters are defined.

The first major step is the determination of the initial step size. The overall goal is to
select a step size as large as possible without resulting in massive instabilities or errors
that will take the error correction many trials to correct. The concept here is to compare
the maximum z value to the stability domain of an explicit Euler step. This conservative
approach allows for the fact that the first true step must be a one-step RKC step which
has a less favorable stability domain. Additionally this accounts for the potential for a
very stiff implicit portion. This is achieved by first determining the maximum real and
imaginary eigenvalues via the function lambdafcn (which is discussed in more detail in
the next section). These values along with the oo-norm of the Jacobian of the implicit
portion are then multiplied by taumax to determine if any of them will result in any
instability. The time step is then reduced to achieve this.

With the initial step defined the main solution loop can begin. First the current time step
is truncated if it is large enough to exceed the end of the time interval. Then the largest
real and imaginary eigenvalues are determined. If the eigenvalues are purely real then
the one-step method is used thereafter since it is more efficient in that case. In that case
the necessary number of stages can be determined from a simple polynomial that
approximates the relationship between z and s.

For the two-step case the value ofr is first restricted by the limited S_Im defined above.
Then the number of stages and the parameter e is determined via a slightly more
complicated formula owing to the fact that two parameters are used and the dependence
on r, the ratio of the current to previous time steps. This formulation works as follows.
Obviously the minimum number of stages that can still contain ZRe e= ,m,, is desired.

But there is still one more parameter, e, that can still be used to adjust the shape of the
stability domain. With the height of the stability domain set at iN3 there is an optimal
extension of the stability domain along the real axis that can be achieved by adjusting e.
The results have been calculated by [Sommeijer & Verwer, 2006] and are presented in
the following table:

Table 8.2:
4S

Soo00 4

ZRe(S)/S
2 0.14 0.37

Optimal stability boundary for a given number of stages

5 6 7 8 9 10 >10
2 1.5 1.5 1.0 0.9 0.9 0.9
0.34 0.43 0.40 0.45 0.44 0.45 0.45
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Unfortunately this is only accurate if r is unity. As long as r is less than one the bounds
are still acceptable but as r increases the stability domain becomes more restrictive. An
amended formula has been incorporated for r up to 2. Any larger values (up to maxr)
require a decrease in r and s being set to 6.

With s and e determined, the definition of the parameters of the Runge-Kutta Chebyshev
method can proceed. Subsequently the parameters corresponding to the two-step portion
are calculated as well.

For methods with implicit portions the Jacobian must next be determined. If the Jacobian
of the implicit part varies with time it is calculated and expanded to the full block
diagonal matrix. The function to be solved involves this term, I- ArJac . Therefore

the LU decomposition of this full matrix (recall that it is generally more efficient to solve
the whole matrix at once in MATLAB and that this can be controlled with largescale) is
then completed. The LU composition is done at this point since this is a reasonably
costly operation and the values can be used repeatedly at each iteration of the solver
discussed below.

Next follows the calculation of the vectors for the internal stages. If there is an implicit
portion, each stage requires the vector be obtained by using a simple solver based on a
modified Newton's method.

The solver can evaluate the full implicit matrix or solve for each grid point separately
based on the value of largescale. In the solver the initial guess for the solution vector is
based on the value at the previous time step. The solver initially performs an LU
decomposition if the values have not been passed to the function. The main equation
being solved is

res* I-ArJac = ArF (t., w,) +rhsconst- w,,

where the parenthetical term has already been decomposed into L and U, rhsconst is the
constant terms (that do not depend on the current value of w) for the stage and res is the
residual error which is normalized in the RMS sense and compared to some desired
minimum norm. (This is set to be 0.5 as suggested by [Shampine et al., 2005].) Once
this norm is achieved the function is considered solved. If the solution cannot be
achieved in a set number of iterations (the default is 5) then the solver returns a flag that
indicates a failure to the error correction method and additionally returns a string
indicating where the failure occurred.

Once all of the internal vectors have been calculated this gives the value for the partial
Runge-Kutta Chebyshev step which can be combined with the two-step parameters to
achieve a value for w.

The w value is then subjected to an error test as outlined above. After the comparison of
the old and new vectors a step is either repeated with a smaller r or another step is taken
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with a r that may be larger or smaller depending on the size offac. All of the values are
recorded and the loop repeats.

The final output is a matrix that contains the solution vector at the initial and final
conditions (or at every time step, depending on keepallw), a vector containing the value
of every time step, and a report that contains various statistics about the solution
evaluation.

Throughout the program the number of evaluations of both the explicit and implicit
functions is tabulated. Note that the implicit function evaluations are counted based on
the entire system (so as to be comparable with the explicit function evaluations) so when
the implicit function is evaluated on a per grid point basis it must be multiplied by the
number of grid points. In addition the output report contains the number of stages used at
each step, the number of Newton iterations needed at each stage, the number and location
of rejected steps, and more.

8.1.2 Problem Setup Function

The two-step RKC IMEX solver is designed to be used on a wide range of inputs in the
same vein as the built-in MATLAB functions such as ode45 and odel5s. But this solver
is clearly designed first and foremost for advection-diffusion-reaction problems. To
design a program that can handle a wide a range of these types of problems so they can
be solved via the solver described above is a task in itself. It was desired to construct the
program to allow for the depiction of systems with multiple species described by multiple
reactions, variable velocities, diffusion coefficients, and reaction constants in multiple
dimensions. In addition it should allow for Diriclet and Neumann or periodic boundary
conditions. To achieve all of this in one program is desirable as it efficiently allows for
the evaluation of the RKC solver in a wide variety of practical situations.

The function advDiffRxnMultiCompMultiDiml.m takes a large number of inputs
described in the table below. It also requires a separate program (probTemp.m) that
specifies the initial conditions, and any of the coefficients or boundary conditions that are
too elaborate to be expressed as simple inputs to the main program.
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Table 8.3: Inputs for advDiffRxnMultiDiml.m
Input Description
v velocity for each dimension (vector)
d diffusion coefficient for each component (vector)
K reaction matrix with first q columns for reaction order of each component

and the final column for reaction coefficients, e.g.
[1 2-kl 0 0 0 ] - c l=-ki-cl-c22

[1 2 k1 0 .5 -k2] C2 = kl'C1'C22 - k2C21/2

h space step size for each dimension
xspan intervals in space; matrix with each row corresponding to a dimension
tspan interval in time (vector)
bctype boundary condition on each side; matrix with each line corresponding to a

dimension ([0 0] = periodic, 1 = Diriclet, 2 = Neumann)
bcs value of boundary condition on each side; matrix with each line

corresponding to a dimension
spdisc spatial discretization type (0 = 1st order upwind, 1 = 2nd order central, 2 =

2nd order upwind, 3 = 3 rd order upwind biased, 4 = 4th order central)
intmeth time integration method (from list)
splitimex logical, "true" means the implicit & explicit portions are handled separately
pname string referring to a specific problem template. This can be a described in

the "probTemp.m" function or some other specified function
icond reference to a specific initial condition (from list, defined in "probTemp")

First the options for the problem setup are defined as well as the various options that are
sent to the solver. filteron determines if the non-linear filter is employed to maintain
positivity. fulljaccalc when on calculates the full Jacobian of the explicit portion (which
is normally unavailable in the filtered version) and dispmatrix causes the calculation and
display of an analytical version of the final A matrix. Next the function determines if all
of the inputs to the program are consistent.

The number of grid points in each dimension is then calculated based on the spatial step
size. The boundary conditions are compared to the assignment from the problem
template and then the parameters for the positivity filter are set up. The p-dimensional
initial condition space is then put forth and all of the initial parameters are compared with
those from the problem template. Note that the problem template can override nearly all
of the inputs defined above. They are mainly available for assignment up front as a
convenience for solving simple problems quickly.

Assigning the boundary conditions to the initial conditions array is rather complicated
due to the fact that the array can have any number of dimensions. The challenge is
handled using strings to build a function that can accept the correct number of inputs for
the corresponding number of dimensions. This general approach is employed for all of
the cases when the p-dimensional array is needed. It is not especially efficient from a
runtime context but is only used in situations where it is run once, never in an iterative
setting.
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After the initial condition array is fully defined it is unpacked into a vector that will be
fed to the chosen time integration method. The method for this assignment in, for
example, the three dimensional case, is

wo q* (i-1)MM + (j - 1)M z +k -q+m =c o i,j,k,m (8.1)

where q is the total number of reactants and m is the specific reactant, and Mx, My and M
are the number of grid points in each spatial dimension with i,j, and k being their
respective iterators. This is based on equation (6.2).

The function is general enough that it can be solved with several different time
integration methods. The ode45 and ode 15s are the familiar explicit Runge-Kutta and
Backward Differentiation Formula (BDF) functions packaged in MATLAB. rungeKutter
is a function designed to employ any Runge-Kutta method that can be defined with a
Butcher array (see Section 2.2.8). And rkc2stepIMEX3 is the time integration scheme
outlined above.

The actual subfunctions that are fed to the solvers of course are where all the work really
happens. odefcn_imp is by far the largest. It first checks all the previously defined
parameters and defines a few new ones. Mg is the total number of grid points, r is the
maximum number of reactions for a given component and advcoefs defines the
coefficients used in each advection scheme. The maximum velocity in each dimension is
then calculated as a limiting value.

The first technique defined is the filtered method described in Chapter 6.0. Determining
which grid point is adjacent in the vector defined by (8.1) requires several iterators to be
defined upfront. These basic iterators are employed throughout the function in many
different instances. Also the distinction between positive and negative velocities requires
the definition of two different versions of the filter. The A matrix is then defined based
on a basic upwind method multiplied by the y vector just defined. Note that each velocity
is extracted from the problem template if it is variable in time or space. Note also that the
A matrix defined here is not the familiar Jacobian in the basic formulation

w(t) = Aw(t)

since it has some w dependency due to the non-linear y vector.

It is possible to define the more standard A as above using the filtered method however.
This is accomplished in the next section (for the one-dimensional case only) by taking to
account which values are multiplied and divided by which in the algorithm and
reassigning them to a matrix. Note that the values for the analytical display version of A
are also assigned in this section.

In both of these cases the extreme rows are assigned via the simple upwind method as is
required by the filtered method.
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For the unfiltered case, the A matrix is built using the advection coefficient matrix one
row at a time. This takes into account variable velocities and the effect of negative
velocity on the upwind direction. Here too the extreme rows are assigned using the
upwind scheme if Diriclet boundary conditions are used. In the other boundary condition
cases this is unnecessary.

The boundary condition vector is then assigned in a manner similar to the A matrix. Each
case (periodic, Diriclet, Neumann) requires a different assignment method.

If the entire equation is to be handled explicitly (as determined by splitimex), the reaction
vector is defined within odefcn_exp. The A matrix is then multiplied by w and added to
the boundary condition vector and the reaction vector.

odefcn_imp is a much smaller function. First it determines if the implicit function even
needs to be used. Then it uses either the K matrix defined as an input or some larger
more complicated function described in the problem template to determine the effect on
w. It outputs both the reaction vector and a logical variable indicating if it needs to be
used.

Jacfcn_imp determines the analytical Jacobian of the reaction portion based on the K
matrix defined as an input or some larger more complicated function described in the
problem template. It also outputs logicals indicating if it is a function of time or space.

The final function, lambdafcn, determines the largest real and imaginary eigenvalues of
the explicit portion. If the filter is on, safest option is to use Gershgorin's method since
there is no regular pattern to the A matrix. However, using the maximum possible
eigenvalues from all of the different schemes is another option here. And of course if the
unfiltered method is used then the maximum eigenvalues can be well described with
Fourrier analysis. These methods are described in Section 7.1.3.

All of these functions are used iteratively by the chosen time integration method. Once
the final solution is achieved the final condition array is reconstructed and the final
boundary conditions are assigned to the array. Error estimates are available if a known
solution is specified in the problem template.

Plotting the output is the final task. For each dimension up to three a different technique
is used. For the one-dimensional case each species is assigned a color and the initial
condition is shown a solid line while the final answer is shown with a dashed one. If an
exact solution is known another plot is output with the initial condition replaced by the
exact solution. The two-dimensional case assigns the initial condition in black for each
species and gives the final output of each species a different color. Similarly to the one-
dimensional case the exact solution plot replaces that solution with the initial condition.
The three-dimensional case represents each grid point as a ball in a graph with each axis
corresponding to a spatial dimension and the concentration determined by ball color.
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8.2 Results from New Techniques

This section discusses the results from the positivity preserving spatial discretization
discussed in Chapter 6.0 and the Runge Kutta-Chebyshev method discussed in Chapter
7.0.

There are several standard examples that will be used to demonstrate the performance of

the program. Some of them have been mentioned in previous sections but they are all

restated here. The basic initial conditions are the square and triangular pulses on grids
extending from 0 to 1.
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Figure 8.1: Typical Initial Conditions; concentration vs. position

The main examples use periodic boundary conditions for simplicity; other BC types are
demonstrated later on. The problems considered include strong diffusion, strong
advection, and combined situations. The default spatial discretization method is 3 rd order
upwind biased. Multiple reacting species are combined with the various transport
situations as well.

For the purpose of comparison between different methods and conditions, several factors
are measured, including the number of time steps, function evaluations (both explicit and
implicit, if split), matrix decompositions, and iterations of the modified Newton solvers.

8.2.1 Two-Step RKC

The basic Runge-Kutta Chebyshev method was designed for pure diffusion problems
where the eigenvalues lie along the real axis. The later modified versions were
developed to allow for the inclusion of eigenvectors that lie farther from the imaginary
axis. To illustrate the advantage of using a more advanced method, consider the 1-D
square pulse described above. Solving with the two-step method is more efficient in
cases with advection as expected.

Consider the simple advection problem with v = 0.10 and a 3 rd order upwind biased

spatial discretization over a time interval of 10. The eigenvalues are in a ring-like pattern

centered on the real axis as shown below.
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Figure 8.2: Eigenvalues for 3rd order upwind biased discretization

The two-step RKC method evaluates this in 82 time steps and requires 570 function

evaluations while the classical RKC method requires 200 time steps and 1139 function

evaluations. This is of course due to the smaller stability domain of the classical method

in the imaginary direction.

However, the classical RKC still has the advantage for pure diffusion cases. For the

same problem as above but with zero advection and a diffusion coefficient of 1E-4 the

classical RKC requires 15 time steps and 136 function evaluations. The two-step RKC

method is slightly less efficient requiring 16 time steps and 192 function evaluations.

This is as expected since the two-step method is broader in the imaginary direction and

requires more stages to achieve stability along the real axis than does the classical RKC.

The greatest advantage of the two-step RKC method is for situations with eigenvalues

along the imaginary axis. The classical RKC method has effectively no stability domain

near the imaginary axis while the two-step RKC method's stability domain runs along the

axis. For the same advection problem as above but with the second order central spatial

discretization the two-step RKC solves the problem in 59 time steps and 297 function

evaluations. The classical RKC requires 207 time steps and 1664 function evaluations

and still does not achieve as accurate a solution as the two-step method. Forcing it to use

10,000 time steps still cannot result in the same accuracy. This makes sense as there will

always be some instability due to the fact that the only stability the classical RKC method

has along the imaginary axis is at the origin. The extraneous oscillations regardless of

decreasing time step size reflect this.

8.2.2 Positivity Preservation

A positivity preserving filter is often necessary in spatial discretizations of advection

problems. The filter used in the programs discussed is described in Section 6.1. Due to

the nature of the eigenvalues of the system after the filter is applied, there is generally a

tighter restriction on the time step (see below), but the need for a much greater number of

spatial grid points is avoided by the use of the filter.
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First consider the simple 1-D advection problem with v = 0.10 and 100 grid points over a

time interval of 10. The triangular and square pulses each gain accuracy differently from

the filter. All spatial discretizations of order two or greater can exhibit some unphysical

oscillations and can benefit from the positivity filter. Four examples are shown below
with and without the filter:
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Figure 8.4: Advection with 2nd order upwind discretization

Unfiltered on left, filtered on right; exact solution (solid line) and approximation (dashed
line).
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Figure 8.5: Advection with 3rd order upwind biased discretization

Unfiltered on left, filtered on right; exact solution (solid line) and approximation (dashed
line).

Recall the definition of errors put forth in Section 2.2.5. The absolute and relative errors
are defined with vector norms for m-length w vectors as
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and the peak error is defined as the difference between the highest point of the exact
solution and the corresponding approximate point, divided by the exact value. They are
presented in the following table along with the number of time steps and function
evaluations required.

Table 8.4: Advection Test Error Results

Filter Absolute Relative Peak Error Time Function
Used Error Error Steps Evals

Square Pulse
2nd order No
central 0.1232 0.0027 0.3023 140 1270
2nd order Yes
central 0.052 0.0020 0 132 1324
2nd order No
upwind 0.09079 0.0026 0.6021 133 1332
2nd order Yes
upwind 0.0602 0.0021 0 152 1744
3rd order No
upwind biased 0.0443 0.0017 0 92 924
3rd order Yes
upwind biased 0.0421 0.0018 0 135 1376
Triangular Pulse
2nd order No
central 0.0094 0.000403 0.0708 61 530
2nd order Yes
central 0.0098 0.000468 0.1069 128 1282
2nd order No
upwind 0.0188 0.000678 0.0986 129 1286
2nd order Yes
upwind 0.0115 0.000525 0.1114 128 1282
3rd order No
upwind biased 0.0048 0.000234 0.0592 82 816
3rd order Yes
upwind biased 0.0052 0.000324 0.0884 128 1282

First off it is readily apparent that the square pulse benefits much more overall from the
positivity filter. In all cases the purported goal of positivity is achieved but the sharp
changes in the square pulse more greatly benefit from the reduced oscillations. The
triangular pulse solution only benefited inasmuch as the negative portions were
eliminated. The errors were actually somewhat higher in some of the filtered cases. As
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expected the third order upwind biased discretization was the most accurate and saw the
smallest improvement after filtration. However, it did too contain negative portions that
were successfully eliminated.

The square pulse saw a reasonably small increase in the number of time steps and (more
importantly) function evaluations for the filtered case. In most cases the triangular pulse
versions required a larger increase in time steps and function evaluations. The benefit in
these cases was then very small when considering that the only change is a reduction of
small areas of negativity.

The difference in the number of time steps and function evaluations need is due partially
to the way that the bounds on the eigenvalues are characterized. As mentioned in Section
7.1.3 there are two principle ways that the eigenvalues are characterized in the program.
Gershgorin's method bounds the eigenvalues for any matrix, but the bounds are not very
tight. Using Fourier analysis on the matrices that have the regular patterns resulting from
the standard spatial discretizations can put a more exact bound on the eigenvalues.
Recall that these bounds are actually applicable to the filtered versions as well.

This difference in boundaries on the real and imaginary eigenvalues generally causes an
increase in the necessary number of time steps or the number stages (and therefore
function evaluations) in cases where stability rather than accuracy restrict the time step
size. In the above examples the error correction was employed to restrict the step size.
So to demonstrate the effect of different eigenvalue bounding methods consider the same
problem solved with Fourier or Gershgorin methods to characterize the eigenvalues and
the error correction disengaged. Using the same sample problem as above, with a 2 nd

order central spatial discretization, the results are that the Fourier analysis version took 59
time steps and 297 function evaluations and the Gershgorin method version needed 59
time steps and 469 function evaluations. And for a 3 rd order spatial discretization, the
Fourier analysis version required 82 time steps and 570 function evaluations and the
Gershgorin method version took 88 time steps and 705 function evaluations. Overall the
tighter bounds are the main reason for the advantage of the non-filtered method in most
cases.

The results in this section demonstrate that it is important to consider both the desired
application for the output and the final form of the solution. If positivity is an essential
feature of the solution then the filter should be employed as necessary. If, however, some
non-positivity can be tolerated, the solution can be achieved with similar accuracy and
more efficiently in some cases without the filter engaged. Finally, it is important to recall
that the non-positivity only results from imaginary eigenvalues and therefore is only
relevant in advection-dominated problems.

8.2.3 RKC IMEX

The use of the implicit-explicit method offers great advantages on problems exhibiting
stiffness due to the reaction terms. The best way to observe this is with a simple
example. Consider a reaction-diffusion problem with two components. Assume both
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have a diffusion coefficient of 1E-4 and take a time interval of 10 and a spatial grid of
100 points, as above. The 1st order reaction has the form

w, = -k w, (t)+ kw 2(t)

w2 = k w (t) - k2 (t)

where the k's and the reaction constants and the subscripts on the w's refer to each
component. This reaction occurs at each point on the grid.

The overall stiffness of this problem can depend on either the diffusion discretization or
the values of the reaction constants. Assuming the diffusion is set as stated above, the
eigenvalues will be distributed along the negative real axis with a maximum value of -4.
Since the eigenvalues are also present back near the origin the stability region must
encompass all of these values.

For the linear system of equations above it is easy to characterize the eigenvalues in a
similar manner. Considering the two by two matrix that represents the two reactions
occurring at each grid point it is clear that the eigenvalues are 0 and -kl - k2. If the
reaction constants remain small then the eigenvalues from the diffusion discretization
dominate. But as the reaction terms become large, they will result in larger and larger
eigenvalues and make the overall problem increasingly stiff.

When the IMEX method is employed the reaction terms are solved with an implicit
method (possessing an infinite stability domain) so that only the spatial discretizations
affect the explicit stability domain (which is defined by the two-step RKC method).

The example described above is solved under several conditions both with and without
using IMEX. kl is set at 1 and k2 is changed to various values listed below.

Table 8.5: Standard RKC vs. IMEX RKC; reaction-diffusion problem

Standard IMEX

10 45 447 18 33 260 3 517 33 205

100 294 3284 170 46 342 2 682 45 281

required stability domain. In this case the extra computation necessary to perform LU

decompositions and solve the system of equations make the IMEX method unattractive.decompositions and solve the system of equations make the IMEX method unattractive.
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But as the reaction constants become increasingly large the advantage of the IMEX
method becomes apparent. For a modest increase in the number of time steps and
function evaluations the solution can be obtained for reaction constants that are orders of
magnitude larger. The standard RKC method requires a number function evaluations that
grows with the magnitude of the reaction constants. The extra computation needed to
evaluate the reaction portion implicitly is easily justified in these cases.

Looking at the values of the time steps as the solution progresses, both the standard and
IMEX methods need increasingly small time steps at the beginning as the reaction
coefficients increase. This is due to the fact that the solution changes rapidly at early
times for fast reactions and accuracy requirements restrict the time step size. But as the
solution levels off to a more steady state, the IMEX method is able to adjust the time step
down to the stability limits imposed by the spatial discretization while the standard
method still needs very small time steps to contain the large eigenvalues of the reaction
terms.

As expected using the IMEX method shows great advantages for stiff reactive systems.
While only linear reaction portions were discussed here the same results apply; it is just
the eigenvalues of the Jacobian of the system of equations describing the reactions that
must be considered.

8.2.4 Error Correction

In general, the use of error correction in the time integration is needed to ensure stability
and achieve a desired level of accuracy. The RKC methods as they are implemented here
take stability bounds as an input so accuracy is the only concern of the error correction.
Indeed it is possible to turn off the error correction and still obtain reasonable results
since there are none of the large deviations associated with instability.

Built into the RKC program are four different error correction options. The first option
disengages the error control and the second one allows the input of a set series of time
steps. The other two options are the true error control techniques discussed in Section
7.1.5. The Sommeijer method works well for explicit problems where the eigenvalues
are not too large and spread out. But when the step sizes can become large Shampine's
method becomes more useful.

Of importance to the error correction techniques is the value for the error tolerance. The
absolute tolerance is a scalar while the absolute tolerance can be a scalar or vector if there
are expected to be significantly greater errors present in one region relative to the rest of
the solution grid. Since the RKC methods are either second or third order, the tolerances
cannot be too low. In general, the relative error tolerance is set to 1E-2 and the absolute
to 1E-3 unless otherwise noted.

To demonstrate the effectiveness of each error correction technique several examples are
evaluated and compared to an exact solution. When the exact solution is not available a
solution is calculated with very small time steps and tighter error tolerance to use for
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comparison. The problem was similar to the one used throughout with a square pulse and
a time interval of 10. The first reaction constant is 1 where necessary and 3 rd order
upwind biased discretization with the positivity filter was used in the pure advection case.
All other parameters are as noted below.

Table 8.6: Error Correction Results

Error Time Explicit Failed Implicit LU Newton
d v k2 Function Function solver

Cor Steps Evals Steps Evals Decomps iterations

0 1E-4 0 11 55 0
2 1E-4 0 15 136 1
3 1E-4 0 19 153 2 21
0 0 0.1 128 898 0
2 0 0.1 135 1376 3
3 0 0.1 257 2296 1 258
0 1E-4 0 1 11 55 0 110 3 66
2 1E-4 0 1 50 426 2 694 51 309
3 1E-4 0 1 22 174 2 346 45 137
0 1E-4 0 1000 11 55 0 110 3 66
2 1E-4 0 1000 oo 0_ o
3 1E-4 0 1000 50 391 5 779 107 304

Error Cor d v k2 Abs Error Rel Error
0 1E-4 0 2.80E-03 1.29E-04
2 1E-4 0 6.28E-05 2.07E-06
3 1E-4 0 5.71E-05 1.62E-06
0 0 0.1 9.73E-04 3.39E-05
2 0 0.1 9.10E-04 3.22E-05
3 0 0.1 2.09E-04 7.54E-06
0 1E-4 0 1 2.10OE-03 6.42E-05
2 1E-4 0 1 3.53E-05 6.73E-07
3 1E-4 0 1 3.86E-05 7.30E-07
0 1E-4 0 1000
2 1E-4 0 1000
3 1E-4 0 1000 3.98E-05 7.51E-07

Several interesting items can be noted. As expected, disengaging the error control leads
to the worst results. However, in the pure advection case there was only a relatively
small advantage. Moreover, the results are never completely incorrect (except in the
second reaction case). To the eye there is almost no distinction between the correct
solution and the sans error control solution. This demonstrates that maintaining stability
is generally the most important function of error correcting algorithms and if stability is
ensured, error correction is mainly needed for fine tuning. The main difficulty lies in the
fact that it can occasionally fail on very fast reactions that effectively occur between the
relatively large time steps.
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The method of Shampine shows a slight advantage in accuracy in most of the cases, but
that is largely due to its slightly more restrictive error control. The accuracy scales
roughly with the number of time steps in the non-reactive cases. The disadvantage of
Shampine's method is that it requires LU decompositions at every time step (in addition
to the LU decompositions in the main body of the function).

Where the advantage of Shampine's method is greatest is in the reactive cases. Even for
the non-stiff reaction case this method requires fewer time steps for nearly the same level
of accuracy. And for the stiff case the Sommeijer method required a very large number
of time steps while the Shampine method needs only to double the number of time steps
it used in the non-stiff case. This easily justifies the extra computation need for the LU
decompositions.

Clearly different situations call for different error control schemes. The no error
correction scheme always bears some consideration as it can produce passable results in
most cases in a very short amount of time steps. Sommeijer's method is the winner for
non-reactive cases. For both stiff and non-stiff reactions Shampine's method has the
clear advantage. Of course there may be cases in which these generalities are not correct
so it is worthwhile considering each of the error correction methods.

8.2.5 Other Problem Types

Thus far only one-dimensional cases with periodic boundary conditions have been
considered. However, the input function can handle many different types of problems.
Several of them are demonstrated here.

Boundary conditions are fairly simple to consider mathematically but quite a challenge to
implement in a program in a general context, especially in multi-dimensional cases. A
few examples demonstrate the results from non-periodic boundary conditions.

Both Diriclet and Neumann boundary conditions can be input with the function statement
and more exotic space- or time-dependent boundary conditions can be defined in the
problem template function. First consider a constant input source of the left-hand side of
the system with a sink on the right hand side. If the square pulse is again used as the
initial condition with d=1E-4, the results show what happens as time progresses:

136



0.8

0.6

0.4

I :I

/ I

,-- / \

0.2 - 0.4 0.6 0.8 1

1K

. 0.2 0.4 0.6

Figure 8.6: Direclet Boundary Conditions, t=100 (left) & t=1000 (right)

The solution is the dashed line. Now consider the equilibration of concentration in a
vessel with no output (zero flux at the sides) and the same initial conditions and diffusion
as above. Over time the concentration becomes uniform as expected. Note also that
mass is conserved after the time integration.
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Figure 8.7: Neumann Boundary Conditions, t=1000

Advection problems can be solved with boundary conditions as well. However, they do
suffer the inherent limitations of the underlying mathematical model inasmuch as there
can only be one boundary condition since the equation is first order. Also, Neumann
boundary conditions cannot be applied for the same reason. This is demonstrated by the
fact that when no-flux conditions are applied, the solution travels through as if the
condition were not present and mass leaves the system. Consider an advection problem
with v=0.05 and a time interval of 10 solve with positivity filtered 3 rd order upwind
discretization over 100 grid points.
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Figure 8.8: Advection with no flux BC; Initial condition (solid line) and solution

This is the correct behavior based on the underlying model but it is not physically correct.
A simple change in the boundary condition portion of the problem template function
corrects this to get a somewhat odd-looking but more physically correct result. In the
absence of diffusion all of the mass will simply accumulate on the right hand side due to
the constant advection in that direction.
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Figure 8.9: Advection with no flux BC, corrected solution and solution with diffusion

And adding diffusion gives the somewhat more reasonable solution on the right. This is
just the surface of what can be done with boundary conditions.

One of the other major features is the ability to consider multi-dimensional problems with
the same framework as the one-dimensional case. Any of the problems outlined above
can be adapted to a two- or three-dimensional analog with relative ease. And higher
dimensions can be handled as well if there is some desired quantity that can be
represented as another dimension.

For demonstrative purposes a few simple two- and three-dimensional problems are
solved. The output of the 2-D case is easy to interpret. The x-y plane represents space
and the z-axis denotes concentration. For an example problem, consider a 100 by 100
point grid and a square pulse as the initial condition. Now consider advection in one
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direction with a velocity of 0.2 and 0.1 in the x and y directions, respectively over a time

period of 10. The third-order upwind biased discretization with positivity filter is used.
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Figure 8.10: 2-D Advection

The solution behaves as expected and remains positive. There is only a slight spreading
due to artificial diffusion. It requires 10 time steps and 50 function evaluations to achieve
this.

Now consider a 3-D problem with a 20 by 20 by 20 grid. Consider a velocity of 0.2 in
the x direction with a time interval of 10. The discretization is the same as above as well.
The results in the 3-D case require a bit more explanation. All three of the axes now
represent a spatial dimension. The color of the ball at each grid point indicates the
concentration (indexed by the scale on the side) unless there is zero concentration at that
point, in which case it is blank.
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Figure 8.11: 3-D Advection

Once again the results are as expected. Positivity is maintained but there is a slight
artificial diffusion in the x direction. The solution took 11 time steps and 73 function
evaluations. It is possible to add reactions, different boundary conditions, etc. but the
results have no surprises.
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While the number of time steps and function evaluations are similar to the one-
dimensional counterparts the time to evaluate each function is much greater. This
typifies the greatest challenge of multi-dimensional problems. Such problems are
fundamentally more complex and the solution time scales with the number of points in
the grid. This inherent difficulty can only be avoided by employing a completely
different solution method, such as Monte Carlo simulation.

8.2.6 Comparison with Other Methods

There are a plethora of different methods for solving systems of differential equations. It
is therefore worthwhile to consider the performance of the RKC methods alongside some
different techniques. The easiest two to start with are the built-in MATLAB functions,
ode45 and odel5s. ode45 is a 5th order four-stage Runge-Kutta method and odel5s is a
modified 5 th order BDF method.

A few caveats are necessary before any comparisons begin. Both of the MATLAB
functions mentioned are fully developed pieces of software. In addition, they are
optimized to take advantage of the manner in which MATLAB runs. Also, they are both
up to 5th order methods whereas the RKC methods are only 2 nd or 3 rd order.

With these issues it makes the most sense to compare methods based on the number of
time steps, function evaluations, Newton solver iterations, etc. These performance
indicators give a general idea how efficient a method is when used on a given problem.

The problem input function is quite flexible. It allows for a given problem to be solved
with any time integration method desired. This allows for all of the discretizations,
positivity preservation, reaction term splitting (if necessary), and other features to be
uniform across different solution methods.

First off, consider pure diffusion problems. For the example problem define a grid of 100
points and a square pulse as the initial condition. Solving over a time interval of 10 gives
the following results for varying diffusion coefficients:
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Figure 8.12: Time Steps vs. Diffusion Coef
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Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = ode 15s.
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Blue + = RKC no err, , Red circle = RKC err corr, Cyan star = ode45,, Magenta square =
ode 15s.

At low diffusion there is no clear advantage for any method. As the diffusion becomes
stronger, the advantage of the RKC method over the ode45 method becomes apparent.
Eventually the stiffness caused by very large diffusion coefficients makes the ode 15s
method more attractive. The relatively low number of function evaluations overcomes
the cost of matrix operations in this implicit method. Even the non-error corrected RKC
method (which remains quite accurate) eventually becomes less attractive than ode 15s.

For a pure advection test consider the same system as above with 3rd order upwind biased
spatial discretization with positivity filtering. Varying the velocity gives the following
results:
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Figure 8.14: Time Steps vs. Velocity

Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = odel5s.
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Figure 8.15: Function Evaluations vs. Velocity

Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = odel5s.

ode45 maintains a general advantage over the RKC method for most of the range. The
location of eigenlvalues spread in the imaginary space near the imaginary axis is
somewhat better suited to the stability domain of standard Runge-Kutta methods. odel5s
is never a viable option for these cases as it requires a large number of function
evaluations in addition to its inherent required matrix operations. It seems that its
stability domain is not very large near the imaginary axis.

To test the IMEX performance of RKC reaction-diffusion and reaction-advection
problems were solved using the conditions above. For the diffusion problems a diffusion
coefficient of 1E-4 was used and a system of two reactions,

w= -kqw (t)+ k2w2(t)

w2 = kw(t)- k2 2(t)

was used with kl set to unity and k2 varied from 1 to 1000.
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Figure 8.16: Time Steps vs. k2
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Blue + = RKC (no error correction), Red
square = odel5s.
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Figure 8.17: Function Evaluations vs. k2

Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = odel 5s.

As expected, ode45 performs well until the stiffness becomes large forcing a great
increase in function evaluations needed. The RKC method performs similarly to ode l5s
overall. It eventually requires more function evaluations but only the uncoupled grid
points need to be solved implicitly rather than the entire Jacobian, resulting in simpler
matrix operations necessary for the IMEX case. The no-error-correction RKC method
requires a relatively small number of function evaluations and still remains quite accurate
in this case.

For the reaction-advection problem the velocity is set to 0.1
and values as above are used.

and the same reaction system
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Figure 8.18: Time Steps vs. k2

Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = odel5s.
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Figure 8.19: Function Evaluations vs. k2

Blue + = RKC (no error correction), Red circle = RKC, Cyan star = ode45, Magenta
square = odel5s.

Similarly to before, ode45 struggles as the stiffness in the reaction portion increases. The
advantage of the RKC methods becomes apparent as it requires very little increase in
function evaluations to handle the increased stiffness. ode l5s shows the previously
observed difficulty with the strong advection portion and actually decreases the number
of function evaluations as the reaction portion becomes stiffer. This is likely due to the
eigenvalues moving away from the imaginary axis for higher reaction constants.

Overall, different problems and situations can be handled most efficiently by different
methods; it impossible to determine which one is unilaterally the "best". Indeed, that is
why MATLAB includes several different functions.

The principle advantage of the RKC methods is that they can take as an input the problem
domain information. This allows the calculation of the largest time step possible for
stability. This advantage is most greatly evident in the no-error-correction examples
which have the largest possible time steps allowed by stability. Several factors can
mitigate this advantage, however. Using this time step often gives in acceptable results
but if high accuracy is needed the error control will restrict the time step and decrease this
advantage.

RKC methods show the greatest advantage versus the explicit, Runge-Kutta ode45
method in pure diffusion problems which is the purpose for which they were originally
constructed. The performance is less competitive when it comes to advection dominated
problems. This is because the eigenvalues are spread far from the real axis which
decreases the advantage of RKC relative to standard RK methods that already show
stability in that region - knowing the location of the eigenvalues is irrelevant if they are
already in the stability domain of another method. When compared to the implicit, BDF
odel5s method there is an advantage until the number of function evaluations become so
high as to offset the cost of performing matrix operations and Newton's method solver
iterations.
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Another advantage of the RKC method is the IMEX splitting. The advantage over
explicit methods was discussed in Section 8.2.3 but there is also an advantage over purely
implicit methods. By only considering the implicit portion of the problem, the system is
simpler to solve. Additionally, each grid point can be solved for individually which
avoids the need to decompose the entire matrix at once. Unfortunately, several issues
decrease the advantage of the factors in MATLAB. It turns out that, counterintuitively,
MATLAB is significantly more efficient at decomposing and evaluating an entire matrix
at once rather than in small subsections. This is despite the coupling between points that
is present in the advection-diffusion portion. In addition, MATLAB is far more efficient
at performing linear algebra operations than at evaluating functions. Altogether this
means that the standard cost associated with IMEX methods of more function evaluations
is not offset by the simpler matrix to be evaluated when implemented in MATLAB.

While the RKC methods do not have a clear advantage in all of the tests, they do show
acceptable performance across many different conditions. This is especially
advantageous for advection-diffusion-reaction problems with time- or space-dependent
coefficients. Even as the eigenvalues change as the solution progresses, RKC will be
able to determine the optimal stability domain at each time step.

There are other advantages to the RKC functions. For very large systems, the memory
requirements between and even within each time step becomes a concern. Such systems
occur both when extreme precision is needed and when multiple dimensions are
involved. odel5s eventually returns an error do to memory issues. RKC is still able to
solve them though the solution time can be quite long. Another advantage is with
integro-differential equation systems. The explicit nature in which RKC handles the non-
reaction portion becomes very advantageous when the problem matrix is non-sparse and
has many more interactions between points.

8.2.7 Summary

These results demonstrate several important points. The two-stage method offers a
definite advantage for advection problems and adds overall flexibility to the program.
The positivity preserving filter requires more computation but is necessary when a
reasonable amount of advection is present. Employing the IMEX method for reactive
transport problems offers a strong advantage when stiffness due to the reaction
coefficients is significant. The optimal choice of error correction varies on the problem
type. Relying on only stability rather than actual error correction can often result in
acceptable solutions and at least offers a reasonable first guess. In comparison with
existing methods the RKC program demonstrates a distinct advantage in several
situations but it cannot claim to be the best in all categories.

Beyond just the RKC methods implemented the problem definition function has some
significance itself. It can be used to solve any basic advection-diffusion-reaction problem
with various spatial discretizations with many other features that can be engaged as
necessary. And the problem template can be easily modified to input more complex
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reaction equations, boundary conditions, etc. This flexibility allowed the above examples
to be quickly tested and compared.

The multidimensional structure that is adaptable to any number of dimensions is one of
the most substantial parts of the code. It has the potential to be employed in other
contexts, further increasing the utility of the program. The programs developed in this
section form the basis for much of the later work.
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9.0 Population Balance Systems

Population balance systems can describe many phenomena from polymer formation to
aerosols that are generated in numerous natural and industrial processes. This section
describes how the various phenomena are modeled numerically and discusses how the
techniques developed above can be applied to solve such problems.

9.1 Notation

First off it is important to describe the notation and carefully define each term that is
used. The notation employed here is roughly based on that used in [Seinfeld & Pandis,
2006]. It is often helpful to consider the units when introducing each quantity; they are
expressed here with generic abbreviations, L for length, M for mass. The number
concentration, N, refers to the total number of particles that are contained in some control
volume. For this definition the units are 1/L3 but the number concentration can actually
refer to several different quantities. Technically each particle is composed of some finite
number of molecules so the number concentration does have a rigorous meaning. In
practice, though, it is infeasible to consider the size of each particle in this way as there
could be from thousands to billions of molecules in each particle.

One way to handle this difficulty is to divide the distribution into arbitrarily size ranges.
These sizes could be determined by length, volume, mass, or some other factor, which we
can generically denote as s (and assume that it has units of S which is understood to
represent one of the abovementioned units). Then N can be specified as N(s) to indicate
the independent size variable. But if the bins are different sizes comparison becomes
difficult. Thus it is seems wise to scale the number concentration by the span of the bins,
As. This can be made even more useful by taking the limit as As goes to zero to give us
ds. Now a new term can be defined, nN(s), the number distribution (units 1/L3 1/S). Then
nN(s)ds is the number of particles per unit volume from size s to s+ds. This can be
integrated over all sizes to give the cumulative number concentration,

N(s) = n,(s)ds'

which is defined as the number of particles of size smaller than s per unit volume. And if
this is integrated over all possible sizes it gives the total particle concentration.

Besides using a distribution based on the number of particles, other bases can be used as
well. Volume and mass are two popular choices and they are represented as nV(s) (L3/L3

I/S) and nm(s) (M/L3 1/S) respectively. These can of course be converted back into the
number concentration by their relationship via the independent variable s. A few small
examples can help clarify these ideas. Consider a number distribution based on the
particle diameter, Dp; this would be written nN(Dp). If this were to be converted to a
volume distribution we would consider the particles in the infinitesimal size range
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nN(Dp)dD. Each particle in the range has a volume of 1/6 7D 3 so the total volume they
occupy is simply 1/6 7rD 3nN(Dp)dDp. Thus the conversion is simply

n (D) = D, n (DP)

where nv(Dp)dDp represents the volume occupied by particles per unit volume in the size
range from Dp to Dp+dDp. Now consider if we have a number distribution based on
particle mass, m, written nN(m) (units i/L3 1/M). To convert this to a mass distribution
with mass as the independent variable as well we first note that in the infinitesimal size
range nN(m)dm the particles have a mass of m so the conversion is just

nm (m) = mn, (m)

where nm(m)dm represents the mass of particles per unit volume in the size range from m
to m+dm.

Additionally the sizes are often expressed in terms of the logarithm of the size parameter.
For example nv(lnDp)dlnDp represents the number of particles in the size range from InDp
to InDp+dlnDp. Note that technically the logarithm must be taken of a dimensionless
quantity so there is an implied reference size of 1 (with the same units as the size
quantity) for the quantities in the logarithm. This also means that nv(ln s) has units i/L 3 .
These quantities can be converted to other functions of the independent variable by the
following relationship: Suppose u and v are functions of s. Then the size distribution
functions are related by

dv/ds
n(u) = n(v)

du / ds

So for example we have

n, (In m) = mn, (m).

These different types of distributions are used in various situations to display information
as clearly as possible. There are several common types that appear in the literature.
Hereafter four different distributions are considered that encompass most of the
mathematical situations that arise in solving population balance systems. Abbreviated
notations are used to enhance the clarity in the later sections. The four types are
summarized in Table 9.1 below.

Table 9.1: Standard Distributions

Distribution Full Notation Distribution Basis Size Variable Units
n nN(m) number m, mass 1/L3 1/M
q nm(m) mass m, mass 1/L
v n() number u, ln(mass/mef) I/L 3

p nm(U) mass p, ln(mass/mref) M/L 3
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The mref normalizing parameter is assumed to be unity and is omitted unless otherwise
noted. Mass is often used as a variable since it is conserved. The key point to remember
is that they all represent an amount of particles per volume over a given size range.

9.2 Basic Phenomena

Some of these concepts were discussed briefly in Section 3.2.1. Here they are developed
more fully. The standard array of phenomena that particles undergo includes
condensation/evaporation and coagulation/splitting in addition to all of the normal
transport phenomena and sources/sinks.

9.2.1 Condensation/Evaporation

All particles are composed of some large number of molecules and there may be many
different species in each particle. Species surrounding the particles can condense upon
them and the species in the particle can evaporate into the surrounding fluid. These
phenomena will change the size of each particle and thus change the size distribution, n(s,
t) (where s is some size variable and t is time). The actual transport mechanisms can be
quite varied but the key features are that the driving force is the difference in
concentrations or partial pressures and that the area available for flux is dependent on the
particle size.

A brief summary of the important mass transfer properties follows. The key when
considering particles of finite size is the mean free path of the surrounding fluid, 2,
relative to the particle radius, Rp, which are related by the Knudsen number,

Kn =

If the Knudsen number is much greater than one, we are in the kinetic regime where the
particle moves around such that the surrounding molecules are discrete objects. As the
Knudsen number goes to zero, the continuum regime is approached where the particle is
so large that the surrounding molecules act as one continuous fluid.

The simpler case is the continuous regime which can be described by the familiar
transport equations. For a spherical particle the unsteady-state diffusion of species A is
described by

ac 1 at -- r2 JAr
at r 2 Ar

where JA,r represents the molar flux at position r. The molar flux through the air under
dilute conditions is simply
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JA,r =-DA

If coo represents the bulk concentration far from the particle and cs the vapor phase
concentration at the surface, then the above differential equation can be solved using
these concentrations as boundary conditions. At steady-state the familiar relation is
found,

c(r) - c R,
Cs -C, r

Using the steady-state turns out to be acceptable to use since the diffusional flux is orders
of magnitude larger than the rate of particle shrinkage. The profile near the surface of the
particle retains the steady state character throughout any actual condensation/absorption
processes.

The flow of A toward the particle (using the convention of a normal vector pointing
outward) is given multiplying the flux by the surface area,

F = -4zR2 JA,r=. ,

which becomes, using the pseudo-steady-state approximation described above,

Fcontinuum = 4;RDA (co -c) .

This expression is valid only in the continuum regime but the same basic driving force is
present in all cases. The adjustment to other regimes can be made by employing a
function of the particle size and an accommodation coefficient, a. The values for a range
from zero to one and it accounts for the probability of a molecule sticking to a particle
that it encounters. In the kinetic regime the adjusted equation for molecular flow is

1/2

kinetic = 8k aR(c. -cs)
rmA

where kB is Boltzmann's constant and mA is the mass of one molecule of A. This
equation is based on molecules moving randomly and striking a given area. For Knudsen
numbers in the transition regime between fully continuous and fully kinetic regimes,
there are many adjustment factors that are generally expressed as functions of Kn and a.
Several examples can be found in [Seinfeld & Pandis, 2006]. The overall expression for
molecular flow then becomes
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dm 4ffRPD
F= dm = 4R,DAf Kn, a (c, -c,)= rR f Kn,a (pA P,A) . (9.1)

dt RT

The partial pressure version is also commonly used, where PA is the bulk partial pressure
of A, Peq,A, is the equilibrium concentration at the surface, and T and R are the
temperature and ideal gas constant, respectively.

With a general equation describing the mass transfer in place, the actual growth of
particles can be considered. The growth rate, denoted I, where s indicates the size
variable, is simply the rate of change of that s. Thus Im is simply equation (9.1) and the
RHS of it can be rewritten in terms of the mass to give

dm 2*61/3 r2/ 3DA m/3
(mt)= p 3RT Kn,a (PA -Pq,A). (9.2)

where the density, p, will remain constant as long as there is only one component in the
particle. In addition there is often one factor that affects the concentration near the
surface known as the Kelvin effect [Seinfeld & Pandis, 2006]. This factor takes into
account the curved nature of the particles and has the form

PA,eq = p exp RpRT

where pf t is the equivalent pressure for a flat surface, a is the surface tension, Mw is the

molecular weight of the condensing species.

To a first approximation the Kelvin effect can be neglected. If this is combined with a
constant concentration near the surface then the driving force is constant. Overall this
means that the growth equation can be considered in its simplest form: a constant
multiplied by a size parameter raised to some power. To limit the number of possible
configurations let us just consider the mass growth factor with mass as the size variable.

Im (m, t) = Adm 1/3

where Ad is a constant.

There are a couple of other forms that the growth equations can take. The most common
are surface reaction controlled growth and volume reaction controlled growth. They can
be seen in detail in Gelbard & Seinfeld, 1978 and references cited therein. In comparison
the above reaction can be referred to as diffusion controlled. Boiled down to the simplest
form, the surface and volume reaction controlled growth laws are, respectively,

Im(m ,t) = Am 2 /3 and I.(m,t) = Am.

151



Certainly the most important point when developing a solution method is the functional
relationship to the size parameter. These simplified growth equations are useful as a first
approximation and also because they generally have analytical solutions available for
comparison with numerical approximations. These numerical methods can then be used
to attack the more realistic equations.

If we now consider an infinitesimal slice of some size distribution, As, the number of
particles contained in that slice at time t is n(s,t)As. If there is some growth of particles
then the number of particles in that slice will be increasing due to the growth of smaller
particles and decreasing due to the growth of particles out of that size range. This
depends upon the rate of growth multiplied by the amount of particles at either boundary
of the slice effectively resulting in a flux along the size dimension. This all changes with
time so that after a time of At there will be a change in the amount of particles to
n(s,t+At)As. Since this change is entirely due to the flux of particles at the boundaries of
the slice the complete equation can be written as

n(s,t+At)As-n(s,t+At)As= I, s-As,t n s--As, t At-I, s+-st n s+As,t At

After rearrangement and taking the limits as s and t go to zero we have

n(s,t) 8= 1 Is(s,t)n(s, t)
at as

which is known as the condensation equation. This can be written in terms of any of the
distributions and size variables discussed in the previous section.

In the literature the following notation is often used for growth when mass is the size
variable

dmd = In(m, t) = H(m, t)m .
dt

When H is a constant, this becomes the law for simple volume (or mass) controlled
growth.

9.2.2 Coagulation

Another important phenomenon that particles undergo is coagulation which considers
particles of any size coming together to form larger ones. As discussed in Section 3.2.1
the relationship between two particles that results in their coagulation can be summarized
with a coagulation coefficient fi. The basic form of this can be developed by once again
considering the Knudsen number-determined regimes that define the system. If we return
to the definition of N as the number concentration of particles then the continuum regime
can be described by the diffusion equation,
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aN(r,t) (D aN(r,t) D( a2N(r,t) 2 N(r,t)

at &r 2  -r r2 r ar

where D is the diffusion coefficient (assumed constant) and r is the distance from the
center of one particle. This model is based on assuming that one particle remains
stationary and another particle will diffuse toward it and stick to it. Also this only allows
for one size of particle. This equation can be solved with appropriate boundary
conditions to find N(r,t). With this the rate at which particles collide is effective surface
area multiplied by the flux,

aN
J=D

Or r=2Rp

Note that the critical radius is 2Rp since this is the effective area where two particles of
radius Rp would interact. Thus the collision rate is

collision = 8RpDNo (1+ 2r- 

where No is the initial particle concentration. The steady state value is often adequate in
most situations of interest. This can be expanded to the general case where both particles
are moving and may be of different sizes. The effective diffusion coefficient can be
shown to be simply the sum of the diffusion coefficients of each particle. Also on this
case the effective radius becomes the sum of the two particle radii. Combining these
facts the steady state collision rate becomes

Fcoaguation = 4r(Rp +Rp2)(D , +D 2)NN 2.

Note that this rate depends on both concentrations. The rate in the first equation is based
on type 2 particles hitting one single particle of type 1. This rate needs to be multiplied
by the total number of type one particles so the final form is achieved. The first few
terms in the equation can be lumped into a coagulation coefficient, fl, to give the familiar
coagulation rate expressed in general form as

Foalation = ,(s ,s2)NN 2 . (9.3)

For the case above we have

fl(D,,,Dp2 ) = 2zr(D,, +D )(D +D 2).

In the kinetic regime (Kn -- 0c) the interactions follow from basic kinetic theory give
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,12(R,,t) = z(R + Rp2)1/2(2  + )1/2

where -= 8kT / 1/2m is the mean kinetic velocity. The transition regime between the

two extremes is generally represented by multiplying the continuum coagulation
coefficient by some parameter.

The coagulation equation was derived from the basic coagulation rate previously in
Section 3.2.1 but the main points are reiterated here for completeness. Coagulation
results in two main effects on a given particle size, s: production due to smaller particles
colliding and creating a particle of size s and depletion due to s size particles colliding
with other particles. The continuous approximation is again made as discussed in the
previous section. The critical quantity is then the concentration of particles in the size
range s to s+ds which is n(s,t)ds where n can have any basis and s is any size variable.
Note that for the coagulation portion this needs to be a conserved quantity (e.g. diameter
is not appropriate).

The rate of production of an s size particle results from one particle of size a and one of
size s-a. The total rate is then the integral over the range of all sizes a smaller than s. To
eliminate double counting a factor of 2 must be used. The production is then

oFpd = f-s 8(s - a, a)n(s - a, t)n(s, t)da .coagprod 2 smin

Here smin is some minimum sized particle determined by the physics of the specific
particle type. The decrease in s size particles due to coagulation is the rate that s size
particles agglomerate with all other size particles. This is

Fcoag,dep = n(s, t) f /(a, s)n(a,t)da.

These two terms are combined to give the coagulation equation,

t= f(s - a, a)n(s - a, t)n(s, t)da - n(s, t) f~ (a, s)n(a, t)da.

9.2.3 Other Phenomena

There are several other phenomena that can be important to population balance systems.
The most complicated to describe mathematically is fragmentation which was explained
in Section 3.2.1 and is less common than the other effects listed here.

Source and depletion terms are fairly easy to handle. They are usually considered to have
some specified function and are denoted S(s,t) and R(s,t) respectively. They may have
the form of some type of reaction.

154



Nucleation refers to the formation of particles of a certain size in a given medium, often
enhanced due to interaction with foreign material. There are many mechanisms that
explain this phenomenon for different systems but for the current purpose they will be
quantified by one term, Qo(s). This results in particles that are of some minimum size,
Smin, and only of this size. This means that the term must be multiplied by a delta
function that only has value when the size variable is exactly Smin.

In addition, particles are subject to the standard transport effects, diffusion and advection.
They generally take the same form as the molecular analogs developed in previous
sections.

Combining all of the population balance phenomena results in what is known as the
general dynamic equation [Seinfeld & Pandis, 2006]:

n(s,t) (s - a, a)n(s - a, t)n(s,t)da - n(s, t) (a,s)n(a, t)da
(9.4)

I,(s,t)n(s,t) + Qo(s)8(s - so) + S(s) - R(s)
as

The transport terms are not included here. They effectively add other dimensions to the
problem as they result in changes in spatial coordinates and not along the size
distribution. These issues will be discussed in later sections. Also note that if the
distribution changes to mass or the size variable undergoes a transformation the form of
the equation will change to some extent.

9.3 Equation Forms & Analytical Solutions

The basic form of (9.4) changes if different distribution types and size variables are used.
Also the multi-component case alters the mathematical form and the solution techniques
used. Using the four distribution/size variable systems mentioned above in Table 9.1 the
forms and available solutions for the parts of the general dynamics equation are
discussed.

9.3.1 Condensation Equation

The standard condensation equation describes the change in particle size number
distribution due to the evaporation or condensation of species onto the existing particles.
The basic form is repeated here:

an(s,t) a
a - I, (s,t)n(s,t) . (9.5)
at as
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Recall that n can be a distribution with a given basis (e.g. number or mass) but the form
of (9.5) will change. s is a size parameter (e.g. mass or diameter) over which the
distribution varies and it can alter the form as well. This is the simplest form and the four
specific cases will be considered after this basic equation.

It is important to note that the particle can be composed of several different species each
possessing a unique growth term. However, it is worth analyzing the one component
case thoroughly to see what can be learned.

Equation (9.5) is a first order hyperbolic differential equation. Such equations can
generally be solved using the method of characteristics. To see this, first expand the
equation:

an(s, t) an(s, t) aI (s, t)
(st) I,(s, t) + n(s,t) = 0.
at as as

Now assume that the growth function is differentiable in s and notate it as Is'. Also
define the initial distribution by some function

n(s, O) = n(s) .

The goal of the method of characteristics is to change the coordinates to a set in which
the PDE becomes an ODE along certain curves, which are known as characteristic
curves. For this example, consider the new variables to be (so,a). As one might suspect
by the notation, the so variable will remain constant along the characteristics.

To begin, it is noted that if

ds dt
-- = I (s, t) and =1
da da

(which are known as the characteristic equations) then we have

dn ds an dt on =n(s, t) an(s,t)- = - - + -- - + I (s, t) = -In(s,t)
da da as da at at as

so we have the ODE and initial condition

dn
-+I'n =0, n(O)= no(s). (9.6)
da

Now the two characteristic equations are simple ODEs with respective initial conditions

s(a = 0) = so and t(a = 0) = 0.
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Note that the s = so points are points where t = 0 in the original coordinates. Solving the
ODE for t gives simply

t=a

and the other ODE is solved with the given I, to give the relationship between s and so.
Now the ODE (9.6) can be solved and the original coordinates can be substituted back in
to give the solution, n(s,t).

A simple example will help clarify this. Using the abbreviated notation introduced in
Section 9.1, consider a number distribution based on mass, n(m,t) and a growth law that
is directly proportional to mass, Im(m,t) = Hm. If H is constant, the expanded
condensation equation and initial condition has the form

8n(m, t) 8n(m, t)+ Hm + Hn(m, t) = 0, n(m, 0) = no(m) .
at am

After switching the coordinates, (m,t) -- (mo,a), the characteristic equations can be
solved to reveal

t=a and m=moet.

The ODE in a,

dn
+ Hn = 0, n(O) = no (m),

da

is then is solved to give

n(mo,a) = no(mo)e -Ha n(m, t) = no(me-H)e -H . (9.7)

The other three types of distributions mentioned above each have slightly different forms
but can be solved using the same methods as above. All four equations and their
solutions for constant H are summarized below in Table 9.2. The subscript zero on the
distribution variables indicates the initial distribution function.
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Table 9.2: Solutions for basic forms of the Condensation Equation

Condensation Equation Solution, H=const
an _ a aHn
-n= a Hmn =-m -Hn (9.8) n = e- no(me- )
at m 1
aq a

= -m- Hq (9.9) q = qo(me- t)
at am

Bv 8
S a Hv (9.10) v = vo(p-Ht)at a,

Hp +Hp (9.11) p = eHPo(p - Ht)
at aU

It is worthwhile to briefly observe how these functions actually evolve over time.
Consider the commonly used exponential initial distribution,

n0o (m)= No e-mlm
rn,.4mref

No is the initial number of particles in the system and mref is some reference size, often
unity. With this initial distribution the results look as follows plotted against particle
diameter.

120: 30

100 25

80 20

60 15

40 10/

20 5-

0 2 4 6 8 10 0 0.5 1 1.5 2 2.5

Figure 9.1: Condensation Growth, Mass Distribution, with closeup

The initial Condition is the dashed line and the final condition is the solid line.

This is completed over a time interval of 1.0 using 100 as the initial number of particles.
Note the large change in size range over a small time. This hints that it may be
advantageous to employ logarithmic coordinates for the size variable.

Things become more interesting when there are multiple species in each particle. Before
beginning it is important to point out the assumption involved in all of the multi-
component mathematics is that all particles of the same size have the same composition
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of species. This is often referred the internally well-mixed assumption [Diaz et al.,
1999].

First off, denote ni(s,t) as the number distribution of component i. The condensation
equation for number distribution with mass as the size variable has the familiar form

ani (m, t) a
an(mt) ,i, (m, t)ni (m, t)
dt 8m

Note that the growth law also is specific to a particular species. By definition the
relationship between the component mass distribution, qi(m,t), and the total mass
distribution is

qj (m, t) = - q(m, t)
m

where mi is the fraction of i in particles of size m. The size variable must be either mass
or volume (if the density is constant) so that the fraction is consistent. This of course
alters the condensation equation again. Consider the growth law used previously,
modified for the individual species case,

I, = His.
dt

Note that since the sum of the growth of r individual species must equal the total growth
we have

rH. =H
i= I

and this H is the same as the one used in the one-species example. Now using the above
growth law and starting from (9.9) the multi-component mass distribution can be found:

aq, m, cq m J_ _ -m, H -q,
at m t m m

aq, _( m Hq, -Hqm1  am, Hq,
at mi am m2, m m,

and since

am, dm,/dt Hm = H
am dm/ dt Hm H

we have
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aqi 8HqS= -m + H,q -Hq,. (9.12)
at am

Note that if these equations are summed over all i or if there is only one component the
equation reduces to (9.9) as expected. Also it is important to observe that nowhere was H
assumed to be constant. Indeed it could be any function of size or time.

Similar expansions can be completed on the other types of distributions and all four are
put forth in below:

an, a ( aa =-m, H n, Hn, = -m Hn, + Hin-2Hn,. (9.13)at am mi a m

. = -mi ( -q, = -m- Hq, +Hq-Hq. (9.14)at am mJ amdt mi  am

av i -e ,_ a He"'_,vi _ Hvi +Hi-Hvi. (9.15)at au ap
p =-eu_ He"-'p, +Hp, = Hp, +H,ip. (9.16)

at ap ap

These PDEs represent systems of r equations if r is the number of species. A paper by
[Diaz et al., 1999] demonstrated that analytical solutions of this problem are possible.
These serve as an excellent point of comparison for the numerical methods.

Diaz et al. employed the method of characteristics to solve this system for any general
form of H(s,t). The expression they derived has the form

p,(p,t)= p (po,t o)+ p(l, to)e - ° e' H(p', r(p,to' ')) d'l JH(Po,tuop). (9.17)

with

H(po,top)= exp (alnH(r ',t).p

The variable po corresponds to the solution to one of the characteristics as discussed at
the beginning of this section. Recall that the two characteristics (modified to use the
current variables) were

160



dan dtd =H(u, t) and dt =1
da da

with respective initial conditions

/u(a = O)= /, o  and t(a = 0) = to

The latter ODE can be trivially solved while the former ODE of course depends upon the
form of H which must be integrated. Ultimately the four variables, t, to, p, and Po are all
interrelated and this can be expressed by the following functions,

P = (;(Po, t, t), P = ('(, tot), t = r(po, to, P)

which depend on the form of H.

The integrals in equation (9.17) may need to be numerically evaluated but the equation
can provide very accurate solutions for comparison with other methods.

9.3.2 Coagulation Equation

The coagulation equation introduces the integral components. As described above the
coagulation of particles results in two integrals due to the gain of particles of a given size
by smaller particles colliding and loss due to collision of particles of a given size
colliding with other particles to make larger particles. The basic equation is as follows
with number concentration, n based on particle mass, m:

dn(m, ) m-dm,t) = m,,,n(m- m',t)n(m', t)dm'- n(m,t) f mm,,n(m',t)dm'. (9.18)

min mmi

Note that the first term is effectively a convolution whereas the second integral is linear
in n.

To modify this equation for the other standard bases mentioned above there are a few
important points to be noted. The coagulation term, f, must be adjusted if the underlying
size variable changes. Hereafter for any bases other than mass the new P is indicated
with a parenthetical superscript for the new underlying variable. In addition, in the
convolution integral is based on the difference in mass, (m - m') since that is the only
quantity that is preserved upon collision. For all other size variables it is the difference in
mass that must be transformed rather than the difference between two masses, i.e. for u =
ln(m/mref) we have

m-m' <> In e" -e"'
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Finally, the symmetry of the convolution integral can allow for a slight simplification by
noting that

Sm- 1 dm' m-n"rn dm'
-m-

m' (m -m') (m -m')
mmin min

However, both forms are equally tractable when handled numerically so it is largely a
matter of preference which form to use.

With those preliminaries the original and three transformed versions of the coagulation
equation are as follows. Recall that p = ln(m/mref), n(m,t) and v(u,t) are number
distributions, and q(m,t) and p(,t) are mass distributions.

dn(m, t) m-m0

dt - f 6-,,g,mn(m - m',t)n(m',t)dm'- n(m,t) J .,,n(m', t)dm'
min Mminf-din' qmmm,)t)

dq(m,t) = n= q(m- m',t) q(m',t) - q(m',t)
-- = m f fim-',: , dm- q(m, t) ft,e' m dm'

dt 2 m fmm (m - m') m m
mrn mn

m-m q(m - m', t) q(m', t)f m-m'm( - ') q(m',t)dm' - q(m,t) f tIm,' dm'
(m- m')

mmin min

dv(p, t) 1n(e") v(ln(e" - e ),t) v(',t)d' -v(A, t) ,(p',t)d
t 2 J el-l -, f J ,,v(At ,t)d'

v(ln(e" -e"),t) v(p', t) ff ) ,v', t)dp'
(e ), e - e e J/am

dp(a, t) 1 2edt
dt 2

In(e -e
a n

d )

mnin

p(ln(el -en'),t) p(ji',t) d -p( I p ('t)flCU .dp -p -t) e , dp
e e( e - ep') 2 e, d '- At, tP) e

= n(e -e--') p(ln(el e"'), t) p( ',t)dp' - p(t) ( p(',t)

mein_ )  (e - e ' ) 2 t)d

An analytical solution is available in the case of constant coagulation coefficient.
Equation (9.18) then simplifies to

dn(m,t) = p fn(m - m', t)n(m', t)dm'- fn(m,t)N(t)
dt 2

recalling that N(t) is the total number of particles in the system. Integrating over all m
then gives
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dn(m t) dm = - 3f n(m - m ,t)n(m',t)dm'dm - fn(m, t)N(t)dm

0 0 0 0

dN(t) =1 N(t)2 ,N(t) 2 = -,N(t) 2

dt

This simple ODE is solved to give:

N0N(t) = No
1+ fNot

where No is the initial number of particles. Returning to the simplified coagulation
equation we have

dn(m,t) m Nodn(,t) - m',t)n(m', t)dm'- fln(m, t)
dt o + f Not

N
n(m, 0) No e"'

mo

where the exponential initial condition is used so that the solution is achievable. This
non-linear integro-differential equation is solvable. First the integrating factor is
determined by taking the exponential of the coefficient of the n(m,t) term

IF= exp l Not, = 1+ 2

S 1+ - f/Not') 2# .

Now both sides are multiplied by the integrating factor and terms are combined to give

a 2 2?
-t 1+-/23N t n(m,t) P IJ 1 l/N f2n(m - m',t)n(m',t)dm'.

A change of variables can help to elucidate the problem. Assign y = 1/ No(1 + fNo)
2

and w(m, y) = 1+ - fJNot n(m, t) to give

Cw(m,) ) = -Jw(m - m', y)n(m', yt)dmn'
Cy 0

Now if we assume a solution of the form w(v, y) = aexp(-bmy) we get

-abme - bmy = -a 2m e - bmy = w(m, y) = ae -"y.

163



Putting back in the original variables gives

2 am
+1 + fiNot n(m, t) = a exp No 1 + flNot

and solving for when t = 0 gives

n(m, 0)= aexp- am No -t
No 1+ NflNo 0 m

so a = No/mo. Putting everything together gives the solution

N 1 m
n(m,t) = N- 2 e

mo 1+ fNo t mo 1+flNot

When multiple components are involved some care must be taken in modifying the
coagulation expressions. It is best illustrated by starting from the standard coagulation
equation to derive the mass-based partial component version.

dn(, t) m-MeinC

dt I fm,_m,,m,,i,n(m- m', t)n(m', t)dm' - n(m,t) flmm,n(m', t)dm'
mifn mn

Using qi = min on the LHS and multiplying by mi gives

dqi (m, t) 1 m-M 0 Mn t
dt -= J m-.,mn(m-m',t)n(m',t)dm'-q,(m,t) f,,.,n(m',t)dm'

mmin mmin

The mi can be brought into the convolution integral by defining it as the sum of the mass
of i in each of two coagulating particles,

mi = mlm, + mi .-_

where milm is the mass of i in a particle of size m. Each n is then converted to q by

q(m)=mn(m)

dq,(m,t) lm-n

dct 2 m-m',m 
+ mi ._M,

mmm

q(m - m',t) q(m',t) q(m',t)
m- m' m' dm '-q,(m,t) f flm,1m' , dim'
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Considering just the convolution integral, the mi's can be converted by qi = m q and then
m

the simplification proceeds as

m-"6., q(m-m',t) q(m',t)

2 m -mm rnrinn
Sm-.'.I fm , (m' + (m m ) q(mt) q(-',t)q(,t) dm

12 f /m-mI'mm- q(m - m t) m-m 'imin1 " ,q,(m',t) q,(m-m',t) q(m-m',t) q(m',t)

=-immin ,, qm -,- m q,(m', t) dm'+ I q , m- m' m' dm'
2 ,1-MM m-m .- m

mmin

Im'

by symmetry these two integrals are the same so the entire coagulation equation for qi
becomes

dqi (m,t ) m-T " q(m - m', t) q(m', t)d = ( fm-m',M q - I qi(m',t)dm'- q, (m, t) f m,e' ' dm'.
dt am-m n

mmin min

Converting this to the other distributions yields

dni(m,t) m-n(m', t)dm'
dt fi m,mn(m-m',t)ni(m',t)dm'- ni(m,t) f ,mn(m ',t)d'

dv,(y, t) =el
dt 2

dpi (p, t)
dt

In(eu-e
-m  )

min

ln( minJ/ai

n() v(In(e" - e' ),t) , (',t)dp' -vi (u,t) v(', t)du'

/min

p(In(e" - e"),t) p ',t)d' - p) dp( '
(e -e" ,)2 peP /v/1 , d

,l ' oin

In(e -e" nl ),u

There are no known analytical solutions to multi-component coagulation systems but as
with the condensation equation the sum of the final solutions can be used to check
consistency with known one-component solutions.

9.4 Numerical Solutions

There are a large number of methods for solving parts of the general dynamic equation.
As discussed above, analytic methods are only possible in a few special instances but
they serve as a useful point of comparison. Numerical methods can be broadly divided
into two types. Sectional methods divide the entire size range into discrete sections in
which the various distribution functions are assumed to remain constant. The other
approach is to attack the equations directly using the techniques for discretization and
time integration discussed throughout this work. Both methods have advantages and
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drawbacks. Sectional methods have difficulty with the discrete jump in conditions
between sections and can result in artificial diffusion and other issues. The direct
approach can often result in very large systems that can be impractical to handle with
conventional solution techniques. It will be shown how the methods developed in this
work can be applied to the direct continuous approach.

9.4.1 Condensation Equation

First off it is noted that the condensation equation has a similar form as the one-
dimensional advection equation,

ac + vc = 0
at ax

where v is the velocity and may be a function of time (t) and position (x). Therefore the
same techniques will be applied where possible.

The solution procedure outlined in previous sections is summarized here: The
distribution function (n, q, etc.) is discretized according to a given step size, h. Call this
discretized vector w. A function is then applied to this vector that incorporates the spatial
discretization method, the boundary conditions, and any other properties unique to the
solution. This results in a function, f(w(s,t)), that represents the RHS of the condensation
equation. This function is then integrated over time via a prescribed method beginning
from the discretized initial distribution, wo.

For the spatial discretization we once again have the need for positivity preservation so
the technique developed in Section 6.1 will be used. For the time integration the 2-stage
Runge-Kutta-Chebyshev method can be applied. The solution of the condensation
equation actually requires very little modification of the methods as compared to the
transport equations. The important points in implementation are now discussed.

The boundary conditions are actually fairly straightforward. For the lower limit there is a
Diriclet condition that sets the concentration of particles at this limit to zero. This
effectively states that there are no particles below a certain size. For the upper limit it is
proper to apply an open boundary condition. This is because the condensation equation
is first order in the size variable so there can only be one boundary condition.

Recall from the earlier chapters that the stability bounds of a given time integration
method (along with the error control methods) and the eigenvalues of the spatially
discretized portion determine the time step size and ultimately the solution time. As
such, considering the eigenvalue arrangement is always important.

To this end, consider the following versions of the condensation equation. Depending on
the type of distribution the form of the condensation equation changes and it changes
again when it is applied to individual species. The four versions are restated here for
convenience.

166



Table 9.3: Condensation Equation Forms

Distribution Individual species Total
n a an a

n,(m,t) - = -m - Hn, +H,n- 2Hn, = -m- Hn -Hn
at am at am
aq a aq a

qi (m,t) =-m Hqi +Hiq-Hqi  =-m- Hq
at am at am

v,(p,t) Hvi +H,v-Hvi a Hv
vat ap at ap

ap- a ap a
p(,t) - HpI +Hp Hp +Hpat ap at ap

The additional terms are roughly analogous to first order reaction terms in a standard
transport equation. These terms shift the eigenvalues and this effect is easily seen when
considering the set form of the equations at each grid point. Consider a system with three
components, A, B, and C and three different values for Hi. For the n distribution this
amounts to the matrix

HA - 2H

H,

Hc

HA HA
HB -2H HB

H c Hc - 2H_

where H is the sum of the Hi's. For the q and v distributions the matrix has each -2H
replaced by -H and the pi omits the H. This matrix is multiplied by the vector w at every
grid point recalling that w is arranged such that the values for the different species at each
grid point are adjacent, i.e.

C A B C

j J+1 j+1 +1

where thej's represent the grid points. It is then the eigenvalues of the above H matrix
that are of importance. The eigenvalues due to the discretization of the first derivative
portion will have the same arrangement but will be translated by the eigenvalues of the H
matrix.

Initially it may seem that this factor could become substantial if there is a large difference
between the individual Hi's relative to their sum (i.e. the components are of similar
magnitude but of opposite sign). However, closer analysis of the matrix reveals that the
largest magnitude eigenvalues scale with the sum, H, not the individual Hi's. Indeed the
eigenvalues for the abovementioned H matrices are simply

Distribution H matrix eigenvalues
ni(m,t) -H, -2H
qi(m,t) O, -H
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vi(l,t) 0, -H
pi(,t) O, H

The H matrix for each grid point can be put along the diagonal of a larger matrix by
which the entire w-vector can be multiplied. Of course for constant H's the eigenvalues
of the H matrix for each grid point become the eigenvalues of the larger matrix.

The advective portion scales with H as well so the "reaction" term associated with the H
matrix does not add any extraordinary stiffness.

To see how these factors affect the stability, consider the spectrum of eigenvalues for a
simple system. Take ap distribution with uniform grid spacing of h = 0.069 ranging over
masses [0.00001 0.01]. This is a two-component system with growth rates of HA = -0.1
and HB = 0.3 giving H = 0.2. For the advective portion consider a third-order upwind
biased discretization. The eigenvalues can be seen in Figure 9.2 below.

-6 -4 -2 0

Figure 9.2: Eigenvalues for Condensation Equation, "Advective" Portion

This is the familiar arrangement from the eigenvalues is of course the same as the upwind
examples in previous chapters. Now when the "reactive" term is added the eigenvalues
change a relatively small amount as can be seen below.

-6 -4 -2 0

Figure 9.3: Eigenvalues for Condensation Equation, Both Portions
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The same effect is seen regardless of the individual H values as long as the sum is the

same. We can see that the eigenvalues are merely shifted by the two eigenvalues of the

"reactive" portion, -H (= -0.2) and 0.

To summarize, the eigenvalues from the advective portion extend in both the real and

imaginary directions and scale with H/h (where h is the grid spacing) and the eigenvalues
from the reaction portion are all real and scale with H. From a practical standpoint this

means that the advective portion is the primary concern in terms of stability.

The next issue becomes how to characterize the eigenvalues for the different distributions
and spatial discretizations. For the purposes considered here there are effectively two
different cases. For the n and q distributions the form of the advection operator is

m--
am

and for the v and p versions the form is

For this second case the form is identical to the standard advection operator so the
eigenvalue spectrum for each spatial discretization is the same as that discussed in
previous sections using Fourier-Von Neumann analysis. In the first case, however, there
is a significant difference. In the second case it is advantageous to use variable grid
spacing in some situations (see next section). In the case of logarithmic grid spacing the
second case actually becomes identical to first.

One way to estimate the eigenvalues in the first case would be to treat the leading m like
a "velocity" term. To do this one would characterize the eigenvalues using the same
methods as in Section 7.1.3 and then multiply them by the largest value that m attains (i.e.
the "right hand bound" on the size vector). This would be sufficient to bound the
eigenvalues but is more than is necessary.

It is possible to characterize the eigenvalues more precisely but it cannot be done as
neatly. The Fourier-Von Neumann analysis is no longer feasible since this is effectively
a variable velocity case. Ideally we would like to be able to determine the maximum real
and imaginary eigenvalues with similar parameters as in the constant velocity case.

Numerical experiments have revealed that it is possible to use the size variable range and
the number of grid points. While the results do not apply to all conceivable conditions
they are valid over the range of interest for the types of problems solved. This is
acceptable since all that is desired is an approximation for use in determining stability.
The results are summarized in Table 9.4 below. This is comparable to the constant
velocity results from Table 7.1.
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Table 9.4: Approximate eigenvalue bounds for discretized variable velocity operator

Maximum Real Eigenvalue Maximum Imaginary Eigenvalue

1st Order = M* 1+2 mmin Amx = M. m-- ni

Upwind max - mnin  2 mm - mnin

2 nd Order 7e = 0 2  X = M* 1+ mn )
Central M -min

2nd Order = M.r+4 mm = M 11 m
Upwind 5  m - mmin 5 m. - m)a

3rd Order = 1 + m A = M 1+7 mm
Upwind-biased 2 5 m. -ma ) 5 m -m 

The l's refer to the maximum magnitude eigenvalues in the real and imaginary directions
and M is the number of grid points.

Now that the eigenvalues have been characterized for the basic cases the positivity
preservation can be considered. The method developed in Chapter 6.0 can be applied to
the advective portion. Of course the use of the filter will change the eigenvalue
spectrum. However, as was discussed earlier the filtered version results in an eigenvalue
spectrum that is less than or equal to that of the unfiltered version so the above estimates
are acceptable in all cases.

9.4.2 Coagulation Portion

The coagulation portion of the general dynamics equation presents some new challenges.
The numerical solution consists of discretizing the integrals in the size coordinate and
then integrating through time as in the previous sections. The key difference between the
earlier problems is of course the non-local nature of the integral equations.

Looking at the coagulation equation,

dn(m,t) 1m-mn i
dmt im,,, n(m-',t)n(m',t)n(m',t)dm'-n(m,t) f m,m,n(m',t)dm'

mmin mmin

it is clear that the value of n at each grid point will depend on the values over the entire
range of the size variable. To handle the integrals a couple approaches can be employed.
Any type of quadrature could be used to generate a sum that approximates the integral.
There are many techniques that can obtain an arbitrarily high order of accuracy.
However, known values of n are restricted to a grid as defined initially. Since the shape
of the function being integrated changes at each time step anyway it is most efficacious to
base the integration sum upon the standard grid points. This also makes the method far
easier to combine with the condensation equation solution methods described above.
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Using this simple method for the integration the second integral simply becomes the sum

of the n values at each point in the vector multiplied by the grid step size, so for a given
size m the integral becomes

max M

fm',,n(m',t)d m ' _ hifjiwj
mmin i=1

wherej corresponds to the size of interest, m, and i is the indexing variable over the size
range. w is again the discretized version of n, P is now a matrix of coagulation values at
each size and hi is the ith spatial step size.

The first integral is a bit more involved as it depends on the product of two different n
values. For a given m it is approximated as

m- j-1

f.m-.,m,n(m- m',t)n(m',t)dm' hiflj_,,iwjiw .
mmirn i=1

There are some important details as to how best to set up these sums and this is discussed
in the following section.

The spectrum of eigenvalues is again a concern for the stability of the solution. The
problem is a bit more challenging now as there is a non-linear equation involved. As in
the linear cases it is the Jacobian matrix that is of interest, but in this case it must be
calculated. First consider the full discretized version of the equation

-w j1 M= h, .,_, w. _,w, - w I h, j , w,
at i=1 i=1

For each grid pointj the f and h values in the summations can be condensed into a matrix
B'. Then for everyj we have

8w S= TBJW

at

The details of the B matrices are discussed in the next section but for now knowing just
the form suffices. From this the Jacobian can then be derived. It turns out that each row
of the Jacobian is dependent on the sum of the B matrix and its transpose so that the full
Jacobian is

wT  B ++(B)T

Jac =

w B' + (B ) T
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The key feature of this Jacobian is that it is dependent upon the value of w so it changes
at every timestep even if the coefficients are constant in time. Unfortunately this can
pose a challenge when attempting to efficiently characterize the eigenvalues.

Characterizing the eigenvalues now becomes very dependent upon the initial distribution.
This means that some preliminary effort needs to be put in once a given initial
distribution is selected. Unfortunately there are no general rules that can be applied as
there were with the condensation equation for bounding the maximum eigenvalues.

As an example consider the coagulation equation with constant B = 0.01 using a step size
of h = 0.069 and masses over the rage [0.00001 0.01]. Start with the exponential initial
distribution discussed earlier,

qo(m) = m N e
mref

As well as a square pulse function. Now consider the initial eigenvalue configuration for
these two cases using the mass-based mass distribution, q(m,t).

x 10-4

0.4 1

-0.2

___ ----------- -

-0.2
-1

J. -0.4 -3 -2 -1 0-1 -0.8 -0.6 -0.4 -0.2 0
x 104

Figure 9.4: Eigenvalues, Coagulation Eqn.; Exponential (left) and Square Pulse IC

Clearly they are very dissimilar due to the dependence on the w vector. However, there is
one key feature that gives hope for bounding the eigenvalues over the time integration:
The magnitude of the w vector decreases over time. This occurs because the amount of
particles at the smaller sizes decreases as they conglomerate to form larger particles. And
the amount of larger particles increases by a smaller amount since there are less of them
than the original smaller particles. Since B is positive this can only result in the
eigenvalues of the Jacobian decreasing over time. Thus the initial bounding of the
eigenvalues is sufficient for the time integration.

Though this may seem to be a significant issue, it is important to consider the eigenvalues
of the entire general dynamics equation. For the advective portion they scale with 1/h
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while for the coagulation portion they scale with h. Overall this means that the
coagulation portion has a small effect on stability in the full GDE in most cases.

9.5 Implementation and Results

9.5.1 Condensation Examples

From the basic description of the discretization of the major portions of the GDE a
practical implementation can be considered. The program was completed in MATLAB
and is designed similarly to the routines discussed in Chapter 8.0.

The parameters of interest within the program are as follows:

Table 9.5: Basic variables for MATLAB Population Balance function

variable Description
M Number of grid points
x size vector
B coagulation coefficient (if constant)
H growth function
tspan interval in time
q number of different species

There are two main points that differ from implementations mentioned earlier. The first
is the grid spacing. Due to the nature of the evolution of the solution there are often more
substantial changes in one region of the grid than in the rest. This can be handled more
efficiently by using either variable grid spacing or by changing to another coordinate
basis. Technically, using variable grid spacing reduces the order of the solution. The
actual implications of this are discussed below.

The other important point is the manner in which the integral terms are handled. All of
the values for the kernel at each grid are input as a matrix, B_full. Recalling equation
(9.18),

dn(m,t) m-moi.

dt I _,,mn(m - m',t)n(m',t)m't)dm'- n(m,t) J m,,n(m',t)dm'
min min

the first integral is set up by assigning the values of B_full to an array, B_arr. The array
consists of q*M matrices and each matrix has the B_full values assigned such that each
element resulting from the evaluation of the first integral is assigned by

w_out(i) = wT xB_arr(:,:,i)x w * h
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where the colons indicate all elements in that direction. The second integral is easier to
evaluate; the values assigned to B_mat just expand the values of B_full over multiple
points to incorporate the fact that there can be multiple components, q.

The positivity preserving filter is maintained in the same form as in Chapter 8.0. The
only change is that the result now may be multiplied by the position vector, x, depending
on the form of the equation (see Table 9.3).

For the solution the four different representations discussed above will be considered:
number distribution based on mass, ni(m,t); mass distribution based on mass, qi(m,t);
number distribution based on log mass, vi(u,t); and mass distribution based on log mass,
pi(l,t). For the initial condition, an exponential distribution is used. Despite its relative
simplicity, it actually represents the conditions found in many real situations [Seinfeld &
Pandis, 2006].

For the first case consider a simple one component non-coagulating system with a growth
factor H of 0.1. The integration is over 10 time units using RKC with the positivity
preserving filter. With 100 grid points the solutions for the four cases are as follows.

x 104 40

10
U)E 30

0.6

t-- 20!

2- E

0E

0.002 0.004 0.006
m, particle mass

0.008 0.01

-10 -8 -6 -4
In(m), log of particle mass

Figure 9.5: Condensation

m, particle mass

0.0 5

-12 -10 -8 -6
In(m), log of particle mass

equation example results

The blue dashed line is the initial condition, the red dashed line is the analytical solution
and the green solid line is the numerical solution.
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In general we see that the agreement is very good. For a comparison, consider the plot of
pi(u,t) without the positivity preserving filter.

oCOc 0.15

E
C)0.050o 0.1 /COE
~0.05

E

12 -10 -8 -6 -4
In(m), log of particle mass

Figure 9.6: Condensation equation, non-filtered version

While positivity
definitions):

is still maintained, the error is much greater (see Section 2.2.5 for

Table 9.6: Condensation equation error comparison
pi(u,t), no filter I Pi(u,t), filter

Absolute Error 0.0027 0.00018
Relative Error 0.00029 0.000024
Relative Peak Error 0.0314 0.0028

9.5.2 Coagulation Examples

Now let us consider a more complicated example. In this case there are two components,
A and B, with growth factors of 0.1 and -0.05 respectively. Also let the coagulation
coefficient have a constant value of 0.03. Consider the other parameters to be the same
as above except now the time only goes to 1.
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Figure 9.7: Condensation and coagulation, 2 species system

The green dashed line represents the initial conditions for both species. The red line is
the solution for A and the cyan line for B. In this case an analytical result is still possible
for the sum of the particle concentration. It is plotted with the purple dashed line. For
comparison the sum of the concentrations of A and B is plotted with black dots.

Physically we see that even in this shorter time horizon the coagulation effect causes
significant spreading of the distribution as particles now have another means for changing
their size through interactions with other particles.

The error still remains relatively small, with Absolute Error of 0.0602, Relative Error of
0.000074 and Relative Peak Error of 0.0084.

The solution efficiency performance is also quite favorable. In the previous few
examples the problem was solved using modified RKC as well as the built-in ode45 and
ode 15s functions. Only the ni(m,t) and pi(u,t) problem types are used as there is no
substantial variation among the results.

Table 9.7: Solution efficiency results from Condensation and Coagulation examples

Method Parameters Prob Type Fcn Evals Time Steps Soln Time (s
ode45 292 41 14
odel5s ni(m,t) 229 22 16
RKC H= 0" 243 33 13

B=0
ode45 = 10 292 41 15

t=10
odel5s pi(p,t) 230 22 16

RKC 243 33 13

ode45 67 11 39
odel5s HA= 0.1 ni(m,t) 230 17 153
RKC HB= -0.05 57 11 31

ode45 B = 0.03 67 11 41
odel5s t= 1 pi(u,t) 233 17 155
RKC 57 11 33
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Predictably, the RKC method was superior in general. There is some stiffness, largely
due to the condensation terms. The adaptive functionality of the RKC allowed for more
efficient solutions than ode45. odel5s lagged behind substantially in the coagulation
models because of the need to decompose and solve the dense non-linear matrix at each
time step.

With the efficacy of the solution method on a coagulation equation demonstrated, let us
consider a few more examples. First off consider a simple case to offer some intuition on
the coagulation problem. For this example the n(m,t) distribution best illustrates the
point. The initial condition is an equal number concentration of particles for the size
range [0.004, 0.006]. If coagulation is the only physical process that occurs and the
coagulation coefficient is constant across size ranges, consider what this means
physically. Particles within the size would begin to collide with each other: some small
particles would collide to make particles a bit larger than 0.008 and some large ones
would collide to make particles a bit smaller than 0.012. But, combinatorially, the most
frequently generated particles would be of size 0.010. The simulation bears this out as
seen in the following figure. In this case the (uniform) coagulation coefficient has a
value of 50 and the time is 1. The green solid line is the solution.
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Figure 9.8: Coagulation only, uniform

Of course the particles would continue to combine and the distribution will eventually
drift more upward as time passes and this is borne out in the simulation. However this
example confirms our basic intuition.

Now consider if we use a coagulation coefficient that differs for different particle sizes.
Specifically consider a case where particles of similar sizes collide and coagulate at a
high rate and particles of different sizes have decreasing coagulation coefficients. For a
coagulation matrix B this would be represented by large values along the diagonal with
decreasing values in a symmetric band about the diagonal. Note that symmetry is
important for any physically realistic scenario. Otherwise a particle of size 1 coagulating
with one of size 2 would be different than a particle of size 2 coagulating with one of size
1. Under the described conditions with the same situation as the previous example the
results are as follows.
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Figure 9.9: Coagulation only, similar-size dominated

Note that the particles in the middle of the initial distribution coagulated the most as
would be expected since those on the "edge" of the distribution have fewer particles of
similar size with which to coagulate. Otherwise the results are similar to the previous
example.

With the performance and intuition considered it is worthwhile to consider a few
variations on a more complicated example. This example commences with a bimodal
distribution for one species and a triangularly peaked distribution for a second species, in
terms of the n(m) distribution. The condensation coefficient is 0.03 for the first species
and -0.01 for the second; each vary linearly with the grid position. The coagulation
coefficients follow the "similar size dominated" pattern outlined above. The simulation
is run over an interval of two time units. Overall this example is not designed to
represent any actual physical condition. Indeed it is unlikely that the initial distribution
and composition of particles would follow such a pattern. However, the point is mainly
to show that the solution techniques can handle an arbitrary problem. The results are
presented below for the four standard cases.
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Figure 9.10: and coagulation, 2 species system, variable parameters

The blue dashed line is the initial concentration of species 1 and the green dashed line is
that of species 2. The red line is the final distribution of species 1 and the cyan line is
that of species 2.

In this situation no analytical solution is available for comparison. Exploring such
problems is of course the reason for considering numerical solutions. However it is
possible to consider the validity of the solution. The n(m) example is visually the most
convenient for discussion. Most importantly we note that positivity is preserved. The
sharpness of the peak degrades slightly but this is more due to the coagulation than any
numerical diffusion. Otherwise the results make sense given the conditions of the
example. The greater magnitude of the condensation (and evaporation) on the right side
is obviated by the greater size-increasing shift of the distribution on the right side (or
size-decreasing for the second component). The coagulation causes the decrease around
the peaks noted above thought the symmetry is lost in the other effects.

In terms of performance the results were similar to the first coagulation-condensation
example. This demonstrates that even more complicated examples can be handled with
efficiency.

Overall this chapter demonstrated the effectiveness of the RKC-based methods, the
positivity-preserving filter, and the problem solving approach of this thesis in general.
The basic examples considered here can be easily scaled to systems of more species and
different types of coagulation relationships.
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10.0 Other Examples

As mentioned in Section 3.2 there are countless systems that can be represented by
PIDEs. Below are a couple of relatively simple examples that demonstrate the efficacy
of problem-design solution approach of this thesis.

10.1 Neural Example

10.1.1 Problem Background and Setup

Cells serve as an excellent example of systems which are affected by phenomena over

large length scales. Neurons specifically represent complex systems where the long
range interactions can be significantly different from the short range interactions captured

by normal diffusion models. Murray [Murray, 1989] discusses several examples of

neural interactions that can be described by partial integro-differential equations.

The firing of nerve cells is determined by both its autonomous rate as well as excitatory
and in inhibitory input from neighboring cells. The inducing cells can be some distance
away and still exert an influence, hence the need to incorporate long-range diffusion.
Practically this type of model is important in describing pattern formation. These
systems range from mapping the regions of the visual cortex responsible to receiving
input from each eye to the various patterns that form on shells. More recently they have

been applied to memory cells, as discussed below.

Consider a system of cells that is only a function of position, x, and time, t. Denote the
firing rate of cells as n(x,t). For this simple model it is assumed that in the absence of
external stimuli cells either do not fire or fire autonomously at a constant rate, normalized
to one. This is also referred to as the synaptic drive or synaptic input in other situations,
as described below. Perturbation from the steady state is described in terms of the rate of

change of the firing rate,

dn
c= f(n) . (10.1)
dt

The functional form off will determine where the steady states of the firing rate are.
Perturbations due to external stimuli will cause temporary changes in the firing rate that
may result in a new steady state. Consider a third order polynomial forf as shown in
Figure 10.1. If the cell is temporarily excited to a firing rate above the meta-stable state
value it will eventually settle at the upper steady state; if it is inhibited to below the meta-
stable point it will eventually settle at the lower steady state. Thus we see the importance
of external stimuli: even temporary effects of non-adjacent cells can change the long term
behavior of a given cell.
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f(n)
steady states

meta-stable state
Figure 10.1: Rate of change of the firing rate

For a system of cells it is apparent how complicated the interactions could become. We
need to consider how the neurons are affected over distances; this is accomplished by the
following modification to (10.1):

anS- f(n) + I K(x - y) n(y, t) - dy.
at #

(10.2)

S is the spatial domain over which the effects of other cells are relevant. The first term is
the kernel which is a function of the distance between the particles of interest. The 1 in
the integrand is an arbitrary constant that determines the value at which the influence
from neighboring neurons is positive (in this case, if n>1) or negative. For the purposes
of this example the kernel is assumed to be symmetric.

A typical cell behavior exhibits local activation and long range inhibition as shown by
Figure 10.2 below. Consider the case with a steady state at n = 1. In the region around x
the effect of the integral will increase the firing rate in the immediate region while
inhibiting neighbors past a certain distance.

K(x-y)

activation

x y
inhibition

Figure 10.2: Symmetric activation kernal

When equations of the form of (10.2) are used in practice, relatively simple kernel
functions are used. Additionally, small perturbations around the steady state are assumed
so thatf is approximately linear. With these simplifications the functional form of n can
be assumed to be as
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n(x, t) oc exp(At + ikx)

so that the Fourier transform can be used to get a solution in terms of the growth factor, X.

While much can be done with these versions it is more interesting to consider the
distribution of firing rates and expression that can result from more complex functions.

A problem discussed by Elvin [Elvin & Laing, 2005] deals with such a function. Their
example applies to memory cells. Previous work cited in the paper describes how
neurons in the prefrontal cortex have elevated firing rates during the period in which an
animal is "remembering" the spatial location of an event.

Similar to above, we have n(x,t) which we will refer to as synaptic drive for the
remainder of the example and a PIDE,

2an(xt) = n(x,t) t)+ K(x-y)g n(y,t) dy (10.3)
at Ox2  s

where the most noticeable differences are the addition of a diffusional term and the more
complicated function, g, in the integral. Note that when we have g(n(x,t)) > 0 the neurons
are active at x.

Problems in the form of (10.5) are especially interesting as diffusion equation-type
problems benefit the most from the Runge-Kutta Chebyshev methods; indeed [Elvin &
Laing, 2005] discuss the need for implicit solution methods for some of the larger values
for d.

Solution of the non-diffusive (d=0), stationary version have been completed in e.g.
[Laing et al., 2002]. A key feature of the solution shape is a characteristic number of
"bumps" in the solution profile which depends strongly upon the initial conditions. Such
solutions are useful for examining the long-term behavior when examining solution
accuracy. As such, it is worth briefly considering them.

Hereafter the kernel function, K(.), and the activation function, g(.), will be defined as

K(x) = e- bl- bsin(Ixl) + cos(x)

g(n) = 2e- 'r/"-()H (n - 0 )

Where b, r, and 0 are parameters and H(.) is the Heaviside function. These functions are
depicted in Figure 10.3 below.
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Figure 10.3: Kernel function (left) and activation function; b=0.25, r=0.1, 0=1.5

The initial condition is defined by the smooth, decaying function

n(x, 0) = cos exp - 1 . (10.4)

where L and R are parameters.

As it turns out the steady-state solution can have an arbitrary number of bumps. The

bumps refer to the number of central peaks in the solution profile. Mathematically, this

can be defined by considering the stationary problem

n(x,t)= K(x-y)g n(y,t) dy+k

where k is some constant. Define the region of excitement by the range S' = {xln(x)>O}

which corresponds to some finite range where n is excited (above the threshold value 0).

Due to the homogeneity of the stationary problem it is apparent that n(x) is a solution

(that is, equal to zero) whenever n(x-a) is so the region to be considered can be S ' = (al,

a2) where n(al) = n(a2).

If this region is connected then the solution is a one bump solution. A two bump solution

could then be defined as

n>0 on (a,,a 2)u(a 3,a4)

S' = n(a) = n(a) = n(a3) = n(a,)

n < 0 otherwise

and this definition can be extended for N-bumps. This can be seen in the figures below.
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Figure 10.4: One and two bump solutions to the stationary problem

The zero point is of course shifted by the value of k, but the main point is that there are
primary peaks and smaller peaks that die away below some threshold value.

An analytical solution can be found for the case with no diffusion and where r-0 so that
g() reduces to a pure step function. In this case we just have

n(x, t) = K(x - y)H(n - )dy

which reduces to

n(x,t)= ,K(x- y)dy

where S' is the region of excitation. Thus we can just integrate the kernel over some
specified excitation region. Defining this region as (-al,a2), performing the integration on
the above-specified kernel function yields

eb(t - x) -2b cos(al - x) - sin(a1 - x) + b2 sin(a, - x)

n(x, O) = b2 +1
e-b('-x) 2b cos(a - x) - sin(a1 - x) + b2 sin(a - x) - 4b

b2 +1

eb(a-x) 2b cos(a 2 - x) + sin(a 2 - x) - b2 sin(a 2 - x)

b2 +1+-
e-b(a2- )' 2b cos(a2 - x) + sin(a 2 - x)-b 2 sin(a 2 - x))4b

Sb2 +

a, <x

x < a,

a 2 _ X

x <a 2

This function can be evaluated over discontinuous regions S' to obtain the multiple-bump
steady-state solutions. Much more detail on these solutions can be found in [Laing et al.,
2002].
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The boundary conditions are prescribed to be Diriclet conditions at the boundaries of the
solution area, (-R,R), and have a value of zero. This corresponds to the physical reality
that signals do not travel an infinite distance.

10.1.2 Problem Solution

To solve the problem (10.5) with the functions and initial and boundary conditions
described above a preliminary evaluation of the solution domain must be completed. The
diffusive portion has the eigenvalue spectrum as discussed in Section 7.1.3 for the
standard second order discretization. There is no advective portion. The integral portion
shares characteristics with those of earlier sections. Specifically the eigenvalues are
relatively small compared to the other sections. For the initial conditions specified above
the eigenvalues have the following configuration:

0.5

0 --

-0.5

-1
-1 0 1 2 3 4 5 6

Figure 10.5: Eigenvalues of integral portion

Even when the diffusion coefficient is zero, these eigenvalues are not significant in their
effect on the stability of the time integration.

Positivity preservation is not necessary in this example since the synaptic drive can be
positive or negative. Regardless, the primary source of spurious oscillations, the
advective portion, is not present in this problem so the need for filtration can be
eliminated.

The solution methods undertaken in [Elvin & Laing, 2005] consisted of explicit Euler,
implicit Euler, and Crank-Nicolson. These numerical experiments described in the paper
can be replicated for the purposes of comparison. To evaluate accuracy the steady state
solution for simple solutions can be compared with the time-integrated numerical
approximation over long enough time periods.

For the first experiments, the simplest case with d and r equal to zero will be solved so
that the result can be compared with the known analytical solution. For this and all
following experiments b is set to 0.25 and the range is from -12.57 to 12.57r.
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The time span was set to 20 units; after that time
effectively approximates the long-time solution.
The results are shown below.

there were no significant changes so this
The initial condition is set with L=6.

-540

V.

-20

i •

o 2i

0 20 40

Figure 10.6: Long-time solution, 201 grid points, L=6

The initial condition is the green dashed line and the analytical solution is the red dotted
line. Qualitatively the results are quite close. The error measurements, as defined in
Section 2.2.5, yield the following values.

Table 10.1: Error evaluation, neuron base case
Grid Points Absolute Error Relative Error Peak Error

101 0.0319 0.0010 0.0754
201 0.0423 0.00068 0.0171

The errors for using the methods of the Elvin paper were effectively the same. That is
not surprising given the fairly simple form of this first test. The results after 201 grid
points produced negligible improvement in the accuracy.

It is important to note that changing the value of L in the initial conditions determines the
final steady state, i.e. the number of bumps. A few different values of L will be tested
following the results in the paper. It is worth mentioning here the sensitivity of the form
of the solution to grid points and time steps. A deficiency in either of these is actually
enough to cause a solution to converge to a different number of bumps. This gives a very
good first level qualitative check even in the cases of the more complicated problems
outlined below. With regard to this criterion the RKC- based solution performed well in
all cases over 200 grid points.

Now the more complicated form will be tested. The parameter r is given a consistent
value of 0.01 and d is varied to the values of the paper. Judging from the results of the
simple version there is likely to be little difference in accuracy between the methods here
and those of the paper. And since there is no longer an analytical solution available the
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criteria of comparison will be performance. Specifically the number of time steps, the
number of function evaluations, and the total solution time will be evaluated.

The results of the tests are displayed below. The RKC-based method is compared with
the Explicit Euler and Crank-Nicolson methods used in the paper. The initial parameter
L is tested at values of 6, 2.5, and 1.7 which results in one, two, and three bump solutions,
respectively.

Table 10.2: Solution efficiency results from neural example

Method L d Fcn Evals Time Steps Soln Time (s)
EE 50 51 15
CN 0.1 429 10 187

RKC 65 14 20

EE 200 201 47
CN 6 0.5 431 10 179

RKC 159 17 39

EE 400 401 99
CN 1.0 429 10 180

RKC 219 20 57

EE 50 51 15
CN 0.1 435 10 192

RKC 65 14 22

EE 200 201 47
CN 2.5 0.5 441 10 193

RKC 161 18 40

EE 400 401 99
CN 1.0 445 10 199

RKC 221 19 63
EE 50 51 15
CN 0.1 439 10 182

RKC 67 14 19

EE 200 201 47
CN 1.7 0.5 450 10 202

RKC 159 18 47

EE 400 401 99
CN 1.0 454 10 208

RKC 225 20 67

EE, CN, and RKC represent Explicit Euler, Crank-Nicolson, and Runge-Kutta
Chebyshev (modified) methods, respectively. The number of grid points was 201, r was
0.10, and 0 was 1.5.

The advantages of the RKC-based method are immediately apparent for larger values of
the diffusion coefficient. The Explicit Euler method eventually requires a large number
of time steps to remain stable while the Crank-Nicolson method is inherently time-
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consuming due to the of matrix decompositions required at each time step. Note that for
RKC the number of function evaluations increased slightly with decreasing L. This is
because as L decreases the number of bumps increases, and therefore solution complexity
increases causing RKC's error correction to change the solution method slightly. As the
two basic methods do not have error correction they showed identical performance for
the different L values. In fact, the Crank-Nicolson method did not change significantly
with d either since its stability domain is unbounded; the only differences in function
evaluations were in the solving during the matrix decomposition.

It should be noted that neither of these methods have any sort of error correction, the
number of time steps is determined either by stability (Explicit Euler) or arbitrarily
(Crank-Nicolson). While the Explicit Euler shows some advantage for low diffusion it is
in fact only a first-order method so accuracy is a concern. A second-order or higher
method would have a similar form to that of the RKC (when d is relatively small) and
similar performance.

For values of the diffusion coefficient greater than about 0.50 the long-time solution
collapses to a flat line. However, it is really the intermediate dynamics that are of the
most interest anyway. The actual physics of much of the system are not well known so
the ability to handle a wide range of potential values is useful when using these types of
models to compare with experimental data.

Overall the advantage of the RKC-based method is clear for these types of problems.
The speed advantage is apparent in most situations and while the accuracy is not directly
measurable for the more complicated problems the error correction methods in the RKC
program is likely a significant factor. The above PIDE system is of course a very great
simplification of reality. However it ultimately demonstrates the efficienct of the RKC-
based approach. For use in more complicated models that better explain real systems this
efficiency would become quite essential.

10.2 Radiative Heat Transfer

10.2.1 Problem Background and Setup

Heat transfer by electromagnetic waves, known as thermal radiation or radiative heat
transfer is important in many applications and is a fundamental property of all materials.
However, it was historically much less well understood than the other primary forms of
heat transfer, conduction and convection. This is due in no small part to the less-intuitive
underlying description of radiative heat transfer which depends on fourth-power
temperature relationships and electromagnetic theory and leads to rather complicated
descriptive equations. Additionally, the long range nature of radiation makes standard
modeling techniques ineffective. Indeed, even relatively simply situations rely on partial
integro-differential equations for models. With numerous practical uses and challenging
equations, radiative heat transfer represents an active area of research.
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The key feature of radiative heat transfer is that it does not need a medium for
transmission; however the presence of a medium does have significant effects. These
features necessitate several descriptive terms beyond temperature and some constant
describing the medium. First off is the refractive index, n, of a medium which describes
the relative speed of electromagnetic waves in a medium relative to a vacuum which is
defined as n-l.0. The wave itself is identified by its frequency, wavelength, or
wavenumber. In general many properties change with different frequencies; for the
purposes of this section it is assumed that all dependent parameter have been integrated
over all wavelengths.

The first energetic quantity of interest is the total emissive power, E, which has units of
emitted energy / time / surface area. Emittance refers to radiative energy put off by a
body. The standard reference point for a body is a blackbody, a theoretical object which
has perfect absorption and therefore maximum emission. A subscript b refers to a
blackbody hereafter. Using Planck's Law for a black surface bounded by a transparent
medium and integrating over all wavelengths gives the total blackbody emissive power,

Eb(T) = n2 rT4

2rSk4

where r= 1 h is the Stefan-Boltzmann constant, T is temperature, k is Boltzmann's
15hco

constant, h is Planck's constant, and co is the speed of light in a vacuum.

The next important concept is solid angles. Solid angles are the two-dimensional analog
of one-dimensional angles. Since radiation from a point on a surface can leave a surface
in any direction and have different energies for each direction, it is useful to define the
direction in terms of a polar angle, 0 (measured away from a normal vector to the surface)
and an azimuthal angle, y (measured from an arbitrary axis on the surface) to give a unit
direction vector, s. With these two coordinates any point on a unit hemisphere above the
point can be defined. For some other surface above the point, the projection of that
surface onto a plane perpendicular to the direction vector divided by the square of the
distance (denoted S) between the new surface and the original point is called the solid
angle, Q. The diagram on page 12 of [Modest, 2003] further elucidates the description.
It should be noted that the maximum possible solid angle is 27t as seen by integrating over
all possible directions:

2;r 1/2

J JsinOdOdy/=2;
==0

Solid angles are measured in dimensionless steradians, sr.

With solid angles defined, we can now consider the radiative intensity, I, which has units
of radiative energy flow / time / area normal to rays / solid angle. The emissive power is
the radiative intensity integrated over all possible directions pointing away from the
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surface. For a blackbody the radiative intensity is independent of direction or diffuse so
the relationship simplifies to

Eb(r, T) = zI b r, T).

where r is a position vector describing the point of emission.

Now we have the tools in place to consider some problems involving media between
surfaces that participate in the radiative heat transfer through emission, absorption, and
scattering. Within a medium the concept of emissive power does not have any meaning
since there is no surface to serve as a basis. Intensity, however, requires only a point and
is therefore the quantity of choice.

First consider a non-participating medium and a radiative intensity traveling along some
path s. If the length scales are within the range of normal engineering problems, the
speed of light is so fast relative to the length that all energy arrives "instantaneously" at
each point along the path. This assumption will allow later calculations to be simplified.

Radiation is attenuated by absorption and scattering. Absorption depends on the
properties and density of molecules present in a medium. It has been shown that
absorption is proportional to the incident intensity and the distance of the beam.
Therefore, over a path, s, the effect on radiative intensity can be quantified with a linear
coefficient, K, by

dl abs = -K l ds. (10.5)

The coefficient (and those defined subsequently) can actually have a dependence on the
path. Scattering is a bit more complicated as the radiative energy now travels in another
direction rather than just increasing the energy of the medium. However the equation for
change along one direction has a similar form as for absorption, with a linear coefficient,

dl sea 
= -orIds . (10.6)

These two coefficients are often combined as the extinction coefficient, 3. Any of the
attenuation coefficients have the same form and the differential equation can be solved.
Considering the extinction coefficient case we have

d abs+sca= - flds

I(s) = I(0)exp - frids = I(O)e-

The radiative intensity at point s was found by integrating the extinction coefficient along
the path. The result of this integral is known as the optical distance and is denoted t; it is
used as a proxy for distance in many of the later calculations.
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Radiation is augmented by emission and scattering. Emission along the path is similar to
absorption in that it is proportional to the path. However, now we are concerned with the
local energy content in the medium. At thermodynamic equilibrium this can be shown to
be just the blackbody intensity at all points in the medium, so the equation for the change
in intensity due to emission is

dl em = lbds . (10.7)

whereK is as above. By itself this equation is fairly trivial but it is often combined with
the absorption equation; the combined equation can be solved to give

dlabs+ = K Ib -I ds

Jds' dl + e'I= ds' b

ds
S=S,I=I(S) ( =ds Kds'

Sde Ie = b J cds
s=O,I=l(O) 0

eK I(s) - e I(0) = Ib ( e

I(s) = I(O)e-' + I b 1- e-

where t is defined as above, with the assumption that P is zero.

Augmentative scattering is more complicated to describe since scattered radiative
intensity from all directions must be considered. Consider the path of a cone defined by
the unit vector s. Now consider an infinitesimal segment of the line ds and a
perpendicular area dA that together define a volume dV. Another cone defined by si
projects onto this area. Defining di2i as the solid angle of the incoming ray, the total
radiative heat flux impinging on dA within this solid angle is

I(s )(dAs.s)d , .

This flux travels through the volume dV for a distance ds/(si's) (where the dot product is
just the cosine of the angle between the two rays since the vectors are unit vectors). Now
the total energy scattered away from si is

-dl = ds = o I()(dA .s)d2, 1 = crI(s)dAdQ,ds

Some fraction of this is scattered into the cone dQ defined by the original cone. This
amount is defined by a scattering phase function, D(s,s) which defines the probability
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that a ray from one direction will be scattered in another direction; it is conventionally
divided by a normalizing factor of 47r. The energy scattered from d2i to dn is then

cj( s)dAdids q . d
4z

Now the total energy flux scattered into the direction s from all incoming directions is

dI(s) sadAdQ = Il()dAdL, d

or

dl(s) s=ds , I l()(,,s)da, . (10.8)dI(s) =ds YI(ss)di
- sca 4r 1 (10.8)

4zf

where the integration over 4nt is to include all possible solid angles (the surface area of a
unit sphere).

Now that all of the terms for attenuation and augmentation are defined the total energy
balance on the cone defined by s can be considered. Equations (10.5), (10.6), (10.7), and
(10.8) can be combined but the differential terms on the left hand sides are ambiguous.
Clearly the difference should encompass changes in both time and position. However, as
was argued above, changes in time are generally insignificant on engineering time scales.
Therefore, the quasi-steady state equation will be considered hereafter:

dI(s, s) crD s2dI(s,= Klb (S) - KI(S, s) - - SI( S,) + f rI(sI(s, s)d
ds 4z4r

This equation is often re-written in terms of the optical distance defined above and a
coefficient o,

K + O s

To give the equation

dl
d= -I+(1- o)Ib +- (g)O(, )d (10.9)
dr 41 4

Where the last two terms are combined as the source function:

S(r,s) = (1- c)Ib + - JI(s)d)(s,s)d (10.10)
4 4f
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The general solution to (10.9) can be obviated by beginning from the form with the
source function and applying an integrating factor:

dl
-+I =S
dr
d

Se'l = erS
dr

I(r) = I(O)e-' + JSe-()dr '

This form demonstrates how the entering intensity decays exponentially over the optical
intensity. The integrand describes the self-extinction over the distance from a given point
to the point of consideration; the integral sums all of these effects over the path. Clearly
this equation can be quite difficult to solve completely; however there are a few more
assumptions that can be useful before a solution is attempted.

First off, it is worth defining two more quantities that are of interest in engineering
calculations. The incident radiation, G, is a useful quantity when the scattering is
isotropic. It is defined as

G(r) = I(r, s)dQa (10.11)
4:r

and describes the radiation impinging on a point from all sides. Another important
quantity is the radiative heat flux vector, q. In this context it is defined as

q(r)= I(r, s)sd2 (10.12)
4,

and describes the heat flux within the participating medium along the direction of s.

From this point onward we will focus on a general example: a gray medium between two
parallel plates. In this case we will consider radiative heat transfer in one dimension and
on a system in radiative equilibrium. This relatively simple case has some examples that
can be solved analytically to serve as a basis for comparison; in addition this case can be
readily expanded to consider more complicated cases.

First off, a gray medium refers to one which has the same emittance and absoption
characteristics across all wavelengths; this idealized condition is consistent with the
above uses of total emissive power and radiative intensity which were implied to have
been integrated over all wavelengths. Radiative equilibrium effectively implies that
radiation is the only mode of heat transfer in the system.
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To set up the system of interest, consider two parallel plates, each with some temperature
profile. A point of interest, P, is somewhere within the medium; our goal is to describe
the energy at this point.

Intensity leaving from a point on the lower plate can be described with a polar angle 0
measured from a vector normal to the surface (z-direction) and an azimuthal angle y
measured from some axis in the plane of the surface (x-y plane). Denote the radiative
intensity leaving this point by Iw(O,V). Now this radiation is augmented by the source
term (Equation (10.10)) through emittance and scattering from other directions. This
radiation also decays due to absorption and scattering exponentially according to the
distance traveled.

The assumption is now made that both plates are isothermal and isotropic: temperature
and radiation do not vary across the surface. This still allows for a dependence upon 0.
Now if the temperature and radiative properties of the medium vary only in the vertical
direction every point with the same z-coordinate will have the same radiative intensity.

Thus if we define the optical depth as r = f /dz' we can determine the radiative

intensity in terms of only t and 0. For use later we shall define the (more standard)

optical depth along the path s as r, = fds .

These simplifications allow the source term to be expressed as

2z x4 2r r
S(r,O) = (1- w)Ib(r) +a id(r,)(,, i)sinO,dd,.

There are several simplifications to the scattering phase function, D. For the first
example presented below scattering will be ignored. This amounts to setting co to zero so
that the source term simplifies to just the blackbody intensity lb.

Let us now return to the radiative transfer equation (10.9). Recall that the standard
definition for optical depth (along the path s) was denoted Ts; this is related to the z-
direction t by r, = r / cos 0. Defining the radiative transfer equation in terms of this new

r and also integrating over xy (which is irrelevant due to the symmetry described earlier)

gives

I dl dl =2; ;

8 ds dr, 47 0o

cos9 = -I+ (1- o)Ib i+ I(rOXF(0,i)sinOdO1dr 2 0

Now the general solution for intensity can be written as
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I'(r, 9)= I (9)e-rfio + JS(r', )e-rC' os '
0 cos9

where the superscript + indicates that this expression is valid for radiation emanating
from the lower wall (t=0, I,). From the top wall (r=L) we have r, = -(TL -r) / cosO

where cos 0 will of course be negative for 0>n/2, corresponding to when the direction is
opposite to that of the (upward pointing) normal vector. The intensity for the top wall (2)
is then

I-(r,9) = I2()e('L- ')/ '" + IS(r',9)e(r'-)/cS dr'

TL d'

cos 9

To make the notation more compact we can use t = cos 0 in the previous three equations.

Now we are interested in calculating the radiative heat flux within the medium. Starting
from equation (10.12) and recalling that the magnitude of the unit s vector reduces to cos
0 based on the conditions described above we have

q(r) = I(r, s)sdQ
4x

2r x

q(r) = f I(r,9)cos9sinO9dOd
00

= 2x I(r,/u)pd/
-1

= 2z I- (r, p)pudpu + (ru)d
-1 0

= 2z I-(r,-p)pdpu + I+ (r,p)pdp
0 0

1 1 1
= 2;r I(p)e"1 'du fI(-2 )e-'-'d

0 0

+ 2;r S(r', u)e-(r-/fdr' - JS(r', -p)e- '/dr'
0 0 r
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With flux defined we now have the tools to consider an example. Let us consider a non-
scattering medium (co=O) and black surrounding surfaces. The non-scattering simplifies
the source equation to

S(r,s) = Ib')

and the walls can now be described as Ibl and Ib2. Now the intensity in the upward and
downward directions can be written, in terms of jt, as

I+ (r, ) = Ible - /p + fb(r')e(7dr'
dUo

I-(r, P) = Ib2e(L)/ 1 Ib(r')e- dr

Now that the intensities and radiative sources are independent of direction these terms
can be taken out of the integral and the order of integration can be reversed. This allows
the heat flux to be written as

q(r) = 2x Ibl be -rU pdp Ib2 e-(rL-r)/ pd p
0 0

r I  rL 1
+ 2;r Ib(r') e-(r-')Udpldr' - fIb(' ) -('-)/Uddr'

0 0 r 0

Now we note that in the integration over space l is essentially a dummy variable. The
integrals over R can be written more compactly as exponential integrals and by changing
the dummy variable by t = 1/R.

E, (x) = e- f" = P-2e-/ dt
1 0

Finally, substitution into the heat flux equation gives

q(r)= 2 IblE 3(r) -Ib 2E3 (rL -r)+ Ib(r')E 2(r -r')dr'- Ib(r')E2(r'- r)dr'
0 r

And if the medium is gray we have I = n2 T 4 / ; so that the heat flux can be written in

terms of temperature and simplified:

q(r) = 2n2 4E(r)- T24E(r- ) + T(r')E2(Ir - r')sign(r- r')dr'
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In this reduced form we can return to considering transient cases. Consider the energy
equation for the medium

aT aq
pc,- = -z

at az

where p and c, are the density and heat capacity of the medium, respectively.
Differentiating the heat flux equation then gives us an equation describing the
temperature profiles in the gray medium between two black parallel plates:

pc, = -2n4E r)- T 4 E 3 (L r) + 4)E 2  - r')sign(r -')d'

= -2n 2or 24 -E2 (r)-T24E 2 (rL -)

- 2 n2 fl T(r')E2(r-r')dr'- T4(r')E2(r'-r)dr'

= 2n2  T4E2)+ 24E 2(TL - ))2n2f

ST(r)E2 ( - )+ 4 (r')E2(r- r')dr' - -4(r)E2 ( )+ 4(r')E(r' -)d'

= 2n 2  4E(r) + T24E 2(rL - ))
':

- 2)n2 -4 r ) + (r'E r (r r')Ed,(r - Tr')d + 4 ( E (r'- 0.13))dr'
where the new variables are
rr r

= 2n2 T4E2 (r)+24E2(r, )+ 4 T(r')E(Tr-r')dr'-2T'(r)
0

This equation forms the basis for the next example. As is often done in the literature (e.g.
[Prasad & Hering, 1969]), this equation can be non-dimensionalized as follows:

= E2(r) + 04E3(r -,r) + 04(r',-)E,(Ir-r'l)d-r'-2E4(r,-) (10.13)
t 2 2o

where the new variables are
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T T,
T T

4n2 pacI
t t

pc,

The greatest challenge in solving this equation numerically is the fact that the function
E (Ir - r') has a singularity at the origin. This will be addressed in the next section.

10.2.2 Problem Solution

For the problem evaluation the non-dimensional radiative transfer equation (10.13) will
be solved. The results in the literature lack sufficient detail to fully compare the solution
methods. Despite this, some aspects of the solution techniques are still comparable.

The initial condition is that the entire medium and sides are at some uniform temperature,
T2 after which the lower side goes through a step increase to a new temperature, T1. The
situation is depicted below.

T2
yL

0 gray medium

Figure 10.7: Radiative example

There is technically no need for boundary conditions since the only derivative is in time.
In dimensionless form the initial conditions are then

O(r,0)= 02 01 (0+)=1

The first step is to evaluate the eigenvalues of the problem. In this case it is particularly
easy since there is neither an advective nor a diffusive term. Similarly to previous
examples the integral terms here do not pose any significant challenges in terms of
stability of the time integration. In this case, though, there is some challenge in terms of
the integration due to the singularity.

The singularity will potentially be an issue at every grid point since the value Ti - x'l will
achieve a value of zero at some point along the grid. The most practical solution is to
create a finer grid at the points near the singularity and also modify the function
approximating the exponential integral to return a large but finite value for an evaluation
at zero. With these modifications a standard trapezoidal integration scheme over a
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modified grid can be employed. As will be shown later these approximations seem to
have little effect on the overall accuracy of the solution.

There is no known analytical solution for any of the versions of the solution. Thus, to
compare the accuracy of various methods, we solve the problem at a very a high level of
accuracy (many grid points and time steps) and determine at what number of grid points
the solution begins to diverge significantly from the accurate solution.

The descriptions of the solution methods in the various papers mentioned are not precise
enough for exact solution. However, from a performance standpoint the time integration
can be compared with the built-in MATLAB solvers, ode45 and ode 15s.

The numerical experiments are run over several optical depths and time ranges. To
compare with the literature the final results are normalized according to the coordinates

04 -40= -2 =

1-04 rL

so that the variables are comparable for any initial values and depths.

In all cases 02 = 0.5 and the solution has 100 spatial grid points. The spatial integration
at each time step uses a ten-fold increase in grid points in the range of ±5% of the
singularity. So for example if the range of r was from 0 to 10 and the singularity
occurred at r=3 then there would be 25 grid points from 0 to 2.5, 100 grid points from 2.5
to 3.5, and 65 grid points from 3.5 to 10. Since this variable grid is only used for the
space integration it does not affect the stability in the manner mentioned in Section 2.2.1.

A few solution temperature distributions are presented below for various times and
depths.
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Figure 10.8: Temperature profile for TL=0.1 (left), and TL=1.0, and TL =10 (bottom)

For these coordinates the initial condition is uniformly zero. After dimensionless time, T

, exceeds about 4 the solution doesn't change substantially for the first two examples. In
the third example it takes closer to 60 for the long-term solution. Physically, we see that
for case with optical thickness equal to 0.1 the temperature is nearly uniform throughout
the surface and simply increases to an equilibrium value. As explained in [Prasad &
Hering, 1969] this is approaching the optically thin limit where flux is nearly constant.
As the optical thickness increases, the gradient becomes steeper. Eventually the optically
thick limit is approached where only the short range interactions between gas molecules
are present and the radiative transport resembles diffusion.

These results agree qualitatively (and quantitatively to the extent that values can be
estimated from a graph) with those in the literature. Results for other parameters showed
similar agreement.

The next evaluation is performance. Several test runs are compared among the modified
Runge-Kutta Chebyshev, ode45, and odel5s. The parameters are as above.
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Table 10.3: Solution efficiency results from radiative heat transfer example

Method TL t Fcn Evals Time Steps Soln Time (s)
ode45 61 10 7
odel5s 0.5 115 11 35
RKC 55 11 7

0.1
ode45 67 11 8
odel5s 4.0 130 13 41
RKC 55 11 7

ode45 63 11 8
odel5s 0.5 115 11 35
RKC 57 11 8
ode45 69 11 9
odel5s 10 4.0 130 13 42
RKC 57 11 8
ode45 331 63 104
odel5s 60 461 28 176
RKC 207 45 86

The solutions obtained in each case were effectively identical which is not surprising due
to the error correcting methods employed among the three methods. The results show
that RKC has an advantage over ode45 and a large over odel5s in terms of solution time.
These results are what we would expect. Since there are no diffusive or advective
portions these do not substantially affect the stability domain requirements. As
mentioned above the integral portion has a comparatively small impact on the stability
domain. However, there is clearly some impact so as to give RKC's adaptive approach
an advantage over the similarly structured ode45. odel5s is noticeably slower due to the
need to decompose and solve the dense, non-linear matrix due to the integral portion at
each time step.

Overall this example has demonstrated another area in which the approach using problem
characteristics in solution design is advantageous. Following the derivations and
simplifications in the previous sections obviates the fact that problems involving radiative
heat transfer can be quite complex. Despite its simplicity, this example demonstrates the
importance of efficient solution techniques that would be necessary in attempting more
substantial physical models.
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11.0 Conclusions and Directions for Future Research

11.1 Conclusions

Modeling natural phenomena as systems is one of the primary aspects of chemical
engineering and differential equations serve as the backbone for many of these models.
Many characteristics of such models make them challenging to solve, such as the number
of variables, non-local phenomena, the range of physical constants, and number of
repeated solutions needed. All of these challenges represent areas of research that are
quite active.

This thesis has developed several important techniques that can be applied to a wide
range of systems of both partial differential and partial integro-differential equations.
Numerical techniques for both the spatial discretization and time integration from several
sources have been combined and enhanced for the design of solution methods that
actively exploit problem knowledge. The resulting numerical methods achieve solutions
that are accurate, robust, and preserve positivity in a computationally efficient manner.

The most important spatial discretization technique developed was the positivity
preserving method. This technique allows for a consistency of order three while avoiding
any spurious oscillations and minimizing artificial diffusion. And the design has allowed
for the inclusion of systems with multiple dimensions and forms beyond the basic
advection equation.

The time integration techniques are designed to exploit knowledge about the problem
domain. Based on the Runge-Kutta Chebyshev design, they change the shape of the
stability domain to accommodate the eigenvalues resulting from the spatial discretization
of the right-hand side terms. The modification of the original design in this thesis allows
for the inclusion of diffusive, advective, and integral terms. This allows for many classes
of problems to be handled explicitly. In the case of extremely stiff problems, an implicit-
explicit method was also developed to reap as many of the benefits of the explicit
techniques as possible in problems where implicit techniques become necessary.

Population balance systems evaluated exemplified many of the challenges present in
integro-differential equations. Multiple species, long-range interactions, and large
characteristic domains are all present. Application of the solution techniques showed
gains in both accuracy and efficiency over standard techniques.

The examples of both the neural and radiative heat transfer examples demonstrated the
wide range of systems that can be solved with the solution tools developed in this thesis.
Specifically, the neural example allowed for the efficient handling of an additional
diffusional term that more accurately models the real physics. The radiative example
demonstrated that a challenging integral can be handled in an efficient manner using
explicit methods.

202



Overall the solution methods developed in this thesis have addressed the challenges
mentioned above. Their development helps in the analysis of the increasingly
complicated systems that underlie many interesting problems in chemical engineering
and beyond.

11.2 Directions for Future Research

While the tools developed in this thesis have been successful there are many pathways for
further improvement of the methods and opportunities in the analysis of new and
different systems.

At the basic level there is still some theoretical development for some of the novel
techniques that can be developed. While their general efficacy has been well explored a
deeper exploration of aspects such as convergence might lead to even better models.

The examples employed in this thesis have the potential for further expansion. For
example, the neural problem is technically only valid over one layer of cells. It could be
expanded to multiple layers since the solution method is efficient and relatively robust to
more complicated systems. The radiative example could be expanded across multiple
dimensions and also incorporate other modes of heat transfer as well.

One major opportunity is in parameter estimation. In such problems, solutions with
similar structures are solved repeatedly and change only slightly at each update of the
parameters. This is especially attractive for the methods of this thesis for two reasons.
First, the similarity in problem structure could be exploited, for example, by examining
the eigenvalue structure initially and using this to design a method that remains stable
around small perturbations to this solution domain. Second, the need to solve the
problem many times can benefit greatly from any improvements in efficiency of the time
integration.

Another class of problems is those where the non-local effects extend over time. This is
present in the Fisher-Kolmogorov equation for traveling wave solutions in diffusive
systems and materials equations where a substance deforms with some "memory" of its
previous form. The general form of such equations is

ab(x,t) t a2b(x,s)
t jf (s) X2 ds + g b(x,t)

0 8x

The need to include all past values for the quantity b(x,t) at each time step requires a re-
design of the time integration technique. However it is clearly more advantageous to
have an explicit type of method to facilitate this.

A different aspect to consider is the actual language and low-level implementation of the
program. Throughout this thesis MATLAB was used for all of the programs but is
limited in many aspects. For a more robust implementation in actual application
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development a more efficient programming language should be used. This would allow
one major advantage of explicit methods to be exploited through parallel processing.
Very briefly, parallel processing could enable the evaluation of each line of the matrix to
be split among processors at each time step. This is possible for explicit methods since
the only dependency is upon the previous time steps, which allows all tasks at each time
step to potentially be approached simultaneously.

Ultimately the work of this thesis serves as a solid base but there are many opportunities
to be explored further from this point. It is the hope of the author that future investigators
will be able to take the basic work in many new and exciting directions.
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Appendix A: Capstone Paper

A.1 Executive Summary

The methodology for the valuation of financial options has grown substantially since its
beginnings with the work of Black, Scholes, and Merton. It remains an active area of
research today as financial products become increasingly complex and the demand for
determining prices quickly becomes ever more urgent.

One of the primary difficulties with the Black-Scholes model is that it assumes that prices
move continuously. However as the data from financial markets consistently shows
jumps of various sizes are the norm, not the exception. Recent work [Cont 2004; Cont &
Voltchkova 2005] has demonstrated that models incorporating jumps into the underlying
asset price movements give a superior representation of observed prices.

But the challenge still remains of solving the valuation equations efficiently. One
configuration of the above models results in a partial integro-differential equation
(PIDE). There are many similarities between that equation and those found in the main
part of the thesis. Thus it is the work of this paper to apply the numerical methods to the
jump process models for option valuation.

Results are compared for European options among several different numerical
techniques. It is demonstrated that the Runge-Kutta Chebyshev-based approach of this
paper offers significant advantages over the standard methods provided in the literature.
Additionally the problems in which the underlying parameters vary with time can be
solved as well.
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A.2 Introduction

In this thesis several techniques have been developed for solving systems of partial
integro-differential equations. Thus far these systems of equations have been used to
model physical phenomena. However, there are many other situations that can be
described by equations of similar structure.

Financial derivatives are one such type of situation. Many sources have detailed the
mechanics of these products as well as the math that describes them (e.g. [Baxter and
Rennie 1996] and [Wilmott et al. 1995]); a brief overview is provided here. Preeminent
among solution techniques for financial options is the Black-Scholes model. This
analytical equation determines the value of an option on an observable underlying given
several other parameters. While it is well established, it has many limitations. Indeed
almost all cases of interest are based on modified versions of the equation that must be
solved numerically.

One of the more interesting extensions is the jump process models. Simply put these
model assume asset prices move in discrete jumps rather than with simple continuous
diffusion. Obviously this captures reality more accurately and easily allows for the
possibility of rare but significant price movements to be incorporated. Naturally these
models are more difficult to solve.

As such there is always an interest in better methods for solving these problems.
Accuracy is always important but in the fast-paced world of finance solution speed
becomes extremely important. Overall this makes the solution techniques developed in
this thesis potentially interesting.

This paper will cover a substantial background on the development of the mathematical
framework, discuss the implementation in MATLAB, and provide results of several
different scenarios.

A.3 Background

The standard Black-Scholes option pricing model was explained and derived in Chapter
4.0. Section 4.3 gave a brief overview of jump processes. Here a more in depth
description is given as a basis for the model developed in later sections. The
development in this section primarily follows that of [Cont 2004].

First some of the basic theoretical concepts will be developed for the well-known
methods. These concepts will then be used to demonstrate at the Black Scholes result via
a different approach than that taken in section 4.2. Next the mechanics of jump processes
will be delved into more thoroughly. Finally all of the pieces will be integrated into the
various jump models for option valuation. With these in place the numerical techniques
for their solution will be developed.
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The point of all these analyses is to determine the correct price of a given financial
derivative. The premise of using expectations to calculate these values is attractive.
Determining the expected value of some future payoff should give us the price we would
pay for it. However we must be very careful with this idea.

Consider a stock with a log-normal distribution,

S, = So exp(X)

where X is a normal random variable with mean p and standard deviation a. Also
consider a forward contract on this stock wherein one party agrees to purchase it for some
strike price K at some future time T. Finally assume a risk-free interest rate of r.
Normally forward contracts are set up so that the expected value of the future exchange
of assets is zero, or

E e-rr (S, -K)] = 0.

Considering the contract we must determine K = E S7 , the expected value of the stock

at time T. Considering the model for the stock a logical way to proceed is to estimate the
expected value of the stock at time T. By definition this is

E ST(X) = JS,(x)f(x)dx
-- 0

where f(x) is the standard normal pdf. This evaluates to Soe  i2 which seems to be to

good estimate for the forward price. However this is completely wrong.

To see why consider a different strategy. Rather than estimating the value of the asset, let
us attempt to replicate the contract. If we are selling (short) the contract, we can borrow
the cost of the stock today, So, and purchase one unit of stock. This is held until time T
and then exchanged for the amount K. The cost of this would be the cost of the loan at
time T, SoerT. Similarly, if we are buying (long) the contract we could short one unit of
the stock and invest the proceeds, giving us SoerT at time T. Thus we see that the only
possible value for K that both sides would agree on is SoerT. This price is the arbitrage
price since any other price would allow one party to make a riskless profit.

So the strike price of Soe'u  is incorrect by virtue of the fact that it would allow another

party to enter into the contract and then replicate other side of the contract to fulfill its
obligation. This party could make a riskless profit with certainty. To sum up the
situation, arbitrage dominates over all methods of determining prices in financial
markets. As was mentioned in [Baxter & Rennie, 1996], "if there is an arbitrage price,
any other price is too dangerous to quote".
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So just using expectation blindly does not work but expectation does form an important
part of the portfolio replication methods. To gain a better understanding of the
expectation approach it is advantageous to consider first the discrete case.

Discrete models for asset prices are visualized as trees. Generally these are binary
models where each node of a process branches into two different nodes at each time step.
This is depicted below.

"Sd

Figure A.1: Discrete price tree

The basic concept is well known, most notably as the Cox-Rubenstein option pricing
model. However, we need to be more mathematically precise to put the concepts to use
in more complicated models.

The possible asset prices and the relationships between them are collectively a process;
this is denoted S. The set probabilities associated with each branch is the measure of the
tree and is denoted P. An important point to emphasize is that the process and measure
are separate concepts and both are needed to describe the tree.

A filtration, T, represents the history of asset prices up to time i. If the tree is non-
recombinant then each node has its own filtration. At each time step there are many
nodes so a particular Ti can have several values. A claim, H, on the tree is a random
variable which is a function of the history up to a given time point (i.e. the filtration). A
claim could be, for example, the largest value the asset achieved on a path, the final value
on the path, etc. Note that a claim is defined only at a particular time point while a
process is defined for the entire tree.

Now we return to the expectation. In the context of the tree the expectation depends
upon a specified measure and can be conditioned on a filtration. For example, the
notation E, H I Ti indicates the expectation of the claim H using the probabilities

defined by P for the continuation of the paths that have initial segment 7 . Effectively
this is like finding the expectation as if we had started at a specific node. Also note that
the expectation for a general i is in fact a process in i. This allows a claim to be
converted into a process.
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The next concept is a previsible process, q9. It is defined on the same tree as above but its
value at any node is determined by one time step earlier, T-1. An example of this could
be a bond whose value at the next time step is determined by the interest rate set at the
current time step. When considering a tree note that the size of the moves from node to
node are previsible but exactly which direction is not.

The final definition at this stage is the martingale. Symbolically a process S is a
martingale with respect to a measure P and a filtration T if

E [s I ] = S, V i j.

Conceptually, this expression means that the future expected value at timej of the
process S under measure P conditional on its history up to time i is the value of the
process at time i. This is illustrated below where we see how two different probability
measures affect the expected value.

Epq[X]=130
Puu= /2

X= S

pu="2

E[X=93 Pud= 1 /2

pPddu1 2 -

E,Q[X]=120
quu= 2/5

qu =/ 3

EQ[XJ=80

qud=3/5

qdu=2/3

q d=2
3

qdd= 3
j[X]=60Ep[X=54 DE

Figure A.2: Different probability measures, discrete case

In this case, the process is a martingale with respect to measure Q. Another way to think
about this idea is that the process has no drift upward or downward under the measure Q.

From these definitions a useful tool that follows is the binomial representation theorem.
Given a process S that is a Q-martingale and another Q-martingale N, there exists a
previsible process ( such that

N = No+L(kASk
k=1

where AS = Si - Si-I (note that this increment is itself previsible, though the direction a
process takes is not).

Additionally the tower law,
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EE [X IF = E, XI Tj i j

allows us to confirm that for any claim H, the process IE, HI T is always a P-

martingale.

Now let us attempt to replicate a general option. Define a previsible, positive process Bi
as a riskless bond and set Bo = 1. The inverse process, Bi' is referred to as the discount
process. Zi = Bi- Si is the discounted stock process. And the discounted claim at time T
is B' -1 H. Now let us assume a Q such that Zi is a Q-martingale and define the process Ei
= EQ[BT- 1 HI J/] which is itself a Q-martingale. From the binomial representation
theorem there exists a previsible process q0 such that

E, = Eo + Pk AZk (A.1)
k=l

Now we construct a portfolio at time step i, Ii, which consists of Oi+l units of the stock S,
and yfi+l = (Ei - (qi+i Bi-1 Si) units of the bond.

Let us check if this makes sense. At time zero Ho is worth

lSO + ,Bo = Eo = EQ[B'H],

the cost of creation. At time 1 the original portfolio is now worth

SS, + yI, = B, Eo + BI-S, -B 1 So

Since Bi- 1 Si) - Bi 1' Si) = AZI the binomial equation representation from (A.1) simplifies
the expression to give B 1Ei. At time 1 a new portfolio, HlI, must be purchased to
maintain the replication. But this new portfolio costs exactly BIE 1 to purchase regardless
of which path S took (i.e. regardless of the value obtained by Ti).

The process is continued until the final value of portfolio 1T-i_ is obtained, which is BT
'BTH = H, as required. Thus the portfolio is perfectly replicated and remained self-
financing.

So the general expression for the value of a given claim at any time point is

BEQ[BT'X I .
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Now let us move through the continuous version. There are many mathematical
subtleties in the move from the discrete version. But at a high level there are many
analogs.

The primary change is that the binary process is replaced with Brownian motion in the
form of a Wiener process. A Wiener process Wt is distributed under some measure P as a
normal random variable N(O,t). The increment W+, - W, is distributed as N(O,t), under P
and is independent of the history up to s, Ts.

In subsequent sections it will be argued that Wiener processes are inadequate to fully
describe the movements of financial assets. However, it is still instructive to develop
some of the methods for working with such processes and gain more insight.

At any rate, the conventional model for stock prices is exponential Brownian motion

S t = e+w, ptt

where a is some volatility andy is some drift. This is onc type of stochastic process;
stochastic processes have the general form

t t

Xt = Xo + f-ad, + fuds
0 0

which can be written in differential form as

dX, = ortdW + ptdt

which is a stochastic differential equation (SDE).

Due to the nature of these processes one must resort to stochastic calculus to perform any
sort of analysis. The key to stochastic analysis is Ito's lemma, discussed in chapter 4.0.
It is restated he for convenience.

If X is a stochastic process, satisfying dXt = odW + t dt, andfis a deterministic twice
continuously differentiable function, then Y E-fXt) is also a stochastic process and is
given by

dY, = of'(X,) dW + tf'(X)+ af (X) dt

Let us attempt to find the differential for the exponential Brownian motion equation. We
can set Xt to be the process aWt + pt which is simple enough that the differential is
obviously dX, = adW + Audt. The desired St can then be written asj(Xt) iff is the
exponential function, fx) = eX. Now Ito's lemma is applied to give
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dS, = o f'(X,) dW, + pf'(X,) + 2 f"(X,) dt

dS, = S, dW, + (I + a2 )dt

Converting processes to SDE is relatively straight forward with Ito's lemma, but
converting SDE's to processes (i.e. solving them) is where the challenge lies. This
generally requires numerical methods which are covered in later sections. However,
there are still a few simple systems that are solvable. It is instructive to go over them as it
highlights several tools and methods that will be useful in subsequent sections.

We now return to the idea of measures. The Wiener process described above was
contingent on a given measure. And based on the previous discussions it is clear that
changing measures is useful for valuing claims on assets. But exactly how to change
measures is not obvious. For this we will need the Radon-Nikodym derivative and the
Cameron-Martin-Girsanov theorem.

A brief return to the discrete world will help explain these concepts. Recall the tree
depicted earlier with the probabilities marked.

P u. U rruu =PuPuu

pPuu
Pud Q Tud=PuPud

Pdu ,-Q TTdu=PdPdu

Pdd "'IQ dd=PdPdd

Figure A.3: Discrete tree with cumulative probabilities

The ni's above represent the cumulative probabilities of each path. Now if there were
some different meaure Q with cumulative probabilities denoted pi , the ratios could be
expressed at the end of each branch. This mapping, dQ/dP, is the Radon-Nikodym
derivative of Q with respect to P. Note that this ratio is itself a random variable since it
depends on the path taken.

For this derivative to exist at all points the two measures must be equivalent. That is, any
event that is possible under P must be possible under Q and vice versa. With this last
caveat we can see how knowing the Radon-Nikodym derivative and one of the measures
is sufficient to completely specify the other.

The Radon-Nikodym derivative can be used to change between expectations under
different measures. If xi is each possible value of the claim H, we have
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E, H = ,Pix, = x ax =EQ[ H]

Additionally, we can turn the Radon-Nikodym derivative into a process,

which allows us to define the change in measure over a given filtration as

Now we can return to the continuous world. The most important change is that we now
must use density functions to determine the probabilities of events. For example, an
N(0,1) variable can be represented as

f x- 1 e PXeA= e d

where P is the probability measure used and A is some event. The definition of the
Radon-Nikodym derivative for continuous processes is as follows:

dQ f ,,... x,
(co) = lim

where co is a given path and xi is Wi(w).

With this definition we can consider what a given distribution "looks like" under a
different measure. To aid with this, first consider moment-generating functions. For a
random variable X with distribution N(u,ca) we have, by definition,

IE, exp(OX) =exp OP+" 1 2 2VO e(9.

Using the Radon-Nikodym derivative we can find what happens when the expectation is
under Q. First, we make the ansatz that for Brownian motion we have the relationship
between P and Q given by

dQ exp -y-7Wy 2T
dPUsing the process WT

Using the process Wr we have
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E, exp(OW,) = Ep I 1,P exp(W,)= ep - W Y W

= exp - 2 U+ -y T2 =exp -OyT+ 10 2T

because W is N(0,T) with respect to P. Note that this is the moment-generating function
of an N(yT, T) variable. Thus we see that under Q the variable is still normal and the
variance remains T, but the mean has changed to -yT. It can be formally proven that the
only effect of changing the measure from P to Q using the above Radon-Nikodym
derivative is to add a constant drift, -y. For convenience we can define Q-Brownian

motion as W, = W + y,.

Putting all of these ideas together leads to the Cameron-Martin-Girsanov theorem, which

states that if Wt is a P-Brownian motion and yt is an T-previsible process satisfying

E, exp Yy,2dt < 00 , then there exists a measure Q such that:

Q is equivalent to P

dQ T 1 TeFd YT
dP =exp - , dW - - dt

= W + Ybds is a Q-Brownian motion.

The converse of this theorem is also true.

Now we move to the last major component in the continuous version: martingales. A
stochastic process Mt is a martingale with respect to a measure P if and only if

E, [IM, I]< Vt

E, M, I 7 =M, Vs_ t

As in the discrete case, a martingale measure is one which makes the expected present
value based on its past history exactly its current value. Put another way there is no drift
expected to occur upwards or downwards.

With this definition we can now define the tower law and the martingale representation
theorem for the continuous version. Specifically we have for the continuous random
variable X,

EJE, XJ~t7JJ=E, XIF sit

which allow us to state that for Nt to be a P-martingale we need only E, N, I = N,.

And for the martingale representation theorem, given a process Mt that is a Q-martingale
and another Q-martingale process Nt, there exists a previsible process (p such that
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Nt =No + p psdM
O

Note that technically the Q-martingale's volatility must be positive with probability 1.
The process 9 just ends up being the ratio of the two Q-martingale's respective
volatilities.

One other useful property to determine is a driftless process is a martingale is as follows.

If dXt = atXdW for some T-previsible process at then

Eexp f ,ds] <co = Xis a martingale (A.2)

Now we can move to continuous portfolio representation and the Black-Scholes model.
Consider the stock process St = Soexp(aWt+pt) and the bond process Bt = exp(rt) where r
is the riskless interest rate, a is the stock volatility, and p is the stock drift; all of these are
constants.

The essential steps to portfolio replication can be used for any claim:
1. Find a measure Q under which the discounted stock process, Zt, is a martingale.

2. Form the process E, = EQ [B-H I T .

3. Find a previsible process (pt such that dEt = otdZt.

Recall from the discrete version that using the discounted stock process allows us to
remove the effect of cash growth. Inverting the bond process lets us define the
discounted stock process as Zt, = Bt-ISt as well as the discounted claim B'H. Using the
discounted stock price the SDE is

dZ, = Z, odW +(p-r +a 2)dt

which can be readily verified with Ito's lemma.

Step 1: To make Zt into a martingale we need the Cameron-Martin-Girsanov theorem. In
the above SDE we want the drift term to be neutralized. This can be accomplished by
defining a process yt which has a constant value
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The Cameron-Martin-Girsanov theorem then allows for a measure Q such that
W, = W, + yt is a Q-Brownian process. Now the SDE is
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dZ, = aZ,dW

This process appears to be driftless under Q. Since a is constant, by (A.2) this process is
a martingale. Thus we have a Q-martingale process and Q must be the martingale
measure for Z.

Step 2: Now we form E, = E [B,-'H I ]] which is itself a Q-martingale.

Step 3: Next we want to construct Et out of Zt and the previsible process (pt. From the
martingale representation theory we have

t t

E = E [BI-X I =Eo + f dZ, =E Bt-X + fdZ,
O 0

dE, = dZ,

as desired.

Now we have a replicating strategy: Hold pt units of stock at time t and hold yt = E,-
ptZt units of the bond. To check if this is correct consider the value of the portfolio,

Vt = qtSt + tB, = BtE t

d(B,E) = d (B, + E,)2 -Bt -Et

using Ito's lemma...

d(BtE) = (Bt + Et)(dB +dEt) +- dt-BdB, -EdE, -' .adt

dV, = BdE, + E,dB,

Since we have dE, = psdZ, then dV, = pB,dZ, + E,dB( . Also, we have E, = Vl, + OZ so

dV = (o BtdZ, + ((p Z, + Vt )dB,
= (o(BdZ, + Z,dB,) + ydB

and since St = BtZ and d(BtZ ,) = BtdZt + ZtdB, as above, we have

dV = (d dS, + , dB,

so the portfolio (pt , y,) is self-financing.

Now let us use this strategy to price a European call option with exercise date T. The
payoff, H, is defined as max(ST- k, 0) or (ST - k)+. To find the value of this option at
time zero we need
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S= e-"rEQ [(S -k)+]

where Q is the martingale measure for Zt, = B 'St.Note that the discounted bond is
constant and was moved out of the expectation; note also that this claim only depends
upon the value of the stock at time T. So to solve this we only need the marginal
distribution of ST under Q.

To evaluate this we need to consider the process for St written in terms of the Q-
Brownian motion Wf as defined above. Since W, is defined for the discounted stock

price and extra term appears when we apply it to the undiscounted St:

(r-- r + 2)

dS,= oSdV,+( + C2)Stdt and dt = dW + dt
0

> dS, = S,dW +rSdt

Now we have the following, which can be confirmed by Ito's lemma

d log(S,) = rd +(r-1 o)dt

log(S) = log(So)+ aW +(r-I&2)t

s, = So exp a ( + (r - 1
2 )t

Since W~ is distributed as an N(O,t) variable under Q, we can see that ST has the

distribution of So times the exponential of a normal variable with mean (r - Y2 )T and
variance o2T. Defining G as a random variable with distribution N(- 2 , a2T) we can
write ST as SoeG+rT. If we write the claim out and apply the definition of the expectation
operator we have

Vo(So, T) = e-rEQ [(SoeG+rT - k)+]

1 0  S (x+.o2 T) 2

= Soex _ ke-rr exp f dx-2 T 2r2T
- log(k/ So)-rT 2a 2

Now this is exactly the Black-Scholes expression from section 4.2. Defining (-) as the
cumulative normal distribution function, this expression can be written as

Vo(So,T)= So( log ( So /k )+ (r+ 2 )T ke-rTD log(So/ k) + (rE-up2 )T

which is of course the well-known Black-Scholes price of a European call option.
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Thus we have seen how we can use expectations and Wiener processes explicitly to
arrive at the Black-Scholes result. However as discussed in chapter 4.0 standard Black-
Scholes models are inadequate for describing real financial markets. Thus we turn to

jump processes. Fortunately the same framework developed above applies to different
types of processes.

First off it is worthwhile to provide a brief argument for the use of jump process. The
most obvious issue with the Black-Scholes model is the underlying assumption of
normality of returns implied by the use of Wiener processes. As many years of data have
shown and recent events have obviated, so-called "rare events" are relatively common:
Asset prices can and do move by very large jumps in response to any number of factors.
And as any financial practitioner knows the volatility of a given option is not constant
over different asset prices, contrary to the assumptions of the Black-Scholes model.
Indeed this leads to the well-known implied volatility and evocatively named graphical
representations of this (smiles, smirks, etc.).

These issues alone do not condemn the model. It is possible to enhance the basic Black-
Scholes model by allowing for volatility of volatility via non-linear diffusion coefficients
which will result in distributions with "fat tales". However, this still does not address the
fundamental issue that asset prices move with discrete jumps.

On a more technical level Brownian motion is self-similar over scale, that is, as one
decreases the time scale the process retains the same shape and is indistinguishable from
another process if the axes were removed. Asset prices may be similar to Brownian
motion over long time scales but as we observe the data on the daily or intraday scale one
cannot ignore the discrete jumps in price. Since these time scales are often of interest it
seems prudent to use a model that captures these features most easily and effectively.

When jump processes are employed most of the desired features of asset prices come out
naturally. This means that the physical interpretation is richer and more intuitive which
in turn makes the adjustment of parameters more natural.

The main challenge of jump-based models, as is generally the case, lies in their solution.
Any models beyond the simplest Black-Scholes variants require some degree of
numerical solution. But before we delve too deeply into that, let us discuss the
development of the equations.

It is helpful to add to and expand upon some of the definitions of the previous section.

The probability measures P and Q defined above represent only one type of measures. In
general measures can be defined for any type of set. A few types are important here. The
lebesgue measure for a set A in R is

A(A)= Jdx.
A
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This corresponds to the concepts of volume, area, etc. The Dirac measure is defined as

/,x(A) = # i,x, EA = 1 xi A
i>1

where # {} indicates the number of elements. Measures can operate on functions as well.
A simple case of this is when p is the Lebesgue measure, u(f) is the Lebesgue integral of

p(= f(x) u(dx) .
xeA

We now come across the concept of probability space. This is written as (Q, , P). The

last two terms are as they were defined previously. The term Q represents the universe of
all possible events and a random variable X(co) just maps specific events into some P-
measurable space. This definition is somewhat abstract in many cases but it is
technically a necessary starting point for many theorems.

Another important concept is the cadlag function. This is an acronym for continu a droit,
limite i gauche (right continuous with left limits). This is represented with the equations

f(t-) = lim f(s) f(t+)= lim f(s)
S-t,s<t s-4t,s>t

and f(t) = f(t+)

It is helpful to visualize this with the figure below.

, -" --

_ discrete jump

Figure A.4: Cadlag function

What this means in application to processes used later on is that any jumps in value are
"unexpected". If we are moving along in time from left to right, the value at the
(random) time where the jump occurs cannot be extrapolated based on following the path
immediately preceding it.

This leads to the concept of non-anticipating random times. Random times are just
positive random variables that represent the time at which some event is going to take

place. If based upon the filtration f it can be determined whether or not the event has

occurred the random time is called non-anticipating (or a stopping time). An example of
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a stopping time is the exit time from an interval. If a process X starts at t = 0 and a > 0
the exit time from the interval (-oo, a) is

Ta=inf t > O,X,> a .

An example of random time that is not a stopping time is the time when X reaches its
maximum:

T x = inf t [0, T],X, = supsc[,r] X

The global maximum of the entire process needs to be known before the time at which
Tmax occurred is known.

We also need one more type of process. To construct the jump processes used herein
Levy processes are used. The Wiener processes used in the above development represent
one example of a Levy process. The other primary type is Poisson processes.

The first part to constructing Poisson processes are exponential random variables. They
have the pdf

p(x) = Ae-x1xo.

An important property of exponential random variables is that they are memoryless. That
is, it T is a random time, the distribution of T - t with T > t is the same as knowing the
distribution of T itself. Mathematically,

f 2e-xdx
P(T>t+ sT>t)= = P(T > s), Vt,s>0

f 2e--xdx

The distribution of the sum T, = r, + ... + r,, where the r,'s are iid exponential variables
with parameter 2, has the pdf

p, (x) = Ae- Ax (Ax)-
(n -1)!

Closely related to the exponential distribution is the (discrete) Poisson distribution with
pmf

A"
P(N = n) = e-

n!
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For the series of iid exponential random variables with parameter X, (ri)l>1, the random
variable

Nt = inf n 1_, ri>t
i=1

follows the Poisson distribution with parameter At.

Now the Poisson process can be formally defined: With (ri),>l and T,, as defined above
the process Nt is a Poisson process defined by

t = I-' l,_
n>l

Thus we see that the Poisson process is a counting process. It counts the number of
random times, T,, that occur between 0 and t. (Tn - T,,-l),>l is an iid sequence of
exponential variables.

The Poisson process is not a martingale, unlike a Wiener process. However, the
compensated Poisson process,

t = N -At

does have this property.

Now the tools are in place to begin constructing Levy processes. All Levy process can be
represented as a combination of a Wiener process and a (possibly infinite) number of
independent Poisson processes.

A compound Poisson process is defined as

X, =Y,
i=1

where Nt is a Poisson process with parameter A and the Yi's are iid random variables with
pdfJf(). Such processes effectively provide the jumps in jump-diffusion models: the
jumps arrive with intensity A and the jumps size is drawn from the distribution of Y.

A couple useful tools when considering compound Levy processes are the jump measure
and the Levy measure. The jump measure is associated with the number ofjumps of
some compound Poisson process X:

Jx(B) = # (t, AX) B , BC Rd x [O, 00)
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so that for some set of jump sizes A, Jx([ti,t2] x A) counts the number of jumps over a

given time interval. It can be shown that the intensity measure of Jx is p(dxxdt) =
Af(dx)dt. The Levy measure is then defined as v(.) = A2f(). It measure determines the

expected number of jumps over a certain time interval that belong to some size A.
Formally,

v(A) = E[# te [O,]: AX, 0, AX A ].

Note that the Levy measure is not a probability measure since it integrates to 2.

One issue that comes up is the fact that there is no restriction on v being finite so the
jumps size could go to zero and the measure would still be valid. However, jumps of
zero size would technically violate the cadlag property of Levy processes so some care
must be taken in various definitions. This becomes important, for example, in the
distinction between the two primary types of Levy processes used for financial models in
this paper: jump-diffusion and infinite activity models.

The Levy-Ito decomposition provides a convenient representation of Levy processes.
The basic form decomposes the process into a Brownian component and the compensated
Poisson component. The Brownian component is characterized with a drift vector y and a
covariance matrix 1. Then the entire process is represented as

X, = 7t + 1,w + X + lim X,'

X, = I x Jx(ds x dx) (A.3)
Ixlils[0,t] 

(A.3)

X2 = x Jx (dsx dx) - v(dx) d = xx (dsx dx)
E lxl <l,s [ O,t] E-lxd<l1s,[O,t]

The last term is necessary to ensure that a singularity at zero for v does not lead to non-

convergence. The shifted process Jx is a martingale for which convergence can be

shown. The choice of one for the cut-off point is arbitrary but does not result in any loss

of generality.

This then leads to the Levy-Khinchin representation:

E[e' z  = et (z)

with Vr(z)= - 7z2+iyz+ i e((A.4)
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Note that the function g(x) = lxt is the truncation function; y does depend upon the

choice of truncation function but the other parameters do not. 1lXl , is the standard choice

in the literature.

This representation applies to any Levy process that is defined by what is known as a
characteristic triplet, (X,v,y). Now we see that with a characteristic triplet and either the
Levy-Ito decomposition of the Levy-Khinchin representation we can specify and Levy
process.

Also of great importance is the infinitesimal generator. It is defined as

1
Lf =lim E f(x + X,) - f(x)

t-4O t

The reason why this is interesting becomes apparent when we see the infinitesimal
generator of a Levy process with characteristic triplet (E,v,y):

Lf(x)= , (x)+ r (x) +  (x+x')- (x)-x;
aXk= 1 aX k ' ax1  &d y )

This partial integro-differential equation is similar in form to the other types described in
the main body of this thesis.

When building Levy processes for financial models there are a few useful manipulations.
First is the linear transformation. The Levy process Xt and be multiplied by a matrix Mto
get a new probability density. Another transformation is the tilting of the Levy measure.
This consists of defining a new Levy measure which has the form vi = e'Xv(dr) and
results in a new characteristic triplet with this new measure. Next is subordination. We
begin with a Brownian motion and subordinate it with a non-decreasing another
independent, non-decreasing Levy process; this can be thought of as changing the
underlying time to one that moves in discrete intervals.

Now we can at last begin to consider the Levy processes that are used in financial
models. For the purposes of this paper the models considered can be divided into jump-
diffusion and infinite activity models.

For jump-diffusion models the Levy process takes the form

Nt
X, = yt + oW +ZY

i=1

These are very easy to interpret. The standard Brownian motion is supplemented with a
compound Poisson process. The key parameter to specify is the distribution of jump
sizes, vo. In the model of [Merton 1976] the jumps are assumed to have a normal
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distribution, Y - N(p,o~). This actually allows for an analytically tractable model as the

probability function of Xt can be represented with an infinite series:

V(S, t) = e-Vs((' sS,t; i) (A.5)

i=0

where VBS is the analytical Black Scholes solution for a call or put option; for the
dependence on i, consider the put option example

VB, put (S, t; i) = -SP(-d,) + Ke- rT ( (-d 2 )

d, log S/K + r+-i2  t

1 1
d2 =q " ilog S/K - r + 2 t

ri+ i (p + 12)_ A(el+"2/2 _ 1)9, = r +-(p +-S 2 )- +(2/
2 -T f

Of course much of the interest in this formulation of the probability lies in the flexibility
to specify the distribution ofjumps. And more interesting distributions generally require
numerical methods for the solution. However, the Merton formulation serves as a
convenient way to test for the accuracy of numerical models for simple cases.

Infinite activity models represent a larger family. As with jump-diffusion models the
point is to specify the Levy measure. The basic idea that underlies these models is
subordination, outlined above. Consider a Ct to be a subordinator and an independent
Brownian motion W with drift p. Then via subordination we obtain the new Levy

process X, = orW(C,)+ ,uC,. One way to understand this concept is as information

arrival being described by the subordinated process. The jump structure of processes that
can be represented in the following form:

00 (x- p(dt)2

v(x) = e 2t p(dt)

where p is the Levy measure of the subordinator.

The next consideration is the form of the subordinator. A common choice for the
measure of the subordinator is of the form c/xa+' with 0O<a< 1 and c some constant. This
basic form can be exponentially tilted as well. If we have

ce-qx
p(x)= x+ ex 0

x
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then c alters the jump intensity for all sizes, i.e. changes the scale, q determines the decay
rate of large jumps and a determines the relative importance of small jumps. If a equals
0 or the probability density can be determined analytically; thus these two forms are
the most popular choices. For a=0 it is called the Gamma process and for a= /2 it is
called the Inverse Gaussian process.

Now that we have the measure for the subordinated process we can determine the
measure for the Levy measure for the resulting process. Below 0 represents the drift and
a the volatility of the independent Brownian motion; 1/K is the variance of the
subordinator at time 1. Using a conversion formula the result is obtained as a
complicated expression involving Bessel functions. For the Gamma and Inverse
Gaussian cases mentioned above the expressions for the Levy measure are

v(x) = -e
lxi

9 1 02 +202KC
with A =- and B =

2 2

for the Gamma case and

v(x)= CeAK, B lxl
lxi

92 2

with A and B as above and C =

for the Inverse Gaussian case, with Ka(.) representing a modified Bessel function of the
second kind. The Gamma case will be used in the later sections so it is helpful to
consider the shape of the distribution now. The main features are that the distribution
goes to infinity at zero and the A and B parameters control the size of the tails. The
potential for asymmetry is a very useful feature as we will see later. Note the truncation
of the graphs needed due to the infinity at zero.

3- 3

2.5 2.5

2 2

> 1.5 > 1.5

1 1

0.5 0.5

C 0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X X

Figure A.5: Levy distribution for Gamma case
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I = 0.1, A = B = 5 (left), K = 0.1 A = 0.002, B = 2

A couple more variants exist. The tempered stable process multiplies the Levy measure
of a stable process by a decreasing exponent. As the name implies, this can make large
jumps less substantial. The form of the measure is similar to those above.

Generalized hyperbolic models start from specifying the probability density directly.
These models are not closed under convolution generally result in the most complicated
expressions for the measure but can be very useful when unusual pdf's are known.

All of the pieces are now in place to begin building actual financial models. As in the
case when we had only Brownian motion the basic procedure consitsts of specifying the
functional form of the asset price process, St (and a discounted version, Zt), finding a
measure Q under which the discounted asset process is a martingale, forming the process

E =EQ [B-'X I T and then forming a portfolio with the previsible (bond) process such

that dEt = ptdZt.

The stock process has the form

S, = So exp(rt + X) (A.6)

where Xt is a Levy process given by equation (A.3). Note that we have added the riskless
drift rt to the exponent; this is done to give the process slightly more convenient notation
later on. The change has no effect on the final result since there is already some arbitrary
drift in the process. It merely results in a slightly different martingale process for the
discounted price. The discounted process is then

ZT = e-r"S = So exp(X,).

Now we need the measure Q under which this process is a martingale. As in the previous
section, the conceptual notion that for the process to be a martingale the drift term must

vanish is still valid. We want E [eX'] = 1 so, using the Levy-Khinchin representation

(A.4), we see that we must have E[eL' ] = eh/(') equal to one so we set z to -i and get

1- 2 +y+ e - - X1lxJ 1 v(tdx) =02
-oO

Thus the condition for the exponential Levy process to be a martingale is

- J ex 1 Jx, v(dx).
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Now if we consider both terms in the exponent and this restriction on y we have an
infinitesimal generator of

Lf (x) 2 ( 2fLf (X) = a ,X2
f )+ f(x + x')- f(x)(e' (x)

To put this equation to work, first recall the expression for option value that we want:

V = BE Q [B,'H I .

For the rest of this work we will only consider payoffs that depend upon the terminal
value, ST. Since expression (A.6) already has the rt factored and we are using the bond
process BT = er(T - t) the expression we should use is

V (t, S) = EQ [e-'()HT I S, = S] .

To make this function more tractable we can make the change of variables suggested by
[Cont & Voltchkova 2005]:

h(x) = H(Soex)

x =ln(S/S o)

u(r, x) = e"V(Soex,T - r)

to give the desired expression

u(x, r) = EQ h(x + rr + X,)

and thus

I - (x, r) v(dx') + r U-
u-Ox ) Ox

Now we have a partial integro-differential equation that will allow us to determine option
value.

A.4 Implementation

With the PIDE defined by (A.7) the similarity to other problems defined in the main body
of this thesis becomes apparent. The discretization and solution procedures have many
similarities but there are several new issues unique to this situation.
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A.4.1 Numerical Set-Up

The integration takes place over the entire real line. To make this problem tractable the
domain is restricted to some interval, [AL, Au]. In addition the jumps need to be limited
to some reasonable size (larger than the working interval), [BL, Bu]. The measure v(x)
can be defined by some given function.

Let us set up the numerical system. We set up a vector xfull of Mr points with grid
spacing h. The "universe" is restricted to the interval [BL, Bu] so the value of A should be
recalculated as

M ,

i=MBL -C

where the Ms indicate the indices of the interval points. Similarly we can define &

S= (e ' - 1)vj a = (e, -1)v(dr)
i=MBL -O

as a convenient constant.

Now the system is

Bu 1 2 1 2a B

u 2 X 2 aX

The first two terms on the RHS are exactly the same as the advection diffusion problem
with a diffusion coefficient of 2 and a velocity of (202 - r - a). The integral is less
complicated than the coagulation term of the population balance systems but it does have
the feature that it must be evaluated over the entire range ofx.

In the infinite intensity case the value of the measure v can be infinite, i.e. £ v(dr) = 0.

This makes the above method impractical to apply in cases where certain regions
(typically around x=O) blow up. To handle this situation we approximate the process X
with a finite activity process with a modified diffusion. We define a small number e that
encompasses the region so that we have

-E

which is added to the variance defined for the finite intensity case. The condition for this
new process to be a martingale requires modifying y and allows us to define the following
new constants:
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fi J(dr) a, = (ex-1)v(dx)
IxlI Ixl E

and their corresponding numerical approximations. Thus the PIDE for this case is

=_ 2
1 2 

2 -r+ W +u+ fu(x + x',r)jIx',,v(d'). (A.8)
C-2 -IX

2  
2 BL

In terms of numerics, the derivatives with respect to x can be defined in the same manner
as in sections 2.2.1 and 6.1. Note that we define the discrete approximation to u as w.
For the second derivative we have

02W.a2w -1  w(xj,r)-2w(xj,r)+ w(xj+,r)
aX2  h 2

wherej is the index along the grid of the x vector.

For the first derivative we can use the positivity preserving methods described in chapter
6.0. Due to the nature of the problem positivity is not as great a concern as in the
advection equation for the constant velocity case. However, when the volatility and
interest rates are allowed to vary the situation becomes more interesting. In most cases
the eigenvalues exhibit similar arrangements to those found in section 7.1.3.

The integral term is approximated as

w in' = Gw

where the G matrix contains a numerical approximations of the measure expression v
shifted for each line.

At this point it is worth expanding upon the description of the solution space, the vector
xfull, and the boundaries defined by the A's and B's since this aspect makes the integral
approximation a bit different than those of earlier sections.

The portion of the vector xfull for which we actually report the solution is only over the
span [SL, Su], but the calculations are carried out over [AL, Au] to mitigate end effects and
the span [BL, Bu] is used for the integration to better approximate the fact that the
integrals extend to infinity. The total length of xfull must actually be even greater than
the span [BL, Bu] since w(rx + x') requires a shift due to the x term that is added. This is
tacitly assuming that the distribution goes to zero for values greater outside of the cutoff
points. This situation can best be observed in a sample of the G matrix below.
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xfull

BL AL SL Su Au Bu

calculated portion

Figure A.6: xfull vector

B

A

Figure A.7: G matrix

For a given line of the matrix multiplied by w we essentially want to have the sum

int,1

i=NBL

The addition ofj to the index in the sum represents the x that is added to x' and the o

represents the offset that is required since the domain of xfull is greater than the integral

range [BL, Bu]. The need for this extra range is apparent when we observe figure Figure

A.7. The vector representing the v portion of the integral must "shift" as it moves down

the matrix so that the corresponding values for w can be multiplied. To accomplish this

there must be some "extra" zeros at the end of that vector which can be thought of as the

tail ends of the distribution for v which should go to zero as infinity is approached.

The part of the vector w (or function u) that we care about for the final output of option

values only spans [AL, Au] which is why the matrix G is only non-sparse in the middle

portion (vertically). The other portions of the matrix are just the identity matrix. We

only keep the other sections of w so that we get a better representation of the integral.

The next issue to consider is boundary conditions. As in many of the other examples in

this thesis, the system is second order in space (x) and first order in time (r) indicating

that we need two spatial boundary conditions and one initial condition. As was discussed
in chapter 4.0, for option-pricing systems typical choices for the boundary conditions are
as follows.
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Here we give the conditions for a European call option; other cases can be derived
similarly.

Application of the boundary conditions becomes a bit more involved than just setting the
value at the terminal one or two points of the w-vector. Since we are only interested in
values for u over the range [AL, Au] we need to assign values to the entire portion of w
that is outside of this range. For a call option, for example, we see that the extreme
portions of the option value as a function of underlying price remain the same shape
regardless of what happens; they only translate horizontally by some amount that scales
with the time r. As would be expected this scaling factor is just the velocity term ( 2,o -

r - & ) which has the same function as the velocity in the advection problem. Thus we
apply this known solution to the values of the w-vector at each time step. This can be
thought of as applying the Diriclet boundary conditions to the entire portion of the vector
that is outside the solution region rather than just the two extreme points.

Finally we consider the eigenvalues of the various portions of the problem. Judging be
the similarity of equation (A.7) to the advection diffusion equation it should not be
surprising that the eigenvalues have similar arrangements to that case. Indeed the
eigenvalues due to the second derivative portion have the characteristic pattern as the
diffusion case: along the negative real line with a maximum value of -4( 2a)/h

2 . The
first derivative portion is handled via the positivity preserving filter as mentioned above.
And as was the case for the advection problem, considering the upper bound on the
spread of eigenvalues of the non-filtered case is sufficient to ensure stability. A couple of
example eigenvalue configurations are displayed below for reference.
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Figure A.8: Eigenvalues for the first (left) and second derivative components

The portion of the equation due to the linear dependence on A simply has the eigenvalue
of A and poses no stability challenges. The integral portion is relatively straightforward
in terms of eigenvalue analysis. The eigenvalues spread along the real axis and are
smaller in magnitude than those due to the other terms. This behavior was also observed
in the integral portions of PIDEs of other examples. Thus the main concerns for staility
are the discretizations of the first and second derivative portions.

As was the case with several examples from the main thesis the various parameters (a, r,
etc.) can change with time. This of course changes the scaling of the eigenvalue spread
but this can be handled easily since the stability domain only needs to be scaled by a
different amount; the eigenvalues need not be recalculated entirely.

A.4.2 Actual Program

Now everything is in place to discuss the actual MATLAB implementation. The main
function is entitled finOptjumpPIDE8.m. In addition there is a program
probTempFinJump 1 .m that contains all of the parameters that define the immutable
parameters for different scenarios. The inputs for the function that can be specified by
the user are as follows.

Table A.1: Inputs for finOptjumpPIDE8.m
Input Description
T time to expiration
K strike price
r risk-free interest rate, may be a vector
a variance, may be a vector
M number of grid points

With the user inputs given the program converts the variables and parameters to their
transformed counterparts. It then sets up the payoff conditions (which become the initial
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conditions after the transformation of variables). The two main cases considered here are
European call options and European put options.

The program then assembles the xfull vector. Overall the xfull vector consists of four
regions. The central region [Su, SL] is the final reported solution; the region immediately
surrounding (and including) that region [Au, AL] is where all of the sections of the PIDE
are evaluated; the region immediately surrounding that region [Bu, BL] is where the
integral portion is evaluated (this comprises the tails of the distribution); and finally the
outermost section is effectively a placeholder that allows the integral to be evaluated
where it is centered at different points.

The region outside of [Au, AL] for the initial conditions is saved as a parameter which will
be used as a boundary condition, shifted by the product of interest rate and time, as
discussed in the boundary condition section above.

Everything is now in place to begin the time integration. The method employed in the
paper [Cont & Voltchkova 2005] is the default choice. Their method uses a simple
implicit-explicit splitting scheme. The integral portion is handled with an explicit Euler
method and the remaining terms are handled with an implicit Euler method. This is the
most basic IMEX scheme discussed in section 5.3. It is first order overall in convergence
and so the accuracy is not very high. The next two time integration options are the built-
in MATLAB functions ode45 and odel5s. The last option is the modified two-step
Runge-Kuta Chebyshev method developed in this thesis.

At each time step of the specified integration method, the function odefcn is evaluated.
This function first calculates the various approximated parameters of the jump size
distribution, A and ^ . It then assembles the matrix for the discretization of the second
derivative of u and multiplies it by the coefficient for the current time step. Only the
section of the matrix corresponding to the range [Au, AL] is populated with the
approximations; the remaining portion is imply ones along the diagonal. The positivity-
preserving filter is then applied based on the sign and magnitude of the velocity term in
the manner described in section 6.1. The term 2 is multiplied an identity matrix to
represent the Au term, again over the [Au, AL] section of the matrix. For the integral terms
an identity matrix of size MT is once again assembled. Then for each point in the range
[Au, AL] the vector nu (which has a range [Bu, BL]) is inserted beginning at the left most
point of the matrix and shifted one point right for each subsequent row. Finally the
boundary conditions are applied by inserting the initial condition shifted by the current
discount factor into the updated w vector outside of the range [Au, AL]. Note that the
discount factor is e-"veldt where Evel-dt is the sum of the spot velocity terms multiplied by
their corresponding time interval, up to the time of the current time step.

The output of the time integration consists of a matrix W of the w vectors at each time
step and a vector of the transformed times, tau. With these data several figures can be
displayed and errors and be calculated in cases where analytical solutions are available.

233



The graphical output will be discussed in the next section. The error comparison can be

completed for the Merton Gaussian jump model since there is a series solution for the
case of constant interest rates and volatilities given by equation (A.5). The error can then

be calculated by using the norms as defined in section 2.2.5 for the absolute and relative

error.

A.5 Results

To demonstrate the effectiveness of the solution method several examples are considered
and the results of various techniques are compared both for accuracy and efficiency.
Two types of options are considered: European calls and puts. First off we will consider
the Merton Gaussian jump model. Since an analytical solution exists we can consider the

properties of these models before we consider the output of the numerical
approximations. Consider a European call option and a European put option, both with

unit strike price and one year to expiration. Now let the standard deviation of the
underlying price be 0.15 and the interest rate be 0.05. The Black Scholes solution yields

the expected result and is depicted in Figure A.9 below with the green solid line. But

now consider the Merton Gaussian jump model. Recall the basic idea that we are adding
jumps to the standard diffusion model. For this example consider the jumps are drawn

from a normal distribution with standard deviation 5 = 1.0 and arrival rate l = 0.1 (per
year). This solution is represented by the red dashed line. At the extreme prices the
Merton jump model collapses to the standard Black Scholes model. But near the strike
price the option price from the Merton jump model is higher than the Black Scholes
price; essentially this indicates that the volatility is higher in that region. This behavior
makes sense since by adding the jumps there is more volatility than in the diffusion
underlying the standard Black Scholes model.
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Figure A.9: Merton Gaussian jump model for European Call (left) and Put options

To further exemplify the properties of the non-Black Scholes models one can consider
the volatility surface. The volatility surface displays volatility of an option implied by
the model output over different asset prices and expiration dates. The implied volatility
is the value one obtains for a when the Black Scholes equation is solved for a given value
when all of the other parameters are set. These values can be plotted over several

234



different coordinate systems. For this work the coordinates will be time to expiration, T,
and moneyness, Ke-rr/S. An example is plotted below for the Merton Gaussian jump
model. The time ranges from 0 to 1 year and the stock price range is similar to the above
plots.
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Figure A.10: Volatility surface, Put option with Merton Gaussian jumps

Several times are noteworthy about this figure. First of all the fact that there is any
variation at all is significant. Black Scholes assumes a constant volatility but here
different times and prices affect it. Note that when the option is at the money the
volatility most closely approaches the Black Scholes volatility (0.15 in this case). Also as
the option approaches expiration the volatility blows up: very small changes in asset price
can result in large changes in option value. Farther out in time the volatility flattens out
as sensitivity to change increases. Overall these features more accurately represent
reality than the standard Black Scholes. The shape, often referred to as volatility smile, is
observed in many traded options. There are several possible explanations for the shape
but the most probable one is the fact that the market knows that significant jumps in price
can occur. While this does not prove the validity of any model by itself it indicates that
we are likely on the right track.

Now we can consider the numerical approximations of the Merton Gaussian jump model.
We will vary the number of grid points and some of the parameters to create different
scenarios. For each scenario an acceptable amount of error relative to the analytical
solution will be chosen and the number of grid points will be fixed. Each time
integration method will then be adjusted so as to obtain the desired accuracy and the
statistics will be compared. For the methods with error tolerance built in, the relative
tolerance is set to 0.01 and the absolute tolerance to 0.001.

235



The following parameters are fixed for all cases:
T= 1.0 K= 1.0
[SL, Su] = [2/3, 2.0] [AL, Au] =

So= 1.0
-5, 5]

3=1.0
[BL, Bu] = [-7, 7]

The results of the model runs are presented below. IMEX refers to the simple Euler
IMEX method used in the literature; ode45 and ode 15s are the built in MATLAB
functions; and RKC is the modified 2-step Runge-Kutta Chebyshev method developed in
this thesis.

Table A.2: Performance of Methods, Marton Gaussian jump case
method grid a r A t steps fcn evals time (s)

IMEX 301 0.15 0.05 0.1 30 29 14.2
ode45 301 0.15 0.05 0.1 19 127 2.5
odel5s 301 0.15 0.05 0.1 36 770 19.6
RKC 301 0.15 0.05 0.1 12 60 1.1
IMEX 601 0.15 0.05 0.1 30 29 98.1
ode45 601 0.15 0.05 0.1 55 337 25.6
odel5s 601 0.15 0.05 0.1 45 1501 147
RKC 601 0.15 0.05 0.1 29 145 11.8

IMEX 301 0.50 0.05 0.1 35 34 18.1
ode45 301 0.50 0.05 0.1 144 913 18.7
odel5s 301 0.50 0.05 0.1 62 801 24.8
RKC 301 0.50 0.05 0.1 77 385 8.3
IMEX 301 0.15 0.20 0.1 35 34 17.9
ode45 301 0.15 0.20 0.1 20 127 2.5
odel5s 301 0.15 0.20 0.1 37 771 21.8
RKC 301 0.15 0.20 0.1 21 105 2.2
IMEX 301 0.15 0.05 1.0 35 34 17.9
ode45 301 0.15 0.05 1.0 29 193 3.8
odel5s 301 0.15 0.05 1.0 42 777 22.3
RKC 301 0.15 0.05 1.0 22 108 2.4

There are several
best choice is the

conclusions that we can draw from these data.
RKC-based method across all of the scenarios.

Broadly, we see that the
It is roughly a factor of

two faster than ode45 and an order of magnitude or more faster than the two implicit
methods. It should be noted that the IMEX method has no error correction so it is run
several times to hone in on the number of time steps required to obtain the same accuracy
as the other methods. The relative advantages do change in the different scenarios,
however.

In the second scenario the grid density is doubled and there is roughly a ten-fold increase
in time. The advantage in number of time steps has a relative decrease compared to the
two implicit methods since their time scales vary with the efficiency of the matrix
decomposition. None of the other scenarios result in such a dramatic increase. Next we
see that increasing the volatility, the analog of increasing diffusion, demonstrates an
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increase in the relative advantage of the RKC-based method since it can increase the
internal stages to limit the increase in the number of time steps. However in the fourth
scenario the relative advantage of the RKC-based method decreases. This is because the
high interest rate, which corresponds to strong advection, increases the magnitude of the
imaginary eigenvalues and even the two-stage method can only do so much to increase
the stability domain in that direction. In the last case the main effect of the increased
jump arrival rate is that the solution changes more rapidly so the error correction requires
more time steps to maintain accuracy. Overall the IMEX method remains fairly constant
since it is not adaptive; there was a slight increase in the number of time steps need to
attain the desired accuracy when the solution evolved more substantially in the latter
scenarios. But the advantage of the RKC-based approach is apparent. And in cases with
variable parameters a non-adaptive method becomes even more difficult to manage.

Graphically, we see for the call and put options that there is close agreement between the
analytical solution (green line) and the approximation (red dashed line). The results are
similar for all of the above cases. These plots are from the conditions of the first scenario
for a European call and put option.
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Figure A.11: Approximate and Exact call (left) and put option value soutions

The red dashed line indicates the approximate solution and the green line is the exact
solution.

The results for the volatility surface are very similar to the analytical solution as well.
For the sake of variety consider the same conditions but with a a value of 0.40 and a A
value of 0.5. The surface is as follows.
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Figure A.12: Volatility surface, Put option with Merton Gaussian jumps

The parameter values are a = 0.4 and 2 = 0.5.

Note that the shape is similar to the case with smaller a and X. However, the shift upward
is more pronounced for strongly in the money options. This makes sense since the
relative increase in volatility is greater for extreme asset values. This type of behavior is
convenient for many situations but it is often useful to have more control over the tail
behavior. This leads to the Gamma case.

The Gamma case is very similar from a numerics standpoint. The main challenge is the
truncation and approximation due to the infinite value in the Levy density as discussed
above. Once the matrix representing the integral is formed performance is much the
same as above. The issue with the Gamma case is that there is no analytical solution
against which to compare the numerical approximation. A very fine grid (1000 points)
with very high error correction (1E-6) is used as the reference solution for various cases;
the other solutions are required to attain an acceptable closeness to this solution (as given
by the relative and absolute errors). The constant parameters are the same as above. The
parameters specific to the Gamma case are as follows:

K = 0.5 r- = 2.7 r= 5.9

From here we obtain the following results for the first scenario; other results showed the
same trends as above.

Table A.3: Performance of methods, Gamma case

method grid a r i t steps fcn evals time (s)
IMEX 301 0.15 0.05 0.1 30 29 14.1
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ode45 301 0.15 0.05 0.1 21 133 2.7
odel5s 301 0.15 0.05 0.1 39 774 19.2
RKC 301 0.15 0.05 0.1 12 64 1.1

The plots for a Gamma case with the above parameters are presented below. To gain a
bit more insight, consider two different situations for comparison. In both cases we have
I = 0.5 but in Case 1 (dashed green line) we have qr = 0.75 and r+ = 3 and for Case 2
(dashed red line) we have q_ = 3 and q?+ = 0.75. For Case 1 in both the call and put
options the value is relatively similar to the Black Scholes solution (not pictured) but the
volatility is much greater in Case 2. Overall this deomonstrates the flexibility of the
Gamma model.
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Figure A.13: Gamma model value of call (left) and put options; 2 cases

Further insight can be gained by considering
2 from above on a put option.
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Figure A.14: Volatilty surface for Put option, Gamma model, Cases I (top) and 2

Note that just interchanging the two parameters results in significantly different surfaces.
Besides being greater in magnitude the curve in Case 2 is slightly concave down while
Case 1 has a distinct upward trend at low moneyness. This once again demonstrates the
flexibility of the Gamma model.

Finally let us consider what happens when we allow for parameters that can change with
time. This is a very important feature since all of the parameters used in the model are
likely to change in any real situation. Of course with any of the variable parameter cases
there is no analytical solution against which to compare. Thus we must be content with
merely assessing if the solution gives a reasonable result and presume that the error
correction within the time integration methods is performing as designed.

The numerical setup is much the same as in the constant parameter cases. One
substantial difference is that some of the intermediate parameters (e.g. v) must be
calculated at each evaluation of the main differential equation function (odefcn). Due to
the nature in which MATLAB handles functions this results in a noticeably larger
solution time under identical conditions to the constant parameter case. This is only an
issue with the design of the programming language rather than the algorithm itself so
changing to a different environment would eliminate the inefficiency.

Now we can consider a couple of different cases. First let us try a Merton Gaussian jump
example with the following parameters fixed:

T= 1.0 K = 1.0 S0o = 1.0 = 1.0
[SL, Su] = [2/3, 2.0] [AL, Au] = [-5, 5] [BL, Bu] = [-7, 7]

The other parameters can vary and are described by the following equations:
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2 = 0.4 2 r r= 0.2 r

These are relatively simple functions but the evaluation of functions with more
complicated and/or realistic behavior could easily be input given the proper data. The
results are given in the table below. Note that the simple IMEX method is not included.
This is because it is not adaptive so the changing parameters would require the
specification of a variable time step vector after the fact. This is a large part of the reason
that more advanced solution techniques were considered; in most practical applications it
is not feasible to rely on manual adjustment of the time steps.

Table A.4: Performance of Methods, Merton case
method grid a r A t steps fcn evals time (s)

ode45 301 0.4 2  0.2 r 0.1 r 23 163 24.5
odel5s 301 0.4 2 r 0.2 r 0.1 r 42 2018 301
RKC 301 0.4 r 0.2 r 0.1 r 18 90 16.3

The solution times are substantially longer for all cases as noted above. However the
most important factors to consider are the time steps and function evaluations. The issue
that stands out is the fact that the implicit ode 15s method is substantially slower;
proportionally even more so than in the constant parameter cases. This is likely due to
the fact that it must calculate (approximately) the Jacobian matrix more frequently since
it changes significantly with time. The ode45 and RKC method performed similarly to
the constant parameter case in relative terms. The number of time steps and function
evaluations was toward the lower end of the ranges for the constant parameter cases.
This demonstrates that the methods are adapting to the parameters as they step through
time despite the high values at large r. The modified Runge-Kutta Chebyshev method is
the best performer as expected but its relative advantage over ode45 has decreased
somewhat. Most likely this is due to the relatively high r and a values (both of which
affect the "velocity" term and consequently the stability in the imaginary direction) for
some of the time range.

The performance results for the Gamma case are similar. Most of the challenges have to
do with the interest rate and volatility parameters as was just discussed above. The same
tests were run with the additional parameters K = 0.5, q_ = 0.75, and q+ = 3.

As expected the graphical results for both the Merton and Gamma cases are similar to
their constant parameter counterparts. Qualitatively it is impossible to point to any one
feature that demonstrates the parameters have changed over time. Nevertheless the
results are plausible. Overall the best way to check the correctness of the results would
be to compare them against real data collected for under some known values for the
parameters. It is still worthwhile to observe results based on the above conditions.

241



/
0.5 1 1.5 2

0

>0

.6

.4

.2

8.5 1 1.5 2 2.
S S

Figure A.15: Variable parameter case, Merton model for call (left) and put options
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Figure A.16: Variable parameter case, Gamma model for call (left) and put options

As was mentioned above it is difficult to conclude anything about these figures. We see
some of the characteristic features such as the fatter tail on the Gamma model. From the
volatility surfaces it is also difficult to identify any definite feature due to the the
parameters.

242

> 0.4

0.2

x

--0 L- r



T 0 moneyness

T 0 0 moneyness
Figure A.17: Volatility surfaces, variable cases for Merton (top) and Gamma models

The two results look more similar to each other than in the constant parameter case. This
is most likely due to the large value for a at high r values which overshadows the effect
of increased volatility due to the jumps.
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A.6 Conclusions

This paper has demonstrated the numerical solution methods developed in the main thesis
can be effectively applied to option valuation problems in finance. Specifically this paper
developed the background for the standard Black-Scholes based models and the
extension into models incorporating jumps in asset price. This new model was written in
the form of a partial integro-differential equation similar in form to those discussed in the
main thesis. Next the paper discussed the implantation in MATLAB of a solution
method. This method incorporated positivity-preserving discretizations and employed a
modified Runge-Kutta Chebyshev integration algorithm.

The types of problems solved included European put and call options and the description
of the asset price movements were based on the Merton Gaussian jump diffusion and
Gamma infinite activity models. The RKC based model developed in the thesis
performed significantly better than the simple implicit-explicit integration method
suggested in the literature. It even had an advantage over the built-in methods of
MATLAB. Also of note is fact that it could handle situations with variable parameters,
which is impossible in standard models. The ability to handle variable parameter models
is necessary to model in realistic situation.

Overall this paper has shown another application for the numerical techniques developed
in the main thesis. While the results show significant promise there are still many
opportunities to extend the work. Option types beyond European calls and puts could be
considered with relatively minor changes; the PIDE approach makes it relatively
straightforward to add boundary conditions. Along this track one very useful application
is multi-asset options. There are several interesting challenges in modeling such options,
such as the correlation matrix between assets but the greatest challenge is the large
number of grid points necessary for describing such systems as the dimensionality
increases. The more efficient solutions algorithms of this work provide a starting point
but they must be implemented in a more efficient manner to be truly useful on large-scale
problems. One of the ways to do this is through the use of parallel processing within the
program. Since the method is explicit in nature each row of the matrix could actually be
evaluated simultaneously at each time step, dramatically decreasing the solution time. In
general a more advanced programming language should be used for any practical
implementation.

The other main extension is the inclusion of real data in some form. The most obvious
use for this could be to check if the results of the models agree with the data. But it
would be more interesting to calibrate the model parameters against the data. This goes
back to the parameter estimation concepts discussed in the main thesis; the concepts
regarding problem domain information and the advantages of using explicit methods in
such systems would apply in these option pricing examples as well.

As with the main thesis there are many opportunities for new exploration based on this
work. It is hoped that future researchers will be able to use this work as a starting point.
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