
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-007 February 10, 2010

Automatic Parallelization With Statistical 
Accuracy Bounds
Sasa Misailovic, Deokhwan Kim, and Martin Rinard



Automatic Parallelization With Statistical Accuracy Bounds

Sasa Misailovic
MIT CSAIL/EECS

misailo@csail.mit.edu

Deokhwan Kim
MIT CSAIL/EECS
dkim@csail.mit.edu

Martin Rinard
MIT CSAIL/EECS

rinard@csail.mit.edu

Abstract
Traditional parallelizing compilers are designed to generate paral-
lel programs that produce identical outputs as the original sequen-
tial program. The difficulty of performing the program analysis re-
quired to satisfy this goal and the restricted space of possible target
parallel programs have both posed significant obstacles to the de-
velopment of effective parallelizing compilers.

The QuickStep compiler is instead designed to generate paral-
lel programs that satisfy statistical accuracy guarantees. The free-
dom to generate parallel programs whose output may differ (within
statistical accuracy bounds) from the output of the sequential pro-
gram enables a dramatic simplification of the compiler and a signif-
icant expansion in the range of parallel programs that it can legally
generate. QuickStep exploits this flexibility to take a fundamen-
tally different approach from traditional parallelizing compilers. It
applies a collection of transformations (loop parallelization, loop
scheduling, synchronization introduction, and replication introduc-
tion) to generate a search space of parallel versions of the original
sequential program. It then searches this space (prioritizing the par-
allelization of the most time-consuming loops in the application) to
find a final parallelization that exhibits good parallel performance
and satisfies the statistical accuracy guarantee. At each step in the
search it performs a sequence of trial runs on representative inputs
to examine the performance, accuracy, and memory accessing char-
acteristics of the current generated parallel program. An analysis of
these characteristics guides the steps the compiler takes as it ex-
plores the search space of parallel programs.

Results from our benchmark set of applications show that
QuickStep can automatically generate parallel programs with good
performance and statistically accurate outputs. For two of the ap-
plications, the parallelization introduces noise into the output, but
the noise remains within acceptable statistical bounds. The simplic-
ity of the compilation strategy and the performance and statistical
acceptability of the generated parallel programs demonstrate the
advantages of the QuickStep approach.

1. Introduction
Developing parallel software is known to be a challenging and dif-
ficult task. One standard approach to simplifying this task is to
develop a parallelizing compiler, which processes sequential pro-
grams to automatically generate corresponding parallel programs.
The traditional correctness requirement for parallelizing compilers
is that the generated parallel program must produce, for all inputs,
a result that is identical to the result that the original sequential pro-
gram would have produced on that same input. In practice, the diffi-
culty of satisfying this correctness requirement has severely limited
the range of applications that compilers can automatically paral-
lelize.

We propose a different approach. Our QuickStep compiler gen-
erates a search space of candidate parallel programs, then reasons
statistically about the accuracy of the outputs that these programs

produce when run on representative inputs. Instead of attempting
to generate a parallel program that is guaranteed to always produce
the identical output as the sequential program, QuickStep instead
generates a parallel program with a statistical guarantee that it will,
with high likelihood, produce an output that is within user-defined
accuracy bounds of the output that the original sequential program
would have produced.

Note that because the programs that QuickStep generates only
need to satisfy statistical accuracy bounds, QuickStep has the free-
dom to generate nondeterministic parallel programs (as long as
these programs satisfy the desired accuracy bounds). Our current
QuickStep implementation generates parallel programs with three
potential sources of nondeterminism (data races, replication com-
bined with reduction, and variations in the execution order of par-
allel loop iterations), but in general any parallel program, deter-
ministic or nondeterministic, is acceptable as long as it satisfies the
statistical accuracy guarantee.

1.1 Basic QuickStep Approach
QuickStep first runs the sequential program on representative in-
puts (provided by a user or developer). For each input, it records
the result that the program produces and the execution time. It then
runs an instrumented version of the program and uses the gener-
ated profiling information to find the most time-consuming loops.
The compiler then uses the following steps to attempt to produce a
parallel program that 1) produces sufficiently accurate results and
2) performs well:

• Parallelization: The compiler generates code that executes the
iterations of a selected time-consuming loop in parallel. Aside
from the barrier synchronization at the end of the loop, the
parallel loop executes without synchronization.

• Alternate Object Implementations: QuickStep is designed to
work with programs that are written in modern object-oriented
style. The QuickStep library comes with several different im-
plementations of classes that are commonly used in parallel
programs. Our current library provides three different imple-
mentations:

Unsynchronized: The standard implementation that ac-
cesses the object state without synchronization.

Synchronized: The standard implementation augmented
with mutual exclusion synchronization so that operations
execute atomically in a multithreaded context.

Replicated: An implementation that replicates the state
so that each thread accesses its own replica without syn-
chronization and without contention. Updates are combined
back into a single replica after parallel loops.

Depending on the characteristics of the application, different
implementations are appropriate. The unsynchronized imple-
mentation is appropriate when there are no data races or the
inaccuracy introduced by any data races is acceptable. The syn-



chronized implementation is appropriate when there is little
contention on the object, but the accesses must still execute
atomically for the application to produce acceptable output.
The replicated implementation is appropriate when contention
on the synchronized implementation would create a bottleneck
with unacceptable performance degradation.

• Implementation Selection: When presented with a paralleliza-
tion with unacceptable accuracy, QuickStep proceeds under the
assumption that the inaccuracy is caused by data races. It there-
fore replaces unsynchronized implementations of involved ob-
jects with synchronized implementations in an attempt to elim-
inate the data races responsible for the unacceptable accuracy.
When presented with a parallelization with unacceptable per-
formance, QuickStep proceeds under the assumption that mul-
tiple threads accessing a single object concurrently create a bot-
tleneck responsible for the unacceptable performance. It there-
fore replaces unsynchronized or synchronized implementations
of involved objects with replicated implementations in an at-
tempt to eliminate the bottleneck and deliver good performance.

• Memory Profiling: The implementation selection is driven by
memory profiling. QuickStep executes an instrumented version
of the program that records the memory locations that the in-
structions in the parallel loop access. It then analyzes this mem-
ory profiling information to find objects with data races.
QuickStep uses the density of the races to prioritize the imple-
mentation selection. When presented with multiple races, it re-
places implementations of objects with high data race density
before implementations of objects with low data race density.

Together, these steps generate a space of parallel programs that
the compiler searches as it attempts to find an accurate program
with good parallel performance. The compiler evaluates each can-
didate parallel program as follows:

• Intermediate Evaluation Runs: It executes the program on
a set of representative inputs (obtained from a user or devel-
oper). If these runs demonstrate the hoped for accuracy or per-
formance, the compiler accepts the candidate parallel program
as a starting point for further exploration (via additional paral-
lelization, synchronization introduction, or replication transfor-
mations).

• Final Evaluation Runs: When the compiler has found a pro-
gram with acceptable performance and accuracy and no further
plausible parallelization or replication transformations, it per-
forms the final evaluation runs. These runs execute the program
repeatedly on representative inputs to obtain the statistical accu-
racy guarantee. If the final evaluation fails, the compiler contin-
ues to explore alternate parallelizations. Otherwise it proceeds
on to the developer evaluation step.

• Developer Evaluation: The compiler generates a report that
presents the parallel loops and object implementations in the
final version. The memory profiling information is also avail-
able. The developer can then examine this information and the
source code of the program to 1) determine if the paralleliza-
tion is acceptable and 2) if not, guide the compiler to modify
the parallelization. Because the other evaluation steps rely on
testing, this step is essential in ensuring that the final parallel
program will behave acceptably on all envisioned inputs (and
not just the representative inputs in the test set).

The final issue is obtaining a sufficiently efficient search algo-
rithm. Our currently implemented compiler attempts to parallelize
all loops that account for at least 10% of the executed instructions.
It attempts to parallelize outer loops before inner loops, attempt-
ing inner loops only if the attempt to parallelize the enclosing outer

loop fails. It tries synchronized implementations before replicated
implementations (in effect, searching first for accuracy, then for
performance).

1.2 Results
We evaluate QuickStep by using it to automatically parallelize four
applications in the Jade benchmark suite [23, 28] plus the Barnes-
Hut N-body simulation [2]. Our results show that QuickStep is able
to effectively parallelize all but one of these applications. The sole
exception is a sparse Cholesky factorization algorithm, whose ir-
regular concurrency pattern exhibits dynamically determined cross-
iteration dependences that place it well beyond the reach of existing
or envisioned parallelizing compiler technology [29]. For the re-
maining four applications, QuickStep is able to automatically gen-
erate parallel programs that (on a machine with four Intel Xeon
quad-core processors running eight threads) execute, on average,
between 3.7 and 6.4 times faster than the corresponding sequential
programs. All of the automatically parallelized applications satisfy
precise statistical accuracy guarantees.

Interestingly enough, two of the successfully parallelized appli-
cations contain (unsynchronized) data races. While these data races
introduce some noise into the output that the parallel program pro-
duces, the noise is small and does not threaten the viability of the
parallelization. In particular, the effect of any individual race on the
computation is close to negligible and the races occur infrequently
enough to make their aggregate effect on the computation more
than acceptable. The presence of these parallelizations illustrates a
key advantage of the QuickStep approach — because QuickStep
evaluates the acceptability of the the generated parallel program
empiricially by observing the outputs that it produces, it can ex-
ploit parallelization strategies (such as the generation of parallel
loops that contain acceptable data races) that are inherently beyond
the reach of traditional parallelizing compilers. This broader range
of parallelization strategies can, in turn, expand the range of pro-
grams that QuickStep can effectively parallelize.

1.3 Scope
QuickStep is designed to parallelize programs whose main source
of parallelism is available in loops. The loop iterations need not
be independent — they can update shared data as long as the
updates to shared objects commute [27]. They can also contain
unsynchronized data races, accesses to out of date versions of
data (such as those in chaotic relaxation algorithms [32]), and
other forms of nondeterminism as long as these phenomena do
not make the output unacceptably inaccurate. QuickStep can also
automatically eliminate bottlenecks that arise when the program
combines multiple contributions into a single result.

We acknowledge that there are many programs that require dif-
ferent parallelization strategies. Examples include programs with
producer/consumer parallelism and programs with complex data-
dependent parallel dependence graphs. QuickStep is unable to ef-
fectively parallelize such programs. But within its intended scope,
QuickStep can offer unprecedented parallelization capabilities. Be-
cause it is not handicapped by the need to analyze the program,
it can parallelize programs with complex features that lie well be-
yond the reach of any previously envisioned parallelizing compiler.
Because it does not need to generate a parallel program that always
produces the identical result as the sequential program, also it has
access to a broader range of parallelization strategies than previ-
ously envisioned parallelizing compilers.

Of particular interest are programs that heavily use modern pro-
gramming constructs such as objects and object references. Several
of the sequential programs in our benchmark set are written in C++
and use these constructs heavily. QuickStep has no difficulty paral-
lelizing programs that use these constructs. Traditional paralleliz-



ing compilers, of course, have demonstrated impressive results for
programs that use affine access functions to access dense matrices,
but are typically not designed to analyze and parallelize programs
that heavily use object references. Our results show that QuickStep,
in contrast, can effectively parallelize programs that use such con-
structs.

QuickStep’s statistical accuracy guarantees are based on sam-
pling executions of the parallel program on representative inputs.
These guarantees are not valid for inputs that elicit behavior sig-
nificantly different from the behavior that the representative inputs
elicit. It is therefore the responsibility of the developer or user to
provide inputs with characteristics representative of the inputs that
will be used in production. The developer evaluation of the final
parallelization can also help to ensure that the final parallelization
is acceptable.

1.4 Contributions
This paper makes the following contributions:

• Statistical Accuracy Guarantees: It introduces, for the first
time, the use of statistical accuracy guarantees as a basis for the
acceptable parallelization of sequential programs.

• Parallelization Strategy: It presents the first parallelization
strategy built around searching an automatically generated
space of parallel programs, using executions on representative
inputs to evaluate the performance and accuracy of the gener-
ated parallel programs.

• Data Races: Enabled by the use of statistical accuracy guar-
antees, it introduces, again for the first time, the use of auto-
matic parallelization strategies that can produce parallel pro-
grams with acceptable unsynchronized data races.

• Simplicity: It shows, once again for the first time, how an em-
pirical evaluation of parallelized programs founded on a statis-
tical analysis can enable the simple, effective, and automatic
exploitation of parallelism available in sequential programs.

• Results: It presents results from our implemented QuickStep
parallelizing compiler. These results show that QuickStep can
effectively parallelize programs that use a range of program-
ming constructs to produce computations that combine out-
standing parallel performance with tight statistical accuracy
guarantees.

2. Example
Figure 1 presents an example that we use to illustrate the oper-
ation of QuickStep. The example computes pairwise interactions
between simulated water molecules (both stored temporarily in
scratchPads for the purposes of this computation). The two loops
in interf generate the interactions. interact calls cshift to
compute the results of each interaction into two 3 by 3 arrays (Res1
and Res2). updateForces then uses the two arrays to update the
vectors that store the forces acting on each molecule, while add
updates the VIR accumulator object, which stores the sum of the
virtual energies of all the interactions.

QuickStep first runs the sequential computation on some repre-
sentative inputs and records the running times and outputs. It next
executes several profiling runs. The profiling results indicate that
63% of the execution time is spent in the interf outer loop. Quick-
Step therefore generates parallel code that executes the iterations of
this loop in parallel. This initial parallelization (with no synchro-
nization except the barrier synchronization at the end of the loop)
produces a parallel program with unacceptable accuracy. Specifi-
cally, the outputs change, on average, by close to 40%. QuickStep
next executes the memory profiling runs. The memory profiling in-
formation indicates that there are data races at multiple locations

void ensemble::interf(){
int i, j;
scratchPad *p1, *p2;

for(i = 0; i < numMol-1; i++) {
for(j = i+1; j < numMol; j++){

p1 = getPad(j);
p2 = getPad(i);
interact(p1,p2);

}
}

}

void ensemble::interact
(scratchPad *p1, scratchPad *p2) {
double incr, Res1[3][3], Res2[3][3];

incr = cshift(p1,p2,Res1,Res2);
p1->updateForces(Res1);
p2->updateForces(Res2);
VIR.add(incr);

}

void scratchPad::updateForces(double Res[3][3]) {
this->H1force.vecAdd(Res[0]);
this->Oforce.vecAdd(Res[1]);
this->H2force.vecAdd(Res[2]);

}

Figure 1: Example Computation

in the parallel loop, with the densest races occurring within the
accumulator add operation invoked from the interact method.
Figure 2 presents (relevant methods of) the accumulator class.
Each accumulator contains several additional implementations of
the basic add operation — the Syncadd operation, which uses a
multiple exclusion lock to make the add execute atomically, and thd
Repladd operation, which adds the contributions into local repli-
cas without synchronization.1 Based on the memory profiling in-
formation, QuickStep invokes the synchronized version of the add
method, changing the call site in interact to invoke the Syncadd
method instead of the add method.

This transformation produces a parallel program with accept-
able accuracy but unacceptable performance. In fact, the parallel
program takes longer to execute than the original serial program!
QuickStep operates on the assumption that there is a bottleneck on
the synchronized add updates and that this bottleneck is the cause
of the poor performance. It therefore replaces the call to Syncadd
with a call to the replicated version of the add method, changing
the call site in interact to invoke the Repladd method. The initial
test runs indicate that this version has good performance. And the
remaining data races (which occur when the computation updates
the vectors that store the forces acting on each molecule) occur in-
frequently enough so that the computation produces an acceptably
accurate result. Specifically, the outputs differ, on average, by less
than 0.5% from the output that the serial program produces. After
a similar parallelization process for the remaining time intensive
loop, the outer loop in the poteng method (not shown), which ac-
counts for 36% of the execution time, QuickStep obtains a final
parallel program that exhibits both good performance (on 8 proces-
sors it runs 4.7 times faster than the original serial program) and
accurate output (the outputs differ, on average, by less than 0.5%
from the output of the serial program).

The final step is to obtain the statistical accuracy guarantee. We
start with a user-defined accuracy test t. This test takes an output
from the sequential program and a corresponding output from the

1 The actual implementation uses padding to avoid potential false sharing
interactions.



class accumulator {
double *vals;
volatile bool isCached;
volatile double cachedVal;
pthread_mutex_t mutex;
double cache() {
double val = 0.0;
for (int i = 0; i < num_thread; i++) {
val+= vals[i]; vals[i] = 0;

}
cachedVal += val; isCached = true;
return val;

}
public:
double read() {
if (isCached) return cachedVal;
return cache();

}
void add(double d) {
if (!isCached) cache();
cachedVal = cachedVal + d;
isCached = true;

}
void Syncadd(double d) {
pthread_mutex_lock(&mutex);
addvalUnsync(d);
pthread_mutex_unlock(&mutex);

}

void Repladd(double d) {
if (isCached) isCached = false;
vals[this_thread] += d;

}
};

Figure 2: Example Accumulator

generated parallel program executing on the same input. It produces
either success (if the output from the parallel program is acceptably
accurate) or failure (if the output from the parallel program is not
accurate enough). Note that for any generated parallel program
there is a (forever unknown) actual probability p that an execution
of the program will produce an output that passes the accuracy test
t. The goal is to obtain a statistically valid bound on p. We support
two methods for obtaining such a bound: the Hoeffding Bound and
the Wald Sequential Probability Ratio Test.

2.1 Hoeffding Bound
To use the Hoeffding Bound, we start with an accuracy goal g
and a accuracy precision 〈δ, ε〉. QuickStep will produce a parallel
program and estimator p̂ ≥ g + ε such that P [p̂ > p + ε] ≤ δ,
where p is the probability that an execution of the generated parallel
program will produce an output that passes the accuracy test t. This
test compares the output of the sequential program and an output of
the parallel program to determine if the parallel program produced
an acceptably accurate output.

By repeatedly executing the parallel program to observe the per-
centage of executions that pass the accuracy test, it is possible to
obtain an unbiased estimator p̂ of p. Moreover, given a desired pre-
cision 〈δ, ε〉 for p̂, it is possible to compute how many executions
n are required to obtain the statistical guarantee P [p̂ > p+ ε] ≤ δ
for the precision of p̂. This guarantee states that, with probability at
most δ, the estimated probability p̂ that the generated parallel pro-
gram will pass the accuracy test exceeds the actual probability p by
at most ε. Note that this framework provides a one-sided guarantee
— it only bounds the amount by which the estimator p̂ may over-
estimate the actual probability p, not the amount by which it may
underestimate p. This kind of one-sided bound is appropriate be-
cause if users will accept a computation that is as accurate as p̂− ε,
they will also accept a computation that is more accurate.

Assume that the user’s accuracy test specifies an accuracy
bound b of 0.01 (in other words, the outputs of the parallel and
sequential computations may differ on average by at most one per-
cent). The accuracy goal g is 0.9, and desired precision 〈δ, ε〉 is
〈0.95, 0.05〉. QuickStep must now compute the number of execu-
tions it must run to determine if the parallel computation satisfies
the statistical accuracy guarantee P [p̂ > p + ε] ≤ δ. QuickStep
first applies the one-sided Hoeffding bound:

P [p̂ > p+ ε] ≤ e−2nε2

Here n is the number of executions required to obtain the desired
precision for p̂. For the desired precision 〈0.95, 0.05〉, n is 600.
QuickStep therefore runs the automatically parallelized program
600 times. In these runs the mean value of d is 0.005 and the
variance is 0.0008. Because the mean is not 0, some of the potential
data races in the parallel loop iterations actually occur and affect
the result. But overall this effect is small. There are two reasons
why the effect is small. First, because the updates in the parallel
computation are distributed across a large array (the b array), the
chances of any given race actually occurring are quite small. And
if a race occurs, the net effect is to discard the addition of the force
between two bodies into the total aggregate force acting on one of
the bodies. Because there are many bodies and many interactions,
discarding any one of the individual force contributions introduces
only a small amount of noise into the final result.

QuickStep next applies the accuracy bound 0.01 to obtain the
estimator p̂. We performed all of the 600 statistical accuracy runs
on 8 threads of an Intel Xeon machine with four quad-core pro-
cessors. In our example p̂ is 1 — in all of the 600 executions, the
mean relative difference between the result from the sequential and
parallel executions is less than one percent. The generated parallel
program therefore satisfies the statistical accuracy guarantee (note
that p̂− 0.05 > g).

2.2 Wald Sequential Probability Ratio Test
To use the Wald Sequential Probability Ratio Test, we start with
an accuracy goal g, a lower accuracy interval ε1, an upper accu-
racy interval ε2, an approximate false positive bound α, and an
approximate false negative bound β. We then repeatedly execute
the candidate parallel program and feed the Wald Test the ensuing
sequence of results from the accuracy test. After observing some
number of accuracy test results (the precise number is determined
by the length of the sequence and the number of accuracy tests that
succeed), the Wald Test terminates and produces either yes or no.
The guarantee is that P [yes|p < g−ε1] < α/β (i.e., the likelihood
that the Wald Test says that the parallel program satisfies the accu-
racy goal when it is in fact at least ε1 less reliable than the goal is
less than α/β) and P [no|p > g + ε2] < (1− β)/(1− α) (i.e., the
likelihood that the Wald Test says that parallel program does not
satisfy the accuracy goal when it is in fact at least ε2 more reliable
than the goal is less than (1− β)/(1− α)).

A false positive occurs when the Wald Test says that the parallel
program satisfies the accuracy test when in fact it does not. The
guarantee bounds the false positive rate as follows: if the Wald Test
says that the program satisfies the accuracy goal, the likelihood that
the program is actually less accurate than g − ε1 is bounded above
by (i.e., less than) α/β, which is close to α when β is close to
one. A similar analysis gives a corresponding bound for the false
negative rate – a false negative occurs when the Wald Test says that
the program does not satisfy the accuracy test when in fact it does.
The likelihood that the program rejected by the test is more accurate
than g + ε2 is less than (1 − β)/(1 − α), which is approximately
1− β when α approaches 0.

Assume that g = 0.95, ε1 = 0.01, ε2 = 0.01, α = 0.01,
β = 0.99, and the parallel program always produces an acceptably



accurate result. Then the Wald Test says yes (i.e., that the program
satisfies the accuracy requirement) after 219 runs.

2.3 Environment Sensitivity
We note that the statistical accuracy guarantee is valid only for
environments with the same characteristics as the environment
executing the runs used to obtain the statistical accuracy guarantee.
Significant changes in the execution environment (for example,
changing the characteristics of the underlying hardware platform
or using larger numbers of threads) require the revalidation of the
statistical accuracy guarantee.

3. Analysis and Transformation
QuickStep is built using the LLVM compiler infrastructure [15].

3.1 Profiling
QuickStep obtains its profiling information as follows. When it
compiles the sequential program for profiled execution, it inserts
instrumentation that counts the number of times each basic block
is executed. It also inserts instrumentation that maintains a stack
of active nested loops. It also inserts additional instrumentation so
that, when the sequential program executes for profiling purposes,
it counts the number of (LLVM bit code) instructions executed in
each loop, propagating the instruction counts up the stack of active
nested loops so that outermost loops are credited with instructions
executed in nested loops. QuickStep uses the resulting generated
instruction counts to attempt to prioritize the parallelization of the
loops that execute more instructions in the profiling runs over loops
that execute fewer instructions. Note that this policy prioritizes
outermost loops over nested loops.

3.2 Parallelization Transformation
Given a loop to parallelize, our transformation first extracts the loop
body into a separate function. This function takes two parameters:
the iteration of the loop to execute, and a pointer to a structure of
loop body parameters. This structure contains one field for each
local variable from the originally enclosing procedure that the loop
body accesses. If the loop body reads but does not write the local
variable, the variable is passed by value — the structure contains
a copy of the variable. If the loop body writes the local variable,
the variable is passed by reference — the structure contains a
pointer to the variable in the stack frame of the procedure that
originally contained the loop body. In the enclosing procedure
where the loop body originally occurred in the sequential program,
the transformation allocates and initializes the structure containing
the parameters for the loop body. This structure is allocated on the
stack of the thread executing the enclosing procedure. The loop
body itself is replaced with a call to the QuickStep runtime system.
This call specifies the lower bound of the loop, the upper bound of
the loop, the separate function containing the extracted loop body,
and a pointer to the structure containing the loop body parameters.
The call to the runtime system triggers the parallel execution of the
loop.

3.3 Memory Profiling
The QuickStep memory profiler instruments the program to log the
addresses that reads and writes access. Given the memory profiling
information for a given loop, it computes the interference density
for each store instruction s, i.e., the sum over all occurrences of that
store instruction s in the log of the number of store instructions p
in parallel iterations that write the same address. Conceptually, the
interference density quantifies the likelihood that some store in-
struction p in a parallel loop will interfere with an update operation
that completes with the execution of the store instruction s. The

interference density is used to prioritize the application of the syn-
chronization and replication transformations, with the transforma-
tions applied first to updates with the highest interference density.
Because the log also contains dynamic call stack information, it is
possible to find the enclosing methods on the stack for each execu-
tion of the logged load or store instruction.

3.4 Synchronization and Replication Transformations
QuickStep’s synchronization and replication transformations oper-
ate on objects with multiple implementations of synchronizable and
replicatable operations. The synchronized version of operation op
is named syncop; the version with replication is named replop.
When the compiler is asked to perform a synchronization or repli-
cation introduction transformation, it is given a call site that invokes
the operation to transform (in our current implementation this infor-
mation comes from the memory profiler, which uses the call stack
information to find the call site). The compiler performs the trans-
formation by simply changing the invoked method at the call site,
using the naming convention to find the synchronized or replicated
method to invoke.

QuickStep can work with any object that provides the methods
necessary to apply the synchronization and replication transforma-
tions at the call sites that invoke the corresponding methods on the
object. Our current system uses versions that we manually devel-
oped. It is also straightforward to build a system to automatically
transform a sequential implementation to an implementation that
exports the required synchronized and replicated versions of the
appropriate methods.

3.5 Parallelization Space Search
The parallelization, synchronization, and replication transforma-
tions create a search space of parallel programs. The compiler
searches this space as follows.

• Loops: At any given point in time, the compiler is searching
the parallelization space associated with a given loop. It starts
the search by parallelizing the loop. The loop parallelization
order is given by the amount of time the loop consumes in
the sequential information, with the most time-consuming loops
parallelized first.

• Synchronization: Given a parallelized loop that causes the ap-
plication to produce an unacceptable result, the compiler ap-
plies the synchronization transformation until either it runs out
of synchronization transformation opportunities or the applica-
tion produces an acceptable result on the representative inputs.
The synchronization transformations are applied according to
the interference density priority order.

• Replication: Given a parallelized loop that causes the applica-
tion to exhibit poor performance, the compiler applies the repli-
cation transformation until either it runs out of replication trans-
formation opportunities or the application produces an accept-
able result on the representative inputs. The replication transfor-
mations are applied according to the interference density prior-
ity order.

The search algorithm evaluates the performance and output accept-
ability with one test run on each representative input. If it is unable
to find an acceptable parallelization for a given loop (i.e., a par-
allelization with good performance that enables the application to
produce an acceptable output), it does not parallelize the loop.

When the search algorithm finishes its attempt to parallelize all
of the time-consuming loops (the current compiler does not attempt
to parallelize loops that take up less than 10% of the execution
time), it performs the statistical accuracy guarantee runs.



Application Sequential 2 4 8
Barnes-Hut (First Input) 1 (27.09s) 1.9 (14.5s) 3.4 (8.06s) 5.7 (4.8s)

Barnes-Hut (Second Input) 1 (61.73s) 1.9 (33.0s) 3.3 (18.39s) 5.7 (10.8s)
Search (First Input) 1 (23.6) 1.9(12.2) 3.7(6.3) 5.7(4.2)

Search (Second Input) 1 (123.9) 1.9(63.8) 3.7(33.7) 5.7(21.7)
String (First Input) 1(7.84s) 1.9(4.1s) 3.5(2.2s) 6.2(1.3s)

String (Second Input) 1(19.2s) 1.9(10.2s) 3.7(5.3s) 6.4(3.0s)
Water (First Input) 1(8.2s) 1.4(5.9s) 2.7(3.0s) 3.8(2.1s)

Water (Second Input) 1(25.0s) 1.4(17.4s) 2.8(11.1s) 4.7(5.3s)

Table 1: Speedups over Sequential Program

4. QuickStep Runtime System
The QuickStep runtime system is implemented as a library linked
into the automatically parallelized program. It follows the standard
master/worker structure characteristic of programs that execute par-
allel loops. At the start of the execution the QuickStep runtime sys-
tem creates a single master thread and a (configurable) number of
worker threads. The master thread starts the execution of the paral-
lelized program. The worker threads wait at a barrier until there is
a parallel loop to execute.

When the master thread encounters a parallel loop and makes
the call to the runtime system that triggers the parallel execution of
the loop, the master thread sets up the data structure that the threads
use to control the execution of the loop, then enters the barrier.
This entry causes all threads to drop through the barrier. Each
thread then accesses the data structure that controls the parallel
execution, acquires loop iterations to execute, and executes each
of its acquired loop iterations by invoking the function containing
the extracted loop body (see Section 3.2). Our currently runtime
system implementation provides three different loop scheduling
policies. Each policy is selectable under the control of the user
running the program. The first policy dynamically load balances
the computation — each worker thread repeatedly accesses the
central loop scheduling data structures to acquire a single loop
iteration. Only when the thread finishes that iteration does it return
to acquire the next iteration. This scheduling policy is appropriate
for loops whose iterations have (on average) large but potentially
dramatically different execution times.

The second scheduling policy assigns blocks of iterations to
threads at the start of the parallel loop. Each thread has a thread
id i. If there are n loop iterations and t threads, thread i executes it-
erations i∗n/t through ((i+1)∗n/t)−1. This scheduling policy
is appropriate for loops whose iterations all take roughly equiva-
lent time and exhibit better locality if adjacent loop iterations are
executed on the same thread. The third scheduling policy cyclically
assigns iterations to threads at the start of the parallel loop. Specifi-
cally, thread i is assigned iterations i, t+i, 2t+i, ... This scheduling
policy has less overhead than the first policy (which dynamically
assigns loop iterations as the loop executes) and is appropriate for
loops whose iterations may take different amounts of time, but the
variation in execution times is such that the cyclic mapping evenly
balances the load across the different threads.

5. Acceptability Criteria
QuickStep’s statistical approach to the accuracy of a parallel com-
putation is designed to work with any accuracy test that takes as
input the result of a sequential execution and a result from a par-
allel execution and produces as output either success (indicating
that the parallel execution produced an acceptably accurate result)
or failure (indicating that the parallel execution produced a result
that was not accurate enough). Given such a test, QuickStep (by

sampling sufficiently many parallel executions as described in Sec-
tion 2) is able to provide a statistical guarantee that characterizes
the likelihood that a given parallel execution will produce an ac-
ceptably accurate result.

5.1 Distortion Metric
It is often appropriate to use an accuracy test based on the relative
scaled difference between selected outputs from the sequential and
parallel executions. Specifically, we assume the program produces
an output of the form o1, . . . , om, where each output component oi
is a number. Often the program will produce more than m outputs,
with the developer selecting m of the outputs as the basis for the
acceptability test.

Given an output o1, . . . , om from a sequential execution and an
output ô1, . . . , ôm from a parallel execution, the following quantity
d, which we call the distortion, measures the accuracy of the output
from the parallel execution:

d =
1

m

mX
i=1

˛̨̨̨
oi − ôi
oi

˛̨̨̨
The closer the distortion d is to zero, the less the parallel execu-
tion distorts the output. Note that because each difference oi − ôi
is scaled by the corresponding output component oi from the se-
quential execution and because the sum is divided by the number
of output components m, it is possible to meaningfully compare
distortions d obtained from executions on different inputs even if
the number of selected outputs is different for the different inputs.

5.2 Program Failures
In some circumstances the parallelization may cause the program
to fail to produce any output whatsoever (typically because the pro-
gram crashes before it can produce the output). QuickStep is cur-
rently configured to reject such parallelizations. However, it would
be clearly possible to extend the approach to allow such paralleliza-
tions. The straightforward approach would be to augment the cur-
rent statistical accuracy criteria with additional components spec-
ifying acceptable likelihoods of failing. We note that in our expe-
rience to date, each candidate parallelization either never fails or
almost always fails, which minimizes the motivation to extend the
statistical accuracy criteria to include program failure likelihoods.

6. Experimental Results
We use QuickStep to parallelize five scientific computations:

• Barnes-Hut: A hierarchical N-body solver that uses a space-
subdivision tree to organize the computation of the forces acting
on the bodies.

• Search: Search [7] is a program from the Stanford Electrical
Engineering department. It simulates the interaction of several
electron beams at different energy levels with a variety of solids.



It uses a Monte-Carlo technique to simulate the elastic scatter-
ing of each electron from the electron beam into the solid. The
result of this simulation is used to measure how closely an em-
pirical equation for electron scattering matches a full quantum-
mechanical expansion of the wave equation stored in tables.

• String: String [13] uses seismic travel-time inversion to con-
struct a two-dimensional discrete velocity model of the geologi-
cal medium between two oil wells. Each element of the velocity
model records how fast sound waves travel through the corre-
sponding part of the medium. The seismic data are collected by
firing non-destructive seismic sources in one well and record-
ing the seismic waves digitally as they arrive at the other well.
The travel times of the waves can be measured from the result-
ing seismic traces. The application uses the travel-time data to
iteratively compute the velocity model.

• Water: Water evaluates forces and potentials in a system of
water molecules in the liquid state. Water is derived from the
Perfect Club benchmark MDG [4] and performs the same com-
putation.

• Panel Cholesky: A program that factors a sparse positive-
definite matrix. The columns of the matrix have been aggre-
gated into larger-grain objects called panels. This aggregation
increases both the data and task grain sizes [29].

6.1 Methodology
We obtained the applications in our benchmark suite and two repre-
sentative inputs for each application, with the second input requir-
ing substantially more computation than the first input. We then
used QuickStep to automatically parallelize the appplications, us-
ing the representative inputs to perform the executions required to
check if the candidate parallelizations satisfied the statistical ac-
curacy guarantees. All of the steps are automated except the syn-
chronization and replication introduction transformations, which
we perform manually under the guidance of the memory profiler
and the compiler. For each application we used the scheduling pol-
icy (see Section 4) that provided the best performance for that ap-
plication.

We ran the resulting parallelized applications on an Intel Xeon
E7340 with four quad-core processors. We ran a sequence of trials
with two, four, and eight threads. We performed the statistical
accuracy trials with eight threads and 600 trials, as required by
Hoeffding bound with ε = 0.05 and δ = 0.95. To better analyze the
scalability and performance in a range of conditions, we also ran
200 trials with two and four threads. For each trial run we recorded
the execution time and the distortion, enabling the a-posteriori
application of accuracy tests with different distortion bounds b.

6.2 Speedups
Table 1 presents the speedups the automatically parallelized pro-
grams achieve over the sequential versions on the representative
inputs. Each entry is of the form x(y). Here y is the mean execu-
tion time over all trial runs (200 runs for two and four threads, 600
runs for eight threads); x is the corresponding mean speedup (the
mean execution time of the parallel version divided by the execu-
tion time of the sequential version). Barnes-Hut, Search, and String
all obtain speedups in excess of five at eight threads.

6.3 Time Breakdowns
Figures 3 through 10 present the breakdowns for the total amount
of work that the threads executing each application perform. The
sequential work is the time the master thread spends executing the
sequential part of the application. The sequential idle time is the
sum over the worker threads of the time spent idle while the master
thread executes the sequential part of the computation. The parallel

work time is the sum over all threads of the amount of time spent
executing iterations of parallel loops. The parallel idle time is the
sum over all threads of the amount of time spent waiting at barriers
at the end of parallel loops for other threads to finish their iterations
in parallel loops. The numbers in the charts are the mean values
of these quantities over all of the executions. Because these charts
include the total time over all threads required to complete the
computation, the computation scales perfectly if the heights of the
bars stay the same as the number of threads increases. Any increase
in the bar heights indicate sources of ineffiency that impair (to a
proportional degree) the performance of the parallel computation
in comparison with the performance of the sequential computation.

These charts show that for all applications except Barnes-Hut,
almost all of the computation takes place in loops that QuickStep
parallelizes. For Barnes-Hut, 93 percent of the executed instruc-
tions take place in the loop that QuickStep parallelizes. The charts
also show that for Barnes-Hut there is almost no parallel idle time,
indicating that the application is almost perfectly load balanced,
and very little increase in the parallel compute time, indicating
that hardware resource effects (such as communication and caching
overhead) have little effect on the performance. The limiting factor
on the parallel performance of Barnes-Hut on this machine is there-
fore the remaining 7 percent of the instructions that execute serially
on one thread while the other threads are idle (as reflected in the in-
crease in the serial idle time as the number of threads increases).
For the first input the primary limiting factor on the performance of
String is the sequential idle time. This sequential idle time also af-
fects the performance of String on the second input, but an increase
in parallel idle time shows that application is not always load bal-
anced.

Search has almost no sequential work time, indicating that al-
most all of the computation takes place in loops that QuickStep
parallelizes. The charts indicate that the primary limiting factor on
the parallel peformance is an unbalanced load. As the number of
threads increases, all of the time components stay constant except
the parallel idle time. The limiting factor on the parallel perfor-
mance of this application is therefore the load imbalance in the
parallelized loop. For Water the limiting factor is the increase in
parallel work caused by hardware resource effects.

6.4 Distortions
Table 2 presents the mean and variance for the observed distortions
for the applications running with eight threads. Each entry is of the
form x(y), where x is the mean distortion and y is the variance. For
Barnes-Hut and Search, the iterations of the parallelized loops are
independent (no iteration reads or writes a value that another iter-
ation writes), the generated parallel program always generates the
same result as the sequential program, and the distortion is always
zero. For String and Water, the iterations of the parallelized loops
have dependences (each iteration accesses values written by other
iterations), the output varies depending on the order in which the
loop iterations execute, and the generated parallel program contains
data races. Both generated parallel programs nondeterministically
produce different outputs on different executions. Both the mean
and variance of their distortions is nonzero.

On all executions the distortion for String is always less than
0.1, which is acceptably accurate for this application. Moreover,
the vast majority (over 95 percent) of the distortions are between
0.03 and 0.06, and always less than 0.07. The mean distortion for
Water is approximately 0.009. Moreover, on all runs the distortion
for Water is between 0.006 and 0.013. For both String and Water all
of the observed distortions appear within a narrow band, indicating
that the perturbations introduced by the data races are relatively
consistent across executions.



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

x2 x4 x8

T
im

e 
(s

)

Number of processors

Barnes

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 3: Barnes (First Input)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

x2 x4 x8

T
im

e 
(s

)

Number of processors

Barnes

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 4: Barnes (Second Input)

 0

 2

 4

 6

 8

 10

 12

 14

 16

x2 x4 x8

T
im

e 
(s

)

Number of processors

String

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 5: String (First Input)

 0

 5

 10

 15

 20

 25

 30

 35

x2 x4 x8

T
im

e 
(s

)

Number of processors

String

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 6: String (Second Input)

 0

 5

 10

 15

 20

 25

 30

 35

x8x4x2

T
im

e 
(s

)

Number of processors

Search

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 7: Search (First Input)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

x8x4x2

T
im

e 
(s

)

Number of processors

Search

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 8: Search (Second Input)

 0

 5

 10

 15

 20

x2 x4 x8

T
im

e 
(s

)

Number of processors

Water

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 9: Water (First Input)

 0

 10

 20

 30

 40

 50

x2 x4 x8

T
im

e 
(s

)

Number of processors

Water

Sequential Idle
Parallel Idle

Sequential Work
Parallel Work

Figure 10: Water (Second Input)



Distortion Distortion
Application (First Input) (Second Input)
Barnes-Hut 0(0) 0(0)

Search 0(0) 0(0)
String 0.048 (0.0038) 0.049 (0.0037)
Water 0.009 (0.001) 0.011 (0.0008)

Table 2: Distortion Means and Variances for Executions with Eight Threads

6.5 Barnes-Hut
Almost all of the computation in the Barnes-Hut N-body solver
takes in the force computation, which iterates over all the bod-
ies, using the space subdivision tree to compute the force acting
on that body. There are no cross-iteration dependences in force
computation loop. QuickStep’s parallelization of this loop there-
fore produces a parallel program that deterministically produces the
same result as the original sequential program. The resulting paral-
lel computation exhibits good performance on the target hardware
platform. The first input for Barnes-Hut simulates 218 = 262, 144
bodies; the second input simulates 219 = 524, 288 bodies. The
bodies are placed at psuedo-random locations at the start of the
simulation. Our manual evaluation of the source code of the force
computation loop confirms the lack of dependences between paral-
lel iterations and the overall acceptability of the parallelization.

6.6 Search
Almost all of the computation in Search takes place inside two
loops, one of which is nested inside the other. The outermost loop
iterates over a set of points. The innermost loop traces a fixed num-
ber of particles for each point to compute the number of traced par-
ticles that exit the front of the simulated material. QuickStep paral-
lelizes the outermost loop only. An inspection of the code indicates
that this loop has no cross-iteration dependences and that the result-
ing parallel computation always produces an identical output as the
sequential computation. Note that the starting sequential program
allocates separate psuedo-random number generator for each point.

6.7 String
Almost all of the computation in String takes place inside two
loops, one of which is nested inside the other. The loops trace rays
through a discretized model of the geology between two oil wells.
The outermost loop iterates over a set of sources. The innermost
loop traces a collection of rays for each source. It computes, for
each ray, the time the ray takes to travel from one oil well to the
other as it propagates through the geometry model. For each ray,
String compares the traced travel time to an experimentally mea-
sured travel time and backprojects the difference along the path of
the ray to update the model of the geology. QuickStep parallelizes
the outermost loop only. The resulting automatically generated par-
allel computation may contain data races — it is possible for two
threads to update the same location in the model of the geology at
the same time. And in fact, the noise in the output from the parallel
version indicates that at least some races occur during the paral-
lel executions. The results also indicate, however, that the noise is
small and that the parallel executions produce an output that sat-
isfies the statistical accuracy goal. Our manual evaluation of the
source code confirmed the potential presence of (infrequent) data
races and the overall acceptability of the parallelization.

The two inputs for String vary in the number of rays they shoot,
the angles at which it shoots the rays, the angle between successive
rays, and the number of iterations over the geology model that the
computation performs.

The accuracy test measures the mean distortion over all of
the elements of the discretized geology model that the program
produces as output. We set the acceptable distortion bound for this
application to be 0.1.

6.8 Water
Almost all of the computation in Water takes place in two loop
nests. One of the loop nests computes the forces acting on each wa-
ter molecule. The other loop nest computes the potential energy of
the system of water molecules. Both loop nests have two loops. The
outermost iterates over all molecules in the system; the innermost
iterates over the remaining molecules to compute all pairs of inter-
actions. Both loop nests accumulate contributions into a single ob-
ject. With the standard sequential implementation of this scalar ac-
cumulator, parallel executions of these loops produce unacceptably
inaccurate outputs — pervasive race conditions associated with the
accumulator object cause the computation to lose many of the up-
dates to this object. Linking the program against an implementation
of the accumulator object designed to execute in a parallel envi-
ronment eliminates the race conditions for the accumulator object.
QuickStep then parallelizes both outer loops in both loop nests.

With this parallelization, there are still some remaining data
races. These races exist when two threads update the force acting
on a given molecule at the same time. These data races occur infre-
quently enough so that the resulting noise in the output leaves the
output acceptably accurate. Our evaluation of the source code con-
firms the presence of (infrequent) data races and the acceptability
of the parallelization.

The acceptability test for Water is based on the mean distortion
of several values that the simulation produces as output. Water pro-
duces a set of outputs related to the energy of the system, including
the kinetic energy of the system of water molecules, the intramolec-
ular potential energy, the intermolecular potential energy, the reac-
tion potential energy, the total energy, the temperature, and a virtual
energy quantity.

The first input for Water simulates 1000 water molecules; the
second input simulates 1728 water molecules. At the start of the
simulation the water molecules are placed in a regular lattice with
psuedo-randomly assigned momenta.

6.9 Panel Cholesky
Panel Cholesky groups the columns of the sparse matrix into panels
(sequences of adjacent columns with identical non-zero structure).
It then performs the sparse Cholesky factorization at the granular-
ity of panels. ClearView finds three candidate parallel loops in this
computation. Together, these three loops account for over 59 per-
cent of the instructions in the computation.

The accuracy test for this application uses the factored matrix
to solve for a vector with a known correct result. If the norm of the
solution differs from the known correct result by more than a given
tolerance, the factored matrix fails the acceptability test.

Parallelizing the first or second loop produces a generated par-
allel program that always fails the accuracy test. The remaining
third loop accounts for approximately 18 percent of the instruc-



tions in the computation. Parallelizing this loop produces a parallel
program that always passes the accuracy test, but does not execute
significantly faster than the original sequential program.

Several characteristics of this application place it well beyond
the reach of QuickStep (or, for that matter, any existing or envi-
sioned parallelizing compiler [29]). The primary problem is that
the structure of the important source of concurrency in this applica-
tion (performing updates involving different panels) depends on the
specific pattern of the nonzeros in the matrix. Moreover, any par-
allel execution must order all updates to each panel before all sub-
sequent uses of the panel. These ordering constraints emerge from
the semantics of the application — there is no loop in the compu-
tation that can be parallelized to exploit this source of concurrency.
Instead, the standard approach is to perform an inspector/executor
approach that extracts the nonzero pattern from the matrix, ana-
lyzes the nonzero pattern to build a schedule of the legal parallel
execution, then executes this schedule to execute the computation
in parallel.

This application illustrates an important limitation of the Quick-
Step approach (and the approach behind virtually all other paral-
lelizing compilers). QuickStep is designed to exploit concurrency
available in loops whose iterations can execute in any order with-
out producing a result that fails the accuracy test. The ordering
constraints in Panel Cholesky place it beyond the reach of this ap-
proach. Note, however, that ordering constraints are not the same
as data dependences — QuickStep is often capable of parallelizing
loops with data dependences between iterations. In fact, iterations
of parallelized loops in both Water and String have data depen-
dences. But because the loop iterations commute (produce accept-
ably accurate results regardless of the order in which they execute),
violating these data dependences does not cause these applications
to produce a result that fails the accuracy test. QuickStep can there-
fore parallelize these applications even in the presence of data de-
pendences between loop iterations.

7. Related Work
We discuss related work in parallelizing compilers, interactive
profile-driven parallelization, and unsound transformations.

7.1 Parallelizing Compilers
There is a long history of research in developing compilers that can
automatically exploit parallelism available in programs that manip-
ulate dense matrices using affine access functions. This research
has produced several mature compiler systems with demonstrated
success at exploiting this kind of parallelism [12, 5, 18]. Our tech-
niques, in contrast, are designed to exploit parallelism available in
loops regardless of the specific mechanisms the computation uses
to access data. Because the acceptability of the parallelization is
based on a statistical analysis of the output of the parallelized pro-
gram rather than an analysis of the program itself with the require-
ment of generating a parallel program that produces identical out-
put to the sequential program, QuickStep is dramatically simpler
and less brittle in the face of different programming constructs and
access patterns. It can also effectively parallelize a wider range of
programs.

Commutativity analysis [27, 1] analyzes sequential programs to
find operations on objects that produce equivalent results regard-
less of the order in which they execute. If all of the operations in
a computation commute, it is possible to execute the computation
in parallel (with commuting updates synchronized to ensure atom-
icity). Our techniques, in contrast, statistically analyze the output
of the parallelized program rather than program itself with the goal
of producing a parallel program with outputs that are statistically
close to, rather than necessarily identical to, the results that the se-
quential program produces. Once again, our approach produces a

dramatically simpler compiler and analysis that can successfully
parallelize a broader range of programs.

Motivated by the difficulty of exploiting concurrency in sequen-
tial programs by a purely static analysis, researchers have devel-
oped approaches that use speculation. These approaches (either au-
tomatically or with the aid of a developer) identify potential sources
of parallelism before the program runs, then run the corresponding
pieces of the computation in parallel, with mechanisms designed
to detect and roll back any violations of dependences that occur as
the program executes [33, 20, 6, 22]. These techniques typically re-
quire additional hardware support, incur dynamic overhead to de-
tect dependence violations, and do not exploit concurrency avail-
able between parts of the program that violate the speculation pol-
icy. Our approach, in contrast, operates on stock hardware with no
dynamic instrumentation. It can also exploit concurrency available
between parts of the program with arbitrary dependences (includ-
ing unsynchronized data races) as long as the violation of the de-
pendences does not cause the program to produce an unacceptably
inaccurate result.

Another approach to dealing with static uncertainty about the
behavior of the program is to combine static analysis with run-
time instrumentation that extracts additional information (available
only at run time) that may enable the parallel execution of the
program [31, 22, 21, 11]. Once again, the goal of these approaches
is to obtain a parallel program that always produces the same
result as the sequential program. Our approach, on the other hand,
requires no run-time instrumentation and can parallelize programs
even though they violate the data dependences of the sequential
program (as long as these violations do not unacceptably perturb
the output).

7.2 Profile-Driven Parallelization
Profile-driven parallelization approaches run the program on repre-
sentative inputs, dynamically observe the memory access patterns,
then use the observed access patterns to suggest potential paral-
lelizations that do not violate the observed data dependences [34,
30, 10]. These potential parallelizations are then typically presented
to the developer for approval.

It is possible to use QuickStep in a similar way, to explore po-
tential parallelizations that are then certified as acceptable by the
programmer. And because QuickStep can generate successful par-
allelizations that violate the data dependences, it can generate a
broader range of parallelizations for programmer approval. Note
that this broader range may make a significant difference in the
performance of the produced parallel computation. The success-
ful parallelizations of two of the applications in our benchmark set
(String and Water) inherently violate the underlying data depen-
dences, which places these parallelizations beyond the reach of any
technique that attempts to preserve these dependences.

7.3 Statistical Accuracy Models for Parallel Computations
Recent research has developed statistical accuracy models for par-
allel programs that discard tasks, either because of failures or to
purposefully reduce the execution time [24]. A conceptually re-
lated technique eliminates idle time at barriers at the end of par-
allel phases of the computation by terminating the parallel phase as
soon as there is insufficient computation available to keep all pro-
cessors busy [25]. The results are largely consistent with the results
reported in this paper. Specifically, the bottom line is that programs
can often tolerate perturbations in the execution (discarding tasks,
reordering loop iterations, or data races) without producing unac-
ceptable inputs. There are several differences between this previous
research and the research presented in this paper. First, the goals
are different: the techniques presented in this paper are designed
to parallelize the program; previous techniques are designed to en-



able parallel programs to discard tasks or eliminate idle time. The
potential performance benefits of the research presented in this pa-
per are significantly larger (but could be enhanced by the previous
techniques). Second, the statistical approaches are significantly dif-
ferent. Previous research uses multiple linear regression to produce
a statistical model of the distortion as a function of the number of
discarded tasks. The research presented in this paper, on the other
hand, uses user-defined accuracy tests in combination with the Ho-
effding bound to obtain a statistical guarantee of the accuracy of
the resulting parallel computation. In comparison with previous ap-
proaches, this approach requires fewer assumptions on the behavior
of the parallel computation but more trial runs to obtain tight sta-
tistical distortion bounds.

7.4 Unsound Program Transformations
We note that this paper presents techniques that are yet another
instance of an emerging class of unsound program transforma-
tions. In contrast to traditional sound transformations (which op-
erate under the restrictive constraint of preserving the semantics of
the original program), unsound transformations have the freedom
to change the behavior of the program in principled ways. Previ-
ous unsound transformations have been shown to enable applica-
tions to productively survive memory errors [26, 3], code injection
attacks [26, 19], data structure corruption errors [8, 9], memory
leaks [17], infinite loops [17], improve performance [14], respond
to the clock frequency changes or core failures [14], and discover
additional optimization opportunities [16]. The fact that all of these
techniques provide programs with capabilities that were previously
unobtainable without burdensome developer intervention provides
even more evidence for the value of this new approach.

8. Conclusion
Automatic parallelization of sequential programs is a research area
with a long history. The field has demonstrated successes within
specific computation domains, but many computations remain well
beyond the reach of traditional approaches (which analyze the se-
quential program to provide a guarantee that the parallel and se-
quential programs will always produce identical outputs). The dif-
ficulty of building compilers that use these approaches and the large
classes programs that currently (and in some cases inherently) lie
beyond their reach leaves room for simpler and more effective tech-
niques that can parallelize a wider range of programs. QuickStep’s
statistical accuracy approach provides both the simplicity and wider
applicability that the field requires. The results indicate that this ap-
proach enables QuickStep to automatically generate parallel com-
putations that perform well and produce outputs that have tight sta-
tistical accuracy guarantees.

References
[1] ALEEN, F., AND CLARK, N. Commutativity analysis for software

parallelization: Letting program transformations see the big picture.
In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (Wash-
ington, DC, Mar. 2009).

[2] BARNES, J., AND HUT, P. A hierarchical O(NlogN) force calculation
algorithm. Nature 324, 4 (Dec. 1986), 446–449.

[3] BERGER, E., AND ZORN, B. DieHard: probabilistic memory safety
for unsafe languages. In PLDI (June 2006).

[4] BLUME, W., AND EIGENMANN, R. Performance analysis of paral-
lelizing compilers on the Perfect Benchmarks programs. IEEE Trans-
actions on Parallel and Distributed Systems 3, 6 (Nov. 1992).

[5] BLUME, W., EIGENMANN, R., FAIGIN, K., GROUT, J., HOE-
FLINGER, J., PADUA, D., PETERSEN, P., POTTENGER, W., RAUGH-
WERGER, L., TU, P., AND WEATHERFORD, S. Effective automatic

parallelization with Polaris. In International Journal of Parallel Pro-
gramming (May 1995).

[6] BRIDGES, M., VACHHARAJANI, N., ZHANG, Y., JABLIN, T., AND
AUGUST, D. Revisiting the sequential programming model for multi-
core. In Proceedings of the 40th IEEE/ACM International Symposium
on Microarchitecture (MICRO) (Chicago, IL, Dec. 2007).

[7] BROWNING, R., LI, T., CHUI, B., YE, J., PEASE, R., CZYZEWSKI,
Z., AND JOY, D. Low-energy electron/atom elastic scattering cross
sections for 0.1-30keV. Scanning 17, 4 (July/August 1995), 250–253.

[8] DEMSKY, B., ERNST, M., GUO, P., MCCAMANT, S., PERKINS,
J., AND RINARD, M. Inference and enforcement of data structure
consistency specifications. In ISSTA ’06.

[9] DEMSKY, B., AND RINARD, M. Data structure repair using goal-
directed reasoning. In ICSE ’05 (2005).

[10] DING, C., SHEN, X., KELSEY, K., TICE, C., HUANG, R., AND
ZHANG, C. Software behavior oriented parallelization. In Proceed-
ings of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation (2007), ACM New York, NY, USA.

[11] DING, Y., AND LI, Z. An Adaptive Scheme for Dynamic Paralleliza-
tion. Lecture notes in computer science (2003), 274–289.

[12] HALL, M., ANDERSON, J., AMARASINGHE, S., MURPHY, B.,
LIAO, S., BUGNION, E., AND LAM, M. Maximizing multiproces-
sor performance with the SUIF compiler. IEEE Comput. (Dec. 1996).

[13] HARRIS, J., LAZARATOS, S., AND MICHELENA, R. Tomographic
string inversion. In Proceedings of the 60th Annual International
Meeting, Society of Exploration and Geophysics, Extended Abstracts
(1990), pp. 82–85.

[14] HOFFMANN, H., MISAILOVIC, S., SIDIROGLOU, S., AGARWAL, A.,
AND RINARD, M. Using Code Perforation to Improve Performance,
Reduce Energy Consumption, and Respond to Failures . Tech. Rep.
MIT-CSAIL-TR-2009-042, MIT, Sept. 2009.

[15] LATTNER, C., AND ADVE, V. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04) (Palo Alto, California, Mar 2004).

[16] MISAILOVIC, S., SIDIROGLOU, S., HOFFMANN, H., AND RINARD,
M. Quality of service profiling. In ICSE ’10 (2010).

[17] NGUYEN, H., AND RINARD, M. Detecting and eliminating memory
leaks using cyclic memory allocation. In ISMM ’07.

[18] OPEN64. Open64: Open research compiler. www.open64.net.
[19] PERKINS, J., KIM, S., LARSEN, S., AMARASINGHE, S.,

BACHRACH, J., CARBIN, M., PACHECO, C., SHERWOOD, F.,
SIDIROGLOU, S., ET AL. Automatically patching errors in deployed
software. In SOSP ’09.

[20] PRABHU, M., AND OLUKOTUN, K. Exposing speculative thread
parallelism in spec2000. In Proceedings of the 2005 ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

[21] RAUCHWERGER, L., AMATO, N., AND PADUA, D. Run-time meth-
ods for parallelizing partially parallel loops. In Proceedings of the 9th
international conference on Supercomputing (1995), ACM.

[22] RAUCHWERGER, L., AND PADUA, D. The LRPD test: speculative
run-time parallelization of loops with privatization and reduction par-
allelization. In Proceedings of the SIGPLAN ’95 Conference on Pro-
gram Language Design and Implementation (June 1995).

[23] RINARD, M. The Design, Implementation and Evaluation of Jade,
a Portable, Implicitly Parallel Programming Language. PhD thesis,
Dept. of Computer Science, Stanford Univ., Stanford, Calif., 1994.

[24] RINARD, M. Probabilistic accuracy bounds for fault-tolerant compu-
tations that discard tasks. In Proceedings of the 2006 ACM Interna-
tional Conference on Supercomputing (Cairns, Australia, June 2006).

[25] RINARD, M. Using early phase termination to eliminate load imbal-
ancess at barrier synchronization points. In Proceedings of the 22nd
Annual Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (Montreal, Canada, Oct. 2007).

[26] RINARD, M., CADAR, C., DUMITRAN, D., ROY, D. M., LEU, T.,
AND WILLIAM S. BEEBEE, J. Enhancing Server Availability and



Security Through Failure-Oblivious Computing. In OSDI (December
2004).

[27] RINARD, M., AND DINIZ, P. Commutativity analysis: A new analysis
technique for parallelizing compilers. ACM Transactions on Program-
ming Languages and Systems 19, 6 (Nov. 1997).

[28] RINARD, M., AND LAM, M. The design, implementation, and eval-
uation of jade. ACM Transactions on Programming Languages and
Systems 20, 3 (May 1998).

[29] ROTHBERG, E. Exploiting the memory hierarchy in sequential and
parallel sparse Cholesky factorization. PhD thesis, Dept. of Computer
Science, Stanford Univ., Stanford, Calif., Jan. 1993.

[30] RUL, S., VANDIERENDONCK, H., AND DE BOSSCHERE, K. A
dynamic analysis tool for finding coarse-grain parallelism. In HiPEAC
Industrial Workshop (2008).

[31] RUS, S., PENNINGS, M., AND RAUCHWERGER, L. Sensitivity anal-
ysis for automatic parallelization on multi-cores. In Proceedings of
the 21st annual international conference on Supercomputing (2007),
ACM New York, NY, USA, pp. 263–273.

[32] SINGH, J., AND HENNESSY, J. Finding and exploiting parallelism
in an ocean simulation program: Experience, results and implications.
Journal of Parallel and Distributed Computing 15, 1 (May 1992).

[33] TINKER, P., AND KATZ, M. Parallel execution of sequential Scheme
with Paratran. In Proceedings of the 1988 ACM Conference on Lisp
and Functional Programming (Snowbird, UT, July 1988), pp. 28–39.

[34] TOURNAVITIS, G., WANG, Z., FRANKE, B., AND O’BOYLE, M.
Towards a holistic approach to auto-parallelization: integrating profile-
driven parallelism detection and machine-learning based mapping. In
Proceedings of the 2009 PLDI, ACM New York, NY, USA.




