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We consider the problem of allocating a fixed amount of an infinitely divisible resource among multiple

competing, fully rational users. We study the efficiency guarantees that are possible when we restrict to

mechanisms that satisfy certain scalability constraints motivated by large scale communication networks;

in particular, we restrict attention to mechanisms where users are restricted to one-dimensional strategy

spaces. We first study the efficiency guarantees possible when the mechanism is not allowed to price differen-

tiate. We study the worst-case efficiency loss (ratio of the utility associated with a Nash equilibrium to the

maximum possible utility), and show that the proportional allocation mechanism of Kelly (1997) minimizes

the efficiency loss when users are price anticipating. We then turn our attention to mechanisms where price

differentiation is permitted; using an adaptation of the Vickrey-Clarke-Groves class of mechanisms, we con-

struct a class of mechanisms with one-dimensional strategy spaces where Nash equilibria are fully efficient.

These mechanisms are shown to be fully efficient even in general convex environments, under reasonable

assumptions. Our results highlight a fundamental insight in mechanism design: when the pricing flexibility

available to the mechanism designer is limited, restricting the strategic flexibility of bidders may actually

improve the efficiency guarantee.

Subject classifications : Game/group decisions: noncooperative, bidding/auctions; Networks/graphs:

theory; Utility/preference: theory

1. Introduction

We consider the problem of allocating a fixed amount of an infinitely divisible resource among

multiple competing, fully rational users, a problem that has received extensive attention in recent

literature on pricing of communication resources (Shenker et al. 1996, Falkner et al. 2000). We

investigate a fundamental question: what is the best achievable efficiency when users are fully

rational? We study the efficiency guarantees that are possible when we restrict to mechanisms that

satisfy certain constraints motivated by large scale communication networks.

1
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Our starting point is a mechanism introduced by Kelly (1997). For the special case of a single

resource in fixed supply, his scheme is easily described. Each user chooses a total payment, or bid.

The resource is then allocated to users in proportion to their bids, and each user pays an amount

equal to his bid; equivalently, a market-clearing price is set equal to the sum of the bids divided

by the total amount of available resource.

This scheme has two desirable properties: first, the strategy space of the users is “simple”,

i.e., one-dimensional; and second, the feedback required from the mechanism to the users is a

single price per unit of resource. Both features are central requirements for a mechanism to be

practical in the context of large networks. In order to keep the communication from the users to the

network simple, it is reasonable to restrict users to one-dimensional bids; we refer to mechanisms

that restrict users to such bids as scalar-parameterized mechanisms. Further, in communication

networks, mechanisms that use “aggregate feedback” are considered scalable (Shenker 1990); this

is one motivation for mechanisms that choose only a single price. The Kelly mechanism is designed

to incorporate both of these design principles simultaneously (see also Kelly et al. 1998, Srikant

2004).

Kelly (1997) considered a model where each user is endowed with a concave, increasing utility,

which is a function of the received resource allocation. He showed that if users do not anticipate the

effect of their bid choices on market-clearing prices, then at equilibrium, a fully efficient allocation

is achieved—that is, an allocation where the aggregate utility of the users has been maximized.

However, this analysis assumed that users are not fully rational, and do not fully anticipate the

effects of their bids on prices. By contrast, Johari and Tsitsiklis (2004) considered a game theoretic

model of the Kelly mechanism where users are price anticipating, and established that the aggregate

utility at a Nash equilibrium is no worse than 75% of the maximal aggregate utility.

In this paper, we investigate the optimality of the result of Johari and Tsitsiklis (2004). Our

results provide two major insights. First, we show that if we restrict attention to a class of mecha-

nisms where users only submit one-dimensional bids, and the mechanism only chooses a single price,

then the Kelly mechanism exhibits the best possible efficiency guarantee. Formally, we consider a
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class of market-clearing mechanisms; in these mechanisms each user submits a scalar-parameterized

demand function, and a single price is chosen to clear the market. Under reasonable assumptions,

we show that the Kelly mechanism minimizes the worst case efficiency loss at a Nash equilibrium

when users are price anticipating. This result complements the work of Maheswaran and Basar

(2004): they reached similar conclusions for a qualitatively different class of mechanisms involving

differentiated prices that are functions of individual bids, as opposed to our single prices that are

functions of all bids. See Section 2.1 for details.

Our second major insight is aimed at understanding the importance of the single price assumption

in the preceding result. To investigate this point, we preserve the assumption that bids are one-

dimensional, but remove the restriction that the mechanism only chooses a single price. We ask:

how much can we improve the efficiency guarantee if the mechanism is allowed to choose a different

price for each user? Using a class of mechanisms inspired by the Vickrey-Clarke-Groves (VCG)

approach (Vickrey 1961, Clarke 1971, Groves 1973), we show that if users are restricted to using

one-dimensional bids, but the mechanism can price differentiate (i.e., set a different price for each

user) then fully efficient Nash equilibria can be achieved—not only in a single resource setting,

but also in general convex environments. We call these mechanisms scalar strategy VCG (SSVCG)

mechanisms.1 We note that as a special case, SSVCG mechanisms contain an earlier class of

mechanisms obtained by Yang and Hajek (2006a) and Maheswaran (2003); we further discuss this

relationship in Sections 2.2 and 5.2.

Outline The remainder of the paper is organized as follows. In Section 2, we discuss related

work. In Section 3, we give the mathematical framework of our optimal mechanism design problem.

We restrict attention to allocation of a single infinitely divisible resource among multiple users.

Each user is endowed with a concave, strictly increasing, differentiable utility function, and makes

strategic decisions to maximize his utility less payment.

In Section 3.1, we begin by embedding the Kelly mechanism into a broader class of market-

clearing mechanisms. We make a simple but crucial observation: a user’s bid θ establishes a relation

1 A similar result was independently and simultaneously presented by Yang and Hajek (2006b, 2007); see Section 2.2.
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d = θ/p between the quantity d allocated to the user, and the market-clearing price p per unit

of the resource. This can be viewed as having the user submit a demand function D(p, θ), which

specifies demand as a function of p. The user is, however, limited to a particular one-parameter

family of demand functions, demand functions of the form D(p, θ) = θ/p; choosing a value for the

parameter θ is all the freedom given to the user.

While the Kelly mechanism assumes a specific form for D(p, θ), an entire family of market-

clearing mechanisms results if we consider alternative forms for D(p, θ). This added generality

retains the simplicity of the Kelly mechanism: each user selects from a one-dimensional strategy

space, and a single price is charged to all users. Formally, we restrict attention to smooth market-

clearing mechanisms defined by a differentiable parameterized demand function D(p, θ).2 In these

mechanisms, each user r chooses a strategy θr ≥ 0. A price p∗ = pD(θ) is then chosen to clear the

market, i.e., so that
∑

rD(p∗, θr) =C, where C is the supply, the amount of available resource. Each

user r then receives an allocation D(p∗, θr), and pays p∗D(p∗, θr). A smooth market-clearing mecha-

nism is thus entirely specified by the parametric family of demand functions D(p, θ). We emphasize

that although the class of demand functions is constrained in this way, no such constraints are

imposed on the true utility functions of the users (other than concavity and monotonicity).

In Section 3.2, we recapitulate existing results regarding the Kelly mechanism. We note that the

Kelly mechanism yields full efficiency when users are price taking, and guarantees an efficiency of

75%: i.e., the aggregate utility at a Nash equilibrium is no less than 75% of the maximal aggregate

utility when users are price anticipating, and this bound is tight.

With this background, our objective is to maximize the market’s efficiency. In particular, we wish

to determine whether the 75% guarantee of the Kelly mechanism can be improved. In Section 4,

we consider a class D of smooth market-clearing mechanisms where: (1) users’ payoffs are concave

when users are price anticipating, i.e., when they fully anticipate the functional form of the market-

clearing price pD(θ); and (2) for each p, the range of D(p, θ), as θ varies over the nonnegative real

2 Some notion of smoothness is required to ensure that dimension is a reasonable measure of strategic flexibility; for
example, in the absence of a differentiability requirement, an arbitrary amount of information can be communicated
in a single scalar, e.g., using a space-filling curve.
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numbers, is the entire interval [0,∞). We explain why these assumptions are reasonable, and give

examples of mechanisms in D beyond the Kelly mechanism.

We show in Theorem 1 that in this class of mechanisms, the Kelly mechanism minimizes the

worst case efficiency loss when users are price anticipating, and is the unique mechanism with

this property. In the process, we also give a structural description of all mechanisms in this class:

any mechanism satisfying the given assumptions must be of the form D(p, θ) = θ/B(p), where B

is concave, strictly increasing, and invertible on (0,∞). Notably, this structural characterization

implies any such mechanism is a proportional allocation mechanism: the allocation is always made

in proportion to the bids, as is true for the Kelly mechanism. Thus mechanisms in D differ only in

the prices they choose for any given vector of users’ bids.

For any smooth market-clearing mechanism, users have one-dimensional strategy spaces, and the

mechanism only chooses a single price. Because of these constraints, even the highest performance

mechanism—the Kelly mechanism—suffers a positive efficiency loss. In Section 5, we consider the

implications of removing the “single price” constraint, while retaining the constraint that strategy

spaces must be one-dimensional. We show in Section 5.2 that if we consider mechanisms with

scalar strategy spaces, and allow the mechanism to choose a different price for each user, then

in fact full efficiency is achievable at Nash equilibrium; this is shown via a class of mechanisms

called SSVCG mechanisms (see above); we show that as a special case of this mechanism, one can

recover the mechanism and main conclusions of Yang and Hajek (2006a) and Maheswaran (2003).

The result involves adapting the well-known class of Vickrey-Clarke-Groves (VCG) mechanisms to

the case of scalar strategy spaces. For SSVCG mechanisms, we are also able to consider far more

general resource allocation environments. In particular, we show that for a very general class of

convex resource allocation problems, if the utility of a user depends only on a scalar function of the

vector of resources allocated to that user, then SSVCG mechanisms ensure that full efficiency is

achievable at Nash equilibrium. We show that an efficient Nash equilibrium always exists, and also

give reasonable sufficient conditions under which all Nash equilibria are efficient. As an illustration,



Johari and Tsitsiklis: Efficiency of Scalar-Parameterized Mechanisms

6 Article submitted to Operations Research; manuscript no. XXXX

we apply our SSVCG framework to a standard multicommodity flow problem. We conclude with

a discussion of extensions and open problems in Section 6.

2. Related Work

In this section we review threads of the existing literature related to our work. One body of

recent work concerns the characterization of efficiency loss in scalar-parameterized mechanisms;

we compare this work with the results of Section 4. A second thread of the literature studies the

design of scalar-parameterized mechanisms that achieve full efficiency; we compare this work with

the results of Section 5.

2.1. Efficiency Loss of Scalar-Parameterized Mechanisms

In Section 4, we show that in the class D of smooth market-clearing mechanisms, the Kelly mech-

anism uniquely minimizes the worst case efficiency loss when users are price anticipating. The

efficiency loss of the Kelly mechanism was first studied by Johari and Tsitsiklis (2004); subsequently,

several others have studied efficiency loss of related resource allocation mechanisms, including Chen

and Zhang (2005), Johari et al. (2005), Johari and Tsitsiklis (2006), Maheswaran (2003), Mah-

eswaran and Basar (2004), Moulin (2007), Sanghavi and Hajek (2004) and Yang and Hajek (2006a).

More generally, several works in the recent literature aim at quantifying efficiency losses in games,

e.g., for routing (Czumaj and Voecking 2002, Koutsoupias and Papadimitriou 1999, Mavronicolas

and Spirakis 2001), traffic networks (Correa et al. 2004, Roughgarden and Tardos 2002), network

design problems (Anshelevich et al. 2003, Fabrikant et al. 2003), and supply chain management

(Roels and Perakis 2007); for a more comprehensive discussion on work in this area, the reader is

referred to the survey text of Nisan et al. (2007).

The most closely related result to ours is presented by Maheswaran and Basar (2004). They

consider mechanisms where each user r chooses a bid wr, and the allocation is made proportional to

each user’s bid. However, rather than assuming that every user pays wr as in the Kelly mechanism,

Maheswaran and Basar consider a class of mechanisms where the user pays c(wr), where c is a
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convex function.3 They show that in this class of mechanisms, the Kelly mechanism (i.e., a linear

function c) achieves the minimal worst case efficiency loss when users are price anticipating.

We note that in general, in Maheswaran and Basar’s model, different users are charged different

per unit prices for the resource they obtain (i.e., pricing is nonuniform), unless c is linear—exactly

the Kelly mechanism. By contrast, in every mechanism in the class of mechanisms we consider,

all users are charged the same per unit price (i.e., the market-clearing price), where the price is

a function of the vector of all bids, which depends on the specific mechanism chosen. Thus our

results prove optimality of the Kelly mechanism in a distinct regime from Maheswaran and Basar.

We also note that our work is substantially different in another way from Maheswaran and Basar,

because we do not postulate a priori that the mechanism must allocate the resource in proportion

to users’ bids; instead, this emerges as a consequence of our rather natural assumptions on the

mechanisms in D. Several other works on efficiency of resource allocation mechanisms, including

Maheswaran and Basar (2004) and Yang and Hajek (2006a), assume a priori that allocations are

made in proportion to users’ bids. In this sense, our result lends a rigorous foundation to the

intuition that proportional allocation mechanisms—those that allocate the resource in proportion

to users’ bids—yield a natural approach to resource allocation among competing users.

We conclude this section by noting that because the class D induces constraints on the com-

munication both to and from the mechanism, a strictly positive efficiency loss is inevitable. Our

approach in Section 4 can be viewed as an optimization problem that aims at minimizing efficiency

loss subject to communication constraints.

2.2. Fully Efficient Scalar-Parameterized Mechanisms

In Section 5, we relax the assumption that all users must pay the same per-unit price for the

resource. We construct a class of scalar strategy VCG mechanisms that ensure that Nash equilibria

are fully efficient. The literature in both economics and more recently in operations research has

3 We note that the authors’ assumption that c is convex is largely to ensure existence of a Nash equilibrium; in our
context, a similar role is played by the second condition in Definition 4.
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a significant body of work related to this problem. The seminal results of Vickrey (1961), Clarke

(1971), and Groves (1973) established that if users can submit entire utility functions, and the

mechanism can choose individualized prices (i.e., one price per user), then full efficiency can be

achieved as a dominant strategy equilibrium. In our setting, however, because of the restriction to

one-dimensional strategy spaces, it is not possible to achieve full efficiency in dominant strategies.

Reichelstein and Reiter (1988) presented a key general result in the theory of mechanism design

with restricted strategy spaces. Their paper calculates the minimal strategy space dimension that

allows for fully efficient Nash equilibria for a general class of economic models known as exchange

economies. Their results apply to general convex environments, such as those studied in Section 5.3;

however, their mechanisms require a strategy space per user of dimension (J − 1)+J/(R(R− 1)),

where J is the number of resources being allocated (e.g., the number of links in a network), and

are “asymmetric,” in the sense that different users are treated differently, even if they all choose

the same strategies. We are able to use a strategy space smaller than their bound in part because

each user’s utility depends only on a scalar function of the allocation to that user, and in part

because we assume quasilinear preferences.

More recently, for the special case of multicommodity flow, Semret (1999) presented a class of

mechanisms similar to the VCG class, but where each user has a two-dimensional strategy space;

the author demonstrates existence of an approximately efficient Nash equilibrium, but does not

establish conditions under which all equilibria are efficient. Maheswaran and Basar (2004) (as well

as the earlier work, Maheswaran 2003) and Yang and Hajek (2006a) independently suggested a

mechanism for allocation of a single infinitely divisible resource in fixed supply. They demonstrated

that Nash equilibria of this mechanism are efficient. Remarkably, as we will see in Section 5, their

mechanism can be recovered as a special case of the SSVCG mechanisms we develop.

We note here that simultaneously and independently of our work described in Section 5, Yang and

Hajek (2007) proposed a class of VCG-like mechanisms with scalar strategy spaces; these results

were first presented by Yang and Hajek (2006b). In some respects their work is more specialized

than ours: they restrict attention to network resource allocation settings, and consider a less general
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class of mechanisms. However, their paper also considers various extensions not discussed here:

“soft” capacity constraints, specified through penalty functions; revenue of SSVCG mechanisms;

and dynamic algorithms that converge to efficient Nash equilibria.

Subsequent to our work (Johari and Tsitsiklis 2005) and the work of Yang and Hajek (2007),

several papers have presented related constructions of mechanisms that use limited communication

yet achieve fully efficient Nash equilibria (Dimakis et al. 2006, Stoenescu and Ledyard 2006, Moulin

2006). Building on the work of Semret (1999) discussed above, Dimakis et al. (2006) establish

that a VCG-like mechanism where agents submit a pair of strategies (requested price and quan-

tity) can achieve fully efficient equilibrium for a related resource allocation game. Stoenescu and

Ledyard (2006) consider the problem of resource allocation by building on the notion of minimal

message spaces addressed in earlier literature on mechanism design, and propose a class of efficient

mechanisms with restricted strategy spaces. Finally, Moulin (2006) considers the design of efficient

scalar-parameterized mechanisms where the net monetary transfer from users is minimized.

Several other papers have considered the consequences of restricted communication in a discrete

setting where complexity is measured in bits, rather than dimension. Blumrosen et al. (2007)

consider a setting where each bidder in an auction for a single indivisible item can only transmit

a fixed number of bits to the auctioneer. Fadel and Segal (2007) use a communication complexity-

theoretic approach to study the number of bits necessary to achieve efficiency under a variety of

notions of equilibrium. Both papers treat substantively different environments from those studied

here, and of course the methods of analysis are substantially different as well.

3. Preliminaries

The basic model we study is similar to the one studied by Kelly (1997) and Johari and Tsitsiklis

(2004). We consider a collection of R users bidding for a share of a finite, infinitely divisible resource

of capacity C. We begin by describing the users. Each user r is endowed with a utility function Ur(·),

that determines the monetary value of any resource allocation to user r. We let U = (U1, . . . ,UR)

denote the vector of utility functions. We make the following assumption, which will remain in

force throughout the paper, unless explicitly mentioned otherwise.
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Assumption 1. For each r, and over the domain dr ≥ 0, the utility function Ur(dr) is nonnegative,

concave, strictly increasing, and continuous; and over the domain dr > 0, Ur(dr) is continuously

differentiable. Furthermore, the right directional derivative at 0, denoted U ′
r(0), is finite. We let U

denote the set of all utility functions satisfying these conditions.

Note that although we make rather strong differentiability assumptions, these are not essential

to the argument; however, they ease the technical presentation. We call a triple (C,R,U), where

C > 0, R> 1, and U ∈ UR, a utility system; our goal is to design a resource allocation mechanism

which has high efficiency for all utility systems.

We assume that utility is measured in monetary units; thus, if user r receives a rate allocation

dr, but must pay wr, he receives a net payoff given by:4

Ur(dr)−wr.

Given any vector of utility functions U∈ UR, our goal is to maximize aggregate utility, as defined

in the following problem:

SYSTEM(C,R,U):

maximize
R
∑

r=1

Ur(dr) (1)

subject to
R
∑

r=1

dr ≤C; (2)

d≥ 0. (3)

We will say that d solves SYSTEM(C,R,U) if d is an optimal solution to (1)-(3).

3.1. Smooth Market-Clearing Mechanisms

In general, the utility system (C,R,U) is unknown to the mechanism designer, so a mechanism

must be designed to elicit information from the users. The following definition captures the types

of market mechanisms that we study. Let R
+ = {x∈R | x≥ 0}.

4 We follow the terminology used in the communications literature. The economics literature frequently uses “valua-
tion” and “utility” instead of our “utility” and “payoff”, respectively.
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Definition 1. A differentiable function D : (0,∞)×R
+ → R

+ is said to define a smooth market-

clearing mechanism if for all C > 0, for all R > 1, and for all nonzero θ ∈ (R+)R, there exists a

unique solution p > 0 to the following equation:

R
∑

r=1

D(p, θr) =C. (4)

We let pD(θ) denote this solution.5

We can interpret a smooth market-clearing mechanism in terms of a market-clearing process.

Each user r chooses a parameter θr, which specifies a demand function p 7→D(p, θr), and determines

user r’s demand for the resource as a function of the price p of the resource. The mechanism then

chooses a single price p= pD(θ) so that aggregate demand equals the available capacity (cf. (4)).

Each consumer r then receives a resource allocation of D(p, θr), and pays pD(p, θr). Note that (1)

each user is restricted to a one-dimensional strategy space; and (2) the mechanism only uses a

single price to allocate the resource; i.e., the mechanism does not price discriminate.

Remark 1. While our definition implicitly restricts the strategy θr of each user to R
+, the sub-

sequent analysis can be adapted to hold even if the strategy space of each user is allowed to be

[c,∞), where c∈R.

Remark 2. The market-clearing price is undefined if θ = 0. As we will see below, when we for-

mulate a game between consumers for a given function D, we will assume that the payoff to all

users is −∞ if the composite strategy vector is θ = 0. Note that this is slightly different from the

definition in Johari and Tsitsiklis (2004), where the payoff to a user with utility function U and

strategy θ= 0 is U(0). We will discuss this distinction further later; we simply note for the moment

that it does not affect our results.

We will study the performance of smooth market-clearing mechanisms through their equilibria.

Two notions of equilibrium are relevant to our analysis: competitive equilibrium and Nash equilib-

rium. In a competitive equilibrium, users act as price takers; that is, they do not anticipate the

5 Note that we suppress the dependence of this solution on C; where necessary we will emphasize this dependence.
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effect of their actions on the market-clearing price. Conversely, at a Nash equilibrium, users are

completely rational and anticipate the functional dependence of the market-clearing price pD(θ) on

their own strategic decisions. Nash equilibrium is a complete information solution concept: implic-

itly, we assume that players’ payoff functions are common knowledge. The formal definitions of

competitive equilibrium and Nash equilibrium are as follows.

Definition 2. Given a utility system (C,R,U) and a smooth market-clearing mechanism D, we

say that a nonzero vector θ ∈ (R+)R is a competitive equilibrium if, for µ= pD(θ), there holds for

all r:

θr ∈ argmax
θr≥0

[

Ur(D(µ, θr))−µD(µ, θr)
]

. (5)

Definition 3. Given a utility system (C,R,U) and a smooth market-clearing mechanism D, we

say that a nonzero vector θ ∈ (R+)R is a Nash equilibrium if there holds for all r:

θr ∈ argmax
θr≥0

Qr(θr;θ−r). (6)

where

Qr(θr;θ−r) =

{

Ur(D(pD(θ), θr))− pD(θ)D(pD(θ), θr), if θ 6= 0;
−∞, if θ = 0.

(7)

Notice that the payoff Qr is −∞ if the composite strategy vector is θ = 0, since in this case no

market-clearing price exists.

One prominent example of a smooth market-clearing mechanism is the Kelly mechanism, studied

in the context of communication networks by Kelly (1997); we discuss this mechanism in the next

section.

3.2. The Kelly Mechanism

In this section, we define the Kelly mechanism and survey some of its basic properties. In the

Kelly mechanism, each user r submits a payment (also called a bid) of wr to the resource manager.

Given the vector w = (w1, . . . ,wr), the resource manager chooses an allocation d = (d1, . . . , dr). The



Johari and Tsitsiklis: Efficiency of Scalar-Parameterized Mechanisms

Article submitted to Operations Research; manuscript no. XXXX 13

mechanism does not price discriminate; thus each user is charged the same price µ> 0, leading to

dr =wr/µ. If the entire capacity C is allocated, then we expect the price µ to satisfy:

∑

r

wr

µ
=C.

The preceding equality can only be satisfied if
∑

rwr > 0, in which case we have:

µ=

∑

rwr

C
. (8)

In other words, if the manager chooses to allocate the entire resource, and does not price discrim-

inate between users, then for every nonzero w there is a unique price µ> 0 which must be chosen

by the network, given by the previous equation. The allocation dr(w) to user r is thus:

dr(w) =











wr
∑

sws

C, if wr > 0;

0, if wr = 0,

(9)

and the payoff to user r (when w 6= 0) is Ur(dr(w))−wr.

The Kelly mechanism is a smooth market-clearing mechanism. To see this interpretation, note

that when a user chooses a total payment wr, it is as if the user has chosen a demand function

D(p,wr) =wr/p for p > 0. The resource manager then chooses a price µ so that
∑

rD(µ,wr) =C,

i.e., so that the aggregate demand equals the supply C. For the specific form of demand functions

we consider here, this leads to the expression for µ given in (8). User r then receives an allocation

given by D(µ,wr), and makes a payment µD(µ,wr) =wr.

The following remarks summarize the key insights about the Kelly mechanism.

Remark 3. Notice that the Kelly mechanism allocates the resource in proportion to the bids of

the users (from (9)). We refer to mechanisms of this form as proportional allocation mechanisms;

they will play a key role in our analysis in Section 4.

Remark 4. When users act as price takers, then given a price µ > 0, each user r chooses wr ≥ 0

to maximize Ur(wr/µ) − wr. For the Kelly mechanism, a competitive equilibrium always exists,

and the resulting allocation is fully efficient (Kelly 1997); this result is a special case of the first

fundamental theorem of welfare economics (Mas-Colell et al. 1995, Chapter 16).
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Remark 5. When users act as price anticipators, they maximize their payoff with the knowledge

that the price will be set according to (8). Johari and Tsitsiklis analyze this setting through the

Nash equilibria of the resulting game; they show that for any utility system, at the unique Nash

equilibrium of this game, the aggregate utility at the resulting allocation achieves at least 75% of

the maximum possible aggregate utility.

In the next section, we consider a broader class of mechanisms that includes the Kelly mechanism

as a special case, and use this setting to investigate the optimality of the Kelly mechanism.

4. Optimality of the Kelly Mechanism

In this section we ask the following type of fundamental question: is a particular mechanism “desir-

able” among a class of mechanisms satisfying certain “reasonable” properties? Defining desirability

is the simpler of the two tasks: we consider a mechanism to be desirable if it minimizes worst case

efficiency loss when users are price anticipating. Importantly, we ask for this efficiency property

independent of the utility functions of the market participants, and their number. That is, the

mechanisms we seek are those that perform well under broad assumptions on the nature of the

preferences of market participants. We will show that under a specific set of assumptions, the Kelly

mechanism in fact minimizes the worst case efficiency loss when users are price anticipating.

We now frame the specific class D of market mechanisms we consider in this section, defined as

follows.

Definition 4. The class D consists of all functions D(p, θ) such that the following conditions are

satisfied:

1. D defines a smooth market-clearing mechanism (cf. Definition 1).

2. For all C > 0, and for all Ur ∈ U , a user’s payoff is concave if he is price anticipating; that is,

for all R, and for all θ−r ∈ (R+)R, the function:

Ur(D(pD(θ), θr))− pD(θ)D(pD(θ), θr)

is concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0.
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3. For all p > 0, and for all d≥ 0, there exists a θ≥ 0 such that D(p, θ) = d.

We pause here to briefly discuss the conditions in the previous definition. The second one allows

us to characterize Nash equilibria in terms of only first order conditions. To justify this condition,

we note that some assumption of quasiconcavity is generally used to guarantee existence of pure

strategy Nash equilibria (Fudenberg and Tirole 1991). The third condition ensures that given a

price p and desired allocation d ∈ [0,C], each user can make a choice of θ to guarantee precisely

the allocation d. This is an “expressiveness” condition on the mechanism, that ensures all possible

demands can be chosen at any market-clearing price. The following example gives a family of

mechanisms that lie in D.

Example 1. Suppose that D(p, θ) = θp−1/α, where α ≥ 1. It is easy to check that this class of

mechanisms satisfies D ∈D for all choices of α; when α= 1, we recover the Kelly mechanism. The

market-clearing condition yields that pD(θ) = (
∑

r θr/C)1/α. Note that as a result, the allocation

to user r at a nonzero vector θ is:

D(pD(θ), θr) =
θr
∑

s θs

C.

In other words, regardless of the value of α, the market clearing allocations are chosen proportional

to the bids. This remarkable fact is a special case of a more general result we establish below: all

mechanisms in D are proportional allocation mechanisms; they differ only in the market-clearing

price that is chosen.

Our interest is in the worst-case ratio of aggregate utility at any Nash equilibrium to the optimal

value of SYSTEM. Formally, for D ∈D we define a constant ρ(D) as follows:

ρ(D) = inf

{

∑R

r=1Ur(D(pD(θ), θr))
∑R

r=1Ur(dS
r )

∣

∣

∣

∣

C > 0,R > 1,U∈ UR,

d
S solves SYSTEM(C,R,U), and θ is a Nash equilibrium

}

.

Note that since all U ∈ U are strictly increasing and nonnegative, the aggregate utility
∑R

r=1Ur(d
S
r )

is positive for any utility system (C,R,U) with C > 0, and any optimal solution dS to SYSTEM.
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However, Nash equilibria may not exist for some utility systems (C,R,U); in this case we set

ρ(D) = 0.

Our main result in this section is the following theorem.

Theorem 1. Given D ∈D:

1. For any utility system (C,R,U), there exists a competitive equilibrium θ. Furthermore, for

any such θ, the resulting allocation d given by dr =D(pD(θ), θr) solves SYSTEM(C,R,U).

2. There exists a concave, strictly increasing, differentiable, and invertible function B : (0,∞)→

(0,∞) such that for all p > 0 and θ≥ 0:

D(p, θ) =
θ

B(p)
.

3. ρ(D)≤ 3/4, and this bound is met with equality if and only if D(p, θ) = ∆θ/p for some ∆> 0.

Before continuing to the proof, we make the following key remark.

Remark 6. Parts 1 and 2 of the theorem provide a characterization of the types of mechanisms

allowed by the constraints that define D. In particular, notice that for nonzero θ, the market-

clearing condition (4) yields

C =
R
∑

r=1

D(pD(θ), θr) =

∑R

r=1 θr

B(pD(θ))
, (10)

which implies that

D(pD(θ), θr) =
θr

∑R

s=1 θs

C; (11)

in other words, every mechanism in D is a proportional allocation mechanism. As a result, we

conclude that for a given vector θ, when the market clears, mechanisms in D differ from the Kelly

mechanism only in the market-clearing price—the allocation is the same. Part 3 of the theorem

then characterizes the efficiency loss of mechanisms of this form.

We emphasize that the theorem here is distinguished in part from related work because the

allocation rule (11) was not assumed in advance. Rather, the result here starts from a set of simple

assumptions on the structure of mechanisms to be considered (the definition of the class D), and

uses them to prove that any mechanism in the class must lead to the allocation in (11).
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Proof. Throughout the proof we fix a particular mechanism D ∈D.

Step 1: For all R > 1 and θ−r ∈ (R+)R−1, the functions D(pD(θ), θr) and −pD(θ)D(pD(θ), θr)

are concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0. This conclusion follows

by considering linear utility functions with very large and very small slope, respectively. Let

Ur(dr) = αdr, with α > 0. If we apply Condition 2 of Definition 4 with α→ ∞, then it follows

that D(pD(θ), θr) is concave in θr for nonzero θ. Similarly, if we let α → 0, it follows that

−pD(θ)D(pD(θ), θr) is concave in θr for nonzero θ.

Step 2: A user’s payoff is concave if he is price taking. In other words, we will show that for all

U ∈ U and for all p > 0, U(D(p, θ)) − pD(p, θ) is concave in θ. The key idea is to use a limiting

regime where both the number of users and the capacity grow large, so that users that are price

anticipating effectively become price taking. The details are deferred to the e-companion.

Step 3: There exists a positive function B such that D(p, θ) = θ/B(p) for p > 0 and θ ≥ 0. By

Step 2, a user’s payoff is concave when he is price taking. By choosing U(d) = αd where α > p

(resp., α < p) it follows that D(p, θ) must be concave (resp., convex) in θ for a given p > 0.

Thus for fixed p > 0, D(p, θ) is an affine function of θ. Condition 3 in Definition 4 then implies

that the constant term must be zero, while the coefficient of the linear term is positive; thus

D(p, θ) = θ/B(p) for some positive function B(p).

Before continuing, we note that the previous step already implies the fact that any mechanism

D ∈D must be a proportional allocation mechanism. This follows from Remark 6.

Step 4: For all utility systems (C,R,U), there exists a competitive equilibrium, and it is fully

efficient. This step relies critically on Condition 3 in Definition 4: given a price µ, a user can first

determine his optimal choice of quantity, and then choose a parameter θ to express this choice.



Johari and Tsitsiklis: Efficiency of Scalar-Parameterized Mechanisms

18 Article submitted to Operations Research; manuscript no. XXXX

Formally, fix a utility system (C,R,U). Let d be an optimal solution to SYSTEM(C,R,U), and

let µ be the corresponding Lagrange multiplier, i.e., µ satisfies the following optimality conditions:

U ′
r(dr) = µ, if dr > 0; (12)

U ′
r(0)≤ µ, if dr = 0. (13)

For each r, choose θr =B(µ)dr. Clearly µ= pD(θ); furthermore, the optimality conditions (12)-(13)

ensure that (5) holds for all r. Thus θ is a competitive equilibrium.

Finally, we check that every competitive equilibrium yields an allocation that is an optimal

solution to SYSTEM(C,R,U). By Condition 3 in Definition 4, note that for any price µ > 0, we

have:

max
dr≥0

(Ur(dr)−µdr) = max
θr≥0

(Ur(D(µ, θr))−µD(µ, θr)) .

Thus if θ is a competitive equilibrium, then the optimality conditions (12)-(13) must hold with

µ = pD(θ) and dr = D(µ, θr). We conclude that d is an optimal solution to SYSTEM(C,R,U).

This establishes the first claim of the theorem.

Step 5: B is an invertible, differentiable, strictly increasing, and concave function on (0,∞).

The technical details are deferred to the e-companion. In the sequel, we let Φ : (0,∞)→ (0,∞) be

the (necessarily differentiable) inverse of B.

Step 6: Let (C,R,U) be a utility system. A vector θ ≥ 0 is a Nash equilibrium if and only if at

least two components of θ are nonzero, and there exists a nonzero vector d≥ 0 and a scalar µ> 0

such that θr = µdr for all r,
∑R

r=1 dr =C, and the following conditions hold:

U ′
r(dr)

(

1− dr

C

)

= Φ(µ)

(

1− dr

C

)

+µΦ′(µ)

(

dr

C

)

, if dr > 0; (14)

U ′
r(0)≤Φ(µ), if dr = 0. (15)

In this case dr =D(pD(θ), θr), µ =
∑R

r=1 θr/C, and Φ(µ) = pD(θ). The proof is developed using

the first order necessary and sufficient conditions for a vector θ to be a Nash equilibrium; details
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are deferred to the e-companion.

Step 7: Let (C,R,U) be a utility system. Then there exists a unique Nash equilibrium. Our

approach is to demonstrate existence of a Nash equilibrium by finding a solution µ> 0 and d≥ 0

to (14)-(15), such that
∑R

r=1 dr =C. The technical details are deferred to the e-companion.

Step 8: If the function Φ is not linear, there exists a utility system (C,R,U) such that at the

unique Nash equilibrium θ, the aggregate utility is strictly less than 3/4 of the maximal aggregate

utility. Consider a utility system with the following properties. Let C = 1. Fix µ > 0, and let

U1(d1) =Ad1, where A>Φ(µ). We will choose the remaining utilities so that we obtain a solution

to the Nash conditions (14)-(15) with market-clearing price Φ(µ).

We start by calculating d1 by assuming it is nonzero, and applying (14):

d1 =
(A−Φ(µ))C

A−Φ(µ)+µΦ′(µ)
. (16)

We then choose users 2, . . . ,R to have identical linear utility functions, with slopes less than A. As

we will see, this will be possible if R is large enough. Formally, let d= (C − d1)/(R− 1), and (cf.

(14)) define:

α=
Φ(µ)C +(µΦ′(µ)−Φ(µ))d

C − d
. (17)

Let Ur(dr) = αdr for r = 2, . . . ,R. Note that as R increases to infinity, d tends to zero and α

converges to Φ(µ), which is less than A. This guarantees that d1 must be nonzero at any Nash

equilibrium, which then implies that d1 is indeed given by (16). In turn, letting dr = d for r =

2, . . . ,R, this implies that (d1, . . . , dR) and µ are a valid solution to (14)-(15), when users have

utility functions U1, . . . ,UR.

Now consider the limiting ratio of Nash aggregate utility to maximal aggregate utility, as R→∞,

in which case, d→ 0, and α→Φ(µ). Regardless of R, a solution to SYSTEM(C,R,U) is to allocate
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the entire resource to user 1, so the maximal aggregate utility is AC. Thus the limiting ratio of

Nash aggregate utility to maximal aggregate utility becomes:

Ad1 +α(C − d1)

AC
=

(A−Φ(µ))

A−Φ(µ)+µΦ′(µ)
+

(

1− (A−Φ(µ))

A−Φ(µ)+µΦ′(µ)

)(

Φ(µ)

A

)

. (18)

We will show that for a suitable choice of A and µ, with µ> 0 and A>Φ(µ), this value is less than

3/4.

Given that the nonnegative and convex function Φ has been assumed to be nonlinear, it is

straightforward to check that there exists some µ> 0 for which ψ= µΦ′(µ)/Φ(µ)> 1. At this value

of µ, the right-hand side of (18) can be rewritten in the form

(1−x)2

1+ (ψ− 1)x
+x, (19)

where x= Φ(µ)/A. By choosing x= 1/2, i.e., A= 2Φ(µ), we see that that the ratio is indeed strictly

smaller than 3/4, establishing the claim.

The proof of the theorem is completed by observing that when Φ is linear, we haveD(p, θ) = ∆θ/p

for some ∆> 0, recovering the Kelly mechanism. Thus the worst-case efficiency ratio is known to

be exactly equal to 3/4 (Johari and Tsitsiklis 2004). �

Remark 7. In fact, it is possible to prove something much stronger than the previous theorem:

for any mechanism D ∈D, we can explicitly characterize the exact worst case efficiency loss when

users are price anticipating. We have shown that all mechanisms D satisfying the conditions of the

theorem must be of the form D(p, θ) = θ/B(p). Recall from the proof that Φ(µ) is the differentiable

inverse of B. If we define

ψ∗ = max
µ>0

[

µΦ′(µ)

Φ(µ)

]

=

(

inf
p>0

[

pB′(p)

B(p)

])−1

, (20)

we can then show that ρ(D) =G(ψ∗), where the function G is given by

G(ψ) =



















3

4
, if ψ= 1;

2ψ2 − 3ψ
√
ψ+

√
ψ

(ψ− 1)2
√
ψ

, if ψ > 1.

(21)
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Figure 1 The function G(ψ) defined in (21). Note that G(ψ) is strictly decreasing, with G(1) = 3/4.

Details are available in Chapter 5 of Johari (2004); the function G is plotted in Figure 1. The

proof involves (i) showing that examples constructed as in Step 8 of the proof of Theorem 1, in

fact yield the worst case efficiency loss when users are price anticipating, and (ii) picking the worst

possible values of ψ and x. For any ψ, the value G(ψ) is just the minimum of the expression

(19) over x ∈ (0,1). Furthermore, G is strictly decreasing for ψ ≥ 1, which means that the worst

possible value of the expression (19) is obtained by employing the largest possible value of ψ. Note

that the quantity pB′(p)/B(p) is the elasticity of B(p) (Varian 1992), a common measure of the

degree of “nonlinearity” of a function. Thus 1/ψ∗ is the minimal elasticity of B(p) over all p > 0.

To summarize, the worst case efficiency loss of such a mechanism is governed by the degree of

nonlinearity of B(p), as measured through the quantity ψ∗ defined in (20).

Remark 8. We note one potentially undesirable feature of the family of market-clearing mech-

anisms considered: the payoff to user r is defined as −∞ when the composite strategy vector is

θ = 0 (cf. (7)). This definition is required because when the composite strategy vector is θ = 0, a

market-clearing price may not exist. One possible remedy is to restrict attention instead to mech-
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anisms where D(p, θ) = 0 if θ = 0, for all p≥ 0; in this case we can define pD(θ) = 0 if θ = 0, and

let the payoff to user r be Ur(0) if θr = 0. This condition amounts to a “normalization” on the

market-clearing mechanism. Furthermore, this modification now exactly captures the mechanism

of Johari and Tsitsiklis (2004), where Qr(0;w−r) = Ur(0) for all w−r ≥ 0. It is straightforward to

show that this modification does not alter the conclusion of Theorem 1. The argument involves a

modification of the class of mechanisms D, which includes the requirement D(p,0) = 0.

Remark 9. We note a key desirable feature of the mechanisms considered in Theorem 1, particu-

larly in the context of communication networks. In general, even though the strategy space of the

users is one-dimensional, the market-clearing price pD(θ) may have a complex dependence on the

vector θ. However, under the conditions of Theorem 1, the market-clearing price is only a function

of
∑

s θs, so that the market-clearing process does not require identification of individual users

interacting with the mechanism, or even the number of users. This is a desirable scaling property

for market mechanisms to be deployed in large scale networks (Shenker 1990).

Remark 10. As discussed in Section 2.1, Maheswaran and Basar (2004) also considered a class

of mechanisms that allocate the resource according to the bids made by users. However, for every

mechanism they consider, the payment made by a user depends only on the bid of that user,

whereas in our setting this condition holds only for the Kelly mechanism. Thus even though we

have shown that we can restrict attention to proportional allocation mechanisms in parts 1 and 2 of

the theorem, the class of proportional allocation mechanisms we consider is distinct from the class

considered by Maheswaran and Basar, and thus our proof of optimality of the Kelly mechanism is

distinct as well.

5. The Vickrey-Clarke-Groves (VCG) Approach

The mechanisms we considered in the last section had several restrictions placed on them; chief

among these are that (1) users are restricted to using “simple” strategy spaces; and (2) the mecha-

nism uses only a single price to clear the market. One could consider lifting both restrictions: allow

more complex strategies, with users perhaps declaring their entire utility function to the market;
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and also, allow price discrimination so that each user is charged a personalized per-unit price for

the resource. The best known solution employing both these generalizations is the Vickrey-Clarke-

Groves (VCG) approach to eliciting utility information (Vickrey 1961, Clarke 1971, Groves 1973).

We review VCG mechanisms in Section 5.1.

In this section we are interested in deciding whether the same outcome can be realized while

preserving restriction (1) above, but removing restriction (2): that is, can mechanisms with “simple”

strategy spaces that employ price discrimination achieve full efficiency? In Section 5.2, we present

a class of mechanisms, inspired by the VCG class, in which users only submit scalar strategies; we

show that these scalar strategy VCG (SSVCG) mechanisms have desirable efficiency properties.

In particular, we establish existence of an efficient Nash equilibrium, and under an additional

condition, we also establish that all Nash equilibria are efficient. We extend this result to general

convex environments in Section 5.3, and discuss an application to multicommodity flow routing.

5.1. VCG Mechanisms

In the Vickrey-Clarke-Groves (VCG) class of mechanisms, the basic approach is to let the strategy

space of each user r be the set U of possible utility functions, as defined in Assumption 1, and

structure the payments made by each user so that the payoff of each user r has the same form as

the objective function in the problem SYSTEM. Thus, in a VCG mechanism, each user is simply

asked to declare their utility function; of course, if the payments are not structured properly, there

is no guarantee that individuals will make truthful declarations. For each r, we use Ũr to denote

the declared utility function of user r, and use Ũ = (Ũ1, . . . , ŨR) to denote the vector of declared

utilities.

Suppose that user r receives an allocation dr, but has to make a payment tr; we use the notation

tr to distinguish from the bid wr of Section 3. Then the payoff to user r is:

Pr(tr, dr) =Ur(dr)− tr.

On the other hand, the social objective (1) can be written as:
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Ur(dr)+
∑

s 6=r

Us(ds).

Comparing the preceding two expressions, the most natural means to align user objectives with

the social planner’s objectives is to define the payment tr as the negation of the sum of the utilities

of all users other than r.

Formally, given a vector of declared utility functions Ũ, a VCG mechanism chooses the allocation

d(Ũ) as an optimal solution to SYSTEM for the declared utility functions Ũ. For simplicity,

let X = {d ≥ 0 :
∑

r dr ≤ C}; this is the feasible region for SYSTEM(C,R,U). Then for a VCG

mechanism, we have:

d(Ũ)∈ argmax
d∈X

∑

r

Ũr(dr). (22)

The payments are structured so that:

tr(Ũ) =−
∑

s 6=r

Ũs(ds(Ũ))+hr(Ũ−r). (23)

Here hr is an arbitrary function of the declared utilities of users other than r; since user r cannot

affect this term through the choice of Ũr, he chooses Ũr to maximize:

Pr(dr(Ũ), tr(Ũ)) =Ur(dr(Ũ))+
∑

s 6=r

Ũs(ds(Ũ)).

Now note that given Ũ−r, the above expression is bounded above by:

max
d∈X

[

Ur(dr)+
∑

s 6=r

Ũs(ds)

]

.

But since d(Ũ) satisfies (22), user r can achieve the preceding maximum by truthfully declaring

Ũr = Ur. Since this optimal strategy does not depend on the utility functions (Ũs, s 6= r) declared

by the other users, we recover the well-known fact that in a VCG mechanism, truthful declaration

is a dominant strategy for user r. This discussion is summarized in the following well-known

proposition; see, e.g, Green and Laffont (1979).

Proposition 1. Consider a VCG mechanism defined according to (22) and (23). Then, declaring

Ũr = Ur is a dominant strategy for each user r. Furthermore, under these strategies, the resulting

allocation is efficient.
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For our purposes, the interesting feature of the VCG mechanism is that it elicits the true utility

functions from the users, and in turn (because of the definition of d(Ũ)) chooses an efficient alloca-

tion. However, it does so with a high degree of required communication: each user submits an entire

utility function, essentially an infinite-dimensional object. In the next section, we explore a class

of mechanisms inspired by the VCG mechanisms, but with limited communication requirements.

5.2. Scalar Strategy VCG Mechanisms

We now consider a class of mechanisms where each user’s strategy is a submitted utility function (as

in VCG mechanisms), except that users are only allowed to choose from a given single parameter

family of utility functions. One cannot expect such mechanisms to have efficient dominant strategy

equilibria, and we will focus instead on the efficiency properties of the resulting Nash equilibria.

Formally, scalar strategy VCG (SSVCG) mechanisms allow users to choose from a given family

of utility functions U(·;θ), parameterized by θ ∈ (0,∞).6 We make the following assumptions about

this family.

Assumption 2. 1. For every θ > 0, the function U(·;θ) : d 7→U(d;θ), defined for d≥ 0, is strictly

concave, strictly increasing, continuous, and continuously differentiable for d> 0.7

2. For every γ ∈ (0,∞) and d≥ 0, there exists a θ > 0 such that U
′
(d;θ) = γ.8

Given θ, the mechanism chooses d(θ) such that:

d(θ) = argmax
d∈X

∑

r

U(dr;θr). (24)

Since U(·;θr) is strictly concave for each r, the solution d(θ) is uniquely defined. (Note the similarity

between (22) and (24).)

6 Note that, by contrast with Section 4, the choice of bid θ by a user indexes a utility function, rather than a demand
function. However, this is not crucial: if a user with utility function U maximizes U(d) − pd (i.e., the user acts as
a price taker), the solution yields the demand function D(p) = (U ′)−1(p). Up to an additive constant, the utility
function and demand function can be recovered from each other. Thus, we could define SSVCG mechanisms where
users submit demand functions from a parameterized class. We define our SSVCG mechanisms in terms of utility
functions to maintain consistency with the standard definition of VCG mechanisms in the literature.

7 This is almost the same as Assumption 1, except that we require strict concavity, do not require nonnegativity, and
allow U ′

r(0) to be infinite.

8 Since we do not assume differentiability with respect to θ, the only differentiation of U is with respect to the first
coordinate d, and U

′

(d;θ) will always stand for the derivative with respect to d.
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By analogy with the expression (23), the monetary payment by user r is:

tr(θ) =−
∑

s 6=r

U(ds(θ);θs)+hr(θ−r). (25)

Here hr is a function that depends only on the strategies θ−r = (θs, s 6= r) submitted by the users

other than r. While we do not advocate any particular choice of hr, a natural candidate is to

define hr(θ−r) =
∑

s 6=rU(ds(θ−r);θs), where d(θ−r) is the aggregate utility maximizing allocation

excluding user r. This leads to a natural scalar strategy analogue of the Clarke pivot mechanism

(Clarke 1971). Note that, of course, the per-unit price paid by each user will typically be different.

Given hr, the payoff to user r is:

Pr(dr(θ), tr(θ)) =Ur(dr(θ))+
∑

s 6=r

U(ds(θ);θs)−hr(θ−r).

A strategy vector θ is a Nash equilibrium if no user can profitably deviate through a unilateral

deviation, i.e., if for all users r there holds:

Pr(dr(θ), tr(θ))≥ Pr(dr(θ
′
r,θ−r), tr(θ

′
r,θ−r)), for all θ′r > 0. (26)

We start with the following key lemma, proven using an argument analogous to Proposition 1.

Lemma 1. The vector θ is a Nash equilibrium of a SSVCG mechanism if and only if for all r:

d(θ)∈ argmax
d∈X

[

Ur(dr)+
∑

s 6=r

U(ds;θs)

]

. (27)

Proof. Fix a user r. Since θr does not affect hr, from (26) user r will choose θr to maximize the

following effective payoff:

Ur(dr(θ))+
∑

s 6=r

U(ds(θ);θs). (28)

The optimal value of the objective function in (27) is certainly an upper bound to user r’s effective

payoff (28). Thus, given a vector θ, if (27) is satisfied for all users r, then (26) holds for all users

r, and we conclude θ is a Nash equilibrium.

Conversely, given a vector θ, suppose that (27) is not satisfied for some user r. We will show θ

cannot be a Nash equilibrium. Since X is compact, an optimal solution exists to the problem in (27)
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for user r; call this optimal solution d
∗. The vector d

∗ must satisfy the first order optimality condi-

tions (analogous to (12)-(13)), which only involve the first derivatives U ′
r(d

∗
r) and (U

′
(d∗s;θs), s 6= r).

Suppose now that user r chooses θ′r > 0 such that U
′
(d∗r;θ

′
r) = U ′

r(d
∗
r). Then, d

∗ also satisfies the

optimality conditions for the problem (24). Since d(θ′r,θ−r) is the unique optimal solution to (24)

when the strategy vector is (θ′r,θ−r), we must have d(θ′r,θ−r) = d
∗. Thus we have:

Pr(dr(θ), tr(θ))<Ur(d
∗
r)+

∑

s 6=r

U(d∗s;θs)−hr(θ−r)

=Ur(dr(θ
′
r,θ−r))+

∑

s 6=r

U(ds(θ
′
r,θ−r);θs)−hr(θ−r)

= Pr(dr(θ
′
r,θ−r), tr(θ

′
r,θ−r)).

(The first inequality follows from the assumption that (27) is not satisfied for user r.) We conclude

that (26) is violated for user r, so θ is not a Nash equilibrium. �

The following corollary states that there exists a Nash equilibrium which is efficient. Furthermore,

at this efficient Nash equilibrium, all users truthfully reveal their utilities in a local sense: each user

r chooses θr so that the declared marginal utility U
′
(dr(θ);θr) is equal to the true marginal utility

U ′
r(dr(θ)).

Corollary 1. For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined

as follows: Let d
S be an optimal solution to SYSTEM(C,R,U). Each user r chooses θr so that

U
′
(dS

r ;θr) =U ′
r(d

S
r ). The resulting allocation satisfies d(θ) = d

S.

Proof. By Assumption 2, each user r can choose θr so that U
′
(dS

r ;θr) = U ′
r(d

S
r ). For this vector

θ, it is clear that d(θ) = d
S, since the optimal solution to (24) is uniquely determined, and

the optimality conditions for (24) involve only the first derivatives U
′
(dr(θ);θr). By the same

argument it also follows that d
S is an optimal solution in (27). Since d(θ) = d

S, we conclude that

(27) is satisfied for all r, and thus θ is a Nash equilibrium. �

We note that, as in classical VCG mechanisms, there can be additional, possibly inefficient, Nash

equilibria, as the following example shows.
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Example 2. Consider a system with R identical users with strictly concave utility function U .

Suppose user 1 chooses θ1 so that U
′
(C;θ1) > U ′(0), and every other user r chooses θr so that

U
′
(0;θr) < U ′(C). We then have d(θ) = (1,0), so that the entire resource is allocated to user

1. Since U ′(C) ≤ U ′(0), it follows that (27) is satisfied for all users r, and we conclude θ is a

Nash equilibrium. However, this Nash equilibrium is inefficient: the unique optimal solution to

SYSTEM(C,R,U) is symmetric, and allocates C/R units of the resource to each of the R users.

The equilibrium in the preceding example involves a “bluff”: user 1 declares such a high marginal

utility at C that all other users concede. One way to preclude such equilibria is to enforce an

assumption that guarantees participation. The next proposition assumes that at least two users

have infinite marginal utility at zero allocation; this guarantees that all Nash equilibria are efficient.

Proposition 2. Suppose that Assumptions 1 and 2 hold, except that U ′
r(0) = ∞ for at least

two users r. Suppose that θ is a Nash equilibrium. Then d(θ) is an optimal solution to

SYSTEM(C,R,U).

Proof. Note that Lemma 1 applies even if we allow U ′
r(0) to be infinite. Suppose, without loss

of generality, that U ′
1(0) = U ′

2(0) = ∞. Let d = d(θ). We observe that users 1 and 2 must have

positive allocations at equilibrium, from (27). The optimality conditions for (27) thus imply that

for i= 1,2, and for each s 6= i, we have:

U ′
i(di) =U

′
(ds;θs), if ds > 0; (29)

≥U
′
(ds;θs), if ds = 0. (30)

In particular, U ′
1(d1) = U

′
(d2;θ2) and U ′

2(d2) = U
′
(d1;θ1). Furthermore, the optimality conditions

for the problem (24) yield U
′
(d1;θ1) = U

′
(d2;θ2). From these relations we first conclude that

U ′
1(d1) = U

′
(d1;θ1) = µ for some scalar µ. Further, if we consider the optimality conditions

for (27) for an arbitrary user r, we obtain U ′
r(dr) = U

′
(d1;θ1) = U ′

1(d1) = µ, if dr > 0, and

U ′
r(dr) ≤ U

′
(d1;θ1) = U ′

1(d1) = µ, if dr = 0. But these are exactly the sufficient conditions for
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optimality for d for the problem SYSTEM(C,R,U), with Lagrange multiplier µ. �

Intuitively, for efficiency to hold, we need to have at least two actively “competing” users. In

the previous result, this is guaranteed because the two users with infinite marginal utility at zero

allocation will want strictly positive rate in any equilibrium.

The results of this section demonstrate that by relaxing the assumption that the resource allo-

cation mechanism must set a single price, we can in fact significantly improve upon the efficiency

guarantee of Theorem 1. We note that Maheswaran and Basar (2004) (as well as the earlier work,

Maheswaran 2003) and Yang and Hajek (2006a) have (independently of each other) presented a

class of mechanisms for this resource allocation problem that operate as follows. Each user r chooses

a “bid” θr ≥ 0. Define T =
∑

s θs, and T−r =
∑

s 6=r θs. Their mechanism allocates in proportion to

the bids, so dMY
r (θ) = θrC/T . Each user r makes a payment defined by:

tMY
r (θ) = θs(ϕ(T )−ϕ(T−r)),

where ϕ is a strictly increasing, continuously differentiable function, such that in addition the

function u 7→ u2ϕ′(u)/C is a strictly increasing, onto function from [0,∞) to [0,∞). Under these

assumptions, define U(x;θ) =−θϕ(θ/x). Then it can be verified that: (1) U satisfies Assumption 2;

and (2) the corresponding SSVCG mechanism is the Maheswaran-Basar/Yang-Hajek mechanism,

so that d(θ) = d
MY (θ), and t(θ) = tMY (θ).9 Yang and Hajek have shown that as long as at

least two users r have U ′
r(0) = ∞, then all Nash equilibria are efficient; this matches the result

of Proposition 2. A similar result is derived by Maheswaran and Basar for allocation of a single

infinitely divisible resource, by assuming a single non-strategic “virtual” user who always bids ε

for the resource; Nash equilibria of the resulting mechanism become efficient as ε approaches zero.

In conclusion, our class of SSVCG mechanisms includes the mechanism of Maheswaran (2003),

Maheswaran and Basar (2004) and Yang and Hajek (2006a) as a special case.

9 A small technical issue arises here because U
′

(0, θ) =∞ for all θ > 0, which violates the last part of Assumption 2;
however, the development in this section can be adapted to cover this case.
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5.3. General Convex Environments

Despite the fact that we have formulated SSVCG mechanisms for the specific choice of X cor-

responding to allocation of a single resource, our results hold for far more general convex envi-

ronments. Formally, we continue to assume that each user r is to receive an allocated quantity

dr. However, we now assume that the feasible resource allocations are determined by constraints

involving the vector d, as well as some auxiliary variables y = (yR+1, . . . , yR+M). As an example, y

may be the path flows in a multicommodity flow model, in which case dr is the total rate allocated

to user r. We make the following assumption about X .

Assumption 3. The set X of feasible allocations d is of the form

X = {d≥ 0 : there exists y ∈R
M ,y≥ 0,

such that gj(d,y)≤ 0, j = 1, . . . , J},

for some given functions gj.

Further:

1. The set X is compact;

2. For each j, the function gj is convex and differentiable on an open set containing (R+)R+M ;

3. There exists a pair (d,y)∈R
R+M such that gj(d,y)< 0 for all j.

In the preceding assumption, M denotes the dimension of the space of auxiliary variables, and J

the number of convex inequality constraints. Although we assume differentiability in condition (2),

this is not crucial; we assume differentiability for technical simplicity.

Remark 11. Condition (3) in the preceding assumption ensures that the Slater constraint quali-

fication holds for all the optimization problems we consider; see, e.g., Bertsekas et al. (2003). We

note that all our results apply to the more general setting where in addition to the convex inequal-

ity constraints, the set X is constrained by affine equality constraints of the form hk(d,y) = 0,

k = 1, . . . ,K. In this case condition (3) in Assumption 3 is modified to require that there exists

a pair (d,y) in the relative interior of the set {(d,y) : hk(d,y) = 0}, such that gj(d,y) < 0 for
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all j; with this modification the Slater constraint qualification once again applies. All our results

continue to hold in this setting, if we simply represent the kth affine equality constraint by the two

equivalent inequality constraints hk(d,y)≤ 0 and hk(d,y)≥ 0.

We define an efficient allocation as the solution to the following generalized definition of

SYSTEM:

SYSTEM:

maximize
R
∑

r=1

Ur(dr) (31)

subject to d∈X . (32)

It is straightforward to check that under Assumption 3, nearly all the basic results established

above continue to hold; in particular, Proposition 1, Lemma 1, and Corollary 1 continue to hold,

with proofs nearly identical to their existing versions. Thus (27) continues to provide a necessary

and sufficient condition for characterization of Nash equilibria, and from Corollary 1 we know that

there always exists at least one efficient Nash equilibrium.

It is natural to search for an analog of Proposition 2. In particular, we would like a more general

sufficient condition that guarantees that all Nash equilibria are efficient. We now provide such a

guarantee, under additional conditions on the structure of the constraints.

We first introduce some notation. Given a vector θ of user strategies, we denote by z = (d,y)

the optimal solution d = d(θ) to the problem (24), together with optimal values of the auxiliary

variables y. (Recall that d, the vector of resulting allocations, is uniquely determined, by strict

concavity of the objective function in (24).) Given such a solution, we let

P = {k ∈ {1, . . . ,R+M} : zk > 0} (33)

be the indices associated with variables whose value is nonzero, and we let

J = {j : gj(z) = 0} (34)
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be the set of constraint indices that are binding. For each k, we define the vector D(k) as:

D(k) =

(

∂gj

∂zk

(z), j ∈J
)

. (35)

For example, if the constraints are of the form Az−b≤ 0, for some matrix A and some vector b,

and if all constraints are binding, then D(k) is the k’th column of A.

Proposition 3. Suppose that Assumptions 1-3 hold, except that U ′
r(0) is allowed to be infinite.

Suppose that θ is a Nash equilibrium, d = d(θ) is the optimal solution to the problem (24), and y is

an associated optimal vector of auxiliary variables. Define P, J , and D(k) according to (33), (34),

and (35), respectively. Suppose furthermore that for every user r ∈ {1, . . . ,R}, the vector D(r) is

in the span of the vectors D(s), s 6= r, s∈P. Then d is an efficient allocation.

Proof. Let θ be a Nash equilibrium, and let z = (d,y) correspond to an optimal solution to the

problem (24). Since θ is a Nash equilibrium, z is also an optimal solution to the problem (27), for

each r ∈ {1, . . . ,R}.

To simplify the argument, we first assume that J = {1, . . . , J}, so that all constraints are binding.

Let λ ≥ 0 and µ(r) ≥ 0 be vectors of Lagrange multipliers associated with the optimal solution

z for the problem (24), and the problem (27) for user r, respectively. Such Lagrange multipliers

are guaranteed to exist by Assumption 3, because the Slater constraint qualification is satisfied;

see, e.g., Bertsekas et al. (2003), Section 5.4. To simplify the presentation, we define Uk(d) = 0, for

k >R and all d≥ 0. Then the optimality conditions for the problem (24) are:

U
′
(zk;θk) = λ

⊤
D(k), if zk > 0, k ∈ {1, . . . ,R}; (36)

U
′
(zk;θk)≤λ

⊤
D(k), if zk = 0, k ∈ {1, . . .R}; (37)

U ′
k(zk) = λ

⊤
D(k), if zk > 0, k ∈ {R+1, . . . ,R+M}; (38)

U ′
k(zk)≤λ

⊤
D(k), if zk = 0, k ∈ {R+1, . . . ,R+M}. (39)

Similarly, the optimality conditions for the problem (27) for user r, r ∈ {1, . . . ,R}, are:

U
′
(zk;θk) = µ(r)⊤D(k), if zk > 0, k ∈ {1, . . . ,R}, k 6= r; (40)
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U
′
(zk;θk)≤µ(r)⊤D(k), if zk = 0, k ∈ {1, . . .R}, k 6= r; (41)

U ′
k(zk) = µ(r)⊤D(k), if zk > 0, k ∈ {r,R+1, . . . ,R+M}; (42)

U ′
k(zk)≤µ(r)⊤D(k), if zk = 0, k ∈ {r,R+1, . . . ,R+M}. (43)

From (36), (38), (40), and (42), we deduce that for all r ∈ {1, . . . ,R} and k ∈P such that k 6= r,

we have:

µ(r)⊤D(k) = λ
⊤
D(k). (44)

The preceding equality holds because zk is positive for all k ∈P.

Fix a user r ∈ {1, . . . ,R}. By assumption, there exists a vector of coefficients (αrk, k ∈P, k 6= r)

such that:

D(r) =
∑

{k∈P:k 6=r}

αrkD(k). (45)

Suppose first that zr = 0. We have:

U ′
r(zr)≤µ(r)⊤D(r) =

∑

{k∈P:k 6=r}

αrkµ(r)⊤D(k) =
∑

{k∈P:k 6=r}

αrkλ
⊤
D(k) = λ

⊤
D(r).

The inequality follows from the optimality condition (43). The first equality follows from (45).

The second equality follows from (44). The third equality uses (45) again. If instead zr > 0, then

by using (42), we see that the inequality above holds with equality. Combining this result with

(38)-(39), we conclude that:

U ′
k(zk) = λ

⊤
D(k), if zk > 0, k ∈ {1, . . . ,R+M};

U ′
k(zk)≤λ

⊤
D(k), if zk = 0, k ∈ {1, . . . ,R+M}.

These are precisely the optimality conditions for the problem SYSTEM (with Lagrange multiplier

vector λ), and therefore d is an efficient allocation.

If J 6= {1, . . . , J}, so that some constraints are not binding, the preceding argument continues to

hold: we need only consider the constraints in J , since the Lagrange multipliers associated with

nonbinding constraints are zero. �
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Remark 12. For the case where the constraints defining X are linear, of the form Az− b ≤ 0,

the linear dependence condition of Proposition 3 is equivalent to the following: Given a Nash

equilibrium and r ∈ {1, . . . ,N}, if we perturb the rth component of z, then it is always possible to

feasibly modify the components zk, k 6= r, k ∈ P, so that those constraints that are binding (i.e.,

the constraints in J ) remain binding.

To gain some intuition for Proposition 3, suppose that we have no auxiliary variables, that the

set X is a polyhedron, and that X has an extreme point with positive components. At that extreme

point, and in the absence of degeneracy, there are exactly R constraints that are binding. In this

case, the vectors D(k) are linearly independent, and therefore the linear dependence condition of

Proposition 3 fails to hold. Intuitively, for the condition to hold, we need to have a number of

actively “competing” users (i.e., users with positive dr) which is greater than the effective number

of resources (i.e., the number of binding constraints). (Notice that the violation of this condition

is behind the failure observed in Example 2.)

The linear dependence condition is satisfied in a broad class of problems. The following presents

an important example: multicommodity flow routing.

Example 3 (Multicommodity Flow). In this model, R users send traffic through a network of

L links. Each link ℓ has a given finite positive capacity, denoted Cℓ > 0. Each user r has available a

collection P (r) of paths on which she can send traffic; each path p∈ P (r) is identified with the set

of links it goes through, so that p⊂ {1, . . . ,L}. Let P =
⋃

r P (r), and let M = |P |. By duplicating

paths if necessary, we assume without loss of generality that each path p ∈ P is associated with

exactly one user. The set X is then defined as follows:

X =

{

d≥ 0 : there exists y≥ 0 with

∑

p∈P (r)

yp = dr, r= 1, . . . ,N ; and (46)

∑

p∈P :ℓ∈p

yp ≤Cℓ, ℓ= 1, . . . ,L

}

(47)
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As discussed in Remark 11, X satisfies a variation of Assumption 3, and therefore Proposition 3

still applies.

We now make the following assumptions. First, we assume that for all users r, we have U ′
r(0) =∞.

Second, we assume that for each link ℓ, there are two users r1(ℓ) and r2(ℓ) for which the path

{ℓ}, consisting of the single link ℓ, is the only candidate path. The latter assumption guarantees

sufficient competition at every link; informally, it requires that competition for resources from flows

travelling a short distance is nonnegligible. (A similar assumption was used by Yang and Hajek in

Yang and Hajek (2007).) Under these assumptions, we now show that Proposition 3 applies, and

thus establish that any resulting Nash equilibrium is efficient.

We only need to verify that the linear dependence condition in Proposition 3 is satisfied at a

Nash equilibrium. To check this, let θ be a Nash equilibrium, and let z = (d,y) be a corresponding

optimal solution to the problem (24), so d = d(θ). We will use the equivalent statement of the

linear dependence condition provided in Remark 12.

First note that because U ′
r(0) = ∞, at a Nash equilibrium every variable dr is nonzero. Fur-

thermore, for those users that have a single path p, the corresponding path variable yp is also

nonzero.

Let us consider perturbing a variable dr, say by adding δ to it. Let p∈ P (r) be such that yp > 0.

Then, we can add δ to yp, so that the binding constraint (46) for that particular user r remains

binding. In addition, for every link ℓ on the path p, there exists a user ri(ℓ) 6= r, that has a single

path that only uses this link. By decreasing dri(ℓ) and the associated component of y by δ, the

binding constraint (46) for ri(ℓ) remains binding. Furthermore, if constraint (47) was binding, it

remains binding. We conclude that the condition of Remark 12 holds, as required; and thus the

result of Proposition 3 applies.

We conclude this section by noting several extensions. First, it is possible to construct a similar

class of mechanisms when each user r has a utility function Ur(xr) that depends on a vector of

resources xr. In this case, user r needs a strategy space of the same dimension as the vector xr.

The structure of the mechanism is then analogous to the one described in Section 5.2.
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As for standard VCG mechanisms, the mechanisms we have proposed are certainly not budget

balanced; that is,
∑

r tr(θ) 6= 0 in general. However, one can consider a variety of forms for the

functions hr to mitigate this effect; a choice similar to the “pivot” mechanisms of Clarke (1971)

results if hr(θ−r) =−∑s 6=rU(xs(θ−r);θs), where xs(θ−r) is the optimal resource allocation if user

r is removed from the system. In this mechanism all payments tr are negative, and a user r makes

a payment if and only if his presence affects the optimal resource allocation.

6. Discussion and Conclusions

This paper studies the efficiency achievable by scalar-parameterized mechanisms, particularly in

allocation of a single infinitely divisible resource. In Section 4, we show our first main result: when

a single price is used for all users, then within a class of reasonable market-clearing mechanisms

the Kelly mechanism uniquely minimizes the worst case efficiency loss when users are price antici-

pating. An intermediate result also shows that allocating the resource in proportion to users’ bids

(as in the Kelly mechanism) is a natural consequence of simple assumptions on the mechanism.

In Section 5, we show that relaxing the single price assumption actually allows to significantly

improve the performance of the mechanism: in our second main result, we demonstrate a class of

mechanisms that exhibit efficient Nash equilibria. We also argue that these SSVCG mechanisms

can be extended to much more general resource allocation environments, and provide conditions

under which all Nash equilibria are efficient. We then successfully apply SSVCG mechanisms to a

standard multicommodity flow setting.

Compared to the two major results described above, there is another possibility: we might relax

the assumption of one-dimensional bids, while preserving the single price restriction on the market

mechanism. Consider, for example, mechanisms where users submit arbitrary demand functions

(giving demand as a function of price), and a single price is chosen to clear the market. Using

an analog of the argument in Klemperer and Meyer (1989), it is straightforward to show that

for the model we are considering, there exist games with arbitrarily inefficient Nash equilibria.

The argument involves showing that essentially any feasible outcome (consisting of a price and

allocation vector) can be sustained at a Nash equilibrium.
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Figure 2 Strategic flexibility vs. pricing flexibility. The horizontal (resp., vertical) axis increases with

pricing flexibility (resp., strategic flexibility), and the annotations reflect a summary of cur-

rent understanding. This paper discusses efficiency when mechanisms have restricted strategic

flexibility (i.e., one-dimensional bids).

Our results, as well as those of earlier work such as Maheswaran (2003), Maheswaran and Basar

(2004), Yang and Hajek (2006a) and Yang and Hajek (2007), suggest that there is an interesting

interplay between the strategic flexibility granted to users, and the pricing flexibility granted to the

mechanism. When users are allowed great flexibility in submitting their bids, then full efficiency

is possible with price differentiation (the VCG approach, where users’ bids consist of entire utility

functions), while arbitrarily high inefficiency results if only a single price is allowed (as in the

preceding paragraph). On the other hand, when users are allowed to use only one-dimensional

signals, then with a single price the most efficient mechanism (i.e., the Kelly mechanism) suffers

a nonzero efficiency loss, while with price differentiation full efficiency can again be achieved (as

established for SSVCG mechanisms, and their precursors in Maheswaran and Basar (2004) and

Yang and Hajek (2007)). Note, in particular, the critical insight from this stream of work that

when pricing flexibility is limited, restricting strategic flexibility may actually increase efficiency.

These results are summarized in Figure 2.

We briefly note several extensions and open directions. First, Section 4 considers only a single

resource. For general network topologies, we can consider a game where users submit individual

bids to each link in the network, similar to the approach taken by Johari and Tsitsiklis (2004).
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In this case, if each link is endowed with a smooth market-clearing mechanism satisfying the

assumptions of Section 4, then the worst case efficiency loss will be minimized if each link uses the

Kelly mechanism.

A second extension of the work in Section 4 applies to markets with supply function bidding.

Motivated by current problems in market design for electric power systems, we consider a model

where multiple producers compete to satisfy an inelastic demand. Demand for electricity, particu-

larly in the short run, is characterized by low elasticity with respect to price, i.e., changes in price

do not lead to significant changes in the level of demand; see, e.g., Stoft (2002), Section 1-7.3. A

basic model for electricity market operation involves supply function bidding (Klemperer and Meyer

1989): each generator submits a supply function expressing their willingness to produce electricity

as a function of the market clearing price. A single price is then chosen to ensure that supply

matches the inelastic demand. In Johari (2004), we consider restrictions on the supply functions

which can be chosen by the generators, and aim to design these restrictions so that nearly efficient

allocations are achieved even if firms are price anticipating. We prove a characterization theorem,

similar to Theorem 1, describing the best possible efficiency guarantees, within a class of mecha-

nisms in which the generators are restricted to submitting a supply function chosen from within a

restricted, one-parameter family. Details of this work can be found in Johari (2004).

All the work in this paper is concerned with quasilinear environments, i.e., users’ utilities are

measured in monetary units. Further, our models assume users have unlimited budgets. An inter-

esting set of parallel issues arises if one relaxes these assumptions. Indeed, we note that the Kelly

mechanism is quite similar to the celebrated Shapley-Shubik “trading post” mechanism (Shapley

and Shubik 1977). In the Shapley-Shubik mechanism, users maximize utility (which may not be

quasilinear), and users are subject to a budget constraint. These games thus exhibit very differ-

ent equilibria from the Kelly mechanism. An interesting open direction concerns evaluating the

efficiency properties of the Shapley-Shubik mechanism, and determining the extent to which the

Shapley-Shubik mechanism is an “optimal” design. Zhang et al. have considered notions of opti-

mality such as envy-freeness in the setting where users have budget constraints; see Zhang (2005)
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and Feldman et al. (2005) for details.

We note that all our work considers efficiency from a static standpoint. This is natural as a start-

ing point, and our positive results give proof-of-concept of potentially viable mechanism designs.

However, a complete approach also requires attention to the dynamic setting. Several works have

recently considered dynamics for convergence to efficient equilibrium. Yang and Hajek (2007) have

shown that a form of myopic best response dynamics can converge to an efficient Nash equilib-

rium of the SSVCG mechanism in the multicommodity flow setting, while the ascending auction

mechanism of Ausubel (2006) provides a mechanism with limited communication requirements

and at least one efficient subgame perfect equilibrium. The former analyzes a stylized model of

dynamics assuming a certain model of user behavior; the latter proposes a dynamic mechanism

design assuming fully rational user behavior. Clearly, a significant open direction is to develop a

unified treatment of the efficiency of resource allocation mechanisms with restricted communication

requirements, in a dynamic setting.

Ultimately, however, the most intriguing questions raised by this work are captured by Figure 2.

The results of this paper and earlier work in the area suggest that in designing efficient markets,

strategic flexibility can be increased only if pricing flexibility is available. However, we have only

studied this issue in the extremes depicted in Figure 2. In particular, we have not quantitatively

characterized the tradeoffs between strategic flexibility and pricing flexibility. For example, we

have studied mechanisms with a single price per resource, and with perfect price discrimination.

A natural question arises: what are the gains in efficiency if a two-tiered pricing system is used?

How many prices are needed for a bounded efficiency loss guarantee if users have strategy spaces

parameterized by a fixed number of dimensions? The answers to such questions remain interesting

directions for future work.
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Omitted Proofs

Step 2, Proof of Theorem 1: A user’s payoff is concave if he is price taking. The condition that

a uniform market-clearing price must exist implies that for any fixed θ > 0, the range of D(µ, θ)

must contain (0,∞) as µ varies in (0,∞). Now suppose that for fixed θ > 0, there exist µ1, µ2 > 0

with µ1 6= µ2 such that D(µ1, θ) =D(µ2, θ) = d, where d > 0. Let C = 2d and let R= 2. Then for

θ = (θ, θ), there cannot exist a unique market-clearing price pD(θ); so we conclude that D(·, θ) is

monotonic, and strictly monotonic in the region where it is nonzero.

Let I ⊂ (0,∞) be the set of θ > 0 such that D(µ, θ) is monotonically nondecreasing in µ. From the

preceding paragraph, we conclude that if θ ∈ (0,∞) \ I, then D(µ, θ) is necessarily monotonically

nonincreasing in µ. Further, if θ ∈ I, then D(µ, θ) →∞ as µ→∞, and D(µ, θ) → 0 as µ→ 0; on

the other hand, if θ ∈ (0,∞) \ I, then D(µ, θ)→ 0 as µ→∞, and D(µ, θ)→∞ as µ→ 0.

Suppose I 6= (0,∞) and I 6= ∅; then choose θ ∈ ∂I, the boundary of I. Choose a sequence θn ∈ I

such that θn → θ; and choose another sequence θ̂n ∈ (0,∞) \ I such that θ̂n → θ. Fix µ1, µ2 with

0 < µ1 < µ2, such that D(µ1, θ) > 0 and D(µ2, θ) > 0. Then we have D(µ1, θn) ≤ D(µ2, θn), and

D(µ1, θ̂n)≥D(µ2, θ̂n). Taking limits as n→∞, we get D(µ1, θ)≤D(µ2, θ), and D(µ1, θ)≥D(µ2, θ),

so that D(µ1, θ) =D(µ2, θ). But this is not possible, since D(·, θ) must be strictly monotonic in the

region where it is nonzero. Thus I = (0,∞) or I = ∅.

We will use Step 1 to show D(µ, θ) is concave in θ≥ 0 for fixed µ> 0. Since D(µ, θ) is continuous,

it suffices to show that D(µ, θ) is concave for θ > 0. Suppose not; fix θ > 0, θ > 0, and δ ∈ (0,1)

such that:

D(µ, δθ+(1− δ)θ)< δD(µ, θ)+ (1− δ)D(µ, θ). (EC.1)

Note this implies in particular that either D(µ, θ)> 0 or D(µ, θ)> 0. We assume without loss of

generality that D(µ, θ)> 0. Let CR =RD(µ, θ), and let θ
R = (θ, . . . , θ)∈ (R+)R. To emphasize the

dependence of the market-clearing price on the capacity, we will let pD(θ;C) denote the market-

clearing price when the composite strategy vector is θ and the capacity is C. We will show that
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for any θ′ > 0, if µR = pD(θR−1, θ′;CR), then µR → µ as R→∞. First note that by definition, we

have D(µR, θ′)+ (R− 1)D(µR, θ) =RD(µ, θ); or, rewriting, we have:

1

R
D(µR, θ′)+

(

1− 1

R

)

D(µR, θ) =D(µ, θ). (EC.2)

Now note that as R→ ∞, the right hand side remains constant. Suppose that µR → ∞. Since

I = (0,∞) or I = ∅, either D(µR, θ′),D(µR, θ) → 0, or D(µR, θ′),D(µR, θ)→∞; in either case, the

equality (EC.2) is violated for large R. A similar conclusion holds if µR → 0 as R→∞. Thus we

do not have µR → 0 or µR →∞ as R→∞. Choose a convergent subsequence, such that µRk → µ̂,

where µ̂ ∈ (0,∞). From (EC.2), we must have D(µ̂, θ) =D(µ, θ). But as established above, since

D(·, θ) is strictly monotonic in the region where it is nonzero, this is only possible if µ̂ = µ. We

conclude that the following three limits hold:

lim
R→∞

pD(θR;CR) = µ;

lim
R→∞

pD(θR−1, θ;CR) = µ;

lim
R→∞

pD(θR−1, δθ+(1− δ)θ;CR) = µ.

The remainder of the proof is straightforward. From (EC.1), for R sufficiently large, we must

have:

D(pD(θR−1, δθ+(1− δ)θ;CR), δθ+(1− δ)θ)

< δD(pD(θR;CR), θ)+ (1− δ)D(pD(θR−1, θ;CR), θ).

This violates the conclusion of Step 1, so we conclude D(µ, θ) is concave in θ ≥ 0 given µ > 0. A

similar argument shows that µD(µ, θ) is convex in θ, by using the fact that pD(θ)D(pD(θ), θr)

must be convex in θr for nonzero θ. Combining these results yields the desired conclusion.

Step 5, Proof of Theorem 1: B is an invertible, differentiable, strictly increasing, and concave

function on (0,∞). Note from (10) that:

B(pD(θ)) =

∑R

r=1 θr

C
. (EC.3)
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We immediately see that B must be invertible on (0,∞); it is clearly onto, as the right hand side of

(EC.3) can take any value in (0,∞). Furthermore, if B(p1) =B(p2) = γ for some prices p1, p2 > 0,

then choosing θ such that
∑R

r=1 θr/C = γ, we find that pD(θ) is not uniquely defined. Thus B is

one-to-one as well, and hence invertible. Finally, note that since D is differentiable, B must be

differentiable as well.

We let Φ denote the differentiable inverse of B. We will show that Φ is strictly increasing and

convex. We first note that for nonzero θ we have:

pD(θ) = Φ

(

∑R

r=1 θr

C

)

.

Let

wr(θ) = pD(θ)D(pD(θ), θr) = Φ

(

∑R

s=1 θs

C

)(

θr
∑R

s=1 θs

C

)

. (EC.4)

By Step 1, wr(θ) is convex in θr > 0. By considering strategy vectors θ for which θ−r = 0, it follows

that Φ is convex.

It remains to be shown that Φ is strictly increasing. Since Φ is invertible, it must be mono-

tonic; and thus Φ is either strictly increasing or strictly decreasing. To simplify the argument,

we assume that Φ is twice differentiable.10 We twice differentiate wr(θ), given in (EC.4). Letting

µ=
∑R

s=1 θs/C, we have for nonzero θ:

∂2wr

∂θ2
r

(θ) = Φ′′(µ)
θr

C2µ
+

2
∑

s 6=r θs

C2µ3
(µΦ′(µ)−Φ(µ)) . (EC.5)

Consider some nonzero θ−r, and take the limit as θr → 0. The limit of the left-hand side in (EC.5)

is nonnegative, by the convexity of wr(θ) in θr > 0. The limit of the first term in the right-hand

side of (EC.5) is zero. Since Φ(µ) > 0, it follows that Φ′(µ) > 0, so that Φ is strictly increasing.

This establishes the desired facts regarding B.

10 While the most direct argument uses twice differentiability of Φ, it is possible to make a similar argument even if
Φ is only once differentiable, by arguing only in terms of increments of Φ.
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Step 6, Proof of Theorem 1: Let (C,R,U) be a utility system. A vector θ ≥ 0 is a Nash equilibrium

if and only if at least two components of θ are nonzero, and there exists a nonzero vector d ≥ 0

and a scalar µ> 0 such that θr = µdr for all r,
∑R

r=1 dr =C, and the following conditions hold:

U ′
r(dr)

(

1− dr

C

)

= Φ(µ)

(

1− dr

C

)

+µΦ′(µ)

(

dr

C

)

, if dr > 0;

U ′
r(0)≤Φ(µ), if dr = 0.

In this case dr = D(pD(θ), θr), µ =
∑R

r=1 θr/C, and Φ(µ) = pD(θ). Suppose that θ is a Nash

equilibrium. Since Qr(θr;θ−r) = −∞ if θ = 0, (from (7)), we must have θ 6= 0. Suppose then that

only one component of θ is nonzero; say θr > 0, and θ−r = 0. Then the payoff to user r is:

Ur(C)−Φ

(

θr

C

)

C.

But now observe that by infinitesimally reducing θr, user r can strictly improve his payoff (since Φ

is strictly increasing). Thus θ could not have been a Nash equilibrium; we conclude that at least

two components of θ are nonzero. In this case, from (7), and the expressions in (11) and (EC.4),

the payoff Qr(θr;θ−r) to user r is differentiable. When two components of θ are nonzero, we may

write the payoff Qr to user r as follows, using (11) and (EC.4):

Qr(θr;θ−r) =Ur

(

θr
∑R

s=1 θs

C

)

−Φ

(

∑R

s=1 θs

C

)(

θr
∑R

s=1 θs

C

)

.

Differentiating the previous expression with respect to θr, we conclude that if θ is a Nash equilib-

rium then the following optimality conditions hold for each r:

Fr(θ) = 0 if θr > 0; (EC.6)

Fr(θ)≤ 0 if θr = 0, (EC.7)

where

Fr(θ) = U ′
r

(

θr
∑R

s=1 θs

C

)







C
∑R

s=1 θs

− θrC
(

∑R

s=1 θs

)2






−Φ′

(

∑R

s=1 θs

C

)(

θr
∑R

s=1 θs

)
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−Φ

(

∑R

s=1 θs

C

)







C
∑R

s=1 θs

− θrC
(

∑R

s=1 θs

)2






.

These conditions are equivalent to (14)-(15), if we make the substitutions µ =
∑R

s=1 θs/C, and

dr = D(pD(θ), θr). Furthermore, in this case we have d ≥ 0, µ > 0, θr = µdr,
∑R

r=1 dr = C, and

pD(θ) = Φ(µ).

On the other hand, suppose that we have found θ, d, and µ such that the conditions of Step 6

are satisfied. In this case we simply reverse the argument above; since Qr(θr;θ−r) is concave in

θr (Condition 2 in Definition 4), if at least two components of θ are nonzero then the conditions

(EC.6)-(EC.7) are necessary and sufficient for θ to be a Nash equilibrium. Furthermore, if

d ≥ 0, µ > 0, θr = µdr, and
∑R

r=1 dr = C, then it follows that µ=
∑R

s=1 θs/C, Φ(µ) = pD(θ), and

dr =D(pD(θ), θr). Thus the conditions (EC.6)-(EC.7) become equivalent to (14)-(15), as required.

Step 7, Proof of Theorem 1: Let (C,R,U) be a utility system. Then there exists a unique Nash

equilibrium. Our approach will be to demonstrate existence of a Nash equilibrium by finding a

solution µ > 0 and d ≥ 0 to (14)-(15), such that
∑R

r=1 dr = C. If we find such a solution, then

at least two components of d must be nonzero; otherwise, (14) cannot hold for the user r with

dr = C. If we define θ = µd, then µ=
∑R

s=1 θs/C, so pD(θ) = Φ(µ); and from (11), we have dr =

D(pD(θ), θr). Thus if µ> 0 and d≥ 0 satisfy (14)-(15), then θ = µd is a Nash equilibrium by Step

6. Consequently, it suffices to find a solution µ> 0 and d≥ 0 to (14)-(15).

We first show that for a fixed value of µ > 0, the equality in (14) has at most one solution dr.

To see this, rewrite (14) as:

U ′
r(dr)

(

1− dr

C

)

− (µΦ′(µ)−Φ(µ))

(

dr

C

)

= Φ(µ).

Since Φ is convex and strictly increasing with Φ(µ)→ 0 as µ→ 0, we have µΦ′(µ)−Φ(µ)≥ 0. Thus

the left hand side is strictly decreasing in dr (since Ur is strictly increasing and concave), from

U ′
r(0) at dr = 0 to Φ(µ)−µΦ′(µ)≤ 0 when dr =C. This implies a unique solution dr ∈ [0,C] exists
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for the equality in (14) as long as U ′
r(0) ≥ Φ(µ); we denote this solution dr(µ). If Φ(µ) > U ′

r(0),

then we let dr(µ) = 0. Observe that as µ→ 0, we must have dr(µ) → C, since otherwise we can

show that (14) fails to hold for sufficiently small µ.

Next we show that dr(µ) is continuous. Since we defined dr(µ) = 0 if Φ(µ)>U ′
r(0), and dr(µ) = 0

if Φ(µ) =U ′
r(0) from (14), it suffices to show that dr(µ) is continuous for µ such that Φ(µ)≤U ′

r(0).

But in this case continuity of dr can be shown using (14), together with the fact that U ′
r, Φ, and

Φ′ are all continuous (the latter because Φ is concave and differentiable, and hence continuously

differentiable). Indeed, suppose that µn → µ where Φ(µ) ≤ U ′
r(0), and assume without loss of

generality that dr(µn) → dr (since dr(µn) takes values in the compact set [0,C]). Then since µn

and dr(µn) satisfy the equality in (14) for sufficiently large n, by taking limits we see that µ and

dr satisfy the equality in (14) as well. Thus we must have dr = dr(µ), so we conclude dr(µ) is

continuous.

We now show that dr(µ) is nonincreasing in µ. To see this, choose µ1, µ2 > 0 such that µ1 <µ2.

Suppose that dr(µ1)<dr(µ2). Then, in particular, dr(µ2)> 0, so (14) holds with equality for dr(µ2)

and µ2. Now note that as we move from dr(µ2) to dr(µ1), the left hand side of (14) strictly increases

(since Ur is concave). On the other hand, since Φ is convex and strictly increasing with Φ(µ)→ 0

as µ→ 0, we have the inequalities µ2Φ
′(µ2)−Φ(µ2) ≥ µ1Φ

′(µ1)−Φ(µ1) ≥ 0. From this it follows

that the right hand side of (14) strictly decreases as we move from dr(µ2) to dr(µ1) and from µ2

to µ1. Thus neither (14) nor (15) can hold at dr(µ1) and µ1; so we conclude that for all r, we must

have dr(µ1)≥ dr(µ2).

Thus for each r, dr(µ) is a nonincreasing continuous function such that dr(µ)→C as µ→ 0, and

dr(µ)→ 0 as µ→∞. We conclude there exists at least one µ> 0 such that
∑R

r=1 dr(µ) =C; and in

this case d(µ) satisfies (14)-(15), so by the discussion at the beginning of this step, we know that

θ = µd(µ) is a Nash equilibrium.

Finally, we show that the Nash equilibrium is unique. Suppose that there exist two solutions

d
1 ≥ 0, µ1 > 0, and d

2 ≥ 0, µ2 > 0 to (14)-(15), such that
∑R

r=1 d
i
r =C for i= 1,2. Of course, we must

have d
i = d(µi), i= 1,2. We assume without loss of generality that µ1 ≤ µ2; our goal is to show
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that µ1 = µ2. Since dr(·) is nonincreasing, we know dr(µ1) ≥ dr(µ2) for all r. Since
∑R

r=1 d
i
r = C

for i= 1,2, we conclude that dr(µ1) = dr(µ2) for every r. Let r be such that dr(µ1) = dr(µ2)> 0.

Observe that Φ(µ) and µΦ′(µ) are both strictly increasing in µ> 0, since Φ is strictly increasing and

convex. Thus for fixed dr > 0, the equality in (14) has a unique solution µ, so dr(µ1) = dr(µ2)> 0

implies µ1 = µ2. Thus (14)-(15) have a unique solution d≥ 0, µ> 0, such that
∑R

r=1 dr =C. From

Step 6, this ensures the Nash equilibrium θ = µd is unique as well.


