
MIT Open Access Articles

Imaging nanoscale Fermi-surface variations 
in an inhomogeneous superconductor

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wise, W. D. et al. “Imaging nanoscale Fermi-surface variations in an inhomogeneous 
superconductor.” Nat Phys 5.3 (2009): 213-216. (C)2009 Nature Publishing Group.

As Published: http://dx.doi.org/10.1038/nphys1197

Publisher: Nature Publishing Group

Persistent URL: http://hdl.handle.net/1721.1/51707

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/51707


1 

Imaging nanoscale Fermi surface variations in an 
inhomogeneous superconductor 
 

W. D. Wise1, Kamalesh Chatterjee1, M. C. Boyer1, Takeshi Kondo2,1*, T. Takeuchi2,3, 

H. Ikuta2, Zhijun Xu4, Jinsheng Wen4, G. D. Gu4, Yayu Wang1† & E. W. Hudson1 

 

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, 

USA. 

2Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, 

Japan. 

3EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan. 

4Condensed Matter Physics and Materials Sciences Department, Brookhaven National 

Laboratory, Upton, NY 11973, USA. 

 

*Present address: Ames Laboratory and Dept. of Physics and Astronomy, Iowa State University, Ames, 

IA 50011 

†Present address: Department of Physics, Tsinghua University, Beijing 100084, China. 

 



2 

Particle-wave duality suggests we think of electrons as waves stretched across a 

sample, with wavevector k proportional to their momentum. Their arrangement in 

“k-space,” and in particular the shape of the Fermi surface, where the highest 

energy electrons of the system reside, determine many material properties. Here 

we use a novel extension of Fourier transform scanning tunneling microscopy to 

probe the Fermi surface of the strongly inhomogeneous Bi-based cuprate 

superconductors. Surprisingly, we find that rather than being globally defined, the 

Fermi surface changes on nanometer length scales. Just as shifting tide lines expose 

variations of water height, changing Fermi surfaces indicate strong local doping 

variations. This discovery, unprecedented in any material, paves the way for an 

understanding of other inhomogeneous characteristics of the cuprates, like the 

pseudogap magnitude, and highlights a new approach to the study of nanoscale 

inhomogeneity in general. 

 

 That high temperature superconductors should exhibit nanoscale inhomogeneity 

is unsurprising. In correlated electron materials, Coulomb repulsion between electrons 

hinders the formation of a homogeneous Fermi liquid, and complex real space phase 

separation is ubiquitous1. Scanning tunneling microscopy (STM) measurements have 

revealed significant spectral variations in a number of cuprates including Bi2Sr2CuO6+x 

(Bi-2201)2 and Bi2Sr2CaCu2O8+x (Bi-2212)3-5.  

This intrinsic inhomogeneity poses challenges to the interpretation of bulk or 

spatially averaged measurements. For example, angle resolved photoemission 

spectroscopy (ARPES) is a powerful technique for studying k-space structure in the 

cuprates6. However, ARPES can only provide spatially-averaged results, and uniting 

these with the nanoscale disordered electronic structure measured by STM remains a 

formidable task. 
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 Our approach to addressing this issue originates from discoveries by Fourier 

transform scanning tunneling microscopy (FT-STM), which has emerged as an 

important tool for studying the cuprates. These studies begin with the collection of a 

spectral survey, in which differential conductance spectra, proportional to local density 

of states (LDOS), are measured at a dense array of locations, creating a three 

dimensional dataset of LDOS as a function of energy and position in the plane. By 

Fourier transforming constant energy slices of these surveys, referred to as LDOS or 

conductance maps, FT-STM allows the study of two phenomena linked to the cuprate 

FS (Fig. 1b). First, non-dispersive wavevectors of the checkerboard-like charge order 

observed in many cuprates7-10 are likely connected to the FS-nesting wavevectors near 

the anti-nodal (π,0) Brillouin zone boundary (e.g. arrow in Fig. 1b)11. Second, 

dispersive quasiparticle interference (QPI) patterns12-14 originate from elastic scattering 

of quasiparticles on the Fermi surface near the nodal (π, π) direction15. Taken together, 

these phenomena provide complementary information about the cuprate FS. 

However, because these phenomena were previously characterized using Fourier 

transforms of large LDOS maps containing a wide range of energy gaps and spectra, 

previous FT-STM mapping of the FS was still spatially-averaged.16 The atomic scale 

spatial resolution of STM was not exploited, so connections between FS geometry and 

local electronic structure went unexamined. 

 Here we introduce two new STM analysis techniques which allow extraction of 

a local FS. In studies of Bi-2201 and Bi-2212, we find that the cuprate FS varies at the 

nanometer scale, and that its local geometry correlates strongly with the size of the 

large, inhomogeneous energy gap that has been extensively studied by STM4 and which 

we associate with the pseudogap2. 
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 We first investigate the spatial dependence of the anti-nodal FS using 

checkerboard charge order. Our recent study of Bi-2201 showed that the average 

checkerboard wavevector decreases with increased doping11. This trend, inconsistent 

with many proposed explanations of the checkerboard, matches the doping dependence 

of the anti-nodal FS-nesting wavevector (Fig. 1b), and led us to conclude that the 

checkerboard is caused by a FS-nesting induced charge density wave. Here we continue 

the investigation of the three Bi-2201 dopings considered in our previous work, two 

underdoped with superconducting transitions at 25 K (UD25) and 32 K (UD32), and 

one optimally doped with TC = 35 K (OP35). Although, following convention, we 

previously reported FT-measured, spatially averaged wavevectors, careful observation 

of the checkerboard pattern (Fig. 2a) shows that the periodicity changes drastically with 

position.  

One way of analyzing this variation is with a Voronoi diagram. After identifying 

local peaks of the checkerboard modulation (local maxima in the +10 mV conductance 

map, identified as red dots in Fig. 2a), we divide the map into cells, each containing 

points closer to one checkerboard maximum than any other. The square root of the cell 

size is a measure of the local checkerboard wavelength. We find that this local 

wavelength is highly correlated with the previously observed gap size inhomogeneity 

(Fig. 2b,c), with a correlation coefficient of -0.4.  

 Another method of investigating this relationship between local checkerboard 

periodicity and gap size is to modify the traditional FT technique by first masking the 

LDOS map by gap size. This technique is illustrated in Fig. 3. The LDOS map is set to 

zero everywhere outside a desired gap range and then Fourier transformed to reveal a 

gap dependent checkerboard wavevector. The result is qualitatively similar to the 

Fourier transform of the complete map, but the wavevector measured is due solely to 

the fraction of the sample within the selected range of gap magnitudes. Fourier 
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transforms of different regions reveal different wavevectors (Fig 3b, c). Consistent with 

previously reported sample averages,11 wavevectors increase with gap size (Fig. 3d). 

We note this trend is not an artifact of mask geometry; rotating the masks, which 

preserves their geometry while eliminating their relation to the gap map, eliminates the 

trend of figure 3d, instead simply yielding the sample average wavevector for all maps. 

 These two independent techniques not only demonstrate the inhomogeneity of 

the checkerboard wavelength, the likely cause of universally reported short 

checkerboard correlation lengths11, but also reveal that the checkerboard wavevector 

and local gap size are strongly correlated. Between samples, average checkerboard 

wavevector decreases with increased doping11, consistent with the decrease of the 

anti-nodal FS-nesting wavevector (Fig. 1b). The tunneling measured gap size (scaling 

with pseudogap temperature T* of Fig. 1a) also on average decreases with increased 

doping. Thus the positive correlation of local gap size and checkerboard wavevector is 

consistent with a picture in which local FS variations, driven by local doping variations, 

affect both. Notably, where gap sizes from different samples overlap, so do their 

checkerboard wavelengths (Fig. 3d), indicating that checkerboard properties are truly 

set by local rather than sample average properties. We stress that this result is 

independent of the cause of the checkerboard, and relies only on our previously report 

of its doping dependence11. 

 In order to further investigate this idea we next turn to quasiparticle interference 

(QPI) studies of slightly overdoped (TC = 89 K) Bi-2212. The idea behind QPI, 

pioneered by the Davis group12-14 and Dung-Hai Lee,15 is illustrated in Fig. 4a. 

Interference patterns arising from quasiparticle scattering are dominated by wavevectors 

connecting k-space points of high density of states. For any given energy, eight such 

symmetric points exist, all on the FS. The well defined wavevectors (colored lines) of 

the resultant interference pattern can therefore be used to reconstruct the Fermi surface. 
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 Just as in checkerboard studies, previous work on QPI has yielded spatially 

averaged results12-14. As above, we extend QPI analysis to yield local, gap dependent 

information. The interference wavevectors (circled in Fig. 4b) found in Fourier 

transforms of gap masked conductance maps can be inverted to derive a FS13, now 

associated with the gap range of the mask. Doing this for two different gap ranges, from 

30 mV to 60 mV (<Δ> = 37 mV), and 10 mV to 30 mV (<Δ> = 26 mV), we find distinct 

shifts in the FS (Fig. 4c). We extend this to the anti-node with checkerboard order, 

resolvable in Bi-2212 as non-dispersive order at energies above where the QPI signal 

weakens. Adding in nested anti-nodal FS segments (dashed lines) derived from 

checkerboard periodicity, we arrive at a nearly complete view of different local Fermi 

surfaces corresponding to different spatial locations, correlated spatially with different 

gap sizes. We also plot in Fig. 4c rigid band tight binding Fermi surfaces17 from two 

different dopings (p = 0.10 and 0.18 as calculated from the pocket area) very similar to 

the surfaces we derive. 

Although k-space variation on nanometer length scales may at first glance seem 

shocking, upon further reflection this result is not entirely surprising. Raising or 

lowering a uniformly slanted sea floor near the shore (changing the amount of sea above 

the floor) changes the position of the shoreline.  Analogously, raising or lowering local 

doping changes the local Fermi surface.  McElroy et al. have even demonstrated that the 

locations of dopant oxygen atoms correlate with local gap size variations18.  

Interestingly, the correlation McElroy et al. found was the opposite of what one might at 

first expect from a local doping picture. While oxygen dopants contribute holes and 

hence increase the global doping of the sample, they correlate with an increased local 

gap size, consistent with underdoping. This led the authors and others19 to declare that 

variation in gap size is unlikely to be charge driven and instead propose variations in 

local pairing-potential. 
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The results we report here, however, cannot be explained by pairing-potential 

inhomogeneity. Instead, local doping variations appear most consistent with our results. 

Although McElroy et al. suggest that these variations cannot be explained by hole 

accumulation models, Zhou et al. claim that they have missed the oxygen atoms 

responsible for inhomogeneity20.  Alternatively, local doping variations could be driven 

by dopant generated strain. This would also explain the correlation of gap variations 

with the strain-associated structural supermodulation in Bi-221221.  

Regardless of the exact cause of these local doping variations, they can explain 

several previous results. Perhaps the clearest examples consist of recent STM results 

from the Yazdani group showing that the gap closing temperature varies spatially, 

scaling with local gap size,5 and that both are correlated with higher temperature 

electronic structure22. Those results are unsurprising given the local Fermi surface 

variations we report here. 

Considering the nature of the Fermi surface variations in detail, we find that the 

locally determined Fermi surfaces converge near the nodes while they are strongly 

inhomogeneous in the anti-nodes (Fig. 4c). This could explain the ARPES-measured 

dichotomy of coherent nodal / incoherent anti-nodal quasiparticle excitations found in a 

variety of cuprates.6,23 This differentiation is strongest in underdoped samples which 

could also arise from the inhomogeneity we report here.  ARPES sums signal from 

differently doped regions; as more highly doped regions yield higher signal, ARPES 

will overemphasize them. Coupled with the observation that the width of the gap (and 

hence doping) distribution scales with mean gap size24, and is thus smaller in overdoped 

than underdoped samples, inhomogeneity should have a stronger effect on ARPES 

measurements in underdoped than in overdoped samples. This effect is particularly 

apparent in Bi-2201, which is more inhomogeneous than Bi-2212.2 
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Despite the success of this interpretation, some outstanding questions remain. The 

model curves17 of Fig. 4c suggest that the effective band energy may shift by as much as 

20 mV between different regions of the sample. This shift would lead to strong 

scattering, even in the nodal direction. However, aside from the reasonable match to our 

extracted Fermi surfaces, there is no reason to believe that this global average-extracted 

rigid band model should completely describe the local Fermi surfaces. For example, our 

extracted Fermi surfaces appear closer in the nodal region than the model surfaces. 

Another question concerns a homogeneous gap we have reported.2 The large, 

inhomogeneous gap discussed throughout this paper is probably more accurately termed 

the pseudogap, while we identified as the superconducting gap a second, relatively 

homogeneous smaller gap which opens at TC. One might imagine that 

superconductivity, as characterized by size of the superconducting gap, should be as 

strongly affected by inhomogeneous local doping as the pseudogap. This is not what we 

have observed2. One explanation is that doping dependence differences make 

inhomogeneity affect the pseudogap more than the superconducting gap (the pseudogap, 

scaling with T*, changes more than the superconducting gap, scaling with TC).  Another 

explanation may lie in their momentum space distribution. Raman spectroscopy25 and 

ARPES26,27 results indicate that the superconducting gap is most strongly associated 

with near-nodal states, while the pseudogap arises near the anti-nodes. As noted above, 

the nodal region is significantly more homogeneous than the antinodal, and hence could 

lead to more homogeneous superconducting than pseudogap properties. 

This interpretation also points towards an explanation of bulk measurement 

results. Although several are suggestive of nanoscale inhomogeneity4, including neutron 

measurements of the magnetic resonance peak width28, thermodynamic measurements 

appear inconsistent with strong inhomogeneity29. These measurements, however, are 

most sensitive to the nature of the superconducting gap and the low energy density of 
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states, both of which appear homogeneous. Undoubtedly these homogeneous properties 

relate to the homogeneity of the near nodal Fermi surface.  Nonetheless, they are 

remarkable given the strong inhomogeneity we report here. 

Inhomogeneity of doping or charge is common in many materials, and leads 

naturally to the idea of nanoscale Fermi surface variation. This work is, to our 

knowledge, the first attempt to characterize these variations, and raises the question of 

whether a Fermi surface, typically thought of as a bulk property, can be meaningfully 

defined inside nanometer sized domains. Although our experimental results appear 

consistent with this picture, further experimental and theoretical work are needed to 

determine at what point a k-space description such as this stops being useful. 
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Figure Captions 

Figure 1. Phase diagram and Fermi surface topology of the cuprates. (a) A 

minimal generic phase diagram of the high temperature superconductors shows 

a superconducting transition temperature TC which is parabolic with doping, 

peaking at optimal doping, while the pseudogap temperature T* – and the 

proportional pseudogap magnitude ΔPG – decrease nearly linearly with doping. 

(b) The hole-doped cuprate Fermi surface is typically seen as hole-like, closing 

around empty states centered at (π,π), rather than filled states centered at (0,0). 

Moving from optimally doped (solid line) to underdoped (dashed) materials, the 

hole pockets shrink. This increases the length of the nesting vector (arrow) near 

the anti-node. 

 

Figure 2. Local variations of the Bi-2201 checkerboard. (a) Conductance 

map (E = +10 mV slice of a 400 pixel, 600 Å spectral survey) of TC = 32 K 

underdoped Bi-2201 shows a spatially varying checkerboard charge modulation 

(upper left). Voronoi cells, associated with checkerboard maxima (red dots) and 

colored to indicate their area, allow determination of local wavelength. (b) 

Traditional gap map of the same area shows well known variations of gap size 

Δ. (c) Spectra from the survey (sorted, averaged and colored by gap size, and 

shifted vertically for clarity) highlight the remarkable low energy homogeneity in 

the presence of strong higher energy inhomogeneity. Spectral survey 

parameters: Iset = 400 pA, Vsample = -200 mV.  

 

Figure 3. Gap masked Fourier transform measurements of the Bi-2201 

checkerboard. (a) Using the gap map of Fig. 2b we mask the conductance 
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map of Fig. 2a, zeroing out (shading pink) data with gaps outside a desired 

range, here Δ = 40 mV to 55 mV. (b,c) Fourier transforms of the masked data 

(with (b) <Δ> = 30 mV and (c) <Δ> = 60 mV) show checkerboard wavevectors, 

whose length can be compared to the atomic periodicity, that shift with gap 

masking range. (d) Checkerboard wavevectors for this sample (green triangles) 

as well as optimally doped 35 K (orange square) and underdoped 25 K (blue 

circles) samples. Overlaid are large area averages from our previous work.11 

Error bars indicate standard deviation of gap range used (horizontal) and FFT 

peak fit accuracy (vertical). Gap ranges are non-uniform as they are selected to 

ensure roughly the same coverage in each mask.  

 

Figure 4. Quasiparticle interference derived local FS in Bi-2212. (a) A 

schematic of the FS (solid line) in the first Brillouin zone, shows symmetry, 

leading to an eight fold replication of any points at which the density of states 

peak (e.g. circles). Scattering between quasiparticles at these points lead to a 

set of interference wavevectors (arrows), corresponding to peaks in interference 

maps like (b) a Fourier transform of a 600 Å, 400 pixel, E = 12 mV conductance 

map of 89 K OD Bi-2212. The positions of these peaks (defined in terms of the 

atomic wavevector circled in black) uniquely define a position in k-space on the 

FS.  Fitting interference peaks in a series of FFT maps at various energies from 

two different masks of the same data leads to (c), two different “local Fermi 

surfaces” (solid symbols with error bars indicating standard deviation for values 

obtained from different interference peaks). Dashed lines, obtained from 

checkerboard determined nesting wavevectors, extend the determined FS to 

the anti-node. Solid lines are Fermi surfaces from a rigid band, tight binding 

model17 at two different dopings, p = 0.10 and 0.18. 
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Imaging nanoscale Fermi surface variations in an 
inhomogeneous superconductor: Supplement 

In this work we use the technique of Fourier transforming masked conductance 

maps to extract gap dependence of both the checkerboard wavelength and quasiparticle 

interference patterns.  In this supplement we address some possible concerns about the 

results derived with this novel technique. 

A first question is whether the geometry of the masks themselves could be 

responsible for the derived wavevector shifts. As noted in the text, we can test for such a 

masking effect by rotating masks before applying them to the conductance map, 

preserving mask geometry while removing the correlation between masks and the gap 

map. If mask geometry is responsible for the observed variations, then these variations 

should also be observed in Fourier transforms of data masked with rotated masks. If not, 

then rotated masks should yield non-dispersing (sample average) results. We show results 

of this test applied to <Δ> = 30 mV and 60 mV masks of data from a 32 K UD sample in 

Fig. S1. While properly masked data shows strong gap dependent dispersion, as shown 

previously in Fig. 3b and 3c, rotated masks produce nearly indistinguishable transforms 

S1g and S1h. 

Thus we conclude that map geometry is not responsible for the gap dependent 

wavevectors we report here, in either the checkerboard or quasiparticle interference 

results. Next, we test whether map geometry plays a role in the width of the Fourier 

peaks. We simulate an ideal (monochromatic) checkerboard, and mask and Fourier 

transform it with the 60 mV mask of Fig S1b.  While the Fourier transform (FT) of the 

unmasked simulation shows four very sharp peaks (Fig. S2b), that of the masked 

simulation (Fig. S2d), shows broadened peaks, with width comparable to that of the data 

itself (Fig. S2f), with a caveat. Line cuts through the peaks (Fig. S2i) show that the 
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masked simulation results (black squares) closely resemble the data (red squares), with 

the presence of an additional superimposed sharp peak. This discrepancy is due to the 

difference in correlation lengths of simulation and data. Measurement of domain sizes in 

gap maps show that domains typically have a diameter of 30 Å to 40 Å, or about 8a0 to 

10a0. Perhaps surprisingly, this domain size seems independent of gap size and doping, 

and is the same in Bi-2201 and Bi-2212. Their size places a natural limit on the 

correlation length of the observed checkerboard pattern, which translates into a finite 

peak width, as shown in Fig. 2i.  Although the mask reflects this domain size, and hence 

leads to the same low amplitude shape in the simulated results, because the simulation is 

coherent it yields a sharp central peak, with width limited by the overall map size (600 

Å). The effect of 30 Å domains in the data may be further compared to masking the 

simulation with a single 30 Å diameter circle. Although the amplitude of the transform is 

smaller, due to the smaller area being transformed, the width is comparable. 

The importance of the correlation length of the underlying (unmasked) data may be 

observed in Fig. S3, where we show the effects of simulated phase disorder in our ideal 

checkerboard. While the FT of the ideal checkerboard shows a sharp central peak (black 

curve), as we introduce disorder by randomizing the phase in adjacent domains, the 

reduced correlation length causes the amplitude of the central peak to decrease as it 

broadens. Simulated phase disorder on a 30 Å length scale (cyan) effectively reproduces 

the data (red).  

 In short, the peak width is not an artifact of map geometry, but rather reflects the 

inherent domain size and hence limited correlation length of gap dependent periodic 

modulations, such as the checkerboard and quasiparticle interference patterns. This has 

the related benefit that the exact mask used does not affect the gap size-wavevector 

relation we here report, as long as the mask captures the gap domains of interest. We 
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choose to make our masks cover a fixed fraction of the field of view, but what fraction is 

used plays no measureable role in the results. 

Finally, because of the clear relationship between gap magnitude and checkerboard 

periodicity, one might ask whether conductance variations associated with gap 

inhomogeneity could actually create the checkerboard modulation, or at least perturb its 

apparent wavelength. As we show in Fig. 2c, there are significant conductance variations 

associated with gap inhomogeneity. Their position dependence, however, is quite 

interesting, as we show in Fig. S4. Here we calculate the average conductance for four 

different types of regions in the sample, namely on and off of checkerboard peaks in Δ = 

30 mV and 60 mV domains. Although low energy conductance is relatively 

homogeneous, the contrast at 10 mV, where the checkerboard is most clearly imaged, is 

clearly much higher between peaks and troughs (on and off the maxima) than it is 

between different gap regions. That is to say, conductance changes due to gap 

inhomogeneity are a small perturbation to those caused by the checkerboard modulation 

itself and hence cannot be concluded to cause the wavelength variations we report here. 

On a related note, although we use a typical STM normalization in reporting our data – 

fixing the integral of the differential conductance from 0 mV to some large voltage bias, 

here -100 mV – the results presented here aren’t particularly sensitive to this 

normalization. For example, if one instead chooses to fix the conductance in the wings 

(force the curves in Fig. S4 to coincide at the left edge of the figure) the same dominance 

of checkerboard position over gap variation is still found. 
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Figure Captions 

Figure S1. Testing the effects of mask geometry. (a, b) Masks used for the 

32K UD map of Fig. 2 and 3, where spectra taken in white areas show <Δ> = 30 

mV and 60 mV respectively. (c, d) Fourier transforms (FTs) of those masks show 

no obvious structure at any particular wavelength, but instead highlight the low 

frequency inhomogeneity present in the sample. (e, f) Applying these masks to 

the map (by setting data in black regions to zero) and taking an FT yields the 

results of Figs. 3b and 3c, reproduced here. (g, h) If the masks are first rotated 

90º, breaking the correlation between mask and gap, the resultant FTs are 

similar to each other and the sample average. 

 

Figure S2. Mask geometry and peak width. (a) A simulated checkerboard map, 

with a 4.7a0 wavelength (corresponding to the 0.213 (2π/a0) wavevector found for 

the <Δ> = 60 mV masked 32K UD data). The map is 400 pixels over 600 Å, to 

match the data of Fig. S1.  (b) The Fourier transform of this simulation shows 4 

narrow peaks, as expected. (c, d) Masking the simulation with the <Δ> = 60 mV 

mask of Fig. S1b broadens the peaks, similar to the peaks in the data (e, f). (g, h) 

A single 30 Å diameter circle masking the simulation yields a similar width, 

although the amplitude is reduced and hence (h) is multiplied by 10 before being 

shown in the same color scale as (b, d, f).  (i) Line cuts through the Fourier peaks 

(as shown by the short lines on d, f, and h) show the similar widths of data and 

simulation, due to the size of the gap domains and hence mask features. 
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Figure S3. Correlation length effects. (a,b) Simulated checkerboard maps with 

the same parameters of Fig. S2, with the addition of phase disorder with 75 Å 

and 30 Å domains respectively. (c) Line cuts through Fourier transforms of maps 

such as a & b, masked and analyzed as in Fig. S2, demonstrate the importance 

of the correlation length of the checkerboard in determining the amplitude and 

width of the central peak. The use of (b) 30 Å domains (cyan) effectively 

simulates the data (red).   

 

Figure S4. Position and gap dependent conductance.  Using the 32 K UD 

spectral survey analyzed throughout this paper, data is segregated by gap size 

as well as by whether it lies on a peak (the pixel lying at a checkerboard 

conductance maximum) or in a trough (the pixel wide boundary region between 

the Voronoi cells shown in Fig. 2a). The average of such spectra for two gap 

sizes, Δ = 30 mV (black) and 60 mV (red), vary much more significantly with 

position, that is between peak (solid) and trough (dashed), than with gap size. 
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