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Abstract

Most US consumers are charged a near-constant retail price for electricity, despite substan-
tial hourly variation in the wholesale market price. This paper evaluates the �rst program to
expose residential consumers to hourly real time pricing (RTP). I �nd that enrolled households
are statistically signi�cantly price elastic and that consumers responded by conserving energy
during peak hours, but remarkably did not increase average consumption during o¤-peak times.
Welfare analysis suggests that program households were not su¢ ciently price elastic to generate
e¢ ciency gains that substantially outweigh the estimated costs of the advanced electricity me-
ters required to observe hourly consumption. Although in electricity pricing, congestion pricing,
and many other settings, economists�intuition is that prices should be aligned with marginal
costs, residential RTP may provide an important real-world example of a situation where this
is not currently welfare-enhancing given contracting or information costs.
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Keywords: Real time electricity pricing, energy demand, randomized �eld experiments.
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1 Introduction

Because electricity is very costly to store, wholesale prices vary from day to day and often �uctu-
ate by an order of magnitude between low-demand nighttime hours and high-demand afternoons.
Nearly all retail consumers, however, are charged some average price that does not re�ect the
wholesale price at the time of consumption. In theory, economists have long recognized that this
creates allocative ine¢ ciencies, and there is a long literature1 on "peak load pricing" and "real time
pricing." In practice, the welfare implications of correcting this ine¢ ciency fundamentally depend
on how price elastic consumers are relative to the cost of implementing the new contract.

Recent advances in "Smart Grid" energy management technologies can increase consumers�
price elasticities and reduce the cost of the advanced electricity meters required to record hourly
consumption. This has increased the likelihood that real time pricing (RTP) would have positive
net welfare e¤ects, magnifying the business and policy interest in RTP. While electric utilities have
experimented substantially with other price structures2, however, until recently no utility had taken
the seemingly-natural step of exposing residential consumers to the continual variation in wholesale
market prices.

This paper presents an econometric evaluation of the �rst hourly real time electricity pricing
program for residential consumers. I exploit an extensive dataset from the Energy-Smart Pricing
Plan, which has operated in Chicago since 2003. From the households that opted into the pilot
program, program managers randomly assigned a control group to be kept on the standard �at rate
tari¤, allowing an unbiased estimate of the treatment e¤ects of real time pricing on experimental
households. To construct demand equations useful for welfare and policy analysis, I derive and
estimate structural demand functions from indirect utility, while also highlighting the connections
to a "reduced-form" treatment e¤ect framework.

The demand estimation results bring to light three features of household electricity demand
under RTP. First, the households that selected into the experiment have statistically signi�cant
elasticities: the overall reduced-form price elasticity of demand is about -0.1. Second, households�
behavioral changes take the net form of energy conservation in peak price hours, with no net increase
in consumption during low price hours. The idea that RTP could cause peak energy conservation
with no net load shifting has important implications for the e¤ects on energy costs, consumer
welfare, the equilibrium entry of di¤erent power generation technologies, and the carbon emissions
from electricity generation. The third central �nding is that because the variation in hourly prices
is small, reducing the cost of observing and responding to energy prices can substantially a¤ect
households�behavior. In this program, this was achieved by distributing Pricelights, glowing plastic
orbs that change colors to indicate the current electricity price, to a set of households randomly
selected from the group that had requested the device.

The demand system results are then used to estimate the welfare implications of RTP. I show
that RTP gives a compensating variation of approximately $10 per year along program households�
electricity demand curves. This is 1-2 percent of the average household�s electricity expenditures
and is not signi�cantly larger than estimates of net meter installation costs and the (unobserved)

1The earliest peak load pricing discussion dates to Houthakker (1951), Steiner (1957), and Williamson (1966).
Recent theoretical and simulation analyses include Borenstein (2005, 2007a, 2007b), Borenstein and Holland (2005),
Holland and Mansur (2006), and Mansur and Holland (2008).

2There is empirical evidence on the response of larger commercial and industrial customers to RTP, including
Patrick and Wolak (2001), Boisvert, et al, (2001), Herriges, et al, (1993), and Taylor, Schwarz, and Cochell (2005).
Barbose, et al, (2004) provides a comprehensive overview on real time pricing programs operated by US utilities.
There is also a substantial literature on residential electricity demand under other price structures, such as "critical
peak pricing" and "time of use pricing." See Faruqui and Sergici (2008) for an overview of recent work.
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costs households incurred in responding to prices. I then extend the welfare analysis by constructing
a simple model of the greenhouse gas emissions from the marginal electricity supplier in each hour.
This shows that the program reduced carbon dioxide emissions by just over four percent.

Because the demand parameters are estimated from an experiment into which households had
self-selected, they are not informative about the price elasticity of the general population. More
precisely, theory predicts that households enrolled precisely because they are more price elastic.
Analysis of optional residential RTP, however, is of great policy interest. Although the regulators
that approve electric utilities� pricing structures typically share economists� intuition about the
bene�ts of RTP, they are often concerned that consumers perceive RTP as complicated or risky
relative to average cost pricing (Faruqui and Sergici 2009). A further political economy problem is
that a mandatory shift to real time pricing could increase electricity bills for many consumers that
tend to use more electricity than average at times when market prices are high (Borenstein 2007b).
As a result, many real time pricing programs introduced over the medium-term may be optional
instead of mandatory, and the demand parameter estimates from this program may be of particular
interest in understanding the early phases of these future optional programs. Furthermore, if RTP
does not appear to generate large welfare gains in the subpopulation that opted into a pilot program,
it is unlikely that it would increase welfare in the general population.

Perhaps the primary contribution of this analysis an empirical documentation of whether op-
tional residential RTP could have positive net welfare e¤ects in at least a subset of the population.
Although these results are industry-speci�c, however, real time electricity pricing is a manifestation
of an extremely general economic problem. In many settings, an agent (here, the consumer) chooses
actions (consumption at di¤erent times of day) that have di¤erent costs to the principal (the electric
utility). The principal could observe these actions, but should only choose to do so if the agent�s
behavior under the new contract (real time pricing) changes su¢ ciently to justify the monitoring
or contracting cost. Somewhat more speci�cally, there are many settings when prices do not fully
re�ect how input costs or the shadow price of capacity vary over time, including cellular phone and
internet service contracts, most restaurants, and bridge and highway tolls. In theory, the �rm or
regulator in these settings uses a similar approach to the one presented here to determine the pro�t
maximizing or socially optimal contract.

The introduction proceeds �rst by motivating why now is an important time to study real time
pricing. Section 2 details the experimental design, the marketing and recruitment process, and
baseline household characteristics. In Sections 3 and 4, demand functions are derived from indirect
utility and estimated, exploiting the randomization to purge the estimator of simultaneity bias.
Section 5 presents empirical results, and Section 6 discusses policy implications.

1.1 Motivation: Why Study Real Time Pricing?

Real time pricing is one of the central issues in an important industry. In 2007, the electric power
sector accounted for 2.5 percent of United States GDP, or $326 billion in retail sales per year (U.S.
Energy Information Administration 2008a). Broader discussions of wholesale and retail electricity
market design, such as Bandt, et al, (2003), Borenstein (2002), Joskow and Tirole (2006, 2007),
and Wolak (2007), often center on the importance of real time pricing for market e¢ ciency.

The most commonly discussed channel of e¢ ciency gains from moving consumers from the
standard �at rate tari¤ to real time pricing is static allocative e¢ ciency improvements: conditional
on a capital stock of power plants, there are gains from shifting consumption from peak periods
when the marginal cost of production is high to o¤-peak periods when marginal cost is low (Holland
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and Mansur 2006). As discussed in Allcott (2009a), Borenstein and Bushnell (1999), and Borenstein
(2005), however, there are other important channels. The inelastic demand that results from the
lack of retail RTP is one of the central challenges in designing electricity markets: inelastic short-
term demand gives producer �rms market power in wholesale markets, and markups above marginal
cost can cause an ine¢ cient allocation of production between �rms. Inelastic short-term demand,
combined with the extremely high cost of blackouts, also means that electricity market operators
must ensure that su¢ cient generating capacity is in the ground to satisfy extreme realizations of
the demand shock. In an industry where capacity is a substantial part of the cost structure, the
capacity reduction that could result from implementing RTP is a substantial potential source of
welfare gains. These potential gains from real time pricing, of course, depend on the magnitude of
consumers�price elasticity.

This is a particularly interesting time to be studying real time pricing. Most US households
currently have electricity meters that simply record the total consumption of electricity since in-
stallation, meaning that the consumer cannot be charged prices that vary from hour to hour.
Furthermore, the only way for the electric utility to observe households�consumption is to actually
send a worker to read the meter, a costly and potentially error-prone process. The "Smart Grid" is
a set of emerging electric power information technologies that include, among other things, house-
hold energy management devices and technologies that facilitate communication between electricity
retailers and consumers. From the utility�s perspective, improvements in these technologies o¤er
reduced meter reading and administrative costs and the potential for real time metering of elec-
tricity use. Furthermore, by allowing households to more easily observe prices and consumption,
and even to automate how air conditioners and other appliances turn on and o¤ in response to real
time prices, Smart Grid technologies can increase consumers�price elasticity of demand.

Substantial business and policy interest has been associated with these technological changes.
Electric utilities in California, Colorado, Florida, Indiana, Texas, Washington, and other states
are introducing Smart Grid technologies to large groups of customers. The Energy Independence
and Security Act of 2007 provides $100 million annually in research and development funding and
provides incentives for utilities to invest in Smart Grid infrastructure. Furthermore, the 2009 US
economic stimulus package includes $3.9 billion in funds for wholesale and retail-level Smart Grid
projects.

Despite the interest in this issue, there is no empirical evidence on how households would
respond to hourly real time prices. This is a remarkable hole in a long and distinguished literature
on di¤erent forms of household electricity pricing. Reiss and White (2005), for example, examine
increasing block pricing, under which the marginal price increases by the total quantity consumed.
Wolak (2006) estimates consumers�response to critical peak pricing, where consumers pay higher
prices or receive rebates for conservation on occasional high price days, but pay their standard rate
at all other times. Train and Mehrez (1994), the analyses in Aigner (1984), and many others focus
on time of use pricing, in which customers pay di¤erent �xed prices in peak and o¤-peak hours.
While responses to these other price structures can suggest a reasonable range of responses to RTP,
these distinct structures provide a distinct set of short run and long run incentives. Despite this
experimentation, the vast majority of US households are currently on a very simple �at rate tari¤ ,
in which the marginal price per kilowatt-hour consumed does not vary other than year-to-year or
perhaps season-to-season.

A number of utilities have some large commercial and industrial customers on RTP, and such
programs have been analyzed in Patrick and Wolak (2001), Boisvert, et al, (2001), Herriges, et
al, (1993), Taylor, Schwarz, and Cochell (2005), and other work. These larger customers, and in
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particular �rms for which electricity represents a large share of input costs, could respond in very
di¤erent ways. Because households are likely to have smaller elasticities than larger customers,
because the �xed costs of advanced meters are a greater share of total electricity costs, and because
of the perceived complexity and risk to these smaller consumers, real time pricing has historically
been a lower priority for residential relative to commercial and industrial customers. Indeed, after
the early time of use pricing experiments in Aigner (1984), conventional wisdom held that although
households had statistically non-zero price elasticities, these were not large enough to justify the
expense of installing advanced electricity meters (Faruqui and Sergici 2008). In recent years, the
prior about residential RTP has begun to change, but no direct evidence existed until recently.

2 Experimental Design and Data

This section begins by presenting substantial background on the program and participants, which
allows more insight into the nature of households�self-selection. I then detail the experiment itself
and present descriptive statistics.

2.1 Setting: The Energy-Smart Pricing Plan

At the beginning of the decade, demand growth had pushed parts of Chicago�s local electricity
distribution network near their capacity limits. A large electric utility called Commonwealth Edison
(ComEd) owns this local network and provides retail electricity service to residential customers at
prices regulated by the state. Temporarily prohibited by state electricity restructuring rules from
�nancing infrastructure investments through higher electricity rates, ComEd was interested in low
cost strategies to reduce demand during peak periods.

A Chicago NGO called the Center for Neighborhood Technology (CNT) helped ComEd to
design and operate air conditioner replacement programs, in which a household with an ine¢ cient
but functional window air conditioner could receive a rebate for trading in for a new, energy e¢ cient
model. These programs were targeted to several speci�c neighborhoods where both ComEd�s
infrastructure was under stress and CNT believed it could operate e¤ectively. In 2003, CNT
initiated the Energy-Smart Pricing Plan (ESPP) to test whether real time pricing could incentivize
signi�cant reductions in peak electricity demand. This was a convenient partnership for ComEd,
because state law also prevented them from promoting new products or rates3 (Isaacson, et al,
2006).

2.2 Recruitment and Baseline Characteristics

CNT�s outreach targeted its existing areas of operation, shown in Figure 9.1, and in particular
focused on households that had chosen to participate in the previous air conditioner replacement

3Restrictions against raising rates and promoting new rate structures were common features of state electricity
market restructuring law passed in the late 1990s. The rate freeze was typically used to garner political support from
consumer groups, while the prohibition against the incumbent utility o¤ering new products or rates was intended to
encourage competing retail electricity suppliers to enter the market.
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programs. Beginning in late 2002, CNT mailed marketing materials to their 7000 existing partic-
ipants, organized community meetings in the areas where they operated, and publicized the new
program via word of mouth. By the end of April 2003, 693 households had opted in. Although the
program was open to all ComEd customers in and around Chicago, over two-thirds of the initial
households had been participants in previous CNT programs. Of the 225 that had no previous
a¢ liation with CNT, most lived in the existing areas of operation and had found out via word of
mouth or the community meetings.

CNT and a consultant carried out a survey of ESPP program households and of other CNT
a¢ liate households that had received direct mail marketing materials but did not sign up for the
program. The survey indicated that saving money was by far the primary factor driving enrollment,
followed by "environmental bene�ts." As shown in Figure 9.2, the most common way that enrollees
found out about the program was through direct mail. Among CNT households that had not
enrolled, half did not recall hearing about the program, while others did not expect su¢ cient
savings or thought that the program was too risky or complex (Summit Blue Consulting 2004).

Since many program households had participated in CNT�s earlier air conditioner replacement
programs, they were probably more interested in energy conservation or attentive to electricity use
than the Chicago population average. The fact that these households had recently purchased an
energy e¢ cient air conditioner, however, means that their price response could also be understated
relative to the general population. This is because treatment group households would have had one
less ine¢ cient air conditioner to replace, and also because turning down an e¢ cient air conditioner
reduces consumption less than turning down an ine¢ cient model.

Of the 693 initial households that enrolled in the pilot, program managers randomly assigned
103 to a control group. Control group households received a letter saying that they were not on
real time pricing, complete with three $15 gift certi�cates for groceries as a consolation. These
households received no further information during the 2003 experiment and were only allowed to
enter real time pricing at the beginning of 2004.

I observe each household�s Census tract and use this to incorporate tract-level information on
housing stock (median year of construction and percent of dwellings that are multifamily vs. single
family) and demographics (percent of individuals not in the labor force and percent with a college
diploma). The 693 treatment and control households were in 255 di¤erent tracts. At the household
level, I also observe income (in six buckets) and number of household members, although some
missing data is imputed from census tract medians. Finally, I use the monthly electricity bills for
May through December 2002 to construct pre-program baseline electricity consumption.

Table 8.1 presents the treatment and control groups�baseline observable characteristics. Com-
pared to the control group, treatment group households are slightly but not statistically signi�cantly
larger and more concentrated in the higher income buckets. They are also similar on average house-
hold size and on the tract-level demographic and housing stock variables. An F-test of a regression
of a treatment group indicator on observable characteristics fails to reject that the treatment and
control groups are the identical, as we would expect in a randomized experiment.

Table 8.1 also compares the characteristics of ESPP participants to households in the Chicago
metropolitan area and in the 30 zip codes where CNT had ten or more existing a¢ liates. On
household size and income, ESPP enrollees are not statistically di¤erent from households in the
30 CNT zip codes. Their pre-program energy consumption is lower, likely resulting from their
previous participation in CNT�s air conditioner replacement programs. Program participants are
disproportionately drawn from the better-educated of the areas where CNT had ten or more a¢ l-
iates, although CNT itself had focused its operations in areas with lower average education than
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the rest of Chicago.
In sum, while program participants are not highly unusual on observable characteristics, they

are a self-selected group. As a result, this experiment would not be very useful in understanding
the e¤ects of a mandatory, population-wide real time pricing program. It does, however, allow
us to consistently estimate internally-valid demand parameters for the experimental population,
which should be indicative of the �rst few percent of households that would opt in to a �rst wave
of optional residential real time pricing programs in similar parts of the country.

2.3 The Experiment

Households assigned to the control group were forced to remain on the standard ComEd residential
tari¤, which is 8.275 cents per kilowatt-hour (kWh) in the summer and 6.208 cents/kWh in other
seasons. For the treatment group, prices were set such that expected total electricity bills would be
slightly lower under RTP compared to the �at rate tari¤, for a household with a typical load shape.
This reduction in total expected costs was achieved through a Participation Incentive, which was
designed to compensate households for an increase in perceived price risk. ComEd �xed each day�s
hourly retail prices by 4PM the day before, according to the following formula:

phd = P
DA
hd +D � PI (1)

phd = Retail price for hour h of day d
PDAhd = Day-Ahead4 wholesale market price
D = Distribution charge (5.0 cents/kWh)
PI = Participation Incentive (1.4 cents/kWh)

On the evenings before days when the wholesale component of price was to exceed 10 cents/kWh,
treatment group households received a special e-mail or telephone High Price Alert. This happened
on nine summer days in 2003. Program managers also made available programmable thermostats
to the treatment group, which allowed automated temperature control by time of day.

Survey results, website login data, and discussions with program managers and participants
indicate that although prices were available via telephone and internet, only rarely did households
actively check prices. Treatment group households could, however, form reasonably precise beliefs
about the joint distribution of prices with season, hour, and temperature. To help inform these
beliefs, households were sent quarterly "ESPP Updates" and a "Summer Readiness Kit," which
explained that prices are typically higher during the afternoon, on hot days, and in the summer.

In an e¤ort to increase the ease with which households could observe, and thus respond to,
hourly price �uctuations, program managers introduced a device called the Pricelight. This is a
small plastic globe that changes colors in real time on a continuous spectrum from blue to red,
indicating low to high electricity prices. CNT o¤ered Pricelights to all ESPP participants in 2006.
Of the 223 households that submitted requests, 47 were randomly selected to receive the device.
These households form the treatment and control groups for a separate experiment that allows an

4Speci�cally, the prices between 6AM and 10PM were on-peak Day-Ahead prices from a nearby region, as reported
in Platt�s Energy Trader, applied to the shape of hourly Locational Marginal Prices at the PJM West hub. Between
10PM and 6AM, hourly wholesale prices have little variance and were based on seasonal historical averages. As of
2008, the program uses the PJM ComEd zone Balancing Market Locational Marginal Price for all hours.
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estimate of the treatment e¤ect of owning a Pricelight conditional on being on real time pricing
and having requested the device.

After a household had opted in to the program, and regardless of whether the household was
assigned to treatment or control, ComEd installed a new electricity meter to record hourly consump-
tion. I observe hourly electricity consumption for all program households between 2003 and 2006.
This includes 3.98 million hourly observations from the randomized RTP experiment from May
through December 2003, as well as 814,000 observations from the Pricelight experiment between
June and October 2006.

Table 8.2 shows descriptive statistics for the 2003 RTP experiment. The retail prices ranged from
4.62 to 16.0 cents/kWh, and there were 30 hours on nine days in which the wholesale component of
price exceeded the High Price Alert cuto¤of 10 cents/kWh. Compared with the same months of the
previous year, which had higher temperatures, treatment group households reduced consumption
by 90.6 watts, or about 10 percent, while control group households reduced consumption by about
5 percent. Table 8.3 displays similar information for the Pricelights experiment in 2006.

An example investment decision may help put these price and consumption �gures in context.
A household deciding to purchase a window air conditioner might choose between a standard
model, for $270, and an e¢ cient "Energy Star" model, for $300. Air conditioning can represent
a substantial portion of household electricity consumption: when turned to its highest setting, the
standard model uses a �ow of 1000 watts, while the energy e¢ cient model requires about 100
watts less. At standard usage5, a household on ComEd�s �at rate tari¤ saves $5.34 per year with
the Energy Star model and chooses that model if it discounts these future cash �ows at less than
5.8 percent per year. A household on real time pricing would save $6.87 per year on the prices
observed during the �rst four years of the experiment and would purchase the Energy Star model
under a discount rate of 13.4 percent or less. Note that program households did have long run
incentives: CNT and ComEd promoted RTP as a permanent program, and as of 2008, there were
approximately 5000 households enrolled.

Five percent of households attritted from the sample over the eight month experiment. The
attrition was reportedly due to customers closing accounts as they moved, and ComEd has con-
�rmed that this is consistent with the rate at which their general residential customer base closes
accounts. There is no statistical di¤erence between the attrition rates of the treatment and control
groups. Furthermore, within each group, attrition does not appear to be correlated with observ-
able characteristics. The �rst two columns of Table 8.4 present regressions of an attritter indicator
variable on household characteristics in each group, and F-tests cannot reject that attrition is un-
correlated with observables. This is consistent with the proposition that attrition is random and
thus independent of demand parameters, which would be su¢ cient for the parameter estimates to
be unbiased by attrition. Only four households attritted from the sample during the Pricelights
experiment.

5The calculation assumes that the air conditioner lasts seven years and is used 683 hours per year, as suggested
by the Energy Star website (US Department of Energy, 2008). Air conditioner capital costs are from the same
source. The RTP savings assumes that this 683 hours of usage is spread equally across the summer months between
10am and 6pm. Note that the Participation Incentive lowered electricity prices for RTP customers by 1.4 cents per
kilowatt-hour and thus somewhat reduces their estimated savings.
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3 Indirect Utility and Demand Functions

In this section, I derive demand functions from indirect utility, a structural approach which is useful
for welfare analysis and counterfactual simulations. The results section will discuss reduced form
analyses as well as estimates of these structural demand parameters.

Household i has utility V (P; wi), which depends on wealth w and the vector P of electricity
prices and High Price Alerts in all future days. The Gorman form is used, because it will give simple
linear demand functions and has zero wealth e¤ects, which is reasonable given that electricity is a
small share of the household budget. Assuming negligible time discounting over the experimental
period, we have:

Vi(P; wi) = wi �
X
d

 
24X
h=1

phd �
�
1

2
�Dihphd + (�

A
is � �Dih)phs + �HPig HPd + �

T
isTi + �ihd

�!
(2)

f�Dih; �Ais; �HPig ; �Tisg = Demand parameters for household i
�hd = Demand shifter in hour h of day d. (Note that � need not have zero mean.)
phs = Average price for hour h in season s
HPd = High Price Alert day indicator function
Ti = Indicator for whether household i is enrolled in RTP

Household i enrolls in real time pricing if its expected utility from entering and participating
in the program is greater than its expected utility on the standard �at rate tari¤. Econometric
unobservables in�uence selection in two ways. First, households with stronger demand parameters
�i are more likely to enroll. Second, households that naturally have lower demand during high
priced hours, i.e. whose demand shifters �i are less correlated with p, are more likely to enroll.
Although I will later present results of heterogeneous treatment e¤ect speci�cations that allow
demand parameters to vary by observable characteristics, this analysis focuses on estimating the
(internally valid) average demand parameters for the population that enrolled in the experiment.
I thus drop the individual subscripts on demand parameters, and it is understood that the �
parameters are the averages for the group that enrolled.

The demand function for household i on hour h of day d is derived from Roy�s Identity and a
minor re-arrangement:

qihd = �
Aphs + �

D
h (phd � phs) + �HPg HPd + �

T
s Ti + �ihd (3)

The � parameters were conceived to represent four di¤erent responses to time-varying prices.
First, the parameter �A captures responses to the average hourly price shape, such as habitually
using a washing machine during low price evening hours instead of high price afternoon hours. The
year is broken into two seasons, summer and non-summer, and separate parameters allowed for
each of the two average price shapes. Second, the �Dh parameters are responses to deviations from
that average price shape. The two parameters �A and �Dh are separately speci�ed because large
scale RTP would likely a¤ect both the typical price shape and the magnitudes of deviations from
that shape, and households could respond di¤erently to the two types of variation. A third type of
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price response is captured by �HPg , which re�ects additional consumption changes associated with
High Price Alert days. Separate parameters are estimated for four hour groups g: Early Morning
(6-10am), Morning (10am-2pm), Afternoon (2pm-6pm), and Evening (6pm-10pm). Finally, the �Ts
parameters represent a static response to being on the real time pricing treatment; this is allowed
to vary depending on the season s to which day d belongs.

These demand functions do not include intra-day substitution parameters, through which con-
sumption in hour h could be a¤ected by price in another hour of the same day. While this re-
striction is undesirable, it is necessary because price variation is principally movement of an entire
day�s prices up or down, a¤ecting relative hourly prices by a fairly constant proportion. Prices in
di¤erent hours of the same day have correlation coe¢ cients of roughly 0.9, and this collinearity
makes it impossible to separately estimate both �Dh and intra-day substitution parameters

6. This
means that �Dh should be thought of as the association between consumption in hour h and the
deviation of the day�s prices from average, which may include response to price in hour h as well
as some intra-day substitution7.

4 Identi�cation and Estimation

As in the typical demand estimation, the demand shifter � is unobserved. Attempting to estimate
the demand functions using only treatment group usage data would be biased by simultaneity,
because the same unobservable factors a¤ecting RTP households�demand shifters � also shift the
aggregate market-level demand curve and thus a¤ect equilibrium prices. The randomized control
group, however, has in expectation the same � as the treatment group, meaning that any di¤erence
in demand is the e¤ect of response to real time prices: Intuitively, the variation in average treatment
e¤ects across hours with di¤erent prices can identify the � parameters.

This can be formalized using the "potential outcomes" framework of Rubin (1974) and the
program evaluation literature that builds on his approach. Upon enrollment, each household has
two possible states of the world: one in which it is randomized into the real time pricing treatment,
and one in which it is randomized into the control group. De�ne qihd(Ti = 1) as household i�s
potential consumption in hour h of day d in the treated state, while qihd(Ti = 0) is the potential
consumption if it were assigned to the control. For each household, consumption qihd is observed
only for the state to which it was actually assigned:

qihd = qihd(Ti) =

�
qihd(Ti = 0) if Ti = 0
qihd(Ti = 1) if Ti = 1

�
(4)

6Some analyses of real time pricing for larger commercial and industrial customers (e.g. Patrick and Wolak (2001)
and Taylor, Schwartz, and Cochell (2005)) do not have this collinearity problem because they analyze programs that
o¤ered each day�s Balancing Market prices. These prices covary less than the Day-Ahead market prices that the
ESPP program used at the time of the experiment.

7A possible behavior that the speci�cation will thus misrepresent is "pre-cooling," in which a consumer air con-
ditions the house in the morning hours to reduce the need for cooling in a relatively high price afternoon. Based on
the energy use changes reported by program households, both anecdotally and in small surveys conducted by the
program managers, it appears that intra-day substitution may not be large in magnitude. The demand functions do
capture what seem a priori to be two more likely forms of substitution. First, the strongest intra-day substitution
should be observed on High Price Alert days, and the net e¤ect of this is captured through the �HPg parameters.
Second, the �A parameters measure substitution between hours of the average day based on the average price shape.
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The average treatment e¤ect (ATE) is the expected e¤ect on program households�consumption
in hour h of day d caused by being on real time pricing instead of the �at rate tari¤:

�hd = E[qihd(Ti = 1)� qihd(Ti = 0)jh; d] (5)

The control group paid ComEd�s seasonal �at rate residential tari¤ pT=0s . For both the summer
and non-summer days, substituting this into the demand function gives:

qihd(Ti = 0) = �
A
s p

T=0
s + �ihd (6)

The randomization of the N households into treatment and control groups allows the identifying
assumption that the groups�average demand shifters are equal as N !1:

E[�ihd j T = 1; h; d] = E[�ihd j T = 0; h; d] (7)

Subtracting this and the treatment and control groups�demand functions, each hour�s average
treatment e¤ect can be parameterized as:

�hd = E
�
�A(phs � pT=0s ) + �D(phd � phs) + �HPg HPd + �

T
s jh; d

�
(8)

The demand parameters can therefore be consistently estimated by pooling across all hours of
the experiment and adding a �xed e¤ect for each of the 5880 hours observed. Including control
variables, the estimating equation is:

qihd =
�
�A(phs � pT=0s ) + �D(phd � phs) + �HPg HPd + �

T
s

	
� Ti

+
n
�1(phs � pT=0s ) + �2(phd � phs) + �3HP

aft
d + �4HPd + �5

o
Xi + �hd + "ihd (9)

X = fPre-Program Average Hourly Consumption, Household Size, log(Income)g
HP aftd = Indicator for an afternoon hour of a High Price Alert day
�hd = Fixed e¤ect for hour h of day d.
"ihd = Econometric error

The estimation uses the standard �xed e¤ects estimator. The data are demeaned to remove
�xed e¤ects �, and ordinary least squares is applied to the demeaned data. Standard errors are
Newey-West, allowing a one-hour lag. In a structural sense, the "econometric error" "ihd is part of
the household�s demand shock �ihd that is residual of the other covariates.

Although simultaneity bias has been removed via the randomization, there are remaining limi-
tations. One concern is that although the causal e¤ect of being on real time pricing is identi�ed for
each hour, the demand functions are an a priori imposition of functional form. This means that

11



the parameters � are only causal in the (unlikely) event that the demand functions are correctly
speci�ed. For example, unless consumers�true demand functions are linear in prices, b�HP is not a
consistent estimate of the causal impact of a High Price Alert on consumption8. As an illustration
of this issue, recall that purchasing an energy e¢ cient air conditioner reduces consumption most on
hot days, which are more likely to be High Price Alert days. The estimated coe¢ cient b�HP could
therefore be nonzero even if households had no incremental response to the Alerts. There is an
analogous problem in discrete choice demand estimation in characteristics space: analysts typically
impose some simple functional form for indirect utility as a function of characteristics, but these
characteristics are often correlated with each other and are not randomly assigned to products.

A second and related limitation is that we do not observe the behaviors that underlie the treat-
ment e¤ects or when those behaviors occurred. This procedure simply estimates the correlation
between average treatment e¤ects and prices. It does not identify the frequency at which behav-
ioral changes occurred, i.e. whether the responses were day-to-day, short-term adjustments to air
conditioner settings or long-term adjustments to thermostats each season. It similarly does not
identify whether the e¤ects were produced by long run changes to energy-using capital stock versus
short run changes to the usage of that capital stock9.

5 Results

This section presents estimation results in the form of three key conclusions that can be drawn from
the data. Some reduced form results will be presented alongside the demand parameter estimates,
with an eye toward the connections between the two approaches.

The �rst conclusion is that program households are statistically signi�cantly price elastic. The
�rst column of Table 8.5 presents the demand parameters b� estimated using Equation 9. The
deviation coe¢ cients b�Dh average -12 watts/(cents/kWh); this implies that a one standard deviation
increase in an hour�s price (in the afternoon, 1.5 cents/kWh) is associated with the equivalent of
just under one in four households turning o¤ a 75 watt lightbulb. Responses to average price b�As are
-17.1 and -21.3 watts/(cents/kWh), respectively, and are statistically stronger than the responses
to deviations from average prices. In the next section, we will examine whether these statistically
signi�cant price responses are also economically signi�cant, in the sense of generating substantial
welfare bene�ts.

The second conclusion is that households respond to RTP through energy conservation, with
no net load shifting from high to low price hours. Figure 9.3 illustrates this in reduced form by
showing the mean average treatment e¤ect for each hour of the day, across all non-High Price
Alert summer days. The relationship of these hourly average ATEs and the average summer price

8A natural way to estimate responses to High Price Alerts would be a regression discontinuity framework, in which
demand on days with highest wholesale price just below $0.10 per kWh is compared to demand on days with highest
price just above that cuto¤. Unfortunately, there were not enough High Price Alert days near the cuto¤ to carry this
out, even when including additional summers of non-experimental data from 2004 to 2006.

9Short-term price response could be identi�ed by instrumenting for hourly prices with short-term supply shocks
that are exogenous to the unobservable demand shifters. One suggestive test of the validity of the exclusion restriction
is whether the control group, which faced the �at rate tari¤, appears to be responsive to prices instrumented by the
short-term supply shocks. Using this sort of "placebo test," I was able to rule out potential instruments for short-term
price variation such as deviations in daily natural gas spot prices from trend and variation in relative temperatures
in nearby regions.
Estimating short run and long run elasticities would require data on households� stock of energy using durable

goods, but these data are not available for ESPP households.
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shape is in essence the variation that identi�es the parameter �As . Average prices increase from 5
cents/kWh at night to 9 cents in the mid-afternoon, and this is associated with lower treatment
group consumption by an average of 50 to 80 watts. On average, the afternoon consumption is not
being shifted to the nighttime: only between 11PM and 2AM are point estimates for treatment
group average consumption higher than in the control, and these increases do not come close to
o¤setting the conservation that occurs during the rest of the day.

This �nding of no increase in o¤-peak consumption does not necessarily imply that there is zero
substitution of electricity consumption across hours. As intra-day substitution parameters could
not be estimated, I do not rule out this form of substitution. Furthermore, di¤erent combinations of
conservation and shifting could be consistent with this aggregate �nding on the level and shape of
average consumption by hour. For example, households could make some investment that conserves
energy in all hours by some constant amount, which if combined with a second change that shifts
some consumption from afternoon to nighttime hours would make it appear as though no change
had occurred at night. Alternatively, the treatment group could leave nighttime consumption
unchanged and conserve more substantially in the afternoons. What can be concluded is that on
net, RTP causes households to signi�cantly reduce consumption on the average afternoon and does
not cause signi�cant increases in average consumption at night. As a result, the treatment group�s
consumption during the experiment dropped approximately �ve percent more than the control
group�s consumption during the experiment relative to pre-program baseline.

Consumers�behavior exhibits this same pattern on High Price Alert days. Figure 9.4 illustrates
the hourly shape of mean ATEs for the nine summer High Price days, showing that the treatment
group reduces consumption by an additional 100 to 200 watts during daytime hours, or about �ve
to 14 percent. Only in four hours is the treatment group estimated to have increased consumption,
all by less than 10 watts and statistically indistinguishable from zero. This is the reduced form
illustration of the variation that identi�es the �HPg parameters. Other speci�cations, not reported,
show that there is no increase in consumption associated with the evening before a High Price Alert
day, or the day after.

The energy conservation result can be explained by the technologies available to households
to respond to RTP. In a small survey in the fall of 2003, treatment group households reported
the changes they thought they had made after entering the program: turning o¤ lights, using
fans instead of air conditioners, turning down or replacing air conditioners, and washing clothes
during low price hours instead of during the afternoon. Only this last activity involves substitution
of electricity consumption from one hour to another; the others entail substitution toward more
energy e¢ cient capital stock or substitution away from household energy services such as comfort.

Several factors could change this result in the future. Intra-day substitution elasticities may
be increased by energy management devices that automatically allocate activities such as clothes
washing to low price hours. Furthermore, potential new sources of electricity demand such as plug-
in electric vehicles may also be able to automatically charge when prices are low. Also note that
"energy conservation and no net shifting" does not necessarily generalize to industrial facilities,
which can respond to RTP through �exibly scheduling production processes across hours. Patrick
and Wolak (2001), for example, �nd statistically signi�cant intra-day substitution parameters for
large industrial consumers on RTP.

A third conclusion from the demand results, which is fundamental but perhaps unsurprising,
is that energy management and information technology can signi�cantly increase households�price
elasticity. Figure 9.5 plots the reduced-form ATE for each hour of the Pricelight experiment against
the hour�s price. For the price range below 10 cents/kWh, the Pricelight does not substantially
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a¤ect consumption. At 15 cents/kWh, however, the estimated e¤ect of having a Pricelight is
about 150 watts, and this reaches over 200 watts during the highest price hours. This is about
two-thirds of the conservation by the RTP treatment group during the highest-price hours of the
2003 experiment, although the comparison is made cautiously given that the Pricelights group is
self-selected out of the (already self-selected) RTP population.

For context, a short term change that could produce a 200 watt e¤ect would be if every �fth
household turned o¤ a window air conditioner. The Pricelights�importance suggests that because
the hourly variance in households�electricity costs induced by real time pricing is small, devices that
lower the cost of price discovery - or simply increase attention paid to electricity use - can substan-
tially a¤ect energy use. Figure 8.5 also illustrates that the Pricelight does not cause consumption
to increase during low price hours, further reinforcing the net energy conservation result.

An eight month experiment is not ideal evidence on how households would respond to real time
pricing over a period of years. Consumers might learn more about typical price shapes, lose an initial
interest in energy conservation, or have time to make additional changes to energy-using capital
stock. One way of providing additional evidence on this issue is to compare the treatment and
control groups in 2004, when both are on real time pricing but the treatment group is in its second
year and the control group is in its �rst. For additional statistical power, this exercise departs from
the structural formulation and simply estimates a reduced form coe¢ cient on hourly price. Table
8.6 details the results. The �rst column is the reduced form analysis of the RTP experiment from
May through December 2003. Across all hours, if price was higher by one cent/kWh, treatment
group consumption was lower by 18.6 watts. The latter two columns show that in 2004, the original
treatment group consumed six to eight watts less on hours when price was higher by one cent. By
this measure, price responsiveness in the second year is about one third greater than in the �rst
year.

5.1 The Bene�ts of Randomized Experimentation

Randomized experiments are not new to the utilities industry: British utilities used randomized
trials to test alternative pricing programs in the late 1960s (Levitt and List 2009), and many of
the American time of use pricing experiments from the 1980s included randomized control groups
(Aigner 1984). Nearly all current energy e¢ ciency programs and many recent real time pricing
programs have been non-experimental10, however, despite the fact that the causal e¤ects of these
programs are under continuing debate. How useful are non-experimental data in this application?

Lacking a randomized control group or a valid instrument instrument for prices in this setting,
one way to address simultaneity bias would be to use observables to soak up the demand shifter �
and assume that price variation is conditionally exogenous. As a trial of the conditional exogeneity
assumption, I parameterize � as a function of each hour h�s observable characteristics, including
a polynomial series of weather variables and month and workday indicators. I then estimate the
demand function from Equation 3 with only the treatment group data. The second column of Table
8.5 shows the results of this regression: the positive � parameters give the apparently upward-sloping
demand indicative of simultaneity bias.

I then omit �A and include hour dummies, in an attempt to soak up the natural correlation
between a typical hourly price shape and households�electricity consumption. As the third column

10To my knowledge, Herriges, et al, (1993) is the only randomized evaluation of a real time pricing program. Many
other pricing structures have been evaluated with randomized treatment and control groups, however, and Allcott
(2009b) and Davis (2008) evaluate recent experimentally-randomized energy e¢ ciency programs.
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of Table 8.5 shows, this also gives upward-sloping demand functions for most hours. The fourth
column repeats this regression for the control group, showing that it apparently was responsive to
real time prices that it did not face. Although the failure of conditional exogeneity in a deeper
sense means that the econometrician did not collect enough controls, these results are consistent
with a number of other speci�cations attempted, with all of the control variables an analyst would
typically have available11.

While the bene�ts of randomized experiments are well-understood by economists, this exercise
highlights the unique opportunity that this experiment provides to understand how consumers
respond to real time electricity prices. This also suggests that a further shift toward randomized
evaluations of energy pricing and energy e¢ ciency programs could be useful in allocating policy
attention and investment dollars to the most e¤ective projects. Allcott and Mullainathan (2009)
describe one model for how this shift could occur and discuss lessons for energy program design
from �eld experiments in other areas such as development microeconomics and �nance.

6 Welfare E¤ects

6.1 Welfare E¤ects

The welfare e¤ects of real time pricing �ow through four primary channels: producer pro�ts,
retailer pro�ts, meter costs, and consumer welfare12. Modeling producer pro�ts and welfare e¤ects
in market equilibrium is well beyond the scope of this paper, and Allcott (2009a) focuses on those
issues. For this analysis, consider a simpler world where wholesale market prices and pro�ts are
exogenous because of the RTP program�s small size, and the electricity retailer�s pro�ts are held
constant. The representative consumer�s compensating variation is:

CVhd = V (P
T=1; wj(b�;b�; T = 1)� V (PT=0; wjb�; b�;T = 0) (10)

From Equation 1, each element in the vector PT=1 of RTP treatment group prices was the
wholesale price plus a �at payment per kilowatt-hour that covers the retailer�s costs, which are
essentially �xed. For welfare analysis, we want the �at rate tari¤ PT=0 that is "comparable" in
equilibrium with PT=1, in the sense that it keeps the retailer at zero pro�ts by covering wholesale
electricity costs and holding constaint the ex-post net revenues from the distribution charge and
the ESPP program�s "Participation Incentive." In this case, the PT=0 used for welfare analysis is
less than the actual price that the Control group received, because the Participation Incentive and
mild weather during the pilot program kept PT=1 relatively low.

11Note further that even if an elasticity to price variation conditional on observables could somehow be estimated,
that approach would not capture any price response correlated with these observables. For example, recall that
Figures 9.3 and 9.4 illustrated substantial energy conservation on average in afternoon hours. Including hour dummy
variables in the set of controls would absorb that form of price response into the estimated demand shifter �.
12The indirect utility function from Section 3 brings out an additional channel of welfare e¤ects when RTP is

optional. Households that select into RTP should theoretically have underlying demand patterns - as captured by
demand shifters � - that are less correlated with hourly prices than in the rest of the population. This form of
positive selection implies that the average cost of electricity for the group that remains on the �at rate tari¤ will rise.
I abstract away from this because my data provide no insight into demand parameters for the rest of the population.
See Borenstein (2007b) for an analysis of this issue.

15



This calculation, detailed in Table 8.7, gives a Compensating Variation of $10 per year per
program household. Whether real time pricing is welfare-positive, however, still depends on two
factors. First, it depends on the cost of implementing the new RTP contract: the net cost of
installing the new hourly electricity meters. The upfront cost is typically estimated to be between
$100 to $150, which amortized over a 30-year life could be $5-10 per year. New metering infrastruc-
ture can bring signi�cant other bene�ts to the utility, including reduced meter reading and billing
costs. Some utilities are installing these meters for residential customers without immediate plans
to move to real time pricing, suggesting that the net cost of RTP would be zero in some cases.
Since labor costs and other factors vary substantially by utility, it is di¢ cult to make a general
statement about the net cost of implementing the new RTP contract.

Second, note that the indirect utility function did not include other goods, such as energy e¢ -
cient air conditioners, where demand is unobserved but should depend on energy prices. Although
we do not observe the changes in expenditures on these goods as a result of the program, we can
place some structure on the issue. Assume, for example, that three-quarters of the energy use
reductions for treatment group households were from zero-cost behavior changes and the other
one-quarter were from changes to their stock of energy-using durables. Using the same economic
assumptions underlying the air conditioner replacement example from Section 2, this additional
unobserved expenditure would be $9 per year.

The e¤ects of RTP can also be framed as a reduction in energy costs. To do this, I �rst compute
each household�s �tted quantity demanded in each hour under RTP and under the "comparable"
�at rate tari¤, bq(PT=1j(b�;b�ihd) and bq(PT=0jb�;b�ihd), respectively. Using this predicted consumption,
I estimate that the average RTP household saves $13 per year on electricity bills. As shown in Table
8.7, this is 2.7 percent of total electricity bill at the calculated PT=0. A di¤erent way of putting
this is that, even in this selected group, a household that did nothing in response to the o¤er to
enroll in RTP would forego just $13 annually.

This calculation suggests that some program participants may have gone to great lengths to
be price elastic, with small pecuniary returns13. This result is consistent with some other studies,
such as Reiss and White (2008), that show that populations or subpopulations are in some cases
highly motivated to respond to energy prices. These studies are a puzzling counterpoint to a larger
literature on the "Energy Paradox" (Ja¤e and Stavins 1994), which suggests that consumers often
appear to be less responsive to energy costs than theory would predict that they should be14.

The fundamental policy message is that even in this selected group of households, RTP does not
generate energy-related compensating variation that is large in an absolute sense or in comparison to
metering costs or the potential costs incurred by households in conserving energy. This conclusion is
drawn with three important caveats. First, future advances in Smart Grid technologies that increase

13One particularly-motivated program participant told me that on the afternoons of High Price Alert days, they
reduce energy consumption by leaving the house and taking their family to the park. I asked them how much they
saved by doing that on a High Price Alert day relative to a normal day; they estimated 25 cents. Even that was an
overestimate.
14Reiss and White (2008) examine electricity consumption by San Diego households during the California electricity

crisis. They �nd that total consumption dropped 13 percent in two months in response to an average price increase
from 10 to 23 cents/kWh, then rebounded immediately by 8 percent when prices dropped to 13 cents/kWh. After
the initial increase, one in three households reduced by 20 percent or more relative to the previous year. The authors
show that this large fraction of the population would have needed to make signi�cant behavioral or capital stock
changes in order to achieve reductions of this magnitude.
This substantial responsiveness to energy prices contrasts with analyses such as Allcott and Wozny (2009), which

shows that the equilibrium relative prices and quantities of new and used automobiles with di¤erent fuel economy
ratings are 1/4 as responsive to gasoline price changes compared to what theory would predict.
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price elasticity and decrease the costs of advanced electricity meters could likely change this result.
Second, the variance in hourly electricity prices during this pilot is lower than that experienced in
other regions of the country and in di¤erent years, and higher price variance increases the potential
gains from RTP given any particular price elasticity. Third, the demand system showed that
RTP households reduced their overall electricity consumption, which should a¤ect greenhouse gas
emissions from electricity generation. I now turn to this latter issue.

6.2 Carbon Emissions

While real time pricing does a¤ect air pollution emissions, RTP programs have historically been mo-
tivated by aligning electricity prices with marginal costs, with little consideration of climate change
or other environmental issues. The energy conservation result from the empirical analysis, however,
suggests that RTP programs could also reduce carbon emissions from electricity generation. How
relevant is this factor in the ESPP program?

Carbon emission abatement is the product of the treatment e¤ect of RTP with the carbon
dioxide emission rate of the marginal electricity generator. Intuitively, if the marginal power plant
during high price hours, when the ATEs are largest in magnitude, has a higher emission rate than
the marginal power plant when prices are low, RTP will have a more bene�cial impact on emissions.
Electricity generators of di¤erent technologies, including coal, nuclear, hydro, natural gas, oil, wind,
and others, have di¤erent carbon emission rates, and the market shares and generation pro�les of
each technology vary between electricity markets in di¤erent regions. Results in a nationwide
analysis, such as Mansur and Holland (2008), may therefore be di¤erent from those for this speci�c
program.

I construct a simple model15 that gives the marginal carbon emission rate bEhd(Phd) as a function
of the price that would be set by the marginal generator in the ComEd region in 2003. For each
hour of the ESPP experiment, this model provides the emission rate of the marginal generator,
which can be multiplied by the predicted e¤ect of RTP on quantity demanded at "comparable"
retail prices. The average e¤ect per household on over any period of days d and hours h is given
by the following sum:

X
d

24X
h=1

bEhd(Phd) � 1
N

NX
i=1

�bq(PT=1j(b�;b�ihd)� bq(PT=0j(b�;b�ihd)� (11)

In this region, the marginal generator is typically small high-emission coal-�red plants in the o¤-
peak periods and lower-emission natural gas plants during the peak periods. As shown in Figure 9.6,
this means that the energy conservation from RTP covaries negatively with the marginal emission

15The model is a simple merit-order dispatch model constructed from Continuous Emissions Monitoring System
data from the US Environmental Protection Agency (2009) for the Reliability First region of the North American
Electric Reliability Council, of which ComEd is a member. These data give unit-level fuel input, electricity output,
and carbon dioxide emissions, which are then combined with 2003 average prices for coal, oil, and natural gas from
the U.S. Energy Information Administration (2009a and 2009b). The marginal generator at a particular price is the
next unit in a merit order determined by the sum of fuel costs and other non-fuel variable operating costs.
This model correctly represents marginal CO2 emissions under either of two sets of assumptions. First, it would

be valid assuming �xed capital stock and no ramping constraints or other dynamic considerations. Second, it would
be valid in the long run where the generation technology at a particular price is constant. Both sets of assumptions
also require marginal cost bidding and abstract away from inter-regional electricity transfers.
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rate, slightly attenuating RTP�s e¤ects on carbon dioxide emissions. As shown in Table 8.7, the
predicted annual carbon reduction from RTP is approximately 0.29 short tons per household, which
is 4.4 percent of total emissions from the average program household�s electricity consumption. This
is slightly less than the predicted percent reduction in electricity demanded under RTP.

To convert these into monetary terms for comparison with the welfare calculation requires
placing a value on carbon emissions. Because marginal damages are di¢ cult to estimate, I in-
stead use the predicted price of a carbon emission allowance in 2020 under the recently proposed
Waxman-Markey carbon cap-and-trade bill, which is $29 per short ton (US Energy Information
Administration 2009c). Multiplied by the annual carbon emission reductions, this gives $8.41 per
year. In the speci�c case of an RTP program that generates net energy conservation, in an electric
power market where the marginal o¤-peak generator is not substantially more carbon-intensive
than the marginal peak-hour generator, the gains from reduced carbon emissions could play an
important role in the welfare calculation16.

7 Conclusion

This paper exploits a randomized �eld experiment to evaluate the �rst ever hourly real time elec-
tricity pricing program for residential consumers, Chicago�s Energy-Smart Pricing Plan. A central
result of the demand estimates is that residential RTP should perhaps be thought of as a peak
energy conservation program, instead of a mechanism to shift consumption from peak to o¤-peak.
This means that demand for o¤-peak power under residential RTP, and thus air pollution emis-
sions, energy costs, and equilibrium entry of baseload power plants, may be lower than analysts
had previously expected.

The welfare calculation shows that moving to RTP from the �at rate tari¤ gave the average
program household a compensating variation along its electricity demand curves of $10 per year.
Aggregated across the population, this could increase welfare by hundreds of millions of dollars,
but the amount per household is not large in an absolute sense, and this only comprises 1-2 percent
of households� total electricity expenditures. More importantly, although there are signi�cant
uncertainties, these e¢ ciency gains do not appear to overwhelm reasonable estimates of the cost
of conserving energy or installing advanced metering infrastructure. These results do not make a
strong case for optional or population-wide residential real time pricing. From a broader economic
perspective, residential real time pricing may currently be an important real-world example of
when aligning prices with marginal costs might not improve welfare in the presence of contracting
or information costs.
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8 Tables

8.1 Baseline Household Characteristics
Treatment Control CNT Chicago T-C ESPP-CNT

Pre-Program Usage 954 879 1050 1050 75 -135
( 497 ) ( 436 ) ( 629 ) ( 629 ) ( 47.5 ) ( 40.8 ) **

Household Size 2.56 2.58 2.65 2.64 -0.024 -0.059
( 1.02 ) ( 1.09 ) ( 1.66 ) ( 1.55 ) ( 0.110 ) ) ( 0.100 )

Income 10k-25k 0.20 0.26 0.19 0.14 -0.058 0.034
( 0.27 ) ( 0.36 ) ( 0.39 ) ( 0.35 ) ( 0.037 ) ) ( 0.024 )

Income 25k-50k 0.29 0.32 0.29 0.24 -0.029 0.022
( 0.31 ) ( 0.37 ) ( 0.45 ) ( 0.43 ) ( 0.038 ) ) ( 0.029 )

Income 50k-75k 0.23 0.21 0.19 0.22 0.023 0.026
( 0.29 ) ( 0.31 ) ( 0.39 ) ( 0.42 ) ( 0.033 ) ) ( 0.026 )

Income 75k-150k 0.18 0.13 0.18 0.24 0.053 -0.015
( 0.27 ) ( 0.23 ) ( 0.38 ) ( 0.42 ) ( 0.025 ) ** ) ( 0.025 )

Income >150k 0.04 0.03 0.04 0.08 0.016 -0.014
( 0.14 ) ( 0.10 ) ( 0.20 ) ( 0.26 ) ( 0.011 ) ) ( 0.014 )

Median Year Constructed 1950 1949 1948 1962 1.31 0.60
( 11.4 ) ( 9.00 ) ( 8.38 ) ( 14.6 ) ( 1.00 ) ) ( 0.67 )

Pct Multifamily Housing 0.49 0.48 0.63 0.44 0.017 -0.051
( 0.29 ) ( 0.29 ) ( 0.48 ) ( 0.50 ) ( 0.031 ) ) ( 0.031 ) *

Pct Not in Labor Force 0.40 0.41 0.40 0.39 -0.005 0.015
( 0.10 ) ( 0.09 ) ( 0.49 ) ( 0.49 ) ( 0.010 ) ) ( 0.028 )

Pct College Graduates 0.25 0.23 0.19 0.31 0.023 0.041
( 0.19 ) ( 0.17 ) ( 0.39 ) ( 0.46 ) ( 0.018 ) ) ( 0.025 ) *

Previous CNT A¢ liates 421 450 252 26.0 -29.1 187
( 574 ) ( 603 ) ( 480 ) ( 170 ) ( 63.7 ) ) ( 33.4 ) **

F-Test p-Value 0.263 0.000
CNT neighborhoods are the 30 zip codes that had more than 10 CNT a¢ lliates before the ESPP program

began.
ESPP Treatment Group: 590 households. ESPP Control Group: 103 households.
CNT neighborhoods: 631 thousand households.
Chicago four-county metropolitan area: 3.14 million households.
For ESPP households, Pre-Program Electricity Usage (watts), Household Size, and Income buckets (Real

2003 $/year) are observed at the household level. Previous CNT A¢ liates is observed by zip code. All other
variables are at the Census tract level; from US Census Long Form data.

CNT and Chicago electricity usage distribution are from microdata for the East North Central division
from the 2001 Residential Energy Consumption Survey (US Energy Information Administration 2005). For
CNT-area and Chicago households, all other data are from the Census demographic distributions.
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8.2 Descriptive Statistics: RTP Experiment

Obs Mean SD Min Max
RTP Retail Price (Summer) 2208 6.85 2.12 4.62 16.0
RTP Retail Price (Summer Peak) 384 9.73 2.46 5.27 16.0
RTP Retail Price (Non-Summer) 3672 6.20 1.07 4.78 11.0
Control Retail Price (Summer) 1 8.275 0 8.275 8.275
Control Retail Price (Non-Summer) 1 6.208 0 6.208 6.208
1(High Price Hour) 5880 .0052 .072 0 1
1(High Price Day) 245 .037 .19 0 1
Treatment Quantity 3,396,511 865 810 0 14,750
Control Quantity 581,520 830 900 0 21,880
Quantity - Baseline Use(T) 3,396,511 -90.6 694 -3860 12,300
Quantity - Baseline Use(C) 581,520 -47.5 787 -2380 19,890
N (Total Households) 5880 677 9.40 658 689
N (Treatment) 5880 578 6.67 563 586
N (Control) 5880 98.9 3.16 95 103

Includes the RTP experimental period, May-December 2003.
"Summer Peak" includes noon to 6PM on all workdays from June to August.
Observations column re�ects distinct observations.
Quantities are in watts; prices are in cents/kWh.

8.3 Descriptive Statistics: Pricelight Experiment

Obs Mean SD Min Max
RTP Retail Price (Summer) 2208 9.24 3.50 3.71 40.1
RTP Retail Price (Non-Summer) 1464 7.83 1.55 4.29 14.9
1(High Price Hour) 3672 .013 0.11 0 1
1(High Price Day) 153 0.065 0.25 0 1
Treatment Quantity 171,867 1190 1180 0 16,700
Control Quantity 642,095 1090 1040 0 16,600
Quantity - Baseline Use (T) 171,867 -91.1 872 -4790 11,100
Quantity - Baseline Use (C) 642,095 -44.3 876 -2640 15,300
N (Total Households) 3672 222 0.693 219 223
N(Treatment) 3672 46.8 0.396 46 47
N(Control) 3672 175 0.369 173 176

Includes the Pricelights experimental period, June-October 2006.
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8.4 Attrition
Treatment Control
(1) (2)

Pre-Program Usage 8.49e-06 -1.47e-06
(0.00002) (0.00009)

Household Size 0.0001 0.0007
(0.007) (0.009)

log(Income)

Income 10-25k -.028 -.009
(0.068) (0.051)

Income 25-50k -.005 0.002
(0.071) (0.044)

Income 50-75k -.026 0.027
(0.069) (0.047)

Income 75-150k -.050 0.07
(0.07) (0.074)

Income >150k -.068 0.117
(0.075) (0.197)

Med Const Year 0.0008 0.002
(0.0008) (0.002)

Pct Multifamily Housing 0.112 0.037
(0.038)�� (0.062)

Pct Not in Labor Force 0.028 0.064
(0.179) (0.167)

Pct College Graduates 0.018 0.024
(0.072) (0.08)

Const. -1.662 -3.615
(1.657) (3.436)

Obs. 590 103
R2 0.024 0.009
F statistic 1.459 0.308

F Test p-value 0.983 0.143
Dependent variable is an indicator for whether the household attritted.
Pre-program electricity use is in watts. Income buckets are Real 2003 dollars per year.
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8.5 Demand System Estimates

I (T and C) II (T Only) III (T Only) IV (T Only)
Average Price: Summer -17.4 40.2 N/A N/A

( 1.3 )�� ( 0.8 )�� N/A N/A
Non-Summer -21.8 119.8 N/A N/A

( 2.4 )�� ( 0.9 )�� N/A N/A
Price Deviation: Hour 6 -10.5 35.2 32.6 29.9

( 6.9 ) ( 1.9 )�� ( 1.9 )�� ( 7.8 )��

7 -14.8 27.7 22.7 25.2
( 6.3 )�� ( 1.9 )�� ( 2.0 )�� ( 7.6 )��

8 -16.7 1.7 -3.0 -4.7
( 10.0 )� ( 2.8 ) ( 3.1 ) ( 12.5 )

9 -15.6 -4.4 -17.0 -12.1
( 8.0 )� ( 2.5 )� ( 2.8 )�� ( 10.1 )

10 -12.2 -3.3 -22.1 -21.4
( 5.4 )�� ( 2.0 )� ( 2.2 )�� ( 7.3 )��

11 -10.6 6.7 -22.6 -23.8
( 5.1 )�� ( 2.1 )�� ( 2.4 )�� ( 7.0 )��

12 -13.1 13.7 -21.5 -19.2
( 4.3 )�� ( 1.9 )�� ( 2.2 )�� ( 5.9 )��

13 -13.6 12.6 -18.0 -12.6
( 3.5 )�� ( 1.6 )�� ( 1.9 )�� ( 4.8 )��

14 -12.7 20.9 2.5 9.4
( 3.8 )�� ( 1.8 )�� ( 2.2 ) ( 5.4 )�

15 -11.6 34.5 12.3 19.0
( 4.0 )�� ( 1.9 )�� ( 2.3 )�� ( 5.7 )��

16 -9.1 43.7 23.1 24.0
( 3.6 )�� ( 1.8 )�� ( 2.2 )�� ( 5.2 )��

17 -10.7 64.2 39.7 41.3
( 4.4 )�� ( 2.1 )�� ( 2.5 )�� ( 6.2 )��

18 -17.8 44.0 38.9 39.3
( 6.3 )�� ( 2.6 )�� ( 3.0 )�� ( 8.5 )��

19 -5.7 56.5 54.8 44.5
( 7.7 ) ( 2.9 )�� ( 3.4 )�� ( 10.4 )��

20 -5.6 42.4 52.5 43.0
( 5.5 ) ( 2.3 )�� ( 2.7 )�� ( 7.6 )��

21 -9.9 54.4 69.7 62.7
( 8.6 ) ( 3.1 )�� ( 3.6 )�� ( 11.5 )��

High Price Day: Morning -62.9 -8.9 1109.4 1388.5
( 16.5 )�� ( 8.0 ) ( 82.2 )�� ( 198.5 )��

Mid-Day -115.8 -58.0 1437.0 2093.3
( 23.1 )�� ( 11.5 )�� ( 118.3 )�� ( 290.2 )��

Afternoon -133.1 30.8 52.5 147.0
( 29.5 )�� ( 14.7 )�� ( 15.6 )�� ( 38.0 )��

Evening -53.2 607.8 277.4 340.1
( 26.6 )�� ( 13.7 )�� ( 14.2 )�� ( 32.4 )��

Constant: Summer -45.3 N/A N/A N/A
( 3.5 )�� N/A N/A N/A

Non-Summer -36.6 N/A N/A N/A
( 1.9 )�� N/A N/A N/A

Dependent variable: Electricity use (watts). Price variables are in cents/kWh. Newey-West SEs.
Regression I: 3.98 million observations. Regressions II-IV: 3.40 million observations.
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8.6 Second Year vs. First Year of RTP Experiment

RTP All Summer
(1) (2) (3)

P x T -18.5 -6.1 -4.8
(0.9)�� (0.7)�� (1.1)��

T x P x Pre-Program Usage -14.8 -9.7 -9.1
(1.5)�� (2.7)�� (2.0)��

T x P x Household Size 6.7 0.9 -2.1
(0.8)�� (0.9) (1.4)

T x P x log(Income) 7.2 1.6 4.7
(0.7)�� (0.9)� (1.2)��

P x Pre-Program Usage 63.7 33.6 51.5
(1.5)�� (2.7)�� (1.8)��

P x Household Size -7.6 2.5 4.0
(0.8)�� (0.9)�� (1.2)��

P x log(Income) 1.4 7.3 2.2
(0.7)�� (0.8)�� (1.0)��

Pre-Program Usage 92.9 330.7 62.0
(9.5)�� (20.3)�� (12.6)��

Household Size 38.2 -20.3 0.5
(4.9)�� (6.5)�� (8.6)

log(Income) 11.7 -64.3 -14.8
(4.2)�� (6.0)�� (7.3)��

T x Pre-Program Usage 1.8 -92.3 72.2
(9.9) (20.7)�� (13.6)��

T x Household Size 6.3 25.9 17.1
(5.3) (6.9)�� (9.4)�

T x log(Income) -69.9 -4.8 -37.9
(4.6)�� (6.5) (8.2)��

T 69.2 -20.6 48.5
(5.9)�� (5.8)�� (7.5)��

Obs. 3978019 3762972 1396648
F statistic 64776.9 29708.4 14750.4

Dependent variable: Electricity use (watts). Price variables are in cents/kWh. Newey-West SEs.
Pre-Program Usage, Household Size, and log(Income) are normalized to mean 0, standard deviation 1.
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8.7 Welfare Calculation and CO2 E¤ects
E¤ects by Season Summer Non-Summer
Hours Observed 2208 3672
Comparable Flat Rate Tari¤ (cents/kWh) 7.17 6.15
Fitted Baseline Usage (Watts) 986 804
Fitted Usage Reduction (Watts) 45.7 37.7
Electricity Cost Reduction (cents/hour) 0.244 0.118
Compensating Variation (cents/hour) 0.195 0.088

Electricity Generation CO2 Emissions (lbs/household-hour) 1.4 1.53
CO2 Emission Reductions (lbs/household-hour) 0.0616 0.0674

Annual E¤ects
Annual Compensating Variation ($) 10.05
Baseline Annual Electricity Costs ($) 480
Annual Electricity Cost Reduction ($) 13.1
Percent Savings 2.73

CO2 Emission Reductions (short tons/household) 0.289
Baseline Annual CO2 Emissions (short tons) 6.54
Percent CO2 Reduction 4.42

Baseline Annual Electricity Costs is the Control predicted group�s electricity bill on the Comparable Flat
Rate Tari¤. Note that this is lower than ComEd�s typical annual electricity bill because the Participation
Incentive and the mild summer reduce the Comparable Flat Rate Tari¤.

To compute Annual e¤ects, the Summer and Non-Summer observations are re-weighted such that Sum-
mer is 2208 of the 8760 hours in a year and Non-Summer is 6552 of the hours.
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9 Figures

9.1 ESPP Geographic Areas

CNT Neighborhoods:
A: Evanston
B: Austin
C: Pilsen
D, E: Elgin
F: Park Forest
G: Near West Side

9.2 Recruitment
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9.3 Average Hourly Prices and Reductions

Newey-West standard errors

9.4 Prices and Incremental Reductions on High Price Days

Newey-West standard errors

29



9.5 Pricelights: Average Treatment E¤ects by Price

9.6 Carbon Dioxide Reductions

Newey-West standard errors.
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