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ABSTRACT

In this paper we provide worst case error bounds for several heuristics

for the uncapacitated dynamic lot size problem. We propose two managerially

oriented procedures and show that they have a relative worst case error bound

equal to two, and develop similar analyses for methods known as the "Silver

and Meal" heuristics, the part period balancing heuristics, and economic

order quantity heuristics (expressed in terms of a time supply of demand).

We also present results on aggregation and partitioning of the planning horizon.
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1. Introduction

Due to their importance to production planning and inventory control, lot

size problems have been widely studied ([12] and [7]). In particular, these

problems play a key role in materials requirement planning ([6] and [8]).

In this paper, we study heuristics for the following uncapacitated version

of the lot size problem:

N T
(P) Min Z Z [sit6(Xit) + hitIit + vitXit]

i=l t=l

s.t. Xit Iit + Ii t- = 2 dit

it'it - +i=l,... ,N; t=l, ....,T

x I 
Xit' I i t>

l if X > > =l,..,

6(X ) it
otherwise tl,...,T

where the decision variables are:

Xit, the number of units of product i to be produced in time period t,

Iit, the inventory of product i carried from period t to period t+l,

and the parameters are:

sit, the set-up cost of producing product i in period t,

hit, the unit cost for holding product i from period t to period t+l,

vit, the unit production costs for product i in period t,

dit, the demand of product i in period t.

Problem (P) is separable in i and reduces to N single product uncapacitated

lot size problems.

Sometime ago, Wagner and Whitin [9] proposed an efficient (T2) dynamic

programming algorithm for solving problem (P). The algorithm has not been

extensively used in practice, however, due to the difficulty that managers have

in understanding it and because it can be time consuming when applied to
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problems involving tens of thousands of components. As a consequence, several

O(T) heuristics have been developed for the uncapacitated lot size problem. In

this paper, we provide worst case error bounds for some of these heuristics and

we analyze aggregation procedures. In section two, we show that even though

the Silver and Meal heuristic has performed very well in several simulation

tests presented in the literature [7], the heuristic's worst case errors can

be arbitrarily bad. In the same section, we propose two simple procedures

with a worst case relative error bound equal to two, and analyze a part period

balancing method and a heuristic based on the economic order quantity expressed

as a time supply [7]. In section three, we study the effect of reducing the

planning horizon. We show that the worst case error, when the multi-facility

single-item problem is partitioned in two sub-problems, does not exceed the

sum of the costs associated with a single set-up in each facility. In section

four, we address issues of aggregation, proving that when two products present

certain proportionality in their parameters, there is an optimal strategy that

applies to both. We also study worst case errors for the cases where the

proportionality conditions are not applicable. The results of this section

apply, in particular, to the diagnostic analysis of inventory systems and comple-

ment those of Bitran, Valor and Hax [1]. Finally, in the last section we

present conclusions and topics for further investigation.

2. Analysis of Some Heuristics for the Uncapacitated Lot Size Problem

As we have already noted, because practitioners have difficulty understand-

ing optimization based methods such as the Wagner and Whitin algorithm, they

frequently use simpler, non-optimal, algorithms. Among these is the Silver

and Meal heuristic. In computational studies, this procedure has performed

well when compared to others in the literature [7, p. 317]. Nevertheless, as
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we show, its worst case error bound can be arbitrarily bad. Moreover, we show

that other well-known heuristics also perform badly in a worst case sense, and

propose two heuristics that have much better worst case performance.

Throughout this section, we will deal with single-item production problems

and so we drop the index i from the formulation (P) (e.g. we use d instead of
t

dit). The results are derived for the case where vt = v and therefore the

corresponding costs can be ignored.

The Silver and Meal Heuristic

To set notation, we briefly describe the Silver and Meal heuristic. Assume

we are in the beginning of the first period (or that we are in any subsequent

period where we will produce) and we want to determine the quantity Q to be

produced in this period. The total cost associated with a production quantity

Q that satisfies demands for n periods is given by

TC(n) = set-up cost + carrying costs to the end of period n.

The procedure selects n as the first period that minimizes (locally) the total

cost per unit time, that is, if AC(t) = TC(it)/t denotes the average cost per

period, then

AC(1) > AC(2) > ... > AC(n)

AC(n < AC(n+l).

In the next proposition, we establish a worst case error bound for this

heuristic.

Proposition 2.1: The worst case relative error for the Silver and Meal heuristic

can he arbitrarily large.
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Proof: We prove the proposition by means of a sequence of examples. Let n

be a positive integer. Consider a lot size problem with parameters

St = 1, ht = 1 for all t, and

dI >O, 2
=O,..,d Odn+

d1 > 0, d = ,.,d = 0 dn+l
n2 n

where £ isa small positive quantity, and s, ht and dt denote respectively
n t' t' 

the set-up cost, holding cost, and the demand at time period t Applying the

Silver and Meal heuristic, we have

1 1
AC(l) = 1 > AC(2) = > ... > AC(n) -

2 ~n

1 + 1 + ns
AC(n+l) - n n = +

n+l n

Two set-ups occur,

total cost given by the

everything at period 1.

one at period 1

heuristic is ZH

The total cost

and the second at period n+l. The

- 2. The optimal solution is to produce

of the optimal solution is

Z = 1 + n(l/n 2 + ) = + 1/n + n .
n n

Hence,

ZH 2
ZO 1 + /n + n 

0 ~~~n

If n + 0, this ratio tends to 2 as n + I.
n

Consider next a lot size problem with parameters

= 1, h = 1, and

dl > 0, d2 = ... d =0 d = d
n n+l

= 1/n 2
+ E ,

np

dn+2 = .. = d2n = 0 d2n+l = 1/n + e .

n C n 
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According to the Silver-Meal heuristic, the production will occur in periods 1,

n+l, and 2n+2, with total costs ZH = 3. The optimal strategy is still to

produce everything in period 1. The total cost of the optimal solution is

Z0 = 1 + n(1/n 2 + ) + (2n)(1/n2 + ) = 1 + 3/n + 3no
n n n

and

ZH 3
Z 1 + 3/n + 3n '
0 n

If n + 0, this ratio tends to 3 as n + -.
n

By increasing the size of the problem and duplicating the demand pattern

as we have, the relative error can be made arbitrarily large.

Economic Order Quantity and Part-Period Balancing Heuristics

We next consider two other procedures used in practice: an economic order

quantity heuristic expressed as a time supply of demand and a part-period

balancing heuristic. The economic order quantity expressed as a time supply

applies to problem with stationary costs, i.e. for all t, st = s and ht = h.

The economic time supply is determined from the average demand rate D by the

formula

TEOQ = EOQ 2
EOQ D Dh

rounded to the nearest integer greater than zero. That is, the item is produced

in a quantity large enough to cover exactly the demands of this integer number

of periods.

As we might expect, this heuristic performs particularly poorly when there

is a significant variability in the demand pattern. The following proposition

illustrates this point.
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Proposition 2.2: The economic order quantity expressed as a time supply scheme

for solving the uncapacitated lot size problem can be arbitrarily bad.

Proof: Let > be given and let n be a given positive integer. Consider a

problem having the parameters

s = 1, h = 1, T = n

d = 2n - , dt = /(n-1) t=2,3,...,T

T
d

t=l 
D = 2n/n = 2.

T

According to the heuristic, TEOQ = 1, hence, we produce in every period. The

cost associated with this plan is ZH = n. The optimal plan is to produce every-

thing in the first period. The optimal cost is

Z0 = 1 + /(n-l) + 2/(n-1) + ...+ (n-l)~/(n-l) = 1 + n/2.

ZH n
Hence, Z =1+ne/2 If n + 0 and n + , we can make the relative error

0
arbitrarily bad.

In the part-period balancing heuristic, the production in any period when

we produce is chosen so that the total carrying costs for the periods covered

by the production quantity is made as close as possible to the set-up cost.

We make the assumption, when applying this heuristic, that if a set-up occurs

in period t-l and the holding cost is larger than the set up cost in period t,

then we also set-up in period t. We will again assume stationary fixed costs

St = s and holding costs ht = h. Then,

Proposition 2.3: When applied to the uncapacitated single-item lot size problem,

the worst case relative error of the part-period balancing heuristic is bounded

by 3.



Proof: Assuming that when applying this heuristic, we incur n set-ups. Then,

ZH = ns + H

where H corresponds to the total holding costs. But H is bounded by 2ns, since

between two consecutive set-ups and after the last set-up, the holding cost does

not exceed 2s.

Let Z0 denote the cost associated with the optimal plan. Then, Z0 > ns

since if r and u correspond to two consecutive set-up periods determined by the

heuristic, the optimal strategy must incur a cost (holding or a set-up) at least

as large as one set-up cost in the interval (R,u]. There are (n-l) of such

intervals, plus the initial set-up.

ZH__ _

Hence, Z < ns + 2ns 3
Z - ns

The worst case bound derived in Proposition 2.3 is tight as is shown in

the following example. Consider the uncapacitated problem with parameters:

h = 1, s = 1

d1+3i l >0 i=0,1,2,...,n-1
dl+3i = 1>0

d2 = £2 > 0 i=0,1,2,...,n-l
d2+3i = 2>0

d3+3i s £3 i=0,1,2,...,n-1

where 0 < 2< 3< s, s > 23, s > £1+c2, and s > 22+E3

By applying the part-period balancing heuristic, we incur set-ups at

periods t = 1+3i, i=0,1,2,...,n-1. The total costs associated with this plan

is

Z = n + ( + 2 - 23 )n = 3n + n 2 - 2n£3 .H 2 32 3

The optimal solution is to produce at periods t = 3+3i, i=0,1,... ,n-l and

period 1. The optimal cost is



Z0 = n + 1 + (n-1) ( 1+2C2) + £2 = (n+l) + (2n-1)c2 + (n-l)l1.

Therefore,

ZH 3n n£2 2n£3

Z0 (n+l)+(2n-1)c2 + (n-l)cl

If n2 + 0, n 3 + 0, n +-* 0, and n , then

2 3.ZH-. 3.Z0

Two Other Heuristics

We next consider two more heuristic procedures where we assume without loss

of generality that d > 0. The two heuristics are closely related. They use

the same basic rule, produce for an integral number of periods, the number being

chosen so that holding cost in total first exceeds a set-up cost. In Heuristic

1, this rule is applied in a forward manner and in Heuristic 2, it is applied

backwards. More formally, the heuristics are described as follows.

Heuristic 1 (forward):

Step : Set-up at t=l.

*
Step 1: Let H = 0, t = t.

Step 2: Let t = t+l. If t > T, go to step 4, otherwise, let

t-l
H = H + Z hqd t.

* q t
q=t

If H > st go to Step 3, otherwise go to Step 2.

Step 3: Let t-l
X * = Z d.
t * q

q=t

Go to Step 1.

Step 4: Let t-l
X * = Z dq.

· ~~ qt *
q=t

Stop.
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Heuristic 2 (backward):

Step 0: Let t=T.

Step 1: Let H = 0, t = t.

Step 2: Let t = t-1. If t = 0, go to Step 4, otherwise, let

t
H = H + h

t

Step 3:

Step 4:

Z d .
q=t+l q

If H > st, go to Step 3, otherwise go to Step 2.

*
Let

Let

t+l

X1

t
Z d . Go to Step 1.

q=t+l q

t

= Z d . Stop.
q=l q

We next identify a few properties of solutions obtained by applying these

procedures.

Assume constant set-up costs and suppose that the production periods for

Heuristic 1 are

t = 1 < ... < t
~~~~12

(2.1)

Let the production periods determined by Heuristic 2 be.

t = 1 < ' < . < t .1 2 n2
(2.2)

Then,

Lemma 2.1: Consider period t for some j > 1. If for some i,
I

ti < tj < t+l
I - i+l'I

then t' < t .
j-l -

Proof: Assume t' > t . Then,j-1 i

ti < t- < tJ ti+l-tj3 l j t i+l (2.3)



Also, by Heuristic 1,

t. -l
ti+l- t-l
Z (, Z h)d < s

t=t+l q=t.

1and by Heuristic 2,
and by Heuristic 2,

tj- t-1

z (,, .. ,
t=tjj-l q=t! 1-1

hq)d > s.
qt

(2.5)

Since h and d are non-negative, (2.3), (2.4), and (2.5) are not consistent.
q t

Hence,

t' < t .
j-1 - 1

Lemma 2.2: Consider period tk for some k > 1. If for some j,

t < tk < t then < t
-k 3 k-+l, t1 j

Proof: Parallels the proof of Lemma 2.1.

Proposition 2.4 (Interleaving Property): Heuristics 1 and 2 generate an equal

number of production periods, i.e., n = n2. Moreover t2 t < t t <
2' 2 - 2 - 3 - 3 

< t < t
- n2 - n1

Proof: We have that

T t-l

Z ( hq)dt
t=t +1 q=t q

.n1 n1

< by Heuristic 1

t-l
( z h )d
q=t' -1 q t

n2

T t-l

z ( E
t=t' +1 q=t'

n2 n2

h )dtq t

> 

< 

by Heuristic 2

by Heuristic 2.

(2.6), (2.7), and (2.8) imply that t' < t
n 2 - n1

-10-

(2.4)

T

t=t '

n2

and

(2.6)

(2.7)

(2.8)

(2.9)



-11-

By Heuristic 1,

t
nl t-l
E ( E h )d > s. (2.10)

t=t +1 q=t q t
n1-i n1-i

(2.1) and (2.8) imply t < t' . (2.11)
n1 Un2

(2.1), (2.2), (2.9), (2.11), and successive applications of Lemmas 2.1 and 2.2

will prove the desired result.

Let ZHi be the objective value of the feasible solution to the lot size

problem when Heuristic i, i=1,2, is applied, and let Z0 be the corresponding

optimal value.

ZHi
Proposition 2.5: Z < 2.

0

Proof: We prove the result for Heuristic 1. Similar arguments lead to the

same result for Heuristic 2.

Assume that (2.1) holds. Then,

ZHl ns + H

where H corresponds to the holding cost and s is the set-up cost.

Since a set-up cost is incurred whenever the holding cost exceeds a set-

up cost, it follows that H < ns. Hence,

ZH < 2nls.Hi - 1

A lower bound on Z can be obtained as follows. An optimal solution
0

will necessarily have holding cost plus set-up cost at least equal to s in the

interval (ti, ti+l]. There are (nl-l) of such intervals implying a cost of at

least (nl-l)s. Since a set-up is incurred in period tl=l as well, a lower

bound on the optimal value is ns. Therefore,
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ZH1 2nlsH < = 2

0 1

The worst case bound derived in Proposition 2.5 is tight as is shown in

the following example. Consider the uncapacitated lot size problem with

parameters:

d2i+l 2 i=l,...,m

d2 i = 1- 1 i=l,... ,m

d1 = 1

s = 1, h = 1

T = 2m+ 1

1 > 2 > > 0.
2 l 

By applying Heuristic 1, production will occur in the odd periods. So,

ZH1 = (m+l) + m(1-l).

An optimal solution will have set-ups at even periods and at t=l. Hence,

Z = m + 1 + m 2 .o 2'

Therefore,

ZH 2m + - meHil

Z0 m + + m2

If m + o, me1 + 0, and mc2 + 0,

Z H1 + 2
-~ 2 ·

Zo

A similar example shows that the worst case bound of 2 is tight for

Heuristic 2 as well.

Based on worst case performance, the suggested algorithms are more attractive

than the Silver-Meal heuristic and the other two heuristics discussed earlier.

If demands are bounded from below, we can improve the error bound in
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Proposition 2.5. We assume, without loss of generality, that ht > 1, t=1,2,...,T.

Proposition 2.6: Let s be the set-up cost and suppose that dt > ps, t1,2,...,T,

for some constant p. Let r and u denote two consecutive production points deter-

mined by Heuristic 1 or 2. Then, if p < 1, the cost of the heuristic solution

in the interval (r,u] is at most (2-p) times the cost of any solution in this

interval; if p > 1, the solution is optimal.

Proof: If p > 1, the holding cost always exceeds a set-up cost. Therefore,

producing in every period is the optimal strategy.

For p < 1, let H denote the holding cost of the solution given by

Heuristic i in this interval. Then, the heuristic's cost cH in the interval is

s + H. By the rules of the heuristic, H < s and H + (hr + h+ 1 + ... + h l)d

is greater than s. Consider any other solution and let c be the corresponding

cost in the interval. If this solution does not produce in the interval, it

incurs a holding cost of at least max (s, H + ps) (since d > ps).

Consequently, if it does not produce,

cH H+s
< max {- : H < s, c > max (s, H + ps)} =

c c

H+s H + ps + (l-p)s < H+ps + (l-p)s 2
max (ps+H,s) max (ps+H,s) - H+ps s

If this solution produces once in the interval (r,u], either

(i) u = r+l in which case c = cH = s or

(ii) u > r+l in which case the new solution must incur a holding cost

of at least ps for some period in the interval (r,u].

Therefore,

cH s+H 2s 2
< H < 2 < 2-p for O < p <.

c - s+ps - s+ps l+op - -

If the solution produces more than once, then c <s+H < 1
c - 2s - EO 
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Corollary 2.1: Let s be the set-up cost and suppose that dt > ps, t=l,...,T

ZHi
for some constant p < 1. Then, sup < 2 - p.

0

Proof: We prove the result for Heuristic 1 only. Similar arguments can be used

nl1

for Heuristic 2. Consider (2.1). The corresponding cost is s + Z a + a
i=l 1

where a is the cost of the interval (ti, ti+l] and an is the holding cost

nl-1

beyond period t . The cost of the optimal solution is s + b + b where
i=l 1 n1

b. is the cost in the interval (ti ti+l ] and bn is the cost beyond period t .
1 a

By the nature of the heuristic a < s and hence b > a . Since < 2 p

nn1 n l - - n1 P'

s + Z a.

i=1,2,...,n -l by Proposition 26, < 2-p.
1

s + b.
i=l 1

Therefore, the supremum does not exceed 2-p. 

Some of the worst case error bounds that we have presented assume no limita-

tions on the length of the planning horizons. It remains to be studied how such

error bounds change if the planning horizon is fixed.

3. Reducing the Planning Horizon

In this section we compute the cost of reducing the planning horizon in

an uncapacitated lot size problem. Usually, demand forecasts deteriorate

towards the end of the planning horizon. By considering a reduced number of

time periods, we operate with a more accurate forecast and handle smaller data

bases.

Consider the single product, multi-facility model with concave costs:
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T M
(F) Min Z Z

t=l j=l

s.t. Ijt

IMt =

Xjt >
Xjt --

[Cjt(Xjt) + Hjt(Ijt)]

= Ij,t- 1 + Xjt - Xj+l,t

'Mt-l + XMt - Dt

0,

IjO = IjT

I, > 0
ijt -

= 0

t=l,...,T

j=l,...,M; t=l,...,T

j=l,... M

where the index j indicates the facility and the index t, the time period.

Figure 1: Multi-Facility Model in Series

We assume that the costs are of the form

Cjt(X. jt) = jX.jt + s6(Xj)

Hjt(Ijt) j jt

H.t(Ijt) = hj.t.

where

6(Xt) =

if X. > 0
jt

jt

Partitioning Problem (F) in two subproblems, the first with T1 periods ad

the second with the remaining T2 = T-T1 periods, we obtain:

j=l,...M-l; ~,.,

* ·
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T1

(F1) Min Z
t=l

s.t. Ijt

IMt

M
Z [vXt
j=l jt

+ sj(Xjt) + hjt]

= Ijt- + Xt - Xj+l,t

= M,t-l + XMt - Dt

Xjt' jt -

Ijo
= 0

T
(F2) Min Z

t=Tl+l

M

j=l
[vjXjt + sj 6 (Xjt) + hjIjt]
i jt 3 it j jt

s.t. Ijt

't

Ij,t-1+ Xjt Xj+l,t

= ,t + XMt - Dt

jt jt --

= IjT
= 0

Let v(Y) denote the optimal value of Problem Y.

j=l,...,M-l; t=T1+1,...,T

t=TI+1,...,T

j=l,...,M; tTl+l,.. .,T

j=l,...,M

Then,

Proposition 3.1: 0 < v(Fl) + v(F2) - v(F) <
M
E s..

Proof: Assume that in the optimal solution of (F), the set-ups, at Facility j,

occurred at periods

1 < tjl < j2 < ' < tjk. < jk.+l - in -
j k

Hence,

M
v(F) = Z n.s. + Z H. + C

j=l J i j J

where Hj corresponds to the holding cost associated with the inventories at
3

t=l, ...,T

and

j=l,...,M; t=l,...,T1

j=l, ..,M

t=l,...$M-l; t=l,...gT1
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facility j, and
T M

C is equal to Z D Z v..
t=l j=l 

*
Let t = T +1. Then, for some k.

1 J
*

-- t2<.< t < t < t jk < ... < t. < T.i j2 < .. <tj jk.+l

Consider the following feasible solution to (F):

a) the set-ups, at Facility j, are incurred at periods

*

tjl t 2' ... tjk. t , tjk.+l1 jn.; and
J J I

b) the production at periods

tjl tj2' ..., tjk -1' tjk +1' 9 t.n

are the same as in the optimal solution to (F);

c) at period tjk we produce the necessary amount so that I = 0, and

I ,
at time period t we produce the difference between the amount we were

supposed to produce at period tk in the optimal solution to (F) and
jk.

this new quantity.

The objectivevalue, denoted by f, for this feasible solution satisfies

M

fV < Z (nj+l)s + H + C
F j=l I I j 3

where H is the new holding cost at facility j.
J

The inequality is due to the fact that we might not have to produce at t

(the difference is zero). Note that H < H. since we are carrying at most the
-

same inventory as in the optimal solution to (F).

If we partition this feasible solution, the two components are feasible

in (Fl) and (F2), respectively. Denoting by fF1 and fF2 the corresponding

objective values in (F1) and (F2), and noting that v(Fl) < f and v(F2) < fF2
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we have

v(Fl) + v(F2) < fF F1 +fF2
= fF1 F2

M M M M M
< Z (nj+l)s + Z H' + C < Z n.s. + Z H. + C + E s.

j=l i j=l j j=l ] 3 j=l j j=l 3

M
= v(F) + Z s. . (3.1)

j=l 3

Since the combination of any feasible solution to (F1) and (F2) forms a feasible

solution to (F)

v(F) < v(Fl) + v(F2) . (3.2)

From (3.1) and (3.2)

M
< v(Fl) + v(F2) - v(F) < Z s.. /

-~- - j=l 3

Assume that the demands are not known with reasonable accuracy, for

example, for more than T/2 periods into the future. Proposition 3.1 states that

by partitioning the problem into two problems of size T/2 we incur, in the worst
M

case, an extra cost equal to s.. This extra cost can be viewed as the maximum
j=l 

value of the information on the demands for the last T/2 periods.

A special instance of Proposition 3.1 is the single product, single facility

problem or more generally, the multiproduct uncapacitated lot size problem. The

worst case is now a set-up for the single product case and the sum of the set-

ups of each product in the multiproduct case.

Note that Proposition 3.1 could be derived for the case of non-constant set-

up costs, non-increasing production costs, and no restrictions on the holding

costs. In this case, we would have:

M
< v(Fl) + v(F2) - v(F) < Z sjT+

j=l JTI+
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4. Aggregation

In this section we suggest an aggregation procedure for solving a multi-

product uncapacitated lot size problem. We define a basic aggregate product

which production strategy dictates the production plans for all products in

the aggregation. Worst case error bounds are derived. The aggregation suggested

avoids, in part, detailed demand forecasts and limits the amount of data manipu-

lation of inventory systems.

Consider the single product uncapacitated lot size problem.

T
(P1) Min Z [st6(Xt ) + htIt + vtXt]

t t t t t t tt=l

s.t. X -It +Itl d t=l,.. ,T

Xt, It > 0
t' t -t-1,...,T . -

1 if X > 
t

6(X) = i t=l,... ,T
Ot = otherwise

An optimal solution for this problem follows a "Wagner-Whitin" strategy, i.e.,

XtIt -l 0 t=l,2,...,T (assuming I0=0).

Using this result we can formulate an equivalent facility location problem.

In this formulation the binary variable yt denotes whether or not we produce in

period t and tj denotes the fraction of the demand in period j that is produced

in period t.

T T T
(Q) Min Z E ctjetj + Z styt

t=l j=t t=l

J
s.t. tj = 1 j=l,... ,T

t=l

0 <et < Y < 1 t=l,...,T; j > t
t- t-

t=l,... ,TYt integer
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where tj - (ht +ht+ + ... + h_ + vt)dtj t t~~l j_- t j

j
Note that since Z etj = 1 and 0 < tj < Yt < 1, it follows that at least one

t.-l -t 

of the yt's will be non-zero. If the yt's are integers, the remaining constraints

form a unimodular matrix implying that the etj 's will be integers in the optimal

solution.

We study this formulation to compute bounds for the errors due to the product

aggregation.

Proposition 4.1: If in Problem (Q) the cost coefficients are replaced by

cT' = kc. + . and s' = ks for some k > 0 and any aj, the optimal strategy
tj tj 3 t t

will not change (i.e., the location of the facilities in the optimal solution

are the same for both cost structures).

Proof: Let U denote the feasible set of Problem (Q). Then,

T T T
Min ( Z Z c't + Z s'y ) =

(0,y)EU t=l j=t 3 J t=l t t

T T
Min { Z [(kc . + )6 .] + Z (ks Yt)} =

(0,y)£U t=l j>t tJ tJ t=l t

T T T T
Min {k[ c 0 t+ E Styt] + Z Z a '}

(0,y)£U t=l >t tJ tJ t=l t=l j>t J tJ

T T T j
Min {k[ Z ct .tj + Z s y ] + Z Z a.0 .}

(O,y)zU t=l j>t t =l j=l t=l 3 tJ

T T T T j
Min k[ E c .t6 + E Styt] + a 

(0,y)U t=l j=t t =l js =l tt=

But,

J
E tj = 1

t=l
for any (,y)~U

Hence,

.

t=lq...,yT; i > t.
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T T T
Min ( Z Z c' + s'y ) =

(0,y)zU t=l j=t tJetJ t= t

T T T T
Z a + k Min ( E C .0 + E t t= +k Mm ( Z Z Cto6+ X stY)

j=l1 (0,y)£U t=l j=t J t =

Proposition 4.1 suggests a way to group products. If product 1 has cost coeffi-

cients ctj and s and product 2 has cost coefficients ctj and s' such thattj t tJ t

cT kct + a s = ks for some k > 0 and a.cR, we can solve just one of
tj tj t t J

the problems because both have the same optimal strategy.

From now on we assume that for each product the set-up costs, holding

costs, and production costs are constant over time. In this case, since the

total demand is fixed, the production costs are fixed as well and can be

eliminated.

As an example of this result, suppose that we have two products, 1 and 2

having, respectively, set-up costs s1 and s2, holding costs h and h2, demands

dlt and d2t at time t. If the parameters of the two products satisfy the

conditions:

ct = kc' + and s = ks' for some k > 0 and a.ER then,
Oj tj j t tj

1

2=
ctj = (j-t)h2d2ti 2 2j

Cj= (j-t)h dl

2
= kcj + a. = k(j-t)hd + Ct kc tj j Ilj j

(j-t)h2d2j = k(j-t)hldlj+ j (4.1)

Expression (4.1) holds for all j > t. In particular setting, j=t it implies

that a. = . Therefore,
J



(j-t)h2d2 = k(j-t)hldlj.2 2j hf

For j > t,

hd = khldlj or

d2 kh -
d = h = constant =
lj 2

Formally,

Corollary 41: If two uncapacitated lot size problems have parameters satisfying

dlt
it= at=l,...,T (4.2)

2t 
s 2 h2

k = -and . (4.3)
s1~~61 kh 1

then, the optimal production strategies for both problems coincide.

Conditions (4.2) and (4.3) are equivalent to those used by Manne [5].

Unfortunately, relation (4.2) and/or (4.3) do not always hold in practice.

Therefore, we assume that the parameters are related in the following general

way:

dt
t= + t for some tcR

d2t

where

T

Z dlt
t=l

A-- T
Z d2 t
t=l t

and

s 1 s 2
) / 2) an for some rnER.

In the remainder of this section we establish worst case error bounds for

the cases where we use the optimal strategy for product 1 as solution for



-23-

product 2, when relation (4.2) and/or (4.3) are not satisfied exactly.

4.1 Condition (4.2) is not satisfied and (4.3) holds

Assume that

dlt

d2t + it d2t + td2t

teR, ac£R and n = 1.

If we solve Problem (Q) for product 1, we have:

T T
Min { Z Z (j-t)hldlj t + Z s1yt} =

(0,y)£U t=l j>t t=l

T T
Min { Z Z [(j-t)hl(d2j + .jd2j)0tj] + E siYt} =

(O,y)eU t=l j>t t=l

T T T
Min { Z (j-it)hlad2j0tj + Z sly t + Z E (i-t)hl d2 jOt} .

(O,y)cU t=l j>t t=l t=l jt

h h s
From (4.3), ah = 2 = 2 1

Substituting, we obtain

T s1 T s1 T
Min { Z (j-t)h2 d2 et+ Z s S2 Yt+ Z Z (j-t)hl d2 jt} =

(.O,y)EU t=l j>t 2 t=l t=l j>t

s T T T
Min { 1 [ Z Z (j-t)h2 d2 60t + Z s2t + Z Z (j-t)h1 .d2 0 }.

(ey)F-U 2 t=l j.t t=l t=l j>t j
02 2

Let etj' Y correspond to the optimal solution for product 1, and tj YtLt t, Yt t' '

correspond to the optimal solution for product 2. The optimal values will be

denoted by f and f2 respectively. Denote by f2 the objective value for product
V

2 when the feasible solution is used. Then,t 4



T T T
f = Min { Z ct + Z sly t}

(6,y)CU t=l j=t t=l1

s 1 T T T T

= - Z E (j-t)h2 d2 j0 t + Z s2Yt } + Z
2 t=1 j=t t=1 t=

S
S1 f 2 +
s 2 v

1 4

T

E (j-t)hl j d2j elt
- J-L

T T s1 T T

t = (j + (-t)hl jd 2j > 2 - td

T T
fl = Min { Z Z ctjt e + Z sly t}

(e,y)EU t=l j>t J t=l

T

t= j

T T
< Z ctj tj slyt =

t=1 j>t t=

T

E (j-t)hl j d2j tj.
=t

T T
+ z E (i-t)h d2 et <

t=1 j=t

s T
< f2 + Z
- s 2 v t

T

1 A
(j-t)hlj d2j e

I J=t

si T T
< f2 + Z Z (j-t)hl 1 d2j tj
-- ~2 t=l j=t ) tJ

S1
Assuming s >

S2

s2h1 h2
0 and since s T' we can write

T T
f2 + Z Z

t=l j=t

h
(j-t) a jd2j tj 

T
< f2 + 
- v l_

T h 2
z(i) T d j 2j tj -<

1r

T T h 2
< f + Z Z (j-t) jd2 tj

t=1 j=t

or

0 < f2 - f2 <
- v -

T T

t=l j=t

h
(j-t) T qbd2 ( e )-Ot~~r - ejtj)'3

= S1 f2 +

S2

So,

S f
2

S2

(4.4)

L=1 J-L
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We next compute an upper bound on the right hand side of this inequality.

Since 0<1 < 1, 0 < 02 < 1, (a el) < , and thus
<tj _ - % tj -- I

0 < f2 _ f2 <
- v -

T T h
< Z Z (j-t) - 4.d2 (02

t=l j=t

T h2
< z (j-l) 2

j =1

Let = max I |, it follows that
j=l,...,Ti

T
0 < f2 f2 < - Z (j-l)h2d

V - j=l 22j

T
Defining f2 A Ts + Z (j-)hd

max 2 j2 2j'

f2 f2
v< -

f2 _f2 -
max

- 01) <
ti 

d2j .

Relation (4.7) suggests that we should choose as the basic product the one

that gives the smallest value for .
a~~~~~~

Another bound can be obtained by defining f2 as
max

T
f2 = max{Ts s + Z (j-)h d .
max 2' 2 j=2

In this case,

f2 f2
v

f2 -f2
max

T
Ts2 - s2 - Z (j-1)h2 d 2 j

j=l

T
O Z h2 (J-1)d2j

T
(T-l)s 2 - (j-1)h2 d 2 j

j=1

Letting

(T-l) s 2

rr T
E (j-)h2d2j

j=l

(4.5)

(4.6)

(4.7)

T



we have

f2 _ f2 (1-r )
v <

f2 _f2 -
max 

t (Er-1l)

if < 1
r

if > 1
r

The bound given by (4.5) is attainable, as can be seen by the following

example:

Assume T = 4

s= 10, h = 1,dl =10, d12= , d13 = 5, d14 = 0

= 10, h 1 1 1
s 2= 1, d21 = 9.5, d22 0, d23 = 5.5, d24 = 0

Then, a = 1 and

1d21= -0.5

2d22 = 0

3d23 =0.5

4d24 = 0

An optimal strategy for product 1 is to set-up at t 1 only. This will

give fl = 20.

Using this strategy for product 2, we have

f2 = 10 + 11 = 21fv

The optimal strategy for product 2 is to set-up at t = 1 and t = 3. The

corresponding optimal value is

f2 = 20.



So, f2 _ f2 = 1 =
V

T h2
E (j-l) O

j=l J
= 1

which in this case is also equal to

T
f2 - f2 = (j-l)h d
v e j=l 22j

= 1.

4.2 Condition (4.3) is not satisfied and (4.2) holds

We next derive bounds for the instances where t = 0, t=l,...,T, and

q # 1. Then,

~1 2
= a)/ h1 h2

T T T
fl = Min { Z cl. e. + Z slyt

(0,y)sU t=l j=t tJ tJ t=l

Substituting as in subsection 4.1, we obtain

ah 1 T T T
=- Min {nT[ Z Z h2(J-t)d2jet + s 2Yt +

h2 (6,y) gU t=l j =t 2 2 t=l2 

T T

+ (l-n) Z Z h2 (j-t)d2 j}tj}
t=l =t

(4.8)

or

oah
f =- 1 Min

2 (,y)CU

T T

{N[ Z Z h2 (j - t )d 2j

T T
+ Z s2yt + (-l) s2Yt }

t=l t=l

(4.9)

Similarly,

T

0 < f2- f2 < l h 2 (Jl)d 2 j

V f2 < n 1 (i)s2

< f2 f2 < I T-1 (T-1)S2

from (4.8) and (4.9), respectively.

or

(4.10)

(4.11)
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To derive the relative error bound we define

T
f2 A Ts + Z h2(j-l)d.
max 2 2j

j =l

The result is:

f2 _ f22_ - { if n >l 1

f2 -f2

max - if n < 1

4.3 Both conditions (4.2) and (4.3) do not hold

We now compute bounds for the general case, where t # 0 for some t and

n # 1. Following similar procedures as in the previous subsections:

T T T
fl = Min { Z c + Z sl =

(6,y)EU t=l j=t j tj t=l

ah T T T
Min {( ')n [ Z Z h2(J-t)d2jetj+ Z 2Yt] +

( ,y)£U h2 t=l jt 2(it)d 2 = 12t

T T T T
+ E E (J-t)h1qid 2. 0 + (1-~) Z Z (j-t)hIad2 j tj

t=l j=t ) ldjtjt=l j=t

and,

T
0 < f2 - f 2 < Z (j-1)h 2 dv 2 d2j -

--j=l

T
' (f + I nn I ) (j-l)h d (4.12)

-an TI j=l 22

The bounds given by (4.10) and (4.12) are also attainable. The following

example attains bound (4.12). (To obtain the bound in (4.10), just take the

demands for product 2 equal to those of product 1). Let

s = 10, h = 4 dll 4 12 2

S2 =6, h2 = 5, d21 = 3.9, d22 = 2.1
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5
T = 2, a = 1, n 53

%1 21 .1

%2d22= .1

An optimal strategy for product 1 is to produce only at t = 1. Using this

strategy for product 2, we would obtain

f2 = 6 + 10.5 = 16.5.
v

The optimal solution for product 2 is to produce at t = 1 and t = 2. The

optimal value is

f2= 12.

f2- f2 = 4.5 and,
v

2 f2 < l
-- ( + If) Z (j-1)h2 d2 =

v arl TI ~j=i 22

5 2/3
5/3 (.1) + 5/3 5(2.1) = .3 + 4.2 = 4.5.

So, the bound is tight.

4.4 Product Aggregation

We have been considering product aggregation, not only to avoid excessive

computations, but also to avoid excessive detailed demand forecasts. One might

argue that it is often easier to assess the demand of a whole family of products

than of each single product separately. Also, demands for longer intervals

might be easier to assess than for shorter ones. We explore these ideas in

what follows. Assume that there are N products and let the aggregate product

have demands

N
Dt A Z ditDt A ~ d. t=,2,... ,T.

i=l
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We want to compute the parameters S and H (set-up cost and holding cost,
g g

respectively) of this aggregate product in order to minimize the worst case

errors bound. Let

T D
D ~~~~~t

D A D a A DA- a., and
tl i - T ' - dit i'

t-l-l t ll
Z dit

t=l

S cis
ii

ni (H ) / ( h ) ~~~~~~~~(4.13)H h.
g i

As we showed previously,

i ' f____ l-nil 
°< fi fi < (in + ni ) Z (j-l)hidij (4.14)

v - - TI ' Iict.1.1 i i j=l

where i A max it, and f is the objective function value for product i
-- · it v

t=l,. .. ,T
corresponding to the solution of the aggregate product. Substituting (4.13)

in (4.14) we have

s. Sh T
O < f _ fi < H + ai 1 g (i-l)di (4.15)

v SHg(9i+ i H s i
9g gii j=l

Let

s. S h

i A Si Hg(i + ci 1 - g i)
g gi~i

and

S A max { i}
i=l,.. ,N

From (4.15) it follows that

T N T N T
0 < Z (fi_ f) < Z S--< E fi= v fi) < ai (j-1)di < 8 Z Z (j-l)di =i=l v i=l ij=- i=l j=l

T
= S z (j-l)D.. (4.16)

j=l
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We wish to determine the values of S and H that minimize
g g

N T

Z i Z (j-l)dij
i=l j=l

In order to avoid detailed forecasts, we suggest that a problem of the form

S = Min {Max Si}
O<S

g i=l,...,N
0<H

g

be solved. This problem can be written as

(R) S = Min 6

sS~t ^> . +Sh

s9. 6 g i + ( s .H ci.
9 1 g 1

s. Sh
g i -1) 

6 H [+i + ai(s H 

H > 0, S > 0.
g g

i=l,...,N

As we can see, the optimal solution to this problem depends only on the ratio
H
_ki This implies that we have one degree of freedom to choose one of the two
S
g

parameters at will.
H

Define y A -
S'
g

Then,

(R) *= Min 6(R) S = Min 6

s.t. 6 > (si.i + siti)y - hi i=l,...,N

6 > (sis i - Sici)y + h.
-- ~~~~~1 i=l.. ,N

y > 0.

If we assume

(R)



T
= Tsi + hi(ij -1)dii

j=l

it follows that

N fi i
i (f - f )

i=l
N i i
Z (f -f)
i=l max

T
8 Z (j-1)D;

< . .. j=l
- N T

Z Z hi (j-1)dij
i=l j=l

If

H A

N T
z z h (j-l)di

i=l jl1 
E (j-l)Dj
i 

then

N 
Z (f f )

i=l v

z (fi -f)
- max

(4.17)
- H

Minimizing will assure that this relative error is made as small as possible.

Let us take a closer look at problem (R). Assuming ideal cases, we should

expect that ~ = 0. We show that this is the case.
Dt

Assume that it = 0, i=l,... ,N, t=l ....,T; a ; and constant
it d i hi

independent of i. Then, problem (R) becomes

Min 6

s.t. 6 > sitiy - hi i=l,...,N

6 > -Siiy + h i i=l,...,N

y > O

h.
If y = s, then 6 = 0, implying 3 = 0.

Therefore, for ideal cases, expressions (4.16) and (4.17) for the error

fi
max
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bounds perform well.

A potential drawback in this approach is solving problem (R). For the

special case presented below, an explicit solution is given.

Let 3 be constant for j=1,2,...,N. Assuming
h.

a > i j=l,...,N (4.18)

the optimal solution to (R) is

h. ,
IY= a and ~ = max

Siai ~~i=l,...,Ni

Note that the assumption (4.18) is not that restrictive since we expect a. to
1

be large.

All the bounds calculated here are "a priori" bounds. Better bounds can

be obtained once a solution to the aggregate problem is determined ("a posteriori"

bounds).

We have used aggregation of products in a way that differs from other

approaches in the literature. Our aggregate model suggests a production strategy

to be used as a solution to the initial production problem. In work on aggrega-

tion proposed in the literature [2], [3], [4], the aggregate model, once solved,

is itself the approximate solution to the initial problem.

Our aggregate optimization model is useful as a tool for the diagnostic

analysis of inventory systems. Firms want diagnostic studies to be done

cheaply and without much effort. Detailed demand forecasts and large data

manipulation are prohibitive. The aggregation suggested takes into considera-

tion these factors.

There are some manipulations that one can do, prior to the aggregation,

that will result in a simplified problem (R) for which an explicit solution

can be obtained.

Recalling Corollary 4.1, we can construct equivalent problems where new
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demands are defined for product i, at time period t. The demands will be given

by hidit and the new holding costs for each product will be equal to one.

Following the same steps as previously proposed, problem (R) becomes:

Min 6

s.t. 6 > (s a' + s )y 1
->+1 i ii

6 > (-sc'+ SiC i) y + ii 1 4!)yI

i=l,.. ,N

i=l, ...,N

y > 

where a' = - and
1 hi

The solution

where sk (k k + k)

sj (-a + j )

and (.4.18) is assu

hiOi hi 

of the problem above is given by

2
Y sk(ak + k) + sj(. .- j )

= max {si(Oi + i )}
i=l,... ,N

i=l,..,N ai (-ci + ti

umed. Therefore,

S k(ak+ k + S(
.. ~_-sk(~k+ ~k ) + s (o~ - ~1

H
g

2

Clearly, the original problem (R) and this new problem are not equivalent.

The manipulations proposed led to a simplified problem (R) which would be other-

wise obtained if we had used expression (4.14) in our prior developments and

defined Pi to be

. i Il-nil
(~ii +ni )·



5. Conclusions and Topics for Further Research

In practical settings, the use of simpler and intuitive procedures to solve

lot size problems are preferred to the more complex Wagner-Whitin algoirthm.

Often, such approximations rely mostly on common sense rules without strong

theoretical support. In this paper, we have tried to fill such a gap by

providing worst case relative errors for three heuristic procedures used in

practice, and two related heuristics that can be seen as variants of part period

balancing. Further research remains to be done for some cases with finite

horizon and when the demand follows special patterns. Also, probabilistic

error bounds would be of much interest for practical purposes.

The approximations suggested in section four provide additional options

for managers to solve the uncapaciated problem. The aggregation suggested in

this paper assumes constant set-up and holding costs. The general case remains

a topic for future research.
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