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Abstract

This paper examines the theoretical efficiency of solving a standard-form linear
program by solving a sequence of shifted-barrier problems of the form

n
minimize cx - &) In(x + ehy)
=1
x ]
s.t. Ax=b, x+eh>0,

for a given and fixed shift vector h > 0 , and for a sequence of valuesof € > 0 that
converges to zero. The resulting sequence of solutions to the shifted barrier problems will
converge to a solution to the standard form linear program. The advantage of using the shifted-
barrier approach is that a starting feasible solution is unnecessary, and there is no need for a
Phase I-Phase II approach to solving the linear program, either directly or through the
addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm
start,” i.e., an initial guess of a primal solution X that need not be feasible. The number of
iterations needed to solve the linear program to a desired level of accuracy will depend on a
measure of how close the initial solution x is to being feasible. The number of iterations will
also depend on the judicious choice of the shift vector h . If an approximate center of the dual
feasible region is known, then h can be chosen so that the guaranteed fractional decrease in

¢ ateachiterationis (1 - 1/(6+n)) , which contributes a factorof 6+h to the number of
iterations needed to solve the problem. The paper also analyzes the complexity of computing
an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly
infeasible) guess 7 of a solution to the center problem of the dual.

Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier
function, Newton step.






1. Introduction

This paper examines the theoretical efficiency of an algorithm for solving a standard-

form linear program
minimize c'x
x
s.t. Ax=b, x20,

by solving a sequence of shifted-barrier problems Sh (€) of the form:

Sh (e): minimize c’x - ei In(x + €h;)
=1
X

s.t. Ax=b, x+eh>0,

for a given and fixed shift vector h > 0, and for a sequence of valuesof & > 0 that converges
to zero. At the beginning of each iteration, the algorithm has an approximate solution x to
the problem Sh (g) , for the current value of € . A fractional quantity o < 1 is then
computed, and the new valueof & ischosenas € = ae . The algorithm then computes a
Newton step, and the resulting new value of x is an approximate solution to problem Sh (€) .
The resulting sequence of solutions to the shifted barrier problems will converge to a solution to
the standard form linear program.

Problem Sh () given above is a specific instance of a more general problem introduced
in Gill et al. [7], namely

n
SBP (w, f):  minimize x - Y wiln(x + f)
jue1

s.t. Ax=b, x+£f>0,

where in addition to the shift vector f > 0 there is a positive vector w = (wy, ..., Wn)'
used to weight the contribution of each logarithm term. The results of Gill et al. [7] treat the
problem of determining simultaneous sequences of valuesof w = w* and f =  for

k = 1,.. , sothatthe resulting optimal solutions X t© SBP (w%f) convergetoan
optimal solution x" to the linear program. There are also results in [7] regarding generic
properties of SBP (w, f) and the use of Newton's method for solving SBP (w, f). The problem
Sh (¢) considered in this study is recovered from SBP (w,f) bysetting w* = (&, ..,&)" and



by only considering shift vectors f = £ oftheform & = ¢h, where h > 0 isgivenand
fixed, and the scalar € is varied.

There are a number of advantages in using the shifted-barrier problem Sh () to solve
a linear program. Perhaps the most important advantage is that the algorithm presented here
can be initiated from a "warm start," i.e.,, a guess of a solution X to the linear program that is
perhaps not feasible for the current linear program, but perhaps is very close to the optimal
solution. This situation arises often in practice when solving a sequence of slightly-modified
versions of a given linear programming problem. In this case, the optiinal solution to a previous
version of the linear program is infeasible for the current linear program, but is very close to the
optimal solution of the current linear program. Thus, valuable information about slightly
different versions of the current linear program can be used to great advantage in solving the
current linear program, as opposed to other interior-point algorithms that must be initiated
from a "cold start.”

A second advantage of the shifted-barrier algorithm presented here is that a starting
feasible solution is unnecessary, and hence there is no need for a Phase I-Phase II approach to
solving the linear program, either directly or through the addition of an artificial variable.
Most interior-point algorithms handle the Phase I-Phase II problem by introducing an
artificial row or column with large coefficients either in the objective function or in the right-
hand-side, see Anstreicher [1], Gay [6], Gonzaga [8], Steger [16], Todd and Burrell {17],
Ye and Kojima [21], Renegar [12], Vaidya [19], and Monteiro and Adler [9], among others.
In those algorithms, which use the 'big M" method of initializing the algorithm, coefficients
whose sizeis O(L) mustbe chosen (where L is the length of the binary encoding of the
linear program data), which is not usually implementable in practice. Anstreicher [2] was the
first to present a polynomial-time interior point algorithm for linear programming that
mitigates the need to modify the given linear program with an artificial row or column with
large coefficients. The shifted-barrier algorithm presented here also shares this property.

The efficiency of the shifted-barrier algorithm depends critically on three factors.
The first factor is the choice of the shift vector h . A naive approach is to choose h as the
vector of ones,i.e, h = (1,1,1,...,1) . Not too surprisingly, a much better choiceof h can
be determined by using knowledge of the center of the dual feasible region. In particular,
suppose (r,s) is a dual feasible solution, i.e. ATR+5=c,520,and (x,5) isdoseto
the center of the dual feasible. Then a judicious choiceof h is h; = 1/(n§;) ,

j=1,...,n. With h chosen in this manner, the guaranteed decreasein € at each




iteration, which is measured by the fraction a ,is a S (1 - 1/(6+f)) . This leads to a factor
of 640 in the analysis of the number of iterations of the shifted-barrier algorithm.

If € = € isa desired level of accuracy for solving the shifted-barrier problem, and
the algorithm is initiated with a value of € = € , then the number of iterations required to
achieve € < € willbe K = [ 6v(in(e’) - 1n(e)) 7, if the shift vector h is chosen as
above. Thus the second major factor affecting the efficiency of the shifted-barrier algorithm
for linear programming is the initial value of € = €' , which we would like to choose to be as
small as possible. In Section 4 of the paper, we show how to choose € asa function of the
initial guess X of the optimal solution. Given the initial guessof X , and also given the
choice of the shift vector h above, we present a way to efficiently choose the initial value of
€ = € . Furthermore, the valueof € will be roughly proportional to the degree of
infeasibility of the initial (possibly infeasible) guess X . Part of the valueof € will be
proportional to the degree of infeasibility of X intheequations Ax = b ,and will bea
function of the size of the vector v = b — AX , and another part of the value of € will be
proportional to the extent to which X is not nonnegative. Thus,if X is almost feasible, the
initial value of € = € can be chosen to be quite small. Hence, the algorithm can be initiated
with a good "warm start.”

Because knowing an approximate solution to the center of the dual is so important in
using a shifted-barrier algorithm for linear programming, the third critical factor affecting
the efficiency of the shifted-barrier approach is the complexity of computing an approximate
center of the dual feasible solution. Algorithms for computing an approximate center from a
known interior feasible solution are given in Vaidya [19] and in [4] . An algorithm for
computing an approximate center from a possibly infeasible dual solution is presented in this
paper in Section 5, and is a direct application of the algorithm of [4] and the parametric
center-finding algorithm of [5] . The general complexity of computing an approximate center of
the dual is analyzed in Section 5, and is based on an analysis using the two algorithms in [4]
and in [5] . Supposethat (x,5) is an initial (possibly dual infeasible) guess of the center of
dual feasible region. The main result of Section 5 gives a bound on the number of iterations
needed to compute an approximate center of the dual feasible region. This bound is roughly
proportional to how far (E,g) is from the center of the dual feasible region, in an appropriate
measure.

This paper is organized as follows. In Section 2, we analyze the use of Newton's
method for obtaining solutions to the shifted-barrier problem Sh (g) for a decreasing sequence

of valuesof € . The main results, Theorems 2.1 and Proposition 2.2, show how the value of ¢



can be decreased in conjunction with the computation of a Newton step. Section 3 applies the
results of Section 2 and contains a path-following algorithm for a shifted-barrier approach to
solving a linear progam. Section 4 presents results regarding initializing the algorithm from
knowledge of an approximate center of the dual feasible region. If an approximate center of the
dual feasible region is known, then it is shown that the shift vector h can be chosen so that

a < (1-1/(6+n)) at each iteration of the algorithm, yielding the desired 6+fi factor in the
algorithm's iteration count. In Theorem 4.1, it is shown that initial valueof € = ¢ canbe
chosenso that € is roughly proportional to degree of infeasibility of the initial guess X of
a solution. In Section 5, we present an algorithm for computing an approximate center of the
dual feasible region from an initial (possibly infeasible) dual solution (,5) . The complexity
of computing an approximate center (r,5) of the dual feasible solution from the given
possibly infeasible guess (%,5) is analyzed as well.

Notation. This paper will utilize the following notation. Regarding norms, ||v|| will
denote the Euclidean norm of a vector v ,and |/Vll; will denote the L; - norm . The matrix
rom ||M]| isdefinedas |IMI| = sup{|[Mv|| | lIvil = 1} . We assume throughout the
paper that thematrix A is mxn andhasrank m, and that n 22 . The vector of ones is
denotedby e, namely e = (1,1,1,...,1)' . If s,2,d,y, x, h, and w are vectors,
then S,Z,D, Y, X, H, and W denote the diagonal matrixes whose diagonal entries

correspond to the vector components. Then note, for example, that ||S|| = max s;} if
j

s20.

Improvement Theorem for Shi Barrier Functi for Linear P, mmin

For the given linear program (LP) and its dual (DP)

.T.

LP: minimize c'x
X
s.t. Ax=Db
x20
DP:  maximize b'n
n, s
s.t. ATn + s =¢
s20




we propose to solve LP by introducing a shifted barrier function as follows. Let heR" bea
given strictly positive vector. Then for a given valueof & > 0 , we relax the nonnegativity
conditionson x totheconditions x + eh 2 0. As & > 0 isshrunk to zero, this condition
will in the limit be the usual nonnegativity condition x 2 0 . With this in mind, we propose
tosolve LP by considering the following shifted barrier problem (see Polyak [11] , also see
Gilletal. [7]):

n
Sh(g): minimize  ¢x-¢€Y In{x+eh)
=1
X

s.t. Ax =Db

x+ch >0 -

The Karush-Kuhn-Tucker (K-K-T) conditions ensure that foragiven € > 0, that x solves
Sh(e) if and only if there exists 7€ R™ for which

Ax=b, x+eh >0, (2.1a)
g-¢e/(x+eh) = (A"}, j=1,..,n (2.1b)

Conditions (2.1) can be rewritten in the following different format:

Ax=Db (2.2a)

y=x+e¢h >0 (2.2b)

ATn+s=c, s>0 (2.20)
- (1 =0.

e (e)Ys 0 (2.2d)

Foragiven valueof € >0, wewillsaythat x and (&, s) are B-approximate solutions
to Sh(e) if x and (m,s) satisfy:

Ax =b (2.3a)
y=x+¢h >0 (2.3b)
Aln+s=c s>0 (2.3¢c)
il <B, where r=e- (Lvs @.3d)

The next proposition presents properties of a B-approximate solution.



Proposition 2.1. (Properties of a f-approximate Solutionto_Sh (£)) Suppose x and (,s)

area B-approximate solutionto Sh (g) . Then

(i) Ax=Db, x> -eh, F1,.,n, ie, x isalmost primal feasible.

@ ATm+s=c s20, ie, (n s) isdual feasible.

i) -e(lle-Hs||+B)sxs<e(1+B), j=1,..n.

(v) -re(]le-Hs||+B)<xTs<ne(1+PB), ie, x and s are almost complementary.
Proof: (i) and (ii) follow from 2.3a, 2.3b,and 2.3c directly. Let

r=e- (%)Ys =e-Hs- (16-)Xs . Then [[r||<PB . Furthermore, expanding r yields for

j=1,...,n,

n=1-hs- (1 xs .
Thus, x5 =e(1-5- hys)< e(1-r) <e(1+p) .
This shows the right part of (iii). To see the left part, we have

x5 = e(l - hys) e 2-¢|le-Hs|| - e||r]| 2~ ¢|[e-Hs||-ep
We have now shown (iii), and (iv) is an immediate consequence of (iii). |

Note that the upper bound on the almost-complementarity condition in (iv) depends only on
n, ¢, and B. However the lower bound also dependson ||e-Hs||, which could
possibly be arbitrarily large. However, we will show in Section 3 that if h is chosen
judiciously, then ||e-Hs|| canbeboundedby 15+i-.50 , and we have:

Corollary 2.1. Suppose all dual feasible solutions (x, s) satisfy ||e-Hs|| < 15+i-50 .
Thenif x and (m,s) area B-approximate solutionto Sh (g), then
|xTs| s en(1.5vf-50+8). m

Corollary 2.2. Suppose h; < O(ZL) » j = L.,n, where L is thelength of a binary
encoding of the data for LP . Thenif x and (x,s) area B-approximate solution to

Sh (¢) , where esO(z‘z‘),then x canbe rounded to an optimal solutonto LP in O(rd)

operations.




Proof: From (i) of Proposition 2.1, x; 2 -e¢h; 2 —0(2"“) , whereby x can be rounded to
feasible solution x of LP , see Papadimitriou and Steiglitz [10]. Furthermore, since

s < ne(1+B) < O(2°Y), itis also straightforward to show that x's < O(271),
whereby X and s can berounded to optimal primal and dual solutionsin O (r?)
operations, alsosee[10]. ®

In Section 4, we will show that the same choice of h that yields
lle-Hs|| < 1.5+-.50 also yields hj s O(2%), j = 1,.,n .

We are now interested in generating B-approximate solutionsto Sh (¢) fora
sequence of valuesof € > 0 that converges to zero. The following Improvement Theorem
shows thatif X and (r,s) area PB-approximate solutionto Sh () , then a Newton step
will generate new valuesof x and (n,s) suchthat x and (n,s) area PB-approximate
solutionto Sh(e) where € = ae < & (ie, a < 1).

Theorem 2.1 (Improvement Theorem). Suppose x and (r,s) area B-approximate
solutionto Sh (€) forsome ¢ >0 and 0 <B<1. Let

oo Btlle-Hs|
/B +|le- B3|

andlet € = ae .

Then x and (r,s) area PB-approximate solutionto Sh(g) where x and (ms) are
defined as follows:

Let d=¢h+ x
2=D1-DAT(aD2AT)” AB](e—(J;)Bc)
4
Then x=x+2z
x= (AD?A")” AD(Dc-¢'e)

s=c-A'n. =m

Note above that if ||e-Hs|| issmall, then o willbesmall,andso € will be
small relative to € . Therefore, just as in Proposition 2.1,if h is chosen wisely so that
|le-Hs|| can be bounded for all dual feasible valuesof s, thensocan a . In fact, we have



Proposition22. If ||e-H5|| <15+4-50 and B =25, then a s(l-glé).

Proof: From the definitionof o , we have

agB+15M-50 _,_ 25 _,_1 m
S50 + 15m - 50 15 +n 6vm

Next note in the theorem that x = x+z , where - z is a Newton direction for the

quadratic approximation to  Sh(¢)) . In order to prove Theorem 2.1, we will need to prove that
E>0,that s >0, that

y=x+¢h>0,
andthat r=e- (J'-)Ys satisfies [|r|| <P .
€
The method of proof draws on many of the constructions presented in Tseng [18] , see also Roos

and Vial {13] . The proof of Theorem 2.1 will follow as a consequence of the following
sequence of lemmas.

Lemma 2.1. Under the hypothesis and notation of Theorem 2.1, d>o.

Proof: Let y = x+¢h, and let ?=e—(18-)Y§. Thenbecause x and (E,§) area

B-approximate solutionto Sh(e), ||T|| <B . We can write

r

e-—HE-(l—) Xs
£

a(e—H E—(ég)ig)-r(l -a)(e-Hs)

a(e~H E—(El,)i-g)ﬂl ~a)(e-Hs)

a(e-(gr)5§)+(1 -a)(e~Hs)

Thas, [[e-(1]D3] < IFL, (22 ez

< B L 0=9) e yg3
o o

- Btlle-Hs||

- |le-Hs]|
a

=+/B + |le-H5|| - |le-H5]| = VB <1 .




Thus ]1-&)515| <1, whereby dj>0,since 5 >0, (see230), j=l,.,n. W
—-1
Lemma 2.2. Under the hypothesis and notation of Theorem 2.1, ”D z” < '\/—B- .
Proof: D'z -[1-Da™(aD?AT) AD]( ()Dc)
_[1-DaT(aD2a7)" ( (l) u+s)
=[1-DAaT(aD2%AT)" oD ( (l Ds) )

the latter equality following from the fact that the matrix in brackets projects onto the null
space of DAT . Because the bracketed matrix is a projection matrix,

5%l 59 - e )

< Je-rs- (2

- [af-5- 375 209
e -t 25 -

<B. (1;“) le-H3|| ,

R

where the last equality follows from the fact that x and (r,s) area B-approximate
solutionto Sh (g) , see (23b) and (2.3d) . We now obtain

157 2l] < Bele=HEl e pzjavp.

Lemma 2.3. Under the hypotheses and notation of Theorem 2.1, define A
y = x+¢h (2.4)
r=e- (zl) Ys (2.5)

Then r= (5-1 Z)ze



Proof: First note from the definitionof z, x, =x, and s inTheorem 2.1 that
s=c-ATx= e's-l(e -p” z) ) (2.6)
From this expression we can write
Dlz=1- (J,)Bs ,
£
—1 _\2 — —
andso (D2) =1- (2,.)03 + (J,.)ZDZS2 _ @7
£ '3
However, from (2.6) we also have
z =5—(l_-)525 ,
3
andso ZS =DS- (37)6252 ,
€
and D°S? =¢€(DS-29) . (2.8)
Substituting (2.8) into (2.7) gives
D™ =I1-{1)Ds-(1 .
(o'zf =1 (g)DS (e_)zs
Finally,
Bozfe = elPe-{lzs
£
= e—(—l,-)(—)'(_+e'H)s-6)Zs = e-Hs-(:—,)Xs =r,
€
because x=§+zandr=e-Hs—(l—)Xs. -
£

Proof of Theorem 2.1. In order to prove the theorem, we need to show that x and (=, s)
satisfy (2.3a) - (2.3d) .

(2.3a): Because Az=0, Ax=A(X+z)=AX=b.
@3b): Dlx+eh) =D 'x+eh+z)=D'(d+z)=e+D'z.

But ”5-12“5‘\/5<1 from Lemma 2.2 , whereby D'(x+eh)=e+D 250 .

10




Thus x+€h>0,since D has positive components on the diagonal from
Lemma 2.1.

(23d):  Let y and r bedefined asin (2.4)and (25). We must show that ||r]| <B .
From Lemma 23,
el = |57 2P el < |57 2Pell = B 2elf = |57 I <5 |,
from Lemma 2.2.
(23c:  From (24)and (25) wehavefor j=1,...n,
I = l-—(éh)yj §; = l—(hj-i-(-é-)xj)sj 5o that
sj(hj+(-€17)xj) =1-121-B>0, since |Irl[<B .
However, by +(1)x;>0 from (23b) , whereby >0, j=1,.,n.

. A Path-Following Aleorithm for Shi Barrier F ion

In this section, we utilize the Improvement Theorem (Theorem 2.1) as a basis for a
path-following algorithm for linear programming using a shifted barrier function. The

problem we are interested in solving is

LP: minimize cIx
X
s.t. Ax =b
x20 .,

Thedualof LP is

LD: maximize b'n

s

11



We presume in this section that we are given a positive shift vector heR" and that

we are interested in solving the problem Sh () presented in the beginning to Section 2, for a
decreasing sequence of valuesof € > 0 that converges to zero. We suppose for the moment
that we are given an initial value of x = x €R" and initial values of (x, 5) = (1:', s') such
that x* and (r',s’) area B-approximate solutionto Sh (€)) for some given values of

°
€=E¢€

andof B . (Thisassumption will be relaxed in the next two sections.) Thus the data

for the problem consists of thearray (¢, A, b, h, x', ', s", €', B) . The following

algorithm is a sequential implementation of Theorem 2.1:

Algorithm Shifted Barrier (CI A; br hl x.y n.o S.,e., B)

0.

k=0

X (r3) = (), e=¢

X

]

o - B+lle-H3|

VB +lle-H3||

€ =

d=¢ch+%, z = B[I-BAT(A'ﬁ’AT)'lAB](e-(I/e')Sc)

1= (AD*AT] A D(Dc-¢e)
&1 = c— AT 1

ekq»‘l = E'

k=k+1. Gotol.

Notice that the work per iteration of this algorithm is O(r®) , which is the

complexity of solving the least squares problem in Step 3.  Also notice that performance of the
algorithm hinges on being able to obtain the initial B-approximate solution x* and

(x,s) .

We defer discussion of this initialization issue until the next section. One measure of

performance of this algorithm is given below:

Proposition 3.1. Suppose that all dual solutions (r, s) satisfy ||e-Hs|| < 15+-.50, and
that B=25. Let € >0 beadesired level of accuracy. Then algorithm Shifted Barrier

will yield a .25-approximate solutionto Sh(e) forsome € >0, € < € , after at most
K = [ 6flin(e’) - In(e?)) ] iterations.

12




Proof: Theorem 2.1 guarantees that x* and (™) area .25-approximate solution to
Sh (&9 for k=1,... From Proposition22, @< (l —_6_14%) at each iteration.

Let K =[6(in(e)-in()]. Then &< (1- 6—15)"8' , whereby
in(X)-1n(e) < Kln(l-glﬁ) < -K/(6+) < n(€)-Inle) ,

from which we obtain In{eX) < In(¢") , ie, <€ . =

Corollary 3.1. Suppose that in addition to the conditions opf Proposition 3.1, that
h; < 0(2'“) » j = 1,..,n . Then algorithm Shifted Barrier will generate a solution that can
be rounded to an optimal solutionto LP after at most '

K = 6lin(e) + mO(L) ] iterations .

Proof: The proof is an immediate consequence of Proposition 3.1 and Corollary 2.2, with

£ =0(2%). =

In light of Proposition 3.1, the efficiency of the algorithm will depend on the choice of
the shift vector h , and we seek a value of h that will ensure that ” e-Hs|| is small for
any dual feasible solution (%, s) . The efficiency of the algorithm will also depend on the
initial value €', and weseektokeep € assmall aspossible. Thus we seek values of
x=x and (ms)= (n", s') sothat x* and (ﬂ'. S') area .25-approximate solution to
Sh(e) , where €>0 is preferably a small number. In Sections 4 and 5, we will examine
waystochoose h and x, (15, S.) , and € in an efficient manner.

4. fficient Choice of hift Vector _h Initial Values 5" . (7., and ¢ .

In this section, we present a method for choosing the shift vector h and the initial
values x°, (x',s), and €. We will show that if this method is used for choosing h ,
then ||e-Hs|| < 15+i-5 forall dual feasible solutions (%, s) , thus establishing the
efficiency of the Shifted Barrier algorithm in terms of the geometric reduction constant «
(See Proposition 2.2 and Proposition 3.1). We will also show thatif X is a guess of a feasible
or optimal solution to LP , then the initial values x , (x,s'), and ¢ canbechosenso
that € roughly measures the degree to which X is infeasible, and thus € will be a small
numberif X is almost feasible.

13



Before we present the results, we need to examine some concepts related to the center of
the dual feasible region. Suppose that the feasible region of the dual LD is bounded. (This
supposition will be relaxed in Section 5). The center of the dual feasible region is that value of
(n,s) = (x,5) that solves the logarithmic barrier problem:

maximize 3 In(s)
1

%S
st ATm+s=c

s>0 .,

see Sonnevend [14, 15], also Vaidya [19], and [4]. If the feasible region of thedual LD is
bounded and has an interior, the center (;t, §) will exist uniquely. We are interested in
working with a dual feasible solution (;t', §) that is close to the center (;t ’ 3) of the dual
feasible region in an appropriate measure of closeness. One measure of closeness is the length

of the gradient of the negative logarithm barrier function

f(m) = —j_f; In(g~(ATx)) .

~-1 ~ ~

We note that Vf(;) =AS e (where s=c-A"n) and that the Hession of f(n is
~2 ~

v’ (;z') =AS AT . We will say that (x,3) isa 1-approximate center of the dual

o~

feasible region if (%, ) is dual feasibleand 5 >0 and

Ve (v ¢3) ve@ = Vers'aT(as?aT) a5 <.

o

Thus (ﬂ ’ ‘§) isa t-approximate center if the norm of the gradient of f (a is less than or
equalto T , where the norm is measured using the inverse of the Hessianof f(n) at = = .
The next Lemma relates the notionofa t-approximate center to a more standard measure of
the distance of (;, §) . to the center (;!, 3) . We say that a dual feasible solution (E, 5) is
5-close tothecenter (%,3) of the dual feasible regionif 5> 0 and ||5 (-3 <5 .

4.1 4 7.2). Suppose ;t, 3) is the center of the dual feasible region and
that (;, s) isa t-approximate center of the dual feasible region, for T < .08 . Then
i~ o A A ~-1rn
(ﬁ, S) is 8-close to the center (R, S) for 8§ =Y55, ie, “S (5—5)” <Y55 .

14




The proof of this Lemma is given in the Appendix. The complexity of computing a
T-approximate centerfor t = .08 isanalyzedin Section5. The following result is a partial
converse of Lemma 4.1, and is also proved in the Appendix.

Lemma4.2. Suppose (;llg) is the center of the dual feasible region and that n,8) is
8-close tothecenterfor & < 1/21. Then (;t', g) isa t-approximate center for
12 075 .

We now turn our attention to the problem of choosing the shift vector h . An efficient
choiceof h isgivenin the following Lemma.

Lemma 4.3 (Choice of a shift vector _h ). Let (%, 5) be &-close to the center of the dual
feasible region, where & =1/ . Let h = (.1_)§"e . Then for all dual feasible values of
n

(m,s), ||le-Hs||<15wm-5 .

Proof: Let (&, §) be the center of the dual feasible region and let (x, s) beany dual
feasible solution. Then from properties of the center (see Sonnevend [14, 15], also [3],

Theorem2.1), 1|8 (s-5)|| s YA("1) . Also from the hypothesis of the Lemma,
157G-9)l| <5, where =1h1. Thus

157 (-3l < 1578l 157 6-3)l < (1+8)1876-3) < (1+8) VT .
Therefore ”g_ (s- ")“ < “~4 s s H + “..,_1 ” 1+8)m;—_15+5 .

Let b= (157 Then fle-psll =fe- (1) 57
- |@WE G-+ (1-2)ef < 111 576l + pen 2

< (%) (1+8) nln-1) + 2 + (L;_l) - (%) W * 2lln * n«l-ﬁl

€154 -5 for n22. ]

Corollary4.1. With h chosenasinLemma4.3, hj < O(2%), j = 1,..n .
Proof: Foreach j = 1,..,n, let M, = maximum s
st ATx+s =c

s20.
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Then because the dual feasible region is bounded and has an interior (otherwise the center

(r5) wouldnotexist) M; isfinite,andalso 2% < M; < 2, see Papadimitrou and

Steiglitz [10]. Furthermore, from properties of the center, we must have s 2 (—1T M, see
n-

Sonnevend [14, 15], also [3]. Nowlet h = (%)'g.le,where (%,5) is 5-close tothe center
(S) for 5 = 1/; . Then ||§-1(§-3)I| < 11  implies

§ 2 512—) ( . Thus

)(n— ( ) (zz) (2Y) = ,j=1l.,n. =m

From Lemma 4.3, we obtain the iteration bound of Corollary 3.1 for processing a linear
program with algorithm Shifted Barrier.

ns,

In Section 5, we will analyze the complexity of computing h = (%)E’"e efficiently

(which is the complexity of computing a solution thatis 8- close to the center of the dual
feasible region).

We now turn our attention to choosing initial valuesof x = x* , (%, s) = (x,s),and e=¢".
We assume that we have a guess of a good value of x , which wedenoteby x =X €R". The
choiceof X can be arbitrary, and in fact we need neither Ax=b nor X 20 . A good choice of
X may be a feasible or optimal solution to a previous version of the linear program, that is
(possibly) infeasible for the current version of the linear program. Once again, we assume that we
have at hand a dual feasible solution (;, §) such that (;. 5) isa 3-close center for the dual
feasible region for 8 = 1/21 . Wenow use (;E. §) and X to define the initial values of algorithm
Shifted Barrier as follows:

s=s (4.1a)
x=x (4.1b)
€ = 8“'5';2 _57aT(a5?A)” (Ai-b)” 4.10)

¥ =52AT(AS2AT) b+ 5 1-57AT(a52AT) T AT Y€ (1-Le + 55)  waa

We will prove below that these initial values are a .25-approximate solution to Sh (e) .
Note that in terms of efficiency of the Shifted Barrier algorithm, that the value of € isvery
important, and it should ideally be a small number. From (4.1c), we note that
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e <8ll5%]+ 8]l57 aT(a57 A7) (az-1)|

- 8|53 +8 V(az-bF(a52 A7) (a%-b)

In the above expression, ¢ is bounded above by two quantities which indicate how far away
X is from being feasible. The second quantity is a measure of the distance from AX to b
and measures the infeasibilities of X in terms of the equations Ax = b in the matrix norm

~2 -1 - ~
(A ) The first quantity measures the lengthof x scaledby S . Note that the
more negative a component X is, the larger the value of ” S;” is. Roughly speaking, the
boundon € decreasesthe closer x liestotheregion {x | Ax =b} and to the region
( x | x2 0} .

Theorem 4.1 (Initial Value Theorem). Suppose x is a guess of the value of a feasible
solution to the primal LP . If (;t, §) isa &-close center of the dual feasible region for

5=1h1,and (n's), x',and ¢ aredefinedasin (4.12)- (4.1d), then x" and (7,5
. ~-1

area P-approximate solution to Sh(e) ,where =25 and h = ‘%)S e .

Proof: We must verify conditions (23a) - (2.3d) for the quantities € , x ,and (x.s) .

(2.3a): Direct multiplication of (4.1d) yields Ax =b .

(2.3c):  Because (;t, ;) is 8-close to the center of the dual feasible region, ATx+$ = ¢
and s>0. Thus ATx'+s"=c and s >0 .

(23d): Let yy=x+¢h and r'=e- (j—)(Y‘)s" =e-Hs - (-IT)X. s . Substituting
£

h = (-lﬂ)g-l e andthevaluesof s' and x' from (4.1) yields
r =e-( §"§—Us aT(a5?a7)” (£) (l e+5x)
(l)s AT(AS?AT)AS” (e (1- l)e+5x)

- (%)5-‘ A7(a572 A7) (b-ax) - (%)'g; +(1-1)57 AT(a5 A7) A5 7
£ t4
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Thus

el s(i—) 57 aT(a52a7) " (ax-1) - 5% + |57 aT(a52 A7) a5

= (},L) + VersaT(as?a7)” A5 .
£

However, from Lemma 4.2, (;t, E) isa t-approximate center of the dual feasible region, for
1t = 075 . Thus this last expression becomes

Ilr'||$%+.075<.25.

(23b): Let Yy =x +€h. Because r =e- (J:)(Y)s' and ||r']| < 25 , we have
£

";=1‘Y;5;/€.,or Yj‘=(1"f;)€./5.j, j=1,..,n . Now s;>0, £ >0 and

r; <| r|| £ 25 , whereby y; >0, j1,..,n. [

In conclusion, Lemmas 4.2, 4.3, and Theorem 4.1 point out the fact that having a

8 - close center (;t, §) of the dual feasible region provides us with an efficient choice of the

~-1

shift vector h = (':T)S e as well as efficient initial values of x’, (ﬂ'. S') , and € for

initiating the Shifted Barrier algorithm of Section3. Lemma 4.2 relates the value of & < 511-
tothe valueof 1 < .075. Lemma 4.3 states thatif h = (%)g-l e , then all dual feasible
points (%, s) satisfy ||e-Hs|| < 1.5+i-.50 , whereby from Proposition2.2, ® S 1—64'%

at each iteration of the algorithm, yielding the complexity measure of the algorithm that is
presented in Proposition 3.1.  Finally, Theorem 4.1 shows that if (;. §') isa &-close center,
then the algorithm can be initiated with values of x*, (%,s’), and € givenin(4.1)and
that the value of € roughly reflects the degree of infeasibility of the given vector X in
terms of the satisfiability of the equations Ax =b as well as the nonnegativity conditions
x 2 0 . In this next section, we present a method for computinga & - close center (;E, 3) of

the dual feasible region for § < 511— and the complexity of this method is analyzed as well.
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5. Analysis of a Method for Findinga §- Center (1.5) of the Dual Feasible Region for 5 < 1/21.

This section analyzes the use of two algorithms that can be used together to find a
8- close center of the dual feasible region, namely

Y=((1c,s)eRme“ IATn+s=c, szo} .

In the previous section, weassumed Y wasbounded. However, there is no loss of generality
in assuming the boundednessof Y solongaswearegivenabound B on the optimal objective
valueof LP . (Inpractice, sucha bound is usually easy to obtain based on a good
understanding of the problem athand.) Then wecanreplace LP and LD by the problems:

LP minimize T x = BXael
X, Xn+1
Ax - me»‘] = b

XZO, Xne1 2 0

LD': maximize b n
7, S, Sn+1
ATn+s = ¢
-br+ Sn+1 = —B

s20, sns1 20.

The following Lemma shows the equivalenceof LP to LP' as well as the boundedness of
LD .

Lemma 5.1 (Equivalencyof LP to LP' and Boundednessof LD'). Suppose that the set of
optimal solutionsto LP is nonempty and bounded, and that B is a strict lower bound on the
optimal objective value z° of LP. Let 1 = z - B .

@ (x, Xas1) = (x,0) and (%, S, Sn1) are a pair of optimal primal-dual
solutionsto LP' and LD' ifandonlyif x and (%, 5) area pairof
optimal primal-dual solutionsto LP and LD .

(i) The feasible regionof LD' isbounded. Furthermore, there exists a feasible
solution (7, s, sn1) of LD' with s > 0 and Sne1 > O .
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Proof: (i) Because B is strict lower bound on the optimal objective value z" of LP,
the last constraint of LD' will never be binding in an optimal solution to
LD, ie, b'm > B inanyoptimalsolution (%, 5, 8n1) to LD . Thus
sne1 > 0 and X1 = 0 (from complementarity) in any optimal solution to
LP . The rest of the assertion follows in a straightforward manner.

(i) By hypothesis, the set of optimal solutions to LP is nonempty and bounded.
Hence, by a theorem of the alternative, it is straightforward to show that
thereexists n' forwhich ATa' < ¢ and that the feasible region of LD'
isbounded. Furthermore,since B is a strict lower bound on the optimal
objective valueof LD (and hence LD', from(i)) , thereexists =2 for
which ATn? < ¢ and b'x2 > B. By taking the appropriate convex
combinationof n' and =? , weobtaina vector x forwhich ATr < ¢ and
b'n > B. ]

With Lemma 5.1 in mind, we now assume throughout this section that the feasible
regionof LD is bounded and has an interior, i.e., there exists a point (%, s) for which
ATn+s =c and s > 0. Therefore, the center (;t , 3) of the dual feasible region exists
uniquely, and we can now concentrate on findinga &-close center of the dual feasible region.
As in the case of analysis of the primal, we suppose that we have a guess 1 of the value of
7, andthat 7 will be the starting point of a method for findinga &- close center. Wedo
notassumethat A’ % < c, ie,that = is feasible for the dual. We will make use of two
different center-finding algorithms. Each is described below.

Algorithm PT

The first algorithm we will utilize is a projective transformation-based algorithm for
computing an approximation to the center of a given system of linear inequalities Aln<g
starting from a given initial interior solution to that system. The algorithm is described and
analyzed in [4] . We will call this algorithm PT for "projective transformation”
algorithm. At each iteration, algorithm PT performs a projective transformation, and then
computesa direcion d from the current feasible solution n by solving a system of equations
corresponding to a least-squares problem. (Thus the work per iteration is o(r) operations.)
Asteplength @ is then computed, either by an analytic formula (much as in Karmarkar's
algorithm), or by performing a line-search. The new iterateis # « % + ad . Performance
of the algorithm can be measured by considering the difference in the logarithmic barrier
function
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f(n) = ih‘(gi - (aT=);)
j=1

at the starting point 7 = m and at the center n, as follows:

Lemma 52 (Complexity of Algorithm PT ). Suppose & satisfies 5 = g-A'x > 0, and

that algorithm PT isinitiatedat = = x . Suppose (1:,3) is the center of the system
Al < g - Thenalgorithm PT willcomputea &-close center (7:,5) of the system

A'n < g afteratmost K = 7+I-(n—l} ‘f(“)—f(;tn] iterations, where § =-L , and
n 0033 / 21

the work per iteration is at most O(r?) operations (i.e., the complexity of computing the
direction). |

Note that the number of iterations is bounded by 7 + (f (;r,) - f (ﬂ) / 0033 » which is
independent of n , the number of inequalities. This bound indicates thatif f(r) is large,
ie, f (7:) iscloseto f (;t) , then the number of iterations will be small. Thus the bound on
the number of iterations is roughly proportional to how close = isto % in the measure of the
logarithmic barrier objective function f(x) . It should be noted that the bound above is
probably not very tight in practice so long as the projective transformation algorithm is
implemented with a line search. In that case, the author's own experience on small problems
indicates that the algorithm converges to the center at least as efficiently as Karmarkar's
algorithm converges to solutions of a linear program. (This is not surprising, because both
algorithms are based on the same projective transformation methodology and strategy, see
[4].) The proof of Lemma 5.2 is given in the Appendix.

Algorithm PCP

The second algorithm we will utilize is a path-following algorithm for tracing the
path of centers (r, s) tothesystem AT® < (g + dt) as the scalar parameter t is varied
over a givenrange. The algorithm is described in [5] . We will call this algorithm PCP
for "parametric center problem.” Ata given iteration k , thevalueof t is t = . The

current point (m&, 5) isa §-close centerofthesystem ATn < g+ dt for

S = E11_ . Aconstant a is computed, which is the increase in the value of t , and the new

valueof t iscomputedas ' = t“+ a. ANewton step is then computed and a new value

of m ischosen, namely mk , whoseslacksare sk = g + dt“! - ATk . Thenew
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value (me+1, 5x41) isa &-close center of thesystem AT < g+dtm ,for § =.21_ .
1

The work per iteration of the algorithmis O(r?) . Performance of algorithm PCP is
measured as follows:

Lemma 5.3 (Complexity of Algorithm PCP ). Suppose (r,5) isa &-close center of the

system A'm < g+ dt for 5=.21i.,at t = 0. Supposethat d < 0, and define

TMax = maximum t

n,t
st ATx < g+at.

Suppose Tmax >1 .

Then afterat most K = I_ 128nln (F'I—‘M-él‘-i-)-l iterations of algorithm PCP , the
MAX —

algorithm will compute of 8- close center of the system ATn < g+ dt for § =1, at
21

t=1. u

Note that the value of K increases linearly with n . The following discussion is
an interpretationof K . Because (r,5) isa &-close centerof the system Alns<g,

thentheset Yo = {neR"‘ | ATn < g} isbounded. As t isincreased,

Y. = {neR™ | ATz < g+ dt| shrinks,because d < 0 andthe RHS is strictly
decreasing,ie, Y c Y: for t > t. Furthermore, Tmax is guaranteed to be finite. The

quantity ln(T_TMT) measures how close theset Y1 {ie, Y: at t =1) istotheset
MAX —

Yo . If Twmax islarge increasing t from t = 0 to t = 1 will not contract the boundary
of Y¢ verymuchonarelativebasis. Thus Yo and Y1 are shaped similarly, and so their

centers should be near to one another. Because Tmax islarge, In (¥IML1—) will be small.
MAX —

Conversely, if Tmax issmall, (e.g., if Tmax = 1+ € forsomesmall €), then Y1 willbe
a substantial contraction of Yo , and thecentersof Yo and Y1 may be very far fromone
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another. Because Twmax issmall, ln,TTMﬁAfT =ln(1—:-f‘) =1n(i-+l) will be large.

The proof of Lemma 5.3 is given in the Appendix.

We now are ready to present the method for findinga 8- close center (;, 3) of the
dual feasible region from a given starting point. Suppose %, 8) is the center of the dual
feasible region. As in the case of Section 4 for the primal, we assume that we have a given
initial value of = = & thatisaguessofthevalueof ®. If = isdual feasible and
ATT < ¢ wecanusealgorithm PT tofind adual feasible point (7, 5) thatisa &- close

£(x) - £()

center of the dual feasible regionin K = 7 + I— 005 iterations, where

f(n) = 21“ (cj - (a7 m);) according to Lemma 5.2, where § = % :
=

Suppose, however, that 1 does not satisfy ATX < ¢ . Thenthe strategy we
propose is toreplacethe RHS ¢ byavector g for which ATz < g - Wecan then use
algorithm PT to find a point (1=t , :) near the center of the system Aln < g , and then
use algorithm PCP to trace a sequence of points near the center of the system
ATn s g+t(c-g) as t isincreasedfrom t = 0 © t = 1. At the final iterate, we
will have a point (x, §) that is near the center of thesystem A'n < g+ 1(c-g) =c .
The method is as follows:

Step1. Let g€ R" beany vector that satisfies g>¢ and g > A'7, for example
g = max{c,' + 1,(AT1t)j + 1} , Fl,.,n.
Step 2. Usealgorithm PT tofinda &-close center (1=t =) of the system ATn < g .,

for 6=l.
21

Step3. Define d = ¢c-g . Usealgorithm PCP to generate a sequenceof & - close
center points of thesystem A'm < g+ dt for te[0,1], for & =§L )
1

o~

At the final iterate, we will have a point (ﬂ:, §) thatisa &-close centerof the
system ATm<g+dt at t=1, ie. ATn<g+(c-g) =c,andso (%, 5) willbea
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8 - close center of the dual feasible region for § = 511_ . The complexity of the above method

is as follows, whose proof is an immediate consequence of Lemmas 5.2 and 5.3.

Lemma 54 (Complexity of computinga §- close center). Using the above method for

computinga 8- close center of the dual feasible region for § = i1_ , the total number of
1

iterations is bounded aboveby K = K+ K , where

o K= 7+l_f(§)—f(a

0033

where (’1\7’, §) is the centerof system A'x < g, and

f(m) = 21,1 (8 - (A"%);) , and
2

@ K= r128n|n( TMAXI) , where

TMax = maximum t

n,t
Aln<sg+dt. =
Note that in the above method, the choice of g is fairly arbitrary.

As was discussed in this section, the value of K' roughly measureshow close = isto
the center of the system Aln < g , and the valueof K? roughly measures how close the
center of the system ATn < g isto the center of thesystem A'm < ¢ . Thus
K=K+K roughly measures how close 7 is to the center of the system Aln <c.

Through Lemma 5.4, we have a method that will compute of & - close center (for

8 = -1 ) of the dual feasible region, from any starting point, and whose complexity roughly
21

corresponds to how close the starting point is to the actual center of dual feasible region.

24




Appendix

The purpose of this Appendix is to prove Lemmas 4.1 and 4.2, and Lemmas 5.2 and 5.3.
The results in these four Lemmas are slight modifications of results contained in the papers [4]
and [5], but with different notation. Thus, none of these results in the Appendix are truly new
to this paper. There is a problem, however, in proving these Lemmas in a brief yet cogent
manner, because the notation in the papers [4] and [5] vary substantially from that of this
paper. Therefore, we begin with a discussion of notationai issues.

We first start with the algorithm PT presented in paper [4] . In Section 2 of that
paper, an algorithm is presented for solving the following center problem

maximize  F(x) =i2 wilIn (bi - A;x)

subject to Ax<b

Mx=g ,

where A isan mn matrix,and where w = (w1, ..., wm)' is a vector of positive weights
that satisfy e'w = 1. Adapting this problem to the problem of finding the center of dual
feasible region presented in Sections 4 and 5 of this study, wereplace A by AT, b by c,
and interchange therolesof m and n,replace x by =, delete M and g, set

w = (I/n)e and

note that F(x) = (%) Y In (bs -~ Aix) , which in the notation of this paper is
=1

F(x) = (%) f(m) = (%) 2; In(¢; - (A"%);) . Therefore, when citing results from [4] about
,-

F(x) , wecanreplace F(x) by (.1,;} f(rx) . Two other key notational points in the algorithm

are the definitionin [4] of w = min {wi} = (;1;) in the notation of this paper, and
1

k = W/, (1-w)= 1/(11 - 1) in the notation of this paper. Performance and analysis of the
algorithm PT in [4] frequently makes use of the quantity ¥ which is a constant defined in
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Step 3 and Step 4 of the algorithm PT in [4] . Asit turns out, the constant Y is intimately
related to the value of 1t defined in Section 4 of this paper, as follows:

Proposition A.1_(Valuesof Y and 1). Let G, §) be a dual feasible solution that satisfies

s> 0,andlet f(n) = iln (Cj -(Arﬂ);) . Let t be the quantity
j=1

v = V(i) (V6(z) " ve(z) = VersTaT(as2aT) a5 .

If m isaniterate of the algorithm PT presentedin [4], let 7 be the value defined in
Step 3 and 4 of the algorithm for n = n . Then

y = n-1 1
n-t2] °

Proof: In the notation of this study, at Step 3 of the algorithm PT (see [4]) , we must solve

maximize - de
d

st. d(a-ys)(5"'wWS)(AT-5y0d sk,
: 1
where 5= c-AT7 and y = (1)AS7e. Let Q = ASTWSTAT and
Q = Q-yy", andnotethat k = ¥(n1), w = (I/n)e ,and W = (1)1 .

Then direct substitution shows the above problem is

maximize -y'd
d

st. d'Qd < k ,
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_5",.,/:'

Wy

~ ] ~
Y= ('YTa)/k = V y'Q YZ: . Next note that because Q is a rank-one modification of

Q , then from the Sherman-Morrison formula,

and the optimal valueof d is d = Hence

However Q = AS WS AT = (%) ASZAT = (%) vV £(m)
and y = (1) AS7e = (V@) andso

— -1
y'Qly = (%) v £(x) (V2 f G)) A4 (B = Jﬁfz . Substituting this last expression and

remembering that k = V(n - 1) yields

Y= -——-——-—-—(n—I n)tz‘lr
1-142
n

which is 7=( n-1 )‘t. =

We also need to translate some notation from the paper [5] . In that paper,if Ax+s=b ,
- —=-2
s > 0, thequantity [|v]le( = “vTATS AV” isdefined. Inour

notation, thisis || vilg(s) = ||VFASZATv|| where 5 = c- AT% .



Proof of Lemma 4.1: The proof is based on Lemma 3.3 of [5] . Suppose ;E,E) isa
t-approximate centerwhere T = 08. Then ¥ £ T < .08 fromProposition A.1. Let
h = 5. Thenin the terminology of Lemma 3.3 of [5] ,

- ulloms(-n— Lt o JPY

-1 (1-hy)? ,
where |57l o isdefinedtore V-7 A5 AT(r-%) = ||57(G-9). Thus
‘\/(1: 1:) AS” ATn %) “~45-5“5‘1_ =

Proof of Lemma 4.2: The proof is based on Lemma 3.4 of [5] . Suppose (;!', §) isa d-close

centerand § = 511' Then ||7-7|old < 511. Thus from Lemma 3.4 of [5] , with

, weobtain y < 0527 . Butfrom PropositonA.l, Tt < Y2 v, so

Towards proof of Lemma 5.1, we have the following two Propositions.

Proposition A.2: If = is the current iterate of the algorithm PT and the valueof Y is
computedand y = Yy < 08567 , then in all subsequent iterations, we will have the value of
v < 08567 .

Proof: This proof is based on Lemmas4.1and4.20f [4] . Let n and & be two successive
iterates of the algorithm PT , and let Y and Y be the corresponding valuesof ¥ produced
at Steps 3 and 4 in those iterations. Suppose y < 08567 but y > .08567 . Then from
Lemma 4.1G) of (4], £(x) < £(x) + 669 (kn) ¥*

On the other hand, from Lemma 4.2(ii) of [4] ,

£(x) = £(x) + 4612(kn) ¥ ,




and from Lemma 4.2() of [4] ,

£(z) > £(x) + 0033 (in) .
Combining these yields

(k) 6697 2 £(n) - £@) = £(z) - £(x) + £(x) - £

> 0033 (kn) + 4612(kn) ¥

Thus ‘Y Z{gm% or y > .125, acontradiction. Thusif Y < .08567 , then

Yy<0867. m

Proposition A.3: Under the hypothesis of Proposition A.2 ,
Y = 687 .
Proof: We have from Lemma 4.1(ii) and Lemma 4.2(ii) of [4] ,
(kn) 4612 ¥ < £(7) - £(m) = £(z) - ¢ - (¢ () - £(z))
< 669 (kn)¥* - 4612 (kn)7’

Thus 32 < 669 - 4612 22 othat Y< 687. m
4612

Proposition A.2 states that once v dropsbelow ¥ = .08567 inalgorithm PT , thenit
decreases at least by a factor of .68 at all subsequent iterations.

Proof of Lemma 5.2: From Remark 7.2 of [4] , algorithm PT musthave y < .08567 after

Y Y PP ) USRI SR
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iterations. Then after at most seven additional iterations, Proposition A.3 ensures that at the
current iterate, y < (.68)7 (.08567) < .0058 . Then from Lemma 33 of [5] with h = .03 ,
we obtain

157 (-9l = VE-2 AS57AT -7) = |7- %ol < L

ie., (;,5) isa &-close centerfor § = 511. =

Proof of Lemma 5.3: The proof of Lemma 5.3 is an application of Lemma 2.5 of [5] . Ateach
iterate of algorithm PCP , the algorithm computes either a finite upper bound on Tmax at
Step 4, or a finite lower bound on Tmin  at Step 4, or both, where

T™MN = minimum t

s.t. AT1|:+s=g+dt

s 20,

However,if d < 0, TMN = -, and so we can apply Lemma 2.5 of [5] with
te[t,t] =[0,1],ie, t=0 and t = 1. Thus the algorithm will stop after at most

K = r128n In (TMAX/(TMAX - 1))_| iterations. ™
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