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Underdetermined Blind Source Separation Based on
Subspace Representation

SangGyun Kim, Member, IEEE, and Chang D. Yoo, Member, IEEE

Abstract—This paper considers the problem of blindly sepa-
rating sub- and super-Gaussian sources from underdetermined
mixtures. The underlying sources are assumed to be composed
of two orthogonal components: one lying in the rowspace and
the other in the nullspace of a mixing matrix. The mapping from
the rowspace component to the mixtures by the mixing matrix
is invertible using the pseudo-inverse of the mixing matrix. The
mapping from the nullspace component to zero by the mixing
matrix is noninvertible, and there are infinitely many solutions to
the nullspace component. The latent nullspace component, which
is of lower complexity than the underlying sources, is estimated
based on a mean square error (MSE) criterion. This leads to a
source estimator that is optimal in the MSE sense. In order to
characterize and model sub- and super-Gaussian source distribu-
tions, the parametric generalized Gaussian distribution is used.
The distribution parameters are estimated based on the expecta-
tion-maximization (EM) algorithm. When the mixing matrix is
unavailable, it must be estimated, and a novel algorithm based on
a single source detection algorithm, which detects time-frequency
regions of single-source-occupancy, is proposed. In our simula-
tions, the proposed algorithm, compared to other conventional
algorithms, estimated the mixing matrix with higher accuracy and
separated various sources with higher signal-to-interference ratio.

Index Terms—Generalized Gaussian distribution, single source
detection, subspace representation, underdetermined blind source
separation (BSS).

I. INTRODUCTION

A blind source separation (BSS) aims to recover unobserved
sources from a number of observed mixtures without

knowing the mixing system, and it is generally performed with
some a priori knowledge of the mixing system. It has received
considerable attention for its potential applications in speech
processing, biomedical processing, and digital communica-
tions [1], [2]. Today, there exist a variety of BSS algorithms,
and most exploit one of the following four properties of the
sources: the higher-order statistics (HOS), the second-order
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statistics (SOS), the nonstationarity, and the sparsity [3]. More
specifically, the algorithms can exploit one of the following
properties: mutual independence between the sources [4]–[6],
the temporal structure of the sources [7], [8], the temporal
structure of the sources [9], [10], and the sparse representation
of the sources [11]–[19].

When the number of the sources is larger than that of the
mixtures, the BSS problem is called an underdetermined BSS
problem. This problem is generally more difficult than the com-
plete BSS problem where the number of the sources is equal to
that of the mixtures. In the underdetermined case, the sources
are not obtained easily and must be inferred even when the
mixing matrix is known.

Of the four properties exploited, most conventional underde-
termined BSS algorithms were developed based on the sparse
representation of the sources [11]–[19]. Chen et al. considered
sparse representation of signals given overcomplete dictio-
naries [11]. Donoho et al. considered the sparse representation
of the sources via -norm minimization [12]. Lewicki et al.
developed an algorithm for learning overcomplete representa-
tion of the sources based on the maximum a posteriori (MAP)
estimation of the sparse sources [13]. Lee et al. applied this
algorithm on speech [14]. Zibulevsky et al. also estimated
the mixing matrix and sources based on both the MAP and
the maximum likelihood (ML) estimation [15]. Girolami pro-
posed a variational expectation-maximization (EM) algorithm
for learning sparse and overcomplete representations [16].
Recently, algorithms for achieving the sparsity in transform do-
main, such as by wavelet packet transform [17] or by short-time
Fourier transform (STFT) [18], [19], were proposed. Yilmaz et
al. assumed that the sources are disjoint in the time-frequency
(TF) domain, i.e., there exists only one source at any TF point
[18]. Aïssa-El-Bey et al. relaxed this condition and assumed
that the sources can be nondisjoint in the TF domain, but the
number of the sources that coexist at any TF point is less than
that of the mixtures [19]. Both algorithms work well on speech.

Recently, a number of Bayesian based algorithms using flex-
ible distributions were proposed [20]–[22]. To model the under-
lying source distributions, Cemgil et al. used the student -dis-
tribution [20], [21], and Snoussi et al. used the generalized hy-
perbolic distribution [22], respectively. The student -distribu-
tion can model the distribution of a sparse source but can not
model the distribution of a nonsparse source. The generalized
hyperbolic distribution can model a wider range of distributions
but requires the estimation of five parameters. These algorithms
consider background noise and a wide variety of source distri-
butions in their formulation; however, they require high compu-
tational load since they simultaneously estimate the underlying
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sources as well as all the parameters involved in the sampling.
Another concern with these algorithms is that very slow con-
vergence rate is observed with a small background noise: the
covariance of the conditional distribution of the parameter is in-
versely proportional to noise variance, and the Markov chain
often used in sampling can not efficiently explore the parameter
domain [22].

This paper considers the problem of blindly separating
sources of sub- and super-Gaussian distributions from underde-
termined mixtures. The proposed algorithm is derived without
considering a background noise as in [20]–[22]. However, the
robustness of the algorithm in background noise is considered.
In instantaneous mixing, the sources can be represented as
the sum of two orthogonal components: one lies in the rows-
pace and the other in the nullspace of the mixing matrix. The
mapping from the rowspace component to the mixtures by
the mixing matrix is invertible using the pseudo-inverse of
the mixing matrix. The mapping from the nullspace compo-
nent to zero by the mixing matrix is noninvertible, and there
are infinitely many solutions to the nullspace component.
The nullspace component is latent. The proposed algorithm
estimates the latent nullspace component to minimize the
mean-square error (MSE) between its true and estimated value
using a certain source distribution. This paper shows that the
latent nullspace component estimation (LNCE) based on the
minimum MSE (MMSE) leads to overall source estimation that
satisfies the MSE criterion.

The proposed underdetermined BSS algorithm is based on a
three-stage approach whose overall structure is shown in Fig. 1.
Firstly, a mixing matrix is estimated given only the mixtures.
A novel single source detection (SSD) algorithm, which detects
TF points occupied by only a single source for each source, is
proposed. The mixing matrix is estimated using the mixtures in
the detected TF points. The proposed algorithm can estimate the
mixing matrix with only a single TF point of single-source-oc-
cupancy (SSO) for each source. Secondly, the underlying source
distributions are estimated using the EM algorithm. In order to
model the underlying sources, various parametric distributions
such as the hyperbolic-Cauchy distribution (HCD) [23] and the
generalized Gaussian distribution (GGD) [24] were considered.
For many signals encountered in BSS such as speech, audio,
EEG, etc., we have found that the GGD can model the signal
distribution better than the HCD that is inadequate for modeling
either highly sparse signals or uni-modal nonsparse signals. For
this reason, we have chosen the GGD to model the signal dis-
tribution. The parameters of the GGD are estimated based on
the EM algorithm by considering the nullspace component of
the sources as a latent variable. Finally, the underlying sources
are estimated given the mixtures, the estimated mixing matrix,
and the estimated source distributions. In [23], the underdeter-
mined BSS problem is transformed to a complete BSS problem
by generating latent mixture to maximize its conditional prob-
ability without regard to any optimality condition. However,
this paper transforms the underdetermined BSS problem into
the LNCE problem and estimates the nullspace component to
minimize the MSE of the sources. This transformation also re-
duces a computational load since only the nullspace component
of the sources is estimated instead of the sources directly. For

example, in the 3 4 underdetermined case we should estimate
four sources, but by this transformation we need to estimate only
one nullspace component.

The rest of this paper is organized as follows. Section II for-
mulates the problem that we are addressing. Section III de-
scribes how the sources are represented using the fundamental
subspaces of the mixing matrix. Section IV proposes an algo-
rithm for estimating the mixing matrix based on the SSD in the
TF domain. Section V describes the GGD and presents an al-
gorithm for updating the parameters of the GGD based on the
EM algorithm. Section VI estimates the sources by the LNCE
based on the MMSE. Section VII shows the simulation results,
and Section VIII concludes the paper.

II. PROBLEM FORMULATION

The general goal of the BSS is to find an unmixing system
to recover the unobserved sources from the observed mixtures
without knowing the mixing system. There are various ways of
formulating a BSS problem depending on how the sources are
mixed, how many sources and mixtures there are, whether there
exists a noise or not, etc. Depending on the problem formula-
tion, a different approach is required. The problem considered
in this paper is an underdetermined instantaneous BSS without
a background noise and can be mathematically formulated as
follows.

Let be an -dimen-
sional random variable of the mixtures and

be an -dimensional random vari-
able of the th sample of the source signals. In the absence of
noise, the relationship between and is given by

(1)

where is an mixing matrix. When the number of the
mixtures is less than that of the sources ( ), the BSS is
categorized as underdetermined. In such case, the sources can
not be obtained directly as in the complete BSS case, since the
inverse of does not exist.

This paper represents the underlying sources as two orthog-
onal components: one lies in the rowspace and the other in the
nullspace of and investigates how the latent nullspace com-
ponent is estimated using the underlying source distribution. In
addition, novel algorithms for estimating based on the SSD
algorithm and estimating the parameters of the source distribu-
tion based on the EM algorithm are introduced.

III. REPRESENTATION OF SOURCES USING

FUNDAMENTAL SUBSPACES OF

This section explains how the solution of the underdeter-
mined BSS problem can be represented using when is
known. This representation can also be explained graphically
using the fundamental subspaces of .

A general solution of underdetermined BSS problem can be
given as the sum of a particular solution of the nonhomogeneous
equation and a general solution of the homogeneous
equation [25]. It can be expressed in the following
form:

(2)
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where denotes the generalized-inverse (g-inverse) of
such that is a solution of of for any
which makes this equation consistent, is an
matrix whose columns are bases of the nullspace of , and
is an arbitrary vector, respectively. The basis
matrix for the nullspace of can be obtained from .
That is, the general solution of can be represented
as the sum of the particular nonhomogeneous solution
and the general homogeneous solution . Donoho et al. also
represented a solution of underdetermined linear equation using
the nullspace of and estimated the solution that minimized
the Kolmogorov-complexity, leading to a sparse solution [26].

In the underdetermined BSS problem, there are infinitely
many solutions to , since and are not unique ( is an
arbitrary vector in ). The Moore-Penrose pseudo-inverse
matrix that leads to the least-squares solution of is often used
as . When , the Moore–Penrose pseudo-in-
verse matrix, denoted as , is given as follows:

(3)

Using , the general solution is given as

(4)

As represented in (4), the problem of estimating boils down to
the problem of estimating , which leads to the reduction of the
dimension of an estimator from of to of . The
representation of (4) can also be explained graphically using
the four fundamental subspaces of : columnspace, nullspace,
rowspace, and left nullspace of . Each space is defined in [27].
The four fundamental subspaces of have the following impor-
tant property.

1) Property 1: can be decomposed into the rowspace
and the nullspace of , and can be decomposed into the
columnspace and the left nullspace of , respectively. This
property is proven in [28].

By Property 1, a source vector can be decomposed
into its rowspace component and its nullspace component
as follows:

(5)

for a given . Comparing (4) to (5), and in the
right-hand side of (4) correspond to and in the
right-hand side of (5), respectively. This is proven as fol-
lows: First, on the right-hand side of (4) is represented
as where .
Since , is in the rowspace of [27]. Second, since

, is in the nullspace of [27].
The relationships among the fundamental subspaces of is

summarized in Fig. 2. On the left-hand side is the space ,
which can be decomposed into the rowspace and the nullspace
of , which are orthogonal. The transformation on by rep-
resented as is explained in the two steps.
First, the rowspace component is mapped to the columnspace:

is in the columnspace of . Second, the nullspace
component is mapped to zero: . On the right-hand
side of Fig. 2 is the space , which is decomposed into the

Fig. 1. Block diagram of the proposed underdetermined BSS algorithm.

Fig. 2. Representation of ��� using the four fundamental subspaces of � and
relationships among the subspaces.

orthogonal spaces of the columnspace and the left nullspace of
. The mixing matrix maps its rowspace to its columnspace.

The mapping from the rowspace to the columnspace is invert-
ible using . However, the mapping from to the nullspace is
noninvertible.

IV. ESTIMATION OF THE MIXING MATRIX BASED ON SSD

The proposed algorithm is based on a three-stage approach as
shown in Fig. 1. In a first stage, is estimated given . A novel
algorithm for estimating based on the SSD in the TF domain
is presented in this section. Conventional algorithms estimate

based on clustering algorithms such as the -means algo-
rithm [19], [29] and on the ratio of the TF transforms [18], [30],
[31]. The algorithms in [18] and [29] require that the sources
be very sparse in the domain, and the algorithms in [19], [30],
and [31] relax this requirement and require that there exist TF
regions where only a single source is active for each source. The
algorithms in [19], [30] are based on an assumption that there
exist many TF points of SSO, and the algorithm in [31] requires
there exist at least one small region in the TF plain where there
exists only a single source and such a TF region must exist for
each source. All aforementioned algorithms require that for each
source there exist many TF points of SSO; however, the pro-
posed requires that there exists at least one TF point of SSO and
this TF point must exist for each source. The SSD algorithm is
less restrictive than the other algorithms.

Before the SSD algorithm is introduced, the STFT of the th
source is defined as

(6)

at frame and frequency bin where is a window se-
quence. Let and

denote the STFT coefficients of and
, respectively.
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The SSD is based on the ratio of the TF transforms and finds
a set of TF points, denoted as , where only a single source
is active for each source. It assumes that there exists at least a
single TF point of SSO for each source. The main idea of the
SSD algorithm is that the ratio of the mixtures in the TF domain
is real-valued at the TF point of SSO and complex-valued at
the TF point of multiple-source-occupancy (MSO). The mixing
matrix is estimated based on the ratio values calculated at the
TF points of SSO. The procedure of the SSD is as follows.

1) For a given , a set of TF points where only a single
source is active is detected for the TF points where both the
real and the imaginary parts of the STFT coefficients of the
mixtures have sufficient energies such that

(7)

where denotes the imaginary part of . We can
choose any of the mixtures instead of as the de-
nominator in (7). For example, if the following is satisfied
at , then :

where is the th entry of . This example shows
the case that there exists only the th source at . On
the contrary if both the th and th sources, and

, coexist at , we do not include in
because of the following:

since and are complex-valued and
can not be erased from numerator and denominator like the
previous example.
It should be noted that the value of needs to be appropri-
ately set. When is too small, TF points of SSO are diffi-
cult to detect, and when is too large, many unwanted TF
points of MSO are detected. In this work, was experimen-
tally determined.
Fig. 3 illustrates the procedure of the SSD algorithm for the
mixtures and . The TF points colored by white, light
gray, and dark gray represent the TF points occupied by no
source, a single source, and multiple sources, respectively.
As shown in Fig. 3(b), the TF points where both the real

Fig. 3. SSD algorithm is illustrated for the mixtures � ��� �� and � ��� ��.
(a) TF points (tiles) colored by white, light gray, and dark gray represent the
TF points occupied by no source, a single source, and multiple sources, respec-
tively. (b) TF points where both the real and imaginary parts of the STFT co-
efficients of the mixtures have significant energies are selected. (c) Ratio of the
mixtures selected in (b) is calculated. The ratio values are real at the TF points
of SSO and complex at the TF points of MSO. (d) TF points of SSO are detected
by choosing the TF points where the imaginary part of the ratio value is small.
In this example, � is a small positive value.

and imaginary parts of the STFT coefficients of the mix-
tures have significant energy are selected. In Fig. 3(c), the
ratio of the mixtures selected in (b) is calculated. The ratio
values are real at the TF points of SSO and complex at the
TF points of MSO. As illustrated in Fig. 3(d), the TF points
of SSO are detected by choosing the TF points where the
imaginary part of the ratio value is very small. In this ex-
ample, is a small positive value.

2) The TF points in are clustered into classes based on
the following ratio vector

(8)

where denotes the real part of . We used the
K-means algorithm to cluster the TF points in . Any TF
point in where the th source is active will have the
following ratio vector

(9)

and the set of the TF points with the above ratio is denoted
as for . Using the above algorithm, TF
points where only a single source is active are detected for
each source.

Finally, we estimate using the mixtures in the detected TF
region. Prior to the estimation, the real and imaginary parts of all
the mixtures are normalized to have unit -norm, respectively.
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Using in , the th column vector of , denoted as ,
is estimated as follows:

(10)

where represents the number of the points in the class for
.

Even when there exists only one TF point for each source,
the SSD can accurately detect all points in and thus estimate
the column vectors of , while many conventional algorithms
require many single source TF points to detect the TF points
[30], [31].

V. PARAMETER ESTIMATION BASED ON EM

In signal processing, the performance of an algorithm is often
determined by how well the distribution fits the data. The dis-
tributions of multimedia data such as speech, audio, and image
differ from one another in both time/spatial and transform do-
main, and the success of an algorithm is directly linked to how
well the algorithm can model the underlying distributions. The
distributions have often been modeled using a restrictive class
of the distributions such as the Laplacian and the Gaussian. Re-
cently, the student -distribution [20], [21] and the generalized
hyperbolic distribution [22] have been used to model the under-
lying source distribution. Both distributions are uni-modal dis-
tributions. The student -distribution has one parameter to esti-
mate but can model only the distribution of a sparse source. The
generalized hyperbolic distribution can cover a wider range of
distributions even with skewness but has five parameters to esti-
mate. A large number of the parameters can increase the degree
of freedom of the distribution but can lead to large estimation
error and high computational complexity.

In this paper, in order to unmix the mixtures of sources of
various distributions, the GGD is used to model both super-
and sub-Gaussian distributions by adjusting a single parameter
[32]–[34]. It can generate various super- and sub-Gaussian
distributions, however, it can model only uni-modal and sym-
metric distributions. It is given in the following mathematical
expression:

(11)

where

(12)

(13)

and is the Gamma function, which is given as
. The parameters and are the stan-

dard deviation and the mean of the population, respectively. The
parameter can be regarded as a measure of kurtosis in-
dicating the extent of the non-Gaussianity of the distribution.
The parameter controls the distance between the GGD and

Fig. 4. Shapes of the GGD according to the values of � when each variance
equals to one.

a normal distribution. Fig. 4 shows the shape of the GGD with
different values of when = 1. As shown, when = 0, the dis-
tribution is a normal distribution. When = 1, it is the Laplace
distribution. When = , it is the uniform distribution. In this
work, the mean of the source is zero.

In the proposed algorithm, the parameters of the
GGD where and are es-
timated to maximize the likelihood of the incomplete data (mix-
tures) using the EM algorithm in [35]. The subscript indicates
the index of the source.

Using the latent nullspace component , the log-likelihood of
can be expressed as

(14)

Henceforth, will be assumed known and omitted from the
expression for simplicity. When the conditional expectation of

is taken with respect to the posterior probability of ,
we obtain the auxiliary function as follows:

(15)

where represents the updated parameter in the previous iter-
ation, and denotes the expectation of function

with respect to . The convergence of the EM algorithm
lies in fact that if we choose so that , then

. Therefore, the parameter is updated
at every iteration to maximize as follows:

(16)

(17)

Since the calculation to obtain the expectation of (17) is gener-
ally intractable, it is approximated using the Monte Carlo inte-
gration [36], [37]. That is, (17) can be approximated as

(18)
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where are the samples drawn from
using the Markov chain Monte Carlo method. Since the repre-
sentation in (4) can be rewritten as

(19)

where is an matrix, (18) can be expressed as

(20)

(21)

where is the GGD parametric form, and
is the absolute value of the determinant of . Finally, the
model parameters are updated at every iteration by maximizing
the log-likelihood of the sources obtained from
that is sampled from .

VI. LNCE BASED ON MMSE

This section shows how the sources are estimated based on
the MMSE criterion. Once is estimated, can be obtained
directly from (4). Let denote the observation that consists of
and , that is, . Let denote a cost function
that assigns a cost to a pair of actual latent component value and
its estimate where represents the estimate of when is
given. The Bayes estimator of is given as

(22)

where is an optimum estimator for when is given [38].
One can generate an infinite number of different estima-

tors depending on the choice of . In the proposed
algorithm, we aim to estimate the sources such that the MSE
of the estimation is minimized in order to maximize the
signal-to-interference ratio (SIR), which is defined in (28).
When is known, the square error of can be represented as

(23)

where and represent an estimate of and the -norm
of , respectively, and . From (23), we notice that
the MSE of the source estimation is equal to that of the LNCE.
Therefore, the cost function is chosen to be the MSE
cost function as follows:

(24)

The Bayes estimator for this cost function is the posterior mean
given by

(25)

which can be obtained by sampling from as

(26)

where are the drawn samples from ,
that is, . The drawn samples come from the same prob-
ability function to approximate the auxiliary function
in (18). Using , the sources satisfying the MSE criterion,

, can be expressed as

(27)

VII. SIMULATIONS

Simulations were performed on both synthetically gen-
erated signals and speech/audio signals using the proposed
and conventional algorithms. In the simulations, sparse
(super-Gaussian) and nonsparse (sub-Gaussian) signals were
separated from the underdetermined mixtures. First, in case of
synthetic signals, the proposed algorithm was applied in the
time domain with an exact mixing matrix . Separations were
performed on two sets of the sources: sources that consisted of
only sparse sources and that consisted of both sparse and non-
sparse signals. Next, speech and audio signals were separated
in the TF domain. Prior to the separation, was estimated
using the SSD algorithm, and the estimated was used in the
separation simulation. A simulation to separate signals in a
noise environment was also performed.

A. Separation of Synthetic Signals

1) Sparse Signals: The separation of synthetic sparse sig-
nals from mixtures was performed in the time domain
for 4, 5, and 6. In this simulation, the mixing matrix was
known. The proposed algorithm was compared to the -norm
minimization [14] and the FOCUSS algorithms [39] when

. The simulation settings were as follows. Synthetic sparse
signals were generated by generating 1000 Gaussian samples
using randn command of Matlab and substituting 90% of the
samples chosen randomly by zeros for each source. The mixing
matrix whose rank is 3 was also generated randomly every
simulation, and all the columns of were normalized to have
unit -norm. The parameter and of the GGD were initial-
ized randomly using the uniform function of the range
and to value 1 for all sources, respectively. Under these condi-
tions, 50 simulations were performed for each , and the per-
formance was evaluated in terms of the averaged SIR over 50
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Fig. 5. Performance of estimating ��� according to the number of underlying
sources from three mixtures.

simulations. Given an original source and its estimate , SIR
in decibels is defined as

(28)

Fig. 5 illustrates the averaged SIRs when the number of the
sources increase from to 6. The proposed algorithm
achieved about 2.5 dB higher SIR for and
and 1.2 dB higher SIR for than the other algorithms,
respectively. The SIRs obtained using the FOCUSS algorithm
were slightly higher than those obtained using the -norm min-
imization. The performance was degraded as the number of the
underlying sources increased.

Fig. 6 shows the learning curves of the proposed algorithm
for updating the parameters of GGD. The solid and dotted lines
represent the parameters estimated using the proposed algo-
rithm and from the original sources, respectively. As shown in
Fig. 6(a), converged to a value close to those obtained from the
original sources that correspond to super-Gaussian distributions
from randomly initialized values after iteration 2, and as shown
in Fig. 6(b), also converged to the values close to those esti-
mated from the original sources after iterations 2.

2) Sparse and Non-Sparse Signals: The separation of four
synthetically generated sparse (super-Gaussian) and nonsparse
(sub-Gaussian) sources from three mixtures was performed in
the time domain using the proposed and -norm minimization
algorithms. In this simulation, was known.

Fig. 7 shows separation results obtained using both the pro-
posed and the -norm minimization algorithms. The first two
plots in Fig. 7(a) are the sub-Gaussian sources, and the other
two are the super-Gaussian sources. The three plots in Fig. 7(b)
represent the three mixtures. The four plots in Figs. 7(c) and
7(d) represent the estimated sources using the proposed and the

-norm minimization algorithms, respectively.

Fig. 6. Learning curves of the proposed algorithm for updating the parameters
of the GGD based on the EM. The solid and dotted lines represent the parameters
estimated using the proposed algorithm and from the original sources, respec-
tively. (a) Learning curves for ��� of GGD. (b) Learning curves for ��� of GGD.

As shown, the proposed algorithm separated both super- and
sub-Gaussian sources better than the -norm minimization al-
gorithm. This result can also be verified in Table I, which shows
the kurtosis values of the original and estimated sources: ,

, and are the kurtosis values of the th original source,
estimated source using the proposed algorithm, and estimated
source using the -norm minimization algorithm for 1,
2, 3, and 4, respectively. As shown in the table, the proposed
algorithm estimated the sub-Gaussian sources as well as the
super-Gaussian sources. The proposed and -norm minimiza-
tion algorithms achieved 8.78 and 3.56 dB SIR, respectively.

B. Separation of Speech and Audio Signals

Simulation to separate speech and audio sources from under-
determined mixtures was performed. For speech and audio sig-
nals, a sparser representation can be obtained in the TF domain.
In order to achieve better separation of the signals, the proposed
underdetermined BSS algorithm was applied in the TF domain

Authorized licensed use limited to: MIT Libraries. Downloaded on December 7, 2009 at 11:07 from IEEE Xplore.  Restrictions apply. 



KIM AND YOO: UNDERDETERMINED BLIND SOURCE SEPARATION 2611

Fig. 7. Separation of the synthetically generated two sub- and two super-Gaussian sources from three mixtures. (a) Four original sub- and super-Gaussian sources.
(b) Three mixtures. (c) Four estimated sources using the proposed algorithm. (d) Four estimated sources using the � -norm minimization algorithm.

TABLE I
KURTOSIS VALUES OF THE ORIGINAL SOURCES AND THE ESTIMATED SOURCES

USING THE PROPOSED AND THE � -NORM MINIMIZATION ALGORITHMS

with the transform distribution of the sources modeled by the
GGD. For the TF transform, we used the STFT with the Han-
ning window whose length was 512 samples and 50% overlap.

In this simulation, the separation was performed on the four
sets of the signals: various instruments such as guitar, drum,
base, and keyboard (set 1), speech signals (set 2), various kinds
of sounds such as bell, car, airplane, and train (set 3), and various
genres of music such as classic, rock, jazz, and pop (set 4). All
the signals were sampled at 16 kHz and had the length of 80 000
samples except that speech signals had the length of 60 000 sam-
ples. The proposed algorithm was compared to the conventional
algorithms based on the TF nondisjoint assumption [19], the TF

disjoint assumption [18], and the -norm minimization [14].
The -norm minimization algorithm was applied in the TF do-
main, and the transform distribution of the sources was modeled
by a Laplacian. A modified version of the algorithm proposed in
[18] that can deal with more than two mixtures was implemented
for comparison [19]. Prior to the separation simulation, was
estimated using aforementioned algorithms in the TF domain.
The -norm minimization algorithm used an estimate using the
SSD algorithm.

1) Estimation of : A mixing matrix was estimated using
the proposed and conventional algorithms in [18], [19]. In the
evaluation, the columns of were all normalized. Typically,
was set to 0.01.

For example, the result of estimating 3 4 mixing matrix
using the proposed algorithm with the instrument signals is

shown. We obtained 3 mixtures by mixing 4 sources using 3 4
mixing matrix given as

(29)
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Fig. 8. Three-dimensional scatter plots of the mixtures in the TF domain. (a)
Scatter plot of the real and imaginary parts of the STFT coefficients of the mix-
tures in � . (b) Scatter plot of the real and imaginary parts of the STFT coeffi-
cients of the mixtures in � .

The scatter plots of the real and imaginary parts of the STFT
coefficients of the mixtures in and are shown in Fig. 8. The
3-D scatter plot of the STFT coefficients of the mixtures in is
shown in Fig. 8(a). It shows a single big cloud, so it is difficult to
find the column vectors from the scatter plot. Fig. 8(b) presents
the 3-D scatter plot of the STFT coefficients of the mixtures
in . The data points are plotted along the directions of the
column vectors of , which leads to a good estimation of .
The estimated matrix using the proposed algorithm based on
the SSD is as follows:

(30)

after reordering and changing the sign. All the column vectors
of were estimated to be close to those of .

The mixing matrix was estimated with the speech
signals using the proposed and conventional algorithms in [18],

Fig. 9. Performance of estimating� according to the number of the underlying
sources using three mixtures.

[19] for , 5, and 6. The performance of the estimation is
evaluated in terms of a new criterion, denoted as , which is
defined as

(31)

where denotes the Frobenius norm of . Fig. 9 shows
the averaged for 50 simulations according to . A
mixing matrix whose condition number is less than 5 was
randomly generated every simulation for 4, 5, and 6, and
the columns of were all normalized.

As shown in the figure, the proposed algorithm based on SSD
performed better than both algorithms. As the number of the un-
derlying sources increased, the estimation error also increased;
the increment of the estimation error of the proposed algorithm
was much smaller than those of the other algorithms.

Simulation with additive white Gaussian noise was per-
formed by varying signal-to-noise ratio (SNR) from 5 to 35 dB
in the 3 4 case. In this simulation, SNR is defined as the
ratio of the power of each mixture to that of the noise. For a
reliable estimation of , the proposed used only high energy
TF points in determining . This is possible since using the
SSD algorithm we only need at least one TF point of SSO for
each source. Fig. 10 shows the performances of various mixing
matrix estimation algorithms under various SNR conditions.
As shown in the figure, the proposed algorithm estimated
more accurately and was more robust to noise than the other
algorithms. When the SNR was above 10 dB, the proposed
algorithm was relatively insensitive to noise, while the perfor-
mances of the other algorithms degraded linearly with the SNR;
however, when the SNR is below 10 dB, the performance of the
proposed algorithm degraded faster than the other algorithms.
This can be attributed to the difficulty in detecting TF points of
SSO at low SNR.

2) Estimation of : Simulations to separate four sources from
three mixtures were performed on the four sets of the sources in
the TF domain. Fig. 11 shows the SIR performances for each
set. The estimated matrices that were obtained using each al-
gorithm were used in the subsequent simulation for separating
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Fig. 10. Estimation error of� according to SNR.

Fig. 11. Performances of the proposed, the TF nondisjoint, the TF disjoint,
and the � -norm minimization algorithms to separate four sources from three
mixtures for each set: instruments (set 1), speech (set 2), various sounds (set 3),
and music (set 4).

the sources. The -norm minimization algorithm used esti-
mated using the SSD algorithm. As shown in the figure, the pro-
posed algorithm achieved more than 6.5 dB improvement over
others in terms of SIR for set 1, 3, and 4 and more than 1-dB
improvement over others in terms of SIR for set 2. The algo-
rithms based on the TF disjoint and nondisjoint led to sources
with audible distortion. The demo files are available at http://
mmp.kaist.ac.kr/~ifree/demo.html.

By varying the SNR from 5 to 35 dB, simulation to separate
four speech signals from three mixtures was performed. Fig. 12
shows the SIR performance of each algorithm according to the
SNR. The proposed achieved higher SIR than the other algo-
rithms when the SNR was above 10 dB. When the SNR was
below 10 dB, the algorithm based on the TF disjoint achieved
higher SNR than the other algorithms, however, the audible dis-
tortions in the estimates of the sources were much more severe
than those of the other algorithms.

Fig. 12. Performances of the proposed, the TF nondisjoint, the TF disjoint,
and the � -norm minimization algorithms to separate four sources from three
mixtures according to SNR for speech.

VIII. CONCLUSION

This paper considers a problem of blindly separating the
sources of sub- and super-Gaussian distributions from under-
determined mixtures. In this paper, first a novel algorithm for
estimating based on the SSD in the TF domain is proposed.
The TF points that include a single source are detected using
the SSD algorithm, and the TF coefficients of the mixtures at
the TF points are used to estimate . Even when there is only a
single TF point where the single source is active, the proposed
algorithm can detect the TF point and estimate the column
vector of that corresponds to the source active at the detected
TF point. Second, in order to characterize and model sub-
and super-Gaussian distributions, the parametric GGD is used,
and its parameters are estimated based on the EM algorithm.
Finally, pertaining to estimating is estimated to minimize
the MSE between its true and estimated value. This reduces
the dimension of the estimator from of to of .
This paper showed that the estimation of based on the MMSE
leads to an optimum estimation of for the MSE criterion.

Simulation results show that the proposed underdetermined
BSS algorithm estimated the mixing matrix with higher ac-
curacy and separated both sparse and nonsparse signals with
higher SIR than the conventional algorithms.
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