
:- :- f' : : :-r::: -: :0:0040:= ;20>:0 00L: :00working0 ;paper 0-: I0 _::00;z00 r 1,;: : .::tDa

..... :: I,.: ... ; .- :: ,: .~ : .

.... -: ,.- i-: ...- j, :-: :::.! :- - :. .. .

aMAS SACHUSET:S . INST I TU TE:

OF TECHNOLOGY.' : :' ;' - ' :. . '- '' : ..: '- - '. . .
UrJX'A'S;S~~~~~~~~~~tSS~~~~iSS'V 4 , t0000000{00.t f ftag: fS0 0 fA t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~qo

i.:-'·r;ii�·:-;- -- �--·: �--, ' ·I

-'·
-- -·; · -. :

i'.�-r .---·

i:
:-··

··:. :: ·.r
I ;·-. ;·`..-;·... .- .i . .i;

i

.i

;·

:·-

:i···

IMPLEMENTING PRIMAL-DUAL

NETWORK FLOW ALGORITHMS*

by

H.A. Aashtiani**

and

T.L. Magnanti

OR 055-76 June 1976

* This research has been supported in part by the U.S. Depart-
ment of Transportation under contract DOT-TSC-1058, Trans-
portation Advanced Research Program (TARP) and by the Office
of Naval Research under contract N00014-75-C-0556.
Most of the results of this report were presented at the
National ORSA/TIMS meeting, Chicago, May 1975.

**Supported by the Arya-Mehr University of Technology, Iran.

I

ABSTRACT

We show how data structures similar to those proposed recently for

implementing primal simplex based codes for solving network flow problems

can be used to implement primal-dual algorithms, particularly the out-

of-kilter algorithm. We also study several variants of a basic implemen-

tation which incorporate options for labeling, for making cost changes,

for sequencing the selection of out-of-kilter arcs, and for implementing

the primal-dual algorithm. Our investigations indicate that storing and

manipulating data efficient leads to substantial reductions in computation

time as well as storage requirements.

0

I. INTRODUCTION

A number of recent investigations of network optimization have illus-

trated the importance of using efficient data handling procedures to

improve algorithmic performance. Gilsinn and Witzgall [19], Golden [27],

Johnson [34], Pape [51], and Yen [58] have suggested methods for implement-

ing shortest route algorithms; Kershenbaum [36] and Kershenbaum and

Van Slyke [37] have proposed methods for implementing minimum spanning

tree algorithms; and Golden, Magnanti, and Nguyen [29] have reported new

implementations of vehicle routing algorithms.

In a continuing effort, Glover and Klingman and their colleagues at

the University of Texas [9,20,21,22,23,25,26,39,40] have applied ideas first

advocated for network applications by Johnson [32] to develop PNET, a major

new implementation of the primal simplex method for minimum cost network

flow problems (Dantzig [11] and [12]). Using the so-called triple-label

list processing structure for describing routed trees within a computer

(Scoins [54]), this code has made an order of magnitude improvement upon

running times from previous generation minimum cost network flow codes.

Motivated by these results and by independent contributions by Graves and

McBride [30] and Srinivasan and Thompson [57], several additional codes

have been designed [6], [7], [35], [45] which improve upon PNET by incor-

porating out-of-core implementations, alternative pivoting strategies, and

variants to the basic list processing capabilities of PNET.

The success of these new generation codes cast doubt upon the pre-1970's

"folklore" that primal-dual approaches, and particularly the out-of-kilter

algorithm, for minimum cost network flow problems are superior to primal

simplex-based approaches. In fact, Barr, Glover, and Klingman's [4]

computational experience indicates that PNET is faster and uses less storage

than an improved version of the out-of-kilter algorithm that they have

developed,

Hatch [31], in summarizing computational experience for an improved

version of primal-dual approaches for transportation and assignment problems,

suggests different conclusions. His experience indicates that this new

code is more efficient than PNET-1, a modified version of PNET, especially

for large scale assignment problems. Unfortunately, he does not discuss

any of the details of his implementation.

Several additional researchers [2], [3], [8], [13], [15], [38], [43],

-2-

[46] have either proposed other algorithms for minimum cost flow problems

or discussed computational experience for this class of problems. For more

complete references, see the Bradley [5] and Glover and Klingman [24] surveys

and Golden and Magnanti [28] bibliography.

In this paper, we report on new in-core implementations of primal-dual

network flow algorithms that use list processing structures similar to, but

somewhat more involved than, those used for the newer primal codes. Compu-

tational experience suggests that our primal-dual codes are competitive with

PNET in terms of running time, especially for assignment problems. In

addition, our primal-dual code can be implemented by storing six node

length vectors and five and one-half arc length vectors. These storage

requirements are less than those for most previous implementations of primal-

dual algorithms, but exceed requirements for primal based codes.

We should emphasize that we are reporting computational comparisons

between our code and PNET as implemented initially. The primal codes, as

refined by several researchers since this implementation of PNET, now run

considerably faster. We would expect that a similar level of effort would

improve upon the code presented here, while still using the basic constructs

that we suggest. We have, in fact, been surprised to find that minor changes

in our implementation, as discussed later, have had pronounced effects

upon running time. Given this experience, we can envision reductions to

the running times of the codes discussed here.

In addition, almost all experimental results published to date for

either primal or primal-dual codes concern one time solution of single

problems. Other experiments, such as solving network flow problems several

times as a subproblem for a decomposition application, might conceivably

provide different comparisons between codes.

This paper is organized as follows. The next section briefly reviews

the out-of-kilter algorithm, emphasizing its computational requirements.

Section III describes data structures used i our implementations, which

are discussed in section IV. The final section summarizes our computational

results. Throughout the paper, we discuss the out-of-kilter algorithm as

a general purpose primal-dual algorithm. Section IV specializes the algorithm

to give the primal-dual algorithm.

-3-

II. COMPUTATIONAL REQUIREMENTS OF THE OUT-OF-KILTER ALGORITHM

We assume that the minimum cost flow problem is formulated with decision

variables xij as:

Minimize Z Cij Xi
i j

subject to x.. - Xki = bi (i=1... N) (2.1)
j k

0 < x < uxi i (all arcs i-j).

The indices in each summation are restricted to nodes i, j and k corresponding

to (directed) arcs i-j and k-i in the given network. We further assume that

the data cij, uij, and bi are integers and that the network does not contain

multiple arcs.

This formulation encompasses any single commodity (linear) network flow

problem including transportation and assignment problems [16]; any network

with nonzero lower bounds is converted to this general form by simple

changes of variables, and multiple arcs can be modeled as above by inserting

an additional node along any multiple arc.

Let r.i for i=l,...,N denote dual variables or shadow prices for the

i equality constraint and for each arc i-j let

cij = cij - i j+ f

denote its reduced cost.

The out-of-kilter method starts with, and maintains, values xi j of the

primal (flow) variables satisfying the equality constraints in (2.1), and

systematically changes values of both the primal variables and dual variables

until the following optimality conditions are satisfied:

O<x <u..
ij - 1J

c.. > ifx = 0

cij = O if < xij < uij

ci < if xij uij (2.2)

for every arc i-j in the network. Following Fulkerson [17], we say that

any arc violated these conditions is out-of-kilter arc, and any arc satisfying

-4-

these conditions is in-kilter.

Since several authors [16], [17], [33], [42], [48], [56] have carefully

discussed the details of the out-of-kilter algorithm, we will only

provide a brief summary, emphasizing those aspects of the algorithm that

are most essential for understanding implementation.

We first set some notation. We say that node j is reachable from node '

i if either

(1) cij < 0 for arc i-j and xij < u

(2) cij > 0 for arc i-j and xij < 0

(3) ci > 0 for arc j-i and xji > 0

or (4) cji < 0 for arc j-i and xji > uji

For fixed values of the dual variables, reachability corresponds to possible

flow changes (increasing xij for cases 1 and 2 and decreasing xji for cases

3 and 4) that either (i) maintain optimality for in-kilter arcs, or (ii)

move "toward"optimality for out-of-kilter arcs.

For fixed values of the flow variables xij and dual variables ri', let

G be a directed graph on nodes 1,2,...,N that contains arc i-j if node j

is reachable from node i. We will say that node j is reachable from node k

via an augmenting path if there is a (directed) path in G connecting node k

to node j.

The out-of-kilter algorithm starts with any given values i for the dual

variables and any given values xij for the primal variables satisfying the

equality constraints in (2 .1), Suppose that k-Z is an out-of-kilter arc

satisfying condition (1) or (2) above or that -k is an out-of-kilter arc

satisfying condition (3) or (4). In either case, is reachable from k and

arc k-k belongs to G; to simplify our exposition, we will refer to the arc

k- in G as an out-of-kilter arc even though this arc may correspond to

arc -k in the original network. Given arc k-Z, the algorithm searches

for an augmenting path in G connecting node to node k to form a cycle C

containing arc k-2. The next step of the algorithm depends upon whether

or not k is reachable from for the current values i of the dual variables;

let R denote the set of nodes that are reachable from node in G via an

-5-

augmenting path. The two contingencies, are:

(i) k R, that is node k is reachable from node . By definition

of G, each arc i-j in the cycle C corresponds to a "forward"

arc i-j or a "backward" arc j-i from the original network.

The flows xij on forward arcs become xij+ and the

flows x. on backwards arcs become x. .- where
3ji 13

= min{Oij for arcs i-j of C} and

iu -xij if i-j is a forward arc of C and cij < O

-Xi if i-j is a forward arc of C and cij > 0
ij

xji if j-i is a backward arc of C and cij > 0

xji-u ji if j-i is a backward arc of C and cji < 0.

(ii) k R. The values dual variables ni for iER become

Ti+6 for a suitable choice of 6. These alterations do not

effect cij if both i and j belong to R or both i and j do not

belong to R. If i-j is a boundary arc, that is iR and jR or

i4R and jER, then cij changes. In the first case it becomes

cij-6 and in the second case it becomes cij+6, The value for 6 is

6 = min {61,62} where

6 = min {cij : iR, jR, cij > 0 and 0 x < i j < uij}

62 = min {-cij: iR, jR, cij < 0 and 0 < xij < u .}

Once these steps have been completed and the values of either the

primal or dual variables have been altered, the graph G changes and the

steps are repeated. The sources cited previously as references for the

out-of-kilter method show that the algorithm terminates after a finite number

of steps (see also [14] and [52] for modifications relaxing our assumptions

on integral, or rational, data).

To summarize, the basic computational requirements of the algorithm at

any step are:

(1) Labeling: showing that kR or finding R when ktR,

(2) Flow Change: computing in step (i) and updating flows, or

-6-

(3) Cost Change: computing 6 in step (ii) and updating cij. To

compute 6, we must first retrieve from storage cij for all

boundary arcs with iR, jR or iR and jR. (In our implementa-

tion, we do not stora values of the dual variables i;

rather, we store and update the reduced costs cij).

In section IV, we consider implementing these computations and discuss

several options for the implementation such as the primal-dual algorithm.

We first review basic list processing structures for storing and manipulating

data.

-7-

III. DATA STRUCTURES

Solving large optimization problems requires manipulation of large

amounts of data and access of data from large data sets. In most network

optimization problems, we can perform these operations efficiently by

using list processing structures from computer science. Knuth's [41]

impressive reference provides a wealth of material on this subject.

Magnanti [44] reviews some of the constructs used in minimum cost flow

algorithms and illustrates the data structures with examples. In this

section, we briefly indicate the type of data structures used in our

codes and discuss how we modify these data structures during the

course of the algorithm.

Network Structure

In out-of-kilter algorithms, we must frequently retrieve information

about an arc of the network knowing its beginning and ending nodes,

usually gathering data (reduced costs, capacities, and/or flow values)

for all arcs with the same start node or the same end node. Because

searching for a particular arc or set o-arcs from among all the arcs

in a network can be most time consuming, we require a list structure

which would facilitate these operations. Building a latter representa-

tion link structure between all arcs which have same start node and

another between all arcs which have same end node [19] accelerates the

execution of the above tasks.

These link structures can be implemented by two tables - a node

table and an arc table. The first table contains two entries (pointers)

for each node; one points to the first arc in the arc table

which emanates from that node and the other points to the first arc which

comes into that node. The second table contains two entries (pointers)

for each arc i-j; one points to the next arc in the list which has

the same start node i and the other one points to the next arc in the

list with the same end node j. A zero instead of a pointer in either

case indicates that no arc in the remainder of the arc table has the

same start or end node. These two tables link all arcs with same start

node, as well as all arcs with same end node.

When the data are sorted in order of their start nodes, as in many

applications, the first pointer in the arc storage table is not necessary.

But when the data are not sorted, for example when a network is generated

-8-

within the context of another procedure or when a new set of arcs are

added to the network, it may be more efficient to use such a link,

because in most cases, the sorting time is excessive, almost half of

the total solution time for an example to be reported later.

If we let N and A denote the number of nodes and arcs in the network

for the problem, then the storage requirements for these pointers is

2N+A or 2N+2A words depending upon whether or not the data has been

sorted previously. In addition, the arc table includes arc length

vectors for arc costs, arc capacities and arc flows. It also contains

storage to record the start node i and end node j for each arc i-j.

Therefore, we use either 2N+6A or 2N+7A words of storage for this

information. In the next section we show how the arc flows can be stored

in a node length vector in place of an arc length vector. (When the arc

data is sorted by start node, we do not need to record the start node i

of each arc i-j. This information can be recovered, with additional

computations, from the data pointing to the first arc with the starting

node i.)

Tree Structure

Several data structures have been developed for representing a

tree in a computer [41]; the efficiency of each method depends upon

the type of application. For this paper, the major tasks are traveling

through a tree or a branch of a tree, breaking off a branch from a tree,

and connecting a new branch to a tree. Therefore a structure like the

triple-label method ([32] and [54]) seems most useful.

In the triple-label method each node has three labels, a predeces-

sor (up), a successor (right-down), and a brother (left). Like a family

relation, each node has one father and possibly a number of brothers and

sons. The position of a member of family, a node, with respect to other

members of the family in the ancestry tree would be shown by three links

from that member to three other members.

The first link of any node points to its father (predecessor), the

second link points to its oldest son (successor), and finally the third

link points to its next younger brother (brother). Exactly one node in

the tree, called the "root" of the tree, has no father as specified by

a zero for its predecessor.

Since the out-of-kilter algorithm to be considered here works on a

forest structure instead of a single tree, more than one node could have

-9-

no father,besides the root of the current tree being investigated.

We call these nodes "orphan roots", or more simply "orphans"; in our

implementations we designate orphan nodes by a negative number for their

predecessor labels. Thus a forest consists of a tree and a number of

"orphan trees" corresponding to orphan nodes. When performing the

out-of-kilter algorithm, the forest is a subset of the graph G with nodes

1,2,...,N and node is the root of the tree.

The storage requirements for the forest information is 3N. In

addition, we require 2 logical node length arrays - one to indicate

whether a node is labeled (as defined in the next section) and one to

indicate whether an arc i-j in G corresponds to a forward or backward

arc from the original network.

Updating Forests

In our implementation of the out-of-kilter algorithm, we use a

forest structure which must be updated at times either by adding or by

deleting an arc i-j from the forest. Figures 3.1 and 3.2 indicate the

modifications required to the data structures when making these changes.

Note that as shown, we only add arc i-j when node j is an orphan root.

Often in the course of the algorithm we will use these operations

together by adding "the subtree routed at node j to node i". In this

case, we first delete the arc p-j from the forest, where p is the current

predecessor of node j so that node j becomes an orphan root. Then we

add arc i-j to the forest as illustrated in Figure 3.2.

-10-

H

HD

Hp

N

\%

H.

L0OQI

I-h>rJ,ol

I

rt
0

rt

Dm

0
rt

w

0

io

II-1

W

rt

L-.

II
(D

Li.

II

-1

F

H

rtYO

III.3r0H.
vi

I--11
L-l

t
*-d

Ft

n HrnaCDO
00 0

' PED O

0v

0bO0

OQ

HD
He

tD
m

Ot

o(IQ

I
L.

r-1
0

0

rt

Ii

0cl

L.A.

!1

ow

o0rt

L.

II

o

v

IIImcD
aCLA.

II

IH

I

'-1
CD

I
'd
H
(O

I

HII

I

I

w

0
Ft

13,

II
I-.

110rII01

rlt

:3
11-

II
1-

C_

II
o1

i o

t

r-Pr

C)

n(D
co

0o

: FtC(D

0o C

0 P tO

us OH

0

02
CD

n

trt
CD

ID
H
CDmft
F-
P.10

o
0

H

m

:P.

rt

m

HP>
0L0.

P-

I

I
I

-11-

IV. IMPLEMENTATION AND OPTIONS

In this section, we describe implementations of the out-of-kilter

algorithm that use the data structures just discussed. We also consider

several options to the basic implementation, such as a primal-dual

algorithm, that effect storage requirements and/or execution time. We

will adopt the notation used in section II for describing the out-of-

kilter algorithm. In particular, arc k-Z is the arc in G that we are

trying to place in-kilter at the current iteration of the algorithm.

Labeling and Forests

Implementations of the out-of-kilter method perform the first

requirement at each step, determining whether or not node k is reachable

from node via an augmenting path in the graph G, by constructing a

tree rooted at node . The computations start with an initial tree T

rooted at node , possibly consisting solely of node . If at any point

in the construction no node jT is reachable from a node iT, then T

cannot be enlarged and the set R of nodes reachable from via an augment-

ing path coincides with the nodes in T. Otherwise, some node jT is

reachable from a node iT. After finding such a pair of nodes, the

algorithm adds node j and arc i-j to the tree. This process is repeated

until either node k has been added to the tree or the tree cannot be

enlarged any further.

We adopt standard notation and say that any node contained in T is

labeled and any labeled node i is scanned if we know that no node jT

is reachable from node i.

There are several possible options for implementing this general

tree growing procedure. The most straightforward implementation would

initiate the procedure from scratch with T = {} after each flow change,

or whenever we select a new out-of-kilter arc k-k from G. This type of

implementation ignores a great deal of information generated previously

by the algorithm. Suppose, for example, that we have just added node k to

the tree T shown on the left in Figure 4.1. The change in flow along the

path from node to node k might remove one or more of the arcs along this

path from G; no other arc in G will be altered, though. Suppose, in this

instance, that the flow change causes only arc 25-3 to drop from G and

that node 3 is reachable from node 6. Then if we add node 3 to the tree indi-

-12-

Figure 4.1 Saving Information After Flow Changes

cated within the box in Figure 4.1 and, at the same time, add the entire

path P from node 3 to node k, then we find a new path from node to

node k easily. By recalling that whenever we reach node 3, we may also*

reach node k, we have eliminated adding the arcs along P to the tree

one arc at a time.

We implement this idea by storing and manipulating a forest in G

which will include the tree being constructed as one component as well

as components, such as the path P, which contain other reachability

data. We assume that every node in G is contained in one component of

the forest; some components may consist of a single node.

We update the forest structure at three points within the algorithm:

(1) Each time we select a new out-of-kilter arc k-Z, we must make

node the root of the current tree, if it is not already the

root. This task can be accomplished easily by (i) setting

the predecessor of the current root to -1 so that it

becomes an orphan root, (ii) breaking-off node from its

predecessor p (i.e. deleting arc p- from the forest), if

node is not already an orphan root, and (iii) setting the

Nie

-13-

predecessor of node Q to 0 to designate that it is the root

of the tree. At this point the tree may contain only node ;

however, it usually contains more nodes and possibly even

node k.

(2) Whenever we want to add a new arc i-j in G to the tree, when

i is in T, we add the subtree in the current forest rooted

at j to node i.

(3) After each flow change some of the arcs in the cycle C

may leave G. For each such arc i-j we simply delete the

arc i-j from the forest so that node becomes a new orphan

root.

These modifications to the labeling procedure permit us to retain

labeling information from step to step. As we have seen, the data

manipulations for making the required changes in the forest structure in

each case are simple to implement using the list processing structures

described in the last section.

Labeling Order

The solution time for out-of-kilter algorithm is very sensitive to

how, and in which order, the algorithm "travels" through a tree visiting

and labeling the nodes when constructing T. We distinguish two major

procedures concerning the order for traveling through the tree.

In the first procedure we travel by level, "first-labeled first-

scanned" [9], adding to the tree all possible arcs in G from any node

when it is visited. In the second procedure, we travel to the right,

"last-labeled first-scanned", as soon as possible, in an attempt to find

an augementing path from to k quickly by following each branch

until we reach a node where the tree cannot be extended further.

Experiments have shown that although the lengths of the augmenting paths

for the first procedure are shorter than those produced by the second

procedure, yielding in fact the shortest paths from to k [9], the first

procedure is much slower than the second procedure.

The following sequence of instructions are followed for the traveling

and labeling procedure when traveling to the right. By the current node,

we mean the node from which the method is now scanning to add any possible

augmenting arcs.

-14-

Step 1 - Move downward and to the right as much as possible from

the current node by moving from each node encountered to

its successor, until a node j is found with no successor

in the current tree T. Go to Step 2.

Step 2 - If there is no arc i-j in G from the current node i to

a node j not in the current tree T, then go to Step 3.

Otherwise, select any such arc i-j in G and add the subtree

rooted at node j to the current tree below node i.

If k lies in the subtree, then terminate; we have found

an augmenting path from node to node k. Otherwise,

designate node j as the current node and go to Step 1.

Step 3 - No unlabeled node is reachable from the current node;

that is, the current node is scanned. If the current node

has a brother, then continue with Step 1 with its brother

designated as the current node;otherwise go to

Step 4.

Step 4 - If the current node has a father then continue Step 1 with

the father designated as the current node; otherwise

there is no augmenting path from node to node k with

respect to the current node potentials and the node

potentials must be changed.

In contrast, when labeling by level we start at the root, at "level"

n=O, in the tree, and continue to travel through the tree by level

(n=1,2,...). For each level n, we move from the right to the left in

the tree through the labeled nodes which are in the same level (that

is, have the same number of arcs in the tree in the path joining them and

the root); we scan each node i as we encounter it, adding all unlabeled

nodes (and the subtree rooted at these nodes) reachable from node i to

the tree.

Options for Traveling and Labeling

There are several options which we may use when searching for an

augmenting path. First, whenever an arc i-j from G is added to the tree,

to recognize whether node k appears in the subtree rooted at node j it

is necessary to move from node k toward its predecessors. We can avoid

repeating this task several times by using one node-length logical array

-15-

to keep track of nodes in the path between node k and the orphan root

corresponding to the orphan tree which contains node k. Then when we

add node j to the tree, we merely check the logical array to see if

node k belongs to the orphan tree with j as an orphan root. The logical

array is recomputed whenever we start the labeling process with an out-

of-kilter arc R-k; that is, after we make a flow change or select a new

out-of-kilter arc.

Secondly, the method can work on several out-of-kilter arcs simulta-

neously instead of a single arc at each iteration. We may simultaneously

consider all out of kilter arcs j-k in the graph G for all j, and search

for augmenting paths that start at node and end at one of the nodes

j. This option can be implemented using the same logical array used

when only a single node j=k is considered, as above, by keeping track

of all nodes which are in the paths between each such node j and its

corresponding orphan root. This implementation needs more work per

iteration, but finds augmenting paths in fewer iterations.

Implementing the Flow Changes

After finding an augmenting path from node to node k, we have used

a two-pass procedure to change the flows. In the first pass the maximum

flow change, , is calculated (see the algorithm description in Section II);

in the second pass, we make the flow changes. Any arc in the augmenting

path reaching the maximum flow change breaks off from the tree T and its

successor node becomes an orphan root. Each pass is performed easily by

moving backward from node k toward node using the predecessor relation.

An alternative procedure is to maintain the maximum flow change

possible from the root to every node in T as the tree is being constructed.

We can then eliminate the first pass in the flow change segment of the

algorithm.

Implementing the Cost Changes

Like flow changes, the cost changes can be implemented by a two-pass

procedure. In the first pass we calculate the maximum allowable cost

change, 6, and in the second pass we perform the cost changes. For each

pass we may use the same traveling procedure used when labeling, starting

at the root of the tree, to access to all boundary arcs between the

-16-

labeled nodes and unlabeled nodes in the network.

There are optional implementations which may be used for this step.

During the first pass, we could save a list of all boundary arcs in an

array for use in the second pass and avoid using the traveling procedure

again. The maximum dimension of this array is usually less than the

half of the number of the arcs. This implementation has had a great

effect on the solution time.

During the second pass of the cost changes, we could also construct

a list of all labeled nodes i corresponding to boundary arcs i-j that are

added to the graph G after the cost change. If arc k-k still remains out-

of-kilter after the cost change, then instead of starting the labeling

procedure at the root of the tree again, we continue the procedure with

the nodes in the list (since no arc will be added to any node of the tree

not in the list, these nodes will already have been scanned). A "first-

in first-out" queue structure is suitable for choosing the nodes from

this list.

We can imbed this queue structure within the labeling procedure

discussed previously; when starting with a new out-of-kilter arc, we

empty the queue and put ,the root of the tree,in the queue. At each step

we select a node from the top of the queue as the current node and apply

the traveling procedure starting from this current node; if the traveling

procedure ends without any augmenting path, we then select the next node

from the queue to use as the current node and initiate the traveling

procedure again. When the queue is empty, we have completed labeling

without finding an augmenting path, and we next envoke the cost change

segment of the algorithm.

The above option greatly improves the solution time without using

much extra storage, since the maximum length of the queue is usually very

short (about one tenth of the number of nodes in our experimentations).

There is another option which might be used in place of the first

pass of the cost change routine. Since the exact set of boundary arcs

is hard to identify during the course of the labeling routine, we could

choose to store a larger set - all arcs i-j with the property that

node jT is not reachable from node i when scanning node i. This set

contains all of the boundary arcs and possibly other arcs i-j since node j

might be labeled from some other node of T during the labeling process,

even though it couldn't be labeled from node i. Our computational experience

-17-

showed that this option was not effective.

Order of Choosing the Out-of-Kilter Arcs

There are several options concerning the manner and order for choosing

the out-of-kilter arcs to bring in-kilter, especially when artificial arcs

have been added to place the problem into a circulation form. This well

known network device [16] permits the algorithm to start with any values

x.. for the arc flows. Recall that the artificial variable technique

expands the network to satisfy the conservation equation f(i) = b.i for

i=l,...,N, where
f(i) = Z xij - Z Xri

j r

is the net flow out of node i, by adding a "super source" and "super sink".

An artificial arc with initial flow f(i) and capacity b.i connects the

super source to any "source node" i with b. > 0 and f(i) # bi. An

artificial arc with initial flow -f(i) and capacity (-bi) connects any

"sink node" i with b. < 0 and f(i) b. to the super sink. In addition, one
1 1

arc with capacity {bilb i > 0 and f(i) bi } and initial flow

E{f(i)lb i > 0 and f(i) # bi } connects the super sink to the super source.

Imposing large negative costs on all of these arcs ensures, if

possible, that the artificial arc joining node i from the original network

has flow equal to bi in the solution to the expanded problem. In this case,

every artificial arc is out-of-kilter initially. Alternately, if we

assume that the initial flow in every artificial arc does not exceed the

arc capacity (as for example when starting with zero flows so that each

f(i) = 0), then the procedure can start with only a subset of these arcs

out-of-kilter:

(i) only the arc connecting the super sink and super source,

(ii) only the arcs joining the super source with the source nodes, or

(iii) only the arcs joining the sink nodes with the super sink.

In each case, we impose large negative costs on the arcs specified in

(i), (ii), or (iii) and set to zero the costs in all other artificial

arcs; when the arcs specified in (i), (ii), or (iii) are in-kilter for

each case, then all of the artificial arcs are in-kilter and satisfy

f(i) = b..

The results presented in the next section show that the second option

is more efficient; the reason might be that the tree spans more nodes for

-18-

the other options and becomes more costly to work with.

Initial Solutions

The out-of-kilter algorithm can start with a zero feasible solu-

tion or with a nonzero feasible solution, provided by an initialization

procedure such as the Modified Row Minimum Rule [21,22,57]. Many recent

codes start with a nonzero feasible solution claiming that such initial-

izations lead to more efficient implementations, but the results in the

next section run counter to this claim, at least for our implementation

of out-of-kilter algorithm.

The Primal Dual Algorithm

The primal-dual algorithm for the minimum cost flow problem starts

with, and maintains, arc flows xij satisfying the optimality conditions

(2.2), and terminates when the conservation (equality) equations of (2.1)

are satisfied. We can use the out-of-kilter algorithm to implement this

algorithm, starting with any given values (possibly zero) for the dual

variables 7ri' or equivalently, starting with any given values cij for the

reduced costs of the arcs. (Shapiro [55] has discussed relationships

between the primal-dual and out-of-kilter algorithms).

We initiate the algorithm by setting the flow on any arc i-j to

j=0 if cij 0 and to xj = uij if cij < 0, therefore satisfying

conditions (2.2). We next introduce a super source and super sink, as

discussed previously, to place the problem into circulation form. The

out-of-kilter algorithm will then continue to satisfy the optimality

conditions (2.2) for every arc in the original network.

It is possible to implement this algorithm by allowing only the arc

k-k and the arcs in the forest to have flow not assigned to one of its

flow bounds. The initial solution with the artificial arcs as the only

arcs in the forest satisfies this property. To maintain the property

throughout the algorithm, we must be sure that whenever an arc i-j is

deleted from the forest, its flow is xij = 0 or xij = uij.

To ensure this condition requires modifications to the algorithm,

though. When adding node j to the tree during the labeling process, we

first delete arc i-j from the forest, where i is the predecessor of node

j. If 0 < xij < uij and cij = 0, then we simply reverse the predecessor

relation between nodes i and j so that i becomes a son of node j. This

-19-

reversal is possible, in this case, because i and j are reachable from

each other.

This technique applies to any arc from the original network, since

these arcs start, and thus remain, in-kilter satisfying one of the three

conditions xij = 0, xij = uij or 0 < xij < uij and cij = 0. The method

might not be applicable if the arc i-j to drop from the forest is an

artificial arc though, since, in this case, the arc might not satisfy

any of these three conditions. In this instance, we modify the out-of-

kilter algorithm by reversing the predecessor relation between nodes i and

j, even though node j is not reachable from node i according to our

previously established conventions. The algorithm will retain its

convergence properties though, since no in-kilter arc ever becomes out-of-

kilter and, in Fulkerson's terminology ([16] or [18]), after each flow

change the "kilter-number" of arc k-2 either improves by an integer or

remains unaltered and one more node is added to the current tree. Conse-

quently, after a finite number of iterations the solution is optimal with

all arcs in-kilter, i.e. all kilter-numbers are zero. This modified

version of the out-of-kilter algorithm behaves somewhat differently than

the original version, since the kilter-number of some of the artificial

arcs might increase during the execution of the algorithm.

-20-

V. EVALUATING THE NEW CODE

This section summarizes computational experience with the new code,

called KILTER, compares the code with other available codes, and indicates

how the implementation options discussed in the previous section affect

the total computation time. The section illustrates possible tradeoffs

between computation time and storage.

Comparing KILTER with Other Codes

Klingman, Napier, and Stutz [40] have benchmarked the out-of-kilter

codes SHARE [10,50], Boeing, SUPERK [4], and the primal network code

PNET on 40 different types and sizes of problems created by NETGEN, a

computer program for generating minimum cost flow problems. We have

chosen a subset of these 40 problems for our computational experiments,

selecting different types and sizes of problems.

Table 5.1 specifies the developer, code name, approach, and the storage

requirement for several recent computer codes for solving network flow

problems. Table 5.2 shows the input specifications of test problems that

we have used; included are problems for transporation models, assignment

models, capacitated network models, and an uncapacitated network model.

Table 5.3 presents the computational times (excluding input and out-

put) for solving problems, as created by the NETGEN generator, with the

test specifications. The solution times for the SHARE, Boeing, SUPERK,

PNET and I/O PNET codes were obtained (in [35] for I/O PNET and in [40]

for the other codes) on a CDC 6600 computer using the FORTRAN Run compiler,

while the times for the KILTER code were obtained on an IBM 370/168 computer

using the FORTRAN G compiler (which is similar to the RUN compiler).

A noteworthy feature of the computational results is that the newer

generation codes I/O PNET, PNET, SUPERK and KILTER are decidedly superior

to the other codes. Roughly, I/O PNET, PNET, SUPERK and KILTER are at

least four times, and in many cases 8-10 times, faster than the other codes.

Also, PNET is roughly twice as fast as the efficient out-of-kilter code

SUPERK. I/O PNET is within 10% of SUPERK with respect to total solution

time (central processing time and accessing time to the out-of-core file)

and is consistently faster with respect to central processing time (cp).

Comparison of KILTER with SUPERK and PNET is difficult because of

limited computation experience. But, from the results of Table 5.3 it seems

-21-

Table 5.1: Code Specifications

Developer

1. Aashtiani and Magnanti

2. Barr, Glover, and
Klingman

3. Bennington

4. Boeing

5. Clasen

6. Glover, Karney, and
Klingman

7. Glover, Karney, and
Klingman

8. Glover, Karney,
Klingman, and Stutz

9. General Motors

10. Karney and Klingman

11. Texas Water Development
Board

Name Approach

KILTER Out-of-kilter

SUPERK Out-of-kilter

BENN

Boeing

SHARE

PNET

DNET

Non-simplex

Out-of-kilter

Out-of-kilter

Primal network

Dual network

PNET-I Primal network

GM Out-of-kilter

PNET I/O Primal network
(In-core out-of core)

TWB Out-of-kilter

Number of Arrays

6N + 5(1/2)A

4N + 9A

6N + 11A

6N + 8A

6N + 7A

9N + 3A

9N + 3A

8N + 3A

3N + 6A

7N + 3BA

4N + N2 + 7A

N : Node-length array

A : Arc-length array

BA : Buffer array

*
One node length array could be reduced in size to about (/lO)N.

-22-

10 000000000

0 0 0 0 0 0 0 E a er u' ef ur 5 r t D er 5ra V3 hiC C C Cq C C cV N c O 00 O O OIn Ln n n Ln n n *no m m m m m m m m m
z r H r-i r- r-i -- I - r-

0 0

' 0 0 0 0 0 0 0 0 0

P U CC 0 00

0o o o o o o 0 0 O mVH 4. C

V o o o o o o Oo4 o oP4 M C 0 000
.W

C-,i - O

o

0 0 0 0 o o

D00 0 0 0 C0 O N C04-4 U O O O O O O -O O O

0 IP c)rl - l 0 Lrl -It %0 O0

44 C 0000000 N 0

oX H H C ..4ZO -C

O 0,{ H H H w- H

C o10 0 O O 000 O OOE-r cn O H On O O O

Z Z

-4Z r 0 0 0 0 0 0 0 C 0 0. -

Pc ~ ~ ~ ~ _

C)

0k

0)

aor.o.r-r-

I,

co
0

to4.

4.

o

X o P

a) 0

o g; 4.

ooa~o4 C aa 0 0 0

I c o - 4. 0-I *-C Co 0 s1 Co Co
4.1 C U <
0)0)0):

1-4141-4 Co
CQ C) '

Ckk '.0
I I Id 0"

Hr -0 r'-

Co
0

.-l

0)
Oc,

H

0

Cl

0)

E-

-23-

0
J-I o-H 04a) 4W mC . L t C CJ N 0
> CJE l-o Ln D C 0 -I (O

-H g ..4 o c, In o r L o, o
4-) C- H O H . Lf . .

OH)4 C l cj Cl n '.0
a un < Ln ooo

0
H

Q4-J ~ :-It n C '
fU 0 c Lnf I'D r- Lr r- an

C 0 C) O r H -I It

C.JPz4 Cl '. Ln -,t C Cl4 Cl r-HOnc O C \O VI ·3 c3 hi c ^Q) Ir) -.T Lt) 00 I'D %.OrC H 0 H '. 0' L I

Ca H HI CO o 0 H Co r-) O m L 0 0

o M H- - Cl Cl Cl4 Ln Ln CO I n H H - O N O H <

'.O Cl 0 CM Hr Li 0C -t cM

r- ON - % 0-' Co It C) Cl

H 0 Cl Cl Cl L0 - r- O

ir) Co 0 00 0 0 LI

r- Cl H !- L)I'D LI - -:31

H3 lI r- lC C lL Cl040 o C0 N hi i Oo c l ;H H

H -~r HO 0-. L L C 0V '.PI rl r l CC) m \0 C*

Hq H- H- H- H Cl4LI o - -o o0 H Cl u
co I m Cl C L) Co C Co\ rl ar o o oo Co < Ln M

H

Cl 0 l Cl l rltLI'0H H rHo)b' H H

E-4U; H q: 00 < NJ CN Q\ r/ C3
cH C C)

.f.. H CO C -I L 'O r- 0 0- O E iU U SC4U

* P DnnC

H4 1

0
'.0

oO-ICl

co

ason

4-4o0

4i

X-

4J

Cn
0

o
c)

-H

d

1-I
cb

l.

)EH
-D
H~

a)

lo4s

H

4.0

O

.-4JC)

UU

0

cJ
o o. oC)U,

CJ C) C)4- .4-5-4 5-.1- 4o

C) C)

o

w P
,JD

S d

-U)0 *0. Cd

r U

c) d U

.rq J
c cd 'r

wCC
o

u

iC)

00

0

kco
m

rkcd

$4-W0
CC

Cd

Cn '.0 Co
I I I

- -.t r-

wC)
Hr-

O
u
CD

O
OO

00
%D

CD

H

u~

.pF:

94Hcd

00H

-1-w

all

o-

c:0pul4-

H
cd

-24-

KILTER is faster than SUPERK and PNET is twice as fast as KILTER for

transportation problems. For assignment problems, KILTER is one of the

fastest codes, operating about 50% faster than SUPERK and 30% faster than

PNET. For uncapacitated and capacitated network probelsm PNET is almost

always faster than KILTER. Observe that KILTER runs much faster than

SUPERK for problem 9 with a high ratio of nodes to arcs.

Notice that for problems 7, 8, and 9, the optimal objective function

values obtained by the KILTER code on the IBM 370/168 computer are slightly

different than those obtained with the other codes on the CDC 6600 computer.

Apparently the NETGEN generator is not completely independent of the computer

system as suggested by the code's developers. This experience agrees with

results of other researchers.

Of the codes reported, KILTER is probably the fastest out-of-kilter

code; it might be the fastest of these codes for assignment problems.

From the viewpoint of both solution time and storage requirements, the

performance of the KILTER code lies somewhere between that of SUPERK and

PNET ?

Hatch [31] has reported computational experience (on a CDC 6600

computer with a FORTRAN RUN complier) for Decision System Associates'

implementation of the out-of-kilter algorithm. The solution times reported

for this code are consistently less than those of PNET for several trans-

portation and assignment problems - in particular for problems numbered

6 through 15 from reference [40] - and are less than those reported in

Table 5.3 for KILTER for the assignment problems 4-6. We are unsure of

the details of his implementation such as whether the code has been

tailored for transportation and assignment problems, what list processing

structures have been used, and the code's storage requirements. It is

possible that the techniques used in his implementation can be coupled

with the techniques used in KILTER to improve further upon out-of-kilter

codes.

Again, though, we caution about making definitive comparisons between

t Since we have completed the work reported here, Ron Denbo and John Mulvey

("On the Analysis and Comparison of Mathematical Programming Algorithms

and Software", Tech. Report HBS 76-19, Graduate School of Business, Harvard

University) have compared KILTER with LPNET, a very fast primal simplex

based code. Although the tests were conducted on a PDP10 computer and

KILTER was designed for an IBM 370/168, the computational results do

indicate that the most recent primal codes may be two to three times

faster than KILTER when solving problems from scratch.

-25-

the various codes based upon this data. The limited experiments and

the variations in both programmers and computer system environments make

comparisons very difficult. Uniform testing procedures are required.

Also, all of the experimental results that we have conducted concern

a one time solution of a single problem. Other experiments, such as

resolving a problem with slightly modified data as when performing sensi-

tivity analysis or when solving a problem as a subproblem for a decomposi-

tion application, might conceivably provide different comparisons between

the codes. Nevertheless, our computational results do indicate that the

list processing structures that we have used do improve implementation of

the out-of-kilter algorithm.

Testing Options

This section presents experimental results concerning some of the

implementing options discussed in the previous section. Although the

experiments are not sufficient for reaching definitive conclusions, they

do indicate how sensitive solution time is with respect to minor changes

in the implementation.

Table 5.4 lists nine of the options that we have tested. Most of

the problems solved in this section were created by a simple network

generator (NGC) developed for the purpose of this study. Aashtiani [1]

describes the details of the generator. Table 5.8 compares the NGC and

NETGEN generators for a limited set of problems. NETGEN seems to generate

transportation problems, and NGC seems to generate other problem types,

which are more difficult to solve.

We conducted our experiments in three phases. In the first two

phases we used the multics system at M.I.T. (a timesharing system avail-

able on a Honeywell computer) which is about 3.5 times slower than the

IBM 370/168 computer for this class of applications. We have not

reported all of our computational experience for testing the various

options. Rather, we present results for the benchmark problems introduced

earlier in this section which are representative of our experience in

general. Finally, we have not tested each option on all of the benchmark

problems.

Table 5.5 represents the type of results that we obtained in phase 1

for testing options KILTER 1,2,3, and 6. Keeping track of nodes in the

-26-

Table 5.4: Option Specifications

KILTER 0 - Original code storing and manipulating a forest structure,
using zero values for initial flows, and first selecting
out-of-kilter arcs joining the super source and the source
nodes to place in-kilter.

KILTER 1 - Keeping track of nodes in the path between node k and its
orphan root, in KILTER 0.

KILTER 2 - Traveling by level, in KILTER 0.

KILTER 3 - Saving the list of the boundary arcs in the first pass of
the cost changes for the second pass; also, using a queue
structure to store nodes for starting the traveling proce-
dure, in KILTER 0.

KILTER 4 - Saving a list of arcs during labeling which include all
boundary arcs, in KILTER 3.

KILTER 5 - Working on a single out-of-kilter arc between the super sink
and super source, in KILTER 3.

KILTER 6 - Working on out-of-kilter arcs between the sinks and the super
sink in KILTER 3.

KILTER 7 - Using arc data ordered by start node, in KILTER 3.

KILTER 8 - Using a non-zero initial feasible solution, in KILTER 3.

KILTER 9 -- Primal-Dual, in KILTER 3.

path between node k and its corresponding orphan root as in KILTER 1 has

only a small effect on the solution time (about 5%), but requires one

more logical node-length array for storage. The labeling time when

traveling by level as in KILTER 2 is almost twice the labeling time for

KILTER 0. Though the number of flow changes are less, the time required

to find each augmeting path is more; as we mentioned before, the proce-

dure seems to,.be building and manipulating larger augmenting trees at

considerable computational cost.

Comparing the total time taken to make cost changes in KILTER 3

(see also table 5.6) with the time taken by KILTER 0 indicates that saving

the list of the boundary arcs through the first pass of the cost changes

causes a small improvement in the solution time. Using the queue structure

for keeping the nodes to start the traveling procedure, however, reduces

total labeling time by approximately 50%. This great reduction in the

solution time justifies the additional storage required (one-tenth of node-

length vector) by this option.

-27-

The phase 2 and 3 experiments, as summarized in Tables 5.6 - 5.8,

use an improved version-of the NGC generator and the basic KILTER 0

code. The code KILTER 3 was improved even further when passing from

phase 2 to phase 3.

As Tables 5.6 and 5.7 indicate, storing a set of arcs, that include

all of the boundary arcs, during the labeling process for use in the cost

stage segment of the code as in KILTER 4 increases solution time since

more work is needed for labeling.

Table 5.7 also shows that working only on a single out-of-kilter arc

between the super sink and super source node as in KILTER 5, is almost

twice as slow as KILTER 3. Although the number of cost changes is very

small for this option, the time for each cost change iteration is consi-

derably longer. It is possible that the tree becomes more expanded in

KILTER 5 since most of the artificial arcs between the super source and

source nodes are in the tree. The solution time increases if we use the

artificial arcs between the sinks and the super sink node as the only

out-of-kilter arcs as in KILTER 6. The solution time then increases by

a factor of 4 (see Tables 5.5 and 5.7).

Using arc data sorted in order of their start nodes is advantageous

from the viewpoint of both solution time and saving one arc-length array

of storage. Table 5.7 shows the improvement in the solution time for

this option as implemented in KILTER 7. Using this option to solve a

problem posed with unsorted data is not beneficial, however, because the

sorting time is almost half the total solution time.

In the KILTER 8 option, we started with a non-zero initial feasible

solution. Although there is a reduction in the number of flow changes,

the solution time increases by a factor of 2 (see Table 5.7). Most of the

other recent codes recommend starting with a non-zero initial feasible

solution such as the Modified Row Minimum Rule.

Table 5.8 reports some results for comparing KILTER 9, an implementa-

tion of the primal-dual algorithm, with KILTER 3. Using KILTER 9 reduces

solution time by roughly 20%; in particular, the code greatly improves

upon running times for transportation problems. Also, as we mentioned in

the last section, this option has the advantage of requiring less storage,

replacing one arc-length array by one node-length array and one logical

arc-length array.

-28-

To observe how the KILTER code performs with network problems arising

in applications, we experimented with five capacitated network problems

described in Table 5.9. The first two small problems are from Bell

Laboratories and problems 3,4, and 5 are three energy problems. The

number of flow and cost changes for problems 4 and 5 are very high when

contrasted with comparably sized problems created by the network generator

(particularly problem 9 in Table 5.2). Although these problems are not

very large, they are hard to solve because of the high values for the

total supplies and the large ranges for the cost values. Other researchers

[24,45] have also noted that these problem characteristics lead to more

difficult problems.

-29-

Eo

Z

o
Q)CO0

r s 0. 0 00o O C

0

0

CO
0000

E-4 o
0

bo
0u . . .O- E-4 un 0 \ 0

co4H c a m H C-'I

0 r 0 H0

J 0' rl C C

- E N 0 E- H E-£
H H H H H

Fz H H H H

o0

S-i

00

u

COH

0U00

*.

0

Un

P- - he N1 C
Oh N

h e ho a n a a. .i .it

-4 -4 he Nh c o0
OI(Yr(.o

-4

V.-cal

~olW~~~

4 1.4o

'0 -eN
V! H

rOV.~ Nr 4 0 0olho

he ho 0

In Ub ,, . Cu . S 0t .

.4 a 10 ^10 o0 O1he o 0 o a nr'41 " r.I nlo h

-4 4

an N M O h h

*4 N *.

Cea N.0 .¢.sH "

'a r. .-I . . .

' I * . . .N

N N N §.'

N o N .4e

0 0 0v

o j g
-4 -4~~~~~~~~~~~~~~~~~~~~'4 e a r- 0 O

i

930-4

0-4-4

1-4

m

14

U)I-

ol C

. .~ 1I 1 U aA a if
4

A P. 18

I
.0
0w
Pa

'I
u
4)
0
-4U

0Ia
0
.4

-4

aJ

S

aa

011i
0-4di
0
-4

.o

an

U
1111

-4

0

itf

c

1-

stI

14

Z14
I-
E

!=s-

?4

I-

-I-

I.Er

H(9

P
H

P4

- - -

-31-

4'

0 en .0 0 G

Z U

WUO 4'o -4 '404 4

II4

O0 0

z4u

H QE 4 I- e
A v 6 c< o O
0,4 N ,.,:It 0O 4Z Ib nA 0

Z U. 44 41b.)

a 3Zo oo 0 '
0 04 N

o v s 0 0 inla I4 - " 4 N
i a l z

zU

oo C0

ZU

U

0 C0

O4 04 I

4.4 a 4c

u4 z

0 N 0

0 2 C.I Inr-
p~~:~~U Y

I-"4F- I' '0r

~-cCu r;v; 0
H p4 ('

i-4 C.)f

Irl
.0
0
aw
I.

U
141V

-eIn

'o
10
,4

0C"N

-4ai

9
14

10

v;

i-
mA

-32-

cn 4 4 e 0 H (N (N '0
o ~c U, 'I C% N o o 0
,- 0 U, 0 r- , ON 0
Cn Is U, *., n (N (N Is 0
U) O Un) IooO ~n oT o
H 0 H '.0 U, U,

-< U, oo

r- 0% 00 0 c 0 00 H
o %0 un 0 C"1 0o 0% ON %

cn cn U, 4 C CCY)CJ COo CS ~ o o oo o ~

rO r o 0 0 0 r- 0
CY 00 0% C C J N H H

U, oo r- -I ON H c o
co -T 0 o 4N o0 N o00

N 0 N CW U, U, .0 6
H H H

0 r- 0 4 0% '0 % 0
Cn Ln -t H 0% CO en H .0
Lr) -H O o o

5 r~ ~ cn , O OU, N.. ko C m (N H a% 0
CO 0 Cn Cd 0% C H
0 o0 oo 04 0 ,O

HH 0 0 00H n (N o

r- V 00 cln f- 00 CV) en rS'H u, 0 C r- O 00 rA '0 4 4 ,_. H '.0 oo H '.

0 %0 r- c r C4 m C4 %0
H r-. Un c C H U ODcn U,) U, (N4 (N4 (4 H- H

o -4 H H 'Q H 0 cN rb
H 4 C% r- 0 '. H 0

(N 0 0 N 4 U C' 'o
H HI

H CV) 0 C 00 (C c -
0D 4 4 CY) o 00 00 H '0

CN C) C', U, 4- (N C((C 00

U) 0o O ' o O O N C
VN un H ,% ,o o0 (N u, ,
C) U 0 --H H C H H

,- N 0 00 c O o 0
H - 00 -1 -I

H cN Ce 4 un '0 co 0%

C4Hp9z
w

CDuz

z

9
0

C,

C-)

z

Z

z

Cd

C-)r.O

0
o

0

o

H

8

0

cn

d

O

.r4

H~

0 r
> 0

rj rl 4)
0 Cd

,0 Z4
0

044 bo
o

*o C.
o U =

Z u

O

o 0
ZH Cd

Z)

CO

0u 'H

0
(n

a 0
> o

H C)

.0 P
0

o44 4

Z U*o X

0 Co C

0 o
z)

0
o

HH

U)0lE-cc

O w4i

0 cd

Z CJ

o
·rH co

C)

0
O

4 -io H

0cc

0-4
HO
0n,

p

m

P4I

E-
H
'-4a4

E-

H

P0

H14j

0

4i
coCdQ0

44

- S-
..- ~_

-

, ·

- i

iii iLI I~~~

-33-

O O O -It O
J 0 o4r- 'O It

0) r- o oa 00 0

· O a, I~ O0 9. a ao H % C'J e. 4 -t 00

On> r- c'4 - r-

O % - 0 0: CY Ln Co N CJ

o C' O D - CA O O
-H a) C o C14 ' CI '.0

Z- O
H1 E- %D 00

0

0c o 00

z

* ·O a-b N- . .C 0. -

o c o 0

o '0 C ' o C C'
. ' oo a oo o

o C 0 i I 0 -0 r 0Lo o 0 0

H) N- H\ 0- 0q Cbc H \ 0 a

0 C0) H c o O O
:j 00 00 0

U a' 0 C O N

X L I 0 0°

CA -o

4-'

0) CA C) H 00 0v l O CY) a

0 ru o O

zZ

00 r CI CA) -T LA
O o oo N

0

0
0

o

o,4

-I

0

0

CO

-i

o

c00*N-H

0

O

O

a0)
-H

-)

O

LA
Eq-9
E--

-34-

VI. CONCLUSIONS

Using data structures to recall labeling information from previous

iterations, KILTER runs faster, and uses less storage, than the efficient

out-of-kilter code SUPERK. In terms of running time, the KILTER code is

competitive with the primal network code PNET as implemented in the early

1970's, particularly for assignment problems. KILTER uses more arc

length arrays for storage than primal based codes, but uses less node

length array storage.

Of the options tested, the primal-dual algorithm equipped with a

storage facility to keep track of nodes from which labeling can be

extended after a cost change gives the best running times. In addition,

the primal-dual algorithm uses less storage than other implementations of

the out-of-kilter method.

Labeling options and out-of-kilter selection rules have had a pro-

nounced effect upon solution time. A "last-labeled first-scanned"

labeling option has outperformed a "first-labeled first-scanned" option.

Moreover, when adding artificial arcs, first selecting those out-of-

kilter arcs to bring in-kilter that join the super source to the source

nodes has performed better than other arc selection options.

Our experimentation indicates that the out-of-kilter algorithm is

very sensitive to minor changes in implementation. Certain minor improve-

ments in the code are possible, such as imbeding the labeling option of

KILTER 1 within KILTER 9 to reduce running time. In light of this sensi-

tivity to implementation, further experimentation may lead to greater

improvements. Our current feeling, though, is that of the codes designed

for general minimum cost network flow problems, recent primal simplex

based codes may outperform primal-dual approaches when solving a problem

from scratch. We are not sure about comparisons between these types of

algorithms for other types of applications, though, or for codes specially

tailored for certain classes of problems such as the assignment and

transportation problems discussed by Hatch.

Acknowledgements

We are grateful to S. Chen and R. Saigal of Bell Laboratories and

to R. Marsten of M.I.T. for supplying us with applications for our

computational experiments.

-35-

REFERENCES

1. Aashtiani, H., "Solving Large Scale Network Optimization Problems
By the Out-of-Kilter Method", M.S. Thesis, Operations Research
Center, M.I.T., February 1976.

2. Balas, E. and P. L. Hammer, "On the Transportation Problem -
Parts I and II", Cahiers du Centre d'Etudes de Recherche
Operationelle, 4(2), 1962, pp. 98-116 and 4(3), 1962, pp. 131-160.

3. Balinsky, M. L. and R. E. Gomory, "A Primal Method for the Assign-
ment and Transportation Problems", Management Science, 10, 1964,
pp. 578-593.

4. Barr, R. S., F. Glover, and D. Klingman, "An Improved Version of the
Out-of-Kilter Method and a Comparative Study of Computer Codes",
Math. Prog., 7(1), 1974, pp. 60-87.

5. Bradley, G. H., "Survey of Deterministic Networks", AIIE Transactions,
7(3), 1975, pp. 222-234.

6. Bradley, G. H., G. G. Brown, and G. W. Graves, "A Comparison of Some
Storage Structures for Network Codes", ORSA Bulletin, 23(1), 1975,
B-115.

7. Bradley, G. H., G. G. Brown, and G. W. Graves, "Tailoring Primal
Network Codes to Classes of Problems with Common Structure",
ORSA Bulletin, 23(2), 1975, B-386.

8. Busacker, R. G. and P. J. Gowens, "A Procedure for Determining a
Family of Minimum-Cost Network Flow Patterns", ORO Tech. Report
15, Opers. Res. Office, Johns Hopkins Univ., 1961.

9. Charnes, A., F. Glover, D. Karney, D. Klingman, nd J. Stutz,
"Past, Present, and Future of Large Scale Transportation and
Transshipment Computer Coes", Computers and Operations Research
2(2), 1975, pp. 71-81.

10. Clasen, R. J., "The Numerical Solution of Network Problems Using the
Out-of-Kilter Algorithm", RAND Corporations Memorandum, RM-5456-PR,
Santa Monica, California, March 1968.

11. Dantzig, G. B., "Application of the Simplex Method to a Transportation
Problem", in Activity Analysis of Production and Allocation,
T.C.Koopmans (ed.,), Wiley and Sons, New York (1951), pp. 395-373.

12. Dantzig, G. B., Linear Programming and Extensions, Princeton University
Press, 1963.

13. Dennis, J. B., "A High-Speed Computer Technique for the Transportation
Problem', JACM, 8, 1958, pp. 132-153.

14. Edmonds, J. and R. M. Karp, "Theoretical Improvement in Algorithmic
Efficiency for Network Flow Problems", JACM, 19(2), 1972, pp. 248-264.

15. Flood, M. M., "A Transporation Algorithm and Code", Naval Research
Logistics Quarterly, 8, 1961, pp. 257-275.

16. Ford, L. R., Jr. and D. Fulkerson, Flow in Networks, Princeton Univer-
sity Press, 1962.

17. Fulkerson, D. R., '.'Flow Networks and Combinatorial Operations Research",
American Mathematical Monthly, 73(2), 1966, pp. 115-138.

18. Fulkerson, D. R., "An Out-of-Kilter Method for Solving Minimal-Cost
Flow Problems", J. Soc. Indust. Appl. Math., 9, 1961, pp. 18-27.

19. Gilsinn, J. and C. Witzgall, "A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees", NBS Technical Notes
772, 1973.

20. Glover, F., D. Karney, and D. Klingman, "The Augmented Predecessor
Index Method for Locating Stepping Stones Paths and Assigning Dual
Prices in Distribution Problems", Transportation Science, 6(1),
1972, pp. 171-180.

21. Glover, F., D. Karney, and D. Klingman, "Implementation and Compu-
tational Comparisons of Primal, Dual, and Primal-Dual Computer Codes
for Minimum Cost Network Flow Problems", Research Report CS 136,
Center for Cybernetic Studies, University of Texas, BEB-512,
Austin, 1973.

22. Glover, F., D. Karney, D. Klingman, and A. Napier, "A Computation
Study on Start Procedures, Basis Change Criteria and Solution
Algorithms for Transportation Problems", Management Science, 20(5),
1974, pp. 793-819.

23. Glover, F. and D. Klingman, "Locating Stepping Stone Paths in
Distribution Problems Via the Predecessor Index Method",
Transportation Science, 6(2), 1970.

24. Glover, F. and D. Klingman, "Capsule View of Future Research on Large
Scale Network and Network-Related Problems", Workshop on Integer
Programming, Bonn, September 8-12, 1975.

25. Glover, F. and D. Klingman, "Double-Pricing Dual and Feasible Start
Algorithms for the Capacitated Transportation (Distribution)
Problems", University of Texas, Austin, 1970.

26. Glover, F., D. Klingman, and J. Stutz, "Augmenting Threaded Index
Method for Network Optimization", INFOR, 12, 1974, pp. 293-298.

27. Golden, B., "Shortest Path Algorithms: A Comparison", Working Paper
OR 044-75, Opers. Res. Center, M.I.T., Oct. 1975 (to appear in
Opns. Res.).

28. Golden, B. and T. Magnanti, "Deterministic Network Optimization: A
Bibliography", Working Paper OR 054-76, Opers. Res. Center, M.I.T.,
June 1975.

-- --

29. Golden, B., T. Magnanti, H. Nguyen, "Implementing Vehicle Routing
Algorithms", Technical Report TR-115, Operations Research Center,
M.I.T., September 1975.

30. Graves, G. W. and R. D. McBride, "The Factorization Approach to
Large Scale Linear Programming", Working Paper No. 208, Western
Management Sci. Inst., U.C.L.A., August 1973 (to appear in
Math. Prog.).

31. Hatch, R. S., "Bench Marks Comparing Transportation Codes Based on
Primal Simplex and Primal-Dual Algorithms", Opns. Res., 23(6),
1975, pp. 1167-1172.

32. Johnson, E. L., "Networks and Basic Solutions", Opns. Res., 14, 1966,
pp. 89-95.

33. Johnson, E. L., "Network Flow", in S.E.Elmaghraby and J.J.Moder (eds.),
Operations Research Handbook (to appear).

34. Johnson, E. L., "On Shortest Paths and Sorting", Proc. of 1972 ACM
Conference, Boston, August 1972, pp. 510-517.

35. Karney, D. and D. Klingman, "Implementation and Computational
Study on an In-Core Out-of-Core Primal Network Code", University
of Texas, August, 1973.

36. Kershenbaum, A., "Computing Capacitated Minimal Spanning Trees
Efficiently", Networks, 4(4), 1974, pp. 299-310.

37. Kershenbaum, A. and R. M. Van Slyke, "Computing Minimum Spanning
Trees Efficienctly", Proceedings of the 25th Annual Conference of
ACM, Boston, 1972, pp. 518-527.

38. Klein, M., "A Primal Method for Minimum Cost Fows with Applications
to the Assignment and Transportation Problems", Management Science,
14(3), 1967, pp. 205-220.

39. Klingman, D., A. Napier, and G. Ross, "A Computational Study of the
Effects of Problem Dimensions on Solution Time for Transportation
Problem", JACM (to appear).

40. Klingman, D., A. Napier, and J. Stutz, "NETGEN - A Program for
Generating Large Scale (un)capacitated Assignment, Transportation
and Minimum Cost Flow Network Problems", Management Science, 20(5),
1974, pp. 814-822.

41. Knuth, D., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1975.

42. Lawler, E., Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart, and Winston (to appear).

43. Lee, S., "An Experimental Study of the Transportation Algorithms",
M.S. Thesis, Graduate School of Business, University of California
at Los Angeles, 1958.

-38-

44. Magnanti, T., "Optimization for Sparse Systems", in Sparse Matrix
Computations (J. R. Bunch and D. J. Rose, eds.), Academic Press,
New York, 1976, pp. 147-176.

45. Mulvey, J. M., "Special Structures in Network Models and Associated
Applications", Ph.D. Thesis in Management, University of California
at Los Angeles, 1975.

46. Mueller-Merbach Heiner, "An Improved Starting Algorithm for the Ford-
Fulkerson Approach to the Transportation Problems", Management
Sicence, 13(1), September 1966, pp. 97-104.

47. Napier, A., "A Computer Generator for Uncapacitated Networks",

Unpublished report.

48. "OPHELIE II: Mathematical Programming System", Control Data

Corporation, Minneapolis, Minnesota, 1970.

49. "OPHELIE/LP: Linear Programming Subsystem of OPHELIE II", Control

Data Corporation, Minneapolis, Minnesota, 1970.

50. "Out-of-Kilter Network Routine", SHARE Distribution 3536, SHARE

Distribution Agency, Hawthorne, New York, 1967.

51. Pape, U., "Implementation and Efficiency of Moore-Algorithms for the

Shortest Route Problem", Math. Prog., 7, 1974, pp. 212-222.

52. Pla, J.-M., "An Out-of-Kilter Algorithm for Solving Minimum Cost

Potential Problems", Math. Prog, 1, 1971, pp.275-590.

53. Potts, R. and R. Oliver, Flows in Transportation Networks, Academic

Press, New York, 1972.

54. Scions, H. I., "The Compact Representation of a Routed Tree and the
Transportation Problem", International Sym. on Math. Prog., London,
1964.

55. Shapiro, J. F., "A Note on the Primal-Dual and Out-of-Kilter Algorithms

for Network Optimization", Working Paper OR 040-75, Opers. Res.

Center, M.I.T., March 1975 (to appear in Networks).

56. Simmonard, Michel, Linear Programming (William S. Jewell, trans.),
Prentice-Hall, 1966.

57. Srinivasan, V. and G. L. Thompson, "Benefit-Cost Analysis of Coding

Techniques for the Primal Transportation Algorithm", JACM, 20, 1973,
pp. 194-213.

58. Yen, J., "Finding the Lengths of All Shortest Paths in N-node Non-
negative Distance Complete Networks Using ½zN 3 Additions and N3

Comparisons", JACM, 19(3), 1972, pp. 423-424.

�

