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A. ROW ASSIGNMENTS IN SEQUENTIAL SWITCHING CIRUCITS

The terminal characteristics of asynchronous sequential switching circuits can be

specified by means of flow tables (1). In an analogous manner, the external behavior

of synchronous (or clocked) sequential circuits can be described by means of similar

tables (2, 3), as shown in Fig. IX-1.

A general synthesis procedure for either circuit can be carried out as follows.

1. Construction and simplification of the flow table (1).

2. Assignment to each row of the table of one or more states of a set of binary-

valued variables, which will be called "state variables." In the asynchronous case, these

states must be so chosen that critical races never occur. That is, if any transition in

the table calls for changing more than one state variable, then the order in which the

changes occur must not affect the row that is ultimately reached. This requirement

often necessitates the use of more than one state per row (4). No restriction of this

kind applies in the case of synchronous systems; hence there is little reason to assign

more than one state to a row.

3. Derivation from the flow table and row assignment of the specifications for a

combinational circuit with feedback, as shown in reference 1; derivation by an analogous

process for synchronous systems.

4. Synthesis of this combinational circuit by any convenient method.

This report will discuss step 2. Let us first consider the synchronous case, and

assume that one state is to be assigned to each row; and, for the sake of simplicity,

that m, the number of rows in the table, is an integral power of two. Thus, if m = 2n

then n-state variables will yield the required number of states. Since any state can be

assigned to any row, the number of possible arrangements is m!. Three of the 24

possible assignments are shown for the same table in Fig. IX-1. However, from a

physical viewpoint, many of these assignments are essentially equivalent to one another,

since they differ only in that some of the state variables have merely been relabelled.

For example, the assignment in Fig. IX-1c can be obtained from the one in Fig. IX-la

by complementing y 2 and then interchanging yl and y 2
It will be shown that the number of distinct assignments (those which, in general,

may lead to different circuit specifications in step 3) is (2n - 1)!/n! for a 2n-row

synchronous flow table. In the case of asynchronous circuits, the problem of race
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11 10

1 0 0 0
1 1 1 2

10 21 20 31

10 31 21 4 0

10 40 30 10

(c)

Fig. IX-1. Synchronous flow tables. The numbers with superscripts indicate
the next row; the superscripts correspond to the output. Row
assignments in (a) and (b) are distinct; those in (a) and (c) are
equivalent.

conditions restricts the allowable number of assignments to the extent that there are no

nontrivial transformations that can always be made. In specific cases, however, several

distinct assignments are possible.

These statements will be proved by using some elementary principles of group theory

(see ref. 5). If r represents a particular row assignment for an m-row synchronous table

(where m = 2 n), and if p represents one of the m! permutation transformations that can

be applied to a set of m elements, then the expression rp can be used to designate the

new row assignment that results from permuting assignment r in accordance with trans-

formation p. To take an example: if the zeros and ones that describe each state are

thought of as forming binary numbers, then the states can be compactly written as the

decimal equivalents of these numbers, so that, in Fig. IX-la, the internal states are

Row
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0, 1, 3, and 2, reading from the top down. If we apply the permutation (0)(1)(32), the

assignment of Fig. IX-lb is obtained; the permutation (0132) transforms the same assign-

ment into that of Fig. IX-ic. The set G of all permutations p (including the identity

I) can easily be shown to be a noncomutative group with m! members.

A permutation s [such as (0132)] that results when the state variables are inter-

changed and/or complemented, will be called "symmetric." The set of all of these

transformations (members of which will henceforth be referred to as si, i = 1, 2, ... ) is

a subgroup of G containing n! 2 n members, and it constitutes the set of all transforma-

tions, leaving distances on an n-dimensional hypercube invariant (6).

Two row assignments, rl and r 2 , will be said to be equivalent (written rl r 2 ), if

r = r2 si. Similarly, two transformations tl and t2 will be defined as being equivalent

if tl = t 2 si. It follows that, if a row assignment is operated upon separately by two

equivalent transformations, the two resultant assignments will be equivalent.

For each element p in G, form a subset of G that consists of the elements psi for

every si in S. These subsets are called "left cosets of S."

Suppose that q 1 and q 2 belong to the same coset. Then, there are elements sl and

s2 in S, and an element p in G so that q 1 = psl' q 2 = ps 2 and s 3 = s2s 1 (s2 is the

inverse of s2). Since q 2 s 3 = (PS 2 ) (S2Sl) = p(s 2 s) s1 = = q1 , it follows that q 1 ~ q 2

Cosets possess the following properties (proved in sec. 9 of ref. 5):

1. Every member of G belongs to some coset of S.

2. Each coset contains the same number of elements as S.

3. Two cosets of S are either disjoint or identical.

4. S is a coset of itself.

We have shown that members of the same coset are equivalent. Now we shall demon-

strate that the converse is true. Suppose that q1 - q 2. Then, q1 = q 2s 3 and from prop-

erty 1, q 2 = ps 2 for some p in G. If s1 = s2s3 , then q1 = ps2s 3 = psl so that q 1 and q2
belong to a common coset. Therefore, two transformations are distinct if and only if

they belong to different cosets. But according to Lagrange's theorem (which can be

derived from the first three properties of the cosets listed above) the number of distinct

cosets of G is equal to the number of elements in G divided by the number of elements

in S, or

(2n)! _ (2n - 1)
2nn! n (1)

Hence, the number of distinct row assignment transformations and the number of dis-

tinct assignments are equal to term 1.

For the special case of the four-row table, the problem of finding a set of three

distinct assignments is quite simple. If we start with any arbitrary assignment (as in

Fig. IX-la) and interchange the states assigned to the third and fourth rows, we have
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one distinct assignment (Fig. IX-Ib). A third assignment, distinct from each of the

first two, can then be found by interchanging the states of rows two and three in the first

assignment. Symbolically, the two transformations can be written as (0)(1)(32) and

(0)(13)(2), respectively. It might be well to note here that, in any particular problem,

the number of row assignments that lead to physically different circuits may be less than

the number of distinct transformations given in term 1, owing to symmetries within the

particular flow table.

Now consider an asynchronous circuit in which transitions between all pairs of adja-

cent internal states (those states differing in the values of one variable only) occur at

some point in the flow table. Any row assignment transformation that does not preserve

distances on the n-dimensional hypercube whose vertices correspond to internal states

of the system will introduce race conditions. Thus, only members of S can be used.

This implies that, in general, no nontrivial transformations are possible, although they

may exist for special examples.

In the special case of a four-row asynchronous flow table that is strongly connected

(in the sense that there are input sequences connecting all pairs of internal states),

similar reasoning indicates that no nontrivial row assignment transformations exist.

When nontrivial transformations are available, it would be highly desirable to have

a method for ascertaining a priori which assignment is the best one - according to some

criterion such as the minimization of the number of necessary combinational elements.

The usefulness of a process of this kind can be appreciated, if it is realized that there

are 840 distinct row assignments for any eight-row synchronous flow table. Unfortu-

nately, this seems to be an exceedingly difficult problem and I have no suggestions as

to how it can be approached.

S. H. Unger
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B. CODING FOR BINARY SYMMETRIC CHANNEL

Recent work by C. E. Shannon and P. Elias has established bounds on the exponential

behavior of probability of error for finite-length messages transmitted over idealized

noisy channels. They have also shown that random coding is exponentially equivalent to
the best-possible coding, for transmission rates near to capacity (1, 2).

The physical implementation of a random-coding procedure is difficult because the
number of possible messages increases exponentially with message length. Even with

moderate message lengths, this number can become enormous for reasonable rates of
transmission. Small message lengths, however, preclude the strong, large-sample,

statistical assertions that are necessary to assure a small probability of error.

Research is in progress toward the determination of a physically realizable coding

and decoding procedure for the idealized Binary Symmetric Channel. This procedure

will be a compromise between the demands of reasonable equipment on the one hand,
and acceptable performance on the other. A random-code message development, using

a sliding parity-check generator, is envisioned at the transmitter. The transmitted

message of length n is divided for coding and decoding purposes into several smaller

sublengths n 1 < n 2 = n 1 + A 1 < n 3 = n 2 + A 2 < ... < n = ni- 1 + Ai - 1 < .'". n. In going

from any length n i to ni+ 1 , the transmitter inserts a number 5. < A. of completely arbi-

trary information digits, filling the rest of the increment Ai with "random" check digits

generated as the mod 2 sum of the sliding check pattern and as much of the message as
has already been determined.

Correspondingly, at each stage n i of decoding, the receiver progressively compares

the received message with the set of possible transmitted messages, and discards those
members of the set that are beneath a certain threshold of probability. At each stage,
a number of possible messages whose individual a posteriori probabilities sum to an

acceptable aggregate is retained. In the next stage, then, the receiver need only compute

those possible messages that have prefixes which are members of the stored subset.

In the end, the process is made to converge to the selection of a single message of

high probability. The over-all probability of error is equal to one minus the cumulative

probability of having retained the correct message at each stage of the procedure.

It has been shown that the number m. of prefixes that should be retained at the ith
1

stage can be made to vary as l/n i by adopting suitable constraints on the incremental

rate R i = 5i/ i . As ni increases, R i can also increase, giving an effective average rate

R reasonably close to the maximum rate that is permitted under ideal coding for the

specified design probability of error and block-length n.
J. M. Wozencraft
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