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Quantum Copy-Protection and Quantum Money

Scott Aaronson∗

Abstract

Forty years ago, Wiesner proposed using quantum
states to create money that is physically impossible to
counterfeit, something that cannot be done in the clas-
sical world. However, Wiesner’s scheme required a
central bank to verify the money, and the question of
whether there can be unclonable quantum money that
anyone can verify has remained open since. One can
also ask a related question, which seems to be new:
can quantum states be used as copy-protected programs,
which let the user evaluate some function f , but not
create more programs for f?

This paper tackles both questions using the arsenal
of modern computational complexity. Our main result
is that there exist quantum oracles relative to which
publicly-verifiable quantum money is possible, and any
family of functions that cannot be efficiently learned
from its input-output behavior can be quantumly copy-
protected. This provides the first formal evidence that
these tasks are achievable. The technical core of our
result is a “Complexity-Theoretic No-Cloning Theo-
rem,” which generalizes both the standard No-Cloning
Theorem and the optimality of Grover search, and
might be of independent interest. Our security ar-
gument also requires explicit constructions of quantum
t-designs.

Moving beyond the oracle world, we also present an
explicit candidate scheme for publicly-verifiable quan-
tum money, based on random stabilizer states; as well
as two explicit schemes for copy-protecting the family
of point functions. We do not know how to base the
security of these schemes on any existing cryptographic
assumption. (Note that without an oracle, we can only
hope for security under some computational assump-
tion.)

∗MIT. Email: aaronson@csail.mit.edu. Partly supported by
the Keck Foundation. Some of this work was done while the
author was at the University of Waterloo.

1 Introduction

In classical physics, any information that can be
read can be copied an unlimited number of times—
which is why the makers of software, music CDs, and
so on have met such severe difficulties enforcing “dig-
ital rights management” on their products (see Hal-
derman [15] for example). Quantum states, on the
other hand, cannot in general be copied, since mea-
surement is an irreversible process that destroys co-
herence. And this immediately raises the possibil-
ity of using quantum states as unclonable information,
such as money or copy-protected software. The idea
of using quantum states in this way actually predates
quantum information as a field. In a remarkable 1970
manuscript that first discussed the idea of quantum
cryptography, Wiesner [23] also proposed a scheme for
“quantum money” that a central bank can prepare and
verify, but that is information-theoretically impossible
for anyone other than the bank to copy. Wiesner’s
result immediately raised a question: could there be
quantum money states that anyone can verify—that
is, for which the authentication procedure is completely
public—but that are still infeasible to copy? This lat-
ter question has remained open for forty years.

However, while the quantum money problem is fas-
cinating by itself, it also motivates a broader problem:
what sorts of “unclonable power” can be provided by a
quantum state? So for example, given a Boolean func-
tion f : {0, 1}n → {0, 1}, one can ask: does there exist
a quantum state |ψf 〉 that lets its owner compute f in
polynomial time, but does not let her efficiently pre-
pare more states that are also useful for computing f?1

Such a state could be interpreted as “quantumly copy-
protected software.” Whereas in the quantum money
problem, we wanted unclonable states that could be
verified as authentic, in the quantum copy-protection
problem we want unclonable states that let us do some-
thing useful (namely, compute f). There are other
interesting unclonable functionalities (such as identity

1Formally, of course, we would want a scheme that worked
for a whole family of f ’s.
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cards), but in this paper, money and copy-protected
software will be more than enough to occupy us.

A first, crucial observation is that, if we insist on
information-theoretic security (as provided, for exam-
ple, by quantum key distribution), then we cannot
hope for either quantum copy-protection or publicly-
verifiable quantum money. The reason is simple: an
adversary with unlimited computational power could
loop through all possible quantum states |ψ〉, halting
only when it found a state with the required prop-
erties.2 Therefore, if we want these functionalities,
we are going to have to make computational hardness
assumptions. However, this does not by any means
defeat the purpose—for remember that in the classi-
cal world, the functionalities we are talking about are
flat-out impossible, regardless of what computational
assumptions we make.

In our view, unclonable information remains one of
the most striking potential applications of quantum
mechanics to computer science. Firstly, unclonable in-
formation would solve problems of clear, longstanding,
and undisputed importance in the classical world—in
the case of money that cannot be counterfeited, a prob-
lem that people have been trying to solve for thousands
of years. Secondly, unlike with (say) quantum cryptog-
raphy, the problems being addressed here are ones for
which theoretically-grounded classical alternatives sim-
ply do not exist, because of the copyability of classical
information.3 Thirdly, as we will see, some quantum
money proposals require no multi-qubit entanglement,
and might therefore be technologically feasible long be-
fore general-purpose quantum computing.4

Given all this, it is surprising that the questions of
unclonable quantum money and software have barely
been taken up over the last two decades. The goal of
this paper is to revisit these questions using the arsenal
of modern theoretical computer science. Our main
result (stated informally) is the following:

2In the copy-protection case, the property of |ψ〉 that we care
about is that of “being a valid quantum program for the func-
tion f .” And even if an explicit description of f is not avail-
able, this property can be checked using unlimited computa-
tional power, together with polynomially many copies of

∣∣ψf

〉

(the “store-bought” quantum program for f).
3Here we are leaving aside solutions that involve repeated

interaction with a server: we seek solutions in which the cash,
software, etc. can be placed under the complete physical control
of the user.

4On the other hand, quantum money must be protected from
decohering, and this remains the central technological obstacle
to realizing it. Depending on the physical substrate, right now
qubits can be stored coherently for a few seconds or at most min-
utes, and only in laboratory conditions. By contrast, quantum
key distribution (QKD) requires only the transmission of coher-
ent qubits and not their long-term storage—which is why QKD
can be implemented even with today’s technology.

Theorem 1 There exists a quantum oracle U relative
to which publicly-verifiable quantum money and quan-
tum copy-protection of arbitrary5 software are possi-
ble.6

Here a “quantum oracle,” as defined by Aaronson
and Kuperberg [4], is just an infinite collection of uni-
tary operations U = {Un}n≥1 that can be applied in
a black-box fashion. Theorem 1 implies that, if quan-
tum money and copy-protection are not possible, then
any proof of that fact will require “quantumly non-
relativizing techniques”: techniques that are sensitive
to the presence of a quantum oracle. Such a proof is
almost certainly beyond present-day techniques.

However, we also go beyond oracle results, and pro-
pose the first explicit candidate schemes for publicly-
verifiable quantum money and for copy-protecting the
family of point functions. Here a “point function” is
a Boolean function fs : {0, 1}n → {0, 1} such that
fs (x) = 1 if and only if x equals some secret string
s. Copy-protecting point functions has an interest-
ing application for computer security: it yields a way
to distribute a password-authentication program such
that, not only can one not learn the password by exam-
ining the program, one cannot even use the program to
create additional programs with the ability to recognize
the password.

Our candidate quantum money scheme is based on
random stabilizer states; the problem of counterfeiting
the money is closely related to noisy decoding for ran-
dom linear codes over GF2. For copy-protecting point
functions, we actually give two schemes: one based on
random quantum circuits (as recently studied by Har-
row and Low [17]), the other based on hidden sub-
groups of the symmetric group. The key challenge,
which we leave unresolved, is to base the security of
our schemes on a “standard” cryptographic assumption
(for example, the existence of pseudorandom functions
secure against quantum attack), as opposed to the tau-
tological assumption that our schemes are secure!

Our results give the first complexity-theoretic ev-
idence that quantum copy-protection and publicly-
verifiable quantum money are indeed possible. On
the other hand, the oracle results also help explain the
difficulty of proving explicit schemes for these tasks se-
cure. For as we will see, proving security in the oracle

5By which we mean, software that is not learnable from its
input/output behavior using a polynomial-time quantum com-
putation. Learnable software is impossible to copy-protect for
trivial reasons. Our result shows that relative to an oracle, this
is the only obstruction.

6For technical reasons, the copy-protection result currently
only gives security against pirating algorithms that more than

double the number of programs. We hope to remove this re-
striction in the future.
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world is already highly nontrivial! Furthermore, any
security proof for an explicit scheme will need to include
our oracle result as a special case—since an attack on
an explicit scheme could always proceed by treating all
the relevant circuits as black boxes and ignoring their
internal structure.

1.1 Techniques

In proving our oracle results, perhaps the most novel
technical ingredient is what we call the “Complexity-
Theoretic No-Cloning Theorem”:

Theorem 2 (Complexity-Theoretic No-Cloning)
Let |ψ〉 be an n-qubit pure state. Suppose we are given

the initial state |ψ〉⊗k for some k ≥ 1, as well as an
oracle Uψ such that Uψ |ψ〉 = − |ψ〉 and Uψ |φ〉 = |φ〉
for all |φ〉 orthogonal to |ψ〉. Then for all ℓ > k, to
prepare ℓ registers ρ1, . . . , ρℓ such that

ℓ∑

i=1

〈ψ| ρi |ψ〉 ≥ k + δ,

we need

Ω

(
δ2
√

2n

ℓ2k log k
− ℓ

)

queries to Uψ.

Intriguingly, Theorem 2 can be seen as a common
generalization of the No-Cloning Theorem and the
BBBV lower bound for quantum search [8].7 It re-
duces to the No-Cloning Theorem if we ignore the or-
acle U , and it reduces to the BBBV lower bound if we
ignore the initial state |ψ〉.

The proof of Theorem 2 proceeds in two steps. First
we lower-bound the query complexity of cloning |ψ〉 al-
most perfectly, by using a generalization of Ambainis’s
quantum adversary method [5] that we design specifi-
cally for the purpose. Next we argue that, if we could
even clone |ψ〉 with non-negligible fidelity, then with
polynomially more queries we could also clone |ψ〉 al-
most perfectly, by using a recent fixed-point quantum
search algorithm of Grover [14].

We regret that, due to space limitations, we are not
able to include a proof of Theorem 2 in this extended
abstract.

With Theorem 2 in hand, it is not hard to show the
existence of a quantum oracle U relative to which a
publicly-verifiable quantum money scheme exists. We

7Here by “quantum search,” we mean search for an unknown
pure state |ψ〉, which need not be a computational basis state.
As far as we know, this generalization of the usual Grover prob-
lem was first studied by Farhi and Gutmann [12].

simply choose n-qubit quantum banknotes uniformly
at random under the Haar measure, and then “of-
fload” all the work of preparing and recognizing the
banknotes onto the oracle. Theorem 2 then implies
that, even given k = poly (n) valid banknotes, a would-
be counterfeiter needs exponentially many queries to
U to prepare a (k + 1)

st
banknote. Crucially, our or-

acle construction is “fair,” in the sense that the bank,
the customers, and the counterfeiters all have access to
the same oracle U , and none of them have any special
knowledge about U not shared by the others. This
is why we believe our result merits the informal in-
terpretation we have given it: namely, that any im-
possibility proof for quantum money would have to be
non-relativizing.

Showing the existence of a quantum oracleU relative
to which quantum copy-protection works is a harder
problem. As in the money case, we choose n-qubit
“quantum programs” |ψf 〉 uniformly at random under
the Haar measure, and then define a quantum oracle
U that is able both to prepare |ψf 〉 given a description
of f , and to evaluate f (x) given |ψf 〉 and x. How-
ever, a new difficulty is that some families of Boolean
functions F cannot be copy-protected: namely, those
for which any f ∈ F can be efficiently learned using
black-box access. Thus, our proof somehow needs to
explain why learnability is the only obstruction. Our
solution will be to construct a polynomial-time simula-
tor, which takes an algorithm (in the oracle world) for
pirating a quantum program |ψf 〉, and converts it into
an algorithm (with no oracle) that learns f using only
black-box access to f .

Among other things, the simulator needs the abil-
ity to “mock up” its own quantum state |ϕ〉 that can
stand in for |ψf 〉 in a simulation of the pirating algo-

rithm, which in turn means that |ϕ〉⊗t should be in-
distinguishable from t copies of a Haar-random state
for some fixed t = poly (n). As it turns out, pre-
cisely this problem—the construction of explicit quan-
tum states that behave like Haar-random states—has
recently become a major topic in quantum computing.
So for example, Ambainis and Emerson [6] gave an ex-
plicit construction of approximate quantum t-designs
for arbitrary t: that is, finite ensembles of pure states
(px, |ϕx〉) such that

(1 − ε)

∫

ψ

(|ψ〉 〈ψ|)⊗t dψ ≤
∑

x

px (|ϕx〉 〈ϕx|)⊗t

≤ (1 + ε)

∫

ψ

(|ψ〉 〈ψ|)⊗t dψ

where the integrals are with respect to the Haar mea-
sure. Our requirement is slightly different: basically,
we need that no algorithm that receives t copies of |ϕ〉,
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and makes T queries to an oracle that recognizes |ϕ〉,
can decide whether |ϕ〉 was drawn from the explicit dis-
tribution or the Haar measure. Both for that reason,
and because our construction was independent of [6],
in the full version of the paper we give a self-contained
proof of the following result:

Theorem 3 Let d be a positive integer. Then
there exists a collection of n-qubit pure states
{|ϕx〉}x∈{0,1}n(d+1) such that:

(i) Given x as input, the state |ϕx〉 can be prepared in
time polynomial in n and d.

(ii) Let E be any quantum algorithm that receives a
state |ϕ〉⊗t as input, and also makes T queries to
a quantum oracle Uϕ such that Uϕ |ϕ〉 = − |ϕ〉 and
Uϕ |φ〉 = |φ〉 for all |φ〉 orthogonal to |ϕ〉. Let
E (|ϕ〉) represent the probability that E accepts.

Then provided t + 2T ≤ min
{
d/2,

√
2n/2

}
, we

have

∣∣∣∣
EXx∈{0,1}n(d+1) [E (|ϕx〉)]

−EX|ψ〉∈µ [E (|ψ〉)]

∣∣∣∣ ≤
4 (t+ 2T )

2

2n

where µ is the Haar measure.

For those who are curious, the explicit states in ques-
tion are

|ϕx〉 :=
1√
2n

∑

x∈GF(2n)

e2πip(x)/2
n |x〉 ,

where p : GF (2n) → GF (2n) is a univariate polyno-
mial of degree at most d that is encoded by the string

x ∈ {0, 1}n(d+1)
, and elements of GF (2n) are freely

reinterpreted as n-bit integers where relevant.

1.2 Related Work

Recall that quantum money was first studied by
Wiesner [23]. In Wiesner’s scheme, a central bank
distributes “quantum banknotes,” each consisting of
a unique serial number (which is written down classi-
cally), together with n polarized photons in the states

|0〉, |1〉, |+〉 = |0〉+|1〉√
2

, or |−〉 = |0〉+|1〉√
2

. The bank

also stores, in a secure location, a database of all the
serial numbers together with classical descriptions of
the associated quantum states. Whenever a banknote
is returned to the bank, the note can be measured (us-
ing the secure database) to verify its authenticity. On
the other hand, using the uncertainty principle, it is
possible to show that, starting from k banknotes, any

attempt to forge k + 1 banknotes that all pass the au-
thentication test can succeed with probability at most
(3/4)n.

Let us point out two striking advantages of Wies-
ner’s scheme. Firstly, the scheme requires only single
coherent qubits and one-qubit measurements; there is
no need for any entanglement. For this reason, the
scheme might be practical long before universal quan-
tum computing. Secondly, the security of the scheme
is information-theoretic—guaranteed by the laws of
quantum physics—rather than computational.

An obvious drawback of Wiesner’s scheme is its
need for a giant secret database maintained by the
bank. But in 1982, Bennett, Brassard, Breidbart,
and Wiesner [9] (henceforth BBBW) showed how to
avoid the giant database, at the cost of making the
security of the quantum money computational rather
than information-theoretic. In modern terms, their
proposal was this. The bank fixes, once and for all, a
secret random seed s. It then distributes banknotes,
each of the form |y〉

∣∣ψgs(y)

〉
, where y ∈ {0, 1}n is a

unique serial number for the banknote, gs : {0, 1}n →
{0, 1}n is a pseudorandom function, and

∣∣ψgs(y)

〉
is the

state obtained by starting from gs (y), grouping the n
bits into n/2 blocks of two, and mapping each 00 to
|0〉, 01 to |1〉, 10 to |+〉, and 11 to |−〉.

Using its knowledge of s, the bank can verify the au-
thenticity of any note |y〉

∣∣ψgs(y)

〉
, by computing gs (y)

and then measuring each qubit of
∣∣ψgs(y)

〉
in the ap-

propriate basis. But suppose gs were a truly ran-
dom function. Then by the same argument as for
Wiesner’s original scheme, given any k banknotes, no
quantum operation could forge a (k + 1)st note with

probability more than (3/4)
n/2

of passing the authen-
tication test. This means that, if there were a quan-
tum operation to forge high-quality banknotes, then
that operation could be used to distinguish gs from a
truly random function. And therefore, assuming gs is
secure against polynomial-time quantum adversaries,
there can be no polynomial-time quantum algorithm
to forge banknotes that pass the authentication test
with non-negligible probability.

However, the BBBW scheme still has a serious draw-
back: namely that s, which is needed for the au-
thentication procedure, must remain a closely-guarded
secret. And thus it would presumably be unwise,
for example, to install the authentication devices in
convenience-store cash registers. What we really want
is a scheme where the procedure for authenticating the
money is completely public, and only the procedure for
minting the money is secret.

Bennett et al. [9] presented a candidate for such a

4



publicly-verifiable quantum money scheme,8 which was
based on the hardness of factoring Blum integers.9 Un-
fortunately, their scheme was insecure for two reasons.
First, we now know that factoring is in quantum poly-
nomial time! But even were we to base the scheme
on some other cryptographic primitive, Bennett et al.
pointed out that it could be broken by an adversary
who is able to make entangled measurements on all of
the qubits in a banknote. The question of whether
secure quantum money with public authentication is
possible has remained open for 30 years.

Concurrently with our work, there has been a recent
renewal of interest in the quantum money problem. In
his PhD thesis, Stebila [21] provides a lucid overview
of quantum money, and explains why our Complexity-
Theoretic No-Cloning Theorem implies the existence of
a quantum oracle relative to which publicly-verifiable
quantum money is possible.10 Also, in unpublished
work, Aaronson, Farhi et al. [2] propose a candidate
scheme for publicly-verifiable quantum money that is
quite different from the scheme in this paper. Specif-
ically, the scheme of [2] is based on random quantum
k-SAT instances whose ground states are matrix prod-
uct states.

As far as we know, the idea of using quantum me-
chanics to copy-protect software is original to this work.

1.3 Organization

The rest of this extended abstract is organized as
follows. Section 2 formally defines quantum money
and copy-protection schemes and investigates their ba-
sic properties, and also recalls some preliminaries from
cryptography and quantum information. Section 3
considers quantum money schemes: our explicit candi-
date proposal based on random stabilizer states in Sec-
tion 3.1, and our oracle result in Section 3.2. Section
4 then discusses quantum copy-protection: the can-
didate schemes for copy-protecting point functions in
Section 4.1, and the oracle result in Section 4.2. We
conclude in Section 5 with a list of open problems.

8Bennett et al. described their public-key scheme in terms of
“subway tokens” rather than money—since if we want to authen-
ticate the tokens using single-qubit measurements only, then the
authentication test necessarily destroys the tokens and prevents
their reuse. On the other hand, supposing we could perform an
entangled measurement on all n qubits in a token, it would be
possible to authenticate the token while preserving its quantum
coherence. For this reason, the token could be used as money.

9More generally, their scheme could be based on any trapdoor

collision-resistant hash function: that is, a CRHF such that one
can efficiently sample collision pairs using some hidden trapdoor
information.

10Indeed, our original interest was in copy-protection; it was
Stebila, along with M. Mosca, who pointed out to us the appli-
cation to unforgeable money.

We regret that, because of space limitations, much
of the paper’s technical content (including the proof
of the Complexity-Theoretic No-Cloning Theorem and
the explicit construction of quantum t-designs) has had
to be relegated to the full version.

2 Preliminaries

For simplicity, in this paper we restrict ourselves to
nonuniform (circuit) computation. Given two mixed
states ρ and σ, the trace distance ‖ρ− σ‖tr equals the
maximum, over all measurements M , of the variation
distance ‖M (ρ) −M (σ)‖ between the probability dis-
tributions M (ρ) ,M (σ) over measurement outcomes
obtained by applying M to ρ and σ respectively. We
will use the following lemma of Aaronson [1]:

Lemma 4 (“Almost As Good As New Lemma”)
Suppose a measurement on a mixed state ρ yields a
particular outcome with probability 1 − ε. Then after
the measurement, one can recover a state ρ̃ such that
‖ρ̃− ρ‖tr ≤

√
ε.

See Nielsen and Chuang [18] for other quantum in-
formation concepts used in this paper.

In what follows, we will sometimes use the assump-
tion that there exists a pseudorandom function family
secure against quantum adversaries. The following
theorem helps to justify that assumption.

Theorem 5 Suppose there exists a one-way function

A : {0, 1}n → {0, 1}n that is secure against 2n
Ω(1)

-time
quantum adversaries. Then there also exists a family
fs : {0, 1}n → {0, 1}n of pseudorandom functions, pa-

rameterized by a seed s ∈ {0, 1}poly(n)
, that is secure

against 2n-time quantum adversaries. (Here A and fs
are both computable in classical polynomial time.)

Proof Sketch. H̊astad et al. [20] showed that if 2n
Ω(1)

-

secure one-way functions exist, then so do 2n
Ω(1)

-secure
pseudorandom generators. Razborov and Rudich [19]

showed that if 2n
Ω(1)

-secure pseudorandom generators
exist, then so do 2n-secure pseudorandom function
families (with polynomial seed length). Since both of
these reductions are “black-box,” they go through es-
sentially without change if the adversary is quantum.

Interestingly, the reduction of Goldreich, Gold-
wasser, and Micali [13], from f (n)-secure pseudoran-

dom generators to f (n)Ω(1) / poly (n)-secure pseudo-
random functions with seed length n, does not go

5



through if the adversary is quantum.11 We leave as an
open problem whether a “strong,” GGM-style reduc-
tion from PRGs to PRFs can be proved in the quantum
setting.

2.1 Quantum Money

Intuitively, a quantum money scheme is a scheme in
which

(1) quantum banknotes can be efficiently produced by
a central bank,

(2) there exists a polynomial-time quantum algorithm
for authenticating the banknotes, which could be
private or public, and

(3) given as input k valid banknotes, a polynomial-
time counterfeiter cannot produce k + 1 valid
banknotes that have non-negligible probability of
passing the authentication test.

We now give a formal definition.

Definition 6 A quantum money scheme with key size
n consists of the following:

• A quantum circuit B of size O (poly (n)) (the
“bank”), which takes a string s ∈ {0, 1}n (the “se-
cret key”) as input, and produces a classical string
es (the “public key”) and mixed state ρs (the “ban-
knote”) as output.12

• A quantum circuit A of size O (poly (n)) (the “au-
thenticator”), which takes a string e and state ρ
as input and either accepts or rejects.

We say (B,A) has completeness error ε if A (es, ρs)
accepts with probability at least 1− ε for all s. We say
(B,A) has soundness error δ if for all quantum cir-
cuits C of size O (poly (n)) (the “counterfeiter”) and
all k, r = O (poly (n)), the following holds. Assume
C takes ρ⊗ks as input, and outputs a state σs on k + r
registers. For i ∈ [k + r], let σis denote the contents
of the ith register, and let pi be the probability that
A
(
es, σ

i
s

)
accepts, averaged over all s ∈ {0, 1}n. Then∑k+r

i=1 pi ≤ k + δ.

11This is because the GGM reduction makes essential use of
the fact that a polynomial-time adversary can examine only
poly (n) outputs of the function fs—something that is manifestly
false if the adversary is quantum.

12One can of course generalize the definition to let es be ran-
domized or even a quantum state, and possibly correlated with
ρs as well. However, we will not need the additional freedom in
this paper.

We call (B,A) public-key if C also receives es as
input, and private-key otherwise. If (B,A) is private-
key, we call it query-secure if C has access to an oracle
that takes a state σ as input and simulates A (es, σ)
(that is, accepts with the same probability and returns
the same post-measurement state σ̃).13

We make a few remarks on Definition 6. First,
it is obvious that no money scheme exists where the
states ρs are classical.14 Second, if a money scheme
has completeness error ε, it follows from Lemma 4 that
the authentication procedure can return a banknote ρ̃s
such that ‖ρ̃s − ρs‖ ≤ √

ε. This means that the same
banknote can be verified Ω (1/

√
ε) times before it needs

to be replaced. In this paper, we will generally be
interested in schemes with perfect completeness.

Third, we will generally want the soundness error δ
to be negligible (that is, o (1/p (n)) for all polynomials
p). If δ is negligible, then it is easy to see that, starting
from ρ⊗ks , no polynomial-time counterfeiter C can ever
increase its “wealth” (defined as the expected number
of states in C’s possession that A accepts) by more than
a negligible amount in expectation. Note that this is
true even if the states output by C are entangled; our
definition automatically accounts for this possibility.

We now discuss some examples. The BBBW scheme
[9], discussed in Section 1.2, is a private-key quantum
money scheme. We therefore have the following:

Theorem 7 (implicit in [9]) If there exists a pseu-
dorandom function family secure against quantum ad-
versaries, then there exists a private-key quantum
money scheme with perfect completeness and exponen-
tially small soundness error.

However, the BBBW scheme is not query-secure.
The reason is simple: given a banknote of the form
|y〉
∣∣ψgs(y)

〉
, a counterfeiter can learn a classical descrip-

tion of
∣∣ψgs(y)

〉
, by rotating each qubit i in turn while

leaving the other n/2 − 1 qubits fixed, and repeatedly
feeding the result to the authenticator A until it has
ascertained the correct state of the ith qubit. This
works because A always measures the qubits in the cor-
rect bases, and therefore does not damage the qubits
that are not being rotated. Of course, once the coun-
terfeiter has learned a classical description of

∣∣ψgs(y)

〉
,

13Note that any public-key scheme is also query-secure, since
we can hardwire a description of A into C.

14Furthermore, no query-secure scheme can exist where the
states ρs have O (logn) qubits. For in that case, a counterfeiter
could reconstruct ρs in polynomial time, by first generating a
tomographically complete set of states, and then sending several
copies of each state to A to estimate the probability that each
one is accepted.

6



it can then produce as many copies of |y〉
∣∣ψgs(y)

〉
as it

likes.
In the full version of this paper, we will give a

private-key quantum money scheme that is query-
secure, assuming the existence of pseudorandom func-
tions secure against quantum adversaries. We will also
prove the following result, which is not entirely trivial:

Theorem 8 Any quantum money scheme satisfying
Definition 6 (even a private-key one) must rely on some
computational assumption.

As mentioned in Section 1.2, Wiesner’s original
scheme [23] avoided the need for any computational
assumption, but only by having the bank maintain a
giant lookup table, containing a classical description of
every banknote that has ever been issued. If we want
to fit Wiesner’s scheme into Definition 6, one way to
do it is to assume that all parties have access to a
(classical) random oracle O. For then the bank can
use a secret part of the oracle string to generate the
banknotes |y〉 |ψy〉; and to any counterfeiter who does
not know which part of the oracle the bank is using,
the states |ψy〉 will appear to be drawn uniformly from
{|0〉 , |1〉 , |+〉 , |−〉}n. This observation gives us the fol-
lowing:

Theorem 9 (implicit in [23]) Relative to a random
oracle O, there exists a private-key quantum money
scheme with perfect completeness and exponentially
small soundness error.

On the other hand, Wiesner’s scheme is not query-
secure, for the same reason the BBBW scheme is not.
In the full version of this paper, we give a private-key
quantum money scheme that is query-secure, relative
to a random oracle O.

In Section 3.1, we will present a candidate for a
public-key quantum money scheme based on random
stabilizer states, while in Section 3.2, we will prove
that public-key quantum money schemes exist relative
to a quantum oracle.

The situation is summarized in Table 2.1.

2.2 Quantum Copy-Protection

What if we want to distribute unclonable quantum
states that are useful for something besides just get-
ting authenticated? This brings us to the question of
quantum software copy-protection. Informally, given
a secret Boolean function f : {0, 1}n → {0, 1} drawn
from a known family F , what we want is a quantum
state ρf that

(1) can be efficiently prepared given a classical de-
scription of f ,

(2) can be used to compute f (x) efficiently for any
input x ∈ {0, 1}n, and

(3) cannot be efficiently used to prepare more states
from which f can be computed in quantum poly-
nomial time.

It is clear that, if the function family F is efficiently
learnable—in the sense that we can output a circuit
for an unknown f ∈ F in quantum polynomial time,
using only oracle access to f—then there is no hope
of copy-protecting f . For in that case, being able to
run a program for f is tantamount to being able to
copy the program. Indeed, even if we cannot learn
a useful classical description of f by measuring ρf , it
might still be possible to prepare additional quantum
programs for f directly, by some quantum operation
on ρf .

The quantum copy-protection problem might re-
mind readers of the classical code obfuscation problem,
and indeed there are similarities. Roughly speaking,
we say a program P for a function f ∈ F is obfuscated
if knowing P ’s source code is “no more useful” than
being able to run P , in the sense that any property of
f that is efficiently computable given P ’s source code,
is also efficiently computable given oracle access to f .
Barak et al. [7] famously showed that there exist func-
tion families F that are impossible to obfuscate. On
the other hand, Wee [22] and others have shown that,
under strong cryptographic assumptions, it is possible
to obfuscate point functions and several related fami-
lies of functions. In Section 4.1, we will give proposals
for quantumly copy-protecting point functions that are
somewhat reminiscent of known methods for obfuscat-
ing point functions.

However, let us point out two differences between
copy-protection and obfuscation. Firstly, it is trivial
to show that copy-protection is always impossible in
the classical world, for any function family: one does
not need anything like the elegant argument of Barak
et al. [7]. Secondly, as discussed before, any function
family F that is learnable from input/output behavior
cannot be copy-protected—but for exactly the same
reason, F can be obfuscated! For if we can output a
program for f ∈ F using only oracle access to f , then
clearly the source code of that program is no more use-
ful than the oracle access. Thus, while unbreakable
copy-protection has connections with obfuscation, fun-
damentally it is a new cryptographic task, one whose
very possibility depends on quantum mechanics.

We now define quantum copy-protection schemes.
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Money Scheme Type Oracle Security States Used Reference
Wiesner Private-key Random Unconditional Single qubits [23]
BBBW Private-key None Assuming PRFs Single qubits [9]
Modified Wiesner Query-secure Random Unconditional Haar-random Full version
Modified BBBW Query-secure None Assuming PRFs Haar-random Full version
Quantum Oracle Public-key Quantum Unconditional Haar-random This paper
Random Stabilizers Public-key None Conjectured Stabilizer This paper
Matrix Product States Public-key None Conjectured MPS [2]

Table 1. Known quantum money schemes and their properties

Definition 10 Consider a family F of Boolean func-
tions f : {0, 1}n → {0, 1}, where each f ∈ F is associ-
ated with a unique “description” df ∈ {0, 1}m. (Thus
|F| ≤ 2m.) A quantum copy-protection scheme for F
consists of the following:

• A quantum circuit V of size O (poly (n,m)) (the
“vendor”), which takes df as input and produces
a mixed state ρf as output.

• A quantum circuit C of size O (poly (n,m)) (the
“customer”), which takes (ρf , x) as input and at-
tempts to output f (x).

We say (V,C) has correctness parameter ε if C out-
puts f (x) with probability at least 1 − ε given (ρf , x)
as input, for all f ∈ F and x ∈ {0, 1}n.

We say (V,C) has security δ against a probabil-
ity distribution D over F × {0, 1}n, if for all quan-
tum circuits P and L of size O (poly (n,m)) (the “pi-
rate” and “freeloader” respectively) and all k, r =
O (poly (n,m)), the following holds. Assume P takes
ρ⊗kf as input, and outputs a state σf on k+ r registers.

For i ∈ [k + r], let σif denote the contents of the ith

register. Also, suppose L takes (ρf , x) as input and
attempts to output f (x). Then if we run L on (σif , x)
for all i ∈ [k + r], the expected number of invocations
that output f (x), averaged over (f, x) drawn from D,
is at most k + (1 − δ) r.15

A few remarks on Definition 10. First, the secu-
rity criterion might seem a bit strange. The basic
motivation is that we need to ignore “trivial” pirating
strategies, such as mapping the state ρ⊗2

f to

1

3
(ρf ⊗ ρf ⊗ I + ρf ⊗ I ⊗ ρf + I ⊗ ρf ⊗ ρf ) ,

which has large fidelity with ρf on each of the three
registers. On the other hand, we also do not want to

15One might also want to require a concentration inequality—
e.g. that for all inputs x, the probability that at least k + 2r/3
of the pirated programs output f (x) correctly decreases expo-
nentially with r. This is a topic we leave to future work.

require all k + r pirated programs to output the right
answer simultaneously (with high probability and on
some input x), since that criterion is too stringent even
for legitimate programs with constant error. Looking
at the expected number of correct answers is conve-
nient, since by linearity of expectation, we can then
ignore entanglement and classical correlations among
the registers. Note that it is always possible for
(1 − ε) k + r/2 of the k + r pirated programs to get
the right answers on average—using a pirating strategy
that outputs the legitimate programs ρ⊗kf , alongside r
programs that guess randomly on every input x. But
ideally it should not be possible to do too much better
than that.

Second, a natural question is whether the state ρf
can be used more than once, or whether the irreversibil-
ity of measurement makes such a state “disposable.”
In our setting, disposable states might actually be pre-
ferred—since any disposable state is copy-protected by
definition! (If we could copy ρf with high fidelity, then
we could run each copy on a different input x, contrary
to assumption.) However, it is not hard to see that,
provided the customer buys k = Ω (n) copies of ρf from
the quantum software store, she can evaluate f on as
many inputs as she likes—indeed, all 2n of them, if she
has exponential time. For by standard amplification,
ρ⊗kf can be used to evaluate f with error probability

2−Ω(k). So by Lemma 4, it is possible to reuse ρ⊗kf an
exponential number of times, by uncomputing garbage
after each measurement.

In this paper, we will typically assume that ρf
“comes from the store” already amplified, and that
both customers and would-be software pirates can
therefore reuse ρf as many times as needed. This
raises an interesting point: given an amplified state
ρf = σ⊗k, a customer willing to tolerate slightly higher
error could always split ρf into σ⊗k/2⊗σ⊗k/2, and give
one of the copies of σ⊗k/2 to a friend (rather like donat-
ing a kidney). We leave as an open question whether
it is possible to amplify success probability in a way
that does not allow this sort of sharing.
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Third, call the function family F and distribu-
tion D quantumly learnable with error δ if there exist
polynomial-size quantum circuits Q and C such that

Pr
(f,x)∈D

[
C
(
Qf , x

)
outputs f (x)

]
≥ 1 − δ,

where Qf denotes the mixed state output by Q given
oracle access to f . (Note that Q does not receive x.)
The following simple proposition delimits the function
families that one can hope to copy-protect.

Proposition 11 No (F ,D) pair that is quantumly
learnable with error δ can be quantumly copy-protected
with security δ + 2−n.

Proof. Using an amplified state of the form ρ
⊗ poly(n)
f ,

a pirate can simulate quantum oracle access to f
with exponentially small error. The pirate can
thereby use the learning algorithm Qf to output as
many states σf as he wants with the property that
Pr(f,x)∈D [C (σf , x) outputs f (x)] ≥ 1−δ−2−n. Note

that by Lemma 4, each “query” to f damages ρ
⊗ poly(n)
f

by only an exponentially small amount.

Notice that if |F| ≤ poly (n), then F is quantumly
learnable (and indeed classically learnable), since the
learning algorithm Q simply needs to hardwire inputs
x1, . . . , x|F|−1 such that every distinct f, f ′ ∈ F differ
on some xi. Thus, one corollary of Proposition 11 is
that we can only hope to copy-protect superpolynomi-
ally large function families.

Let us end with a simple but important fact, which
shows that, as in the quantum money case, we can only
hope for security under computational assumptions.

Proposition 12 A software pirate with unlimited
computational power can break any quantum copy-
protection scheme.

Proof. Let f and g be two functions in F , and assume
there exists an x ∈ {0, 1}n such that f (x) 6= g (x).
Then letting ρf and ρg be the quantum programs for
f and g respectively, the fidelity F (ρf , ρg) must be at
most ǫ, for some ǫ bounded away from 1 by a constant.
(Otherwise ρf and ρg would lead to the same answers
on x with 1 − o (1) probability.) This implies that
F (ρ⊗kf , ρ⊗kg ) ≤ ǫk. So if we choose k sufficiently large

(say, more than 2m), then the set of states
{
ρ⊗kf

}

f∈F
is extremely close to an orthonormal basis. Thus, as
in the algorithm of Ettinger, Høyer, and Knill [11] for
the nonabelian Hidden Subgroup Problem, there must
be a measurement of ρ⊗kf (possibly exponentially hard
to implement) that outputs f with high probability.

3 Quantum Money

We now consider the problem of developing public-
key quantum money schemes. First, in Section 3.1,
we propose an explicit candidate scheme for public-
key quantum money, based on random stabilizer states.
Then, in Section 3.2, we use the Complexity-Theoretic
No-Cloning Theorem to construct a quantum oracle
relative to which public-key quantum money schemes
exist.

3.1 The Random Stabilizer Scheme

Recall that a stabilizer state is a pure state that can
be obtained by starting from |0〉⊗n and then apply-
ing controlled-NOT, Hadamard, and π/4-phase gates,
while a stabilizer measurement is a measurement that
can be performed using those gates together with com-
putational basis measurements. (See Aaronson and
Gottesman [3] for details.) Given a security param-
eter n, let Dn be the uniform distribution over all n-
qubit stabilizer states. Also, let m, ℓ, ε be additional
parameters such that n/ε≪ m≪ 1/ε2 ≪ ℓ.

To generate a banknote, first the bank prepares ℓ
stabilizer states |C1〉 , . . . , |Cℓ〉, which are drawn inde-
pendently from Dn. (It is well-known that any stabi-
lizer state can be prepared in polynomial time.) The
bank temporarily remembers the classical descriptions
of the |Ci〉’s, though it can erase those descriptions once
the preparation procedure is finished. Next, for each
i ∈ [ℓ], the bank generates m random stabilizer mea-
surements Ei1, . . . , Eim as follows. For each j ∈ [m]:

• With 1−ε probability, Eij is a tensor product of n
uniformly random Pauli operators, with a random
phase. That is, Eij = (−1)b P1 ⊗ · · · ⊗ Pn, where
b is drawn uniformly from {0, 1}, and each Pk is
drawn uniformly from {I, σx, σy, σz}.

• With ε probability, Eij is a random tensor prod-
uct of Pauli operators as above, except that we
condition on the event that |Ci〉 is a +1 eigenstate
of Eij (that is, Eij |Ci〉 = |Ci〉).

We can represent these ℓm measurements by a table
E = (Eij)ij , using (2n+ 1) ℓm classical bits. Finally,
the bank generates an ordinary, classical digital signa-
ture sig (E) of the table E , to prove that it and it alone
could have generated E . The bank then distributes
(|C1〉 , . . . , |Cℓ〉 , E , sig (E)) as the quantum banknote.

To authenticate such a banknote, one does the fol-
lowing. First check that sig (E) is a valid digital sig-
nature for E . Next, for each i ∈ [ℓ], choose an in-
dex j (i) ∈ [m] uniformly at random. Let M be the
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two-outcome measurement that applies E1j(1) to |C1〉,
E2j(2) to |C2〉, and so on up to |Cℓ〉, and that accepts if
and only if the majority of these measurements return
a +1 outcome (corresponding to |Ci〉 being a +1 eigen-
state of Eij(i)). Then apply M to |C1〉 ⊗ · · · ⊗ |Cℓ〉,
accept if and only if M accepts, and finally apply un-
compute to get rid of garbage.

By construction, each |Ci〉 will be measured to be
in a +1 eigenstate of Eij(i) with independent proba-

bility 1−ε
2 + ε = 1/2 + ε/2. So by a Chernoff bound,

the probability that M rejects is bounded away from 1.
Indeed, we can make the probability that M rejects ex-
ponentially small, by simply taking ℓ to be sufficiently
larger than 1/ε2. By Lemma 4, this implies that when
we uncompute, we recover a state that is exponentially
close to |C1〉 ⊗ · · · ⊗ |Cℓ〉 in trace distance—which in
turn implies that we can reuse the quantum banknote
an exponential number of times.

On the other hand, we conjecture the following:

Conjecture 13 Given (|C1〉 , . . . , |Cℓ〉 , E , s), it is
computationally infeasible not only to recover classi-
cal descriptions of the states |C1〉 , . . . , |Cℓ〉, but even
to prepare additional copies of these states—or for that
matter, of any states that are accepted by the authenti-
cation procedure with non-negligible probability.

The intuition behind Conjecture 13 is this: recover-
ing classical descriptions of |C1〉 , . . . , |Cℓ〉 given E can
be seen as a random instance of the noisy decoding
problem for linear codes, which is known to be NP-
complete in the worst case (see Berlekamp et al. [10]).
Furthermore, while it is conceivable that a counterfeiter
could use her knowledge of E to copy the |Ci〉’s with-
out learning classical descriptions of them, we have not
found an efficient way to do this. Indeed, it seems pos-
sible that to a polynomial-time quantum algorithm—
even one with knowledge of E—the |Ci〉’s are actually
indistinguishable from n-qubit maximally mixed states.

Note that the scheme is not secure if m ≤ n/ε—
since then finding an n-qubit stabilizer state |Ci〉 that
is accepted by an ε fraction of the measurements
Ei1, . . . , Eim is a trivial problem, solvable by Gaus-
sian elimination. Likewise, the scheme is not se-
cure if ε is too large (say, greater than 1/

√
m)—

since then one can recover the stabilizer group of |Ci〉,
with high probability, by listing all measurements in
the set {Ei1, . . . , Eim} that commute with suspiciously
more than half of the other measurements in the set.16

Thus, Conjecture 13 can only hold for suitable param-
eter ranges.

16We thank Peter Shor for this observation.

3.2 Oracle Result

If we allow ourselves the liberty of a quantum oracle,
then we can prove the following.

Theorem 14 There exists a quantum oracle U rela-
tive to which a public-key quantum money scheme ex-
ists. (Here all parties—the bank, authenticators, and
counterfeiters—have the same access to U ; no party
has “inside information” about U that is not available
to others.)

By “quantum oracle,” we simply mean a unitary
transformation U that can be applied in a black-box
fashion. (We may assume controlled-U and U−1 are
also available; this does not particularly affect our
results.) Quantum oracles were first studied in a
complexity-theoretic context by Aaronson and Kuper-
berg [4], where they were used to exhibit an oracle
separation between the classes QMA and QCMA.

In the proof of Theorem 14, the oracle U does basi-
cally what one would expect. Firstly, for each possible
“secret key” s ∈ {0, 1}n that could be chosen by the
bank, the oracle maps the state |0〉 |s〉 to |0〉 |s〉 |es〉 |ψs〉,
where es is a classical “public key” chosen uniformly at
random from {0, 1}3n

, and |ψs〉 is an n-qubit pure state
chosen uniformly at random under the Haar measure.
(Of course, after being chosen at random, es and |ψs〉
are then fixed for all time by the oracle. Notice that
with overwhelming probability, there is no pair s, s′

such that es = es′ . Also, here and throughout we
omit ancilla qubits set to |0 · · · 0〉, when they are part
of the input to U .)

Secondly, for each s ∈ {0, 1}n, the oracle maps the
state |1〉 |es〉 |ψs〉 to |1〉 |es〉 |ψs〉 |1〉. On the other hand,
it maps |1〉 |es〉 |φ〉 to |1〉 |es〉 |φ〉 |0〉 if |φ〉 is orthogonal
to |ψs〉, and |1〉 |e〉 |φ〉 to |1〉 |e〉 |φ〉 |0〉 if e 6= es for every
s.

By feeding U inputs of the form |0〉 |s〉, the bank
can prepare and distribute an unlimited number of
banknotes |es〉 |ψs〉. By feeding U inputs of the form
|1〉 |es〉 |ψs〉, buyers and sellers can then authenticate
these banknotes. Furthermore, by the optimality of
Grover’s algorithm [8], it is clear that any would-be
counterfeiter needs Ω

(
2n/2

)
queries to U to find the

secret key s, even if given the public key es.

So the real question is this: given es together with
|ψs〉⊗k for some k = poly (n), can a counterfeiter, by
making poly (n) queries to U , prepare a state that

has non-negligible overlap with |ψs〉⊗k+1
? We ob-

serve that a negative answer follows more-or-less im-
mediately from Theorem 2, the Complexity-Theoretic
No-Cloning Theorem.
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4 Quantum Copy-Protection

Having summarized our results about quantum
money, we now move on to the related problem of copy-
protecting quantum software.

4.1 Two Schemes for Copy-Protecting Point Func-
tions

Recall that a point function fs : {0, 1}n → {0, 1}
has the form

fs (x) =

{
1 if x = s
0 otherwise

In this section we propose two explicit schemes for
quantumly copy-protecting the family {fs}s∈{0,1}n of
point functions.

The first scheme, which we are grateful to Adam
Smith for suggesting, uses a pseudorandom generator

g : {0, 1}n → {0, 1}p(n), where p is some reasonably
large polynomial (say n3). Given the secret key s, the
software vendor first computes g (s), then reinterprets
g (s) as a description of a quantum circuit Ug(s) over
some universal basis of gates, which acts on m qubits
for some m ≪ n. The vendor then outputs |ψs〉 =
Ug(s) |0〉⊗m as its quantum program for fs. Given |ψs〉,
the customer can efficiently compute fs (x) for any x,
by measuring the state U−1

g(x) |ψs〉 in the standard basis

and then checking whether the outcome is |0〉⊗m.
Harrow and Low [17] have recently shown that

random quantum circuits are approximate unitary 2-
designs. From this it follows that if x 6= s, then
|〈ψx|ψs〉| must be exponentially small with overwhelm-
ing probability, unless g is insecure against 2m-time
classical adversaries. It is also clear that s cannot be
learned by a polynomial-time measurement on |ψs〉⊗k
for any k = poly (n), unless g is insecure against
polynomial-time quantum adversaries. However, the
key conjecture is the following:

Conjecture 15 Given |ψs〉⊗k, no polynomial-time
quantum algorithm can prepare a (k + 1)

st
copy of |ψs〉,

or indeed, any other state from which fs can be effi-
ciently computed.

Our second candidate scheme is based on the Hidden
Subgroup Problem over the symmetric group. Given
the secret key s ∈ {0, 1}n, the software vendor first
encodes s, in some canonical way, as a permutation
τs ∈ Sn such that τ2

s = e is the identity. The vendor
then prepares a state of the form

|ψs〉 =
|σ1〉 + |σ1τs〉√

2
⊗ · · · ⊗ |σk〉 + |σkτs〉√

2
,

where σ1, . . . , σk are permutations chosen uniformly at
random from Sn. Finally, the vendor distributes |ψs〉
as the (amplified) quantum program for fs. Given
|ψs〉, the customer can compute fs (x) for any x, by

mapping each state |σi〉+|σiτs〉√
2

to

1

2
[|0〉 (|σi〉 + |σiτs〉) + |1〉 (|σiτx〉 + |σiτsτx〉)] ,

then Hadamarding the first qubit and measuring it in
the standard basis. If τx = τs, then outcome |0〉 will be
obtained with certainty, while if τx 6= τs, then outcome
|1〉 will be obtained with probability 1/2.

On the other hand, recovering τs given |ψs〉 is clearly
at least as hard as the Hidden Subgroup Problem
(HSP) over the symmetric group, at least for subgroups
H ≤ Sn of order 2. Solving this special case of HSP
would lead to a polynomial-time quantum algorithm
for the Rigid Graph Isomorphism problem. Further-
more, Hallgren et al. [16] have shown that any quan-
tum algorithm for recovering τs would require entan-
gled measurements on Ω (n logn) coset states; such an
algorithm seems beyond present-day techniques.

Again, though, the conjecture we need is a stronger
one:

Conjecture 16 Given |ψs〉, no polynomial-time quan-
tum algorithm can prepare an additional coset state
|σk+1〉+|σk+1τs〉√

2
, or indeed, any other state from which

fs can be efficiently computed.

The copying problem clearly reduces to HSP, but we
do not know of a reduction in the other direction.

4.2 Oracle Result

Our main result about quantum copy-protection is
the following:

Theorem 17 There exists a quantum oracle U , rel-
ative to which any family F of efficiently computable
functions that is not quantumly learnable can be quan-
tumly copy-protected (with security δ, against pirates
mapping k programs to k + r with (1 − 2δ) r > k).

By a function family F being “quantumly learn-
able,” we mean that given quantum oracle access to
any function f ∈ F , one can in polynomial time pre-
pare a state |ϕf 〉 from which f can then be computed
in polynomial time without further help from the ora-
cle. As discussed before, it is clear that no learnable
family of functions can be copy-protected. Theorem
17 says that this is the only relativizing obstruction to
quantum copy-protection.
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In the remainder of this section, we explain the es-
sential steps in the proof of Theorem 17, in the special
case where we only need to protect against pirating
algorithms that more than double the number of pro-
grams.

The oracle U does the following. Given as input
a state of the form |0〉 |df 〉, where df is a classical de-
scription of a Boolean function f ∈ F , the oracle out-
puts |0〉 |df 〉 |Kf 〉 |ψf 〉, where Kf is a random classical
codeword specifying f , and |ψf 〉 is a 2n-qubit “code
state” chosen uniformly at random under the Haar
measure for each f . Given as input a state of the
form |1〉 |Kf〉 |ψf 〉 |x〉, for some x ∈ {0, 1}n, the ora-
cle outputs |1〉 |Kf 〉 |ψf 〉 |x〉 |f (x)〉. Given as input a
state of the form |1〉 |Kf 〉 |φ〉 |x〉, for any |φ〉 orthogonal
to |ψf 〉, the oracle outputs |1〉 |Kf 〉 |φ〉 |x〉 |0〉.

It is clear that, for any function f ∈ F , the soft-
ware vendor can create and distribute states of the
form |Kf〉 |ψf 〉, from which f (x) can be efficiently com-
puted for any input x. Furthermore, by the optimality
of Grover’s algorithm, a software pirate has little hope
of using the oracle U to find df , given only Kf . As
in the quantum money case, the real question is this:
given the state |Kf 〉 |ψf 〉⊗k for some k = poly (n), can
a quantum pirate produce ℓ > k programs for f using
only poly (n) queries to U?

The Complexity-Theoretic No-Cloning Theorem
suggests that the answer should be no. However,
we now have to handle a new difficulty that did not
arise in the money case. The new difficulty is that
for certain function families F—namely, the learnable
families—we know that it is possible to pirate |ψf 〉
efficiently, by using |ψf 〉 to simulate an oracle for f ,
and then learning a new quantum program for f just
from f ’s input/output behavior. Thus, our proof will
need to show that learnability is the only obstacle to
copy-protection. Or taking the contrapositive, we
need to construct a simulator, which takes as input a
polynomial-time algorithm for pirating |ψf 〉, and con-
verts it into a polynomial-time algorithm that learns a
quantum program for f using only oracle access to f
(and no oracle access to U).

How should the simulator work? For simplicity, let
us restrict ourselves to simulators that use the pirating
algorithm as a black box in constructing the learning
algorithm. Intuitively, what the simulator ought to do
is

(1) “mock up” its own stand-in |K〉 |ϕ〉⊗k for the state

|Kf〉 |ψf 〉⊗k,

(2) run the pirating algorithm on |K〉 |ϕ〉⊗k, using the
simulator’s own oracle access to f to simulate the

pirating algorithm’s oracle calls to U on inputs of
the form |1〉 |Kf〉 |ψf 〉 |x〉, and then

(3) use the output of the pirating algorithm to get an
oracle-free quantum program for f .

The idea behind step (3) is as follows: we know that
at least some of the programs output by the pirating
algorithm must not make essential use of the oracle U .
For the oracle can only be usefully accessed via the
“pseudorandom” state |ϕ〉—and by the Complexity-
Theoretic No-Cloning Theorem, the simulator cannot
have produced any additional copies of |ϕ〉.

However, already at step (1) of the above plan, we
encounter a problem: in the oracle world, the states
|ψf 〉 were chosen uniformly at random under the Haar
measure. In polynomial time, with no oracle access,
how does one “mock up” a 2n-qubit state |ϕ〉 such that

|ϕ〉⊗k behaves indistinguishably from k copies of a uni-
form random state? This is the question that we an-
swer in the full version using Theorem 3, which gives
an explicit quantum t-design for arbitrary t = poly (n)
with the properties we need.

Let us now explain how the pieces are put together.
Assume that (1 − 2δ) r > k. Suppose we are given

a pirating algorithm that takes |ψf 〉⊗k as input (for a
given f ∈ F), makes T queries to the quantum ora-
cle U , and outputs k + r possibly-entangled quantum
programs σU1 , . . . , σ

U
k+r such that

k+r∑

i=1

Pr
(f,x)∈D

[
LU
(
σUi , x

)
outputs f (x)

]
≥ k + (1 − δ) r.

From this pirating algorithm, we want to obtain a
polynomial-time algorithm that uses oracle access to f
to learn an (oracle-free) quantum program for f . Here
is how it works:

(1) The simulator chooses some t = poly (k, T, n). It
then chooses a 2n-qubit state |ϕ〉 uniformly at ran-
dom from a quantum t-design, in the sense of The-
orem 3. The simulator also chooses a random
string K.

(2) The simulator creates a simulated oracle Ũ , which
maps |1〉 |K〉 |ϕ〉 |x〉 to |1〉 |K〉 |ϕ〉 |x〉 |f (x)〉 and
|1〉 |K〉 |φ〉 |x〉 to |1〉 |K〉 |φ〉 |x〉 |0〉 for every |φ〉 or-

thogonal to |ϕ〉. (As a technicality, Ũ does noth-

ing on inputs of the form |0〉 |df 〉.17) Note that Ũ

17For simplicity, we are assuming it is exponentially hard for
anyone but the software vendor to guess the classical description
df for even a single function f ∈ F—in which case, no one but
the software vendor ever has anything to gain by querying U on
inputs of the form |0〉 |d〉. With slightly more work, one can
remove this assumption, and even assume df has some standard
form such as a description of a circuit for f .
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can be implemented in polynomial time, using the
simulator’s oracle access to f .

(3) The simulator runs the pirating algorithm, except

with |K〉 |ϕ〉⊗k in place of |Kf 〉 |ψf 〉⊗k for the in-

put, and queries to Ũ in place of queries to U .
The simulator outputs |Φ〉, the output of the pi-
rating algorithm, as its candidate for an oracle-free
quantum program for f .

(4) Let σ1, . . . , σk+r be the (possibly-entangled) reg-
isters of |Φ〉 corresponding to the k + r pirated
programs. Then given an input x ∈ {0, 1}n and
freeloading algorithm L, one computes f (x) as fol-
lows. Choose i ∈ [k + r] uniformly at random;

then run LŨ (σi, x) with Ũ replaced by the iden-
tity transformation, and return L’s output as the
guess for f (x).

We claim that step (4) outputs f (x) with probabil-
ity non-negligibly greater than 1/2. Notice that one
can amplify the success probability by repeating steps

(1)-(3) t′ = poly (n) times to obtain the state |Φ〉⊗t
′

,
then repeating step (4) on each copy of |Φ〉 and out-
putting the majority answer.

The argument goes as follows. By Theorem 2 (the
Complexity-Theoretic No-Cloning Theorem), it is im-
possible to use the original pirating algorithm to pro-
duce k + 1 copies of the Haar-random state |ψf 〉. In-
deed, there cannot even be a single input x ∈ {0, 1}n
such that given x, one can use the output of the pirat-
ing algorithm (together with poly (n) additional queries
to U) to prepare k + 1 copies of |ψf 〉. For then, by
simply guessing x and then using amplitude amplifica-
tion, one could prepare k + 1 copies of |ψf 〉 using only
O
(√

2n poly (n)
)

queries to U , whereas Theorem 2 im-
plies that Ω (2n/ poly (n)) queries are needed. (This is
why we stipulated that |ψf 〉 has 2n qubits rather than
n.)

By Theorem 3, it follows that the output |Φ〉 cannot
be used to prepare k+ 1 copies of |ϕ〉 in the simulated
case either—for otherwise, we would be able to distin-
guish the real case from the simulated one.

As a consequence, when we run LŨ (σi, x) for each
i ∈ [k + r], at least r of the k + r invocations must be

unaffected when Ũ is replaced by the identity transfor-
mation. For if an invocation is affected, then by the
BBBV lower bound [8], it must at some point have fed

Ũ an input state that has Ω (1/ poly (n)) fidelity with
some state of the form |1〉 |K〉 |ϕ〉

∑
y αy |y〉. For those

are the only states on which Ũ behaves differently from
the identity transformation. Thus, we can prepare a
“clock state” of the form 1√

T

∑T
t=1 |t〉, and use that

state to determine how many steps t of L to apply to
σi. We can then apply poly (n) steps of amplitude am-
plification to the joint state of the clock register and
the σi register, searching for a marked item of the form
|t〉⊗|ϕ〉 for any t. This will produce, in the σi register,
a state having 1 − ε fidelity with |ϕ〉. But we already
decided that this can be done for at most k registers.

In summary, the expression

k+r∑

i=1

Pr
(f,x)∈D

[
LŨ (σi, x) outputs f (x)

]

can decrease by at most (say) k + 2−n when Ũ is re-
placed by I. Since (1 − δ) r > k + δr, this means the
sum is at least

k + (1 − δ) r −
(
k + 2−n

)
= (1 − δ) r − 2−n

≥ k + δr − 2−n.

So for i ∈ [k + r] chosen randomly, LI (σi, x) outputs
the correct value of f (x) with probability bounded
above 1/2, as claimed.

5 Open Problems

Can we find more explicit candidate schemes for
public-key quantum money—and better yet, prove
such a scheme secure under a standard assumption?

Can we find candidate schemes for quantumly copy-
protecting richer families of functions than just point
functions? What about trapdoor inversion functions?

Can we prove a scheme for copy-protecting point
functions (such as those in Section 4.1) secure under a
standard assumption?

Can we improve Theorem 17 to remove the restric-
tion on r?

Can a public-key (or at least query-secure) quan-
tum money scheme exist, that does not require multi-
qubit entanglement in the banknotes? What about a
scheme for copy-protecting point functions that does
not require multi-qubit entanglement in the programs?

Can we show that public-key quantum money
schemes exist relative to a classical oracle, rather than
a quantum oracle? What about nontrivial copy-
protection schemes?

Is there a way to amplify a quantum program
“unsplittably”—i.e., such that one cannot efficiently
decompose the amplified program into two somewhat-
less-amplified programs, as ρ⊗k can be decomposed
into ρ⊗k/2 ⊗ ρ⊗k/2?

Can we improve the parameters of the Complexity-
Theoretic No-Cloning Theorem?
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Can the Goldreich-Goldwasser-Micali reduction [13]
from PRGs to PRFs be adapted to work in the presence
of quantum adversaries?

Can we find a function family which is quantumly
obfuscatable, but is not (or is not known to be) classi-
cally obfuscatable?

Can we give constructions for unclonable quantum
ID cards or quantum proofs? How do these function-
alities relate to money and copy-protection?

What can we say about information-theoretically se-
cure quantum copy-protection, in the regime where the
number of copies of the quantum program is assumed
to be small?
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