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Abstract

In this paper, we establish global convergence results for projection and
relaxation algorithms for solving variational inequality problems, and for the
Frank-Wolfe algorithm for solving convex optimization problems defined over
general convex sets. The analysis rests upon the condition of f-monotonicity,
which we introduced in a previous paper, and which is weaker than the tradi-
tional strong monotonicity condition. As part of our development, we provide
a new interpretation of a norm condition typically used for establishing conver-
gence of linearization schemes. Applications of our results arize in uncongested

as well as congested transportation networks.
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1 Introduction

In this paper we consider the variational inequality problem
VI(f,K): Find z°® ¢ K C R": f(z")(z-2")>0, Vz €K, (1)

defined over a compact, convex (constraint) set K in R™. In this formulation

f: K CR"— R" is a given function and z°"* denotes an (optimal) solution of the
problem. Variational inequality theory provides a natural framework for unifying
the treatment of equilibrium problems encountered in problem areas as diverse as
economics, game theory, transportation science, and regional science. Variational
inequality problems also encompass a wide range of generic problem areas including
mathematical optimization problems, complementarity problems, and fixed point
problems.

Let MIN(F,K) denote an optimization problem with an objective function
F(z) and constraints £ € K. The function f(z) of the variational inequality prob-
lem VI(f, K) associated with the minimization problem MIN(F, K) is defined by
f(z) = YF(x). As is well-known, a variational inequality problem VI(f, K) is
equivalent to a (strictly) convex nonlinear programming problem M IN(F, K) (that
is they have the same set of solutions) if and only if the Jacobian matrix of the
problem function f is a symmetric and positive semidefinite (definite) matrix.

The literature contains a substantial number of algorithms for the numerical
solution of the variational inequality problem. The Ph.D. thesis of Hammond [16]
and the review paper of Harker and Pang [19] summarize and categorize many
algorithms for the problem.

Projection and relaxation algorithms have been among the most popular, clas-
sical algorithms for solving the variational inequality problem (1). Goldstein [15],
and indepeﬁdently by Levitin and Polyak [34)], first proposed projection algorithms
in the context of the nonlinear programming problem. Several authors, including
Sibony [35], Bakusinskii and Polyak [5], Auslender [2] and Dafermos [12], have stud-

ied projection algorithms for variational inequalities while Dafermos [10], Bertsekas



and Gafni [6] and others have studies these algorithms for the traffic equilibrium
problem. The projection algorithms can be viewed as special cases of the lineariza-
tion algorithms developed by Chan and Pang [32] (for an affine problem function
f see also the contracting ellipsoid algorithm introduced by Hammond and Mag-
nanti [18]). Ahn and Hogan developed relaxation algorithms for solving economic
equilibrium problems (the PIE: algorithm [1]) and Dafermos considered this algo-
rithmic approach for the general VIP, as well as the traffic equilibrium problem
(12], [11]. All these algorithms are special cases of a general iterative framework
developed by Dafermos [12]. Researchers have established the convergence of pro-
jection algorithms under the condition of strong monotonicity, and the convergence
of the linearization algorithms, and the generalized contracting ellipsoid methods
under a norm condition implying strong monotonicity. Relaxation algorithms con-
verge under a stronger norm condition that also implies strong monotonicity. All
these methods generate a sequence of points {xx}32, In the feasible set K, whose

convergence to an optimal solution follows from a contraction estimate of the form:
[l Tks1 — rille < a“zk — 1’k—1||G7 0<ax<l.

In this expression, ||.||c denotes the fixed norm in R" induced by a symmetric,
positive definite matrix G as ||z||¢ = (z!Gz)'/?.

Another classical algorithm for solving convex programs is the Frank- Wolfe algo-
rithm. The Frank-Wolfe algorithm, when applied to convex programming problems
defined over polyhedra, is a linear approximation method that iteratively approxi-
mates the objective function F(z) by F*(z) = F(z*) + v F(z*)!(z — zF). On the

k+1 t5 the linear

(k+1)th iteration, the algorithm determines a vertex solution y
program

mingex Fk(x),
and then chooses as the next iterate the point z*+! that minimizes the objective

k+1].

function F over the line segment [z*;y Frank and Wolfe [13] originally pro-

posed this algorithm for solving quadratic programming problems. The 1975 book



of Martos [28] and the Ph.D. thesis of Hammond [16] illustrate the method’s perfor-
mance on several examples and discuss its convergence properties. This algorithm
is particularly effective for solving large-scale traffic equilibrium problems; see [8],
[21], [14] for further details. In the context of the traffic equilibrium problem, the
linear programming component of the algorithm decomposes into a set of shortest
path problems, one for each origin-destination pair. Therefore, the Frank-Wolfe
algorithm applied in the traffic equilibrium example, first solves a set of shortest
path problems and then a one-dimensional minimization problem. The algorithm is
known to converge if the objective function F' is pseudoconvex and the feasible set
K is a bounded polyhedron (see Martos [28]).

Our goal in this paper is to study the convergence behavior of these classical
algorithms. Our principal objective is to establish their convergence under assump-
tions on the given problem function f that are weaker than the existing ones (strong
monotonicity, the norm condition) or that extend the applicability of the algorithm
(to general convex sets for the Frank-Wolfe algorithm). We also want to establish
global convergence proofs for these algorithms that do not depend on the neigh-
borhood in which we initiate the algorithms. In our convergence proofs we obtain

nonexpansive estimates (rather than contractive one) of the form

lzk41 = zkllG < ll2k — Th-1llG-

We use an f-monotonicity condition on the problem function f, that we introduced
in [26] and [33]. We say that the problem function f is f-monotone if there exists a

positive constant a > 0 such that

[f(2) = fW)'le =yl > al|f(2) = fW)I} Vz,y€K.

Finally, we want to provide a better understanding of existing conditions such as
Chan and Pang’s norm condition, and show that there is some “equivalency” be-
tween this norm condition (imposed on the algorithm function) and the f-monotonicity

condition imposed on the problem function.



This paper is organized as follows. In Section 2 we review some properties of
the f-monotonicity condition. We also show the relationship between this condi-
tion and the norm condition used by Chan and Pang for the convergence of the
linearization algorithms [32] and by Hammond and Magnanti for the convergence of
the generalized contracting ellipsoid algorithm [18]. In Section 3, we establish the
convergence of the sequence of averages induced by the projection algorithm for the
VIP (1), under the condition of f-monotonicity. To achieve this result, we use an
ergodic theorem for nonlinear nonexpansive maps due to Baillon [3]. Furthermore,
we show that every accumulation point of the projection algorithm sequence solves
the variational inequality problem, without a boundedness assumption imposed on
the feasible set K. In Section 4 we demonstrate the convergence of the sequence of
averages induced by the relaxation scheme for the VIP (1), under a suitable norm
condition. We again use Baillon’s ergodic theorem. The results in Section 3 and
4 depart from the literature in two ways: (i) we obtain global convergence results,
and (ii) we impose weaker assumptions than those required in prior results. For re-
laxation algorithms, our convergence results are weaker than those in the literature,
however, since they apply to the sequence of averages rather than for the sequence
itself. In Section 5 we establish the convergence of the Frank-Wolfe algorithm for
convex optimization problems over arbitrary compact, convex sets, when the gra-
dient of the objective function satisfies the f-monotonicity condition. To the best
of our knowledge, this is the first convergence proof for the Frank-Wolfe algorithm
for general convex sets (instead of polyhedra). In Section 6 we examine applica-
tions of these results for equilibrium problems in congested as well as uncongested
transportation networks.

One motivation for this research is the desire to model and solve large transporta-
tion networks, in which some links are uncongested. Our condition of f-monotonicity
gives us this possibility, while strict and strong monotonicity do not. Moreover, we

show that if we impose the f-monotonicity condition on the link cost function then



this condition applies to the path cost function as well. Therefore, the projection
algorithm can be applied directly in the space of path flows which is advantageous
because it is much easier to perform projection operations efficiently in the space
of path flows than in the space of link flows. Another main advantage of our de-
velopment is that linear programs, when modeled as variational inequalities, have
f-monotone problem functions. Therefore, our results apply to linear programs.
Finally, in Section 7, we offer some concluding remarks and raise some open
questions. To conclude these introductory remarks, we review some facts concerning

matrices.

Definition 1 . A positive definite and symmetric matriz S defines an inner product

(z,y)s = z'Sy. The inner product induces a norm with respect to the matriz S via
|lz]|} = ='Sz.

Recall that every positive definite matrix S has a square root, that is a matrix S1/2
satisfying S1/2§1/2 = S. This inner product (z,y)s is related to the Euclidean
distance since

l2lls = (z,2)§" = (z'Sz)'/? = ||V ])2.

This norm, in turn, induces an operator norm on any operator B. Namely,

|Blls = sup |[|Bz||s.

z||s=1

The operator norms ||B||s and ||B]|

|| B||r are related since
IBlls = sup ||Bzlls= sup [|S"*Baz|l, =
ll=lls=1 152 z]]2=1

= sup ||SV2BSTVISV 2z, = ||SY/2BSTI/Y.
lis1/22]l2=1

So,
|Bl|s = ||S'/*BS™'7?||

and, similarly,

18] = IS~1/2BS'2|s.



The argmin of a function F over a set K is defined as

argmingex F(z) =y € {z™:

2 On the condition of f-monotonicity

2.1

Monotone functions

F(z™) = mingeg F(z)}.

In the past, researchers have found several different forms of monotonicity to be

useful in developing underlying theory and analyzing algorithms for variational in-

equality problems. Table [ shows five different definitions of monotonicity and a dif-

ferential condition for each situation (when the problem function f is differentiable).

Whenever the function satisfies any one of these definitions and f is differentiable,

f satisfies the corresponding differential condition. When the set K is open and f

is differentiable, each definition is equivalent to the corresponding differential con-

dition. For monotone, strictly monotone, and strongly monotone functions, these

results are standard (for example, see [31]); for f-monotone and strictly f-monotone

functions, the results are due to Magnanti and Perakis [26].

Type of monotonicity imposed upon f

Definition®

Differential condition®

monotone on <

{-monotone on K

strictly f-monotone on K***
strictly monotone on K**

strongly monotone on K**

f(z) = () (z~-y) 20
3a >0, [(z) = [z = ¥) 2 a || f(=) = f(v) I3
3a >0, [f(z) = Sz =) > a |l f(z) = f(v) I3
[f(2) = f(w))z = y) >0
3a>0, [f(z) = Sz =y} 2allzs—y |3

v f(z) ps.d.t
3a >0, [Tf(2)' — a0 f(z) Tf(y)] ps.d.t
3a >0, {[9f(2) - avf(z) vs(v)] pdtt
vi(z) pd.tH
v f(x) uniformly p,d.++

*  Definition holds for all 1,y € K orall z € K
** Condition holds for z # y

*** Condition holds for f(z) # f(y)

+ p.s.d. means positive semidefinite

++ p.d. means positive definite

Table I, Several types of monotonicity

Clearly, any f-monotone function is monotone and any strictly f-monotone function

is strictly monotone. As shown by Magnanti and Perakis [26], (i) if f is one-to-one,

then f-monotonicity implies strict monotonicity, and (ii) if f is Lipschitz continuous,

then strong monotonicity implies f-monotonicity. Therefore, for the class of Lipschitz

b |




continuous functions, the class of f-monotone functions lies between the classes of
monotone and strongly monotone functions.

Note any constant function, i.e., f(z) = ¢ for all z, is an f-monotone function;
any variational inequality with a constant problem function and a polyhedron as
the feasible set K is equivalent to a linear program in the sense that z°P* solves the

°Pt solves the linear program min{c‘z : z € K}.

variational inequality if and only if z
Therefore, one of the principal attractions of f-monotone functions is the fact that the
class variational inequalities with f-monotone functions contains all linear programs.
Recall that linear programs do not always have optimal solutions (since the defining
polyhedron might be unbounded), and so variational inequalities with f-monotone
functions need not have a solution.

Note that for affine functions f (i.e., f(x) = Mz — ¢ for some matrix M and

vector c), the differentiable f-monotonicity condition holds if we can
find a constant a > 0 so that M* — aM'M is a positive semidefinite matrix.

As a last preliminary observation about f-monotone functions, we note that f-
monotonicity is equivalent to strong monotonicity of the generalized inverse f=! of

f in the following sense.

Definition 2 . The generalized inverse f~' of a problem function f is the point to

set map

FVf(K) C R — 2k,

defined by f~Y(X)={z € R*: f(z)= X}.

Definition 3 . A point to set map g : R* — 28" is strongly monotone if for every

T E g’l(X)'and y € g"l(Y)
(z-y)'(X -Y)>a||X -Y|3,

for some constant a > 0.



Proposition 1:
The problem function f is f-monotone if and only if its generalized inverse f~! is
strongly monotone in f(K).

The proof of this proposition can be found in [26].

2.2 The f-monotonicity condition implies the norm condition.

In this section we show the relationship between the condition of f-monotonicity
and the norm condition used by Chan and Pang for establishing the convergence of
the linearization algorithms [32] (see also Hammond and Magnanti’s discussion of
the convergence of the generalized contracting ellipsoid algorithm [18]). These algo-
rithms fit in the framework of the general iterative scheme developed by Dafermos
[12], which works as follows:

STEP 0:

Start with some initial point ¢ € K.

STEP & + 1:

Find z44; € K satisfying

9(zrs1, 2e) (2 — 2k1) 2 0 Vz EK.

We make the following assumptions on the scheme’s function g:

1' g(l’,I) = f(x)v

2. the Jacobian matrix of g(z,y) with respect to the z component, when evalu-
ated at the point y = z, which we denote throughout this chapter by g-(z, z),

is a positive definite and symmetric matrix.

For linearization algorithms, g(z,y) = pf(y) + A(y)(z — y) for some positive definite
matrix A(y) and constant p satisfying 0 < p < 1. For the generalized contracting



ellipsoid algorithm,

9(z,y) = fly) + p(Vf(y) + Vf()")(z - y),

with 7 f(y) positive definite and a constant p satisfying 0 < p < 1. In most cases,
p is chosen equal to one.
In the context of these algorithms, the norm condition we have been referring to
1s
(9572 (z,2)) 9y (2, )97 /2 (z,2)]| < 1 Vz € K,
which can also be rewritten (see Section 1) as follows:

“g;l(r,:c)gy(r,r)]]gx(x’r) <1l VzeK.

In particular, for the linearization algorithms, since

9(z,y) = pf(y) + A(y)(z — v),

gz(z,z) = A(z) is positive definite and symmetric (A(z) = A(z)?),
gy(z,z) = pv f(z)—A(z), and so py7 f(z) = gy(z,z)+gz(z,z). The norm condition

becomes

(A=) p 7 f(x) = A@)(Ax) V3| = || = pA™ V2 (2) v f(2)A™Y2(z)| < L.

In the generalized contracting ellipsoid algorithm, A(y) = v f(y) + v f(y)! and

p = 1, so the norm condition becomes
(W f(z) + 7 f(2)) AT (@) (f(2) + 0 f(2)) ) =

= [(wf(x)+ vf(2))' V F (@) lloseroseyr < 1

Notice that the norm condition used by Dafermos for the convergence of the general

iterative scheme, namely,

o221, v1)gy (22, v2)9s (23, u3)|| < 1 Va1, m1,22,v2, 73,93 € K,

10



includes the norm conditions of Pang and Chan and of Hammond and Magnanti as
special cases. This condition is more difficult to verify, however, since it involves

different points z1,y1, 2, y2, 23, Y3.

Our goal in this section i1s to investigate the relationship between the norm
condition and the f-monotonicity condition. The main theorem of this section shows
that the differential form of f-monotonicity of f implies the norm condition in a
more general form, a less than or equal form instead of a strictly inequality form.
Furthermore, the theorem also demonstrates a partial converse of the statement.
Namely, the norm condition implies a weaker form of the differential condition of
f-monotonicity.

Before analyzing the main theorem of this section, we state and prove two useful
lemmas.

LEMMA 1:

If A is a positive semidefinite matrix and G a positive definite, symmetric matrix,
then G~1/2A4G~1/2 is also a positive semidefinite matrix.

Proof:

Let z € R* and y = G~ Y2z, then z!G~Y2AG V%2 = y'Ay > 0 since A is a
positive semidefinite- matrix. Therefore, z!G™Y24AG"1/2z > 0 Vz € R™ and so
G~Y2AG~1/? is a positive semidefinite matrix. Q.E.D.

LEMMA 2:

Suppose that the matrix

Vi(z)-av f(z) v f(z), VzeK,

1s positive semidefinite for some constant a > 0. Let G be a positive definite matrix,
g be the miﬁimum eigenvalue of G (a positive definite matrix), and a; < ag. Then
(G2 g f(2)G V(I - a1, G~V 7 f(2)G~Y/?) is also positive semidefinite.
Proof:

11



Recall that for any vector v € R™, and Vy € R",
V(G2 f(@)GT ) (1 - G f(2)GT )y >

and replacing a; < ag, and z = G2y, v!G~1v < gvtv we obtain:

> (G2 /() ~ag v f(2)' G v F(@)UGTy) 2
> v f(2) —av f(2)' v f(x)]z 2 0.

The last inequality follows from the assumption, and so the matrix
(G~Y2 g f(2)G™ V) (1 = 0, GV? 7 f(2)G~Y?) is positive semidefinite. Q.E.D.
LEMMA 3:
The matrix B[] — (a/2)B] is positive semidefinite if and only if the operator norm
[|I = aB|| < 1. Moreover, if both conditions are satisfied for any value a* of a, then
they are satisfied for all values a < a*.
Proof:
Recall that

_ 2
||/ = aB|| = sup H_(I;_alj_)gm <1
y#0 llyll
Therefore,
I -aB| <1
try _ t t
o sup v - (aB' + a[:’) + (aB)(aB))y <1
y#0 vy

& y'[I - (aB' +aB) + (aB)'(aB)ly< y'y Vy€eR"
< 2ay'By > a’y'B'By Vy e R"
& y'By > (a/2)y'B'By Vy € R" (2)
& y'BY I - (a/2)Bly>0 Yye€R"

These relationships show that ||/ —aB|| < 1 if and only if the matrix B*[I — (a/2)B]
is positive semidefinite. Moreover, (2) implies that if both conditions are valid for

any value a* of a, then they are valid for all values a < a*. Q.E.D.

12



This Lemma also holds with B'[I — (a/2)B] positive definite and ||/ — aB|| < 1.
We are now ready to prove the central theorem of this section.

THEOREM 1:

Consider the general linearization scheme for some constant p > 0, g(z,z) = pf(z)
and that g, (z,z) is a positive definite and symmetric matrix. Then the following

results are valid.
1. If the differential form of f-monotonicity condition holds, i.e., the matrix
Vi(z)' —av f(2)' v fly) Vr,y€eK,

is positive semidefinite for some constant a > 0, then the norm condition holds

in a less than or equal to form. Namely,
oz 2 (z, 2)gy(z, 2)g; V2 (2, 2)|| <1 V2 €K,
2. If the norm condition
97" * (. 2)gy (2, 2)97 ¥z, 2)| S 1 Yz € K,
holds, then for some constant a > 0, the matrix
Vi) -av f(2) v f(z),
Is positive semidefinite Yz € K.

Proof:

1. We want to show that the following norm condition holds:
||g;1/2(x,x)gy(x,x)g;l/z(.r,:r)ﬂ <1 VzeK.

Since

gy(I!I) = pr(x) —gr(ir,:ll),

13



if we let G = gz(z, ), the norm condition becomes:
IG™2[p v f(2) = GIGT3|| = |1 = pG™'2 7 f(2)GT2| < 1.

By assumption, G is a positive definite and symmetric matrix. Let
Gmin = infrex [min eigenvalue G),

which is positive since K is a compact set. Also let B = G~1/2 f(2)G~1/2. Lemma

2 shows that if a; = agmin, the matrix
Bl -aB] = (G 7 f(2)GT/))/(I - G™V* 7 f(2)G™'/?)
is positive semidefinite. Lemma 3 implies that for any choice of
0< p<2a; =2agmin, ||[I —pB|| <1

Making the replacement B = G~Y/2 7 f(z)G~1/2, we see that for 0 < p < 2a; =

2agminy

IG™ 29, (2, 2)G V| = |IG™2p v f(2) = GIG™V?|| =
= || - pG V2 f(x)GTV?| <1, VzeK.

Therefore, for G = ¢,(z, z),

Hgglm(z, x)gy(x,x)g;1/2(.r,:r)|[ <1, VzekK.

2. In the second part of the theorem we want to prove that if the norm condition
97" /%(z,2)gy (2, 2)97 2 (2, 2)| < 1, Ve €K,

holds, then the matrix
Vi) —av f(2)' v f(2),

1s positive semidefinite for some a > 0 and Vr € K.

Let G = gz(z,z). Since

gz 2 (2, 2)gy (2, 2)g5 2 (z, 2)|| = |GV [p & f(z) - GIG'/?|| =

14




=1 -pG7 g f(x)GT} <1, VzeEK,

setting, as before, B = G™Y/? 7 f(2)G~'/?, we see from Lemma 3 that if
I1-pBI <1,
for any value a; < p/2, then the matrix B'{I — a; B] is positive semidefinite. Let
gmaz = sup[maz eigenvalue GJ.
zeK

Then if p > 2a; > 2agmaz,

y'B'y > a1y'B'By > ay' B'GBy Vy € R™.
Making the replacement B = G~1/2 ¢ f(x)G_l/z, we obtain

VIGTP Y (@)1 - a v f(2)GTy 2 0.

Finally, setting z = G~/2y, we see that z![¢f(z)!(] — a 7 f(z)))z > 0.

p

T, the matrix

These results show that for any a <

i) (I-avy f(z)) VzEK

1s positive semidefinite. Q.E.D.

Remark:

The differential condition of f-monotonicity implies that the norm condition holds
in a less than or equal form. The existing convergence proofs require a strictly in-
equality form of the norm condition. This happens in our case, when the differential

form of f-monotonicity holds in some form of a strict inequality, i.e.,

[Vf(@) (I -av f(¥),

is positive semidefinite and the matrix 7 f(z) is nonsingular. The norm condition

gz /2 (x, 2)gy (2, 2)g; 2 (2, 2)| < 1 Vz €K

15




then holds as a strict inequality. The following Proposition formalizes this result.
Proposition 2:

Consider the general linearization scheme for some constant p > 0. Suppose that
g(z,z) = pf(z) and that gz(x, x) is a positive definite and symmetric matrix. Then

the following results are valid.

1. If the differential form of f-monotonicity condition holds as a strict inequality,

l.e., the matrix

Vi) —av f(z) v fly) Vz,y€K,

is positive semidefinite for some constant a > 0, and the matrix 7 f(z) is

nonsingular, then the norm condition holds as a strict inequality. Namely
||g;l/2(x,J:)gy(x,r)gr_lﬁ(x,z)n <1l VzeK.
2. If the norm condition

oz *(z, 2)g, (2, 2)g; Y *(z, 2)|]| < 1 V€K,

holds, then for some constant a > 0, the matrix

Vi) =av f(z)' v f(2),
is positive definite Vz € K.

The proof of this Proposition follows from that of Theorem 2 using strict inequalities
in place of the less than or equal to inequalities.
Remark:

In particular, for the linearization algorithms g(z,y) = pf(y) + A(y)(z — y) and
for the generalized contracting ellipsoid algorithm with A(y) = v f(y)+ v f(y)", the
norm condition becomes:
llg=""(z, 2)gy (2, 2)9z /(2. 2)|| = || A(2) 2 [p 7 f(2) = A(2)]A(x)" 3| < 1
Ve € K.

16




Therefore, these two classes of algorithms converge under the assumption that the
problem function f is strictly f-monotone. The advantage of stating the result in
this way is that we impose a condition directly on the problem function f and we
do not involve the algorithm function g.

The convergence proofs of the linearization and the contracting ellipsoid algorithms
([17], [16], [32]) require that the norm is a strict inequality because they require
that the algorithm needs to start with an initial point zo that lies close to the
VIP solution. In fact, if z°P* is a solution to the variational inequality and ¢ =
|A(z)~%[p v f(x) — A(x)]A(z)"Y/?|| < 1, they require that

1—-c
C Y

||lzo — 2P| <

for some positive constant (. The closer ¢ is to one, the closer the initial point
needs to be to the optimal solution.

From this discussion, we conclude that the differential form of f-monotonicity and
the assumption that <7 f(z) is positive definite imply that the generalized contracting
ellipsoid algorithm and the linearization algorithms converge to an optimal solution

of the variational inequality problem.

3 On the convergence of the projection algorithm un-

der f-monotonicity

In this section we show that the f-monotonicity condition implies the convergence
of the sequence of averages induced by the projection algorithm. To establish this
result we employ ideas from the theory of variational inequalities as well as an ergodic
theorem due to Baillon [3]. Furthermore, when the feasible set is compact, we show
that that f-monotonicity implies that every accumulation point of the projection
algorithm sequence solves the variational inequality. We first recall the classical

projection algorithm.

17




The Projection Algorithm

Fix a positive definite and symmetric matrix G and a positive scalar p, whose value
we will select below.

STEP 0:

Start with some z¢ € K.

STEP k + 1:

Compute zx4+; € K by solving the variational inequality V Ii:
[pf(zk) + G(zre1 — 20))' (2 = 2k41) 20, Yz €K

If we let Pr%(y) denote the projection of the vector y onto the feasible set K, with

respect to the ||.||g norm, we can view this step as the following projection operation:
zher = Pri (s = pG 1 (25)).

Note that this algorithm is a special case of the general iterative scheme [12] and
the linearization algorithms [32], with g(z,y) = pf(y) + A(y)(z — y) and A(y) = G.
In view of the symmetry and positive definiteness of the matrix g;(z,y) = G,
the line integral [ g(z,y)dz defines a function F : K x K — R" satisfying the
property that, for fixed y € K, F(.,y) is strictly convex and g(x,y) = Fr(z,y).
Therefore, step k£ + 1 of the projection algorithm is equivalent to the strictly convex

mathematical programming problem:
mingen F(z, zg).

Consequently, the problem defined in step k£ + 1 has a unique solution that can be
computed by any appropriate nonlinear programming algorithm. For some fixed
z; € K (found in the previous step), if we let hy = pf(zx) — Gz we can rewrite
g(z,z) as g{z,zx) = Gx+hi. Inother words, according to the projection algorithm,
at each step k + 1, we need to determine the point z44; € K that satisfies the

variational inequality for g, visualized as:
(Gzgs1 + hk)t(.'r —Tr+1) >0, Vz e K.
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In view of the symmetry and positive definiteness of the matrix G, this variational
inequality has a unique solution z441, which as shown above, is the unique minimum
over K, of the function F(.,zy), with 2 fixed from the previous step. For notational

convenience, let us define Fi(z) as F(z,z4) = Fip(z) = (1/2)2'Gz + hiz.

3.1 On the convergence of the sequence of averages induced by the

projection algorithm

In this section we establish the convergence of the sequence of averages induced by
the projection algorithm. The key theorem we employ to establish this result is an
ergodic theorem due to Baillon. Throughout this analysis, we assume the feasible
set to be compact; this is not an essential assumption. We can derive similar results
by just assuming that the feasible set is closed and convex.

For the subsequent analysis, let us define 7, : K — R™ as the map that carries
z) € K into the minimizer over K of the function Fi(.). Naniely, Tirr1 = To(zg).
The following lemma describes the relevance of the map 7.
LEMMA 4:
Every fixed point of the map 7}, is a solution of the original asymmetric variational
inequality problem (1).
Proof:
The definition of map T, implies that if z; = 441 = T,(zx) € K is a fixed point of
T,, then

(Gzig1 + he)(z —zh41) 20 Vz€EK.

In this case hy = pf(zx) — Gzx = pf(xk41) — Gziy1. Making this replacement in

the inequality gives

(Gzip1 + pf(hg1) = Gzp1) (z = Thg1) = pf(hs)' (2 = 2441) 2 0 Vz €K

Therefore, x441 = T,(zx) = zi is a solution of the original asymmetric variational

inequality problem (1). Q.E.D.
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LEMMA 5:

Let A be the minimum eigenvalue of the positive definite, symmetric matrix G, and
b= % fo<p< Zbe and f is a f-monotone map (with constant a), the map 7}, is a
nonexpansive map on the feasible set K with respect to the norm ||z||g = (:l:tG:z:)l/z.
That 1s,

To(u1) = To(y2)llc < lly1 = w2lle Yy, 12 € K.

Proof:
Let y1,y2 € K and set x; = T,(y1) and 3 = T,(y2). The definition of map T, shows

that
(le + hl)t(l' -— Il) = (G.’El + pf(y1) - Gyl)t(x - l]) _>_ 0 Vl’ € I\/, (3)

(Gxz + h2)'(z — 22) = (G2 + pf(y2) - Gu2)'(z —22) 20 Vz e K.  (4)

Setting x = 2 in (3) and z = z; in (4) and adding the two inequalities we see that

llz1 = 2a2ll& < {1 = v2 = PG [f (1) = f(92)]}'G(21 — 22).

Applying Cauchy’s inequality, we find that

llz1 = z2ll& < |yt = v2 — PG~ [F (1) = F(w2)lllgllz1 — 22|lG-

Dividing through by ||zy — z2||g, squaring, and expanding the righthand side, we
obtain

llz1 = z2/l& < llvr = wall& = 200 (v1) — F(w2)) [ — w2)+

()*[f (1) = F(w))I'G F(w1) = Flw2)]- (5)

The f-monotonicity of map f and the symmetry and positive definiteness of matrix
G, together with this result, implies that if A is the minimum eigenvalue of the

positive definite, symmetric matrix G, and b = i—, then

llz1 = z2ll& < lly1 = v2ll& = 2pa| F(v1) = F(w2)lI3 + (p)2b1f (1) — Fw2)lI3 =
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= [ly1 = vell% — p(2a = pb)|| (1) = f(w2)ll3.

Finally, since 0 < p < 255 and ||f(y1) — f(y2)]|* > 0, we conclude that
ITo(31) = To(y2)lla = llz1 = 2all& < llon — wellé-

Q.E.D.

Using these lemmas we now establish the convergence of the sequence of averages
induced by the projection algorithm. We will use the following ergodic theorem.
THEOREM 2 (Baillon [3]):

Let T be a map, 7 : K — K, defined on a closed, bounded and convex subset K
of a Hilbert space H. If T is a nonexpansive map on K relative to the ||.||g norm,

that is,
1T () = Tl < llv1 = v2lle Yur,u2 € K,

then the map
y+ T+ +T ()

Sk(y) = .

y € K,

converges weakly to a fixed point of map T, which is also the strong limit of the

projection of Tk(y) on the set of fixed points of map 7.

In the following theorem we use the finite dimensional version of this theorem.
THEOREM 3:
Let K be a convex, compact subset of R™ (the feasible set of the VIP (1) ) and T, :
K — R™ be the map that carries £ € K into the minimizer over K of the function
Fi(.). Also, let A be the minimum eigenvalue of the positive definite, symmetric
matrix G and let b = i Assume in the projection algorithm that 0 < p < 26'-’- Then

if f is a f-monotone map, the sequence of averages

v+ T,(y) + ..+ TF Yy
Sply) = ——=——5— ) yex.

converges to a solution of the original asymmetric variational inequality problem.
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Proof:
From Lemma 5,if 0 < p < 25‘1 in the projection algorithm and if f is f-monotone, then
the map 7T, is nonexpansive relative to the ||.||g norm. Then the finite dimensional

version of Theorem J guarantees that

+ T, (y)+ ...+ Tk-1

converges to the fixed point of the map 7,. Lemma 4 shows that every fixed point of
the map T, is a solution of the original asymmetric variational inequality problem.
Q.E.D.

REMARKS:

1. If we choose 0 < p < %ﬁ and the function f is one-to-one, then T, is not just

a nonexpansive map, but also a contraction map. In this case, the original
sequence induced by the projection algorithm converges to the the solution
of the VIP (1), which is then unique (since f is strictly monotone). The
convergence of the original sequence follows from Banach’s fixed point theorem,

(see also [10], [12]).

2. Throughout this analysis we have assumed that the feasible set K is compact.
We believe that this assumption is not essential. If we start the algorithm
with z; € K so that ||T(z1) — z1]] < oo we lie without loss of generality in a
compact set. In the next Section 3.2, we derive similar results for the sequence
induced by the projection algorithm, by assuming that the feasible set K is

just a closed and convex set.

3.2 Convergence of the projection algorithm

In this section we establish the convergence of the sequence induced by the pro-
Jection algorithm when the underlying problem function satisfies the f-monotonicity
condition. In this proof we will assume that the feasible set K is a closed and convex

set and that the VI P problem has at least one optimal solution. We show that every
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accumulation point z* of the projection algorithm sequence solves the variational
inequality problem. We first prove several lemmas.

LEMMA 6:

Let XA be the minimum eigenvalue of the positive definite and symmetric matrix G
and let b = % Assume that the variational inequality problem VI(f, K') has at least
one optimal solution z°P* and that the feasible set K is a closed and convex set. If
0<p< 252 and f is a f-monotone map, then the sequence {||zx — z°P!||g}{2, is a
convergent sequence.

Proof:

Step k + 1 of the projection algorithm implies that x5, € K satisfies the following

inequalities

(pf(zk) + G(zr41 — z6)) [t — 2441] > 0 Vz €K,

Setting * = z°P' € K in Step k + 1 and recalling that [pf(z°P")])![z°P! — z441] < 0,

we see that
[pf(zk) = pf(2%") + Gzh4r — 20))' [z = 2441] > 0.
This inequality implies (by adding ||zx4+; — z°P!||% to both sides) that
lokes = 25 < (27 = 24 = pGF(27) = F(20)) G (= = Ths1)
and Cauchy’s inequality implies that

lleksr = 2P < (|2 = 2k = pGTHF (=) = f(zi)]llG |2 = 2kl

opt

Dividing through by ||z°?" — rx41||g, squaring, and expanding the righthand side,

we obtain:

llZk+1 —2°’°t|’|2c < lzk—2 |G —2pf (z°7) = f (2)) {27 = 2]+ (0)[f (2°P) = (k) G [f (z°P) = f ().

The f-monotonicity of function f and the symmetry and positive definiteness of

matrix G implies that
lleksr = 2% < |lzk — 21 — p(2a = pb)|1 £ (2°7) = F(2k)l3-
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Therefore, by choosing 0 < p < QTa and by observing that ||f(z°P') — f(zx)|3 > 0,
we see that

0 < Jlzper = 2 < ok — =&

Therefore, the sequence {||zx — z°P'||g}}2, is a convergent sequence (since it is
nonincreasing and bounded from below). Q.E.D.

LEMMA T7:

Let 2°P! be a solution of the VI P. Under the assumptions of Lemma 6, the sequence
{f(zk)}32, converges to the optimal value f(z°P') of the problem.

Proof:

In the course of proof of Lemma 6 we showed that
llzksr = 2PNIE < |2k = 2|[& = p(2a = pb)||F(2°P*) = F(ze)ll3-
Therefore,
llze = 2P G = llzeer = 2P(& > p(2a = pb)[1f (=) = F(z0)II3 > 0.

Since ||z« —x"""llzc = [|Tk+1 —Iopt“?G — koo 0, and since 0 < p < 255, this inequality
implies that
1£(z) = F(z)]13 —k—oo 0.
Thus,
f(zr) — koo f(2P).

Q.E.D.
LEMMA 8:

opt

Under the assumptions of Lemma 6, the sequence { f(z°P*)*(zx — z°P*)}32, converges

to value zero.
Proof:
Setting r = z°?* in Step k + 1 and recalling that [pf(z°P")]![z°P! — zk41] < 0, we see

that
[pf(2k) = pS(2) + kst — 202 = 2x41] > pS (&) ok — 2] 2 0.
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Adding and subtracting ||zx4; — 2°7||% from the middle term in this expression and

rearranging as in Lemma 6 gives

0 < pf (&) [zhp1—2] < (2P 2= pG ™ [f(zP) = f (24)]) G (2P = zie1) = ||k 121

Applying Cauchy’s inequality, using the fact that f is f-monotone, and following the

steps of Lemma 6, we obtain

0 < pf(=)) e — 2] <

Vllzx = 227413 = p(2a = pb)||f (2°7) = f(2e)|Bllzrsr = 27l = [|lzxs1 — 2P|

Since 0 < p < 2&,
0 < pf(e) [zrar=2] < (llze=2 g =[lzk+1 =2 |G [|zk+1=2||G] —k=oo O,

due to Lemma 6 (i.e., that the sequence ||zx — z°P!|| is convergent). Therefore, the

sequence { f(z°P")!(z) — z°P!

LEMMA 9:

)}3Z, converges to value zero. Q.E.D.

Under the assumptions of Lemma 6, the sequence {f(zx)"(zx — 2°7*)}32, converges
to value zero.

Proof:
0 < flap) (zk — ) = [f(2p) = (2] (2 = =) + f(2°F)" (24 — ) <
(applying Cauchy’s inequality)
1f(ze) = f(@|l2.]lek = 2|2 + F(27*) (2 — 2%") —k—00 0,

due to Lemmas 6,7 and 8. Q.E.D.

THEOREM 4:

If the variational inequality problem VI(f, K) has at least one solution z°P*  the
feasible set K is a closed, convex subset of R™, the problem function f is f-monotone,

and 0 < p < sz in the projection algorithm, then

klim flzp)(z—xk) >0 Vz €K,
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and every accumulation point of the algorithm solves the variational inequality prob-
lem.

Proof:

We intend to show that, under the assumptions of this theorem, limg_ o, f(zx)!(z—
z)) exists and,

klim flzr)(z —z£) >0 Yz € K.

Let z°Pt be an optimal solution of (1). Then if we add and subtract z°P* from the

lefthand side, we see that Vz € K:
klim flzp)(z —xx) = k]im flzg)t(z - z°P) + klim [f(z))t (2%t = z1) =

(from Lemma 9)
Jim ()]s~ 27+ 0=

(using Lemma 7)

@) (x = 2™) > 0

due to the fact that z°P! is an optimal solution.

Putting everything back together we conclude that the limit exists, furthermore
Jim  f(@n)(z = 24) = [Pz = 27) > 0
— 00

for all £ € K. Therefore, every accumulation point z* of the projection algorithm
sequence (there exists at least one, since the limit limx_ o, ||zx — 2°P!|| exists and is

finite) is indeed a V' IP solution. In other words,
" e K : klim fle)(z—2zx) = f(z*)(x—2") >0 VzeK.

Q.E.D.

We conclude this section by comparing the results we have obtained with the
literature. As we have already observed, the projection algorithm fits into the frame-

work of the general iterative scheme of Dafermos [12], the framework of linearization -
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algorithms [32] and, when f is affine, the framework of the generalized contracting el-
lipsoid algorithm [18]. The choice of g(x,y) in this case is g(z,y) = pf(y)+G(z—y),
with G positive definite and symmetric. Results in the literature have shown that
the projection algorithm converges, as we’ve already stated in Section 2, under a

norm condition, which in the special case of the projection algorithm becomes
G2 G - p v F(2)G™VY <1, VzeK.

On the other hand, when the problem function f is f-monotone, Theorem 3 es-
tablishes the convergence of the sequence of averages, while Theorem 4 establishes
convergence of the sequence itself induced by the projection algorithm. In Section
2 we have shown that the f-monotonicity condition implies the previous norm con-
dition on g, but in a less than or equal form.

Moreover, the convergence proof of the linearization algorithms and of the gener-
alized contracting ellipsoid algorithm, under the norm condition, require an initial
point close to the solution; in contrast, Theorems 3 and 4 establish global conver-

gence. Therefore, under f-monotonicity, we obtain more general results.

4 Convergence of the relaxation scheme

In this section we show that when the problem function of a variational inequality (1)
satisfies a norm condition, the sequence of averages induced by relaxation algorithms
converges to an optimal solution z°?* of the problem (1). As in Section 3 (see
Theorem 3), to establish this result, we employ the theory of variational inequalities
as well as the ergodic theorem of Baillon. First, we need to describe the general
relaxation scheme. It reduces the solution of the VI P (1) to a succession of solutions
of variational inequality problems with a simpler structure that can be solved by
available efficient algorithms.

We consider a smooth function ¢ : K x K — R™ satisfying the condition that
g(z,z) = f(z) Vr€eK.
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We assume that for any fixed y € K, the variational inequality
g(z' y)(x-2)>0 VzekK (6)

has a unique solution z’ € K, which can be computed by some known algorithm.

As an important special case, g(z,y) is defined by

gi(z,y) = fg(yl, ...,yi_l,ri, yiH, wyt) 1=1,2,..,n.

Then solving (6) amounts to solving a separable variational inequality problem,
which has a unique solution provided that g; is a strictly monotone increasing func-
tion of the variable x*. More generally, g(z,y) should be defined so that the matrix
gz(z,y) is symmetric and positive definite. In that case, as mentioned in Section 3,
for a fixed value of y € K the variational inequality (6) is equivalent to a strictly

convex minimization problem with the objective function F(z) = [ g(z,y)dz.
The Relaxation scheme

STEP 0:

Choose an arbitrary point zg € K.
STEP k + 1:

Find zx4 € K satisfying

9(zk+1,28) (2 = 2441) 20 Yz €K

The original relaxation algorithms developed by Ahn and Hogan [1] used

9i(zhp1,2k) = filz}, ...,zi’l,x};+l,zf€+l, ., z}) for i=1,2,...,n) to compute equi-
libria in economic equilibrium problems. This algorithm is known as the PIES
algorithm. ’Subsequently, Dafermos developed and analyzed a general relaxation
scheme with the more general choice of g (as described above) in the context of

both the traffic equilibrium problem {11} as well as the general variational inequal-

ity problem [12].
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The papers [1], [11] and [12], and the references they cite in describe more details.
In the subsequent analysis, we show that under appropriate assumptions, the limit
of the sequence of averages induced by the sequence {zrj}2, solves the original
asymmetric variational inequality (1).

THEOREM 5:

Let T : K — R" b.e the map which carries the point y* € K to thé solution
T(y*) = «* of the relaxation scheme (6) with y = y~.

Suppose the algorithm function g satisfies the following conditions:
1. The matrix g;(z,y) is positive definite and symmetric Vz,y € K.

2. If o = inf; yex (min eigenvalue g;(z,y)), then

sup |lgy(z,y)|| < .

z,y€
Then the sequence of averages

y+T() + ... + T*(y)

Sk(y) = T

y € K,

converges to a solution of the VIP.
Proof:
We first prove that the map 7', defined above, i1s a nonexpansive map in K. To

establish this result, we need to show that

T (y1) = T(w2)ll < llvr — well Vyi,v2 € K.
Fix y1,y2 € K and set T(y1) = z1 and T(y2) = z2. Then the definition of T yields:
g(z1,y)(z—21) >0 VzreK, (7)

g(z2,y2)(z —22) >0 VzeK. (8)

Setting £ = z2 in (7) and = = z; in (8) and adding the resulting inequalities we
obtain

[9(z2,42) - g(xlyyl)]t(xl —z2) > 0. (9)
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By adding and subtracting g(z2,y1), we can rewrite this expression as

l9(z2,y2) — 9(z2,y1)]'(z1 — 22) > [g(z1,31) — 9(z2, 11))* (21 — x2). (10)

Applying a mean value theorem on the righthand side of the inequality, we obtain

[9(x2,2) — 9(x2, Y1) (21 — 32) > [21 — 22 [g (2", n))[21 — 22), 2’ € [z15 2] (11)

Since the matrix g (z,y) is positive definite and symmetric Vz,y € K (by assump-

tion) and a = inf; yex (Mmin eigenvalue g (z,y)),

[9(z2, y2) — 9(z2, y1))* (21 — 22) > allz1 — 22| (12)

Moreover, by applying a mean value theorem on the lefthand side of the inequality,

we obtain:

[v2 = n1l'lgy(z2, V) (21 — 22) > aljer — 22|)%, ¥ € [y2; 1] (13)

Furthermore, Cauchy’s inequality and the operator norm inequality implies that

llvr = wellllgy (x2, ¥)ll|l21 = 22 > @flz1 — z2||*, ' € [v2; ). (14)

Dividing both sides of this inequality by ||z1 — zo|| gives

lly1 = vallllgy(z2, ¥)|| > allz1 — z2||, ¥ € [y2; 1) (15)

Finally, the second assumption of this theorem, namely,

sup |lgy(z,y)|| < o,
z,yeK

implies that the map T is nonexpansive. This is true because this inequality implies

that
allyr = g2 2 aflzr — z2||. (16)
Therefore,

1T(y1) = T(y2)ll < llvr — v2ll Vyr,y2 € K.
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Finally, the finite dimensional version of Theorem 2 (see Section 3) guarantees that
the sequence of averages

y+T(y) + ...+ TF(y)
k+1

Sk(y) = y € K,

converges to an optimal solution of the VIP, since the map T is nonexpansive.
Q.E.D.

Remarks:

1. The norm condition of Theorem 5, namely,

sup |lgy(z,y)]| < «
r,yeK

implies the norm condition:
oz '*(z, 2)gy (2, 2)g; /2(z,2)| <1 Ve €K,

analyzed in Section 2.

This is true because
9z (. 2)gy (2. 2)05 (. 2)|| < 1952 (2, 2) gy (2, 2) 95/ (=, 2)I| <
<a Voo V?=1 Viek
via the operator inequality and

a = inf (min eigenvalue g.(z,y)) > 0.
z,y€EK

2. The convergence proofs of Dafermos [11], [12] and of Ahn and Hogan [1] have
more restrictive assumptions than the proof of Theorem 5. They require that

the algorithm function g satisfies the following conditions:

(a) The matrix gz(z,y) is positive definite and symmetric Vz,y € K.

(b) If o = inf; yex (min eigenvalue gz(r,y)), then
sup ||gy(z,y)|| < Aa for some 0< A< 1.
z,yER

We next give examples that violate these conditions but satisfy those of Theorem 5.
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Examples:

1. Consider the variational inequality problem with problem function f(z) = M=z

with
2 2

-2 3

M =

This matrix 1s asymmetric, but positive definite since

0
0 6

M+ M =

is positive definite. The matrix

9z(z,y) =

is positive definite and symmetric. Moreover, a = inf; e (min eigenvalue gz(z,y)) =

2 > 0, while

0 2
gy(-'fyy) =
-2 0
t 4 0
z T
: 2 2 2 0 4 2
Since [|gy(z, y)I|* = || - 1" = suPzzo - =4=ab

Therefore, this problem satisfies the condition ||gy(z,y)|| < a of Theorem 5.
To apply the norm condition of Dafermos and Ahn, Hogan, we would require

llgy(z, y)|| £ Aa for some 0 < A < 1.

2. Consider the variational inequality problem with problem function f(r) = M=z

with .
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This matrix is symmetric and positive semidefinite. On the other hand, the

matrix

9-(2,y) =

is positive definite and symmetric. Moreover, a = inf; yex (min eigenvalue g-(z,y)) =

2 > 0, while
gy(z,y) =
Since
0 &
gy (. WI* = || 1> =
2 0
4 0
zt z
0 4
= sup _—_t— t 4 = a2.
T#0 Ir'r

As in the case of Example 1, this problem satisfies the norm condition ||gy(z, y)|| <

a, but not the norm condition ||g,(x,y)|| < Aa for some 0 < A < 1.

5 On the convergence of the Frank-Wolfe algorithm

In this section we present a convergence proof of the Frank-Wolfe algorithm when
applied to convex programming problems defined on general convex sets (i.e., vari-
ational inequality problems with a symmetric Jacobian matrix). This convergence
proof applies to problems that satisfy the f-monotonicity condition. The conver-
gence proof of Martos [28] assumes that the objective function F of the correspond-
ing minimization problem is pseudoconvex, and that the feasible set is a bounded
polyhedral. His main theorem establishes that every accumulation point of the se-
quence z; induced by the algorithm is a solution to the minimization problem (or
the equivalent variational inequality problem). Our convergence proof in this sec-

tion also assumes symmetry of the Jacobian matrix, but permits the feasible set to
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be a general convex, compact set instead of a bounded polyhedron.

Before presenting the convergence proof, we make the following assumptions.
ASSUMPTIONS

A1l. The feasible set K is a nonempty, convex and compact subset of R™.

A2. The problem function f satisfies the f-monotonicity condition.

Since the Jacobian matrix 7 f Is symmetric, the variational inequality problem

is equivalent to the minimization problem:
mingen F(r),

and, in this case, f(z) = (F(z)).
The Frank-Wolfe algorithm works as follows:

THE FRANK-WOLFE ALGORITHM

Step 0:

Choose an arbitrary point zg in the feasible set K. Set k£ = 0.

Step £ + 1:

Part a: (minimization part)

Let z; be the point found in the previous step k and let yx4; be the point that

solves the following minimization problem:
: t
min f(zk)'y. (17)

(When the feasible set K is a polyhedron, this is a linear programming problem.)
TERMINATE if f(zr)!(zx — yk+1) = 0 and set z; as the solution.
Part b: (line search part)

Find rx4; € [zk; yk+1] for which

f(@re1) (z = Th41) 2 0 Yz € [24; Yot (18)
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Go to the next step k + 2, part a, with x5y, in place of xi.

The point zx4, found at step & + 1 is a point that solves a one-dimensional
variational problem. This is true because every point z € [zk; yk+1] can be rewritten
as = z(a) = zk + a(yk+1 — zx) with a € [0,1], while xx41 = 2% + ap1(Yk41 — k)
with axyq € [0,1]. Therefore, we can write part b of the Frank Wolfe algorithm as:
Find ax4+1 € [0, 1] for which

f(zk + art1(yr+1 — 7)) (Yk+1 — k) (@ — ak41) > 0 Va € [0,1]

which is the one-dimensional variational inequality V I(hg,[0,1]) with a problem
function hi(a) = f(zk(a))'(yk+1 — zx) and with the interval [0, 1] as the feasible set.
If the Jacobian matrix of the problem function f is symmetric and positive definite,
with f = gradient(F), part b is also equivalent to a one-dimensional minimization

problem, namely
mingeo, F(z(a)).

Then the VIP is also equivalent to the minimization problem
mingep F(z).

To understand the behavior of hi(a), and therefore part b of step £ + 1, we consider
the following lemma.

LEMMA 10:

If the problem function f is strictly monotone, then the function hy : [0,1] — R
defined as hy(a) = f(zk(a))!(yks1 — Tx) is strictly increasing.

Proof:

To establish this result, we show that if a1 # a2, then
(Ar(a1) = hi(a2)][ar — a2] > 0.
This condition 1s true because

[he(ar1) = he(a2)]a1 — a2] = [f(zx(a1)) — f(zk(a2)))(Ya+1 — zk)[a1 — a2] =
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(recalling that x = z¢(a) = zx + a(Yk+1 — &)

= [f(zk(ar1)) = f(zk(a2)))}[zk(a1) — zk(az2)} > 0,

when a; # a; (and therefore zi(a;) # zi(az)), by the strict monotonicity of f.
Therefore,
[hk(a1) = hi(a2)][a1 — a2] > 0.

Q.E.D.

Note that since hi(a) is strictly monotone, the one-dimensional variational in-
equality, find ax4; € [0,1] so that hx(aks1)'(a — aky1) > 0 for all @ € [0,1], or
equivalently (18), has a unique solution ag41, or Zx41 = i + ak+1(Yk+1 — T&), that

satisfies one of two conditions.

L. If A(l) = f(yk+1) (Yks1 — k) < 0, then apy; = 1 since then zpq41 = yr41

and, therefore,
Tiy1 € (k5 Yt1] f($k+1)t(’3"zk+1) = f(yk+1)t(yk+1—xk)(a"'1) >0 VYae[0,1].

2. If hg(1) > 0, then axyq €[0,1] and hg(agyr) = 0.
This result is true because hx(0) = f(zk) (ye+1 — 2k) < 0
(from part a, yes1 = argmingep, f(zk)'y, also hx(0) # 0 otherwise we would
stop),
and hg is a strictly increasing function (Lemma 10), hg(1) > hi(0) < 0.
Therefore, either hx(1) < 0 so agy; = 1, or hx(1) > 0 and so hi(ak41) = 0, for

some ai4+; € [0,1].

If f is strictly monotone, we can view part b (because of Lemma 10) as a minimiza-

tion problem, regardless of the symmetry of the Jacobian matrix of f. Namely,

minge(o,1) (—hi(a))?. (19)

36




Remark:
When hi(1) > 0, computing ag4; boils down to solving the one variable equation

hi(aks+1) = 0, which becomes

hk(ak+1) = f(2k + aks1(yes1 — 26)) (Yot1 — 2x) = 0
or [f(zk + are1(¥ke1 — 2)) = F(=5)] (W1 — &) = F(=r) (26 — Yrt1)-

Applying the mean value theorem shows that for some z € [z4; zi41],

F(zi) (2 = Yka1) = akr||ves1 — Tell5 s(z), implying that

Flze) (ke = Yes1)
2k = w115 52y

Tpy1 = Tk + (Yk+1 — Tk),

for some z € [zk; Tk41]-

We are now ready to establish convergence of the algorithm sequence zj.
Before we state the main theorem, we establish several preliminary lemmas.
LEMMA 11:

Let zx be the sequence induced by the Frank-Wolfe algorithm. Under assumptions
A1l and A2, the objective function {F(xk)} is a convergent sequence.
Proof:

Observe that under f-monotonicity,
F(zi) = F(2pq1) 2 TF(zr41)" (25 = 2x41) 2 0,

(this inequality is due to the line search we performed in part b of the algorithm).
Therefore, F(zx) > F(zk+1) is a decreasing sequence. Moreover, since the feasible
set is bounded, the sequence F(zy) is bounded from below. So {F(zk)}3%, is a
convergent sequence. Q.E.D.

LEMMA 12:

Let z; be the sequence induced by the Frank-Wolfe algorithm. Under assumptions
Al and A2, every convergent subsequence zg, (with accumulation point z*) has

(perhaps a further) convergent subsequence yg,4+1 (with accumulation point y*). ‘
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Proof:
This follows from assumption Al, i.e., that the feasible set K is bounded. Q.E.D.
LEMMA 13:
Let xx be the sequence induced by the Frank-Wolfe algorithm. Under assumptions
Al and A2,
kli_r{loo flxr,) (xk, = Ykp41) = 0
Proof:
Consider any convergent subsequence zx, with accumulation point z*. From Lemma

12, the subsequence yi,+1 has an accumulation point y*.

Let s,r € {kp}32, with s > 7+ 1> r. Then F(z,) < F(zr41) < F(z,) and

F(zs) < F(:I:H.l) < F(l’r + a(yr+1 - z;)), Vag [07 l]‘

b a

Therefore ﬂz’);ﬂx’) < Hertaurizer))=Flar) v, ¢ [0,1]. Letting s — oo and

r — 00 1n both sides of the inequality, we see that

F(z" +a(y" - =z7))

~ =) 5 0 aeo,1].

Letting a — 0, we see that f(z*)!(y* —2~) > 0. Since f(zt,) (k, — Yk,+1) > 0 from
part a of step k, + 1, we also conclude that f(z*)!(y* — z*) < 0. Finally, combining
this result with the previous inequality, we conclude that f(z*)!(y*—z*) = 0. Q.E.D.
LEMMA 14:

Let zx be the sequence induced by the Frank-Wolfe algorithm and let z* be any

accumulation point of sequence z;. Under assumptions Al and A2,
f(z*) = f(z°") and f(z*)"(z°' - z*) = 0.

Proof:

Part a of step k, + 1 and the fact that z°P* € K is an optimal solution implies that

F(2k,) (Yhpt1 — Thy) < k) (2P = 24,) < 0.
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Lemma 13 implies that f(xkp)‘(xo”‘ —2k,) —k,—oo 0, L€,
FE) @ = at) = 0

for any accumulation point z* of the sequence ry. Combined with f-monotonicity,

the result implies that
0= f(z")'(z" = 2% > (f(z") - f(z)'(z" — =) 2 al|fla™) - f(=P)|”.

Therefore, f(z*) = f(z°P!). Q.E.D.

THEOREM 6:

Let z; be the sequence induced by the Frank-Wolfe algorithm. Under assumptions
Al and A2, every accumulation point z* of the sequence z; is a VI P solution.
Proof:

In Lemma 14 we have shown that
f@ = F@™) and f(a*)(a - 2%) = 0.
These two equalities imply that
J@) (2=2) = J(@") (a=2P)+ [ 7 ~2") = [@") (2=27) = [(@P) (z—2) 2 0,

for all € K. Therefore, z* is a V /P solution.

Q.E.D.

6 Applications in transportation networks

In this section we apply the results from the previous sections to transportation
networks. We first briefly outline the traffic equilibrium problem.

Consider a network G with links denoted by i, J,..., paths by p, q,... and origin-
destination (O-D) pairs of nodes by w, z,... . A fixed travel demand, denoted d,,,
is prescribed for every O-D pair w of the transportation network. Let F, denote

the nonnegative flow on path p. We group together all the path flows into a vector
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F e RN (N is the total number of paths in the network). The travel demand d,,
associated with the typical O-D pair w is distributed among the paths of the network
that connect w. Thus,

dy= Y, F,, VO-D pairw, (20)

p joining w

or, in vector form, d = BF, where B is a W x N O-D pair/path incidence matrix
whose (w, p) entry is 1 if path p connects O-D pair w and is 0 otherwise. The path
flow F' induces a load vector f with components f; defined on every link ¢ by

fi= > Fy, (21)

p passing through 1

or, in vector form, f = DF, where D is a n x N link/path incidence matrix whose
(¢,p) entry i1s 1 if link i is contained in path p and is 0 otherwise. Let n be the total
number of links in the network.

A load pattern f is feasible if some nonnegative path flow F, that is,
F, >0 V paths p, (22)

induces the link flow f through (21) and is connected to the demand vector d through
(20). It is easy to see that the set of feasible load patterns f is a compact, convex
subset K of R™.

Our goal is to determine the user optimizing traffic pattern with the equilibrium
property that once established, no user can decrease his/her travel cost by making a
unilateral decision to change his/her route. Therefore, in a user-optimizing network,
the user’s criterion for selecting a travel path is personal travel cost. We assume
that each user on link ¢ of the network has a travel cost ¢; that depends, in an a
priori specified fashion, on the load pattern f, and that the link costs vector ¢ = ¢(f)
is a continuously differentiable function, ¢ : K — R™. Finally, we let C, = Cp(F)
denote the cost function on path p. The link and path cost functions are related as

follows:

Cp(F)= > «l(f), Vpaths p. (23)

i€path p

40



Mathematically, a flow pattern is a user equilibrium flow pattern if
Yw (O—D pair), Vp connecting w : Cp(f) = vy if Fp >0 and Cp(f) > vy, if Fp = 0.
The user equilibrium property can also be cast as the following variational inequality:

f* € K is user optimized if and only if c(f*)'(f—f*)>0, Vf€ K. (24)

Several papers [10], [11], [25], [36], [16] and the references they cite elaborate in
some detail on this model and its extensions.

The analysis in the previous sections applies to the traffic equilibrium problem,
with the travel cost function ¢ as the VIP function and with the link flow pattern

f as the problem variable. The f-monotonicity condition becomes
[e(f!) = c(FNU = P12 alle(f1) = (S V' 2 eK,

for some positive constant a. As indicated in Section 2, we can verify this condition

by checking whether the matrix

ve(f) —ave(f) vef) Vi EK

is positive semidefinite for some a > 0. Theorems 3 and 5 guarantee that the
sequence of averages induced by the projection and the relaxation algorithms con-
verges to an equilibrium solution f* of the user optimizing network. Furthermore,
since the feasible set K in the traffic equilibrium example is always bounded for any
a priori fixed demand d, Theorem 4 establishes that every accumulation point of the
sequence induced by the projection algorithm is a user optimizing load pattern.

Next, we study some traffic equilibrium examples that illustrate the importance
of the f-monotonicity condition.

Examples:.

1. The simplest case arises when the travel cost function ¢; = ¢;(f) on every link

7 depends solely, and linearly, upon the flow f; on that link i:
ci = ci(fi) = gifi + hi.
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In this expression, g; and h; are nonnegative constants; g; denotes the conges-

@i 0 ... 0]
fi hy
0 g2 ... 0 .
tion coefficient for link ¢. Then c¢(f) =] = . S+
fa hn
| 0 0 gn |
(01 0 0 ]
] 0 g2 ... O ) . . ,
Sincegge= | |, the matrix ge(f) —ayye(f)ve(f') becomes
L 00 gn |
[ g1 — ag? 0 0 |
0 —ag? ... 0
vct(I—aVC)z 92 92
i 0 0 coe gn —ag?l ]

This matrix is positive semidefinite if g; —ag? > 0 for i = 1,2, ..., n.

This, in turn, is true if the congestion coefficients g; > 0 for: =1,2,...,n
1

and a < marygigngs

The matrix is positive definite, and so the function c is strongly monotone,

1
mar)<i<nds :

if each g; > 0 and a < It is positive semidefinite, and so (from
Section 2) is f-monotone even if some g; = 0. Our analysis still applies even
though some or all g!s are zero. This example shows that f-monotonicity might
permit some links of the network to be uncongested. This might very well be
the case in large scale networks. The projection algorithm would still allow

us, as shown in Theorem 3 and Theorem 4, to compute an optimal solution

to the problem.

. Consider the simple case of a transportation network, with one O-D pair
w = (z,y) and three links connecting this O-D pair as shown in Figure 1.

In this case, the link congestion function is not separable.
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Figure 1: The traffic equilibrium problem

The travel costs on the links are

cai(f) = fr + f2 + 10,

c(f) = %fl +2f2+5,
C3(f) = 15.

~Suppose the demand for the O-D pair w is di, = 20. The user equilibrium

solution is f; =0, fo =5>0, f3 =15 > 0. At this point, ¢; = ¢; = ¢c3. In

this case,

—
—
o

(=R NS
o
o

Il
—

I ORI
o

and

M+ M =

O wIw N
O > W
o
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which is positive semidefinite, but not positive definite. Furthermore,

1-—%a %—2& 0

M —aM'M =] 1-2 2-5a 0

0 0 0
for a = 1/5, becomes
X
t tar
M—--E;MM_ % 1 0
0 0 O

which is a positive semidefinite matrix, since its symmetric part is

5 15 0
5 2 0
0 0 0

(which is indeed positive semidefinite). In this example, the travel cost func-

tion ¢ is f-monotone, but not strongly monotone.

. We conclude this set of examples by considering a transportation network with
multiple equilibria, specifically a network (see Figure 1) consisting of one O-D
pair w = (z,y) and three links connecting this O-D pair. The travel demand

is d, = 20. The travel costs on the links are
alf)=h+f2+5,

c2(f)=hH+fa+5,
e3(f) = 30.

The user equilibrium solution is not unique. In fact, the problem has infinitely
many user optimized solutions. Any fi + fo = 20, f3 = 0 is a solution to the

user optimized problem, since then ¢; = ¢2 = 25 < ¢35 = 30.

44




The matrix yc = M is

1 10
M=1110
0 00

This matrix is not positive definite. Nevertheless, the matrix

1—-2a 1—-2a 0
M'—aM'M=|1-2 1-2a 0|,

0 0 0

1s positive semidefinite for any @ < 1/2. So the travel cost function ¢ in this

case is f-monotone, but not strongly monotone.

We conclude this section by showing that if the link cost function is f-monotone,
then so is the path cost function. In establishing this result, we use the following
elementary lemma.

LEMMA 15:

Any set of n real numbers z; € R for i = 1,2, ..., n satisfy the following inequality:

D@ <n) (=) (25)
1=1 =1

This result is easy to establish by induction.

Proposition 2:

Let n be the total number of links in the network, and N be the total number of
paths. If the link cost function ¢ = ¢(f) is f-monotone with respect to the constant
a, then the path cost function C = C(F) is also f-monotone with respect to the
constant a’ = 5.

Proof:

If the link cost function ¢ = ¢(f) is f-monotone with respect to the constant a > 0,

then

[c(f1) = (SN = 21 2 alle(f") = (SO VL FP e K.
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Making the replacements fi = Zp passing through FP’ and C, (F ZiEpath P Ci(f)'
Observing that

[e(f1) = (PN = 1= 2[e(f) = aUFONA = £7),
we obtain

N

()= =2 = SUIC(FY)=Co(F[FE=F2) = [C(FY)—C(FH)F - F?).

p=1

The defining equality (23) and Lemma 15 imply that

N N
YACFHY = CG(FH2 =31 > (a(f) —a(f)P <
p=1 p=1 i€path p
N
<SS (0 Y [a(FM) —a(FH).
p=1 i€path p

Since link 7 belongs to at most N paths, each term c¢;(f!) — c;(f?) appears in the
last expression at most N times, so
N n
DG (FY) = Co(F*)? < nN Y la(fY) = ci(£5)).
p=1 =1

Combining these results shows that
[C(F') = C(FHIF' = F2 = [e(f!) = (/NI = /4 2
N
Z [ei(f1) = ci( ) Zj [Co(FY) = Cp(F?)? = d'||C(F) = C(F?))|%,

if @’ = S > 0. Therefore, the path cost function C = C(F) is f-monotone. Q.E.D.

This proposition shows that if the link cost function is f-monotone, then so is
the path cost function. The user optimizing path flow pattern should satisfy the
following VIP:
find a feasible path flow F°Pt € K for which

C(FP)(F - F")>0 VF € K.
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Therefore, we can apply a path flow projection algorithm to solve the user optimizing
traffic equilibrium problem instead of a link flow one. The main step would be the
projection

Fip1 = Pri(Fe — pGTIC(Fy)),

in the space of path flows F.

As our prior results show, we can consider networks that contain some uncon-
gested paths. A path flow algorithm is preferable to a link flow one because it is
much less costly to carry out projection iterations in the space of path flows than
in the space of link flows [6].

Proposition 2 is similar to a result of Bertsekas and Gafni, [6]: they assume
strong (rather than f-) monotonicity on the link cost function and show that a path

flow projection algorithm solves the user optimizing equilibrium problem.

7 Conclusions and open questions

In this paper, we analyzed the convergence properties of several classical algo-
rithms — the Frank-Wolfe algorithm and projection and relaxation algorithms —
with respect to the condition of f-monotonicity which is weaker than the standard
strong monotonicity condition. We began by showing the connection between f-
monotonicity and the norm condition of Dafermos [12], Chan and Pang [32], and
Hammond and Magnanti [18]. Assuming the f-monotonicity condition, we showed
that the sequence of averages induced by the projection algorithm converges to a
solution of the variational inequality problem. Under a norm condition weaker than
an existing one, we also established the convergence of the sequence of averages
induced by relaxation algorithms. To establish these two results, we employed an
ergodic theorem for nonexpansive maps due to Baillon [3]. Moreover, we showed that
when the feasible set K is both compact and convex, every accumulation point of

the projection algorithm solves the variational inequality problem. We also showed
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that every accumulation point of the sequence induced ¥by the Frank-Wolfe algo-
rithm, when applied to convex optimization problems over convex sets, is a VIP
solution under the f-monotonicity condition. Finally, we applied these results to
transportation networks, permitting uncongested links. We showed that a path flow
projection algorithm can be used to solve the user optimizing problem when the link
cost function is f-monotone.
The results in this paper suggest the following question:

can some form of the f-monotonicity condition imposed upon the problem function f
guarantee convergence of the sequence of averages induced by other VIP algorithms,

such as linearization algorithms and more general iterative schemes?
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