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Abstract

We show that if performance measures in stochastic and dynamic scheduling problems sat-
isfy generalized conservation laws, then the feasible space of achievable performance is a
polyhedron called an extended polymatroid that generalizes the usual polymatroids intro-
duced by Edmonds. Optimization of a linear objective over an extended polymatroid is
solved by an adaptive greedy algorithm, which leads to an optimal solution having an in-
dexability property (indezable systems). Under a certain condition, then the indices have
a stronger decomposition property (decomposable systems). The following classical prob-
lems can be analyzed using our theory: multi-armed bandit problems, branching bandits.
multiclass queues, multiclass queues with feedback, deterministic scheduling problems. In-
teresting consequences of our results include: (1) a characterization of indexable systems as
systems that satisfy generalized conservation laws, (2) a sufficient condition for indexable
systems to be decomposable, (3} a new linear programming proof of the decomposability
property of Gittins indices in multi-armed bandit problems, (4) a unified and practical ap-
proach to sensitivity analysis of indexable systems, (5) a new characterization of the indices
of indexable systems as sums of dual variables and a new interpretation of the indices in
terms of retirement options in the context of branching bandits, (6) the first rigorous anal-
ysis of the indexability of undiscounted branching bandits, (7) a new algorithm to compute
the indices of indexable systems (in particular Gittins indices), which is as fast as the fastest
known algorithm, (8) a unification of the algorithm of Klimov for multiclass queues and
the algorithm of Gittins for multi-armed bandits as special cases of the same algorithm. (9)
closed form formulae for the performance of the optimal policy, and (10) an understanding
of the nondependence of the indices on some of the parameters of the stochastic scheduling
problem. Most importantly, our approach provides a unified treatment of several classical
problems in stochastic and dynamic scheduling and is able to address in a unified way their
variations such as: discounted versus undiscounted cost criterion, rewards versus taxes.
preemption versus nonpreemption, discrete versus continuous time, work conserving versus

idling policies, linear versus nonlinear objective functions.



1 Introduction

In the mathematical programming tradition researchers and practitioners solve optimiza-
tion problems by defining decision variables and formulating constraints, thus describing the
feasible space of decisions, and applying algorithms for the solution of the underlying opti-
mization problem. For the most part, the tradition for stochastic and dynamic scheduling
problems has been, however, quite different, as it relies primarily on dynamic programming
formulations. Using ingenious but often ad hoc methods, which exploit the structure of the
particular problem, researchers and practitioners can sometimes derive insightful structural
results that lead to efficient algorithms. In their comprehensive survey of deterministic
scheduling problems Lawler et. al. [23] end their paper with the following remarks: ~The
results in stochastic scheduling are scattered and they have been obtained through a con-
siderable and sometimes dishearting effort. In the words of Coffman, Hofri and Weiss [8].
there is great need for new mathematical techniques useful for simplifying the derivation of
the results”.

Perhaps one of the most important successes in the area of stochastic scheduling in the
last twenty years is the solution of the celebrated multi-armed bandit problem, a generic
version of which in discrete time can be described as follows:

The multi-armed bandit problem: There are K parallel projects, indexed k = 1,
..., K. Project k can be in one of a finite number of states i;. At each instant of discrete
timet = 0,1,... one can work on only a single project. If one works on project k in state
ig(t) at time t, then one receives an immediate expected reward of R;,(;). Rewards are
additive and discounted in time by a factor 0 < 3 < 1. The state #4(t) changes to it(t + 1)
by a Markov transition rule (which may depend on k, but not on t), while the states of the
projects one has not engaged remain unchanged. ie.. {;(t+1) = 4;(t) for | # k. The problem
is how to allocate one’s resources sequentially in time in order to maximize expected total
discounted reward over an infinite horizon.

The problem has numerous applications and a rather vast literature (see Gittins [16]
and the references therein). It was originally solved by Gittins and Jones [14], who proved
that to each project k one could attach an inder v (it(t)). which is a function of the project
k and the current state i4(¢) alone, such that the optimal action at time ¢ is to engage the

project of largest current index. They also proved the important result that these index



functions satisfy a stronger indezr decomposition property: the function ~*(-) only depends
on characteristics of project k (states, rewards and transition probabilities), and nor on any
other project. These indices are now known as Gittins indices, in recognition of Gittins con-
tribution. Since the original solution, which relied on an interchange argument, other proofs
were proposed: Whittle [36] provided a proof based on dynamic programming, subsequently
simplified by Tsitsiklis [30]. Varaiya, Walrand and Buyukkoc [33] and Weiss [35] provided
different proofs based on interchange arguments. Weber [34] outlined an intuitive proof.
More recently, Tsitsiklis [31] has provided a proof based on a simple inductive argument.
The multi-armed bandit problem is a special case of a dynamic and stochastic job
scheduling system S. In this context, there is a set E of job types and we are interested
in optimizing a function of a performance measure (rewards or taxes) under a class of

admissible scheduling policies.

Definition 1 (Indexable Systems) We say that a dynamic and stochastic job scheduling
system S is indezable if the following policy is optimal: To each job type i we attach an

index, v;. At each decision epoch select a job with the largest index.

In general the indices v; could depend on the entire set £ of job types. Consider a partition
of the set E to subsets Fi, £ = 1,... K, which contain collections of job types and can he
interpreted as projects consisting of several job types. In certain situations, the index of
job type ¢ € E; depends only on the characteristics of the job types in Ej and not on the
entire set E of job types. Such a property is particularly useful computationally since it
enables the system to be decomposed to smaller parts and the computation of the indices
can be done independently. As we have seen the multi-armed bandit problem has this

decomposition property, which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if
for all job types i € E%, the index v; of job type i depends only on the characteristics of the
set of job types Ej.

In addition to the multi-armed bandit problem, a variety of dynamic and stochastic

scheduling problems has been solved in the last decades by indexing rules:

1. Extensions of the usual multi-armed bandit problem such as arm-acquiring bandits
(Whittle [37], [38]) and more generally branching bandits (Weiss [35]), that include

several important problems as special cases.
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2. The multiclass queueing scheduling problem with Bernoulli feedback (Klimov [22],
Tcha and Pliska [29]).

3. The multiclass queueing scheduling problem without feedback (Cox and Smith [9].
Harrison [19], Kleinrock (21}, Gelenbe and Mitrani [13], Shantikumar and Yao [26]).

4. Deterministic scheduling problems (Smith [27]).

An interesting distinction, which is not emphasized in the literature, is that examples
(1) and (2) above are indezable systems, but they are not in general decomposable systems.
Example (3), however, has a more refined structure. It is indexable, but not decomposable.
under discounting, while it is decomposable under the average cost criterion (the cp rule).
As already observed, the multi-armed bandit problem is an example of a decomposable
system, while example (4) above is also decomposable.

Faced with these results, one asks what is the underlying deep reason that these non-
trivial problems have very efficient solutions both theoretically as well as practically. In
particular, what is the class of stochastic and dynamic scheduling problems that are index-
able? Under what conditions, indexable systems are decomposable? But most importantly
is there a unified way to address stochastic and dynamic scheduling problems that will Jead
to a deeper understanding of their strong structural properties? This is the set of questions
that motivates this work.

In the last decade the following approach has been proposed to address special cases
of these questions. In broad terms, researchers try to describe the feasible space of a
stochastic and dynamic scheduling problem as a polyhedron. Then, the stochastic and
dynamic scheduling problem is translated to an optimization problem over the corresponding
polyhedron, which can then be attacked by traditional mathematical programming methods.
Coffman and Mitrani [7] and Gelenbe and Mitrani [13] first showed using conservation laws
that the performance space of a multiclass queue under the average cost criterion can he
described as a polyhedron. Federgruen and Groenevelt {11], [12] advanced the theory further
by observing that in certain special cases of multiclass queues, the polyhedron has a very
special structure (it is a polymatroid) that gives rise to very simple optimal policies (the cpu
rule). Shantikumar and Yao [26] generalized the theory further by observing that if a system
satisfies strong conservation laws, then the underlying performance space is necessarily a

polymatroid. They also proved that, when the cost is linear on the performance, the optimal



policy is a fized priority rule (also called head of the line priority rule; see Cobham [6], and
Cox and Smith [9]). Their results partially extend to some rather restricted queueing
networks, in which they assume that all the different classes of customers have the same
routing probabilities, and the same service requirements at each station of the network (see
also [25]). Tsoucas ([32]) derived the region of achievable performance in the problem of
scheduling a multiclass nonpreemptive M/G/1 queue with Bernoulli feedback, introduced
by Klimov ([22]). Finally, Bertsimas et al. [2] generalize the ideas of conservation laws
to general multiclass queueing networks using potential function ideas. They find linear
and nonlinear inequalities that the feasible region satisfies. Optimization over this set of
constraints gives bounds on achievable performance.

Our goal in this paper is to propose a unified theory of conservation laws and to establish
that the very strong structural properties in the optimization of a class of stochastic and
dynamic systems that include the multi-armed bandit problem and its extensions follow from
the corresponding strong structural properties of the underlying polyhedra that characterize
the regions of achievable performance.

By generalizing the work of Shantikumar and Yao [26] we show that if performance
measures in stochastic and dynamic scheduling problems satisfy generalized conservation
laws, then the feasible space of achievable performance is a polyhedron called an ¢rtended
polymatroid (see Bhattacharya et al. [4]). Optimization of a linear objective over an ex-
tended polymatroid is solved by an adaptive greedy algorithm, which leads to an optimal
solution having an indexability property. Special cases of our theory include all the prob-
lems we have mentioned, i.e., multi-armed bandit problems, discounted and undiscounted
branching bandits, multiclass queues, multiclass queues with feedback and deterministic

scheduling problems. Interesting consequences of our results include:

1. A characterization of indexable systems as systems that satisfy generalized conserva-

tion laws.
2. Sufficient conditions for indexable systems to be decomposable.

3. A genuinely new, algebraic proof (based on the strong duality theory of linear pro-
gramming as opposed to dynamic programming formulations) of the decomposability

property of Gittins indices in multi-armed bandit problems.



4. A unified and practical approach to sensitivity analysis of indexable systems. based

on the well understood sensitivity analysis of linear programming.

5. A new characterization of the indices of indexable systems as sums of dual variables

corresponding to the extended polymatroid that characterizes the feasible space.

6. A new interpretation of indices in the context of branching bandits as retirement
options, thus generalizing the interpretation of Whittle [36] and Weber [34] for the

indices of the classical multi-armed bandit problem.

7. The first complete and rigorous analysis of the indexability of undiscounted branching

bandits.

8. A new algorithm to compute the indices of indexable systems (in particular Git-

tins indices), which is as fast as the fastest known algorithm (Varaiva. Walrand and

Buyukkoc [33]).

9. The realization that the algorithm of Klimov for multiclass queues and the algorithm

of Gittins for multi-armed bandits are examples of the same algorithm.

10. Closed form formulae for the performance of the optimal policy. This also leads to an
understanding of the nondependence of the indices on some of the parameters of the

stochastic scheduling problem.

Most importantly, our approach provides a unified treatment of several classical prob-
lems in stochastic and dynamic scheduling and is able to address in a unified way their
variations such as: discounted versus undiscounted cost criterion, rewards versus taxes.
preemption versus nonpreemption, discrete versus continuous time, work conserving versus
idling policies, linear versus nonlinear objective functions.

The paper is structured as follows: In Section 2 we define the notion of generalized con-
servation laws and show that if a performance vector of a stochastic and dynamic scheduling
problem satisfies generalized conservation laws, then the feasible space of this performance
vector is an extended polymatroid. Using the duality theory of linear programming we
show that linear optimization problems over extended polymatroids can be solved by an
adaptive greedy algorithm. Most importantly, we show that this optimization problem has

an indexability property. In this way, we give a characterization of indexable systems as




systems that satisfy generalized conservation laws. We also find a sufficient condition for
an indexable system to be decomposable and prove a powerful result on sensitivity analysis.
In Section 3 we study a natural generalization of the classical multi-armed bandit problem:
the branching bandit problem. We propose two different performance measures and prove
that they satisfy generalized conservation laws, and thus from the results of the previous
section their feasible space i1s an extended polymatroid. We then consider different cost and
reward structures on branching bandits, corresponding to the discounted and undiscounted
case, and some transform results. Section 4 contains applications of the previous sections to
various classical problems: multi-armed bandits, multi-class queueing scheduling problems
with or without feedback and deterministic scheduling problems. The final section contains

some thoughts on the field of optimization of stochastic systems.

2 Extended Polymatroids and Generalized Conservation Laws

2.1 Extended Polymatroids

Tsoucas [32] characterized the performance space of Klimov’s problem (see Klimov [22]) as a
polyhedron with a special structure, not previously identified in the literature. Bhattacharva
et al. [4] called this polyhedron an eztended polymatroid and proved some interesting prop-
erties of it. Extended polymatroids are a central structure for the results we present in this
paper.

Let us first establish the notation we will use. Let £ = {1,...,n} be a finite set. Let z
denote a real n-vector, with components z,, for i € E. For S C N, let S = E\ S. and let
|S| denote the cardinality of S. Let 2% denote the class of all subsets of E. Let b: 25 — R,

be a set function, that satisfies b(@) = 0. Let 4 = (.4,-5)565, sce be a matrix that satisfies

A? >0, for i€S  and AY =0, for i€S°, forall SCE. (1)

Let # = (m, ...,m,) be a permutation of £. For clarity of presentation, it is convenient
to introduce the following additional notation. For an n-vector z = (z;. ... zo) T let 2y =
(Zry,---,2x,)T. Let us write

b = (b({m }), b({m. m2}). ... .b({m1,. ... m )T



Let A, denote the following lower triangular submatrix of A:

Almt 0 0
Y Al a0 g
A1{r:r;,...,1rn} A1{r12rl,...,7rn} o Aj:rrrrlx.....rrn}

Let v(7) be the unique solution of the linear system

J { v
ZA,,TI""’"’}z,'. =b({m,...,m}), j=1....n (2)

i=1

or, in matrix notation:

Arzy=b,. (3)
Let us define the polyhedron
P(Ab)=f{zeR": ) APz >b(S), for SCE} (1)
€S

and the polytope
B(Aby={zeR":Y ATz;>b(S), for SCE and Y APzi=bE)} ()
i€S eE
Note that if £ € P(A, b), then it follows that z > 0 componentwise. The following definition
is due to Bhattacharya et al. [4].

Definition 3 (Extended Polymatroid) We say that the polyhedron P(4.b) is an ¢r-
tended polymatroid with base set E, if for every permutation m of £, v(m) € P(4.b). In

this case we say that the polytope B(A,b) is the base of the extended polymatroid P(4.4).

2.2 Optimization over Extended Polymatroids

Extended polymatroids are polyhedra defined by an exponential number of inequalitics
Yet, Tsoucas [32] and Bhattacharya et al. [4] presented a polynomial algorithm. hased
on Klimov’s algorithm (see Klimov [22]) for solving a linear programming problem over
an extended polymatroid. In this subsection we provide a new duality proof that this
algorithm solves the problem optimally. We then show that we can associate with this
linear program certain indices, related to the dual program, in such a way that the problem

has an indezability property. Under certain conditions, we prove that a stronger indexr



decomposition property holds. We also present an optimality condition specially suited for
performing sensitivity analysis.
In what follows we assume that P(A,b) is an extended polymatroid. Let R € R" be a
row vector. Let us consider the following linear programming problem:
(P) max{ Y _ Rizi 1z € B(4,b)}. (6)
t€E
Note that since B(A,b) is a polytope, this linear program has a finite optimal solution.
Therefore we may consider its dual, and this will have the same optimum value. Ve shall

have a dual variable y° for every S C E. The dual problem is:

(D) min{ > b(S)y°:>_A7y* =Ri, fori€E, and y <0, for SCE}
SCE $3i

at|

(1)
In order to solve (P), Bhattacharya et al. [4] presented the following adaptive greedy

algorithm, based on Klimov’s algorithm [22]:

Algorithm A,
Input: (R, A).
Output: (7,y,v,S), where # = (m,...,m,) is a permutation of £, § = (yS)SCE. v o=

(v1,...,vn),and § = {S1,..., 5.}, with S = {m,...,m}, for k € E.

Step 0. Set S, = E. Set v, = max{%; i€ E};
pick 7, € argmax{ XEE' i€ E}

Step k. Fork=1,...,n-1:
R"Z:;; Afnﬂ Yn—;

Set Sp—k = Sn—k+1 \ {Mn—k41 }; set vy = max{ S P T€ Sy b
. Ri-Y* 2 A, ‘
pick m,_; € argmax{ }:L:(.’S'n_'k = € Sn-k }

Step n. For S C E set
s {uj, if §$ =5 for some j € E;

0, otherwise.



It is easy to see that the complexity of A;, given (R, A), is O(n?’). Note that, for certain
reward vectors, ties may occur in algorithm A;. In the presence of ties, the permutation
7 generated depends clearly on the choice of tie-breaking rules. However. we will show
that vectors v and g are uniquely determined by .A;. In order to prove 'this point, whose
importance will be clear later, and to understand better Ay, let us introduce the following

related algorithm:

Algorithm A,

Input: (R, 4).

Output: (r,7,H,J), where 1 < r < n is an integer, y = (——QS)SQE, H ={H1,.... H.}is a
partition of £, and Jy = U]_ H;, for I =1,... r.

Step 1. Set k :=1; set J; = E;
setBlzmu{fg:ieE} and H1=argmax{%:ieE}.

Step 2. While J # Hy do:
begin
Set k:=k + 1;set Jp = Jr—1 \ Hi-1;
Ri-S K1 4ty Ri=S5 "t alte
set 8, = max{ ———Zﬁ:—‘— :1€Jr} and Hjp = argmax({ ’—?k——————l e i}
end {while} \

Step 3. Set r = k;
for S C E set

—s {Bk, ifS=Jgforsomek=1,... 7
y =

0, otherwise.
In what follows let (7,9,v,S) be an output of .4; and let (r,¥,H, ) be the output of
A;. Note that the output of algorithm .42 is uniquely determined by its input.
The idea that algorithm A3 is just an unambiguous version of A4, is formalized in the

following result:

Proposition 1 The following relations hold between the outputs of algorithms Ay and Aj:
(a) forl=1,...,n

Yy =

{Hk, if l = |Ji| for some k=1,...,r:

0, otherwise;

9



b yv=79;
(c) m satisfies

Je={m.....myy}. k=1,..., 7, (9)
Hk={WleI_lHk'+1,...,W!Jkl}, k=1,....r (10)

Outline of the proof
Parts (a) and (c) follow by induction arguments. Part (b) follows by (a) and the definitions
ofgandy. O
Remark: Proposition 1 shows that § and v are uniquely determined (and thus invariant
under different tie-breaking rules) by algorithm A;. It also reveals in (c) the structure of
the permutations m that can be generated by A4;.

Tsoucas [32] and Bhattacharya et al. [4] proved from first principles that algorithm A,
solves linear program ( P) optimally. Next we provide a new proof, using linear programming

duality theory.

Proposition 2 Let vector § and permutation m be generated by algorithm Ay. Then ()

and § are an optimal primal-dual pair for the linear programs (P) and (D).

Proof

We first show that 7 is dual feasible. By definition of v, in A;, it follows that
Ri— A"v, <0, i€S,

and since S,_1 C S, it follows that v,_; < 0.
Similarly, for ¥ = 1,..., n — 2, by definition of v,_; it follows that
5 S,
Ri—) A" 7un_;j <0, i€ Sno,
7=0
and since Sp_g—1 C Sp—g, it follows that v, _,_; < 0. Hence v; < 0,for j=1.....n—1.

and by definition of 5, we have §° < 0, for S C E.

Moreover, for k =0, 1, ..., n — 1 we have, by construction.
S S 5 S,
Z A""n—ky = Z Aﬂ-::i Up—j = R"'n—k-
S3mp_k j=0

Hence ¥ is dual feasible.

10



Let T = v(m). Since P(A,b) is an extended polymatroid, T i1s primal feasible. Let us
show that 7 and § satisfy complementary slackness. Assume 7° # 0. Then, by construction

it must be S = Sx = {m,..., m}, for some k. And since T satisfies (3). it follows that

k
YoAim = Alneemdz = p(S).
t€S 1=1

Hence, by strong duality v(7) and 7 are an optimal primal-dual pair, and this completes
the proof. O
Remark: Edmonds [10] introduced a special class of polyhedra called polymatroids. and
proved the classical result that the greedy algorithm solves the linear optimization problem
over a polyhedron for every linear objective function if and only if the polyhedron is a
polymatroid. Now, in the case that A7 = 1, for i € $, and S C E, it is easy to see
that A4, is the greedy algorithm that sorts the R;’s in nonincreasing order. By Edmond’s
result and Proposition 2 it follows that in this case B(A,b) is a polymatroid. Therefore,
extended polymatroids are the natural generalizations of polymatroids. and algorithm
is the natural extension of the greedy algorithm.

The fact that v(7) and 7 are optimal solutions has some important consequences. It is
well known that every extreme point of a polyhedron is the unique maximizer of some linear
objective function. Therefore, the v(r)’s are the only extreme points of B(.4.b). Hence it

follows:

Theorem 1 (Characterization of Extreme Points) The set of extreme points of B(A.b)
ts
{v(m): 7 is a permutation of E }.
The optimality of the adaptive greedy algorithm A; leads naturally to the definition

of certain indices, which for historical reasons. that will be clear later. we call generalized

Gittins indices.

Definition 4 (Generalized Gittins Indices) Let 7 be the optimal dual solution gener-

ated by algorithm A4;. Let

Yi = Z 175 1EF. (11)
S: EDS%
We say that 71, ..., v, are the generalized Gittins indices of linear program (P).

11



Remark: Notice that by Proposition 1(a) and the definition of g, it follows that if permu-
tation  is an output of algorithm A4; then the generalized Gittins indices can be computed

as follows:

Yoo = VYnt-ootuy (12)

— -g{m N oy + - +‘y‘{”1""'"‘}, 1€ F. (13)

Let R_. = {x € R: 2 < 0}. Let 71, ..., yn be the generalized Gittins indices of (P). Let

7 be a permutation of E. Let T be the following n x n lower triangular matrix:

1 0 0

11 0
T =

1 1 1

In the next proposition and the next theorem we reveal the equivalence between some

optimality conditions for linear program (P).

Proposition 3 The following statements are equivalent:

(a) m satisfies (9) and (10);

(b) m is an output of algorithm A,;

(¢) Rr A7 € R™"! xR, and then the generalized Gittins indices are given by ~, = R-AZ' /"

(d) Yoy S Y S L Y-

Outline of the proof
(a) = (b): Proved in Proposition 1(a).

(b) = (c): It is clear, by construction in A, that
v=R.A;". (ry
Now, in the proof of Proposition 2 we showed that v € ®%7! x R. Moreover. by (12) we get
Yr = VT,

and by (14) it follows that
Y = R,A;IT.



(c) = (d): By (c) we have
Yy — Ymo
=1, T = R, AL € R771 x R,
7‘”7\—1 - 77rn
RES
whence the result follows.
(d) = (a): By construction of 7 in algorithm A3, the fact that T = 7 and the definition of

the generalized Gittins indices, it follows that
Yi =61+ + O, forir€ H,, andk=1,.... r. (13)

Also, it i1s easy to see that §; < 0, for j > 2. These two facts clearly imply that 7 must

satisfy (10), and hence (9). which completes the proof of the proposition. O

Combining the result that algorithm A; solves linear program (P) optimally with the
equivalent conditions in Proposition 3, we obtain several optimality couditions. as shown

next.

Theorem 2 (Sufficient Optimality Conditions and Indexability) Assume that any
of the conditions (a)-(d) of Proposition 3 holds. Then v(w) solves linear program (P) opti-
mally.

It is easy to see that conditions (a)-(d) of Proposition 3 are not, in general. necessary
optimality conditions. They are neccessary if the polytope B(A,b) is nondegenerate. Some
consequences of Theorem 2 are the following:

Remarks:

1. Sensitivity analysis: Optimality condition (c) of Proposition 3 is specially well
suited for performing sensitivity analysis. Consider the following question: given a
permutation 7 of E, for what vectors R and matrices 4 can we guarantee that v(7)

solves problem (P) optimally? The answer is: for R and A that satisfy the condition

R AT e R xR

13



We may also ask: for which permutations = can we guarantee that v(w) is optumal?

By Proposition 3(d), the answer now is: for permutations m that satisfy

Yoy S Ymp S < Y

thus providing an O(nlogn) optimality test for m. Glazebrook [17] addressed the
problem of sensitivity analysis in stochastic scheduling problems. His results are in

the form of suboptimality bounds.

2. Explicit formulae for Gittins indices: Proposition 3(c) provides an explicit for-
mula for the vector of generalized Gittins indices. The formula reveals that the indices

are piecewise linear functions of the reward vector.

3. Indexability: Optimality condition (d) of Proposition 3 shows that any permutation
that sorts the generalized Gittins indices in nonincreasing order provides an optimal
solution for problem (P). Condition (d) thus shows that this class of optimization

problems has an indexability property.

In the case that matrix A has a certain special structure, the computation of the indices
of (P) can be simplified. Let E be partitioned as £ = UK., E;. For k = 1. ... K.
let B(AF,b%) be the base of an extended polymatroid; let zF = (z)icp,: let (P} be the
following linear program:
(Py) max{ Y Rixf:z* € B(A* b%)}; (16)
t€F
let {7¥}icE, be the generalized Gittins indices of problem (P;). Assume that the following

independence condition holds:

A = ATBe = (4F)POBx for i€ SNE; and SCE. (17)

Under condition (17) there is an easy relation between the indices of problems (P) and

(Px), as shown in the next result.

Theorem 3 (Index Decomposition) Under condition (17), the generalized Gittins in-

dices of linear programs (P) and (Py) satisfy

vi=vF, fori€Ey andk=1 ..., K. (18)

14




Proof
Let
hi=+F  forieE, and k=1 K.

Let us renumber the elements of £ so that

hi <hg <. < hy,.

Let 7 = (1,...,n). Permutation 7 of E induces permutations 7% of Ey, for k = I, .

that satisfy
k
Trk S

Hence, by Proposition 3 it follows that

7,’:)‘ = Rkk(Afrk)—lTk, fork=1,.... K

T

or, equivalently,

T AL 0 0
0 T, 1A? 0
(7‘}r] ) 772rgi e 1771:") . : . 7r2 = (‘RTIF1 1 R72r2 """ Rl‘i“ )
0 0 L Tt AR,

where Ty is an |Ex| x |Ex| matrix with the same structure as matrix 7, for £ = 1. .

On the other hand, we have

(1 0 0 .. 0 0
-1 1 0 0 0
T'4, = 0 -1 1 0 0] A,
\o 0 0 .. -1 1
/ At 0 0
Al _ 40 AftH 0
\Ail,...,n}_Ail,...,n-l} Agl,....n}_Agl,...,n—l} Ai} ..... n}

Now, notice that if i € Ex, j € £\ E¢ and i < j then, by (17):

A{l....,j} - A{l,....j}nE,, - A{l,...,j—l}nEk — A{l ..... j—l}.
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I

(21)

R N
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Hence, by (19) and (23) it follows that system (22) can be written equivalently as

hxT"'Ar = R,. (24)
Now, (20) and (24) imply that
(e
hy — h3
R A7 = h,T7! = : eER*I x R, (25)
hp1 — hn

\ A/

and by Proposition 3 it follows that the generalized Gittins indices of problem (P) satisfy
Y = R,TA;IT‘

Hence, by (24),
h; =¥, forire E

and this completes the proof of the theorem. O
Theorem 3 implies that the fundamental reason for decomposition to hold is (17). An

easy and useful consequence of Theorems 2 and 3 is the following:

Corollary 1 Under the assumptions of Theorem 3, an optimal solution of problem (P)
can be computed by solving the K subproblems (Py). fork =1,.... K by algorithm A, and

computing their respective generalized Gittins indices.

It is important to emphasize that the index decomposition property is much stronger that
the indexability property. We will see later that the classical multi-armed bandit problem
has the index decomposition property. On the other hand, we will see that Klimov's problem

(see [22]) has the indexability property, but in the general case it is not decomposable.

2.3 Generalized Conservation Laws

Shantikumar and Yao [26] formalized a definition of strong conservation laws for perfor-
mance measures in general multiclass queues. that implies a polymatroidal structure in
the performance space. We next present a more general definition of generalized conser-
vation laws in a broader context that implies an extended polymatroidal structure in the

performance space, which has several interesting and important implications. Consider a
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general dynamic and stochastic job scheduling process. There are n job tvpes. which we
label i € E = {1,...,n}. We consider the class of admissible scheduling policies. which
we denote U, to be the class of all nonidling, nonpreemtive and nonanticipative scheduling
policies.

Let z¥ be a performance measure of type i jobs under admissible policy u. for i € £.
We assume that z} is an expectation. Let r* be the corresponding performance vector.
Let ™ denote the performance vector under a fized priority rule that assigns priorities to
the job types according to the permutation 7 = (my,...,m,) of E, where type m, has the

highest priority, ..., type m has the lowest priority.

Definition 5 (Generalized Conservation Laws) The performance vector x is said to
satisfy generalized conservation laws if there exist a function b : 26 — R such that b(0) = 0

and a matrix 4 = (Aig)ieE,SgE satisfying (1) such that:

(a)

b(S) =Y APz], forallm:{m,..., mg}=S and SCE; (26)
t€S
(b)
d A7zt >b(S), forall SCE and Y APzl =b(E), foralluell. (27)
i€S eE

In words, a performance vector is said to satisfy generalized conservation laws if: there
exist weights A7 such that the total weighted performance over all job types is invariant
under any admissible policy, and the minimum weighted performance over the job tvpes
in any subset S C E is achieved by any fixed priority rule that gives priority to all other
types (in S°) over types in S. The strong conservation laws of Shantikumar and Yao [26]
correspond to the special case that all weights are A7 = 1.

The connection between generalized conservation laws and extended polymatroids is the

following theorem:

Theorem 4 Assume that the performance vector z satisfies generalized conservation laws
(26) and (27). Then

(a) The vertices of B(A,b) are the performance vectors of the fired priority rules. and
™ = v(w), for every permutation ® of E.

(b) The extended polymatroid base B(A,b) is the performance space.
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Proof

(a) By (26) it follows that 2™ = v(7). And by Theorem 1 the result follows.

(b) Let X = {z“ : u € U} be the performance space. Let B,(A,b) be the set of extreme
points of B(A,b). By (27) it follows that X C B(A,b). By (a), B,(A4,b) C X. Hence. since

X 1s a convex set ({/ contains randomized policies) we have
B(A,b) = conv(B(A,b)) C X.

Hence X = B(A,b), and this completes the proof of the theorem. O
As a consequence of Theorem 4, it follows by Carathéodory theorem that the perfor-
mance vector z* corresponding to an admissible policy u can be achieved by a randomization

of at most n + 1 fixed priority rules.

2.4 Optimization over systems satisfying generalized conservation laws

Let z* be a performance vector for a dynamic and stochastic job scheduling process that
satisfies generalized conservation laws (associated with A, b(-)). Suppose that we want
to find an admissible policy u that maximizes a linear reward function y_,.p R;z*. This
optimal scheduling control problem can be expressed as
(By) max{ Y Rz} u€l}. (28)
el
By Theorem 4 this control problem can be transformed into the following linear program-

ming problem:
(P) max{ Y Riz; :z € B(4,b)}. (29)
t€E
The strong structural properties of extended polymatroids lead to strong structural prop-
erties in the control problem. Suppose that to each job type i we attach an index. 5,. A
policy that selects at each decision epoch a job of currently largest index will be referred to
as an indez policy.
Let 71, ..., 7n be the generalized Gittins indices of linear program (P). As a direct
consequence of the results of Section 2.2 we show next that the control problem (Py) is

solved by an index policy, with indices given by v, ..., 7,.

Theorem 5 (Indexability) (a) Let v(r) be an optimal solution of linear program (P).

Then the fized priority rule that assigns priorities to the job types according to permutation
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n is optimal for the control problem (Fy);
(b) A policy that selects at each decision epoch a job of currently largest generalized Gittins

indez is optimal for the control problem.

The previous theorem implies that systems satisfying generalized conservation laws are
indezable systems.

Let us consider now a dynamic and stochastic project selection process. in which there
are K project types, labeled ¥ = 1,..., K. At each decision epoch a project must be
selected. A project of type k can be in one of a finite number of states 7. € Er. These
states correspond to stages in the development of the project. Clearly this process can be
interpreted as a job scheduling process, as follows: simply interpret the action of selecting
a project k in state iy € Ej as selecting a job of type t = ix € U{.‘;zlEk:. We may interpret
that each project consists of several jobs. Let us assume that this job scheduling process
satisfies generalized conservation laws associated with matrix 4 and set function h(-). By
Theorem 5, the corresponding optimal control problem is solved by an index policy. We
will see next that when a certain independence condition among the projects is satisfied. a
strong index decomposition property holds.

We thus assume that E is partitioned as E = R Ex. Let zF = (2;)ieg, be the
performance vector over job types in E; corresponding to the project selection problem
obtained when projects of types other than k are ignored (i.e., they are never engaged). Let
us assume that the performance vector z* satisfies generalized conservation laws associated
with matrix A* and set function bk(-), and that the independence condition (17) is satisfied.
Let Uy be the corresponding set of admissible policies.

Under these assumptions, Theorem 3 applies, and together with Theorem 5(b) we get

the following result:

Theorem 6 (Index Decomposition) Under condition (17), the generalized Gittins in-

dices of job types in E}. only depend on characteristics of project type k.

The previous theorem identifies a sufficient condition for the indices of an indexable
system to have a strong decomposition property. Therefore, systems that satisfy generalized
conservation laws which further satisfy (17) are decomposable systems. For such systems the
solution of problem (Fy) can be obtained by solving K smaller independent subproblems.

This theorem justifies the term generalized Gittins indices. We will see in Section 4 that
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when applied to the multi-armed bandit problem, these indices reduce to the usual Gittins
indices.

Let us consider briefly the problem of optimizing a nonlinear cost function on the perfor-
mance vector. Bhattacharya et al. [4] addressed the problems of separable convex, min-max.
lexicographic and semi-separable convex optimization over an extended polymatroid. and
provided iterative algorithms for their solution. Analogously as what we did in the linear
reward case, the control problem in the case of a nonlinear reward function can be reduced

to solving a nonlinear programming problem over the base of an extended polymatroid.

3 Branching Bandit Processes

Consider the following branching bandit process introduced by Weiss [35], who observed that
it can model a large number of dynamic and stochastic scheduling processes. There is a
finite number of project types, labeled k = 1,..., K. A type k project can he in one of
a finite number of states iy € Ej, which correspond to stages in the development of the
project. It is convenient in what follows to combine these two indicators into a single label
i = ik, the state of a project. Let £ = Ui‘;lEk = {1,...,n} be the finite set of possible
states of all project types.

We associate with state i of a project a random time v; and random arrivals \; =
(Nij);ee. Engaging the project keeps the system busy for a duration v; (the duration of
stage 1), and upon completion of the stage the project is replaced by a nonnegative integer
number of new projects N;;, in states j € E. We assume that given 7, the durations and the
descendants v;, N; are random variables with an arbitrary joint distribution, independent
of all other projects, and identically distributed for the same i. Projects are to be selected
under a nonidling, nonpreemptive and nonanticipative scheduling policy . We shall refer
to this class of policies, which we denote I/, as the class of admissible policies. The decision
epochs are t = 0 and the instants at which a project stage is completed and there is some
project present. If m; is the number of projects in state i present at a given time. then it
1s clear that this process is a semi-Markov decision process with states m = (ma1,....my).

* The model of arm-acquiring bandits (see Whittle [37], [38]) is a special case of branching
bandit process, in which the descendants N; consist of two parts: (1) a transition of the

project engaged to a new state, and (2) external arrivals of new projects, independent of i
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or of the transition. The classical multi-armed bandit problem corresponds to the special
case that there are no external arrivals of projects, and the stage durations are 1.

The branching bandit process is thus a special case of a project selection process. There-
fore, as described in Subsection 2.4, it can be interpreted as a job scheduling process. En-
gaging a type 7 job in the job scheduling model corresponds to selecting a project of state
i in the branching bandit model. We may interpret that each project consists of several
jobs. In the analysis that follows, we shall refer to a project in state / as a type / job.
In this section, we will define two different performance measures for a branching bandit
process. The first one will be appropriate for modelling a discounted reward-tax structure.
The second one will allow us to model an undiscounted tax structure. In each case we will
show that they satisfy generalized conservation laws, and that the corresponding optimal
control problem can be solved by a direct application of the results of Section 2.

Let S C E be a subset of job types. We shall refer to jobs with types in S as S-jobs.
Assume now that at time ¢t = 0 thére is only a single job in the system, which is of type 7.
Consider the sequence of successive job selections corresponding to an admissible policy u
that gives complete priority to S-jobs. This sequence proceeds until all S-jobs are exhausted
for the first time, or indefinitely. Call this an (i.S) period. Let T be the duration (possibly
infinite) of an (7, S) period. It is easy to see that the distribution of T is independent of
the admissible policy used, as long as it gives complete priority to S-jobs. Note that an
(4,0) period is distributed as v;. It will be convenient to introduce the following additional

notation:

vk = duration of the kth selection of a type i job: notice that the distribution of v, is

independent of k (v;).
Tk = time at which the kth selection of a type i job occurs;
v; = number of times a type 7 job is selected (can be infinity);

{Tfk}k21= duration of the (i, S)-period that starts with the kth selection of a type i job.

type ¢ job for the kth time.

Q:(t) = number of type i jobs in the system at time ¢t. Q(t) denotes the vector of the
Qi(t)’s. We assume Q(0) = (my,...,m,) is known.
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TS = time until all S-jobs are exhausted for the first time (can be infinity); note that TE

is the duration of the busy period.

~

)
~

-’
il

1, if a type i job is being engaged at time t;

{0, otherwise,

A;-S:k = inf{A > vix : Cjes Ii(rix +A) = 1}, for i € S; note that AP, is the interval
between the kth selection of a type ¢ job and the next selection, if any, of an 5-job.
If no more jobs in § are selected, then Aﬁk = ch, the remaining interval of the busy

period.

A5 = inf{t: Y ,;cs Li(t) = 1}; note that AJ, is the interval until the first job in S. if any,

m

is selected. If no job in S is selected, A;gn = Tf, the busy period.

Proposition 4 Assume that jobs are selected in the branching bandit process under an ad-
missible policy. Then, for every S C E:
(a) If the policy gives complete priority to S¢-jobs then the busy period [0.TE) can be par-
titioned as follows:
vy .
0.7 =0T U Ulrkrk+T%)  wop L (30)
1€S k=1 .
(b) The busy period [0, TE) can be partitioned as follows:
vi
0,T5) =0, 25)J Ulrig ik + A7) w p. L (31)
1€S k=1

(c) The following inequalities hold w. p. 1:

AP < TS, (32)
and
S Se
AS <15 (33)
Proof

(a) Intuitively (30) expresses the fact that under a policy that gives complete priority ro
S°¢-jobs, the duration of a busy period is partitioned into (1) the initial interval in which
all jobs in S¢ are exhausted for the first time, and (2) intervals in which all jobs in & are
exhausted, given that after working on a job in S we clear first all jobs in S¢ that were

generated.
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More formally, let u be an admissible policy that gives complete priority to S°-jobs. It
is easy to see then that the intervals in the right hand side of (30) are disjoint. Moreover.
the inclusion D is obvious. In order to show that (30) is indeed a partition. let us show the
inclusion C. Let t € [0, T.Z)\ [0, T5°), otherwise we are done. Since u is a nonidling policy.
at time t some job is being engaged. Let j be the type of this job. If j € S then it is clear
that t € [1j, Tjx + Tf,:) for some k, and we are done. Let us assume that j € 5. Let us
define

D={rr:i€Ske{l,...,y;}and 1 <t}

Since t > T5° € D it follows that D # @. Now, since by hypothesis E[r;] > 0, for all i. it
follows that D is a finite set. Let i* € S and k* be such that

Ti« k* = MNaxrT.
T€eD

Assume that 7j+ g+ +Ti‘§fk, <t. Now, T;» k= +Ti°:fk. is a decision epoch at which 5¢ is empty.
Since the policy is nonidling, it follows that at this epoch one starts working on some type /
job, with i € S, that is, 7, = 7ys g+ + Tgfk., contradicting the definition of 7« j«. Hence, it
must be t < i g« + T;?Ck. And by definition of D it follows that t € [Tix jx. Tiwkn + T[:kx)
and this completes the proof of the proposition.

(b) Equality (31) formalizes the fact that under an admissible policy the busy period
can be decomposed into (1) the interval until the first job in S is selected, (2) the disjoint
union of the intervals between selections of successive S-jobs and (3) the interval between
the last selection of a job in S and the end of the busy period. Note that if no S-job is
selected, then v; = 0, for i € S, and AS = TE| thus reducing the partition to a single
interval.

(c) Let 7; % be the time of the kth selection of a type i job (i € S). Since the next selec-
tion (if any) of an S-job can occur, at most. at the end of the (i, 5¢) period [rix. 7ix + 77 ).
inequality (32) follows. On the other hand, since the time until the first selection of an

S-job, Aﬁ, can be at most the duration of the initial (i, S¢) period. (33) follows. O

3.1 Discounted Branching Bandits

In this subsection we will introduce a family of performance measures for branching bandits.

{z*(a)}a>0, that satisfy generalized conservation laws. They are appropriate for modelling
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a linear discounted reward-tax structure on the branching bandit process. We have already

defined the indicator

1, if a type i job is being engaged at time ¢:
Li{t) = (34)
0, otherwise,
and, for a given o > 0, we define
oo o0
¥ (o) = E, / e~ L(t)dt| = / E [L(t)] e *tdt, i€ E. (35)
0 0

3.1.1 Generalized Conservation Laws

In this section we prove that the performance measure for branching bandits defined in (33)

satisfies generalized conservation laws. Let us define

TS
E(fo' e *dt]
B[ et dt]

TR Ty
ba(S) = E[/O e'o“dt] - E[/O emat dt]A (37)

The main result is the following

A7, = ieS (36)

and

Theorem 7 (Generalized Conservation Laws for Discounted Branching Bandits)
The performance vector for branching bandits % () satisfies generalized conservation laws

(26) and (27) associated with matriz A, and set function by(-).

Proof

Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-

ates a branching bandit process. Let us define two random vectors, (r]);cp and (1’}1‘5)565.

as functions of its sample path as follows:

TiktVik

r /°° L(t)e ®tdt = Z/ e~ dt
1 LA -
0 k=17

ik

v Vik
= Yoo [Tt (38)
k=1 0

and
sC

i T«',k
M=y emems [Meeta, ies. (39)
k=1
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Now, we have
Yi Vi k
i (a) = Eu[r}] =E, Ze‘m""/ e~ dt
k=1 0
vi Uik
Eu[z E[e“‘"""/ " dt | ui]]
0

k=1

- E. 'E[e“‘”""‘m]E[ ”"’"e—a*dt” (40)
b I
= E[ vie‘“‘dt]Eu[ 'e"””v“] (41)
I 2

Note that equality (40) holds because, since u is nonanticipative, 7; ; and v;; are indepen-

dent random variables. On the other hand, we have
u TS T3
Eu[r}I’S] = Eu[z e Tk / et dt] = E, [ E[Z e Tk / et dt | u;] ]
k=1 0 k=1 0
Vi T‘_S"
= Eulz E[/ e~ dt] E[e'm‘*]ui” (42)
k=1 0

SC

T; vi
= E[/ e~ ot dt} Eu[z e'm"'“}
0 k=1
vy 4
= AfaE[/ e_"tdt}Eu[Ze“‘"‘v"]. (43)
0 k=1

Note that equality (42) holds because, since u is nonanticipative, 7; ; and Tfk are indepen-

dent. Hence, by (41) and (43)
Eu[ri""] = Af,zt(a), i€, (41)

and we obtain:
Eu[z r?'s] = ZA;S:a:c}‘(a). (45)
1€S i€S
We first show that generalized conservation law (26) holds. Consider a policy 7 that gives

complete priority to S°-jobs. Applying Proposition 4 (part (a)), we obtain:

TE T,f,c vi Tik+ Tf :
/ e~tdt = / e~ %t dt + Z Z/ e~ dt
0 0 i€S k=1"Ti.k
TS® vi T3,
= / e~ dt+z Ze"‘"‘*/ " emat gt
0 1€S k=1 0
TS
= / e=tdt + 3 it (46)
0 /€S



Hence, taking expectations and using equation (45) we obtain

TE TS
E[/ e~ ot dt] = E[/ Plal dt}
1] (4]

or equivalently, by (37),

> AP 2T (a) = ba(9),

1€S

+ ) A7 2]

€S

which proves that generalized conservation law (26) holds.

7!'

We next show that generalized conservation law (27) is satisfied. Since jobs are selected

under admissible policy u, Proposition 4 (part (b)) applies and we can write

Trﬁ at Am td Ti, +A
e~ dt = / e” M dt + /
~/0 0 Z T,

t€S k=1
On the other hand, we have

Yy

LS rl_k+Tf:
st =Ty [

i€S iESk 1
/le+ ,k
Tk

v

zESkl

T A%
— / e—nl dt — /
0 0

T"E‘l TY’R
> / e”t dt -—/
0 0

E

Tx Ty
= / e~ ot dt — /
0 0

Notice that (48) follows by Proposition 4 (part (c)), (4

e~ dt

‘—LYt d.t

S

e~ dt

SC

e~ dt

SC

e~ dt.

e~ dt. (47)

(51)

9) follows by (47), and (50} by

Proposition 4 (part (c)). Hence, taking expectations in (51), and applying (45) we obtain

Yo Afat(@) = EJ(Y )

i€S t€S

T Ty
> E / e~'dt| - E /
0 0

= ba(s)

e~ dt}

(52)

which proves that generalized conservation law (27) holds, and this completes the proof of

the theorem. O

Hence, by the results of Subsection 2.3 we obtain:

Corollary 2 The performance space for branching bandits corresponding to the perfor-

mance vector ¥(a) is the extended polymatroid base B( Ay, by)

; furthermore. the vertices of

B(Aq,bo) are the performance vectors corresponding to the fizred priority rules.
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3.1.2 The Discounted Reward-Tax Problem

Let us associate with a branching bandit process the following linear reward-tax structure:
An instantaneous reward of R; is received at the completion epoch of a type / job. In
addition, a holding tax C; is incurred continuously during the interval that a type / job is
in the system. Rewards and taxes are discounted in time with a discount factor o > . Let

us denote

RC . . .
u(,o, )(m) = expected total present value of rewards received minus taxes incurred under

policy u, given that there are initially m; jobs of type i in the system. for i € E.
The discounted reward-tax problem is the following optimal control problem: find an ad-
missible policy u* that maximizes Vu(ﬁ’c)(m) over all admissible policies u. In this section
we reduce the reward-tax problem to the pure rewards case (where C' = 0). We also find a

closed formula for Véﬁ'c)(m) and show how to solve the problem using algorithm A;.

The Pure Rewards Case.

Let us introduce the transform of v;, i.e., ¥;(8) = E[e"?”‘ ]. We then have

Véﬁ’O)(m) = E, [Z Z R,‘(f-a(rt.k'i'v.,k,:l

1€F k=1
- ZRiE[e‘““‘]Eu[Ze"Mﬂk} (33)
{3 k=1
E[e™2%] }
= —— | Ru¥(a (51)
& Bl emeear) ()
a¥;(a) -
g};l~—\ll,-(a) zi (@) (53)

Notice that equality (54) holds by (41).

It is also straightforward to model the case in which rewards are received continuoushy
during the interval that a type i job is in the system rather than at a completion epoch.
Let Vu(ﬁ’o)(m) be the expected total present value of rewards. Then

Y

Vu(,gyo)(m) = Eu{
i€E 0

e‘o‘tli(t)dt] = Z Rz} ().
ieE

The Reward-Tax Problem; Reduction to the Pure Rewards Case
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We will next show how to reduce the reward-tax problem to the pure rewards case using the
following idea introduced by Bell [1] (see also Harrison [18], Stidham [2&] and Whittle [38]
for further discussion). The expected present value of holding taxes is the same whether
they are charged continuously in time, or according to the following charging scheme: At
the arrival epoch of a type i job, charge the system with an instantaneous entrance charge
of (C;/a), equal to the total discounted continuous holding cost that would be incurred if
the job remained within the system forever; at the departure epoch of the job (if it ever de-
parts), credit the system with an instantaneous departure refund of (C;/c). thus refunding
that portion of the entrance cost corresponding to residence beyond the departure epoch.

Therefore, we can write

Vu(ﬁ’c)(m) = E,[Rewards] — E,[Charges at t = 0] +
( E,[Departure refunds] — E, [ Entrance Charges] )
= VRO m) = 30 mi(Cifa) + VI (m)

i€E
= VEHRO(m) = S mi(Ci/a)
i€E
Ci = ;er EINGICi a¥i(a)
= R; + J m,(Cl/() (56)
E{ (44 }1'— z( ) ;
where
R} = (Cife) = ) E[Ny;](Cj/a). (57)

JEE
From equation (56) it is straightforward to apply the results of Section 2 to solve the control

problem: use algorithm 4; with input (RC,,AO,), where

Ci — ;e E[N;]Ciy a¥(a)
(84

Rio={Ri+ 1= 9(a)

Let y1(a),...,Yn(c) be the corresponding generalized Gittins indices. Then we have

Theorem 8 (Optimality and Indexability: Discounted Branching Bandits) (a) Al-

gorithm A; provides an optimal policy for the discounted reward-taz branching bandit prob-

lem;

(b) An optimal policy is to work at each decision epoch on a project with largest inder 5,(a’).

The previous theorem characterizes the structure of the optimal policy. Moreover, since

in Proposition 6 below, we find closed form expressions for the matrix 4, and the set
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function ba(-), we can compute not only the structure, but also the performance of the
optimal policy (optimal profit, optimal extreme point of the extended polymatroid). Note
also that the decomposition of the indices does not hold in the general case: in other words.
the generalized indices of the states of a type k project depend in general on characteristics
of project types other than k, i.e., branching bandits is an example of an indexable but not

decomposable system. We may also prove the following result:

Theorem 9 (Continuity of generalized Gittins indices) The gencralized Gittins in-

dices y1(@), ..., vn() are continuous functions of the discount factor a. for a > 0.

Proof
It is easy to see that the generalized Gittins indices depend continuously on the wput of

algorithm A;. Also, since the function o (Ra, A.) is continuous the result follows. O

The Pure Tax Case: Minimizing Time-Dependent Expected Number in Sys-
tem

In several applications of branching bandits (for example queueing systems) one is often
interested in minimizing a weighted sum of discounted time-dependent expected number of
Jjobs in the system. Let Q7“() denote the Laplace transform of the time-dependent expected

number of type j jobs in the system under policy u, i.e.,

[e o}
*(8) = /0 E[Q;(1)|Q(0) = m]e~®dt. jeE. (59)
An interesting optimization problem is to:
min Z C;
vV jeE
The problem can be modelled as a pure tax problem as follows:
> CiQ"(e) = —V{E)(m).
JEE
and thus by making R =0, C; =1 and C; = 0 for i # j in (56) we obtain

U _my (Cl) ‘I'(a) ] pY )
)= — - ’\I,( 75 (@ )+IEZE1 Vo) Vi@, e (60)

See Harrison [18] for a similar result in the context of a multiclass queue.
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3.1.3 Interpretation of Generalized Gittins Indices in Discounted Branching

Bandits

Consider the following modification of the branching bandits problem: We modify the
original problem by adding an additional project type, which we call 0, with only one
state/stage of infinite duration, that is, vo = oo with probability 1. A reward of Ry,
continuously discounted, is received for each unit of time that a type 0 project is engaged.
Notice that the choice of working on project type 0 can be interpreted as the choice of
retirement from the original problem for a pension of Rp, continuously discounted in tinie.

Now, the modified problem is still a branching bandits problem. Let us assume that at
time t = 0 there are only two projects present, one of type 0 and another in state i € F.
We may then ask the following question: Which is the smallest value of the pension Ry
which makes the option of retirement (working on project type 0) preferable to the option
of continuation (working on the project in state 7)? Let us call this equitable surrender

value R3(7). We have then the following result:

Proposition 5 The generalized Gittins indez of project state i in the original branching

bandits problem coincides with the equitable surrender value of state i, R(1).

Proof

Let ¥1,...,7n be the generalized Gittins indices corresponding to the original branching
bandits problem. Let 73,9?,...,72 be the generalized Gittins indices for the modified
problem. Let us partition the modified state space as £ = {0} UE. It is easy to verifyv that

the decomposition condition (17) holds. Hence Theorem 3 applies, and therefore we have
0 _ 0 _ ..
Yo=Ro and 7y;=7;, JEE (61)

Now, since by Theorem 8 it is optimal to work on a project with largest current generalized
Gittins index, it follows that the surrender reward Ry which makes the options of continu-
ation and of retirement (with reward Rp) equally attractive is Rop = 75. But by definition
R3(3) is such a breakpoint. Therefore R(i) = 7§, and the proof is complete. O

Whittle [36], [38] introduced the idea of a retirement option in his analysis of the multi-
armed bandit problem, and provided an interpretation of the Gittins indices as equitable
surrender values. Weber [34] also makes use of this characterization of the Gittins indices in

his intuitive proof. Here we extend this interpretation to the more general case of branching
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bandits. From this characterization it follows that the generalized Gittins indices coincide
indeed with the well known Gittins indices in the classical multi-armed bandit problem,

which justifies their name.

3.1.4 Computation of A, and b,(-)

The results of the previous sections are structural, but do not lead to explicit computations
of the matrix A, and the set function b,(-) appearing in the generalized conservation laws
(26) and (27) for the branching bandit problem. Our goal in this section is to compute from
generic data the matrix A, and the set function b,(-). Combined with the previous results
these computations make it possible to evaluate the performance of specific policies as well
as the optimal policy.

As generic data for the branching bandit process, we assume that the joint distribution

of v;, (Nij)jeE is given by the transform
®,(0,21,...,2n) = E e“’“:{"“...z;}"‘n ) (62)

In addition, we have already introduced the the generating function of the marginal distri-

bution of v; (denoted G;(-)):
¥;(0) = B[~ ] = / =% dGi(t). (63)
0

Finally the vector m = (my,...,m,) of jobs initially present is given.
As we saw in the previous section the duration of an (i, S)-period, 7. plays a crucial

role. We will compute its moment generating function
w5(8) = E[«0T7). (64)

For this reason we decompose the duration of an (i, S)-period as a sum of independent

random variables as follows: y
N,
5404+ 5 T3 (63)
JES k=1
where v;, “}’?k}kzl are independent. Therefore.

N

wr(4) = E[e'ou' E[e—ozjes T T | v,'H

E[e“’”' 1 E[e“”:s ]N.,]

JES
®;(0,(¥5(8)),c5.15). i€E. (66)

Il
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Given S, fixed point system (66) provides a way to compute the values of \II;S(B). forie E.

We now have the elements to prove the following result:

Proposition 6 (Computation of A, and b,()) For a branching bandit process. matrir

Ay and set function b, () satisfy the following relations:
1- ¥ (o)

S = 3 C E-: i
Al,a 1-‘?,(0) ) ZES, S_E» (6{)
1 < 1 )
bo(S) = = T 15 ()™ — = [T 1¥F ()™, SCE (63)
ajeS‘ ajeE

Proof
Relation (67) follows directly from the definition of Ais,a‘ On the other hand, we have

TSEY ST (69)
1€S k=1
Hence, )
TS m
E[/ e_(’tdt] = l —lE[e—aZies S T3
() a o«
=12 [T0w? (e (70)
a o

Therefore, from (37), (68) follows. O

Remarks:
1. Note that AF, =1, fori € E, and ba(E) = L = L [;cp[UF(a)]™. SCE.

2. From Proposition 6 we can compute matrix 4, and set function b,(-) provided w+
can solve system (66). As an example, we illustrate the form of the equations in the
special case, in which the type j jobs that arrive during the time that we work on
type i job form a Poisson process with rate A;;, i.e.,

Qg(a, a,. .., zn) — E[e-vi(a-i-ZJEE.\U(l—z]))] — \Il,-(a + Z /\”(1 _ :J))
J€EE
In this case, (66) becomes

¥(a) = Wi(a+ > N[l —¥(a)]),i € E (T1)
JE€S

As a result, an algorithm to compute ¥7(a) is as follows:

(1) Find a fixed point for the system of nonlinear equations (71) in terms of ¥ (a).
Although in general (71) might not have a closed form solution, in special cases (v,
exponential) a closed form solution could be obtained.

(2) From Proposition 6 compute (A4, by) in terms of \Ilfc(a).
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3.2 Undiscounted Branching Bandits

In this section we address branching bandits with no discounts. Clearly, in the case of
pure rewards the problem is trivial, since all policies have the same reward. Under a
linear undiscounted tax structure on the branching bandit process, however, the problem
becomes interesting. Indeed, since an optimal policy under the time average holding cost
criterion, also minimizes the expected total holding cost in each busy period (see Nain et al.
[24]), modelling and solving undiscounted branching bandits leads to the solution of several
classical queueing scheduling problems.

More importantly, our approach reveals rigorously the connections of discounted and
undiscounted problems, which, in our opinion, has not been thouroughly addressed in the
literature. To give a concrete example: after solving an indexable discounted scheduling
problem, researchers say that the same ordering of the jobs holds for the undiscounted
problem as the discount factor a — 0, provided there are no ties of the corresponding
indices. It is not clear, however, what happens when there are ties.

We will introduce in this subsection a performance measure z* for a branching bandit
process that satisfies generalized conservation laws. It is appropriate for modelling a lin-
ear undiscounted tax structure on the branching bandit process. We shall assume in the
following development that all the expectations that appear are finite. We will show later
necessary and sufficient conditions for this assumption to hold. Using the indicator

1, if a type 7 job is being engaged at time t:
L) = {0, otherwise,

we introduced earlier, we let

z}*:Eu[/OOO I,-(t)tdt], icE. (72)
Let us define .
A7 = Eéﬁf]] i€s, (73)
and
) = GELTE] = GEUETT + T b(S). (74
where -

()< EWERA (BIET) B(TR
o) = S (S - T ) e

1
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3.2.1 Generalized Conservation Laws

We prove next that the performance measure for a branching bandit process defined in (72)

satisfies generalized conservation laws. The main result is the following:

Theorem 10 (Generalized Conservation Laws for Undiscounted Branching Bandits)
The performance vector for branching bandits z* satisfies generalized conservation laws (26)

and (27) associated with matriz A and set function b(-).

Proof
Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-
ates a branching bandit process. Let us define two random vectors, (+1);cg and (r}l‘s),-eg,

as functions of the sample path as follows:

T|k+11k
! / L(tytdt = Z/ dt
Tk

v.
Z(Uz’,k"'i,k"f‘—l?"{c‘)« i€ E, (76)
=1

=
1l

and
Vi er TS
pibS Zf t, i€S. (77)
Now, we have

Vi 2

2= Eylrl]= Eu[z E{(vi’k fi,k+1ji7’k)lu¢H

k=1

= [Z(E[v, ] Efri 1] + E[;"Z])] (78)

v

= E[Ut [Z Ti k} Vl ZE[U ] N (79)

Note that equality (78) holds because, since u is nonanticipative, r; x and v, ;. are indepen-

dent random variables. On the other hand, we have

Vi rrie+TS, “oorrit TS,
Er1S] = Eu[Z/ ktdt} :Eu[E[Z/ idt u,”
k=1 Tt,k Tk

k=1
Vi . T}SC 2
- &[S nfmer + 2L
k=1

D

E[T}Sc] E, [ f: Ti’k] + E[Vi] E[(T;SC )2] ‘ (80)

k=1 2

H

34



Note that equality (80) holds because, since policy u is nonanticipative, 7 x and I;Z are

independent random variables. Hence, by (79) and (80):

2 = JEWM]EWF] _ Eufr]™’] - §EW] E(TY)) i€S
E[v;] - B[] | '-

and thus we obtain:

Y AP = EJ[) r}I’S] + 3 bi(9).

€S €S t€S

We will first show that generalized conservation law (26) holds. Consider a policy 7 that

gives complete priority to S°-jobs. Applying Proposition 4(a), we obtain:

TE T K+TS,
/0 t dt =/0 tdt+ZZ/‘ T tdt

Hence, taking expectations and using equation (82) and the definition of b(S

Y A7 =b(5),

t€S

which proves that generalized conservation law (26) holds.

(83)

) we ohtain

We next show that generalized conservation law (27) is satisfied. Let the jobs he selected

under admissible policy u. Then, Proposition 4 (part (b)) applies, and we can write

TE A 7, k+A

/Omtdt=/0 tdt+22/

€S k=1"Tuk

On the other hand, we have

- Ty /
Tk

i€S 1€S k=

> Ty

i€S k=1"T0

TE AS

= / tdt—-/ tdt
0 0
TE TS

> / tdt—/ tdt.
0 0

Ty, k+A

(84)

Notice that (85) follows by Proposition 4 (part (c)), (86) follows by (84). and (87) by

Proposition 4 (part (c)). Hence, taking expectations in (87), and applying (82) we obtain

S AP = EJY 14 S 0i(9)

€S i€S €S
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v

TE TS
E[/o tdt]_E[/O tdt]-}-f:_;bi(S)
b(S) (88)

1l

which proves that generalized conservation law (27) holds, and this completes the proof of

the theorem. O

Corollary 3 The performance space for branching bandits corresponding to the perfor-
mance vector z* is the extended polymatroid base B(A,b); furthermore. the vertices of

B(A,b) are the performance vectors corresponding to the fized priority rules.

3.2.2 The Undiscounted Tax Problem

Let us associate with a branching bandit process the following linear tax structure: A
holding tax C; per unit time is incurred continuously during the stay of a type 7 job in the

system. Let us denote

Vu(o’c)(m) = expected total tax incurred under policy u, given that there are initially m;

type 1 jobs in the system, for i € E.

The tax problem is the following optimal control problem: find an admissible policy u* that

(

minimizes VuO’C)(m) over all admissible policies u. In this section we find a closed formula
for Vu(o’c)(m) and show how to solve the problem using algorithm A;. For that purpose,

we need some preliminary results:

Expected System Times
Let Q7*(:), I;(:) and z¥(-) be as in Subsection 3.1. By definition we have

}“(0)=/0 E.[Q,(1)Q(0) = m]dt, j€E
and
2O =E[[ L@y =m], jeE

From the above formulas, it is clear that
1. Q3%(0) is the expected total time spent in the system by type j jobs under policy u.

2. z}(0) is the expected total time spent working on type j jobs under policy u. Clearly,

z7(0) does not depend on the policy u. Hence. we shall write z;(0) = z¥(0).
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Now, letting « \| 0 on equation (60) we obtain

740) = — == (=) z4Y(0)+ h;. jEE. (89)
[ ] t€E
where
E 1)
hj = (1~ [[ ) ) 25(0) = Y E[N;]1(1 QE[[ %2) zi(0). (90)
ieE

and (z¥)'(0) denotes the right derivative of z}(«a) at & = 0, that is:

(24(0)) = —E,, [/Oootlj(t) dt] = -z

" 1 E[Nj;] i
Q0) = =z} ~ z'+h;, JEE. (92)
’ Efv;] 7 162}:3 Efv:] ’
Modelling and Solution of the Tax Problem

We have, by (92),

viO9m) = Y i)

Hence, we have

i€E
C; -5 ..r E[N;;1C;
_ Z{ ek E[N;) J}z;urzcjhj. (93)
. E[v;] .
i€E 1€E

From equation (93) it is straightforward to apply the results of Section 2 to solve the
optimal control problem: use algorithm .,4; with input (R, A), where

5 _ Ci—2ep EIVGIC;
= E[v,] .

(91
Let 41,...,vn be the corresponding generalized Gittins indices. Then we have the result

Theorem 11 (Optimality and Indexability: Undiscounted Branching Bandits) (a)
Algorithm A, provides an optimal policy for the undiscounted taz branching bandit problcin-

(b) An optimal policy is to work at each decision epoch on a project with largest current

indez ;.

3.2.3 Computation of A and b()

In this section we compute the matrix A and the set function b(-) as follows. Recall that

; o] i€ S,
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and

1o By s¢ E[w] E[?] (E[TY]  E[TS)]
HS) = SE(TE?] - BT + +5 (G - o)

1

From equation (65) we obtain, taking expectations:
E[T] = E[u] + ) E[N]E[T]], i€S. (93)
JES
Solving this linear system we obtain E[T°]. Note that the computation of 47 is much
easier in the undiscounted case compared with the discounted case, where we had to solve -
a system of nonlinear equations. Also, applying the conditional variance formula to (63) we
obtain:
Var[T¥] = Var[v,-]-&-(E[T’,,S])feS Cov [(Nij)jes)] (E[Tb J€b+z E[N,;] Var[T? 1€ S (96)
Jj€S
Solving this linear system we obtain Var[T}°] and thus E[(7°)?]. Moreover,
Elv;] = mj + ) E[N;]E[M], j€E. (97)
teE

Finally, from equation (69) we obtain

=Y mE[T}], (98)
€S
and
Var[T5] = > m; Var[T75). (99)
€S

3.2.4 Stability condition

We investigate in this section under what conditions, the linear systems (95) and (96) have
a positive solution for all sets S C E. In this way we can address the stability of a branching
bandits process, in the sense that the first two moments of a busy period of a branching

bandit process are finite. Let N denote the matrix of E[N;;].

Theorem 12 (Stability of branching bandits) The branching bandits process is stable
if and only if the matriz I — N ts positive definite.

Proof

Suppose I — N is positive definite. We will show the system is stable. System (93) can be

written in vector notation as follows:
(I - N)sTs = vs, (100)
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where Ts = (E[T5])ies. Solving the system using Cramer’s rule and expanding the deter-

minant in the nominator along the column vg we obtain:

ZrGS r#i frvr + vldEt[(I - S\{ }]
det[(I — N)s]

E[T?) = (101)

where 0, are nonegative numbers (which are determinants themselves). If I — N is positive
definite, then det[(I — N)g] > 0 for all S C E and thus system (95) has a solution E{T; *1>0
forall i € S and S C E. Similarly, (96) can be written as

(I — N)szs = us,

where z5 = (Var[T®])ies and us > 0. Therefore, using the same argument it follows that
if I — N is positive definite, then Var[TS] > 0. Hence, from (98) and (99) we obtain that
the first two moments of the busy periods are finite, i.e., the system is stable.

Conversely, if the system is stable, we will show that I — N is positive definite. Since
the system is stable for all initial vectors m, it follows that E[T}°] have finite nonegative
values for all i € $ and S C E, i.e., system (100) has a positive solution for all 5 C F.
We will show by induction on |S| that det[(I — N)s] > 0 for all S C E. For |S] =
E[T}] = 3oiw 4 > 0, which implies that det[(/ — )} > 0. Assuming that the induction

hypothesis is true for |S| = k, we use (101) to obtain:

ZTES r#i 6, vr + v dEt[([ - 3\{ }]
E[T?]

det[(I — N)s] =

from the induction hypothesis. Therefore, I — N is positive definite. O

Note that the condition N < I (I— N positive definite) naturally generalizes the srability
condition p < 1 in queueing systems as follows: If we interpret a queueing system as a
branching bandit then N < [ translates to E[N] = p = AE[v] < 1, since N is the number

of customers that arrive (at a rate A) during the service time v of a customer.

3.3 Relation between Discounted and Undiscounted Tax Problem

In this subsection we study the asymptotic behaviour of the optimal policies in the dis-
counted tax problem as the discount factor o approaches 0. and its relation with the undis-
counted tax problem, that corresponds to « equal to 0. It is easy to see that, using the

notation of Subsections 3.1 and 3.2, that

11{1})/15“ = A7, (102)
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and

_ S A Z 1~ @¥(a)
ImeRia = i%{c'_jeEE[N”]CJ}l_\II(a)
_ Gi-2esEINGIC o .
= S = R;. (103)

Therefore, because of the structure of the generalized Gittins indices (see Proposition 3) it
follows from (102) and (103) that the generalized Gittins indices of the undiscounted and

A consequence of (104) is that a policy which is asymptotically optimal in the discounted

tax problem for a \ 0 will be optimal for the undiscounted problem.

4 Applications

In this section we apply the previous theory to several classical stochastic scheduling prob-

lems.

4.1 The Multi-armed Bandit Problem

The multi-armed bandit problem was defined in the introduction.

There are K parallel projects, indexed k = 1, ..., K. Project k can be in one of a finite
number of states iy € Ej;. At each instant of discrete time t = 0,1,... one can work on
only a single project. If one works on project k in state ix(t) at time t then one receives
an immediate expected reward of R;, (;). Rewards are additive and discounted in time by a
factor 8. The state ix(t) changes to ix(t+1) by a Markov transition rule (which may depend
on k, but not on t), while the states of the projects one has not engaged remain unchanged,
e, iyt +1) = §(t) for | # k. Let P* = (pf] )i.jeE, be the matrix of Markov transition
probabilities corresponding to project k. The problem is how to allocate one’s resources to
projects sequentially in time in order to maximize expected total discounted reward over
an infinite horizon. That is, if j(¢) denotes the state of the project engaged at time #. the

goal is to find a nonidling and nonanticipative scheduling policy u that maximizes

EuY 8 Ry(o). (105)
t=0
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We model the problem as a branching bandits problem in order to apply the results
of the previous section. For this reason we set e™® = 3, v; = 1. We also define matrix
P = (pij)ijeE by

pf‘j, ifi,j€ Ey, forsome k=1,...,K;
pij = .
0, otherwise.

Moreover, by (62) we obtain:

®;(a,z1,...,22) = E[e-"’"‘z{\]‘1 AL ]
= €Y piz
JEE
= B Z Dij %, for i1 € Ey (106)
JEEK

and, by (66)

\Il;s(a) = <I>,~(a, (‘I’JS(O‘))]‘ES‘ 155)

= (X %@+ Y puf

JES JESC
- B{I—Zpij(l—\llf(a))}, fori € E. (107)
JES
By introducing
1 - ¥ (a)
S ") i
t: T ¥,(a) fori €S,

and noticing that since v; = 1, ¥;(a) = 3. it follows from (107) that
7 =1+8Y pyt]. €S (108)
JES
and by (107) and Proposition 6 we obtain
AP, =143 p,t) i€S. (109)
JESC
Moreover, since \IIJE (o) =0,
1 sc
ba($) = — [T (¥ (™
JESC

l < n
= L™ (110)

1€ESC

where
{ 1, if at time t = 0 there is a bandit in state j;
m; =

0, otherwise.
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The structure of the matrix P = (p;;) implies that
AT, = A0F for jeSNE,

which implies that the index decomposition condition {17) holds, and therefore Theorem 3

applies, giving a new proof of Gittins theorem:

Theorem 13 (Gittins and Jones [14]) For each project k there exist indices {5 };cE,.
depending only on characteristics of project k, such that an optimal policy is to engage at

each time a project with largest current indez.

By the results of Subsection 3.1.3 we know that the generalized Gittins indices for this
bandit problem coincide with the usual Gittins indices. Further, by definition of generalized
Gittins indices, we obtain a characterization of Gittins indices as sums of dual variables. a
purely algebraic characterization. Also, note that Theorem 13 implies that the multi-armed
bandit problem not only has an optimal index policy, but it has an optimal index policy
which satisfies the stronger index decomposition property, as described in Subsection 2.4.
By Theorem 6, the Gittins indices can be computed by solving K subproblems. applving
algorithm A4; to subproblem k, with |E}| job types, k = 1,... K. It is easy to verify the

following complexity result:

Proposition 7 The complezity of algorithm Ay applied to subproblem k for computing the
Gittins indices of project k is

O(|E:%).

The algorithm proposed by Varaiya, Walrand and Buyukkoc [33] has the same time com-
plexity as algorithm 4;. In fact, both algorithms are closely related, as we will see next
Let t¥ be as given by (108). Let r¥ be given by
P =R+ B pird. €S
JES
Let us now state the algorithm of Varaiya, Walrand and Buyukkoc:
Algorithm VWB:

. P P
Step 0. Pick m, € argmax {;'h— 11 € £} let gr, = max{ ;'T'-T i€ E};
set J, = {m,}.



Step k. Fork=1,...,n-1:
Tn—pu{i} Tp—pu{e}

plckfrn_keargmax{—f;—m- 1€ E\Jy—k}; set gr, _ k—{W'?EE\I,, v}

set Jp—k = Jn—k+1 U {”n—k}

Varaiya et al. [33] proved that gq,...,gn, as given by algorithm VWD, are the Gittins
indices of the multi-armed bandit problem. Let (7,7,v,8) be an output of algorithm A;.

We state, without proof, the following relation between algorithms .A; and VWB:

Proposition 8 The following relations hold: For j =2,... n
{1rJ, 7 JU{i} R — z {7r1. ,m}ul r{rj,...,r,,}

T
{ﬂ,J' ,ﬂ’n}U{} A{"l' Ty—1} {71".7: ’,rn},zé {ﬂ'l,....ﬂ'j-l} (111)
t 5
and )
rt R;
L —_— = E, 112
"G A,E 0, 1€ { )

and therefore, algorithms A; and VWDB are equivalent.

4.2 Scheduling Control of a Multiclass Queue with Bernoulli Feedback

Klimov [22] introduced the following queueing scheduling process: There is a single server
and n customer types. External arrivals of type ¢ customers form a Poisson process of rate A;.
fori € E = {1,...,n}. Service times for type i customers are independent and identically
distributed as a random variable v; with distribution function G;(-). When service of a
type ¢ customer is completed, the customer either joins the queue of type j customers. with
probability p;; (thus becoming a type j customer), or with probability 1-3" ;. g p;; leaves the
system. The server selects the jobs according to an admissible policy u: the decision epochs
are t = 0 (if there is initially some customer present), the epochs when a customer arrives
to find the system empty and the epochs when a customer completes service (and some
customer remains in the system). Let us consider the following three classes of admissible
policies: U is the class of all nonidling, nonpreemptive and nonanticipative policies; Iy is
the class of all nonpreemptive and nonanticipative policies (idleness is allowed); and U? is
the class of all nonidling and nonanticipative policies (preemption is allowed).

Klimov [22] solved, by direct methods, the associated optimal control problem over i/
with a time-average holding cost criterion. Harrison [18] solved, using dynamic program-
ming, the optimal control problem over Uy with a discounted reward-cost criterion. in the

special case that there is no feedback. Tcha and Pliska [29] extended Harrison's results to
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the case with feedback. They also solved the control problem over ¢?, in the case that the

service times are exponential.

The Discounted Case
Let us consider the following reward-cost structure: There is a continuous holding cost
per unit time for each type i customer staying in the system, and an instantaneous re-
ward of R; at the epoch of completion of service of a type i customer. There is also an
instantaneous reward of idleness Ry at the end of an idle period. All costs and rewards ave
discounted in time by a discount factor & > 0. The optimal control problem is to find an
admissible policy to schedule the server so as to maximize the expected total discounted
reward minus holding cost over an infinite horizon. Let us denote Py. Py, and Pyr the
optimal control problems corresponding to the classes of admissible policies if. Uy and U?.
respectively. We will model each of these problems as a branching bandit problem. We will
also prove, applying the Index Decomposition Theorem, that in order to solve problem Py,
we only need to solve problem PFy.

First, let us consider problem Py. This problem can be modelled as a branching bandit
problem with n job types, as follows: We interpret the customers as jobs. The descendants
N;; of a type 7 job are composed of the transition of the job to another type (or outside the

system) and of the external Poisson arrivals. The transform &;(.) is given by

Si(a,21,...,2p)

E[e™ov z{v“ . z;;\r"‘]

= E[(l - > pii(l - Zj))e_”‘(‘“'zaea'\.:(1-=z))]

Jj€E
= {(1 = o pii(l=z))W(a+ D Aj(1—z)}, i€ E. (113)
j€E JEE
Also, by (66) and (113)
o) ={1-Y (1 - ¥ (@} W[a+ T N1 -¥(a)]. icE (114
J€S J€S
Let z¥%(a) = (z¥(a), ..., 2%())T denote the performance vector. as in Section 3.1. We know

that z*(a) satisfies generalized conservation laws. By Proposition 6. the corresponding

matrix A, is given by
s _1-97(0)
be 1- \I’,'(Ot) ’

Let us consider now problem Fy,. In order to model the option of idleness. we modify the

1€ 8.

previous branching bandit process by adding an idling job type , which we denote 0. The
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duration of job type 0, vg, is exponentially distributed with parameter A = Ay + -+ 4+ A,
(since it models time until the next arrival); the Nj;, with i,j € E, are as in the previous
case. Nog = 0; Nos = 0 and Njp =0 for ¢ € E. It is easy to see that the correspounding

transform ®;(-) satisfies
®;(a, 20,21, ,2n) = ®i(e,21,.. ., 2,), (EE.

Hence, it follows that

TV %) = i), icE, SCE,

and

T %) = 7%0), ScE

Consequently, we have, for i € S C E that

A, = A%,
A = 48
and
—Su{o} —1{0}

Therefore, condition (17) holds, and the Index Decomposition Theorem 6 applies. Now. we

have
E[Ni;] = pij + A E[vi],
and
— A
‘I‘o(a) = h n C!.
By (56)

V,E‘R'C)(m)= Z:{Rt+ t EJEE(piJ J [ 1]) J « l(a) 1,21 + AROISﬂ w €Uy,
. a 1 - ¥(a)
i€E
Hence the index of the subsystem composed of job type 0 is v9 = ARp. The indices
vi, for i € E, are computed from algorithm .4; applied to problem Py. Therefore. if
<< yro1 €90 £ %+ < -0y, then an optimal policy is to serve customers of tyvpes
i*,...,n with a fixed priority policy, giving highest priority to n, and never serve customer
types 1,...,#* — 1. That is, the optimal policy is a modified static policy, as proved by

Harrison [18] and Tcha and Pliska [29)].
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The Preemptive Case

In preemption is allowed, then the decision epochs are the arrival epochs as well as the
departures epochs of customers. If the service time v; is exponential with rate y;. for i € F.
then it is easy to model the possibility of preemption: model the process as a hranching
bandit process with n job types. Job type 7 has a duration v; exponentially distribured with
rate fi; = p; + A, where A = A\; + - + A,,. As for the descendants of a type i job. there are
three cases: (1) One descendant, of type j with probability %:fpij (corresponding to the case
that service of the type ¢ customer ends before any arrival occurs and the customer moves
to queue j); (2) two descendants, one of type i and the other of type j with probability
%f- (corresponding to the case that a type j customer arrives before service of the type {
customer is completed); and (3) no descendants, with probability %:— (1 =3 ;eppij) (corre-
sponding to the case that service of the type i customer ends before any arrival occurs, and

the customer moves out of the system).

The Undiscounted Case: Klimov’s Problem

Klimov [22] first considered the problem of optimal control of a single-server multiclass
queue with Bernoulli feedback, with the criterion of minimizing the time average holding
cost per unit time. He proved that the optimal nonidling, nonpreemptive and nonanticipa-
tive policy is a fixed priority policy, and presented an algorithm for computing the priorities
(starting with the lowest priority type and ending with the highest priority). Tsoucas [32]
modelled Klimov’s problem as an optimization problem over an extended polymatroid using

as performance measures
L} = time average length of queue 7 under policy u.

Algorithm A, applied to this problem is exactly Klimov's original algorithm. A disadvantage
in this case is that priorities are computed from lowest priority to highest priority. Also.
Tsoucas does not obtain closed form formulae for the right hand sides of the extended
polymatroid, so it is not possible to evaluate the performance of an optimal policv. Our
approach gives explicit formulae for all of the parameters of the extended polymatroid and
also explains the somewhat surprising property that the optimal priority rule does not

depend in this case on the arrival rates. The key observation is that an optimal policy
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under the time average holding cost criterion also minimizes the expected total holding cost
in each busy period (see Nain et al. [24] for further discussion). Now, we may model the
first busy period of Klimov’s problem as a branching bandit process with the undiscounted
tax criterion, as considered in Section 3.

Assuming that the system is stable, we apply the results of Subsection 3.2. We define
i = E[v;] and tJ = E[T%]. By (65) we have

7= pi+ ) (pij +midt]. i€E (115)
j€s

which in vector notation becomes:
C SC
tgc = pse + (Psec sc + pSC/\gc)tsc,
l.e.
tgz = (ISC - PSc,Sc - uSCAgc)_l HSc.
and
t3° = ps + (Ps,se + psAke)tie.
After algebraic manipulations we obtain

det(ISC — PSC,SC)
det(Ise ~ Pse se — pgeAl)

5 = (Ni + pFse (Isc — Pscse)™! /15c) 1€ 9. (115)

Therefore, by definition of A7 in (73) we find that 47 = " /y;, for i € 5. while b(5) i
given by (74). Now, letting

det([sc - PSC’SC)
s = )
det(Isc - Psc'sc - /.lscAgC)

we may define A = A /Ks, and b(S) = b(S)/Ks, thus eliminating the dependence on the

arrival rates of matrix A. As for the objective function, we have by (93):

Ci—2;eepi; Ci | |
Vu(o,c)zz{ ZJG.EPJ J}Z?—b(E)ZCjAJ‘{’ZCJhJ‘ (17

i€E Hi J€E i€E
Hence the problem can be solved by applying algorithm A; with input (R, 4), where

_ Ci =3 eepiiC;
pi ’

R;

1EE,

and since (R, A) do not depend on the arrival rates neither does the optimal policy. Note

that as opposed to Klimov’s algorithm, with this algorithm priorities are computed from
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highest to lowest. This top-down algorithm was first proposed by Nain et al. [24]. who
proved its optimality using interchange arguments. Bhattacharya et al. [3] provided a
direct optimality proof. Nain ef al. proved that the resulting optimal index rule is also
optimal among idling policies for general service time distributions, and among preemptive
policies when the service time distributions are exponential. It is also easy to verifv these
facts using our approach (in particular, the index of the idling state is 0, whereas all other
indices are nonnegative).

Moreover, in the case that the arriving jobs are divided into R projects, where a type k
project consists of jobs with types in a finite set Ej, jobs in E} can only make transitions
within Ex, and E is partitioned as £ = Uf___lEk, then it is easy to see that the Index
Decomposition Theorem 6 applies, and therefore we can decompose the problem into K

smaller subproblems.

4.3  Multiclass Queueing Systems

Shantikumar and Yao [26] showed that a large variety of multiclass queueing systems satisfv
strong conservation laws. The reader is referred to their paper for a list of particular svstems
and performance measures that satisfy strong conservation laws. All their results correspond

to the special case that the performance space B(A,b) is a polymatroid.

4.4 Job Scheduling Problems without Arrivals; Deterministic Scheduling

There are n jobs to be completed by a single server. Job ¢ has a service requirement dis-
tributed as the random variable v;, with moment generating function ¥,(-). It is immiediate
to model this job scheduling process as a branching bandit process in which jobs have no
descendants. Let us consider first the discounted case: For a > 0 it is clear by definition
of Aga, in (36), that A;-S:a = 1, for : € S. Therefore the performance space of the vectors
z*(a) studied in Section 3 is a polymatroid. Consider the discounted reward-tax problem
discussed in Section 3, in which a instantaneous reward R; is received at the completion
of job i, and a holding tax C; is incurred for each unit of time that job i is in the system.
Rewards and taxes are discounted in time with discount factor a. By (56) it follows that

the generalized Gittins index for job 7, in the problem of maximizing rewards minus taxes.
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1s
Ciy a¥ia)

7i(a)={Ri+ o m- (118)

Let us consider now the undiscounted case in the case without rewards. By definition of
A? in (73) we have A? = 1, for i € S. Hence the performance space of the performance
vectors z* studied in Section 3 is also a polymatroid. Thus by equation (93) it follows that

the generalized Gittins index for job ¢ in the undiscounted tax problem is

Ci

thus providing a new polyhedral proof of the optimality of Smith’s rule (see Smith [27]).
In the case that there are precedence constraints among the jobs that form out-trees.

that is each job can have at most one predecessor, it is easy to see that the problem can

also be modeled as a branching bandits problem and thus solvable using the theory we have

developed in Section 3.

5 Reflections

We presented a unified treatment of several classical problems in stochastic and dyvnamic
scheduling using polyhedral methods that leads, we believe, to a deeper understanding of
their structural and algorithmic properties. Perhaps the most important idea we used is
to ask the question: What is the performance space of a stochastic scheduling problem?
We believe that the approach of characterizing the feasible region of a stochastic scheduling
problem will lead to important new insights and methods and will bridge the artificial
gap between applied probability and mathematical optimization. Indeed. we hope that
our results will be of interest to applied probabilists, as they provide new interpretations.
proofs, algorithms, insights and connections to important problems in stochastic scheduling,
as well as to discrete optimizers, since they reveal a new fundamental structure {extended

polymatroids) which has a genuinely applied origin.
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