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Abstract

We show that if performance measures in stochastic and dynamic scheduling problems sat-

isfy generalized conservation laws, then the feasible space of achievable performance is a

polyhedron called an extended polymatroid that generalizes the usual polymatroids intro-

duced by Edmonds. Optimization of a linear objective over an extended polymatroid is

solved by an adaptive greedy algorithm, which leads to an optimal solution having an in-

dexability property (indexable systems). Under a certain condition, then the indices have

a stronger decomposition property (decomposable systems). The following classical prob-

lems can be analyzed using our theory: multi-armed bandit problems, branching bandits.

multiclass queues, multiclass queues with feedback, deterministic scheduling problemls. In-

teresting consequences of our results include: (1) a characterization of indexable systems as

systems that satisfy generalized conservation laws, (2) a. sufficient condition for idexable

systems to be decomposable, (3) a new linear programming proof of the decomposability

property of Gittins indices in multi-armed bandit problems, (4) a unified and practical ap-

proach to sensitivity analysis of indexable systems, (5) a new characterization of the indices

of indexable systems as sums of dual variables and a new interpretation of the indices in

terms of retirement options in the context of branching bandits, (6) the first rigorous anal-

ysis of the indexability of undiscounted branching bandits, (7) a new algorithm to compute

the indices of indexable systems (in particular Gittins indices), which is as fast as the fastest

known algorithm, (8) a unification of the algorithm of Klimov for multiclass queues and

the algorithm of Gittins for multi-armed bandits as special cases of the same algorithm. (9)

closed form formulae for the performance of the optimal policy, and (10) an understanding

of the nondependence of the indices on some of the parameters of the stochastic schediiuling

problem. Most importantly, our approach provides a unified treatment of several classical

problems in stochastic and dynamic scheduling and is able to address in a unified way their

variations such as: discounted versus undiscounted cost criterion, rewards versus taxes.

preemption versus nonpreemption, discrete versus continuous time, work conserving versus

idling policies, linear versus nonlinear objective functions.



1 Introduction

In the mathematical programming tradition researchers and practitioners solve optimiza-

tion problems by defining decision variables and formulating constraints, thus describing the

feasible space of decisions, and applying algorithms for the solution of the underlying opti-

mization problem. For the most part, the tradition for stochastic and dynamic scheduling

problems has been, however, quite different, as it relies primarily on dynamic programmilng

formulations. Using ingenious but often ad hoc methods, which exploit the structure of the

particular problem, researchers and practitioners can sometimes derive insightful structural

results that lead to efficient algorithms. In their comprehensive survey of deterministic

scheduling problems Lawler et. al. [23] end their paper with the following remarks: The

results in stochastic scheduling are scattered and they have been obtained through a con-

siderable and sometimes dishearting effort. In the words of Coffman, Hofri and Weiss [8].

there is great need for new mathematical techniques useful for simplifying the derivation of

the results".

Perhaps one of the most important successes in the area of stochastic scheduling ill the

last twenty years is the solution of the celebrated multi-armed bandit problem, a generic

version of which in discrete time can be described as follows:

The multi-armed bandit problem: There are K parallel projects, indexed k = 1,

... , K. Project k can be in one of a finite number of states ik. At each instant of discrete

time t = 0, ,... one can work on only a single project. If one works on project k in state

ik(t) at time t, then one receives an immediate expected reward of Rik(t). Rewards are

additive and discounted in time by a factor 0 < 3 < 1. The state ik(t) changes to i(t + )

by a Markov transition rule (which may depend on k, but not on t), while the states of the

projects one has not engaged remain unchanged. i.e.. il(t+ 1) = il(t) for I # k. The problem

is how to allocate one's resources sequentially in time in order to maximize expected total

discounted reward over an infinite horizon

The problem has numerous applications and a rather vast literature (see Gittins [16]

and the references therein). It was originally solved by Gittins and Jones [14], who proved

that to each project k one could attach an indezr k(ik(t)), which is a function of the project

k and the current state ik(t) alone, such that the optimal action at time t is to engage the

project of largest current index. They also proved the important result that these index
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functions satisfy a stronger indez decomposition property: the function -k (.) only depends

on characteristics of project k (states, rewards and transition probabilities), and not on any

other project. These indices are now known as Gittins indices, in recognition of Gittins con-

tribution. Since the original solution, which relied on an interchange argument, other proofs

were proposed: Whittle [36] provided a proof based on dynamic programming, subsequently

simplified by Tsitsiklis [30]. Varaiya, Walrand and Buyukkoc [33] and Veiss [35] provided

different proofs based on interchange arguments. Weber [34] outlined an intuitive proof.

More recently, Tsitsiklis [31] has provided a proof based on a simple inductive argument.

The multi-armed bandit problem is a special case of a dynamic and stochastic job

scheduling system S. In this context, there is a set E of job types and we are interested

in optimizing a function of a performance measure (rewards or taxes) under a class of

admissible scheduling policies.

Definition 1 (Indexable Systems) We say that a dynamic and stochastic job schedutlilng

system S is indezable if the following policy is optimal: To each job type i we attach an

index, 7i. At each decision epoch select a job with the largest index.

In general the indices yi could depend on the entire set E of job types. Consider a part iti(,n

of the set E to subsets Ek, k = 1, . . . K, which contain collections of job types and can b,e

interpreted as projects consisting of several job types. In certain situations, the index )of

job type i E Ek depends only on the characteristics of the job types in Ek and not on t lhe

entire set E of job types. Such a property is particularly useful computationally since it

enables the system to be decomposed to smaller parts and the computation of the inclic.s

can be done independently. As we have seen the multi-armed bandit problem has this

decomposition property, which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if

for all job types i E Ek, the index yi of job type i depends only on the characteristics of tlhe

set of job types Ek.

In addition to the multi-armed bandit problem, a. variety of dynamic and stochastic

scheduling problems has been solved in the last decades by indexing rules:

1. Extensions of the usual multi-armed bandit problem such as arm-acquiring bandits

(Whittle [37], [38]) and more generally branching bandits (Weiss [35]), that includp

several important problems as special cases.
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2. The multiclass queueing scheduling problem with Bernoulli feedback (Klimov [22],

Tcha and Pliska [29]).

3. The multiclass queueing scheduling problem without feedback (Cox and Sith [9].

Harrison [19], Kleinrock [21], Gelenbe and Mitrani [13], Shantikumar and Yao [26]).

4. Deterministic scheduling problems (Smith [27]).

An interesting distinction, which is not emphasized in the literature, is that examples

(1) and (2) above are indexable systems, but they are not in general decomposable systemns.

Example (3), however, has a more refined structure. It is indexable, but not decomposable

under discounting, while it is decomposable under the average cost criterion (the c rule).

As already observed, the multi-armed bandit problem is an example of a deconiposable

system, while example (4) above is also decomposable.

Faced with these results, one asks what is the underlying deep reason that these non-

trivial problems have very efficient solutions both theoretically as well as practically. In

particular, what is the class of stochastic and dynamic scheduling problems that are indes-

able? Under what conditions, indexable systems are decomposable? But most importantly

is there a unified way to address stochastic and dynamic scheduling problems that will lead

to a deeper understanding of their strong structural properties? This is the set. of questions

that motivates this work.

In the last decade the following approach has been proposed to address special cases

of these questions. In broad terms, researchers try to describe the feasible space of a

stochastic and dynamic scheduling problem as a polyhedron. Then, the stochastic and

dynamic scheduling problem is translated to an optimization problem over the corresponding

polyhedron, which can then be attacked by traditional mathematical programming methods.

Coffman and Mitrani [7] and Gelenbe and Mitrani [13] first showed using conservation laws

that the performance space of a multiclass queue under the average cost criterion can he

described as a polyhedron. Federgruen and Groenevelt [11], [12] advanced the theory further

by observing that in certain special cases of multiclass queues, the polyhedron has a very

special structure (it is a polymatroid) that gives rise to very simple optimal policies (the cl

rule). Shantikumar and Yao [26] generalized the theory further by observing that if a. system

satisfies strong conservation laws, then the underlying performance space is necessarily a

polymatroid. They also proved that, when the cost is linear on the performance, the optimal
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policy is a fized priority rule (also called head of the line priority rule; see Cobham [6]. and

Cox and Smith [9]). Their results partially extend to some rather restricted queueing

networks, in which they assume that all the different classes of customers have the sanme

routing probabilities, and the same service requirements at each station of the network (see

also [25]). Tsoucas ([32]) derived the region of achievable performance in the problem of

scheduling a multiclass nonpreemptive M/G/1 queue with Bernoulli feedback, introduced

by Klimov ([22]). Finally, Bertsimas et al. [2] generalize the ideas of conservation laws

to general multiclass queueing networks using potential function ideas. They find linear

and nonlinear inequalities that the feasible region satisfies. Optimization over this set of

constraints gives bounds on achievable performance.

Our goal in this paper is to propose a unified theory of conservation laws and to establish

that the very strong structural properties in the optimization of a class of stochastic and

dynamic systems that include the multi-armed bandit problem and its extensions followv from

the corresponding strong structural properties of the underlying polyhedra that characterize

the regions of achievable performance.

By generalizing the work of Shantikumar and Yao [26] we show that if performance

measures in stochastic and dynamic scheduling problems satisfy generalized coinserrathon

laws, then the feasible space of achievable performance is a polyhedron called an .tnded

polymatroid (see Bhattacharya et al. [4]). Optimization of a linear objective over an ex-

tended polymatroid is solved by an adaptive greedy algorithm, which leads to an optimal

solution having an indexability property. Special cases of our theory include all the prob-

lems we have mentioned, i.e., multi-armed bandit problems, discounted and undiscounted

branching bandits, multiclass queues, multiclass queues with feedback and deterministic

scheduling problems. Interesting consequences of our results include:

1. A characterization of indexable systems as systems that satisfy generalized conlserva-

tion laws.

2. Sufficient conditions for indexable systems to be decomposable.

3. A genuinely new, algebraic proof (based on the strong duality theory of linear pro-

gramming as opposed to dynamic programming formulations) of the decomposability

property of Gittins indices in multi-armed bandit problems.
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4. A unified and practical approach to sensitivity analysis of indexable systems, based

on the well understood sensitivity analysis of linear programming.

5. A new characterization of the indices of indexable systems as sums of dual variables

corresponding to the extended polymatroid that characterizes the feasible space.

6. A new interpretation of indices in the context of branching bandits as retirement

options, thus generalizing the interpretation of Whittle [36] and Weber [34] for the

indices of the classical multi-armed bandit problem.

7. The first complete and rigorous analysis of the indexability of undiscounted branching

bandits.

8. A new algorithm to compute the indices of indexable systems (in particular Git-

tins indices), which is as fast as the fastest known algorithm (Varaiya.. Walrand and

Buyukkoc [33]).

9. The realization that the algorithm of Klimov for multiclass queues and the algorithm

of Gittins for multi-armed bandits are examples of the same algorithm.

10. Closed form formulae for the performance of the optimal policy. This also leads to a.n

understanding of the nondependence of the indices on some of the parameters of the

stochastic scheduling problem.

Most importantly, our approach provides a unified treatment of several classical prob-

lems in stochastic and dynamic scheduling and is able to address in a unified way their

variations such as: discounted versus undiscounted cost criterion, rewards versus taxes.

preemption versus nonpreemption, discrete versus continuous time, work conserving versus

idling policies, linear versus nonlinear objective functions.

The paper is structured as follows: In Section 2 we define the notion of generalized con-

servation laws and show that if a performance vector of a stochastic and dynamic scheduling

problem satisfies generalized conservation laws, then the feasible space of this performance

vector is an extended polymatroid. Using the duality theory of linear programming we

show that linear optimization problems over extended polymatroids can be solved by an

adaptive greedy algorithm. Most importantly, we show that this optimization problem has

an indexability property. In this way, we give a characterization of indexa.ble systems as
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systems that satisfy generalized conservation laws. We also find a sufficient condition for

an indexable system to be decomposable and prove a powerful result on sensitivity aalysis.

In Section 3 we study a natural generalization of the classical multi-armed bandit problemn:

the branching bandit problem. We propose two different performance measures and prove

that they satisfy generalized conservation laws, and thus from the results of the previous

section their feasible space is an extended polymatroid. We then consider different cost and

reward structures on branching bandits, corresponding to the discounted and undiscounted

case, and some transform results. Section 4 contains applications of the previous sections to

various classical problems: multi-armed bandits, multi-class queueing scheduling problems

with or without feedback and deterministic scheduling problems. The final section contains

some thoughts on the field of optimization of stochastic systems.

2 Extended Polymatroids and Generalized Conservation Laws

2.1 Extended Polymatroids

Tsoucas [32] characterized the performance space of Klimov's problem (see Klimov [22]) as a

polyhedron with a special structure, not previously identified in the literature. Bhattacharva

et al. [4] called this polyhedron an extended polymatroid and proved some interesting prop-

erties of it. Extended polymatroids are a central structure for the results we present in this

paper.

Let us first establish the notation we will use. Let E = {1,..., n} be a finite set. Let x

denote a real n-vector, with components x,, for i E E. For S C N, let Sc = E \ S. and let

ISI denote the cardinality of S. Let 2 E denote the class of all subsets of E. Let b: 2 E - +

be a set function, that satisfies b(0) = 0. Let .4 = (A.4)iEE, SCE be a matrix that satisfies

A s > 0, for i ES and .4 = 0, for i Sc. for all S C E. (L)

Let r = ( 1r, ... ,irn) be a permutation of E For clarity of presentation, it is convenient

to introduce the following additional notation. For an n-vector x = (xi .. ., x )T let r, =

(Xlrl,. .. n )T . Let us write

ba, = (b({7r ), b({r ,ir2 } )...., b({ 1 . ))T



Let A, denote the following lower triangular submatrix of A:

iro ... 

A{71rr ' 2} Al7r2} 0

A , . . .

AI7 r) At ..... .. n7r ...... A ,;r , )

Let v(7r) be the unique solution of the linear system

A, 1.. r, =b({7r,...,7r}), j= 1,. .. ,n (2)
i=l

or, in matrix notation:

A7, r = b, . (:3)

Let us define the polyhedron

P(A, b) = {E SRn : ASxi > b(S), for S C E} 1)
iES

and the polytope

B(A,b)= {x E in : ZA'Szi > b(S), for S C E and -AExi b(E)}. )
iES iEE

Note that if x E 'P(A, b), then it follows that x > 0 componentwise. The following defilitil(l

is due to Bhattacharya et al. [4].

Definition 3 (Extended Polymatroid) We say that the polyhedron p(.4, b) is an f r-

tended polymatroid with base set E, if for every permutation 7r of E, v(7r) E P(.-1. ). In

this case we say that the polytope B(A, b) is the base of the extended polymatroid pP(A.b).

2.2 Optimization over Extended Polymatroids

Extended polymatroids are polyhedra defined by an exponential number of inequaliliths

Yet, Tsoucas [32] and Bhattacharya et al. [4] presented a polynomial algorithm, Ihastd

on Klimov's algorithm (see Klimov [22]) for solving a linear programming problem ov,,r

an extended polymatroid. In this subsection we provide a new duality proof that this

algorithm solves the problem optimally. We then show that we can associate with this

linear program certain indices, related to the dual program, in such a way that the problemn

has an indezability property. Under certain conditions, we prove that a stronger indcx
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decomposition property holds. We also present an optimality condition specially suited for

performing sensitivity analysis.

In what follows we assume that P(A, b) is an extended polymatroid. Let R E h' he a

row vector. Let us consider the following linear programming problem:

(P) max{t Rixi: x B(A, b) }. (()
iEE

Note that since B(A,b) is a polytope, this linear program has a finite optimal solution.

Therefore we may consider its dual, and this will have the same optimum value. We shall

have a dual variable yS for every S C E. The dual problem is:

(D) mint y b(S)yS : ASys = Ri, for i E E, and y' < O, for S C E}.
SCE S3i

(7)

In order to solve (P), Bhattacharya et al. [4] presented the following adaptive geedy

algorithm, based on Klimov's algorithm [22]:

Algorithm Al

Input: (R,A).

Output: (7r,,v,S), where rr = (7rl,.. ., rn) is a permutation of E, y = (iS)scE. L

(Vl,.. ,v,), and S = {Sl,...,S,}, with Sk = {rl,...,7rk}, for k E E.

Step 0. Set S, = E. Set v, = max : i E };

pick n E argmax{ : i E E}.

Set S-_k = Sn-k+l \ {1rn-k+l }; set n-k = max{ R =- -' J G S.- }:

pick rn-k E argmax{ - = A, _j i E Sn-k }.
Ak

Step n. For S C E set
-S =" vj, if S = Sj for somej E;

0, otherwise.
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It is easy to see that the complexity of A1, given (R, A), is O(n 3). Note that, for certain

reward vectors, ties may occur in algorithm Al. In the presence of ties, the permutation

7r generated depends clearly on the choice of tie-breaking rules. However. we will show

that vectors v and y are uniquely determined by A 1. In order to prove this point, whose

importance will be clear later, and to understand better Al, let us introduce the following

related algorithm:

Algorithm A 2

Input: (R,A).

Output: (r, ,, J), where 1 < r < n is an integer, = ()E, = { .... } is a

partition of E, and Jk = U=kHl, for I = 1,...,r.

Step 1. Set k := 1; set J1 = E;

set 01 =max : i E and H= argmax : i E E}.

Step 2. While Jk • Hk do:

begin

Set k := k + 1; set Jk = Jk-l \ Hk-1;

set Ok = maxR-AJ' A'1 : i Jk } and Hk = argmax{ R-Zk ' i C Jk }

end {while}

Step 3. Set r = k;

for S C E set
=S Ok, if S = Jk for some k = 1,. . . r;

0, otherwise.

In what follows let (r,, v,S) be an output of A 1 and let (r, ,?i, J) be the output of

A2. Note that the output of algorithm A2 is uniquely determined by its input.

The idea that algorithm A2 is just an unambiguous version of A 1 is formalized in the

following result:

Proposition 1 The following relations hold between the outputs of algorithms A 1 and A 2:

(a) for = 1,..., n

Ok, if I = Jkt for some k = 1..., (8)
V = (8)

O, otherwise;
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(b) - = y;

(c) 7r satisfies

Jk = {....,rJk}, k= 1 .. r. (9)

Hk = {7rlJI-IH, + l ... rJkI = 1. r. (10)

Outline of the proof

Parts (a) and (c) follow by induction arguments. Part (b) follows by (a) and the definitions

of y and y. 0

Remark: Proposition 1 shows that y and v are uniquely determined (and thus invariant

under different tie-breaking rules) by algorithm Al. It also reveals in (c) the structure of

the permutations 7r that can be generated by Al.

Tsoucas [32] and Bhattacharya et al. [4] proved from first. principles that algorithni A1

solves linear program (P) optimally. Next we provide a new proof, using linear programming

duality theory.

Proposition 2 Let vector y and permutation 7r be generated by algorithmn Al. Thuei (T)

and y are an optimal primal-dual pair for the linear programs (P) and ( D).

Proof

We first show that y is dual feasible. By definition of v,n in Al, it follows that

Rt-ASn < O , i Ce Sn

and since Sn-1 C Sn it follows that v,-1 < 0.

Similarly, for k = 1,..., n - 2, by definition of v,n-k it follows that

k

Ri- ] A In- j < 0, is _ k.
j=O

and since Sn-k-l C Sn-k, it follows that ,n-k-l < O. Hence vj < 0, for j = 1,.... 1- 1.

and by definition of , we have ysS < 0, for S C E.

Moreover, for k = 0, 1, ... , n - 1 we have, by construction.

k

.Ay = Z AS V ,_ -kn- j =
S3irnk j=O

Hence y is dual feasible.
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Let x = v(ir). Since P(A, b) is an extended polymatroid, is primal feasible. Let us

show that · and satisfy complementary slackness. Assume $S f 0. Then, by construction

it must be S = Sk = {7r1, .. ,rk}, for some k. And since x satisfies (3). it follows that

k

ZASTi = ZAI'1.-rk1, t~ = b(S).
iES j=l

Hence, by strong duality v(7r) and 7 are an optimal primal-dual pair, and this completes

the proof. 

Remark: Edmonds [10] introduced a special class of polyhedra called polymatroids. and

proved the classical result that the greedy algorithm solves the linear optimization problemn

over a polyhedron for every linear objective function if and only if the polyhedron is a

polymatroid. Now, in the case that A,4 = 1, for i S, and S C E, it is easy to see

that A1 is the greedy algorithm that sorts the Ri's in nonincreasing order. By Edmond's

result and Proposition 2 it follows that in this case B(A, b) is a polymatroid. Therefore,

extended polymatroids are the natural generalizations of polymatroids. and algorithm A1

is the natural extension of the greedy algorithm.

The fact that v(7r) and 7 are optimal solutions has some important consequences. It is

well known that every extreme point of a polyhedron is the unique maximizer of son-e linear

objective function. Therefore, the v(ir)'s are the only extreme points of (.A, b). Hence it

follows:

Theorem 1 (Characterization of Extreme Points) The set of eitrelne points of 3(.A, b)

is

{ vr) : r is a permtntation of E }.

The optimality of the adaptive greedy algorithm A1 leads naturally to the definition

of certain indices, which for historical reasons, that will be clear later, we call generalized

Gittins indices.

Definition 4 (Generalized Gittins Indices) Let y be the optimal dual solution gener-

ated by algorithm Al. Let

Yi = E7 t` iE E. (11)
S: EDS3t

We say that 71, ... , y, are the generalized Gittins indices of linear program (P).
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Remark: Notice that by Proposition 1(a) and the definition of , it follows that if permu-

tation r is an output of algorithm Al then the generalized Gittins indices can be computed

as follows:

ir = Vn + ' ' -+ Vi

-= y-{rl ... n + + } i C E.

(12)

(1:3)

Let A_ = {x E ? : x 0}.

7r be a permutation of E. Let

Let y7, ... , yn be the generalized Gittins indices of (P). Let

T be the following n x n lower triangular matrix:

1 0 ... 0
T = . .=

1 1 ... I

In the next proposition and the next theorem we reveal the equivalence between sole

optimality conditions for linear program (P).

Proposition 3 The following statements are equivalent:

(a) 7r satisfies (9) and (10);

(b) r is an output of algorithm A1;

(c) RIA- 1 E R- x R, and then the generalized Gittins indices are gitven by 5; = R.47 1 F:

(d) < 77 r < ..- 71.r,

Outline of the proof

(a) = (b): Proved in Proposition 1(a).

(b) = (c): It is clear, by construction in Al, that

= RA (11)

Now, in the proof of Proposition 2 we showed that v E R-1 x W. Moreover. by (12) wA-e gt

%- = vT

and by (14) it follows that

Yr = RtA'T.
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(c) =: (d): By (c) we have

= yrT - 1 = RA- 1 . n-l X ,
rn-1 - lrn

whence the result follows.

(d) = (a): By construction of = in algorithm A 2, the fact that y = y and the definition of

the generalized Gittins indices, it follows that

"Yi = 01 + . + Ok, for i E Hk, and k = 1 ... 7. (15)

Also, it is easy to see that 0j < 0, for j > 2. These two facts clearly imply that Imust

satisfy (10), and hence (9), which completes the proof of the proposition. c

Combining the result that algorithm A 1 solves linear program (P) optimally w-ith the

equivalent conditions in Proposition 3, we obtain several optimality conditions, as shown

next.

Theorem 2 (Sufficient Optimality Conditions and Indexability) Assume that ay

of the conditions (a)-(d) of Proposition 3 holds. Then v(wi) solves linear program (P) opti-

mally.

It is easy to see that conditions (a)-(d) of Proposition 3 are not, in general, necessary

optimality conditions. They are neccessary if the polytope B(A, b) is nondegenerate. f'ome

consequences of Theorem 2 are the following:

Remarks:

1. Sensitivity analysis: Optimality condition (c) of Proposition 3 is specially wvell

suited for performing sensitivity analysis. Consider the following question: given a.

permutation r of E, for what vectors R and matrices A can we guarantee that. u(w)

solves problem (P) optimally? The answer is: for R and A that satisfy the condition

R/A;' E -n x .X 
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We may also ask: for which permutations 7r can we guarantee that, ( r) is optimal?

By Proposition 3(d), the answer now is: for permutations r that satisfy

Y7r < 2 < ... < 7ln

thus providing an O(nlogn) optimality test for 7r. Glazebrook [17] addressed the

problem of sensitivity analysis in stochastic scheduling problems. His results are in

the form of suboptimality bounds.

2. Explicit formulae for Gittins indices: Proposition 3(c) provides an explicit for-

mula for the vector of generalized Gittins indices. The formula reveals that the indices

are piecewise linear functions of the reward vector.

3. Indexability: Optimality condition (d) of Proposition 3 shows that any permutation

that sorts the generalized Gittins indices in nonincreasing order provides an optimal

solution for problem (P). Condition (d) thus shows that this class of optimization

problems has an indexability property.

In the case that matrix A has a certain special structure, the computation of the indices

of (P) can be simplified. Let E be partitioned as E = Uki-l Ek. For k = . ;.

let B(Ak,bk) be the base of an extended polymatroid; let k = ()iEE,: let (Pk) Ibe the

following linear program:

(Pk) maxt Rixik: x k E B(Akbk)}; (16)
iEEk

let {7,k}iEEk be the generalized Gittins indices of problem (Pk). Assume that the following

independence condition holds:

A s = A s n Ek (Ak)nEk, for ic sn Ek and S C E. (17)

Under condition (17) there is an easy relation between the indices of problems (P) and

(Pk), as shown in the next result.

Theorem 3 (Index Decomposition) Under condition (17), the generalized Gittins i-

dices of linear programs (P) and (Pk) satisfy

Yi = yik, fori E Ek and k = 1, .... K. (18)
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Proof

Let

hi = y,, for i E Ek and k = ... , K.

Let us renumber the elements of E so that

Let 7r = (1,..., n). Permutation r of E induces permutations 7rk of Ek., for k = 1,

that satisfy

7r Ik
JEk 

Hence, by Proposition 3 it follows that

,k k(Aklyik R k (A kTk, for k = 1,....K

or, equivalently,

-1 1T A,

Ir1 72 ' ' * * 1 k) 

0

0

0

where Tk is an Ekl x IEkI matrix with the same structure as

On the other hand, we have

1

-1

0

0

0 O ... 0

1 0 ... 0

... 0-1 1

0 0

0

0

-1 1

matrix T, for k -= .... .

A,.

A.1,2} _ A.l}

A .n} A .... n-l}
A} ...

0

A'2}2

A{.n A...,n-l}
2 2

·... 0

... O

... {1.

Now, notice that if i E Ek, j E E \ Ek and i < j then, by (17):

A ...' j } EAI...,j-Ek -1 AlE... j-1} (2:3)
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(20)

i. ,

(21)

= (R 1Ir

... 0O

-1 O

'-Ak

(22)
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Hence, by (19) and (23) it follows that system (22) can be written equivalently as

hT-A = R,. (24)

Now, (20) and (24) imply that

I L L I

RA = h =T- l 

r n-n 2

h2 - h3

E - x (25)

h, - h,

h

and by Proposition 3 it follows that the generalized Gittins indices of problem (P) satisfy

7Y = R-4A71 T.

Hence, by (24),

hi = yi, for i C E

and this completes the proof of the theorem. 

Theorem 3 implies that the fundamental reason for decomposition to hold is (17). An

easy and useful consequence of Theorems 2 and 3 is the following:

Corollary 1 Under the assumptions of Theorem 3, an optimal solution of problem (P)

can be computed by solving the K subproblems (Pk), for k = 1, .... , K by algorithm .A1 and

computing their respective generalized Gittins Indices.

It is important to emphasize that the index decomposition property is much stronger that

the indexability property. We will see later that the classical multi-armed bandit problem

has the index decomposition property. On the other hand, we will see that Klimov's problem

(see [22]) has the indexability property, but in the general case it is not decomposable.

2.3 Generalized Conservation Laws

Shantikumar and Yao [26] formalized a definition of strong conservation laws for perfor-

mance measures in general multiclass queues. that implies a polymatroidal structure in

the performance space. We next present a more general definition of generalized conlser-

vation laws in a broader context that implies an extended polymatroidal structure in the

performance space, which has several interesting and important implications. Consider a.

16



general dynamic and stochastic job scheduling process. There are n job types, -which we

label i E E = {1,..., n. We consider the class of admissible scheduling policies. which

we denote U, to be the class of all nonidling, nonpreemtive and nonanticipative scheduling

policies.

Let xz' be a performance measure of type i jobs under admissible policy u. for i C E.

We assume that x is an expectation. Let xu be the corresponding performance vector.

Let x denote the performance vector under a fixed priority rule that assigns priorities to

the job types according to the permutation 7r = (7rl, . .., rn) of E, where type r,, has the

highest priority, ... , type 7r1 has the lowest priority.

Definition 5 (Generalized Conservation Laws) The performance vector x is said to

satisfy generalized conservation laws if there exist a function b 2 E - W+ such that b(0) = 0

and a matrix A = (AS)iEE,SCE satisfying (1) such that:

(a)

b(S) = Z Asxz, for all r: {Ir .. . , 7rsl} = S and S C E: (26)
iES

(b)

A ASx > b(S), for all S C E and E AEx' = b(E), for all E U. (2 7)
iES iEE

In words, a performance vector is said to satisfy generalized conservation laws if: telrf

exist weights As such that the total weighted performance over all job types is invariallt

under any admissible policy, and the minimum weighted performance over the job types

in any subset S C E is achieved by any fixed priority rule that gives priority to all other

types (in SC) over types in S. The strong conservation laws of Shantikumar and Yao [26]

correspond to the special case that all weights are As 1.

The connection between generalized conservation laws and extended polymatroids is t le

following theorem:

Theorem 4 Assume that the performance vector satisfies generalized conservatio lato.s

(26) and (27). Then

(a) The vertices of B(A,b) are the performance vectors of the fixed priority rules. and

x" = v(7r), for every permutation r of E.

(b) The extended polymatroid base 13(A, b) is the performance space.

17
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Proof

(a) By (26) it follows that xz = v(7r). And by Theorem 1 the result follows.

(b) Let X = { u : u E U } be the performance space. Let B,(A, b) be the set of extreme

points of B(A, b). By (27) it follows that X C B(A, b). By (a), 6v(A, b) C X. Hence. since

X is a convex set (U contains randomized policies) we have

B(A, b) = conv(B(A, b)) C X.

Hence X = B(A, b), and this completes the proof of the theorem. O

As a consequence of Theorem 4, it follows by Caratheodory theorem that the perfor-

mance vector x u corresponding to an admissible policy u can be achieved by a randomization

of at most n + 1 fixed priority rules.

2.4 Optimization over systems satisfying generalized conservation laws

Let x u be a performance vector for a dynamic and stochastic job scheduling process that

satisfies generalized conservation laws (associated with A, b(.)). Suppose that we want

to find an admissible policy u that maximizes a linear reward function ijEE Ri.r,. This

optimal scheduling control problem can be expressed as

(P) max{ Z Rixz u E U). (28)
iEE

By Theorem 4 this control problem can be transformed into the following linear program-

ming problem:

(P) max{t I Rixi: x CE (A, b) }. (2))
iEE

The strong structural properties of extended polymatroids lead to strong structural prop-

erties in the control problem. Suppose that to each job type i we attach an index. , A

policy that selects at each decision epoch a job of currently largest index will be referred to

as an index policy.

Let 71, . .. , n be the generalized Gittins indices of linear program (P). As a direct

consequence of the results of Section 2.2 we show next that the control problem (P1a) is

solved by an index policy, with indices given by 7y1, .. , ,.

Theorem 5 (Indexability) (a) Let v(7r) be an optimal solution of linear program (P).

Then the fixed priority rule that assigns priorities to the job types according to perm utation

18



7r is optimal for the control problem (Pu);

(b) A policy that selects at each decision epoch a job of currently largest generalized Gifftins

index is optimal for the control problem.

The previous theorem implies that systems satisfying generalized conservation laws are

indexable systems.

Let us consider now a dynamic and stochastic project selection process. in which there

are K project types, labeled k = 1,...,K. At each decision epoch a project must be

selected. A project of type k can be in one of a finite number of states ik G Ek. These

states correspond to stages in the development of the project. Clearly this process can he

interpreted as a job scheduling process, as follows: simply interpret the action of selecting

a project k in state ik Ek as selecting a job of type i = ik G UIk'=l1Ek'. We may interpret

that each project consists of several jobs. Let us assume that this job scheduling process

satisfies generalized conservation laws associated with matrix A and set function h(.). By

Theorem 5, the corresponding optimal control problem is solved by an index policy. We

will see next that when a certain independence condition among the projects is satisfied. a

strong index decomposition property holds.

We thus assume that E is partitioned as E = U1Ek. Let Xk = (X)iEEk be the

performance vector over job types in Ek corresponding to the project selection problem

obtained when projects of types other than k are ignored (i.e., they are never engaged). Let

us assume that the performance vector xk satisfies generalized conservation laws associated

with matrix Ak and set function bk(.), and that the independence condition (17) is satisfied.

Let Uk be the corresponding set of admissible policies.

Under these assumptions, Theorem 3 applies, and together with Theorem 5(b) we get

the following result:

Theorem 6 (Index Decomposition) Under condition (17), the generalized Gilins itn-

dices of job types in Ek only depend on characteristics of project type k.

The previous theorem identifies a sufficient condition for the indices of an indexable

system to have a strong decomposition property. Therefore, systems that satisfy generalized

conservation laws which further satisfy (17) are decomposable systems. For such systems the

solution of problem () can be obtained by solving K smaller independent subproblems.

This theorem justifies the term generalized Gittins indices. We will see in Section 4 that
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when applied to the multi-armed bandit problem, these indices reduce to the usual Gittins

indices.

Let us consider briefly the problem of optimizing a nonlinear cost function on the perfor-

mance vector. Bhattacharya et al. [4] addressed the problems of separable convex, Iin-max.

lexicographic and semi-separable convex optimization over an extended polymatroid. and

provided iterative algorithms for their solution. Analogously as what we did in the linear

reward case, the control problem in the case of a nonlinear reward function can be reduced

to solving a nonlinear programming problem over the base of an extended polymatroid.

3 Branching Bandit Processes

Consider the following branching bandit process introduced by Weiss [35], who observed that

it can model a large number of dynamic and stochastic scheduling processes. There is a.

finite number of project types, labeled k = 1,..., K. A type k project can be in one of

a finite number of states ik Ek, which correspond to stages in the development of the

project. It is convenient in what follows to combine these two indicators into a. single label

i = ik, the state of a project. Let E = U Ek = {1, ... ,n} be the finite set of possible

states of all project types.

We associate with state i of a project a random time vi and random arrivals i

(Nij)jEE. Engaging the project keeps the system busy for a duration vi (the duration of

stage i), and upon completion of the stage the project is replaced by a. nonnegative integer

number of new projects Nij, in states j E. We assume that given i, the durations and the

descendants vi, Ni are random variables with an arbitrary joint distribution, independent

of all other projects, and identically distributed for the same i. Projects are to be selected

under a nonidling, nonpreemptive and nonanticipative scheduling policy u. We shall refer

to this class of policies, which we denote U, as the class of admissible policies. The decision

epochs are t = 0 and the instants at which a project stage is completed and there is some

project present. If mi is the number of projects in state i present at a given time. then it

is clear that this process is a semi-Markov decision process with states n = (ml, ... , r).

The model of arm-acquiring bandits (see Whittle [37], [38]) is a special case of branching

bandit process, in which the descendants Ni consist of two parts: (1) a transition of the

project engaged to a new state, and (2) external arrivals of new projects, independent of i
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or of the transition. The classical multi-armed bandit problem corresponds to the special

case that there are no external arrivals of projects, and the stage durations are 1.

The branching bandit process is thus a special case of a project selection process. There-

fore, as described in Subsection 2.4, it can be interpreted as a job scheduling process. En-

gaging a type i job in the job scheduling model corresponds to selecting a project of state

i in the branching bandit model. We may interpret that each project consists of several

jobs. In the analysis that follows, we shall refer to a project in state i as a type i job.

In this section, we will define two different performance measures for a branching bandit

process. The first one will be appropriate for modelling a discounted reward-tax structure.

The second one will allow us to model an undiscounted tax structure. In each case we will

show that they satisfy generalized conservation laws, and that the corresponding optimal

control problem can be solved by a direct application of the results of Section 2.

Let S C E be a subset of job types. We shall refer to jobs with types in S as S-jobs.

Assume now that at time t = 0 there is only a single job in the system, which is of type i.

Consider the sequence of successive job selections corresponding to an admissible policy 

that gives complete priority to S-jobs. This sequence proceeds until all S-jobs are exhausted

for the first time, or indefinitely. Call this an (i. S) period. Let TS be the duration (possibly

infinite) of an (i, S) period. It is easy to see that the distribution of T' is independent of

the admissible policy used, as long as it gives complete priority to S-jobs. Note that an

(i, 0) period is distributed as vi. It will be convellient to introduce the following additional

notation:

vi,k = duration of the kth selection of a type i job: notice that the distribution of uik is

independent of k (vi).

ri,k = time at which the kth selection of a type i job occurs;

vi = number of times a type i job is selected (can be infinity);

{TSk }k)l = duration of the (i, S)-period that starts with the kth selection of a type i job.

type i job for the kth time.

Qi(t) = number of type i jobs in the system at time t. Q(t) denotes the vector of the

Qi(t)'s. We assume Q(O) = (ml .. ., r,,) is known.
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T s = time until all S-jobs are exhausted for the first time (can be infinity); note that A-E

is the duration of the busy period.

Ii(t) -={ 1, if a type i job is being engaged at time t;

0, otherwise,

Ai,k = inf { A > Vi,k: EjES Ij(ri,k + A) = 1 }, for i S5 note that is the inirval

between the kth selection of a type i job and the next selection, if any, of an ,5'-job.

If no more jobs in S are selected, then As the remaining interval of the busi,k - i,k the remaining interval of the us

period.

As = inf{t : ieS Ii(t) = 1 }; note that AS is the interval until the first job in S'. if any,

is selected. If no job in S is selected, AS = T E , the busy period.

Proposition 4 Assume that jobs are selected in the branching bandit process under a, d-

missible policy. Then, for every S C E:

(a) If the policy gives complete priority to SC-jobs then the busy period [O. TEa') can b pr-

titioned as follows:

Its

[0,TE) = [0, T m C) U U[rik k + T.) w. p 1. (31)
iES k=l

(b) The busy period [0, T E ) can be partitioned as follows:

[O, TnE) = [0 AmS) U U [ik,r T.k + tk) W. . . (:31)
iES k=l1

(c) The following inequalities hold w. p. 1:

ik < Tik, (3

and
As < TSC_T; (:33)

Proof

(a) Intuitively (30) expresses the fact that under a policy that gives complete priority ro

SC-jobs, the duration of a busy period is partitioned into (1) the initial interval in which

all jobs in S c are exhausted for the first time, and (2) intervals in which all jobs in S are

exhausted, given that after working on a job in S we clear first all jobs in SC that were

generated.
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More formally, let u be an admissible policy that gives complete priority to S'-jobs. It

is easy to see then that the intervals in the right hand side of (30) are disjoint. Moreover.

the inclusion D is obvious. In order to show that (30) is indeed a partition, let us showv the

inclusion C. Let t E [0, T) \ [0, 7TC), otherwise we are done. Since u is a nonidling 1policv.

at time t some job is being engaged. Let j be the type of this job. If j C S then it is clear

that t E [rj,k, rj,k + TjSk) for some k, and we are done. Let us assume that j C S'. Let us

define

D = {Ti,k: i E S, k E {1,..., v}, and rik < t}.

Since t > T E D it follows that D Z 0. Now, since by hypothesis E[ui] > 0, for all i., it

follows that D is a finite set. Let i* E S and k* be such that

Ti* ,k = ax T.
rED

Assume that 7i-,k + TpSC +TS c

Assume that ri,k. + T i,k. < t. Now, ri*,k* + Ti*,k is a decision epoch at which SC is empty.

Since the policy is nonidling, it follows that at this epoch one starts working on some type i

job, with i E S, that is, i,k = ri*,k* + Ti.,k, contradicting the definition of 7ri,k*. Hence, it

must be t < r/,k + Ti k. And by definition of D it follows that t E [rik.k*, .i..k + T>k, ).

and this completes the proof of the proposition.

(b) Equality (31) formalizes the fact that under an admissible policy the busy priod

can be decomposed into (1) the interval until the first job in S is selected, (2) the disjoint

union of the intervals between selections of successive S-jobs and (3) the interval between

the last selection of a job in S and the end of the busy period. Note that if no S-job is

selected, then vi = 0, for i E S, and As = T E , thus reducing the partition to a single

interval.

(c) Let ri,k be the time of the kth selection of a type i job (i G S). Since the next selec-

tion (if any) of an S-job can occur, at most, at the end of the (i,, SC) period [ri.k, i.k + T ),

inequality (32) follows. On the other hand, since the time until the first selection of an

S-job, As, can be at most the duration of the initial (i, SC) period. (33) follows. O

3.1 Discounted Branching Bandits

In this subsection we will introduce a family of performance measures for branching bandits.

{zU(a)},>o, that satisfy generalized conservation laws. They are appropriate for modelling
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a linear discounted reward-tax structure on the branching bandit process. We have already

defined the indicator

= 1, if a type i job is being engaged at time t:

O, otherwise,

and, for a given a > O, we define

t = EtEU e -t I(t)dt] = Eu[Ii(t)] e- t dt, i E E. (:35)

3.1.1 Generalized Conservation Laws

In this section we prove that the performance measure for branching bandits defined in (35)

satisfies generalized conservation laws. Let us define

s E [fi e- dt] i S (:3(6)
E[ fov' e-t dt]'

and

b,(S) = E [ e dt] -E[j e-t dt|. (.37)

The main result is the following

Theorem 7 (Generalized Conservation Laws for Discounted Branching Bandits)

The performance vector for branching bandits xU(a) satisfies generalized conoservoliol larws

(26) and (27) associated with matrix A,, and set function b,(.).

Proof

Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-

ates a branching bandit process. Let us define two random vectors, (rI)iEE and (.)ies'

as functions of its sample path as follows:

ri = li(t)e- ° t dt = k+ e- t dt
k=l "ri,k

E e-Of Ti k e- at dt, (38)
k=1

and
= -. TSC

II,S -ccri" k ik
r = e e-t dt, i C S. (39)

k=l1
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Now, we have

I f \UI E1L~r k~l Vi,k
zL(c0) = Eu[r] = Eu Ze- kj eat dt]

tt- ' f-·[i ·
v ie- i

= Eu E e - rTik eYt dt vi]

= Eu[ E[e' ,k I v2 ]E [ e dt] (40)

E[J eatdt] Eu[ e- ],k (41)

Note that equality (40) holds because, since u is nonanticipative, ri,k and Ti.k are idepen-

dent random variables. On the other hand, we have

Eu[rIS] = Eu [eT k jT e dt] = E, [E [e k j e dt v]]k=1 d~ ,1 - a t
--

a r
, 

ke - ° 'tdt I;1

E, E[j e-t d] E[eT7t k i]] (42)

= E e- at dt Eu Z e k

= i,> E[ e-j e dtj [ Eu[Zec-Tt.k ](:3)

Note that equality (42) holds because, since u is nonanticipative, ri,k and TiS, are indepen-

dent. Hence, by (41) and (43)

Eu[rIS ]= A a$x(ca, i ES, (44)

and we obtain:

Eu[Z rAI] = A (c). (45)
iES iES

We first show that generalized conservation law (26) holds. Consider a policy r that. gives

complete priority to Sc-jobs. Applying Proposition 4 (part (a)), we obtain:

t e-t dt = e dt +E t dt
iES k=l k

e dt- a t
d]i + Z Ze-ai' d]}

O (~iE k=l

/jTT e-" dt + E rid, (46)fff iES
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Hence, taking expectations and using equation (45) we obtain

E J - a t dt = E e - a t dt + r(,)

iES

or equivalently, by (37),

Z AsxT(o) = b(S)
iES

which proves that generalized conservation law (26) holds.

We next show that generalized conservation law (27) is satisfied. Since jobs are selected

under admissible policy u, Proposition 4 (part (b)) applies, and we can write

fT a et dt Af efe- dt + et dt. (47)
°o ° iES k=l 'ik

On the other hand, we have

rII'S E [i J'k+TCk dt

iES iES k=l ,k

v, ,+AS,, k -CYt
Ž> E E -e dt (48)

iES k=l T,k

-e d - e- dt (49)

> J ect dt _ e a t dt (50)

> T O dt e1 t (5

= / ea' dt e-'t dt'

Notice that (48) follows by Proposition 4 (part (c)), (49) follows by (47), and (50) y

Proposition 4 (part (c)). Hence, taking expectations in (51), and applying (45) we obtain

Ass(a) = Eu[r"']
iES iES

> E[ e"'dt- E e -t dt]

= b(S) (52)

which proves that generalized conservation law (27) holds, and this completes tile proof of

the theorem. a

Hence, by the results of Subsection 2.3 we obtain:

Corollary 2 The performance space for branching bandits corresponding to the perfor-

mance vector xU(cr) is the etended polymatroid base (A, ba); furthermore. the ertices of

B(A,,ba) are the performance vectors corresponding to the fized priority rules.
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3.1.2 The Discounted Reward-Tax Problem

Let us associate with a branching bandit process the following linear reward-tax structure:

An instantaneous reward of Ri is received at the completion epoch of a type i job. In

addition, a holding tax Ci is incurred continuously during the interval that a type i job is

in the system. Rewards and taxes are discounted in time with a discount, factor a > O. Let

us denote

(RC)V(,R'C)(m) = expected total present value of rewards received minus taxes incurred under

policy u, given that there are initially mi jobs of type i in the system, for i E E.

The discounted reward-tax problem is the following optimal control problem: find an ad-

missible policy u* that maximizes VT(R'C)(m) over all admissible policies u. In this section

we reduce the reward-tax problem to the pure rewards case (where C' = 0). We also find a

closed formula for Vu'C)(m) and show how to solve the problem using algorithm Al.

The Pure Rewards Case.

Let us introduce the transform of v, i.e., xi(0) = E[e - ovi ]. We then have

V(R,O) m[ E E e"i (7,,k+V,,k )

= iE[e-v'] Eu [1e - i k (3
iEE k=

E[ Vi e-t dt R, I

lEE 1- (o)a A/;1) Ri)x(a)( )

Notice that equality (54) holds by (41).

It is also straightforward to model the case in which rewards are received continllnullsl

during the interval that a type i job is in the system rather than at a completion epoct.

Let V,', (m) be the expected total present value of rewards. Then

(,O)() Eu[ZRi j e-t(t) di] = Z R (xc.
The Reward-Tax Problem; Reduction to the Pur EE

The Reward-Tax Problem; Reduction to the Pure Rewards Case
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We will next show how to reduce the reward-tax problem to the pure rewards case using the

following idea introduced by Bell [1] (see also Harrison [18], Stidham [28] and Whittle [38]

for further discussion). The expected present value of holding taxes is the same whether

they are charged continuously in time, or according to the following charging scheme: At

the arrival epoch of a type i job, charge the system with an instantaneous entrance charge

of (Ci/a), equal to the total discounted continuous holding cost that would be incurred if

the job remained within the system forever; at the departure epoch of the job (if it ever de-

parts), credit the system with an instantaneous departure refund of (Ci/). thus refunding

that portion of the entrance cost corresponding to residence beyond the departure epoch.

Therefore, we can write

V (RC) (m) = Eu[Rewards] - E[Charges at t = 0] +

(E [ Departure refunds] - Eu [ Entrance Charges])

V, (m)- Zmi(C/a) + V(R')
iEE

V(R+R',O)(m)- mi(Ci/c)

iEE

-Z{Ri + Ci- EjEE E[NiACj } a x(o) x - ni(Ci/)i (5(6)

iEE ai EE

where

R = (C 1 /ca)- EE[ Nj ](C ). (57)
jEE

From equation (56) it is straightforward to apply the results of Section 2 to solve the control

problem: use algorithm Al with input (Ja, A,), where

~= {R± Ci - EjEE E[Nij] C } - (') (38)

Let 7y(a), ... , ,n(a) be the corresponding generalized Gittins indices. Then we have

Theorem 8 (Optimality and Indexability: Discounted Branching Bandits) (a) Al-

gorithm A 1 provides an optimal policy for the discounted reward-taz branching bandit prob-

lem;

(b) An optimal policy is to work at each decision epoch on a project with largest index ;,(a).

The previous theorem characterizes the structure of the optimal policy. Moreover, since

in Proposition 6 below, we find closed form expressions for the matrix A,4 and the set
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function b,(.), we can compute not only the structure, but also the performance of the

optimal policy (optimal profit, optimal extreme point of the extended polyrnatroid). Note

also that the decomposition of the indices does not, hold in the general case: in other *words.

the generalized indices of the states of a type k project depend in general on characteristics

of project types other than k, i.e., branching bandits is an example of an indexable but not

decomposable system. We may also prove the following result:

Theorem 9 (Continuity of generalized Gittins indices) The gencralized Gittin.s in-

dices yl(a), ... , y,(a) are continuous functions of the discount factor a. for a > 0.

Proof

It is easy to see that the generalized Gittins indices depend continuously on the iput of

algorithm A 1. Also, since the function a k- (R, .4,) is continuous the result follows. 

The Pure Tax Case: Minimizing Time-Dependent Expected Number in Sys-

tem

In several applications of branching bandits (for example queueing systems) one is often

interested in minimizing a weighted sum of discounted time-dependent expected number of'

jobs in the system. Let Q;U(.) denote the Laplace transform of the time-dependent expected

number of type j jobs in the system under policy u, i.e.,

Q;() = j Eu[Qj(t)IQ(0) = nl]e- t dt, j E E. (59)

An interesting optimization problem is to:

min E CjQU (a).
uEU EE

The problem can be modelled as a pure tax problem as follows:

CjQ*U(,) = -V(°C)(m).
jEE

and thus by making R = 0, Cj = 1 and Ci = 0 for i j in (56) we obtain

, (< (aa) + E[Ni ]xu(ct), j E. (60)
S a n ] a = i 1 -x3 (a 1- t et a

See Hrn1faiiEE

See Harrison [18] for a similar result in the context of a multiclass queue.
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3.1.3 Interpretation of Generalized Gittins Indices in Discounted Branching

Bandits

Consider the following modification of the branching bandits problem: We modify the

original problem by adding an additional project type, which we call 0, with only one

state/stage of infinite duration, that is, vo = oc with probability 1. A reward of Ro.

continuously discounted, is received for each unit of time that a type 0 project is engaged.

Notice that the choice of working on project type 0 can be interpreted as the choice of

retirement from the original problem for a pension of Ro, continuously discounted in tinie.

Now, the modified problem is still a branching bandits problem. Let us assume that at

time t = 0 there are only two projects present, one of type 0 and another in state i E.

We may then ask the following question: Which is the smallest value of the pension Ro

which makes the option of retirement (working on project type 0) preferable to the option

of continuation (working on the project in state i)? Let us call this equitable surrender

value R;P(i). We have then the following result:

Proposition 5 The generalized Gittins index of project state i in the original branchig

bandits problem coincides with the equitable surrender value of state i, R;(i).

Proof

Let y1, ... , y, be the generalized Gittins indices corresponding to the original branching

bandits problem. Let 7y0,1°,... , y be the generalized Gittins indices for the modified

problem. Let us partition the modified state space as E = {O} U E. It is easy to verify that

the decomposition condition (17) holds. Hence Theorem 3 applies, and therefore swe hav

7Yo = Ro and 7 -=yj, jE E. (61)

Now, since by Theorem 8 it is optimal to work on a project with largest current generalized

Gittins index, it follows that the surrender reward Ro which makes the options of continu-

ation and of retirement (with reward Ro) equally attractive is Ro = 7y. But by definition

R;(i) is such a breakpoint. Therefore P4(i) = -y°, and the proof is complete. 

Whittle [36], [38] introduced the idea of a retirement option in his analysis of the multi-

armed bandit problem, and provided an interpretation of the Gittins indices as equitable

surrender values. Weber [34] also makes use of this characterization of the Gittins indices in

his intuitive proof. Here we extend this interpretation to the more general case of branching
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bandits. From this characterization it follows that the generalized Gittins indices coincide

indeed with the well known Gittins indices in the classical multi-armed bandit problem,

which justifies their name.

3.1.4 Computation of Aa and b,(.)

The results of the previous sections are structural, but do not lead to explicit computations

of the matrix A, and the set function b(.) appearing in the generalized conservation laws

(26) and (27) for the branching bandit problem. Our goal in this section is to compute from

generic data the matrix Aa and the set function b(.). Combined with the previous results

these computations make it possible to evaluate the performance of specific policies as well

as the optimal policy.

As generic data for the branching bandit process, we assume that the joint distribution

of vi, (Nij)jEE is given by the transform

'',z ~1 .... $Y n. (62)4i( Z , Zn )E[e t' Nil Zn ]62)

In addition, we have already introduced the the generating function of the marginal distri-

bution of vi (denoted Gi(.)):

i(0) = E[e ., ] = j e-t dG(t). (6:3)

Finally the vector m = (ml,..., mn) of jobs initially present is given.

As we saw in the previous section the duration of an (i, S)-period, T>S. plays a crucial

role. We will compute its moment generating function

25(S) = E[ -dT, ] (64)

For this reason we decompose the duration of an (i, S)-period as a sum of independent

random variables as follows:

TtS , + Tk (65)
)ES k=1

where vi, {Tskk>l are independent. Therefore.

k/(0) = E e - °v EeZE. Zi k=l TIk I ]

= EeO E [- Te'S ] N,]
)ES

= 4)i(9, I (*OS )),E I lS)\ i EF (66N)

31

._____ 1__11�1_1_1___11_1_1II�_^-YLIIL�·---L- 1--__·_- .-X-�IIIL_·I..·LI··� .-IIII11I·�--I·I·-·1-*--L --XII.^-�CI·--P� --·I�-*1-)I�-- �·LL-*I�---·--I·.^_I^--^·l--^·�_I_�II�L- I-II^^·..11I 1_. III- I I



Given S, fixed point system (66) provides a way to compute the values of IS'(0). for i E E.

We now have the elements to prove the following result:

Proposition 6 (Computation of Aa and b,(.)) For a branching bandit process. matrix

A, and set function b,(.) satisfy the following relations:

Asi - qls (a) (AS = 1- i i E , S C E; (67)

b,(S) = r [jSc()]m - I [E(a)]mI SC E (68)
jESc jEE

Proof

Relation (67) follows directly from the definition of As,. On the other hand, we have

mi

T TiSk (69)
iES k=1

Hence,

E[ e - at dt E [e Ei $ylk=l T k
[10] a a [ I

1 1
JJ(1 f [ s(a)] m (70)
.ES

Therefore, from (37), (68) follows. 

Remarks:

1. Note that A1Ec = 1, for i C E, and b,(E)= 1- [njE[ I(a)]mJ S C E

2. From Proposition 6 we can compute matrix A, and set function b,() provide(I wt

can solve system (66). As an example, we illustrate the form of the equations ii tile

special case, in which the type j jobs that arrive during the time that we work (l,

type i job form a Poisson process with rate Aij, i.e.,

i(a, Zi, . . . , Zn) = E[evi( +ZEEE' J(1z j ))] = i(a + E AiJ(1- -j)

jEE

In this case, (66) becomes

S(a) = gti(o + E Aij[ - qt,(a)]), i E (71)
jES

As a result, an algorithm to compute /s(a) is as follows:

(1) Find a fixed point for the system of nonlinear equations (71) i terms of '<(o).

Although in general (71) might not have a closed form solution, in special cases (,

exponential) a closed form solution could be obtained.

(2) From Proposition 6 compute (A,, bc,) in terms of S (c(a).
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3.2 Undiscounted Branching Bandits

In this section we address branching bandits with no discounts. Clearly, in the case of

pure rewards the problem is trivial, since all policies have the same reward. Under a

linear undiscounted tax structure on the branching bandit process, however, the problem

becomes interesting. Indeed, since an optimal policy under the time average holding cost

criterion, also minimizes the expected total holding cost in each busy period (see Nain 1 a.l.

[24]), modelling and solving undiscounted branching bandits leads to the solution of several

classical queueing scheduling problems.

More importantly, our approach reveals rigorously the connections of discounted and

undiscounted problems, which, in our opinion, has not been thouroughly addressed in the

literature. To give a concrete example: after solving an indexable discounted schedtuling

problem, researchers say that the same ordering of the jobs holds for the undiscountod

problem as the discount factor a - 0, provided there are no ties of the corresponding

indices. It is not clear, however, what happens when there are ties.

We will introduce in this subsection a performance measure z u for a branching bandit

process that satisfies generalized conservation laws. It is appropriate for modelling a lin-

ear undiscounted tax structure on the branching bandit process. We shall assume in the

following development that all the expectations that appear are finite. We will show- later

necessary and sufficient conditions for this assumption to hold. Using the indicator

(t) 1, if a type i job is being engaged at time t:

0, otherwise,

we introduced earlier, we let

z =E[Euj (t)t dt , i E. (72)

Let us define

As = E[ S (73)
E[v] '

and

b(S) = 2 E[ (T)2] -2 E[ (Ts) 2] + bi(), (74)
iES

where

) = E[vi] E[v] E[TS'] E[(Ts')2 ] 
bi(S) -S71

2 E[ Ev] ' i . (7
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3.2.1 Generalized Conservation Laws

We prove next that the performance measure for a branching bandit process defined ill (72)

satisfies generalized conservation laws. The main result is the following:

Theorem 10 (Generalized Conservation Laws for Undiscounted Branching Bandits)

The performance vector for branching bandits z satisfies generalized conservation laws (26)

and (27) associated with matrix A and set function b().

Proof

Let S C E. Let us assume that jobs are selected under an admissible policy u. This gener-

ates a branching bandit process. Let us define two random vectors, (r!)iEE and (- )SiE,

as functions of the sample path as follows:

ri = Ii(t)t dt = 
k=l ,k

vi 2

= L(vi,k ,k + - ), i E E,
k=l

t dt

(76)

and

III
S i ,,k+T

k=1 Ti,k

tdt, i S.

Now, we have

Z = Eu ri] = Eu [E E[(Vik Ti,k + k) Vi
k=1i

= Eu [E (E[vi] E[rik|Vi] + 2 ) ]

k=l2E~v E [vI ] + E[vi] E[v]

t equality (78) holds because, since u is nonanticipative, ri,k and

iom variables. On the other hand, we have

Eu[ rIs ] = Eu I[ k tdtl = Eu[ E dt
k=l r.,k k=. i. k

EUIL] E ( 7 , k Tis ,k 2= Eu[ E (rik ,k + -- T )), ]]
= E[Tic] Eu ri,k] + 2 2

k=1

(78)

(79)

vi., are indepea-

i i]

(80)
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Note that equality (80) holds because, since policy u is nonanticipative, 7ik and JT-i are

independent random variables. Hence, by (79) and (80):

i- E[vi] E[v?] = Eu[r"IS] - E[v] E[(Ts)] i] S (81)
E[v.] E[]Tisc

and thus we obtain:

ASzU = E[Z rI'] + E bi(S). (82)
iES iES iES

We will first show that generalized conservation law (26) holds. Consider a policy r thlat

gives complete priority to Sc-jobs. Applying Proposition 4(a), we obtain:

t dt = t + t dt
iES k=l r i

k

II' S
8(TiS (:)

zES

Hence, taking expectations and using equation (82) and the definition of b(S) we obtain

s As Z = b(S),
iES

which proves that generalized conservation law (26) holds.

We next show that generalized conservation law (27) is satisfied. Let the jobs he selectd

under admissible policy u. Then, Proposition 4 (part (b)) applies, and we call write

Astdt±Z jfk+A~k
t dt = t dt + r t dt. (8-1)

iES k=l k

On the other hand, we have

II,S k dt

iES iES k=l J rik

tit E T i t (8 )
iES k=l ,

= I dt- ] t dt (86)

> t dt - t dt. (87)

Notice that (85) follows by Proposition 4 (part (c)), (86) follows by (84), and (87) by

Proposition 4 (part (c)). Hence, taking expectations in (87), and applying (82) we obtain

: A S z !u = Eu[Z r"I 'S ] + bi(S)
iES iES iES
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> E[Ijo tt]-El[ tdt] + EbZ(S)
o~ iES

- b(S) (88)

which proves that generalized conservation law (27) holds, and this completes the proof of

the theorem. 

Corollary 3 The performance space for branching bandits corresponding to the perfor-

mance vector z is the etended polymatroid base B(A,b); furthermore. the vertices of

B(A, b) are the performance vectors corresponding to the fixed priority rles.

3.2.2 The Undiscounted Tax Problem

Let us associate with a branching bandit process the following linear tax structure: A

holding tax Ci per unit time is incurred continuously during the stay of a type i job in the

system. Let us denote

V(°'C)(m) = expected total tax incurred under policy u, given that there are initially 7in

type i jobs in the system, for i E E.

The tax problem is the following optimal control problem: find an admissible policy u* that

minimizes V(°'C)(m) over all admissible policies u. In this section we find a closed fbormula

for V(°'C)(m) and show how to solve the problem using algorithm Al. For that purpose,

we need some preliminary results:

Expected System Times

Let Q;U(.), Ij(.) and x() be as in Subsection 3.1. By definition we have

Q;(0) = j Eu[Q,(t)IQ(O) = m]dt, j E E

and

x'(O) = Eu[j I,(t)dtlQ(O) = m ], iE23 0
From the above formulas, it is clear that

1. Q(O) is the expected total time spent in the system by type j jobs under policy U.

2. x '(O) is the expected total time spent working on type j jobs under policy . Clearly,

xz(O) does not depend on the policy u. Hence, we shall write x(O) xU(O).
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Now, letting \, 0 on equation (60) we obtain

·Q*U() _ 1Qj"(o)= ] (xD (o)
E[vj]3

+ E[J] (x?)'(O)+ hEti
tEE E[vd '

hj = (1 -E[vj2 ) (0)
2 E[V,1 2

- E E[Nij] (1-
iEE

E[vi]2] ) i (0)
2E[)]2

and (x#1)'(O) denotes the right derivative of x#'(a) at a - 0, that is:I 3 · ~ V ~IUOY1~Ibl ~IUI~V j U rV~-V IU U

(xy(o))' = -Eu [i 0 tlj(t) dt] -- zju

Hence, we have
Qi (=E1

Qj (o) E[vj] zi E

iEE
E[Nij] zu + h, j E E.- l--iF ' 

Modelling and Solution of the Tax Problem

We have, by (92),

V(OC)(m) = CiQ*U(O)
iEE

{ Ci-EjE E[Nij] Cj u ( -):3)+ E Cjh.
iEE

From equation (93) it is straightforward to apply the results of Section 2 to solve tlit

optimal control problem: use algorithm A1 with input (R, A), where

R.- Ci - ZjEE E[Nij] Cj
.

E[vi]

Let yl,..., y,n be the corresponding generalized Gittins indices. Then we have the result

Theorem 11 (Optimality and Indexability: Undiscounted Branching Bandits) (a)

Algorithm A 1 provides an optimal policy for the undiscounted tax branching bandit prol)l(- /

(b) An optimal policy is to work at each decision epoch on a project with largest (c r.1c lf

index yi.

3.2.3 Computation of A and b(.)

In this section we compute the matrix A and the set function b(.) as follows. Recall that

A s E[ Tsc]
E[v] 

i E S,
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and

b(S) = 2E[(T)2] 2 E[ (TSc)2] + E 1E ] ( E[s] - F T) 2 1)2 2 E2vi] EEly4

From equation (65) we obtain, taking expectations:

E[Ts] = E[vi] + Z E[Nij] E[Tj], i S. (9.5)
jEs

Solving this linear system we obtain E[Tis]. Note that the computation of As is much

easier in the undiscounted case compared with the discounted case, where we had to solve

a system of nonlinear equations. Also, applying the conditional variance formula to (65) we

obtain:

Var[TTS] = Var[vi] + (E[T7S])TE Cov [(Nij)jEs)] (E[TS])jes +Z ES[Ni] Var[rTj] i S. (96)

Solving this linear system we obtain Var[TiS] and thus E[(Ts)2]. Moreover,

E[uj] = mj + Z E[Nij] E[vi], j E (97)
iEE

Finally, from equation (69) we obtain

E[Ts] = E m i E[T/S], (985)
iES

and

Var[Tm] = E mi Var[TS]. (99)
iES

3.2.4 Stability condition

We investigate in this section under what conditions, the linear systems (95) and (96) have

a positive solution for all sets S C E. In this way we can address the stability of a branching

bandits process, in the sense that the first two moments of a busy period of a branching

bandit process are finite. Let N denote the matrix of E[Nij].

Theorem 12 (Stability of branching bandits) The branching bandits process is stable

if and only if the matriz I - N is positive definite.

Proof

Suppose I - N is positive definite. We will show the system is stable. System (95) can be

written in vector notation as follows:

(I- N)sTs = vs, (100)
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where Ts = (E[TIS])ies. Solving the system using Cramer's rule and expanding the deter-

minant in the nominator along the column vs we obtain:

E[7Ts] = ErEs,rti Orvr + videt[(I- N)s\{i}]

det[(l - N)s]

where 0, are nonegative numbers (which are determinants themselves). If I - N is positive

definite, then det[(I- N)s] > 0 for all S C E and thus system (95) has a solution E[Ti51 > 0

for all i E S and S C E. Similarly, (96) can be written as

(I - N)sxs = us,

where xs. = (Var[TiS])ies and us > 0. Therefore, using the same argument it follows that

if I - N is positive definite, then Var[Tis] > 0. Hence, from (98) and (99) we obtain that

the first two moments of the busy periods are finite, i.e., the system is stable.

Conversely, if the system is stable, we will show that I - N is positive definite. Since

the system is stable for all initial vectors m, it follows that E[Tis] have finite nonegative

values for all i 6 S and S C E, i.e., system (100) has a positive solution for all S C E.

We will show by induction on ISI that det[(I - N)s] > 0 for all S C E. For 1, - 1.

E[T] = [ det[(I Nl)] > 0, which implies that det[(I - NV)] > 0. Assuming that the indluction

hypothesis is true for IS = k, we use (101) to obtain:

det[(I - N)s] = ZrES,r i 0,.7 + videt[(I - N)s\v{}] > 
E[T 5 ]

from the induction hypothesis. Therefore, I - N is positive definite. 

Note that the condition N < I (I-N positive definite) naturally generalizes the stability

condition p < 1 in queueing systems as follows: If we interpret a queueing system as a

branching bandit then N < I translates to E[N] = p = AE[v] < 1, since N is the number

of customers that arrive (at a rate A) during the service time v of a customer.

3.3 Relation between Discounted and Undiscounted Tax Problem

In this subsection we study the asymptotic behaviour of the optimal policies in the dis-

counted tax problem as the discount factor ac approaches 0, and its relation with the undis-

counted tax problem, that corresponds to a equal to 0. It is easy to see that, using the

notation of Subsections 3.1 and 3.2, that

lim A s = 4A, (102)
c,'0 ",c 
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and

lim c,?, = lim(C,- E[Ni,]CJ} c(a)
C\O Or\O1 -E(a)

Ci - ECJEE E[Nij] Cj I
-EEI, = R (10:3)

Therefore, because of the structure of the generalized Gittins indices (see Proposition 3) it

follows from (102) and (103) that the generalized Gittins indices of the undiscounted and

discounted tax problem are related as follows:

lima 7io(a) = i . (104)

A consequence of (104) is that a policy which is asymptotically optimal in the discounted

tax problem for a \ 0 will be optimal for the undiscounted problem.

4 Applications

In this section we apply the previous theory to several classical stochastic scheduling prob-

lems.

4.1 The Multi-armed Bandit Problem

The multi-armed bandit problem was defined in the introduction.

There are K parallel projects, indexed k = 1, ... , K. Project k can be in one of a finite

number of states ik E Ek. At each instant of discrete time t = 0, 1,... one can work on

only a single project. If one works on project k in state ik(t) at time t then one receives

an immediate expected reward of Rik(t). Rewards are additive and discounted in time by a

factor /. The state ik(t) changes to ik(t+ 1) by a Markov transition rule (which may depend

on k, but not on t), while the states of the projects one has not engaged remain unchanged,

i.e., i(t + 1) = i(t) for I k. Let pk = (Pk)i,jEEk be the matrix of Markov transition

probabilities corresponding to project k. The problem is how to allocate one's resources to

projects sequentially in time in order to maximize expected total discounted reward over

an infinite horizon. That is, if j(t) denotes the state of the project engaged at time t. the

goal is to find a nonidling and nonanticipative scheduling policy u that maximizes

co

E[E tRj(t)]. (105)
t=O
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We model the problem as a branching bandits problem in order to apply the results

of the previous section. For this reason we set e- = d3 .i -- 1. We also define matrix

P = (Pij)i,jEE by

p kj ifi,j E Ek, for some k= 1,..., K;
Pij =

0, otherwise.

Moreover, by (62) we obtain:

ti(a,Z1, **, n) = E[e-avizN 1 zNin

e PpijZj

jEE

=- a E pijZj, for i Ek (106)
jEEk

and, by (66)

Ax (a)= i(t(yj()j±j ls) }

-- / 3{, ij (a) + ES P)}

{1 - >Pj(1 _ w())}, for i E E. (107)
jES

By introducing

tS= 1- ,/s() for i ES,

and noticing that since vi = 1, *i(a) = S. it follows from (107) that

tS = 1 +3 p,t, i E S, (108)
jES

and by (107) and Proposition 6 we obtain

A~s = 1 + 3 E pt i S. (109)
JES'

Moreover, since W(a) = 0,

b, (S) = l II [*S(c)]-i

] -l (tSc )nj ( 110)

jES'

where
m 01, if at time t = 0 there is a bandit in state j;

0, otherwise.
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The structure of the matrix P = (ij) implies that

AjSf Af Ek, for j S n Ek

which implies that the index decomposition condition (17) holds, and therefore Theorem 3

applies, giving a new proof of Gittins theorem:

Theorem 13 (Gittins and Jones [14]) For each project k there exist indices {,i}fEEk

depending only on characteristics of project k, such that an optimal policy is to egage at

each time a project with largest current index.

By the results of Subsection 3.1.3 we know that the generalized Gittins indices for this

bandit problem coincide with the usual Gittins indices. Further, by definition of generalized

Gittins indices, we obtain a characterization of Gittins indices as sums of dual variables. a

purely algebraic characterization. Also, note that Theorem 13 implies that the multi-armed

bandit problem not only has an optimal index policy, but it has an optimal index policy

which satisfies the stronger index decomposition property, as described in Subsection 2.4.

By Theorem 6, the Gittins indices can be computed by solving K subproblems. applyiiig

algorithm A 1 to subproblem k, with IEkl job types, k = 1,...,K. It is easy to xverif te

following complexity result:

Proposition 7 The complexity of algorithm Al applied to subproblem k for conimptig fl(

Gittins indices of project k is

O(JEk 3).

The algorithm proposed by Varaiya, Walrand and Buyukkoc [33] has the same time oll-

plexity as algorithm A1. In fact, both algorithms are closely related, as we will see next

Let t be as given by (108). Let rS be given by

r = + EPij.i i ES

Let us now state the algorithm of Varaiya, Walrand and Buyukkoc:

Algorithm VWB:

Step . Pick rn E argmax { ;i E E ; let g = max{r i E E
t =

set J = {r,}.
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Step k. For k = 1,...,n-1:
Jn_k{i} J,_-k U {

pick rn-k E argmax {fT : i E\Jn-k}; set = -k { E\ J-}
ti t, -

set Jn-k = Jn-k+l U {trn-k}.

Varaiya et al. [33] proved that gl, ... , gn, as given by algorithm V1'3, are the GCittins

indices of the multi-armed bandit problem. Let (r,y, u,S) be an output of algorithm A1 .

We state, without proof, the following relation between algorithms Al and VWB:

Proposition 8 The following relations hold: For j = 2,..., n
,.? ............ X 'R. En1)

I, E ;':j.4r ......
t{?r .... r,,}u{t} - ~v-1 -{r ..... } irn} (111).lrn} U i} A r,' ..... --1} trj

and
ri) Ri

i E, (112)
ti} AE

and therefore, algorithms A1 and VW13 are equivalent.

4.2 Scheduling Control of a Multiclass Queue with Bernoulli Feedback

Klimov [22] introduced the following queueing scheduling process: There is a single serv r

and n customer types. External arrivals of type i customers form a Poisson process of rate Ai.

for i E E = {1,.. ., n}. Service times for type i customers are independent and ident ically

distributed as a random variable vi with distribution function Gi(.). When service of a

type i customer is completed, the customer either joins the queue of type j customers. with

probability pij (thus becoming a type j customer), or with probability 1- jEE Pij leaves the

system. The server selects the jobs according to an admissible policy u; the decision epochs

are t = 0 (if there is initially some customer present), the epochs when a customer arrives

to find the system empty and the epochs when a customer completes service (and some

customer remains in the system). Let us consider the following three classes of admissible

policies: U is the class of all nonidling, nonpreemptive and nonanticipative policies; o1 is

the class of all nonpreemptive and nonanticipative policies (idleness is allowed); and UP is

the class of all nonidling and nonanticipative policies (preemption is allowed).

Klimov [22] solved, by direct methods, the associated optimal control problem over U

with a time-average holding cost criterion. Harrison [18] solved, using dynamic program-

ming, the optimal control problem over Uo with a discounted reward-cost criterion, in the

special case that there is no feedback. Tcha and Pliska [29] extended Harrison's results to
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the case with feedback. They also solved the control problem over UP , in the case that the

service times are exponential.

The Discounted Case

Let us consider the following reward-cost structure: There is a continuous holding cost Ci

per unit time for each type i customer staying in the system, and an instantaneous re-

ward of R/ at the epoch of completion of service of a type i customer. There is also an

instantaneous reward of idleness Ro at the end of an idle period. All costs and rewards are

discounted in time by a discount factor a > 0. The optimal control problem is to find an

admissible policy to schedule the server so as to maximize the expected total discounted

reward minus holding cost over an infinite horizon. Let us denote P. P 0 and Pp the

optimal control problems corresponding to the classes of admissible policies U, N0 and Ulp ,

respectively. We will model each of these problems as a branching bandit problem. We will

also prove, applying the Index Decomposition Theorem, that in order to solve problem PO

we only need to solve problem Pit.

First, let us consider problem Pu. This problem can be modelled as a branching bandit

problem with n job types, as follows: We interpret the customers as jobs. The descendants

Nij of a type i job are composed of the transition of the job to another type (or outside the

system) and of the external Poisson arrivals. The transform bi(.) is given by

Qi(zl**,..,z,) = E[e' CV'z vil /n ]

= E [(1-E pi(1- zj))e-Vu(a+ZE A1 ]
EE

= {(1 -E 'Pij(1- j))Ii(a + E Alj(1 - z)}, i CE. (11:3)
iEE jEE

Also, by (66) and (113)

s(cp) = 1- - s()} i [ + E Aj(l- qs( i E. !114)
jEs jES

Let zu(a) = (x(a), ... , xu(a))T denote the performance vector, as in Section 3.1. NWe know

that zu(a) satisfies generalized conservation laws. By Proposition 6 the corresponding

matrix A, is given by

As 1 - qS(a)", = I1;( ' i*E$S.

Let us consider now problem PF0. In order to model the option of idleness, we modify the

previous branching bandit process by adding an idling job type , which we denote 0. The
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duration of job type 0, vo, is exponentially distributed with parameter A = A1 + ... - An

(since it models time until the next arrival); the Nij, with i,j E E, are as in the previous

case. Noo = 0; Noi - 0 and Nio - 0 for i E E. It is easy to see that the corresponding

transform Ti(.) satisfies

Zi(o, O Z,..., *n) -= i(t,Zl ... ,Zn), i E E.

Hence, it follows that

Isu{o}(a) = Is((), i E, SC E,

and
SU{o} (a) = {} (a), S C E

Consequently, we have, for i E S C E that

S = AS
A io, = ,a,

and
-Su{0} -1 {0}
0,,, 1 = Af0l

Therefore, condition (17) holds, and the Index Decomposition Theorem 6 applies. Nowv. we

have

E[N] = pij + AjE[vi],

and
A

%°(~) = A+a

By (56)

--- ,C)( = Z {R + Ci -EjEE(Pij + AE[vi])Cj } Y(1) x + ARx, u C o.
iEE

Hence the index of the subsystem composed of job type 0 is yo = ARo. The indices

yi, for i E E, are computed from algorithm Al applied to problem P. Therefore. if

71 < ... < i*- < 70 < 'yi < .. n then an optimal policy is to serve customers of types

i*,, n with a fixed priority policy, giving highest priority to n, and never serve customer

types 1,... ,i* - 1. That is, the optimal policy is a modified static policy, as proved )y

Harrison [18] and Tcha and Pliska [29].
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The Preemptive Case

In preemption is allowed, then the decision epochs are the arrival epochs as well as the

departures epochs of customers. If the service time vi is exponential with rate pi, for i E.

then it is easy to model the possibility of preemption: model the process as a branching

bandit process with n job types. Job type i has a duration vi exponentially distributed with

rate ii = pi + A, where A = Al1 + ' + An. As for the descendants of a type i job. there are

three cases: (1) One descendant, of type j with probability " pij (corresponding to the case

that service of the type i customer ends before any arrival occurs and the customer moves

to queue j); (2) two descendants, one of type i and the other of type j Kwith probability

+ (corresponding to the case that a type j customer arrives before service of the type i

customer is completed); and (3) no descendants, with probability " (1- JE p) (corre-

sponding to the case that service of the type i customer ends before any arrival occuirs, and

the customer moves out of the system).

The Undiscounted Case: Klimov's Problemll

Klimov [22] first considered the problem of optimal control of a single-server multiclass

queue with Bernoulli feedback, with the criterion of minimizing the time average holding

cost per unit time. He proved that the optimal nonidling, nonpreemptive and nonanticipa-

tive policy is a fixed priority policy, and presented an algorithm for computing the priorities

(starting with the lowest priority type and ending with the highest priority). Tsoucas [32]

modelled Klimov's problem as an optimization problem over an extended polymatroil using

as performance measures

Lu = time average length of queue i under policy u.

Algorithm A 1 applied to this problem is exactly K limov's original algorithm. A disadvantage

in this case is that priorities are computed from lowest priority to highest priority. Also.

Tsoucas does not obtain closed form formulae for the right hand sides of the extended

polymatroid, so it is not possible to evaluate the performance of an optimal policy. Our

approach gives explicit formulae for all of the parameters of the extended polymatroid and

also explains the somewhat surprising property that the optimal priority rule does not

depend in this case on the arrival rates. The key observation is that an optimal polic y
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under the time average holding cost criterion also minimizes the expected total holding cost

in each busy period (see Nain et al. [24] for further discussion). Now, we may model the

first busy period of Klimov's problem as a branching bandit process with the unldiscountd

tax criterion, as considered in Section 3.

Assuming that the system is stable, we apply the results of Subsection 3.2. AWe define

pi = E[vi] and t = E[T!S]. By (65) we have

ti = i + (Pij + piAj)ts, i G E, (115)
jEs

which in vector notation becomes:

SC T qtsc = Psc + (Psc,sc + psc sc)tq,,

i.e.,

tSc = (Is - Psc,sc - scAsc) sc.

and

Sc = Us + (Ps,sS + s c)tSC

After algebraic manipulations we obtain

t = pi,TsC (Is - PScSc)- pSC) det(Isc -P CSc - i. ES (11j)

Therefore, by definition of As in (73) we find that 4S tS for i S. while b(.S) s

given by (74). Now, letting

det(Isc - Psc,sc)

det(Isc - Psc,sc - LScAsc )

we may define A s = Ai/Ks, and b(S) = b(S)/K.s, thus eliminating the dependence o t le

arrival rates of matrix A. As for the objective function, we have by (93):

14OIC) = Z,{CiiEiEPiJc iz' - b(E) CjA + C hj. ( iT-)
iEE J jEE iEE

Hence the problem can be solved by applying algorithm Al with input (R, A4), where

Ri = Ci - EE pijCj i E
pi

and since (R, A) do not depend on the arrival rates neither does the optimal policy. Note

that as opposed to Klimov's algorithm, with this algorithm priorities are computed from
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highest to lowest. This top-down algorithm was first proposed by Nain et al. [24]. wvho

proved its optimality using interchange arguments. Bhattacharya e al. [3] provided a

direct optimality proof. Nain et al. proved that the resulting optimal index rule is also

optimal among idling policies for general service time distributions, and among preemptive

policies when the service time distributions are exponential. It is also easy to verify these

facts using our approach (in particular, the index of the idling state is 0, whereas all other

indices are nonnegative).

Moreover, in the case that the arriving jobs are divided into K projects, where a type 

project consists of jobs with types in a finite set Ek, jobs in Ek can only make transitiolns

within Ek, and E is partitioned as E = UK 1Ek, then it is easy to see that the Index

Decomposition Theorem 6 applies, and therefore we can decompose the problem into 

smaller subproblems.

4.3 Multiclass Queueing Systems

Shantikumar and Yao [26] showed that a large variety of multiclass queueing systems satist'y

strong conservation laws. The reader is referred to their paper for a list of particular systems

and performance measures that satisfy strong conservation laws. All their results correspolnd

to the special case that the performance space B(A, b) is a polymatroid.

4.4 Job Scheduling Problems without Arrivals; Deterministic Scheduling

There are n jobs to be completed by a single server. Job i has a service requirement dis-

tributed as the random variable vi, with moment generating function i( ). It is immnediate

to model this job scheduling process as a branching bandit process in which jobs have no

descendants. Let us consider first the discounted case: For a > 0 it is clear by definition

of A- , in (36), that AS, - 1, for i E S. Therefore the performance space of the X-ectors

xz(a) studied in Section 3 is a polymatroid. Consider the discounted reward-tax problem

discussed in Section 3, in which a instantaneous reward R is received at the con-ipletion

of job i, and a holding tax Ci is incurred for each unit of time that job i is in the system.

Rewards and taxes are discounted in time with discount factor a. By (56) it follows that

the generalized Gittins index for job i, in the problem of maximizing rewards minus taxes.
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is

Let us consider now the undiscounted case in the case without rewards. By definition of

As in (73) we have As 1, for i S. Hence the performance space of the performance

vectors z studied in Section 3 is also a polymatroid. Thus by equation (9:3) it follovws that

the generalized Gittins index for job i in the undiscounted tax problem is

Ci
oYi = E[v (119)-[v-] '

thus providing a new polyhedral proof of the optimality of Smith's rule (see Smith [27]).

In the case that there are precedence constraints among the jobs that form out-trees.

that is each job can have at most one predecessor, it is easy to see that the problem can

also be modeled as a branching bandits problem and thus solvable using the theory vwe have

developed in Section 3.

5 Reflections

We presented a unified treatment of several classical problems in stochastic and dnamic

scheduling using polyhedral methods that leads, we believe, to a deeper understanding of

their structural and algorithmic properties. Perhaps the most important. idea we used is

to ask the question: What is the performance space of a stochastic scheduling problem?

We believe that the approach of characterizing the feasible region of a stochastic scheduling

problem will lead to important new insights and methods and will bridge the artificial

gap between applied probability and mathematical optimization. Indeed. we hope that

our results will be of interest to applied probabilists, as they provide new interpretations.

proofs, algorithms, insights and connections to important problems in stochastic scheduling.

as well as to discrete optimizers, since they reveal a new fundamental structure (extended

polymatroids) which has a genuinely applied origin.
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