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A. MODE COUPLING IN PERIODIC CAVITY CHAINS

This report outlines a mathematical method by which the properties of a periodic

chain of cavities (Fig. VI-1) can be deduced from normal mode expansions. The method

is similar to Slater's method for finding the impedance of a single cavity as a function

of frequency (1).

4, PHASE SHIFT PER CAVITY

Fig. VI-1. Symmetrical cavity chain and its "-p" diagram.

Following Slater, we expand the fields within each cavity in a set of normalized

resonant modes that are defined for each cavity with the coupling holes electrically

shorted. Thus, we can represent the complex field vectors by an "electric" expansion:

E= VE
a a

H I H + I' F (1)

a a

7 X E PVH + nXE H ds

a s
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where Pa is Slater's ka, the resonant frequency normalized with respect to the velocity
of light.

However, such an expansion cannot represent the tangential electric field at the
holes, so we also use a "magnetic" expansion, with resonant modes that are defined
with the holes replaced by magnetic shorting planes. The magnetic modes will be
denoted by lower-case letters. We have

E v ve + v' f
a a a a

a a

H= i h (2)

a

V X H= pve + nX H" e ds
aaa a

a s/

The electric and magnetic expansions yield a determinantal equation for k2 versus c,

the phase shift per cavity. With the fields at the holes appropriately expressed in a
rapidly converging series, and the operating frequency very close to one of the mag-
netic and one of the electric mode resonances, but relatively far from the others, the
determinantal equation can be simplified. The simplified equation gives good results,
even for the configuration of Fig. VI-2, with a coupling hole that is one-quarter of the
cross-section area.

To elaborate on these ideas, let us expand the fields in each cavity by Eqs. 1, using
both even and odd modes, two of which appear in Fig. VI-3. The tangential fields at
the holes converge rapidly if they are given by half of the sum of the fields on both sides.
Thus, we have

EBhole = 2 [Vaa + va f aleft side + a [aea + v a]right sid (3)
a a

H hole= [IaHa ]left side + [IaHa]right side (4)
a a

These averages can be used because the expansions on both sides represent the same
continuous field and hence are equivalent.

We write Maxwell's equations, using Eqs. 1, where E on the surface S, that is,
the holes, is given by Eq. 3, and H on the surface is given by Eq. 4. To evaluate the
amplitudes Va , and Ia , we dot-multiply the V X E-equation by Ha , and the V X H-equation

by Ea, and integrate them both over the volume. For frequencies close to the resonant
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frequencies of an even electric- and a magnetic-mode pair, as shown in Fig. VI-3a,

Maxwell's equations yield

Pe Ve = v M (1 - cos ) - j L I (5a)e e e e

P I = jWE V (5b)ee e

with

Pe = normalized resonant frequency of the electric mode

S= phase shift per cavity

A I - -
M nXe "H dse volume e e

hole

The equivalent circuit, based on Eq. 5, appears in Fig. VI-4, in which C1, C c , and

the series combination of E/P2 and C can all be made greater than zero. Combining

Eqs. 5a and 5b, we obtain

(p - k2) Ve = Pe Me ve(l - cos O) (6)

Another relation between V and v is implied by the equivalence of expansions 1 and 2e e
within the cavity for E, but not for H. In this approximation, it is

V v (7)
e e

If we substitute this approximation in Eq. 6, together with the relation between M and

the resonant frequencies which is found from one of Green's vector theorems,

2 2
P - Pe = 2P M (8)

e e e e

(where pe is the magnetic mode resonant frequency), we obtain

P -k +p -k
cos = - 2 (9)

e e

Equation 9 states that at k = Pe, the electric resonance, 4, is zero, and, as a conse-

quence, the tangential electric field at the holes is zero; at k = pe, 4 = r, and the tan-

gential magnetic field is zero.

If the analysis had involved frequencies close to the electric and magnetic resonances

of an odd mode pair, Eq. 9 would become
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2 2 2 P k 2

P -k +p -k (
cos = 2 (10)

P - Po

In approximate Eqs. 5 the fields in each cavity have been expanded in terms of the

electric modes E a , Ha, and F a . The excitation of these modes was computed from the

tangential electric fields over the holes, which were found from the magnetic expansion.

An alternative approach can start with an expansion of the fields inside each cavity in

the magnetic modes e a , h a , and f . Their excitation from the tangential magnetic fields

across the holes can then be obtained from the electric expansion. The exact analysis,

involving infinite expansions for the fields, leads to matrix relations analogous to

Eqs. 5, 6, 7, and 8. The determinantal equation for k 2 versus c is the same by either

approach to the problem, except for a conjugate sign of k 2 . But k can be shown to be

real by reciprocity arguments.

This work is presented more fully in a thesis that will be submitted to the Depart-

ment of Electrical Engineering, M.I. T., in partial fulfillment of the requirements for

the degree of Electrical Engineer.

R. M. Bevensee
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B. DETERMINATION OF THE CORRELATION RATIO II/S OF THE NOISE IN

AN ELECTRON BEAM

The system of measurement and the basic theory were outlined in the Quarterly

Progress Report of July 15, 1957, page 52. The apparatus has been refined and meas-

urements of the noise characteristics of two gun types were made: a simple, parallel-

flow, single-anode Pierce gun; and the multi-anode gun used in the RCA low-noise,

10-cm, traveling-wave tube. Both guns had cathode diameters of 0. 040 inch. Meas-

urements were made at 3080 mc with a confining magnetic field of approximately

420 gauss. The interception current was approximately 0. 05 per cent, and the pressure

was approximately 2-4 X 10 - 7 mm Hg.

The experiments will be described in Technical Report 333, Research Laboratory

of Electronics, M. I. T. (to be published), so that only a summary of results will be

given here. Measurements were made at varying times after initial cathode activation,

and under both space-charge- limited and temperature-limited conditions. The results

are summarized below.
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Space-charge -limited Temperature-limited
(watt-sec) (watt-sec)

RCA Gun No. 1 2 hours after activation

S 8. 8 x 10 1 ±8% 1. 22 X 10 - 2 0  8%

il/S 0. 21 x 0. 04% -0. 02 ± 0. 04%

80 hours after activation
(cathode beginning to fail)

S 1. 15 X 10-20 i 8%

II/S -0. 10 ± 0. 04%

RCA Gun No. 2 10 hours after activation
(cathode not yet fully activated)

II/s 0.03 ± 0. 05%

50 hours after activation

S 9. 42 X 10 - 2 1  8% 1. 16 X 10 0 8%

11/S 0. 28 ± 0. 04% -0. 13 ± 0. 04%o

Parallel-Flow Gun II/s 0. 26 ± 0. 06% 0. 04 ± 0. 08%

S. Saito

C. ELECTRON-STIMULATED ION OSCILLATORS

Work continues on both the theoretical and analytical aspects of electron-stimulated

ion oscillations. The analytical approach is directed toward understanding the exact

and approximate solutions of Maxwell's equations, for a waveguide filled with stationary

ions and drifting electrons, in the presence of a finite, axial magnetic field. The
experimental work is directed toward establishing some of the more important

phenomena.

1. Theoretical Investigation of Electron-Stimulated Ion Oscillations

The system that was analyzed consisted of: (a) an electron beam of uniform dc

charge density, -p with drift velocity, v = 1 v , which is uniform across the beam
0 Z O

cross section; (b) a cloud of positive ions of uniform dc charge density, +po, with zero

drift velocity (trapped ions); (c) a focusing magnetic field, B = i B ; and (d) a non-

accelerating dc field, Eo = 0. The electron beam drifts through the positive ion cloud;

and since it is assumed that the beam and the ions occupy the same space, the net dc
space-charge density is zero. The rf currents and charges caused by the motion of

both the electrons and the ions were not neglected in Maxwell's equations.

The following equations were used to describe the system, variations of the
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jot-jz
form e being assumed:

7 E E j4J + _
- (7)

0

2 2
7H+k H -XJ (2)

V

S j 1 (3)

o 1-P

e
- =P v. - v + v 4
Oh e 1 z

- v.= E + v. X B (5)

e 1- v = E + v XB 0+ 0 XH (6)
e P e e

where pe = W/Vo, k = w/c, and E, H, p, J, v i, ve are rf quantities. Equations 1 and 2

were derived from Maxwell's equations. Equations 3 and 4 were obtained from the

ion and electron continuity equations, with the assumption of small-signal theory.

Equations 5 and 6 describe the motion of the ions and electrons, with the assumption of

small-signal theory. The force on an electron caused by the rf magnetic field was

considered; relativistic effects were ignored.

In rectangular coordinates the rf quantities were assumed to vary as

exp(-jP xx-jp y -jpz z). The determinantal equation that relates Px' Py' Iz' ' Po'

B , and v was obtained in the form of a sixth-order determinant equated to zero.

The expansion of this determinant for the general case is rather complicated, but it

has been expanded for a few special cases.

If we let B = 0 and v = 0, the sixth-order determinant can be expanded to give
o o

the following determinantal equation:

2 2

Pi pe 2 2k2 pi pe

2 2 x y z 2 0
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This equation shows that if o = . + pe , then the choice of P , p , and P is arbi-
p pex y z

trary (as long as boundary conditions are satisfied). For w : (2. + o2 1/2, the propa-

gation constant pz is determined by the second factor.

For Bo = co, the determinantal equation is

22

2 2 2 pl pe 13e
- W - + (-pP 2 pe P = 0

2 P2 (P - P)
2 2

where wpe (epo)/com e and c pi = (qo )/om . In this case the particles are constrained

to move in the z-direction. px and Py are determined by boundary conditions.

For the special case of one-dimensional variation, the expanded sixth-order deter-

minant gives the following determinantal equation for the propagation constant pz

-2

22 2 2 2

c [ pe ( k2)2 2 - 2

2e

ce

S 

2

ce 2 2
2  

2

2
c c

S . pe lc c

z vo _ 2

Q 1-
2
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This is the same equation that was obtained by Pierce (1). The second factor gives the

propagation constant when particle motion is excited transversely to the direction of

propagation. For a system consisting only of ions, the one-dimensional solution for

transverse oscillations becomes

2

2
2 = k2  1 o

CO
ci

which is in agreement with Spitzer (2).

The problem of a rectangular waveguide filled with a cloud of positive

dc charge density po in an axial magnetic field Bo was also investigated.

the sixth-order determinant reduces to a third-order determinant, which

give the following determinantal equation:

2 2 2 _ 2
W p p 2 2 P 22

+ k 1 + k - Pz + k
22 2 Z

o 2 w2

ions of uniform

In this problem

is expanded to

= 0 (8)

2 qo qBo 2 2 2 2 2 /(Tr 
2 2(m i 2

where w c , + +P P = , , and m are
p m. c m . x y z x xo/ y \y 0

positive nonzero integers, and xo, Yo are the waveguide dimensions. Two waves,

each of which can be forward- or backward-traveling, are predicted by Eq. 8. One

wave is cut off, except at very high frequencies, and varies approximately as

z = (k2 - ~2- p21/2. The other wave is either propagated or attenuated, as shown

in Fig. VI-5 and in Fig. VI-6. The propagation constant of this wave has poles at W
/2 2 1/2 /2 22 22"1/2 p

and w , and zeros at w j p + c) and at w Z + P c + P c)
c p c p x y

By assuming that V X E = 0, the following determinantal equation was obtained by

using Poisson's equation in conjunction with the force and continuity equations.

2/ 2 2 2)

2 p c
z - (P + (9)

z (2 2)( x y

p c

The electromagnetic equation (Eq. 8) reduces to the electrostatic equation (Eq. 9) if

we let k = 0. In the electrostatic case, j + ) as w goes to oo, whereas in

the electromagnetic solution z k2 )/2 as w goes to oo. Moreover, the

electrostatic case does not predict the high-frequency passband, since at high fre-

quencies k is no longer negligible.
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For the values chosen in Figs. VI-5 and VI-6, the electromagnetic and electrostatic

plots of pz against o coincide very closely at low frequencies, where k is negligible,

and do not coincide at high frequencies, where k is no longer negligible. The low-
2 2\1/2frequency cutoff, w 2 + c2)/ , is exact in the electrostatic case, and is a very good

approximation in the electromagnetic case. In the electromagnetic case the high-
(2 2 2  2 2 1/2

frequency cutoff, o = + P c + p c , is a very good approximation; this is

essentially the same cutoff as in the empty waveguide.

P. Chorney

2 3 4 2 3 4 5



(VI. MICROWAVE ELECTRONICS)

References

1. J. R. Pierce, Possible fluctuations in electron streams due to ions, J. Appl.
Phys. 19, 231-236 (1948).

2. L. H. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience Publishers, Inc.,

New York, 1956), Chap. 4, p. 53.

2. Experiments on Ion Oscillations in Electron Beams

The apparatus that is used is a continuously pumped system, described in the

Quarterly Progress Report of April 15, 1957, page 51. A gun of perveance 0. 8 x 106

was used in approximately confined flow (the flux through the cathode was roughly equal

to the flux through the drifting beam). It was possible to admit various gases at con-

trolled pressure, but all of the experiments reported here were made with hydrogen.

The experiments are still exploratory and represent an attempt to find points of corre-

spondence between theory and experiment.

Figure VI-7 is a schematic of the apparatus, showing the electrodes and metering

arrangements. The drift tubes D1 and D 2 had an inside diameter of 5/8 inch and were

8 inches long. The beam diameter was approximately 0. 2 inch. A typical dc potential

profile is shown, in which Vo is the anode-cathode accelerating voltage. Within the

cathode structure and back of the cathode, a probe system was arranged to measure

particle current flowing toward the cathode and through the hole.

Figure VI-8 illustrates the limiting perveance obtainable under so-called ion-

neutralized conditions. V was held fixed at the indicated values, and VD was varied.

The plot of '2 / 3 vs. (V0 - VD) corresponds to the perveance of the drifting beam. Sev-

eral features are noteworthy: as (Vo - V D ) is reduced, most of the curves begin to

droop immediately, and finally, at the value of (V o - VD) corresponding to a perveance

of approximately 10 - , there is a sudden break in the current. If we compute the

limiting perveance of an unneutralized beam (radius b) in a drift tube (radius a Z 3b),

which is confined by a strong magnetic field, we find almost the same value as that of

our experiments. Thus we see that although a relatively efficient ion trap was provided,

there was no increase in the limiting perveance as compared with a pure electron

beam (1).

The uppermost curves in Fig. VI-8 (Vo = 2050) show a temperature-limited curve

that is almost flat down to the break. This seems to allow the hypothesis that electrons

are being accelerated back into the gun region. If they reach the cathode, the net cur-

rent Ic is reduced by the algebraic sum of the forward and backward currents. If the

gun is space-charge-limited, the backward current exerts an additional influence by

reducing the forward current; but this additional effect is not present in a temperature-

limited gun. (It should be noted that when Dl, the drift tube near the cathode, was held
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at Vo, all of the curves became flat until critical perveance was reached.)

Figure VI-9 shows several currents as functions of the drift-tube potential VD (when

VD = 0 the beam is drifting at a potential V ). The ion current to the probe in back of

the cathode, I , is interesting in that it is not cut off by the trapping voltage VD (see

ref. 2). This anomalous current is tentatively taken as evidence that strong ion oscilla-

tions within the drift-tube region may eject some ions with enough energy to climb over

the trapping potential barriers.

The currents IDl and ID2 are of the proper sign for positive ion currents. However,

if we use the appropriate ionizing cross section (3) for hydrogen, the computed curve,

ID computed, is lower than either ID l or ID2 by a factor of 3 or 4. The most plausible

explanation is that the beam electrons do not travel in straight lines, but that they

acquire sufficient transverse motion to give them a longer effective ionizing path length.

Oscillations were observed by connecting either a wideband oscilloscope or a spec-

trum analyzer to the collector or to the drift tubes. We observe two main classes of

oscillation, after insuring that no electrons are allowed to return to the gun from the

collector: (a) a nearly sinusoidal oscillation of 1-2 mc, and (b) a relaxation oscillation

with a frequency in the tens to hundreds of kilocycles per second. The sinusoidal oscil-

lations in collector current appear to be an "ion plasma oscillation," in that the frequency

is primarily associated with electron current density, although it was always smaller

than the computed frequency for a fully neutralized beam by a factor of 2 or 3. This

might be taken to indicate that the beam is only 10-25 per cent neutralized, which would

not be inconsistent with the results of Fig. VI-8. By means of a probe that could be

moved across the beam, it was established that the beam bulges periodically at the

observed frequency.

500

EXPERIMENTAL 0 Pox 1010

400 THEORETICAL 1.8 Vo' 8

300- V= 1500 -VD  500

200-

100 Ic

, ,-I/f-

0 10 2.0

P(IO- 4 
mm Hg OF H2 )

Fig, VI-ll. Plot of relaxation oscillation frequency against ambient gas pressure.

Insert, computed curve of (ionization time)-1 1I/T,, 1,
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In addition to the sinusoidal oscillations, when VD exceeds several hundred volts,

relaxation oscillations of the type shown in Fig. VI-10 are observed. They may be seen

in the collector, cathode, or drift-tube currents. They are very stable and repro-

ducible. No explanation exists for them, but Fig. VI- 11 may indicate something of

their nature. Here we plotted the frequency of these oscillations against the ambient

gas pressure; the dotted line is the theoretical curve of I/T i , where T.i is the time

required to fully neutralize the beam (4). Since these oscillations are observable in

the cathode current, and since the collector-current oscillations seem to be downward

from the nonoscillating current level, we may associate the relaxation oscillations with

the drooping characteristic of Fig. VI-8 that has already been tentatively explained on

the basis of electrons returning to the cathode.

L. D. Smullin, C. Fried
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D. MULTICAVITY KLYSTRONS

1. Theory: Cavities with Gaps of Finite Length

The small-signal multicavity-klystron theory (1) that has been presented thus far

has assumed that the cavity gaps are of infinitesimal length, and has taken account of

electronic loading only. Broadband multicavity klystrons must make use of cavities

whose gaps are appreciably long (2). We propose to investigate the effect of a finite

gap with reference to the small-signal behavior of broadband multicavity klystrons.

Assume that the fields in the finite gap are quasi-static and that space-charge effects

within the gap are negligible. Partial justification for these assumptions comes from

noting that the 2-radian gaps of the proposed tube (2) have the following characteristics:

This work was supported in part by the Office of Naval Research under Con-
tract Nonr 1845(05).
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X/4
d

1.8 
(1)

Xq/4
6.3

where d is the gap length, X is the operating wavelength, and X is the corrected

plasma wavelength. Under these assumptions, the effect of a cavity upon a modulated

electron beam that passes through its gap can be represented by a linear two-port trans-

formation of the kinetic voltage and total current (3):

V 2Z 
(2)

12 Y A I 1

in which we have abbreviated as follows:

Ag =y 5 + a Y4  5  4- Y 2 Z (3)

2a 2
Zg = Y Y2 4-Y Z (4)

2

Y =Y + aY = Y -Y Z (5)
g 3 2 3 2

and the definitions of all quantities are given in reference 3. (Note an error in ref. 3:

y 5 
= e -j/ should read y 5 

= e .) Each term in Eqs. 3, 4, and 5 represents a dis-

tinct physical process in the gap. Hence it will be found convenient to use flow-graph

techniques in making approximations and in evaluating such systems with relative ease.

The finite-gap equations can be broken up conveniently, as shown in Fig. VI-12. The

first graph on the right-hand side of the topological equation in Fig. VI-12 is readily

recognized as being the representation of the infinitesimal gap, except that the actual

gap transit angle is explicitly contained. Hence the last graph of Fig. VI- 12 contains

all the effects of the finite gap that have been neglected in the infinitesimal-gap theory.

Let us represent the drift regions between cavities by the two-port (single-mode)

space-charge equation

(V2 Ad 
Zd 

V

I) Yd Ad \ 1(6)

where

Ad = cos 0 (7)

Zd = j Zo sin (8)
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Fig. VI-12. Finite-gap equations in flow-graph form. The sign (+)
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Fig. VI-14. Prototype of multicavity-klystron structure and its flow-graph repre-
sentation. Single lines without arrows have unity transmission.
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Yd = j Y sin 6 (9)

6 represents the corrected plasma transit angle of the drift region, and Zo = 1/Yo is

the characteristic impedance of the drifting beam. Because of the similarity of these

equations to those of a lossless transmission-line section, we choose the representation

as shown in Fig. VI-13.

With these formulations, the prototype section of a multicavity klystron - a gap

preceded and followed by drifts - can be conveniently represented as shown in Fig.

Fig. VI-14. Suppose the entering beam has a kinetic voltage V 1, and we wish to find

the resulting output current 12. The result is

= Y sin2 0 M2Z + j Y sin 29 e g
V 1  =0

1=0 (10)

+ cos Yg - j Yo sin 20 Y4 Z

The terms in brackets are the usual short-gap cascade and feedforward terms that

can be obtained by inspection (1) by considering the lower part of the gap graph. The

two additional terms are similar in nature to a cascade and a feedforward (modified by

a finite gap) term, as evidenced by the upper part of the gap graph. The extension of

these ideas to a multigap problem is obvious.

2. Theory: Approximations in Finite-Gap Equations

Consider the 2-radian cavity gaps of the proposed tube (2). The gap parameters, at

resonance, are found to be

Z = 2. 54 X 103 -115. 6 ohms
g

y 5 = 1.0 /65.4
°

Y = 2. 64 X 10-3 /-115' mhos
g

-Y4 Y2 Z = 2.95 
/35

°

The beam characteristic impedance is Zo = 113 ohms. This example indicates that the

only significant effect that the short-gap theory neglects is the remodulation of

the current I', which enters the gap, into I" through the gap impedance. This effect

is significant in magnitude and is frequency-dependent. It is also easily seen

that as long as the gain per stage, Z /Z o , is appreciable (>> 1), the proto-

type of Fig. VI-15 is an adequate approximation (for most practical gap lengths)



(VI. MICROWAVE ELECTRONICS)

-Y4Y2 Z

I5 --- -- 12

8, Zo  Z , Zo

V' VV 2

-Y4 Y2

Fig. VI-15. Approximation to the flow graph of Fig. VI-14:
prototype of multicavity-klystron structure.

to the prototype of Fig. VI-14. Accordingly, Eq. 10 becomes

2 Y sin2  M2Z + j Y sin2 )e

I1 O (11)

-j Yo sin 26 Y4Y Z

Further evaluation of the effect of a finite gap is in progress.
A. Bers
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3. Design: Hollow-Beam Klystron

The parts for the seven-cavity, stagger-tuned, hollow-beam klystron, described

in the Quarterly Progress Report of April 15, 1957, page 47, are being designed and

cold-tested. The exact dimensions for the intermediate cavities have been determined,

and the corresponding parts are being constructed.

The output cavity must have an extremely low Q, QL z 7, in order to pass the fre-

quency band of the preceding interaction structure. The conventional method of loading

the cavity by overcoupling with a large loop was unsuccessful. Cold tests have been

completed on a type of output coupling, as shown in Fig. VI-16. A loaded Q of QL = 7.5

was obtained on a scaled-down model. A full-scale output cavity of this type, together

with a coaxial output transmission line and an output vacuum seal (See Fig. VI-17), is
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Fig. VI-16. Output interaction gap. Fig. VI-17. Output structure.

being designed and will be tested for its frequency response.

The input cavity must have the same Q as the intermediate cavities, i.e., QL = 20.

The gap length of the input cavity is only half that of the intermediate cavities, in order

to reduce the velocity modulation that will appear at the following gap. But, with the

shorter gap, the electronic beam loading is so greatly reduced that the input cavity has

to be loaded by overcoupling of the input line. Cold tests are being made on coupling

systems that may yield the necessary degree of coupling and still not disturb the radial

symmetry of the gap field excessively.

The gun design is being checked for minor improvements.

H. W. Fock


