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RESEARCH OBJECTIVES

During the coming year, our research will be directed primarily along the following
lines:

1. High-power, wideband, microwave tubes.

2. Plasma phenomena.

3. Parametric amplification.

1. High-Power, Wideband, Microwave Tubes

During the past year, our principal activity in this area was concerned with the
development of a small-signal theory for the behavior of stagger-tuned klystron ampli-
fiers, and the construction of an experimental seven-cavity amplifier. In the coming
year, we shall continue the work on the experimental tube, in order to get experimental
verification of the theory. The limiting gain-bandwidth performance obtainable in
stagger-tuned klystrons is now well understood. Further improvement will be possible
if the bandwidth of the separate cavities can be raised. Double-tuned, double-gap cavi-
ties are now being studied with this in view. However, our interest is shifting to the
problem of determining the factors that now limit the output efficiency of klystrons, and
finding ways to increase this efficiency. (See the report on the "squeezer," Sec. IX-A2.)

2. Plasma Phenomena

Our principal interest in plasmas is in connection with the problems of self-excited
oscillations and instabilities. On the basis of theoretical work done in the past year, a
number of experiments are now being set up. These are designed to study electron-
stimulated oscillations, parametrically induced instabilities in rf confined plasmas, and
the properties of plasma waveguides.

There are a large number of microwave instrumentation problems to be solved. One
is to devise means for greatly increasing the coupling between the generator and the
plasma that is produced by a microwave discharge. Another very important problem is
that of making transient microwave impedance measurements on nonrepetitive discharges
(pinches, and so forth). A transient impedance bridge with a bandwidth of several mega-
cycles is being developed for this purpose. Other instrumentation problems will be
undertaken when the personnel become available.

3. Parametric Amplification

The theory of single-stage, narrow-band amplifiers is well understood, and a number
of interesting devices have been built in several laboratories. Our chief interest will be
in the problem of devising wideband parametric amplifiers, and in extending the theoret-
ical understanding of the physical factors that limit the noise performance. A balanced
UHF amplifier has been built, with the use of varactor diodes, and this will be one of
our main research tools.

L. D. Smullin, H. A. Haus
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A. KLYSTRONS

1. Linear Space-Charge Theory of Gap Interaction

In the Quarterly Progress Reports of July 15, 1958 and October 15, 1958 (1, 2) we

presented a formulation of the small-signal, one-dimensional, gap interaction neglecting

space-charge fields. In the present report we shall present a complete space-charge

theory.

ELECTROMAGNETIC
CIRCUIT (RESONATOR)

ELECTRON
S STREAM

b - r, -!Fig. IX-1. Electron stream in a region
Ss of nonpropagating gap fields.

-d d 6

Consider the electron-electromagnetic system of Fig. IX-1, which is cylindrical

with respect to the z-direction and symmetric about the z = 0 plane. The electromagnetic

fields of the circuit [_Ec(r, z), Hc(r,z)] are assumed to be nonpropagating, and to be

vanishingly small at the reference planes z = ±~. The electron stream is assumed to

be confined by an infinite magnetic field so that the interaction is entirely longitudinal;

that is, the interaction is only with the z-component of the electric field of the circuit.

We define a complex gap voltage

V = - E (a, z) dz (1)
gd -c

and a gap current Ig, so that the electromagnetic power flow from the circuit through

the surface S is given by

1 X * .dS=V I (2)
2 c -C 2 g g

We shall describe the signals that propagate along the electron stream, at a par-

ticular radial position, in terms of the beam current I(z) and the kinetic voltage

V(z) = (m/e) vo v(z), where v 0 is the time-average electron velocity, and v(z) is the

complex amplitude of the time-variant electron velocity. We shall assume throughout
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this report that the electron stream is thin so that the electric field over its cross sec-

tion is constant, and the beam current I(z) = o-J(z), where 0- is the beam cross section,

and J(z) is the complex amplitude of the time-variant electron-current density.

Under the assumptions of small-signal theory the entire system is linear. Hence,

by superposition, we have

V2 Y11 Z 1 2  13  1

12 Y21 Y2 2  Y23 I1 (3)

Ig Y 3 1  Y3 2  Y33 Vg

where V 2 = V(+f), 12 = I(+f), V 1 = V(-f), and I 1 = I(-i). The elements of the matrix

are expressible in terms of the characteristic waves of the electron-stream system and

the Fourier integrals of the circuit field for these waves. Let the phase constants of the

beam waves be

P+ = - Pq (fast beam wave)

(4)
P_ = Pe + q (slow beam wave)

where pe = w/v o , with o the operating frequency; and Pg = W /Vo, with co theo g gog
reduced plasma frequency. We then define the Fourier integrals of the circuit electric

field for these waves:

M= 0 (z) e d(P±z) (5)

where (p z) is the normalized electric field of the circuit and

E-c z)
&( z) = Vg (6)

which is a real and even function of p z. Making use of the superposition principle, the

symmetry properties of the system, the small-signal, space-charge drift equations, the

kinetic power theorem, and the conservation-of-energy equation, we obtain

1 (-jP+ 2 -jp- 21

yll = 22 =i e + e (7)

Z1 Z e-j - epz (8)

1 (eJ+ 2  -jp 2 (9)
Y21 o - e (9)21 Z
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is the characteristic admittance of the beam, and

33 V
g I =V 1 =0

is the electronic admittance of the stream which loads the circuit.

obtained from the kinetic power theorem

Re Y3 3 Ge = Re( 1 3 23) = 41 Yo (M - M 2 )

For convenience, let yll Ad

and Y33 = Ye Equation 3 becomes

Its real part is

(13)

12 Bd' Y1 2  C 13ac Y23 Y31 bc'
12 B 12 d' Y13= Y32 c' 23 31 c'

V 2] Ad

I = Cd

Ig b
g c

Bd ac V1

Ad b I

a Ye V
c el g

a. Beam Transformations for a Passive Circuit

If the circuit is passive,

Y + Y Y =
c ef Z

I = -Y V (Fig. IX-2a).g cg

The transformations of the beam current and kinetic voltage (Fig. IX-2b) can be written

VZ) A=

I C (

B )ie-j eZ( V

D (II

where

(10)

(11)

(12)
d 5(a) e"

(14)

Let

(15)

(16)
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+ A B e2 +
S kC D)ee V

(b)

V [F] V 2

FEEDFORWARD

I, CASCADE 12

v [c] )

(C)

"l - --- H H- C ~12
V [Del [G] [D] +V2

Yo , + Yo ,+

(d)

(a) Gap with passive circuit. (b) Equivalent linear two-port. (c) Feedfor-
ward and cascade representation. (d) Drift-gap-drift representation.

Two convenient formulations of the matrix in Eq. 16 will now be given.

From Eq. 14, we have directly

Ad Bd)

Cd A d

feedforward

ac (-be -acl
+ (b Z

c

cascade

(17)

which consists of two matrices with distinct meanings (Fig. IX-2c). The first is a drift

matrix which is a transformation that occurs when V = 0. The second matrix contains

the interaction with the circuit. Equation 16 is a generalization of the concepts of feed-

forward gain and cascade gain and their superposition which we have stated previously

(3). Furthermore, it is possible to generalize the inspection technique (3) for writing

the transformation of kinetic voltage and beam current for a cascade of structures of the

kind shown in Fig. IX- 1.

Another convenient representation is obtained by premultiplying and postmultiplying

Eq. 16 by the drift matrix of length f and its inverse. The result is a representation

in terms of a product of matrices which may be identified with drift and gap parameters

(Fig. IX-2d).

A
C

B

: [Di] [G] [D]

where

(18)

Fig. IX-2.

A B )e
C D

-jpe 2,
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Fcos p~I jZ ° sin p
[ q oq

[D] = (19)
jY0 Sin f cos p

1 - G Z -M Z

[G]= 2 (20)

S Z 1- Ge Z

M

where M = 1/2 (M + M_), and Gef is as given by Eq. 13.

The nonreciprocal nature of the system is described by

-jpe41 -jpe41
(AD - BC) e = (1 - 2G Z) e e (21)

in which the first factor is associated with the gap matrix (Eq. 20), and the second factor

expresses the unidirectional drift of the electron stream.

A. Bers
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2. The Squeezer (High-Efficiency Bunching)

a. Introduction

One of the limitations on klystron efficiency is the output gap. With finite gap transit

angle, a spread in velocity of the arriving electron beam effects a serious reduction in

efficiency from the ideal limiting values calculated on the basis of the amplitude of the

fundamental current.

The one-dimensional space-charge theory predicts that the maximum fundamental

current that can be achieved without overtaking is Ii = 0. 8810 if the modulation voltage

across the infinitesimal input gap is V 1 /2V 0 = w /w. In order to achieve a larger cur-

rent, it is necessary to modulate the beam by a larger voltage so that space-charge

forces are overcome and overtaking occurs. We propose to achieve a higher current

modulation without completely overcoming space-charge forces by using a series of

closely spaced, low-impedance, cascade bunchers. The beam will be bunched by an
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input cavity to produce a current maximum and velocity minimum at the input to the

squeezer, Fig. IX-3. The squeezer consists of several closely spaced, inductively

detuned, uncoupled cavities. The output cavity,

which is immediately adjacent to the squeezer,
BUNCHED

ELECTRON SQUEEZER is of conventional design.
STREAM

The squeezer is like an Easytron except

that it has no input or output circuit connections

INPUT z=0 OUTPUT and is operated as a low-gain device. (The
CAVITY CAVITYS= to maximum theoretical output current, Ii, is

Fig. IX-3. Arrangement of micro- 210, and the input current, I l, is approximately
wave structure for the 0. 61 - a maximum gain of 10 db.) The imped-
squeezer experiment. o

ance level of each cavity (adjusted by detuning)

is set to produce an electric field at the beam

slightly larger than the space-charge field that is tending to debunch the beam. In this

way, the beam is gradually formed into a tighter bunch without allowing overtaking to

occur.

An experimental study of the bunching process is being started. A perveance 10 - 6

shielded gun, producing a 0. 2-inch diameter beam at 10-20 kv will be used in a demount-

able system with movable cavities. The output cavity has been loaded to QL = 18, with

a gap impedance of 3000 ohms. This is low enough as compared with the beam imped-

ance to insure small-signal behavior in the output gap.

b. Theoretical Analysis of the Squeezer: Quasi-Large-Signal, Space-Charge Theory

In a one-dimensional system of an electron stream interacting with circuit fields,

the velocity of the electrons is given by the following differential equation:

2  +ciE . t(zFt) d v(z, t) 2 2 v c (zt)]
S + p v(z, t) = o v + (1)

dt o

where wo is the electron plasma radian frequency, J is the time-average electronp o
current density, and Ec(z, t) is the circuit field. The time-average electron charge

density is assumed to be neutralized by fixed ions. Equation I is a generalization of

the bunching equation in a drift region (1, 2).

Consider a bunched electron stream entering a lossless Easytron structure. The

circuit consists of a series of closely spaced resonators that are uncoupled to each other

in the absence of the beam. (See Fig. IX-3.) If we assume that the circuit field induced

by the bunched beam is only dependent upon the bunch distribution at the entrance,

z = 0, t = t o , [Ec = Ec(to)] then the right-hand side of Eq. I is distance-independent

and the differential equation is easily solved. If at the entrance plane the current
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modulation is

J(o,t o ) = J + aJ cos wt (2)

and the velocity modulation is zero, a Fourier analysis of the current in the squeezer,

with the assumptions of small-velocity modulations and no overtaking, gives for the

maximum fundamental component of the current

2J = J 1(X) (1 + 
(3)

in which X is a space-charge bunching parameter given by

2 Sn Op - p
X - + E(t) (1 (4)

J e J o e
o p / o p

where Jc (to) is the circuit current, and E(to) is the total electric field at the entrance

to the squeezer structure.

If the entering stream is considered as bunched to just overtaking, a = 0. 88, then

Eq. 3 has a maximum value of 0. 89 (or 89 per cent electronic efficiency) for X = 1. 5.

However, the value of X is limited by the assumption of no overtaking. Under such

conditions Eq. 4 shows that X is approximately unity, and the corresponding value for

IJ 1 /J ° from Eq. 3 is 0. 83 (or 83 per cent electronic efficiency).

A. Bers, T. J. Fessenden, S. Holly, L. D. Smullin
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B. PLASMA STUDIES

1. Traveling-Wave Experiments

Two mercury, hot-cathode, discharge tubes, 0.5 inch in diameter, 20 inches

and 30 inches long, are being used to investigate the propagation of slow plasma

waves in a coaxial structure, in the presence of an axial magnetic field. Slow

waves similar to those predicted theoretically (1, 2) and observed by Trivelpiece (2)

have been observed.

P. Chorney, L. D. Smullin
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2. Parametric Instabilities in Plasmas

Recently, several schemes have been proposed (1, 2) by which a plasma might be
-2

contained in a strong rf field with a proper spatial distribution of grad E , where E

is the amplitude of the rf fields. In this connection, it has been shown that the nonlinear

response of a plasma in an rf field leads to time-average forces that might be used for

confinement.

An rf field capable of confinement naturally produces a strong oscillatory motion in

the plasma. This oscillatory motion, together with the nonlinear characteristic of the

plasma, may lead to a time variation in the plasma parameters, and hence cause a

"parametric" effect analogous to that occurring in ferrites, and actually employed in the

ferrite parametric amplifier. It seems likely that rf confinement schemes might be

plagued by the presence of parametric instabilities. It is also conceivable that para-

metric effects might be employed for obtaining plasma heating, or for achieving power

gain similar to that achieved in other parametric amplifiers that utilize nonlinear media.

A study of nonlinear parametric effects in plasmas has been started. Some of the

more important formulas and results obtained, together with the assumptions used,

will now be summarized. We consider a stationary, zero-temperature plasma of

electrons and heavy ions immersed in a (in general) nonuniform dc magnetic field B o -

For the purpose of analysis of the parametric action, the ions are considered immobile.

Denote the ion density po(r), and the displacement of an electron from that ion, with

which the position of the electron would coincide in the absence of an rf excitation,

d(r, t). Then, the current density J(r, t) at the position r, to second order in d, is

given by

ad . - ad
J(r, t) = p0  a (- a(1)

a 8t o at

The force equation to second order in the rf excitation is

a d e d Xd - + E +dd-aE+ XB + V+ X (d V) Bo + XB (2)
at2 m at o t t

In these equations all quantities are rf time-dependent quantities except for the dc

magnetic field B o . Equations 1 and 2, in conjunction with Maxwell's equations,0
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-aH
VX E -o - at

8E
VX H J + Eo t

V .EE =p

V oH = 0

specify the system completely.

Using the above equations, we have proved the Manley-Rowe relations for a plasma

system supporting modes at the frequencies wl', ± w1 . These modes are assumed

to be excited to a small level, wheras the pump excitation at the frequency wo is assumed

to be large. Denote by S a surface completely enclosing the parametrically excited

plasma. Then, the Manley-Rowe relations are

E xH E X H E xH+0 o°  -1 -1 +1 +1

1 + o 1 o

where E and H are the small-signal fields at the frequency no + wl The method
n n o

of lossless-mode-coupling can then be applied to the analysis of such systems, as has

been indicated in another paper in connection with parametrically excited longitudinal

electron beams (3).

H. A. Haus
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3. Approximate Field Solutions

The fields in waveguides that contain stationary plasmas, drifting beams, or both,

are normally found by a small-signal analysis of Maxwell's equations, the force equa-

tion, and the current-velocity relation. A result of this analysis is a determinantal

equation which, when it is solved in conjunction with boundary-condition expressions,

yields propagation constants P as a function of w for discrete orthogonal modes.

If in the determinantal equation we make the simplifying assumption that
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2 >> k2 (1)
2 2

where k w E to, we generally obtain consistent results that validate our simplifying
assumption. The expression for the electric-field components, when subjected to this
assumption, becomes so simplified that we observe immediately that the approximate
electric field can be expressed as the gradient of a scalar potential function c; that is,

E = - V (2)

which means that

Vx E = 0 (3)

That the electric field is approximately given by Eq. 2 is an observation made from
particular problems that have already been solved. However, it can be demonstrated,
in general, that the simplifying assumption, Eq. 1, leads to Eq. 2.

Maxwell's equations can be separated into two wave equations:

2 2
7 Eoo 2 E (4)

a8t o

2 AVA- A oEo 2 -- ~J (5)
at

where A and 4 are the vector and scalar potentials (1). If we assume sinusoidal time
dependence and propagation in the z-direction so that all fields are proportional to
ejt e - j p z , then Eq. 4 becomes

V2 + (k 2  2 P (6)
T E0

in which we have used

V VT + i z a

2 2
Now, neglecting k2 in comparison with P2, we obtain, as in electrostatics,

V2 =- (7)

which leads to Eqs. 2 and 3. The simplified determinantal equation and approximate
field solutions can now be obtained directly from the original basic equations, but with
the Maxwell equation

VX E = -j oH

replaced by Eq. 2.

This quasi-static, or electrostatic, approximation effectively regards the ac
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magnetic field as second-order. The use of Eq. 1 in Eq. 5 obviously suggests a mag-

netostatic approximation, in which the electric field is regarded as second-order.

This is the approximation used in magnetohydrodynamics, in which displacement cur-

rents are ignored (2).

P. Chorney
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C. MEASUREMENTS OF THE PHASE CONSTANT OF THE SLOW WAVE OF A

HELIX WITH THE USE OF THE RESONANCE METHOD

Measurements of the phase constant and of the phase velocity of the slow wave of a

helix have been made. The helix was considered as a section of a one-dimensional

transmission line opened at both ends. The resonances of such a line occur at frequen-

cies f, at which the length fl of this line is (nl/2)Xz , with n 1 any integer, and Xz

the wavelength along the z-axis. The phase constant calculated from these quantities

is given by

2 1

z 1

and the corresponding phase velocity is

0 2ffl

p P n

Figure IX-4 is a schematic diagram of the experimental arrangement. H is a typical

S-band helix, scaled up by a factor of 3. The helix, supported by a thin sheet of poly-

foam, is assumed to be in free space. The exciting loop L 1, and the pick-up loops L 2

and L 3 , are very weakly coupled to the helix. Loops L 1 and L 2 are fixed in position,

and loop L 3 can be moved parallel to the axis of the helix. The matching attenuator A

and the crystal-diode detectors D are placed very close to the loops to avoid possible

resonances in loop circuits.

The value of n 1 is obtained by observing changes of resonance indications caused

by perturbations of the field by a metal sphere (not shown on the drawing) that is moved

parallel to the axis of the helix. The same measurement can be made by moving the

loop L 3 along the helix.
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Fig. IX-4. Experimental arrangement.
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Fig. IX-5. Phase constant, p, of the slow wave normalized to the free-space phase
constant, k, versus frequency or ka.

Errors that arise from the fringing field at the ends of the helix can be eliminated

by computing the phase constant from measurements taken along a section of the helix,
which excludes the ends.

If the wavelength along the z-axis equals twice the pitch-length p, the field meas-
ured by loop L 3 is the same opposite each turn of wire. The phase constant in
this case equals P3 = r/p. For somewhat different wavelengths, the field measured
at each turn changes periodically along the helix. By measuring the length of one
of these complete periods, f2 , the value of the phase constant can be calculated

from the formula

The plus sign for the origin is used if z is less than 2p, and the minus sign is used

if X z is greater than 2p.
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Figure IX-5 shows curves of normalized phase constant versus frequency. The solid

line is the curve predicted by the sheath helix theory (1, 2); the dotted line is the experi-

mental curve. The agreement between these curves is within the accuracy of the meas-

urements, that is, approximately 2 per cent.

R. Litwin
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