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Abstract

The Queue Inference Engine (QIE) uses queue departure time data over a

single congestion period to infer queue statistics. With partial queue-length

information, the queue statistics become more accurate and the computational

burden is reduced. We first consider the case in which we are given that the

queue length never exceeded a given length L. We then consider the more gen-

eral case in which we are given the times of all L-to-(L + 1) and (L + 1)-to-L

queue-length transitions. We present algorithms, parallel to the QIE algo-

rithms, for deriving the queue statistics under the new conditioning informa-

tion. We also present computational results, comparing both accuracy and

computation time, under the QIE and the new algorithms, for several sample

runs.

1 Introduction

The "Queue Inference Engine" or QIE was first reported in 1990 [Lars 90]. The

purpose of the QIE is to deduce the operational behavior of a Poisson arrival queueing

system from only the start and stop times of service for all customers served. Such

service start and stop times constitute the transactional data set upon which the
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computationally intensive QIE is based. From the time-ordered transactional data

one observes that the signature of a queue is a service completion followed virtually

immediately by a service commencement. The customer associated with the service

commencement must have, with probability near one, been delayed in queue. By

examining the transactional data for sequences of queue signatures, one can partition

the time line into congestion periods (when all servers are continuously busy) and

noncongestion periods (when not all servers are busy). All customers arriving during

congestion periods are delayed in queue.

The QIE operates on the transactional data set, one congestion period at a time.

Using a recursive procedure that requires no parameter estimation and virtually no

assumptions about the service process, the QIE produces estimates of the following

quantities for a congestion period:

1. mean wait in queue of a random customer;

2. time average queue length;

3. time-dependent mean number in queue;

4. probability distribution of queue length as experienced by a randomly arriving

customer.

The underlying theory is based on order statistics (see, for example, [Barl 72] or

[Davi 81]), particularly the fact that the N unordered arrival times of N Poisson-

arriving customers over any fixed interval [0, T] are i.i.d. (uniform). Larson has

demonstrated an algorithm for a congestion period having N queued customers that

requires O(N3 ) computations [Lars 90,Lars 91].

Other researchers have recently contributed to the advancement of the QIE. For

instance, Bertsimas and Servi have proposed an O(N3 ) algorithm based on multidi-

mensional integration [Bert 91]. Daley and Servi developed an O(N2(ln N)) algorithm

that can approximate the QIE calculations with any prespecified level of precision

[Dale 91].
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In applications there is a need for the QIE in many service industries, including

banks (human teller lines and ATM lines), airports, rapid food restaurants, hotels,

urban transportation, and telecommunications. In some applications, the underlying

arrival rate parameter may be slowly time-varying, thereby creating the possibility of

inaccuracy in QIE calculations over lengthy congestion periods. Or in some settings

there may be state-dependent balking, in which customers are increasingly less likely

to join the queue as it becomes longer. Such state-dependent balking is not currently a

solved problem in queue inference, and even if it were, its solution would undoubtedly

involve the state-conditioned balking probabilities, which would represent in our view

a violation of the parameter-free nature of the QIE. Even if neither of these two

complications arise in practice, one might seek (perhaps due to constraints of a desk-

top computer, or need to perform calculations in near real time) QIE algorithms that

are faster than the current ones. Finally, perhaps one would like queue inferences

with less variance in the estimated quantities.

The purpose of this paper is to develop QIE-like algorithms in an extended data-

acquisition environment that (1) solves a new queue inference problem exactly and,

from an engineering point of view, (2) provides at least partial solutions to the afore-

mentioned complications. In this paper, our new assumption is that we know, in

addition to service start and stop times, the times at which the queue undergoes

transition from M - 1 to M customers, or from M to M - 1 customers. These tran-

sitions can be plotted over time as a binary "telegraph wave." The problem at hand

is to derive algorithms (O(N 3 ) or better) that infer queue behavior from the union

of two data sets: the routine service start and stop times of the original QIE, and

this new threshold-detecting telegraph wave. In practice, the telegraph wave could

be generated from a pressure-sensitive mat placed in the queue channel or from one

of several types of electronic field sensing devices.
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2 QIE Background and Notation

Since this paper is based heavily on [Lars 90] and uses the same notation, we review

the basic QIE and the notation that applies to it here.

The QIE model assumes Poisson arrivals to a queueing system, which may com-

prise a single or multiple servers. The service time distribution may be completely

general. The Poisson arrival rate, A, is assumed to be constant over the duration

of a single congestion period. It is also assumed that whenever there is a queue, a

service initiation follows immediately after any service completion. The data that are

provided to the QIE include N, the total number of customers who waited in queue

during a given congestion period; to, the start time of the congestion period, which

here we assume to be 0; and t _ (tl, t 2 , ... , tN), the times of service commencement

for customers 1 through N (t 1, t 2, ... , tN may also be thought of as service comple-

tion or departure times), again assuming a start time of 0. (Customer 1 is the first

customer to arrive and find all servers busy. Customer N is the last customer to

commence service immediately after a departure: i.e., the departure at tN+l creates

an idle server.) The unobserved ordered arrival times of customers 1 through N are

denoted X 1, X 2,..., XN. In order for customers 1 through N to comprise a conges-

tion period, it must be the case that X1 < tl, X 2 < t 2 , ... ,XN < tN. This event

is denoted O(t). N(t) denotes the cumulative number of arrivals to the system over

the time period (0, t], where t < tN; and N(tl,t 2) denotes the cumulative number

of arrivals to the system over the time period (tl, t 2], where tl < t 2. Finally, NQ(t)

denotes the number of customers in queue at time t.

The quantities calculated by the QIE include N(t), the expected cumulative num-

ber of arrivals to the system, up to and including time t, conditional on the two events

O(t) and N(tN) = N; NQ(t), the expected number of customers in queue at time

t, also conditional on the two events O(t) and N(tN) = N; NQ, the time-averaged

queue length over a congestion period; WQ, the average delay in queue over a conges-

tion period; Hk, the probability that a randomly arriving customer finds k customers
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in queue (k = 0,1,..., N - 1); and Q, the average queue length experienced by a

randomly arriving customer. All of these quantities may be calculated as functions

of the following quantities:

/ki(t)-- Pr[Xk < tiIO(t),N(tN) = N], 1 < i < N 1 < k < N

(See [Lars 90] for the specifics of calculating the queue statistics from the ki(t)'s.)

Note that ki(t) = 1 for k < i. The other values for P/3k(t) are calculated via the

following two equations:

/Ni (t) = C'Ni(t) 1 <i < N (1)
aNN(t)

/ki(t) = /(k+l),i(t) + NN(t)1 < i < k < N (2)

The quantities aki(t) are defined as follows

aki(t) Pr[X 1 < tl, X2 < t 2 ,... ,Xi < ti,..,Xk < tlN(tN) = k], k > i

and are computed recursively via the following two equations:

akl(t)= (t) 1<k<N

aki(t) ) (kj),(i_1)(t) ti - , 1 i < k < N (4)
j=0 tN

Finally, the quantities /ki(t) are defined as

7rki(t) Pr[ti < Xk+l < tk+l,... ,ti < XN < tNIN(tN) = N- k], k > i

and are calculated via

qNi(t) - 1, < i < N (5)

7Vki(t) 0- O 1 <k<i<N (6)

ki(t) = E ((k+j)(i+l)(, 1 i < k <N (7)
j=0 tN

This is the extent of the QIE notation that will be used in this paper. For the de-

tails of the definitions and the proofs of the recursion algorithms, please see [Lars 90].
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3 Addition of Maximum Queue Length Informa-

tion to Transactional Data

The calculation of the entire p-matrix (and, hence, of the queue statistics of interest)

is O(N 3 ) [Lars 91]. Partial queue-length information can reduce the computational

effort, while simultaneously improving the accuracy of the QIE-calculated statistics.

We first consider the addition of information regarding the maximum queue length.

The algorithm developed in this section will then be used as a building block for

algorithms which use other queue-length data. Specifically, suppose we are told that,

during a congestion period of N customers, the queue Length never exceeds L cus-

tomers, where 0 < L < N. This will force some of the quantities in the P/3-matrix to

be 0, thereby reducing computational effort. For example, with N = 10 and L = 9,

we are told that the queue length never exceeds 9 customers. Therefore, Plo, 1(t), the

probability that all 10 customers arrived before the first service completion (hence

causing a queue length of 10), is zero. We proceed with a description of how this

information affects calculation of the new beta-matrix (which we call the /L-matrix).

First, we define QL(tl, t 2) to be the event NQ(t) < L, t < t < t 2. Then we define

the following quantities:

(ki(t) - Pr[X1 < tl, ... ,X i < ti,...,Xk < tQi, (O,ti)IN(ti) = k], k > i (8)

kL (t) Pr[ti < Xk+l < tk+l, ... ,ti < XN < tN,QL(ti,tN)INQ(t+ ) = k -i,

N(ti,tN)= N-k], k > i (9)

/3L(t) - Pr[Xk<tJIQL(0, tN),O(t),N(tN)= N], l<i<N, l <k<N (10)

Note that we use tilde's here to indicate that, for example, &L (t) is conditioned on

N(ti) = k, rather than on N(tN) = k, and similarly for ~L(t). Also note that in the

case of ki(t), we have made explicit the queue length at time t+ , since maintaining

a queue length less than L between t and tN depends on that queue length. (Note

that, in the case of &ki(t), there is the implicit condition that NQ(O+) = 0.) All of
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the queue statistics we obtain will be conditioned on the event QL(O, tN), and so they

may be calculated similarly to the method described in Section 2, via the L (t)'S.

We proceed in an approach parallel to that used in [Lars 90] and begin by noting the

following two lemmata:

Lemma3.1 &L(t)=0, k-i>L.

Proof: Assume k - i > L. In order that we may have Xk < t, it must be the case

that just prior to ti, there will have been k arrivals and i - I1 departures to a system

all of whose servers were busy at t = 0+, and hence NQ(t-) = k- i + 1 > L + 1 (since

k - i > L). Therefore, we cannot simultaneously have Xk < t and NQ(t) < L, 0 <

t < ti, when k- i > L. I

Lemma 3.2 L(t) =0, k-i > L.

Proof: Assume k - i > L. Then NQ(t +) > L and Pr[QL(ti,tN) NQ(t + ) > L] = 0,

and hence 4L(t) = 0 when k-i > L. I

Now, the first step is to calculate the values ~{L(t), for k > i, thereby also deter-

mining &N(t) = Pr[O(t), QL(O,tN)N(tN) = N]. First, it should be obvious from

the definition of 6&i(t) that:

c&kl(t ) = 1, 0 < k-1 < L (11)

The following lemma is also easily derived from the definition of kLi(t).

Lemma 3.3

k-i+ k ti-1

ki() =o j ( t i i l) (t

2 < i < N, 2 < k < N, O < k- i < L

Proof: This lemma results from an expansion of the definition of &i(t). We have:

&L(t) - Pr[X1 tl,... ,X < ti,... ,Xk < t,, QL(O, ti)IN(ti) = k]
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k-i+l

- Pr[Xi < tl,... ,Xi- 1 < ti-1 - - -, Xk-j ti-1,
j=0

ti-1 < Xk-j+l ti,..., ti-1 < Xk < ti, QL(O, ti-1),QL(t-1, ti),

N(ti_l) = k - j, N(ti_, ti) = jN(ti) = k] (12)
k-i+l

= E Pr[X1 t,...,Xk j < ti-, X,QL(O, ti-1),
j=0

QL(til,ti),N(ti-l) = k - jN(ti-l,ti) = j[N(ti) = k]

where the last equality follows since the events N(ti_l) = k - j and N(ti_l, t) = j

imply the event ti_1 < Xk-j+l < ti... ,ti-1 < Xk < t. By noting that events in

non-overlapping time intervals in a Poisson process are independent, we continue:

k-i+l

ci (t ) = E Pr[N(ti-l) = k - j,N(ti_1, ti) = jlN(ti) = k] x Pr[X1 < tl,...,
j=o

Xi-1 < ti-1,... ,Xk-j < ti-,QL (O, ti-1)lN(ti-1) = k- j]

x Pr[QL(ti,_, ti)lN(t._l) = k - j, N(ti-, ti) = j] (13)

The first probability above is just a binomial term, since a given number of Poisson

arrivals over a fixed time interval are distributed uniformly over that interval. The

last probability above is 1 as long as k - j - i + 1 (the number in queue at t+ 1) plus

j (the number of arrivals in (ti_1,ti]) does not exceed L (i.e. as long as k - i < L),

and is 0 otherwise. Recognizing the middle probability as &(k-j),(il)(t), we get the

result of Lemma 3.3 above. I

Hence, we may first fill in column 1 of the &L-matrix, using Lemma 3.1 and

Equation 11 above; then we may fill in the rest of the lower triangular half of the

matrix one column at a time, using Lemmata 3.1 and 3.3. In order to determine

all of the &ki(t) values (including Z&N(t)), we must calculate only a band of the

lower triangular N x N matrix: i.e., in each column, we calculate at most L values.

Each of these calculations involves at most L computations from the previous column.

Finally, there are a total of N columns: hence, the overall algorithm for determining

all of the elements of the &L-matrix is O(NL2 ).
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Next, we determine the method for calculating the ~ £L(t)'s. First, the following

should be obvious from the definition of lki(t), but we highlight it here:

i (t) -Pr[QL(ti, tN)INQ(t + ) = N - i, N(ti, tN) = 0]

0 .li<N-L
0, I < Z' < N - L ~~~(14)

1, N-L < i <N

The general recursion for finding i (t) is given by the following lemma:

Lemma 3.4

min(N-k,L-k+i)+l - tN ti
~]Li(t) N ti+1 - ti tN - ti__--k-

1ki~t) = E t j ) t tN-ti ) t tN-ti ) (k+j),(i+1)( )
j=0 j tN - ti tN - ti

1 < i < N-1, 1 < < N-1, 0 < k - i < L

Proof: This proof is very similar to that of Lemma 3.3 and results from an expansion

of the definition of iLi(t). We have:

Pr[ti < Xk+1 < tk+1, t . ,ti < XN < tNQ L(ti, tN) NQ(t) = k- i,

N(ti, tN) = N - k]
N-k

= E Pr[t < Xk+l <ti+l,..., ti < Xk+j < ti+ti+l, ti+1 < Xk+j+l < tk+j+l, 
j=O

ti+l < XN < tN, QL(ti, ti+l), QL(ti+l, tN), N(ti, ti+l) = j,

N(ti+l,tN) = N - k- jNQ(ti +)= k- i, N(ti, tN) = N- k]
N-k

= S Pr[ti+l < Xk+j+l < tk+j+l,. .,ti+l < XN _ tN, QL(ti,ti+l),
j=o

QL(ti+l, tN), N(ti, ti+l) = j, N(ti+l, tN) = N - k - jlNQ(t+ ) = k - i,

N(ti, tN) = N - k]

The last equality follows because the events NQ(t + ) = k- i and N(ti, ti+l) = j imply

the event ti < Xk+1 < ti+l, . . ., ti < Xk+j < ti+l. Again noting the independence of

events in non-overlapping time intervals in a Poisson process, we get:

N-k

rki (t) = 5 Pr[N(ti, ti+l) = j, N(ti+, tN) = N - - jN(ti, tN) = N - k]
j=o
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x Pr[QL(ti, ti+l)lNQ(t+) = k - i, N(ti, ti+l) = j]

x Pr[ti+l < Xk+j+l < tk+j+l, , ti+l < XN < tN, (ti+l,tN)I

NQ(t-+l1 ) = k - i + j - 1, N(ti+l, tN) = N - k - j]

The first probability above is again a binomial term and contributes to the first three

terms of Lemma 3.4. The second probability above will be 1 as long as k - i (the

number in queue at time t) plus j (the number of arrivals in (ti,ti+l]) does not

exceed L: i.e., as long as j < L - k + i. This is the reason for the upper limit of

the sum in the Lemma. Finally, consider the last probability. Most of the time, this

probability is just (Lk+j),(i+l)(t). However, in the special case when k = i and j = 0,

that probability becomes Pr[ti+l < Xi+1 < ti+l,.... ], a probability that should clearly

be 0. As long as we make the following definition:

i,(t)_ 0, k-i < 0 (15)

then Lemma 3.4 holds for all cases stipulated. I

Hence, we first set j/ N(t) = 1, as given by Equation 14. Then we proceed to fill

in columns from right to left, using Equations 14 and 15, and Lemmata 3.2 and 3.4.

Again, as in the case of the &L-matrix, the only computations that need be done are

in a band of the lower triangular half of the matrix: i.e., in each column, we calculate

at most L values, and each of these calculations involves at most L computations

from the column to the right. Finally, there are a total of N columns: hence, the

overall algorithm for determining all the elements of the iL-matrix is O(NL2 ).

The next step is to generate the kLi(t)'s using the &L(t)'s and the Vii(t)'s. First,

/N3i(t) may be found by the following Lemma, which is proved in a manner similar

to the proofs of Lemmata 3.3 and 3.4.

Lemma 3.5

0, 1 <i<N-L

NiN(tN = ti (t) N&L-Li <
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Proof:

/3i(t) P- r[XN < tIQL(O tN), (t),N(tN) = N]
Pr[X1 tl,...,Xi < ti,...,XN < t, QL(O, tN)IN(tN) = N]

Pr[QL(O, tN), O(t)lN(tN) = N]

= L() Pr[Xl < tl, ... ,Xi ti, ... ,XN < ti, L(, ti), QL(t, tN),
&NVN(t )

N(ti) = N, N(ti, tN) = OIN(tN) = N]
1

L (t) {Pr[N(ti) = N, N(ti, tN) = OIN(tN) = N]

x Pr[X1 < t,..., Xi < ti,...,XN < t,QL(O,ti)IN(ti) = N]

x Pr[QL(ti,tN)INQ(t+ ) = N- i,N(t,tN) = O]}

O, l<i<N-L

= ( t )N i(t) N- L < i < N
tN (>N( )

Note that the values of i for which Li(t) = 0 are those for which a&i(t) = 0, which

are found from Lemma 3.1. I

Lemma 3.5 allows us to generate the bottom row of the /3L-matrix. As in the case

of the p-matrix of Section 2, /3kL(t) = 1 for k < i. To find PkL(t) for k > i, we use the

following Lemma, which is also proved in a manner similar to those preceding:

Lemma 3.6

ki(t) = (k+),i(t) L (t) ) ( N (t)
-N ) k N tN

1 i < N-2, 1 < k < N-1, 0 < k - i< L

Ok3i(t ) = 0, 1 <i, k<N, L<k-i <N-1

Proof:

k/(t) - Pr[Xk • tiQL(O, tN),O(t),N(tN) = N]

Pr[Xk+l < tiIQL(O,tN),O(t),N(tN) = N] +

Pr[Xk < ti,Xk+l > tilQL(OtN), O(t),N(tN) = N]

11
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Clearly the first probability above is just /(L+l),i(t) . We now expand the second term

above, calling it "Term 2:"

Term 2 = Pr[Xk < t, Xk+l > ti, QL(O, tN),O(t)IN(tN) = N]

Pr[QL(O,tN), O(t)IN(tN) = N]
1

&- N(t) Pr[Xi < tl,...,Xi < t,...,Xk < ti,

ti < Xk+l < tk+l, .. , ti < XN < tN, QL(O, ti),

QL(ti, tN), N(ti) = k,N(ti,tN) = N - kIN(tN) = N]
1

- N(t) Pr[N(ti) = k, N(ti, tN) = N - kN(tN) = N]

X Pr[Xi < t,... ,Xi < t,... ,Xk < ti, QL(O, ti)IN(ti) k]

x Pr[ti < Xk+l < tk+l, .. .,ti < XN < tN, QL(ti,tN)I

NQ(t +) = k - i,N(ti,tN) = N - k]}

Again, the last equality above arises from the independence of events in non-overlap-

ping time intervals in a Poisson process. The first probability above gives rise to the

second, third, and fourth terms of "Term 2" in the Lemma; the second probability is

just L k(t); and the third is 0i (t). The values of k - i for which L (t) = 0 are the

same as those for which &Li(t) = 0 and are found from Lemma 3.1. I

We now provide the following two definitions, which simplify the computational

effort of filling in the OiL-matrix:

ak(t) (t) () (16)

L/i(t)- kL(t N - t - (17)

With these two definitions, Equation 11 and Lemmata 3.1 and 3.3 become:

al(t)= t ) 0 -1 < L (18)

acLi(t) = 0, k-i>L (19)

2<< kti<- ti-1 L aki~ = ( )-( t ) a(k-)(i_1)(t)'

2 < i < N, 2 < k < N, O < k-i < L (20)
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Also, Equations 14 and 15 and Lemmata 3.2 and 3.4 become:

L () 0, l <i<N-L (21)
1, N-L<i<N

Li(t) = 0, k-i<Oork-i>L (22)

n(N-k,L- k+i) (t+ t

j=o , tN +'+(t'

1 < i < N-1, 1 < k < N-1, O < k-i < L (23)

Finally, Lemmata 3.5 and 3.6 become:

0, <i<N-L
f i(c) i cNi(t)< (24)

L
L(t)= L (t)+ (N) (t)(t) 

1<i< N - 2, 1<k<N-1, O< < k-i < L (25)

kLi(t) = 0, <i, k<N-1, k- i>L (26)

We now have a complete method for determining the OL-matrix, which we call

the QIEL algorithm. We first generate the aL- and qL-matrices (each of which is

O(NL2 ) to compute); and then we multiply elements of those matrices to generate

elements of the lL-matrix. There are N columns of the flL-matrix to be filled in;

each of these columns has at most L - 1 elements to be calculated; and each of these

elements requires a single computation: hence, computation of the /3L-matrix, after

computation of the other two matrices, is O(NL), and the computational complexity

of the QIEL algorithm is O(NL2 ).

Because of the computational savings of the QIEL algorithm, one might wish

to use it, even if no maximum queue length data were available. Specifically, one

can view the QIEL algorithm as an approximation to the exact QIE algorithm, an

approximation which disregards large-queue events. For long congestion periods, one

can choose relatively modest values of L (on the order of 10) and still get results that
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are very close to the exact QIE results. Computational data, comparing the exact

QIE to the QIEL algorithm (used as an approximation) are presented in Section 5.

Also presented there are comparisons of the QIE to the QIEL algorithm, when the

maximum queue length data are actually available.

4 Addition of Partial Queue-Length Information

to Transactional Data

The QIEL algorithm discussed in the last section raises the following interesting issue.

Suppose that the queue actually had some sort of sensing mechanism, for example

a pressure-sensitive mat placed at position M in the queue, such that we would be

able to detect all queue transitions from M - 1 to M, as well as all transitions from

M to M - 1. Here, we ignore the transients of customers stepping over the mat just

to achieve a position in queue which is less than M. We also assume that there is

no queue transit delay: that is, when a customer leaves the queue to enter service,

the entire queue immediately shifts forward one position. Then, for a congestion

period during which no transitions are observed, we have exactly the situation in

the previous section, with M = L + 1: the mat information allows us to discard the

large-queue events which we know did not occur.

For a congestion period during which mat transitions are observed, we clearly

have new information at the points of transition and so should be able to use this

information to improve the QIE performance. In addition, because the state of the

queue is known exactly at the points of transition, we may break the congestion period

down into "congestion period partitions" and analyze each of these separately, thereby

significantly reducing the complexity of the computation. Specifically, assume, as

before, that t 1, t 2 ,... , tN are the times of service commencement for customers 1

through N. Now define a mat cycle as any period of time during which the mat is

continuously depressed. Similarly, define a non-mat cycle as any period of time within
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a single congestion period between two mat cycles. Say there are C mat Cycles during

the congestion period, with C > 0 (hence, there are C- 1 non-mat cycles whenever

C > 1). Then define d, d2 ,..., dc as the times at which the mat is depressed; and

define r,r 2 ,...., rc as the times at which the mat is released. Note that any given

mat release time must coincide with one of the ti's. Figure 1 provides an example

of a congestion period which has N = 12 customers who must wait in queue, with a

mat position at M = 3, and two mat cycles (C = 2).

Whenever C > 0, the congestion period can be broken down into 2C +1 congestion

period partitions, each of which must be one of four distinct types. The first type of

congestion period partition comprises the time (0, d1], i.e. the time from the beginning

of the congestion period until the first time that there are M customers in queue (there

must be at least M - 1 arrivals prior to time d1). The second type of congestion

period partition comprises the time (dj, rj], j = 1,..., C, a single mat cycle. This is

the time between any depression of the mat and the subsequent release. Note that

the queue can grow to any size greater than or equal to M during this congestion

period partition. The third type of congestion period partition comprises the time

(rj, dj+l], j = 1,...,C - 1, a single non-mat cycle (this type exists only when C >

2). This is the time within a single congestion period between any mat release and

subsequent depression. The queue length can be anything between 0 and M- 1

during this congestion period partition, although no server may be made idle, as this

would cause the end of the congestion period. Finally, the fourth type of congestion

period partition comprises the time (rc, tN], i.e. the time between the end of the last

mat cycle and the end of the congestion period. Including tN, there must be at least

M - 1 departures during this congestion period partition, to empty out the M - 1

customers who are in queue at time r +. Again looking at Figure 1, because there are

two mat cycles (C = 2), there are two type 2 congestion period partitions, and one

each of types 1, 3, and 4.

We now proceed to analyze each of these four types of congestion period partitions
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ti = service commencement time of i-th customer to arrive during congestion period (i = 1, 2,...,12)
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Figure 1: Sample Function for a Congestion Period with N = 12, M = 3, and C = 2.
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separately. As we analyze each congestion period partition, we will be partially filling

in another /3-matrix, this one with entries /j(t), where

Ski (t ) _ Pr[Xk < t-IO(t), N(tN) = N, M]

Here, M is used to denote the mat data, as contained in the telegraph wave, such

as that depicted at the bottom of Figure 1. Finally, we discuss how to complete the

/M-matrix and how to use it and additional mat information to derive the new queue

statistics. We call this new algorithm which uses the mat data the QIEM algorithm.

4.1 Type 1 Congestion Period Partition Analysis: from 0

in Queue to M in Queue

During the type 1 congestion period partition, which runs over the time interval

(0, d1], we know that the queue length is less than M until the instant d1, at which

time the queue length increases from M - 1 to M for the first time. This is similar

to the situation we had with the QIEL algorithm, i.e. we are given that the queue

length does not exceed a specified value during a given period of time. We make use

of an artificial bulk departure of the M -1 customers in queue at time d1 to complete

the analogy in the following manner. Suppose that, rather than having an arrival at

time d, we have M - 1 departures, with the subsequent departure after dl causing

the creation of an idle server and hence the end of the congestion period. An analysis

of this congestion period, using the QIEL algorithm with L = M - 1, provides us

with the probabilities of the various ways the Poisson arrivals could have occurred

over the time interval (0, di] while still obeying the queue length constraint and the

usual arrival time inequalities, which is exactly what we are looking for.

Specifically, say there have been N1 departures during the time interval (0, d),

i.e. tN1 < d1 but tN+l > di. Also, let L = M - 1. Then we define the vector

17



r ( 1,72, .. rN+L) as follows:

tj =1,2,..., N

dl j = N1 1,...,N +L

If we now do a QIEL analysis on a congestion period with total number of customers

equal to N1 + L, departure times T1, T2,..., rTN+L, and maximum queue length of L,

then we have:

Lemma 4.1

PkM(t)= /3ki() 1 i < i<N, 1 < k < N1 + L

Proof: This is most easily seen by writing out the two definitions.

kM(t) = Pr[Xk tX 1 , X < t 2,...,XN < tN, N(tN) = N,M]

The mat data tell us several things:

· N(d)= N L

* NQ(t)< L, O <t < d

* XN 1 +1 < XN 1 +2 <'. < XN+L < dl

* XN1 +L+1 = dl

dl < XN+L+2 <...< XN

But we are looking for the probability that Xk < ti, for i < N1 and k < N + L.

Given the exact number of arrivals which occurred prior to time dl (the first item of

mat data above), the times of subsequent arrivals (the events defined in the last two

items of mat data above) are independent of the event Xk < ti. Hence we have the

following:

/kM(t) - Pr[Xk tilNQ(t) < L, 0 < t < d, X < tl,... ,XN 1 < tN1,

XN +1 < dl, ... , XN1 +L < dl, N(dl) = N + L]

= Pr[Xk < rTiQL(O, rN+L), O(r),N(rTN+L) = N 1 + L]

- ki(r), 1 < i < N1, 1 < k < N1 L I
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Although the QIEL algorithm may be used directly to calculate the /3L(r) values,

a modified version saves some amount of computational effort. First note that, since

we only use values of Pi(-r) which have i < N 1, then we need not compute the

full (N1 + L) x (N 1 + L) matrix. Since computation of one column of a 3L-matrix

is independent of computation of any other column, we compute only the first N1

columns. (Actually, because of the definition of r, all elements of the last L columns

are 's and so would not require additional computation anyway.)

Second, because TN,+ = TN,+2 = ... = rTN+L, many elements of the caL-matrix

and the r7L-matrices may be filled in without any computation. Specifically, for the

case of the aL-matrix, we have:

Lemma 4.2 tk(r) = ,((+l)(r), k > N1, i > N 1, k i.

Proof: When k > N 1 and i > N 1, we have

() _- Pr[X < T,. · ,XN1+ 1 < TNi+ i,1i i .. ,X < i, ..... ]

= Pr[X < ,... ,XN 1 +1 < dl, .. ,X i < dl,..,Xk < dl, ... I ... ]

aL= ak,(Nl+l)(r) I

Hence we need only compute the first N1 columns of the a L-matrix, plus the last

element of column N1 + 1, which is a(N+L),(N)( ) = L(N1 ±L),(N +i)(i-) = ya(N+L),(N1 L)(r), since those

are the only values needed to fill in the first N 1 columns of the 3L-matrix (see Equation

25).

Finally, consider the r1L-matrix. Note that Equations 21 and 22 still hold. Now,

however, for the last L columns of the matrix we have:

Lemma 4.3 L/(r)= 0, N i+ < i < N + L, 1 < k < N 1 + L-1

Proof: We already know that L(r) = 0 for k < i, from Equation 22. When k > i

and i > N 1, we have that:

L i(r) = Pr[7i < Xk+l < k+l,...I...]
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= Pr[dl < Xk+l < dl,... ... ]

=0 U

Hence, we fill in the bottom row of the r/L-matrix using Equation 21, and then we fill

in the last L columns with zeroes. Finally, we use Equations 22 and 23 to fill in the

first N1 columns, and we are done.

Note that these modifications to the QIEL algorithm do indeed save some compu-

tational effort. Because we actually do computations in only N1 columns of the three

matrices, the overall computational complexity for this modified type 1 congestion

period partition analysis is O(N1 L2 ), rather than O((N1 + L)L 2 ) in the unmodified

case.

4.2 Type 2 Congestion Period Partition Analysis: A Single

Mat Cycle

This type of congestion period partition runs over the time interval (di, rj], 1 < j <

C. There are no restrictions on queue size during this congestion period partition,

except that it be greater than or equal to M, which suggests that some modification

of the standard QIE algorithm be applied. Specifically, consider our original queue-

ing system, with a waiting room added for the first M people in queue; additional

customers must wait outside. A "congestion period" for this new system begins when

the waiting room becomes full (this occurs at time dj in the original system, when the

queue length goes from M - 1 to M). The congestion period terminates when there

is again space in the waiting room (this occurs at time rj in the original system, when

the queue length goes from M to M - 1). Analysis of this new congestion period,

using the original QIE algorithm, gives us the desired arrival time probabilities, as

described below.

Say that there have been exactly D2 departures up to time dj, and say that there

are N 2 departures during the time interval (dj, rj), not including the departure which
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occurs at time rj. Hence we have tD2 < dj, dj < tD2+1 < tD2+2 < ' < tD2+N2 < r,

and tD2 +N2 +l = rj. Now define the following quantities:

i -= tD 2 +i-dj, i = 1,2,...,N2

Xk - Xk+D2 +M-dj, k=1,2,...,N2

Then we have the following:

Lemma 4.4 3(kD 2+M)(D 2 +i)(t) = /i(r), k = 1,2,..., N 2, i = 1,2,..., N2

where the prime on pi(r) indicates that it is defined in terms of X 's rather than

Xk S.

Proof: Again we write out definitions. We have:

i(k+D2 +M),(D 2+i)(t) = Pr[Xk+D2+M < tD2+lO(t), N(tN) = N, M]

The mat data tell us the following:

* N(d)=D 2+ M

* N(rj) = D 2 +M+ N 2

* NQ(t) > M, d < t < rj

* X1 < X2 < - < XD 2+M = dj

* dj < XD 2+M+i < tD 2+i, 1 < i < N 2

* rj < XD 2 +M+N2+1 < ...- < XN

The second-to-last item above is derived from the queue length constraint: in order

to have at least M in queue after the (D 2 + i)-th departure, there must have been at

least D2 +- M + i arrivals by that time. So we may continue:

/(k+DP+M),(+i)() = Pr[Xk+D2+M < tD 2 +ildj < XD 2+M+1 < tD2+1,...,

dj < XD 2+M+N2 < tD2 +N2 ,N(dj,rj) = N 2]

Pr[X < ri Xl < rT1 , ., XN2 < N2 ,N(TN 2 ) = N2 ]

= ; i(T), k =l, 2,..., N 2, i=1,2,...,N2
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The first equality above results because the arrival times in question are known to have

occurred between dj and rj, and hence are independent of events occurring prior to dj

or after rj. The second equality above results after subtracting dj from all times. Note

that the conditioning data not only tell us that N(dj, rj) = N(dj, tD2+N2+1) = N 2 , but

also that N(dj, tD2+N2) = N 2: i.e., in order for the queue length to decrease from M

to M -1 at tD2+N2 +l, given that NQ(t 2+N2 ) > M, there must have been exactly zero

arrivals in (tD2 +N2, tD2+N2 +1]. Finally, the third equality results from the definition of

d(r). I

Hence, application of the original QIE algorithm to the type 2 congestion period

partition fills in another portion of the 3M-matrix. Note that, for N > M, one

of these congestion period partitions could be very long, and hence its concomitant

standard QIE analysis, with computational complexity of O(N2) could be computa-

tionally burdensome. Of course, it is always possible to apply the QIEL algorithm

(used as an approximation) to any type 2 congestion period partition analysis, which

would result in less accuracy but would reduce computational effort.

4.3 Type 4 Congestion Period Partition Analysis: from M

in Queue to 0 in Queue

We discuss this before the type 3 congestion period partition, because the type 3

analysis is in some sense a combination of the type 1 and the type 4 analyses, and

is thus better discussed after a description of the other two. The type 4 congestion

period partition runs over the time period (rc, tN]. We assume that there have been

exactly D 4 departures up to and including time rc, i.e. tD4 = rc. We also assume

that there are N 4 additional departures in the time interval (rc,tN], i.e. N = D 4 +N 4 .

We know that at time rc, the queue length drops from M to M - 1, and hence, at

time r+, there are exactly M - 1 = L customers in queue. We also know that at time

t + , there are exactly 0 customers in queue. Hence, there are exactly N 4 - L arrivals

during the time interval (rc, tN]. Now, we know that during this congestion period
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partition, the queue length never exceeds L customers: because of this queue-length

constraint, we make use of a modified version of the QIEL algorithm, this time by

introducing an artificial bulk arrival of L customers at time rc.

First we introduce some new definitions. The following two definitions allow us

to shift all times back to the origin:

ri - tD4+i- rc, i = 1,2,...,N 4

Xi - XD4+L+k - rc k = 1,2,...,N4-L

That is, the X~'s are just time-shifted versions of the arrival times of the last N 4 -

L customers to arrive during the congestion period. Now we assume that at time

r = 0, a congestion period was initiated by an arrival, and at time r = 0+, we

had L additional arrivals, causing the queue length instantaneously to grow to L.

Specifically, if Y1,Y 2,...,YL represent the arrival times for these customers, then

Y 1, Y2,. .. , YL are deterministic, with

= 1 for = 0+, k = 1,2,...,L (27)
Pr[Yk = T] = 1 ' (27)

0 otherwise

Finally, we define the following:

Y k k = 1,2,... L

X- L k =L+1,..,Nq

We now proceed in a manner parallel to that used to derive the fL-matrix in Section 3,

except that the Zk's represent the arrival times (rather than Xk's), the ri's represent

the departure times (rather than ti's), N 4 represents the size of the congestion period

(rather than N), and finally, a, r, and : are replaced by their roman equivalents (a, h,

and b).

First consider the quantity L (Tr), which is completely analogous to L (t), but

defined in terms of Z's rather than X's:

(ki() = Pr[Zi < T1 ,...,Z i < Ti,...,Zk < QL(, ri)N(ri) = k], k > i
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We still have that

ai(7)= 0, k- > L

by the identical reasoning used to prove Lemma 3.1. We also have the following:

Lemma 4.5 Zi(r) =1, 1 < i < k < L

Proof: When k < L, Li(r) = Pr[Y1 < Y,... , Y < r.. .,Y< r, QL(O, ri)N(ri) =

k]. But since the Yk's all occur deterministically at r = 0+ , then these probabilities

will be 1. I

Hence, the first column of the ii-matrix consists of L ones followed by N 4 - L

zeroes. The recursion formula for finding the remainder of the ai(r) values is given

by the following:

Lemma 4.6

akL~q. )min(k-i+1,k-L) ((Tl~k-j-L

L= k L) (T (Ti Ti ),(

L<k< N4 , O<k-i<L

Proof: The proof is almost identical to that used in proving Lemma 3.3 and so will not

be reproduced here: rather, the differences in the proofs will be highlighted, assuming

that we replace the Xk's with Zk's, the ti's with ri's, and N with N 4 . First, consider

Equation 12: since for the first L values of k, Zk is deterministic and occurs at T = 0+,

then Pr[..., ri-1 < Zk-j+l < Tri,..., I .. ] will be zero whenever k - j + 1 < L. Hence,

the upper limit of the sum is set to the minimum of k - i + 1 and k - L. Now consider

the first probability in Equation 13. Since L of the k arrivals to occur during (0, ri]

are deterministic, then we are looking for the probability that the remaining k - L

Poisson arrivals are distributed between the two time intervals such that k - j - L of

them occur in (0, r-1_] and j of them occur in (i-, ri]. This probability is found by

replacing k with k - L in the combination term and in the exponent of the first time

ratio. The rest of the proof follows that of Lemma 3.3 exactly. I
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Finally, we make the following definition which will simplify later computations:

, L, k-L

~L(r L(r IiL<k<N 4 , O<k-i<Laki , L < k < N4, 0 < k- i < L

This definition allows us to simplify Lemma 4.6 to the following:

aL ()r) k- L Ti T-r_1 a)k-L'(i )
j=0 .7 TN4

L < k < N 4, O < k-i < L

Next we consider the equivalent quantity to L (t), namely hLi(r). (See Equation

9.) Because hLi(r) defines probabilities of arrivals in (i, TN 4], it will be zero whenever

k + < L. Other than that, hLki(r) calculates probabilities only of Poisson arrivals

and so is identical to 0i(t). We may convert h(r) to hLi(r) in the same manner as

that used in Equation 17. Having done so, the following summarizes the calculation

of the values of hki(r):

hL4,i ( ) 0, 1 i < N 4 -L
1, N 4 -L < i < N 4

hL(7) =in(N 4 ,L-k+i) 

j=o ( J ) ( )N4

L < k < N 4 -1, O _< k- i < L

hLi(r) = 0, otherwise

Finally, we come to the calculation of bL(r), which we will ultimately use to fill

in the bottom right-hand corner of the /M-matrix. Recall that bLi(r) is completely

analogous to /L(t), but defined in terms of Zk's rather than Xk's:

bkL() - Pr[Zk < TiIQL(O,rN4 ),Z1 < T1,. . . ,ZN4 TN4 ,N(N4 ) = N4],

1 < i < N 4, 1 < k < N 4

That is, the only difference is that, in the case of bkLi(r), L of the arrivals are deter-

ministic and occur at time r = 0+; only the remaining N 4 -L are Poisson arrivals over
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the interval (0, TN4 ]. Now we would like to use the a(ri's and h (r)'s to calculate

the b'k(r)'s. First, note that:

bi ()=1, k < L (28)

This is because any Zk with k < L is a deterministic arrival at time T = 0+: hence the

probability that it occurs before any ri > 0 is 1. In order to calculate bL(r) for k > L

we follow exactly the technique used the technique used to calculate (t), which begins with Lemma

3.5. We replace t by , X by Z, N by N 4, a by a, by h, and : by b. Otherwise,

the following are the only changes made in the derivation:

* in Lemma 3.5, the exponent of the time ratio is N 4 - L;

* and in Lemma 3.6, the combination and first time ratio are replaced by:

N4- L tri -L

k -L N4

Both of these items result because we are only choosing among the N 4 - L uniform

random variables, to determine the probability that exactly N 4 - L of them (in the

case of the first item above) or k - L of them (in the case of the second item) will

occur prior to time i. After converting a's to a's and h's to h's, the following is our

final form for b (·r):ki(

bL4,i() = aL N 4 -L < i < N 4
N4 ,N4 (r

bk(r) = O, 1i, k< N 4 , k-i > L

bL i - L aLi(r)hLi(r )
= bk 1 ),i() +,- a N4,N () ( -N4 L 

L < k < N 4, 0 < k-i< L

bkL() = 1, otherwise

Finally, we show how to use the b L(r)'s to fill in another portion of the /3-matrix,

as given in the following Lemma:
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Lemma 4.7

+,+(t) = bL (),L < k < N4, 1 < i < N 4

Proof: First write out the definition:

/l(D 4+k),(D 4+i(t) = Pr[XD4+k < tD 4 +i IO(t), N(tN) = N, M]

But the mat data tell us the following:

* N(rc) = D4 + L

· NQ(r5) = L

* NQ(t) < L, rc < t < tN

* X1 < X 2 < . < XD4+L < rc

* rc < XD 4 +L+1 < '''< XD4+N4 = XN

Since we are only considering cases for which k > L, we may rewrite the definition

above, incorporating the mat data, as follows:

/(D 4 +k),(D 4+i)(t) = Pr[XD4 +k < tD 4 +ilNQ(r ) = L,QL(rC,tN),

rc < XD4+L+1 < t D4 +L+1, ... rc < XN < tN,

N(rc, tN) = N 4 - L]

Now if we time-shift everything by rc and substitute r's and Z's for t's and X's, we

get:

/(D 4 +k),(D4 +i)(t) = Pr[Zk < TlQL(O, TN 4 ),Z1 < 1 , .. ,ZN 4 < TN 4 ,N(TN 4 ) = N 4 ]

= b k(r), L<k < N 4, < i < N 4

Note that in the expression above, we have N(rN4) = N 4, since we are counting both

the Poisson arrivals and the deterministic arrivals which occurred at r = 0+ . I

Because we calculate bi(r) for values of i between 1 and N 4, and hence we must

also calculate a k(r) and hki(r) for these values of i, the overall computational com-

plexity of the type 4 congestion period partition is O(N 4 L2 ).
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4.4 Type 3 Congestion Period Partition Analysis: A Single

Non-Mat Cycle

During the type 3 congestion period partition, which runs over the time interval

(rj, dj+l], 1 < j < C - 1, there are many constraints. First, we know that at time

r +, there are exactly M - 1 = L customers in queue. Second, we know that between

rj and dj+l, there are no more than L customers in queue. Also, we know that no

server is made idle over the same time period (although we may have 0 in queue).

Finally, we know that at time d-+l, there are exactly L customers in queue again.

Because the maximum queue length constraint applies, we again use a modification

of the QIEL algorithm. This time the modification will comprise both an artificial

bulk arrival of L customers at time rj and an artificial bulk departure of L customers

at time dj+1 .

Specifically, assume there have been exactly D 3 departures up to and including

time rj, i.e., rj = tD3 . Also assume that there are a total of N3 additional departures

during the time interval (rj,dj+l], i.e. tD3 +N3 < dj+l, but tD3+N 3 +1 > dj+l. Now

define r to have components as follows:

7 '- tD3+i- rj, i = 1, 2,..., N3
dj+l - rj, i = N3 1,..., N3+ L

Finally, define Z to have the following components:

Z | Yk, k = 1, 2,..., L
Xk-L = XD 3+k-rj, k = L + 1,...,L + N 3

Here, Y1, ... ,YL are defined exactly as in Equation 27: i.e., they are deterministic

random variables, occurring at time r = 0+ with probability 1.

With these definitions, then, we have the following:

Lemma 4.8 i(D3+k),(D 3+i)(t) = b (T), L < k < L + N 3, 1 < i < N3

Proof: First, we must rewrite (D3+k),(D 3 +i(t), incorporating the mat data, which

include the following information:
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* N(rj) = D 3 + L

*· NQ(t) < L, rj < t < dj+

* rj < XD3 +L+1 < '''< XD3 +L+N 3 < dj+

* XD 3+L+N 3+1 = dj+l

* dj+l < XD 3+L+N 3 +2 <''' < XN

Now we expand (D3 +k),(D 3+)(t), using the above, and then subtract rj from all times:

1(¾ 3 +k),(D 3 +i)(t) = Pr[XD+k < tD3 +iNQ(r+ ) = L,

NQ(t) < L, rj < t < dj+l, rj < XD3+L+k < dj+l, 1 < k < N3 ,

O(t),N(rj, dj+l) = N31

= Pr[Zk < TrilQL(O, N3 ),Z1 < rl,...,

ZN3 +L < TN3+L, N(rN3 +L) = N 3 + L]

= bL (T) I

Because of the bulk departure artifice used here and the resultant set of identical

service times at the end of the congestion period partition, we may make simplifica-

tions, parallel to those made in Section 4.1, in our calculations of the aL-matrix and

the hL-matrix. These simplifications follow exactly those given in Lemmata 4.2 and

4.3 and so are not repeated here. The simplifications result in an algorithm for the

type 3 congestion period partition which is O(N3 L2 ).

4.5 Completion of the /3M-Matrix

We have shown how to fill in many parts of the ,3-matrix by analysis of congestion

period partitions. Filling in the rest of the matrix is easily accomplished in the man-

ner described in this section. First, let N1 and N 4 be the number of departures in

29

__ ________Yli__llWY__^-lll�-L·�·--ll_ I-^_lll-LII^.�I�I�II···1�---^11_.1-



congestion period partition types 1 and 4, as described in sections 4.1 and 4.3. Also,

let N2i (i = 1, 2, ... , C) and N3 j (j = 1, 2,..., C-1) be the number of departures dur-

ing the i-th type 2 congestion period partition and the j-th type 3 congestion period

partition, as described in sections 4.2 and 4.4 respectively. Similarly, define D2 i, D3 j,

and D4 to be the total number of departures prior to the indicated congestion period

partition, as described in sections 4.2 through 4.4.

Although a standard -matrix has N rows and N columns, we define the ex-

panded fl-matrix to include 2C additional columns, one each for d- and for d+ (i =

1, 2,..., C). This is done in order to convey all of the information we have about

the arrival times X1 , X 2,... , XN. We know explicitly that, for example, Pr[XN+M <

dI . .. ] 0, but Pr[XN1+M < d...] = 1. Specifically, we add two columns, d- and

d +, between the columns representing tD2, and tD2 +l (i = 1, 2, ... , C), thereby main-

taining the time order of the columns of the matrix (since we know tD2 i < di < tD2 +l).

Now we may proceed to fill in the entire expanded /3M-matrix.

Lemma 4.1 allows us to fill in the upper (N1 + M - 1) x N1 corner of the /3 -

matrix. The next column, representing time dl, has (N 1 + M - 1) 's and the rest

O's; while the column representing time d+ has (N1 + M) 's and the rest O's (for the

reasons argued in the previous paragraph). The following lemma should be obvious:

Lemma 4.9 A 1 in the expanded /3M-matrix in position [k, ] generates 1's in posi-

tions [m, n] where m k and n > 1. Similarly, a 0 in position [k, ] generates O's in

positions [m, n] where m > k and n 1.

Proof: If Pr[Xk < r1i...] = 1, (where r represents the time corresponding to the

l-th column of the matrix, i.e. either a ti,d-, or d) then, when m < k, we have

Xm < Xk, and hence Pr[Xm < i...] = 1. Then, Pr[Xm < rn ... ] = 1, too, for n > I

(i.e. when mr is a later time than T). The proof for the O's is identical to the above.

I

Hence, we fill in with O's everything in the first N 1 columns which has not already

been completed. Then, we fill in with 's everything in the first N1 + M rows which
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has not already been completed. The upper left-hand corner of what remains is then

filled in via Lemma 4.4, specifically the entries corresponding to 34(21+M+l),(D 21+1)(t)

through /(D 21+M+N2 l),(D 2 l+N2 l)(t) in the non-expanded #3-matrix. The next column

represents rl = tD2 1 +N21 +1. It has (D21 + N2 1 + M) l's and the rest O's: hence, again

we may fill in everything below the sub-matrix that was just filled in with O's, and

everything to the right of that sub-matrix with l's. Then, we again fill in the upper

left-hand corner of what remains, this time via Lemma 4.8, specifically the entries

corresponding to D3+M 3+(D31+M-l+N 3 ),(D 31+N3 1 )(t) in the non-

expanded 3M-matrix. The next two columns in the expanded matrix represent d2

and d +, and are filled in with (D 31 + M - 1) 1's and the rest O's, and (D3 1 + M) l's

and the rest O's, respectively, which again allows us to fill in under and to the right

of the sub-matrix just completed. This process continues until the last mat cycle, at

which point the remainder of the expanded 3M-matrix is filled in via Lemma 4.7. An

example of this filling-in procedure is provided in Figure 2.

Once the expanded matrix is completely filled in, its values may be used to gener-

ate queue statistics. This is done in a method similar (but not identical) to that used

in [Lars 90]. As before, N(t4) is calculated by adding up all of the values in the col-

umn of the /3-matrix corresponding to ti. We also know that N(dj) = D 2j + M- 1

and that N(dj+) = D 2 j + M (this may also be found by adding up the values in the

columns corresponding to d.- and d +). To find NQ, note the following:

NQ(ti-) = N(ti)-i + 1

NQ(t N(ti)- i

NQ(dj) = M-1

NQ(d+) = M

Then let r represent both the ti's and the dj's, ordered according to time (i.e., T1 =

tl,..·,WD21 = tD 2 ,7TD2 +l1 = dl,rD2 1 +2 = tD 2 l+l1,... ). As in [Lars 90], NQ(t) is linear

between the values calculated at the ti's and dj's. We may then calculate the time-
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average queue length as the area under NQ(t), divided by the total congestion period

time:
Zi=i )(Q(§ ) + NQ (Tt,)

NQ tN i( 2 -)

where T0 is defined to be 0. The average wait in queue is then found to be:

tN-
WQ = NNQ

Incidence probabilities and fQ, the average queue length experienced by a randomly

arriving customer, are calculated exactly as in [Larson].

5 Computational Results

We include here results from simulation of an M/M/1 queue. These data were gener-

ated by a simulation run with Poisson arrivals at rate 10 per hour, a single server, and

exponential service time with expected value of 3 minutes (giving a value of p = 0.5).

The first subsection below contains results which pertain to Section 3. We compare

the QIEL algorithm to the standard QIE algorithm, both for the case that the maxi-

mum queue length data are available, and for the case that the data are not available

and the QIEL algorithm is used as an approximation to the exact QIE algorithm.

The second subsection below contains results which pertain to Section 4. We com-

pare the QIEM algorithm to the standard QIE algorithm and also consider the effect

of moving the mat to different positions. The statistics that are used for comparison

of the various algorithms include: NQ, the time-averaged number of customers in

queue; WQ, the average wait in queue; and , the time-average error, defined to be

the absolute area between the actual queue length graph and the QIE expected queue

length graph, divided by the total time of the congestion period. The run times to

generate the beta-matrix for the different algorithms are also compared. (Runs were

on a 386/387-based Northgate Computer Systems PC: 3000 run times were averaged

to obtain the run times below.)
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5.1 Comparison of the QIE and the QIEL Algorithms

In this section we compare the QIEL algorithm to the standard QIE algorithm. Con-

sider a congestion period with N = 11, as shown in Figure 3, and suppose we are

told that the queue length never exceeded some value L. The figure depicts the ex-

act queue length for the period (which, in fact, never exceeds 3) and, superimposed,

depicts the QIE (or QIEL) expected queue length. As can be seen, the standard QIE

overestimates the expected queue length, while the QIEL estimate with L = 3 is quite

close to the actual data. With L = 5, the QIEL is actually quite close to the standard

QIE output: even though the standard QIE algorithm considers many more possible

events (all those with queue length greater than 5 and less than 12), those events are

of relatively low probability and so do not have much impact on the final expected

queue length. Comparative statistics for these graphs are provided in Table 1.

Algorithm NQ WQ (minutes) Run Time

Used (actual = 1.1161) (actual = 3.7160) (seconds)

QIE 0.9249 1.9230 6.4025 0.080

QIEL, L = 3 0.5309 1.3654 4.5460 0.027

QIEL, L = 4 0.6947 1.6467 5.4826 0.034

QIEL L = 5 0.8293 1.8107 6.0286 0.043

Table 1: Comparison of QIE and QIEL Algorithms (with Max Queue Length Data

Given) for a Congestion Period with N = 11

When we are not given data regarding the maximum queue length but have a

long congestion period to analyze, we may wish to approximate the QIE output by

using the QIEL algorithm. An example of this is presented in Figure 4. These graphs

illustrate the mean queue length as estimated by the QIE algorithm, compared with

the same quantity as estimated by the QIEL algorithm, for two congestion periods

of 18 (left three graphs) and 21 (right three graphs) customers, respectively. We

present these comparisons for values of L of 5, 8, and 10. Note that as L increases,
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Figure 3: Exact Queue Length vs. Mean QIE (QIEL) Queue Length for a Congestion

Period with N = 11: Standard QIE and QIEL with L = 3,4, 5
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Figure 4: Mean Queue Length Estimate for Congestion Period of 18 Customers (Left)

and 21 Customers (Right): Comparison between Exact QIE Calculation and QIEL

Calculation, with L = 5, 8, and 10
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the values of NQ(t) also increase, up to the maximum given by the standard QIE

algorithm. Also note that for L = 10, the QIEL algorithm is very close to the exact

QIE algorithm yet requires considerably less running time. Comparisons of the values

of the time-average queue length, the expected wait in queue, and the running time

for these data are provided in Tables, 2 and 3.

Table 2: Comparison of QIE and 

a Congestion Period with N = 18

Table 3: Comparison of QIE and

a Congestion Period with N = 21

QIEL Algorithms (Used As an Approximation) for

QIEL Algorithms (Used As an Approximation) for

5.2 Comparison of the QIE and the QIEM Algorithms

In Figures 5 and 6 we compare the QIE and the QIEM algorithms. In those figures,

37

Algorithm NQ WQ Run Time

Used (minutes) (seconds)

QIE 2.8649 12.6644 0.404

QIEL,L = 5 2.1541 9.5221 0.084

QIEL, L = 8 2.7703 12.2461 0.167

QIEL,L = 10 2.8568 12.6282 0.235

Algorithm NQ WQ Run Time

Used (minutes) (seconds)

QIE 3.3871 12.0615 0.694

QIEL,L = 5 2.1681 7.7205 0.102

QIEL, L = 8 2.9874 10.6383 0.208

QIEL,L = 10 3.2773 11.6706 0.301
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Figure 5: Mean Queue Length Estimate for Congestion Periods of 14, 13, and 14:

Comparison between Standard QIE Calculation (Left) and QIEM Calculation, with

M = 3 (Right)
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Figure 6: Mean Queue Length Estimate for Congestion Periods of 18, 21, and 12:

Comparison between Standard QIE Calculation (Left) and QIEM Calculation, with

M = 3 (Right)
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we present the six congestion periods with N > 12 in our simulation run, and compare

the standard QIE performance (left set of graphs) with that of the QIEM algorithm,

with a mat added at position M = 3 (right set of graphs). The value 3 was arbitrarily

chosen, although it was a value at which the QIEM algorithm showed a marked

improvement over the QIE algorithm, for all of the congestion periods considered,

the extent of which is detailed in Table 4. Note the considerable improvement both

in accuracy (particularly as evidenced by ) and in running time.

Finally, in Figure 7 we present a comparison of the performance of the QIEM

algorithm, as the value of M varies, for the congestion period of length N = 18. (To

see how the standard QIE algorithm performs on this congestion period, see Figure

4 and Table 2.) As demonstrated by this figure, the values of M which provide the

most accurate prediction of queue length are not necessarily predictable for a single

congestion period. However, it is hypothesized that an optimal mat placement does

exist in an ergodic sense for a queue with specified parameters. The queue statistics

corresponding to this figure are provided in Table 5.
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Figure 7: QIEM Mean Queue Length Estimate for Congestion Period with N = 18

and Mat Placements at M = 1, 2, 3, 4, 5, and 6
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Size of Data e NQ WQ Run Time

Cong. Period Used (minutes) (secs)

Actual - 1.8149 7.4835

N = 14 QIE 1.0962 2.8067 11.5727 0.172

QIEM, M = 3 0.2909 1.8123 7.4727 0.027

Actual - 3.6868 16.8793

N = 13 QIE 1.4417 2.5231 11.5515 0.133

QIEM, M = 3 0.6742 3.2784 15.0092 0.039

Actual - 1.9843 6.5792

N = 14 QIE 0.8015 2.6239 8.6997 0.173

QIEM, M = 3 0.2935 1.8419 6.1070 0.027

Actual - 2.7095 11.9771

N = 18 QIE 0.7426 2.8649 12.6644 0.404

QIEM, M = 3 0.5127 3.0174 13.3384 0.040

Actual - 2.8922 10.2991

N = 21 QIE 0.8013 3.3871 12.0615 0.694

QIEM, M = 3 0.4056 3.1268 11.1346 0.026

Actual - 1.7390 6.1643 -

N = 12 QIE 0.7353 1.8193 6.4488 0.103

QIEAM = 3 0.2582 1.6969 6.0151 0.021

Table 4: Comparison of QIE and QIEM(M = 3) Algorithms for Congestion Periods

with N = 14, 13, 14, 18, 21, and 12
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Table 5: Queue Statistics for QIEM

and M = 1, 2, 3, 4, 5, and 6

Algorithm for a Congestion Period with N = 18
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Mat e NQ WQ (minutes)

Placement (actual = 2.7095) (actual = 11.9771)

M = 1 0.4868 2.5744 11.3802

M = 2 0.4536 2.6432 11.6843

M = 3 0.5127 3.0174 13.3384

M = 4 0.4034 2.5925 11.4599

M = 5 0.6000 2.4720 10.9272

M = 6 0.5528 2.7509 12.1601
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6 Practical Implications and Future Research

As discussed in Section 1, the QIE has many potential practical applications. Its per-

formance could be dramatically improved by the addition of sensor mats, electric eyes,

or some other determinant of M - 1 - M and M --* M - 1 queue transitions. One

problem that immediately presents itself (particularly in the case of human queues) is

how to ensure that person number M in queue is indeed the person who first depresses

the mat; or, to turn the question around, how badly would the QIEM estimates be

thrown off if, say, the (M - 1)-th person in queue were to stand on the mat, rather

than the M-th (as assumed by the algorithm)? This is an issue of sensitivity analysis:

if the algorithm is highly sensitive to which person is standing on the mat, then it

may be preferable to run the standard QIE algorithm (i.e., no information may be

better than bad information). If, on the other hand, the sensitivity is not that high,

then it may still be possible to use the QIEM algorithm, although its performance

will be degraded.

The QIEM algorithm may be particularly useful in a setting in which the Poisson

rate of arrivals varies slowly within a single congestion period, or in which there

is some semi-state-dependent balking. In the first case, since the QIEM algorithm

breaks the congestion period up into several congestion period partitions, then even

if the Poisson rate varies significantly over the entire congestion period, it may be

relatively stable over the course of any congestion period partition. Similarly, say that

the system experiences balking such that the probability of a customer not joining

the queue for queue lengths less than M is P1, and the probability of a customer not

joining the queue for queue lengths greater than or equal to M is P2- In this case, if

the Poisson rate of arrivals is approximately constant with rate A, then during any

type 1, 3, or 4 congestion period partition, arrivals are Poisson at rate Ap1, and during

any type 2 congestion period partition, arrivals are Poisson at rate AP2. If there were

more than two balking rates, then, theoretically, one could add mats to correspond to

the points at which the balking rate changed. This may be a simple way to capture
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the effects of balking on expected queue length.

Another issue that must be addressed in a practical setting is that of queue-length

propagation delays. In a human queueing situation, when a customer enters service, it

takes some time for the entire queue to move forward to take up the slack. If M were

relatively large, then in the analysis of the type 2 congestion period partition, it might

make sense to use the high-frequency information provided by people stepping off and

back onto the mat, as the queue moves forward, in place of the actual service-initiation

times, the ti's. This is because these service initiations might take a significant amount

of time to propagate back to the mat, and analysis based on them may not provide

accurate queue-length estimates.

Several areas of research still need to be addressed. First, as was seen in the

previous section, the placement of the mat for a given queueing situation is critical.

The placement may be optimized in terms of accuracy: i.e., how close do the queue

estimates come to the actual values of those statistics? It may also be optimized in

terms of computational complexity: how do we minimize the amount of computation

to be done in the calculation of the /3-matrix? It is hypothesized that, in terms of

accuracy, there is a single optimal location for the mat, for a given queue. Clearly,

with M = 0 or M = oo, we get zero additional information. It remains to be shown

that, for a given set of queue parameters, the "best" mat location is at a single value

of M.

Finally, the issue of multiple mats must be addressed. That is, say we have partial

queue-length information that includes all M1 - 1 - M1 transitions (and back) and

all M 2 - 1 - M 2 transitions (and back). This should be a fairly simple extension

of the existing QIEM algorithm, since we are simply breaking down the congestion

period further into more congestion period partitions, now with two different sets of

queue constraints. The number of mats to be used could, of course, exceed two; and

the optimal number of mats to use would require a cost-benefit analysis.
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