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Abstract

A convex optimization problem in conic linear form is an optimization prob-
lem of the form

CP(d) : maximize cTx
s.t. b - Ax E Cy

x E Cx,

where Cx and Cy are closed convex cones in n- and m-dimensional spaces X
and Y, respectively, and the data for the system is d = (A, b, c). We show
that there is a version of the ellipsoid algorithm that can be applied to find

an e-optimal solution of CP(d) in at most O (n2 n ((d)ld)) iterations of the

ellipsoid algorithm, where each iteration must either perform a separation cut
on one of the cones Cx or Cy, or must perform a related optimality cut. The
quantity C(d) is the "condition number" of the program CP(d) originally devel-
oped by Renegar, and essentially is a scale invariant reciprocal of the smallest
data perturbation Ad = (AA, Ab, Ac) for which the system CP(d + Ad) be-
comes either infeasible or unbounded. The scalar quantity cl is a constant
that depends only on particular properties of the cones and the norms used,
and is independent of the problem data d = (A, b, c), but may depend on the
dimensions m and/or n.
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COMPLEXITY OF CONVEX OPTIMIZATION

1 Introduction

Consider a convex program in conic linear form:

CP(d): maximize cTx
s.t. b- Ax E Cy (1)

x E Cx,

where Cx C X and Cy Y are each a closed convex cone in the (finite) n-
dimensional linear vector space X (with norm IIxII for x E X) and in the (finite)
m-dimensional linear vector space Y (with norm IIyll for y E Y), respectively. Here
b E Y, and A E L(X, Y) where L(X, Y) denotes the set of all linear operators
A: X - Y. Also, c E X*, where X* is the space of all linear functionals defined on
X, i.e., X* is the dual space of X. In order to maintain consistency with standard
linear algebra notation in mathematical programming, we consider c to be a column
vector in the space X* and we denote the linear function c(x) by cTx. Similarly, for
A E L(X, Y) and f E Y*, we denote A(x) by Ax and f(y) by fTy. We denote the
adjoint of A by AT.

The "data" d for problem CP(d) is the array d = (A, b, c) E {L(X, Y), Y, X*}.
We call the above program CP(d) rather than simply CP to emphasize the depen-
dence of the optimization problem on the data d = (A, b, c), and note that the cones
Cx and Cy are not part of the data, that is, they are considered to be given and
fixed. At the moment, we make no assumptions on Cx and on Cy except to note
that each is a closed convex cone.

The format of CP(d) is quite general (any convex optimization problem can
be cast in the format of CP(d)) and has received much attention recently in the con-
text of interior-point algorithms, see Nesterov and Nemirovskii[12] and Renegar [18],
[19], as well as Nesterov and Todd [14], [13] and Nesterov, Todd, and Ye [11], among
others. In contrast, this paper focuses on the complexity of solving CP(d) via the
ellipsoid algorithm. The ellipsoid algorithm of Nemirovskii and Yudin [10] (see also
[4], [8], and [9]) and the interior-point algorithm of Nesterov and Nemirovskii [12]
are the two fundamental theoretically efficient algorithms for solving general con-
vex optimization. The ellipsoid algorithm enjoys a number of important advantages
over interior-point algorithms: the ellipsoid algorithm is based on elegantly simple
geometric notions, it always has excellent theoretical efficiency in the dimension of
the variables n, it requires only the use of a separation oracle for its implementation,
and it is important in both continuous and discrete optimization [8]. When applied
to solving linear programming, interior-point algorithms typically exhibit superior
practical performance over the ellipsoid algorithm, but that is not the focus of this
study.

Using the constructs of Lagrangean duality, one can construct the following
dual problem of CP(d):

CD(d): minimize bTy
s.t. ATy - E C (2)

y E C,
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COMPLEXITY OF CONVEX OPTIMIZATION

where C} and C are the dual convex cones associated with the cones Cx and Cy,

respectively, and where the dual cone of a convex cone K in a linear vector space
X is defined by

K* = {z E X*IzTx > 0 for any x E K}.

The data for the program CD(d) is also the array d = (A, b, c).

Two special cases of CP(d) deserve special mention: linear programming
and semi-definite programming. Regarding linear programming, note that when
X = Rn and Y = Rm, and either (i) Cx = {x E Rnlx > 0} and Cy = {y E

Rmly > 0}, (ii) Cx = {x E Rnlx > 0} and Cy = {0} C Rm or (iii), Cx = Rn
and Cy = {y E Rmly > 0}, then CP(d) is a linear program of the format (i)
max{cTxlAx < b,x > O,x E Rn}, (ii) max{cT xlAx = b,x > O,x E n}, or (iii)
max{cT x lAx < b, x E Jn}, respectively.

The other special case of CP(d) that we mention is semi-definite program-
ming. Semi-definite programming has been shown to be of enormous importance in

mathematical programming (see Alizadeh [1] and Nesterov and Nemiroskii [12] as

well as Vandenberghe and Boyd [20]). Let X denote the set of real k x k symmetric
matrices, whereby n = k(k+ 1)/2, and define the L6wner partial ordering ">-" on X

as x > w if and only if the matrix x - w is positive semi-definite. The semi-definite
program in standard (primal) form is the problem max{cT x I Ax = b, x >- 0}. De-
fine Cx = {x E X x >- 0}. Then Cx is a closed convex cone. Let Y = Rm and
Cy = {O} c Rm. Then the standard form semi-definite program is easily seen to be

an instance of CP(d).

Most studies of the ellipsoid algorithm (for example, [9], [4], [8]) pertain to

the case when CP(d) is a linear or convex quadratic program, and focus on the
complexity of the algorithm in terms of the bit length L of a binary representation
of the data d = (A, b, c). However, when the cones Cx and/or Cy are not polyhedral
and/or when the data d = (A, b, c) is not rational, it makes little or no sense to study
the complexity of the ellipsoid algorithm in terms of L. Indeed, a much more natural
and intuitive measure that is relevant for complexity analysis and that captures the
inherent data-dependend behavior of CP(d) is the "condition number" C(d) of the
problem CP(d), which was developed by Renegar in a series of papers [16], [17],
and [18]. The quantity C(d) is essentially a scale invariant reciprocal of the smallest
data perturbation Ad = (AA, Ab, Ac) for which the system CP(d + Ad) becomes
either infeasible or unbounded. (These concepts will be reviewed in detail shortly.)

We show (in Section 4) that there is a version of the ellipsoid algorithm that

can be applied to find an e-optimal solution of CP(d) in at most O (n 2 In (C(d)dl))

iterations of the ellipsoid algorithm, where each iteration must either perform a
separation cut on one of the cones Cx or Cy, or must perform a related optimality
cut. The quantity C(d) is the condition number of the program CP(d), and Ildll is
the norm of the data d = (A, b, c). The scalar quantity cl is a constant that depends
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only on particular properties of the cones and the norms used, and is independent

of the problem data d = (A, b, c), but may depend on the dimensions m and/or n.

The paper is organized as follows. The remainder of this introductory section

discusses the condition number C(d) of the optimization problem CP(d). Section
2 contains further notation and a discussion of the "coefficient of linearity" for a

cone. Section 3 briefly reviews relevant complexity aspects of the ellipsoid algorithm,
and reviews a transformation of CP(d) into a homogenized form called HP(d)

that is more convenient for the application of the ellipsoid algorithm. Section 4

contains the complexity results of the ellipsoid algorithm for solving CP(d). Section
5 discusses related issues: testing for e-optimality, the complexity of solving the dual,
the complexity of testing for infeasibility of CP(d), and bounding the skewness of

the ellipsoids computed in the ellipsoid algorithm. Section 6 contains two technical
lemmas that form the basis for the results of Section 4.

The concept of the "distance to ill-posedness" and a closely related condition
number for problems such as CP(d) was introduced by Renegar in [16] in a more
specific setting, but then generalized more fully in [17] and in [18]. We now describe
these two concepts in detail.

We denote the space of all data d = (A, b, c) for CP(d) by D. Then D =

{d = (A, b, c) I A E L(X, Y), b E Y, c E X*}. Because X and Y are normed linear
vector spaces, we can define the following product norm on the data space D:

Ildll = II(A, b, c)I = max{iAll, Ilbll, IIcll*} for any d E ),

where IIAIl is the operator norm, namely

IIAll = max{llAxll I lxll 1},

and where IIcII* is the dual norm of c induced on c E X*, and is defined as:

IIcII* = max{cT x I lxll < 1, x E X},

with a similar definition holding for Ilvll* for v E Y*.

Consider the following subsets of the data set D:

.Fp = {(A, b, c) E ) I there exists x such that b- Ax E Cy, x E Cx},

.FD = {(A, b, c) E D I there exists y such that ATy - c E Cc, y E C },

and
.F = p n FD.

The elements in Fp correspond to those data instances d = (A, b, c) in D for which
CP(d) is feasible and the elements in FD correspond to those data instances d =
(A, b, c) in D for which CD(d) is feasible. Observe that F is the set of data instances
d = (A, b, c) that are both primal and dual feasible. The complement of .Fp, denoted
by FpC , is the set of data instances d = (A, b, c) for which CP(d) is infeasible, and
the complement of FD, denoted by FDC, is the set of data instances d = (A, b, c) for
which CD(d) is infeasible.

3
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The boundary of Fp and -pC is the set

Bp = aFp = .Fp = Cl(p)n cl(fC),

and the boundary of FD and DC is the set

BD = YFD = Dc = cl(FD) n c (Dc),

where S denotes the boundary of a set S, and cl(S) is the closure of a set S.
Note that Bp $ 0 since (0, 0, 0) E Bp. The data instances d = (A, b, c) in Bp are
called the ill-posed data instances for the primal, in that arbitrarily small changes
in the data d = (A, b, c) can yield data instances in Fp as well as data instances in
.Fpc. Similarly, the data instances d = (A, b, c) in BD are called the ill-posed data
instances for the dual.

For d = (A, b, c) E D, we define the ball centered at d with radius 6 as:

B(d, 6) = {dE D : lid- dl < 6}.

For a data instance d E ), the "primal distance to ill-posedness" is defined as
follows:

pp(d) = inf{llAdll : d+ Ad E Bp},

see [16, 17, 18], and so pp(d) is the distance of the data instance d = (A, b, c) to the
set Bp of ill-posed instances for the primal problem CP(d). It is straightforward to
show that

p(d) _ sup{6: B(d, 6) C Fp} if d E .Fp,
pp(d)= l sup{6: B(d, 6) C y.pC} if d E Fp, (3)

so that we could also define pp(d) by employing (3). In the typical case when
CP(d) is feasible, i.e., d E Fp, pp(d) is the minimum change Ad in the data d
needed to create a primal-infeasible instance d + Ad, and so pp(d) measures how
close the data instance d = (A, b, c) is to the set of infeasible instances of CP(d).
Put another way, pp(d) measures how close CP(d) is to being infeasible. Note that
pp(d) measures the distance of the data d to primal infeasible instances, and so the
objective function vector c plays no role in this measure.

The "primal condition number" Cp(d) of the data instance d is defined as

Cp(d) = JJdl
pp(d)

when pp(d) > 0, and Cp(d) = oo when pp(d) = 0. The primal condition number
Cp(d) can be viewed as a scale-invariant reciprocal of pp(d), as it is elementary to
demonstrate that Cp(d) = Cp(ad) for any positive scalar ac. Observe that since
d = (A, b, c) = (0, 0, 0) E p and Bp is a closed set, then for any d p we have
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Ildll > pp(d) > 0, so that Cp(d) > 1. The value of Cp(d) is a measure of the
relative conditioning of the primal feasibility problem for the data instance d. For
a discussion of the relevance of using Cp(d) as a condition number for the problem
CP(d), see Renegar [16], [17], and Vera [21].

These measures are not nearly as intangible as they might seem at first
glance. In [7], it is shown that pp(d) can be computed by solving rather simple

convex optimization problems involving the data d = (A, b, c), the cones Cx and
Cy, and the norms 11 II given for the problem. As in traditional condition numbers
for systems of linear equations, the computation of pp(d) and hence of Cp(d) is

roughly as difficult as solving CP(d), see [7].

For a data instance d E D, the "dual distance to ill-posedness" is defined in

a matter exactly analgous to the "primal distance to ill-posedness":

pD(d) = inf{llAdl : d + Ad E BD},

or equivalently,

pD(d) sup{6: B(d,6) C .FD} if d E D, (4
sup{6: B(d, 6) C FDc } if d E FD.(4)

The "dual condition number" CD(d) of the data instance d is defined as

CD(d) =p I(d)pD(d)

when pD(d) > 0, and CD(d) = oo when pD(d) = 0.

The two measures of distances to ill-posed instances and condition numbers
are combined as follows. Recalling the definition of F, the elements in F correspond
to those data instances d = (A, b, c) in D2 for which both CP(d) and CD(d) are
feasible. The complement of F, denoted by FC, is the set of data instances d =

(A, b, c) for which CP(d) is infeasible or CD(d) is infeasible. The boundary of F
and FC is the set

B = - = 9Fc -= cl(F)n cl(FC).

The data instances d = (A, b, c) in B are called the ill-posed data instances, in
that arbitrarily small changes in the data d = (A, b, c) can yield data instances in
F as well as data instances in FC. For a data instance d E D, the "distance to
ill-posedness" is defined as follows:

p(d) = inf{llAdl : d + Ad E B},

or equivalently,

(df) sup{6: B(d, 6) C F} if d E F,
sup{6 : B(d, 6) c FC} if d E F. (5)

In the typical case when CP(d) and CD(d) are both feasible, i.e., d E F, p(d) is
the minimum change Ad in the data d needed to create a data instance d + Ad that

5



COMPLEXITY OF CONVEX OPTIMIZATION 6

is either primal-infeasible or is dual-infeasible. The "condition number" C(d) of the
data instance d is defined as

C(d) - Ild[
p(d)

when p(d) > 0, and C(d) = oo when p(d) = O. The condition number C(d) can be
viewed as a scale-invariant reciprocal of p(d). The value of C(d) is a measure of the
relative conditioning of the problem CP(d) and its dual CD(d) for the data instance
d.
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Let C be a regular cone in the normed linear vector space X. A critical
component of our analysis concerns the extent to which the norm function llxII can
be approximated by some linear function uTx over the cone C for some particularly
good choice of u E X*. Let u intC* be given, and suppose that u has been
normalized so that lull* = 1. Let f(u) = minimum{u T x x E C, xll = 1}. Then it
is elementary to see that 0 < f(u) < 1, and also that f(u) llxi < uTx < llx for any
x E C. Therefore the linear function uTx approximates jxll over all x E C to within
the factor f(u). Put another way, the larger f(u) is, the closer uTx approximates

Ilxll over all x E C. Maximizing the value of f(u) over all u E X* satisfying l[ulL = 1,
we are led to the following definition:

Definition 2.1 If C is a regular cone in the normed linear vector space X, the

coefficient of linearity for the cone C is given by:

/3 = sup inf uTx

uEX* xEC (8)

ull* = 1 lxll= 1

Let denote that value of u E X* that achieves the supremum in (8). We refer
to generically as the "norm approximation vector" for the cone C. We have the
following properties of the coefficient of linearity 3:

Proposition 2.1 Suppose that C is a regular cone in the normed linear vector

space X, and let / denote the coefficient of linearity for C. Then 0 < 3 < 1.

Furthermore, the norm approximation vector ii exists and is unique, and satisfies

the following properties:

(i) u E int C*,

(ii) Jull* = 1,

(iii) / = min{i Tx I x E C, Ilxl = 1}, and

(iv) PilxiI < mTx < IlxI for any x E C.

We illustrate the construction of the coefficient of linearity on two families
of cones, the nonnegative orthant Rk and the positive semi-definite cone SkXk
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First consider the nonnegative orthant. Let X = Rk with Euclidean norm
i11 := 11112 = xX (where II 112 denotes the L 2-norm (Euclidean) norm, and C =
Sk = {X E Ik > 0}. Then it is straightforward to show that the coefficient of

linearity of Rk is P = 1//k and that the norm approximation vector is u = ( e,

where e = (1,...,1)T

Now consider the positive semi-definite cone Skx k , which has been shown
to be of enormous importance in mathematical programming (see Alizadeh [1] and
Nesterov and Nemirovskii [12]). Let X = Skxk denote the set of real k x k sym-

metric matrices with Frobenius norm 11xll := trace(xTx), and let C = SkX k =

{x E Skxk I x 0}, where "S" is the L6wner partial ordering, i.e., x - w if x - w

is a positive semi-definite symmetric matrix. Then Skxk is a closed convex cone,

and it is easy to show that the coefficient of linearity of Skx k is /3 = and that

the norm approximation vector is u = (A) I, where I is the identity matrix.

The coefficient of linearity P for the regular cone C is essentially the same
as the scalar a defined in Renegar [18] on page 328.

For the remainder of this paper, we amend our notation as follows:

Definition 2.2 Whenever the cone Cx is regular, the coefficient of linearity for Cx

is denoted by , and the coefficient of linearity for Cx is denoted by /3*. Whenever

the cone Cy is regular, the coefficient of linearity for Cy is denoted by /3, and the

coefficient of linearity for C- is denoted by *.

3 The Ellipsoid Algorithm, and a Transformed Problem

3.1 The Ellipsoid Algorithm for Optimization

For the purpose of concreteness, we henceforth assume that X = an and that
the norm xljj on Rn is the Euclidean norm, i.e., 11x1 = Xll112 = x-Tx. No such
assumption is made for the space Y.

We first review a few basic results regarding the ellipsoid algorithm for solv-
ing an optimization problem, see [10], [9], [4], [8], [3]. The ellipsoid algorithm (in
optimization mode) is typically designed for an optimization problem of the form

P: maximize f(x)
x (9)

s.t. x E S,
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where S is a convex set (closed or not) in Rk, f(x) is a quasi-concave function,
and where one knows a priori an upper bound R on the norm of some optimal
solution x* of P. (Actually, the ellipsoid algorithm is more usually associated with
the assumption that S is a closed convex set and that f(x) is a concave function,
but these assumptions can be relaxed slightly. One only needs that S is a convex
set and that the upper level sets of f(x) are convex sets on S, which is equivalent
to the statement that f(x) is a quasi-concave function on S (see [2]).)

In order to implement the ellipsoid algorithm to approximately solve CP(d),
it is necessary that one has available a separation oracle for the set S, i.e., that
for any x s S, one can perform a feasibility cut for the set S, which consists of
computing a vector h 0 for which S C {x hTx > hTX}. Suppose that T1 is an
upper bound on the number of operations needed to perform a feasibility cut for
the set S. It is also necessary that one has available a support oracle for the upper
level sets Ua = {x E S I f(x) > c} of the function f(x). That is, for any x E S, it
is necessary to be able to perform an optimality cut for the objective function f(x).
This consists of computing a vector h 0 0 for which Uf(:) C {x E Rk I hTx > hTx}.
Suppose that T2 is an upper bound on the number of operations needed to compute
an optimality cut for the function f(x) on the set S.

Let z* denote the optimal value of P, and denote the set of e-optimal solu-
tions of P by S(e), i.e., S(e) = {x E Rk i x E S and f(x) > z* -e}. Suppose that
S(c) contains a Euclidean ball of radius r, i.e., there exists x for which

{X k I Ix- 112 r} CS().

Furthermore, suppose that an upper bound R on the quantity ( ll2 + r) is known
in advance, i.e., we know R for which R > Iji 2 + r. One then has the following
generic result about the ellipsoid algorithm as applied to problem P:

Ellipsoid Algorithm Theorem Suppose that the set of e-optimal solutions of P

contains a Euclidean ball of radius r centered at some point x, and that an upper

bound R on the quantity (IIiI2 + r) is known. Then if the ellipsoid algorithm is

initiated with a Euclidean ball of radius R centered at x ° = 0, the algorithm will

compute an e-optimal solution of P in at most

[2k(k + 1) ln(R/r)]

iterations, where each iteration must perform at most (k 2 + max{Ti, T 2}) opera-
tions, where T1 and T2 are the number of operations needed to perform a feasibility
cut on S and an optimality cut on f(x), respectively.

We note that the bound on the number of operations arises from perform-
ing either a feasibility or an optimality cut (which takes max{T1, T2 } operations),
and then performing a rank-one update of the positive definite matrix defining the
ellipsoid (see [3], for example), which takes k2 operations.

9
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3.2 The Transformed Problem HP(d)

Let z*(d) denote the optimal objective function value of CP(d). Let Xd and Xd(e)
denote the feasible region of CP(d) and the set of e-optimal solutions of CP(d),
respectively, i.e.,

Xd = {x E X b- Ax E Cy, x E Cx} (10)

and

Xd(e) = {x E X I b- Ax E Cy, x E Cx,cTx > z*(d) - e}. (11)

For the purpose of applying the ellipsoid algorithm to solve CP(d), we em-
ploy a standard transformation to convert CP(d) to the homogenized fractional
program:

CTW
HP(d): maximize

w,9
s.t. b- Aw E Cy (12)

wE Cx,
0 > 0,

(see [5] and [6]), with the (obvious) transformations:

x = W (13)

and

(0)= (x, (14)
I( (x, 1)112 (14)

where the norm Il(w, 0)112 is simply the Euclidean norm applied to the concatenated
vector (w, 0), i.e., I(w, )112 = V/wTw + 02.

It is trivial to show that z*(d) is also the optimal objective function value
of HP(d). Let Xd and Xd(e) denote the feasible region of HP(d) and the set of
e-optimal solutions of HP(d), respectively (where "h" is a mnemonic for "homoge-
neous"), i.e.,

Xh = {(w,) E X x R I bO- Aw E Cy,w E Cx,0 > 0} (15)

and

X (e) = {(w,) EX x RI be-Aw E Cy,w E Cx, > OcTw/ z*(d)-e}. (16)

Then Xd and X (e) are both convex sets. Also, the objective function cTw/o of
HP(d) is easily seen to be a quasi-concave function over the feasible region Xd. In

10
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fact, if (, 0) is a feasible solution of HP(d), then

{ 0 E -Xd c {ŽWC(w, ) E XX x cTw(cTC)/V) > O},

and so the concatenated vector (c, -cTw/O) is a support vector for the upper level
set of the function cTw/9 at the feasible point (, 9). Therefore, the number of
operations needed to perform an optimality cut in HP(d) is at most 2n operations.

Because any feasible solution of HP(d) can be scaled by an arbitrary positive
scalar without changing its objective function value or affecting its feasibility, the
feasible region and all upper level sets of the objective function cTw/0 of HP(d)
contain points in the unit Euclidean ball {(w, 0) E Xx R I l(w, 0)112 < 1}. Therefore,
the key advantage in using HP(d) rather than CP(d) in the ellipsoid algorithm is
that we will be able to conveniently start the ellipsoid algorithm for solving HP(d)
with the unit Euclidean ball. This will be further explored in the next section.

Finally, we remark that the set Xd is mapped into Xd by (14) and X is
mapped onto Xd by (13). Also Xd(e) is mapped into Xd(e) by (14) and Xd(e) is
mapped onto Xd(e) by (13).

4 Complexity Results

For the purpose of developing complexity results, we focus on three different classes
of instances of CP(d), namely:

Class (i): Cx and Cy are both regular,

Class (ii): Cx is regular and Cy = {0},

Class (iii): Cx = X and Cy is regular.

For these three classes of instances, CP(d) can be written as (i) max{cT x [ b- Ax E
Cy,x E Cx}, (ii) max{cT x I Ax = b,x E Cx}, and (iii) max{cT x I b-Ax E Cy,x E
X}.

To simplify the notation, let B 2 ((w, 6), r) denote the Euclidean ball in X x R
centered at (, 9) with radius r, i.e.,

B2 ((, 0), r) = (w, 0) E X x /(W - )T(w-w) + ( - -)2 < r}.

The following three Lemmas are the main technical tools that will be used to prove
the complexity results. Under the assumption that both Cx and Cy are regular

11
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cones, Lemma 4.1 essentially states that there exists a ball of radius that is con-
tained in the set of -optimal solutions of HP(d), and that is also contained in the
Euclidean unit ball, and that is "not too small". Lemma 4.2 contains a similar re-
sult under the assumption that the cone Cx is regular but that the cone Cy = {O}.
Lemma 4.3 contains a similar result under the assumption that the cone Cx = X
and that Cy is regular.

Lemma 4.1 Suppose that Cx is a regular cone and Cy is a regular cone, and d C F

and that C(d) < +oo. Let e > 0 be given. Then there exists (, t0) E Xh(e) and a

positive scalar satisfying

B2 ((C, 0), ) C Xd (),

11 0) a2)+< 1,

and

> 6--C ) min C(d) .

Lemma 4.2 Suppose that Cx is a regular cone and that Cy = {0}, and d G F and

that C(d) < +oo. Let e > 0 be given. Then there exists (, 0) E Xdh(e) and a positive

scalar satisfying

B2 ((, 0), ) n {(w, ) E Xx R I bO -Aw = 0} c Xh(e),

11 (, ) 2 + _< 1,

and

min { , C(d)}.

Lemma 4.3 Suppose that Cx = X and Cy is a regular cone, and d E F and that

C(d) < +oo. Let e > 0 be given. Then there exists ( E, ) C Xh(e) and a positive

scalar satisfying

B 2 ((tz, ),i) C Xh(e),

1� > �3* 1 4

- 32 C(d)

11 (&, 0) 112 + � _< 1,



COMPLEXITY OF CONVEX OPTIMIZATION

and

> ( ) (d) min{ jI-,C(d)'

The proofs of these three Lemmas are deferred to Section 6. Based on
these Lemmas, we now state complexity results for the ellipsoid algorithm in the
following three theorems, where each theorem states a complexity bound for the
ellipsoid algorithm for solving HP(d) (equivalently, CP(d)), for one of the three
respective classes of CP(d).

Theorem 4.1 Suppose that Cx is a regular cone and Cy is a regular cone, and

that d E F and that C(d) < +oc. Let e satisfying 0 < e < Ildil be given. Suppose that

the ellipsoid algorithm is applied to solve HP(d), and is initiated with the Euclidean

unit ball centered at (w °, 0°) = (0, 0). Then the ellipsoid algorithm will compute an

e-optimal solution of HP(d) (and hence, by transformation, to CP(d)) in at most

8(n + 1)(n +2)ln d) ll* e

iterations, where each iteration must perform at most ((n + 1)2 + max{2n, S1, m + mn + S2})

operations, where S1 and S2 are the number of operations needed to perform a fea-

sibility cut on Cx and Cy, respectively.

Proof: The proof follows directly by combining the Ellipsoid Algorithm Theorem
with Lemma 4.1. The dimension in which the ellipsoid algorithm is implemented
is k = n + 1, and from Lemma 4.1 we have R = 1 and r = f in the Ellipsoid
Algorithm Theorem. Because e < Ildll, then e/ldll < 1 < C(d), and so the minimum
in the expression in Lemma 4.1 is e/ dl. Then combining the Ellipsoid Algorithm
Theorem with Lemma 4.1 yields an iteration bound of

F2k(k + 1) ln(R/r) = 2(n + )(n + 2)n l

_ 2(n + 1)(n + 2)ln (63C(d)4 ldl 

< 8(n + 1)(n + 2 )ln (63C(d) lldl 

The number of operations needed to perform an optimality cut is at most 2n as
discussed earlier, and the number of operations needed to compute and test for
feasbility of bO - Aw E Cy is then m + mn + S 2 operations. I

13



14COMPLEXITY OF CONVEX OPTIMIZATION

Theorem 4.2 Suppose that Cx is a regular cone and that Cy = {0}, and that

d E .F and that C(d) < +oo. Let e satisfying 0 < e < Ildll be given. Suppose that the

ellipsoid algorithm is applied to solve HP(d), and is initiated with the Euclidean unit

disk centered at (w°, 0 °) = (0, 0), in the subspace {(w, 0) E X x R I Aw - bO = 0}.

Then the ellipsoid algorithm will compute an e-optimal solution of HP(d) (and

hence, by transformation, to CP(d)) in at most

8(n- m + 1)(n- m + 2)In 32C(d) jljld 1

iterations, where each iteration must perform at most ((n - m + 1)2 + max{2n, S1})

operations, where S1 is the number of operations needed to perform a feasibility cut

on Cx.

Proof: The proof follows directly by combining the Ellipsoid Algorithm Theorem

with Lemma 4.2. The dimension in which the ellipsoid algorithm is implemented is

k = n - m + 1, and the rest of proof follows as in the proof of Theorem 4.1. I

Theorem 4.3 Suppose that Cx = X and Cy is a regular cone, and that d E F. and

that C(d) < +oc. Let e satisfying 0 < e < Ildll be given. Suppose that the ellipsoid

algorithm is applied to solve HP(d), and is initiated with the Euclidean unit ball

centered at (w °, 0°) = (0, 0). Then the ellipsoid algorithm will compute an e-optimal

solution of HP(d) (and hence, by transformation, to CP(d)) in at most

[8(n + 1)(n + 2)ln 32C(d) l l" )1

iterations, where each iteration must perform at most ((n + 1)2 + max{2n, m + mn + S2))

operations, where S2 is the number of operations needed to perform a feasibility cut

on Cy.

Proof: The proof follows directly by combining the Ellipsoid Algorithm Theorem
with Lemma 4.3 and follows as in the proof of Theorem 4.1. 1
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5 Other Issues: Testing for e-optimality; the Dual

Problem; Infeasibility; Skewness of the Ellipsoids

Testing for e-optimality by Solving the Dual Problem. One uncomfortable
fact about Theorems 4.1, 4.2, and 4.3 is that while the ellipsoid algorithm is guaran-
teed to find an e-approximate solution of CP(d) in the stated complexity bounds of
these theorems, the quantities in the bounds may be unknown (one may know the
relevant coefficients of linearity, but in all likelihood the condition number C(d) is
unknown), and so one does not know when an e-approximate solution of CP(d) has
been found. An obvious strategy for overcoming this difficulty is to solve the primal
and the dual problem in parallel, and then test at each iteration (of each algorithm)
if the best primal and dual solutions obtained so far satisfy a duality gap of at most
e. Because of the natural symmetry in format of the dual pair of problems CP(d)
and DP(d), one can obtain complexity results for solving the dual problem DP(d)
that exactly parallel those of Theorems 4.1, 4.2, and 4.3, where the quantities n, *,
and * are replaced by m, , and /, respectively, and where the cones Cx and Cy
are replaced by C~ and C: in the statements of the complexity results. One also
must assume that Y* = Rm and that the norm IIyII* on Rm is the Euclidean norm.

Testing for Infeasibility. If one is not sure whether or not CP(d) has a feasible
solution, the ellipsoid algorithm can be run to test for infeasibilty of the primal
problem (in parallel with attempting to solve CP(d)). This can be accomplished as
follows. First, assume that the dual space Y* = m is endowed with the Euclidean
norm I1Y112. Second, note that CP(d) has no feasible solution if the "alternative"
system:

AP(d): ATy C
y E C
yTb < 0

has a solution. Define the following "alternative" set

Yd = {y E Y* I ATy E C ,y E C,yTb < 0}. (17)

Suppose CP(d) has no feasible solution. Then, as special cases of Theorems 5.2,
5.4, and 5.6 of [7], Yd must contain an inscribed Euclidean ball B 2 (p, r) (or a disk
in the vector subspace {y E R m I ATy = 0} if Cx = X) such that 1II112 + r < 1 and
such that

(i): r> 5 when Cx and Cy are both regular,
5Cp(d)

(ii) r > 2(d) when Cx is regular and Cy = (0},
(iii)Cp(d)

(iii): r> when Cx = X and Cy is regular.
5Cp(d)

These results can then be used to demonstrate that an upper bound on the number

15
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of iterations needed to find a solution of AP(d) using the ellipsoid algorithm starting
with the Euclidean unit ball in ~Rm (or the unit disk in the vector subspace {y E
Rm I ATy = O} if Cx = X) is:

(i): O (m2 n ( -P )) when Cx and Cy are both regular,

(ii): O (m2 n (CP(d))) when Cx is regular and Cy = {0),

(iii): (dm - n) 2 In. )) when Cx = X and Cy is regular.

Bounding the Skewness of the Ellipsoids in the Ellipsoid Algorithm. Let
Ez,Q = {x E X (x - )TQ-l(x -_ ) < 1} be an ellipsoid centered at the point
I, where Q is a positive-definite matrix. The skewness of Et,Q is defined to be the
ratio of the largest to the smallest eigenvalue of the matrix Q defining Et,Q, and so
the skewness also corresponds to the traditional condition number of the matrix Q.
The skewness of the ellipsoids generated in an application of the ellipsoid algorithm
determines the numerical stability of the ellipsoid algorithm, since each iteration of
the ellipsoid algorithm uses the current value of Q-1 to update the center x of the
ellipsoid and to perform a rank-one update of Q-1 , see [3] for details. Furthermore,
one can show that the logarithm of the skewness of the ellipsoid computed at a
given iteration is sufficient to specify the numerical precision requirements of the
ellipsoid algorithm at that iteration. Herein, we provide an upper bound on the
skewness of all of the ellipsoids computed in the ellipsoid algorithm as a function of
the condition number C(d) of CP(d).

The skewness of the unit ball (which is used to initiate the ellipsoid algorithm
herein) is 1. From the formula for updating the ellipsoids encountered in the ellipsoid
algorithm at each iteration, the skewness increases by at most (1 + k2 ) at each
iteration, where k is the dimension of the space in which the ellispoid algorithm is
implemented, see [3] for example. Therefore the skewness of the ellipsoid at iteration

j is bounded above by (1 + k21)J Let us consider the class of instances defined
for Theorem 4.1, for example, and let J be the (unrounded) iteration bound for the
ellipsoid algorithm from Theorem 4.1, i.e.,

J=8(n+ 1)(n+ 2 )ln 63(d) ld l), (18)

and assume for simplicity of exposition that J is an integer. Let (Skew)j denote the
skewness of the ellipsoid computed in the ellipsoid algorithm at iteration j. Then
for this class of instances we have k = n + 1, whereby

(Skew)j < 1 + - (e(ln(l+)))J =eJ(n(l+2)) = (eJ (In(l+)) (19)

Substituting for (18) in (19), we obtain

(Skew) < (63C(d) lldll) 8(n+l)(n+2) n(+)

_�_��I

16
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However, the exponent in the above expression is bounded above by 34n for n > 2
(actually, it is bounded above by 17n for large n > 33), and we have

(Sk) <(63C(d) ldll ) 34n

Taking logarithms, we can re-write this bound as

ln(Skew)J < 34nln (63*(d) IIdII) (20)

Therefore, the logarithm of the skewness of the ellipsoids encountered in the ellipsoid
algorithm grows at most linearly in the logarithm of the condition number C(d).
Also, the bound in (20) specifies the sufficient numerical precision requirements
for the ellipsoid algorithm (in terms of lnC(d) and other quantities) because the
logarithm of the skewness is sufficient to specify such requirements. This is similar
to the results on numerical precision presented in [22] for an interior point method
for linear programming.

Finally, the above logic can be used to obtain similar bounds on the skewness
for the other two classes of instances of CP(d).

6 Technical Lemmas and Proofs

In this Section, we first prove two technical Lemmas, that are then used prove
Lemmas 4.1, 4.2, and 4.3.

Lemma 6.1 Suppose that the feasible region of CP(d) is nonempty, i.e., Xd 0,

and that Cy is a regular cone. If p(d) > 0, then there exists (, 0) E Xdh and positive

scalars rl and R 1 satisfying:

(i) B 2 ((, ), r) C (w, ) E X x R bO-Aw E Cy, > 0},

(ii) II(b, )112 + r < R1,

Ri 6
(iii) < ~C(d).

rl 3*

Proof: The proof relies on Theorem A.2 of the Appendix, which is Theorem 3.5 of
[7]. Let z be the norm approximation vector for the cone C 7. For any y E C-, we

·-II-iIY·I�--YYI 1�� _1·-11111 1�--1 II I I._
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have from Proposition 2.1 that

T *bTy 1-* >Ib Il ll 
Ty d +Ij - _ 0ll~~ ~ ~ ~~~~dll ' ll

so that 1 2+ li-L
~band 2( ljdlj

and

E Cy. Now let (fi,0) solve P(d) (see (41)), and let t = w

211dll'

Note that > 0 from Proposition 2.1. Let q = b - Aw - , and note that q E Cy

from (41). We also have

b - Aw + b-
211djj

1
2

E Cy,

so that

bO

= q+ 1 [- b +

1
- A- 2 E Cy.2

(21)

In particular, (21) and Proposition 2.1 imply that b-AbW E Cy. Therefore (, 0) E
X, since = E Cx from (41).

Now let

rl =2v d'

Let (f,t) E X x R satisfy II(f,t)112 < 1, and consider (w, ) = (, 0)+ rl(f,t). Then

= + rit + 2d 2V > 0 since 0 > 0 (see (41)) and /* > O0 (from

Proposition 2.1). We also have

bO- Aw = b- Ab + rl(bt-Af) 12-
+ ri(bt - Af) = b - Awv- -1 + ri(bt - Af) + -.

2 2

�__II II____I___I__LLLL__�LL--· -tl·-C·.·^-^LI^·P·II-X.^-__-·-�·-�lsll�· 1-1^ _·111111 11�--

- -7

= ~q+ 1 0* bl+b
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Therefore, for any y E C, we have

yT(bO - Aw) > rlyT(bt - Af) + Y Z
2

> -rjlyjII*lbt - Afil + ?*1 IIyI*

(from (21))

(from Proposition 2.1)

> IYII* (-rlldll(f ll2 + ItI)

(since I(f, t) 112 < 1)

= 0

from the definition of rl, thereby showing that bO - Aw E Cy, which proves (i).

Next, let R 1 = (lb, ) 112 + r1, which automatically proves (ii). To prove (iii),
note that

2v lldI Ij( , ) 112=1+ 
/0,

2NV2IIdII(1l'l I 2 + 8)<1+

2v'/li (d 112
= 1+

+°+ i21ld)

0*

2v/Xdlj (v(d) + 21d* )

p(d)-- + 21-)2/ d pp(d) 21~

(from (41))

(from Theorem A.2)

< 2vC()+ C(d)(1 + vCd)-,

< (1 + 3v2)C(d)
P*

(since C(d) > 1)

(since /* < 1)
6C(d)

<

which proves (iii).

R1

rl

= 1+

< 1+

_ + +2v (d)< 1+ + Z

--�·III�···IPr-XIPI·-��-l_·_·l�)-·IX- _-II II

I

> IIyII* -rjIIdjIv12-
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We next have:

Lemma 6.2 Suppose that the feasible region of CP(d) is nonempty, i.e., Xd 0,

and that Cx is a regular cone. If p(d) > 0, then there exists (ib, 0) E X and positive

scalars r2 and R 2 satisfying:

(i) B2 ((,0),r2) C {(w,0) E X x R I wECx,0>0},

(ii) I (, ) 112 + r2 R2,

(iii) 2 < 6,C(d).
T2 - *

Proof: The proof relies on Theorem A.1 of the Appendix, which is Theorem 3.5 of
Renegar [18]. First of all, let x denote the norm approximation vector for the cone
C:, so that from Proposition 2.1,

x z > P*IIzII* = P *1z11 2 for any z E C, (22)

(since we assumed that ilxil = IxIl2 and hence z11Z* = 11z112 as well), and define

() = (5,3 *)

and
, 3* 3* / 3*

2 T/ - /+ ( *)2

Then the following inclusion must be true:

B2 ((, ),T') c {(, 0) I w E CX, > o}

(23)

(24)

(25)

To see why (25) is true, let (f, t) satisfy I(f, t)112 < 1, and let (w, ) = (, 0)+ T'(f, t).
Then it is sufficient to show that 0 > 0 and w E Cx. We have

0 /3= t = * t > 

x/ + (3 )2
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from (24) and the fact that Itj < 1, thus showing that 0 > 0. Now note that for any
z E CX,

ZTW = z T + 'zTf

zTX

> *fl 112 _

-V1 + (*)2

7T' liz112 llf I2

T 1l112 Ilfil2

> 0,

and so w E Cx. This demonstrates (25).

Now consider the system

b - Aw + p(d) (b - Aw)

w

101 + IW112

(from (23))

(from (22))

(from (24) and since If ll2 < 1)

E Cy

E Cx
> 0
< 1.

(39) and Theorem A.1 of the Appendix, (26) must have a solution (w', 0').

Ib,- AII ((^' d) = l b0- Ai (w',
p(d) + ||bH - A-v 

') + p(d) ( ab,)
jjb0 - AtbJJ

Then b - At E Cy (from (26)), and w E Cx, and ' > 0 (from (26)). Therefore
b E Cx and > 0 (from (26) and (27)). Re-write (27) as

( , ) = b0 - Aw
p(d) + llb - AIl

(w',0')+
p(d)

p(d) + Ib -

and we see that (b, 0) is a convex combination of (w', 0') and (, a). It then follows
that 1(, )112 < 1, because 11(w', 0')112 < Iw' 1 2+10'l < 1 from (26) and 11(C, )112 = 1
from (23). From (25) and the fact that (w', 0') E Cx x R+, it follows from (28) that

B2 ((i, B),r2 ) C {(w,0) E Cx,0 > 0} (29)

where
T'p(d)

(30)
p(d) + IlbO - Awbl

This is part (i) of the Lemma. Now let R 2 = (tb, )112 + r2, which immediately
proves (ii) of the Lemma. To prove (iii) of the Lemma, we have

R2 1 (1(i' ) 112) (p(d) + lb - All)
1 +

r 2 T p(d)

< 1 , p(d) + lIdIl(llII1 2 + l)
7'p(d)

From
Let

(26)

(27)

t'. 5a
A _ 1I k'. 1)

(28)

21

I '~I W 

r2 =

_-..Z - ,
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since 11 (b, ) 2
Therefore,

< and Ilb6-AiiI < max{ lbll, IIAII} (IIi112 + ) < Ildl (11z112 + 161).

R2 < 1 + p(d) + Ildll (i (, 0) 112)
r2 'p(d)

< + p(d) + lldI
<1- T'p(d)

(since I1(I, ) 112 = 1 from (23))

< 1 + 2p(d) + 2' ldId
,3*p(d)

(from (24))

< p(d) + 2p(d) + 2vldI
*p(d)

< (3 + 2v'2)c(d)
/3*

(since 3* < 1)

(since C(d) > 1)

< 6C(d),

completing the proof. I

As a consequence of Lemmas 6.1 and 6.2 we have:

Corollary 6.1 Suppose that the feasible region of CP(d) is nonempty, i.e., Xd 0,

and that both Cx and Cy are regular cones. If p(d) > 0, then there exists (, H) E

Xd and positive scalars r3 and R 3 satisfying:

(i B2 ((w, ), r3) C Xd,

(ii) 1I1( , 6)112 + r3 < R3,

(iii) 3 < C(d).
r3 -/*0*

Proof:Let S = {(w, 0) E X x bO- Aw E Cy} and T = {(w, 0) E X x R Iw E
Cx, 0 > 0}. Then S nT = X. From Lemma 6.1, there exists (, /)1 E Xd and
rl, R1 satisfying conditions (i) - (iii) of Lemma 6.1. From Lemma 6.2, there exists
(tb, )2 Xd and r2 , R 2 satisfying conditions (i) - (iii) of Lemma 6.2. Then the
conditions of Proposition A.1 of the Appendix are satisfied, and so there exists (, )

22
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and r 3, R 3 satisfying the five conditions of Proposition A.1. From (i) of Proposition
A.1, B2 ((tb, 0), r3) c S n T = Xh, which is (i) of the Corollary. Also from (ii) of

Proposition A.1, B2 ((ii, 0), r3) C B 2 (0, R3), which is (ii) of the Corollary. From
(iii) of Proposition A.1, we have

< 2 max
r3

{ rl, t 2 } *12
< ~*O*C(d)

(invoking Lemma 6.1 (iii) and Lemma 6.2 (iii)), which is (iii) of the Corollary. I

We now prove Lemmas 4.1, 4.2, and 4.3.

Proof of Lemma 4.1: Invoking Corollary 6.1, let (b,/ ) and R 3, r3 satisfy the
conditions in Corollary 6.1. From the positive homogeneity of the set Xd, we can
rescale (, 0) and R3, r3 and so we presume that R 3 = 1. Now let

=12C(d)*
7 12C(d)'

(31)

Then r3 > -y from (iii) of Corollary 6.1. Let (w, ) E B 2 ((, 0), y). Then (w, 9) =

(lb,0) + (f,t) where IIf,t) 112 < -y, and so

cTw - (z*(d) - )9

> CT - (z*(d) - E)O - y I(c, z*(d) - e) 2,

and so from parts (i) and (ii) of Corollary 6.1 we have

B 2 ((wb, ), ) c

{(W,0) Xdh I I(w, 0)112 < 1, cT -- (z*(d) -e)O > CTb - (z*(d) - e)0 - yI(c, z*(d) - E)12}.

(32)

Let (w*, 0*) be any optimal solution of HP(d), and again by homogeneity,
we can presume that l(w*, 0*) 112 = 1. Then x* := w*/O* is an optimal solution of
CP(d), and from Theorem 1.1 of Renegar [16], Ilx*112 < C(d)2. It then follows that

(0*)2= 11* 2
IX*112~

> II*ll 1- (0*)2
- C(d)4 C(d)4

which implies that
*> 1 1

- /1 + C(d) > C(d)2'

since C(d) > 1. This also implies that

cT w* - (*(d) - )o* = O* >
- vec( )2'

Therefore

(w*, 0*) E {(w, )

(33)

(34)

= C Ttb _ (z* (d) -,E)~ + CTf _ (*(d) - E)t

E d I 1 * 0 11 . 1 C - z*(d)-,EO > r-Cd)
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Let 61 and 62 denote the scalars on the right-hand side of the inequalities in (32)

and (34), respectively, i.e.,

and 62- v/C(d)2
VC(d)2

(35)

Combining (32) and (34), we have for any a E [0, 1],

B2 ((oa(i, 0) + (1- a)(w*, '), a) c

{(w,0) E Xd I I(w, 0)12 < 1, CT w - (z*(d) -e) > a61 + (1- a)62}

Setting
62

6- + 62

(where a- is the negative part of a), then a E (0,1], and

(36)

(37)

(38)a61 + (1 - a)62 = 6261 + 6261 > 0.
6 +62

Now let (, 0) = a(tb, 6) + (1- a)(w*, 0*) and i = a-y. Then from (36) and (38) we

have

B2 ((fV, ), ) C {(, 0) E X I (w, 0)112 < 1, Tw- (z*(d) -)0 )> 0}.

This proves the first part of the Lemma. For the second part, we have

1 11

r acy

l (1

= 1 1+ 8
I 62)

(from (37))

(from (35))

+ vC(d)2 [cw - (z*(d)- E)0 - II(c,z*(d) - )1121) (from (35))

(e + v 1 C(d)2 [lI(c, z*(d) - ) 12 (IIi, 112 + I )])

( + C(d)2 11 (c, z* (d) - )12)

where the last inequality follows from (ii) of Corollary 6.1 and the fact that 'y < r3.

From the last inequality we obtain

- -(e+eVC(d)2 + v'C(d) 2 IIcll 2 + vC(d)2iz*(d) ).

+ C(6)2 6)

YE1

1
-YE

1
-YE
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However, Ilcll2 < Ildll, and from Theorem 1.1 of Renegar [16] we have z*(d)l <
lidliC(d), and so

< (e + Ev'C(d)2 2 dI + v C(d)3 lldll).

Using the fact that C(d) > 1 yields

1 lC(d)3 (1i + -2 + ) (1 + 3)C(d)3 { 1 ld 
C~ )C+) 2v5Ijdj < max C(d)' '

and so

- (1 + 3/) C(d)3 min C(d), i .

Substituting the value of y from (31) completes the proof. I

Proof of Lemma 4.2: The proof follows identically as in the proof of Lemma 4.1,
except that we invoke Lemma 6.2 instead of Corollary 6.1, and the value of y in
(31) is replaced by

/*
y 6C(d)'

The rest of the proof is identical to that of Lemma 4.1. I

Proof of Lemma 4.3: The proof also follows identically as in the proof of Lemma
4.1, except that we invoke Lemma 6.1 instead of Corollary 6.1, and the value of y
in (31) is replaced by

' 6C(d)'

The rest of the proof is identical to that of Lemma 4.1. I
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APPENDIX

1. Characterization Results for pp(d)

We state two previously known characterization results for pp(d).
consider the following program:

Pr(d) :

r(d) = minimum
vEY

Iv11 < 1

maximum
w,O,6

6

s.t. bO - Aw - v6 E Cy
w E Cx

0 >0
101 + 11w!! < 1.

Then r(d) is the largest scaling factor 6 such that for any v with lvll < 1, v6 can be
added to the first inclusion of Pr(d) without affecting the feasibility of the system.
The following Theorem is a slightly altered restatement of Theorem 3.5 of [18].

Theorem A.1 (Theorem 3.5 of Renegar [18]) Suppose that d E .Fp. Then

r(d) = pp(d). (40)

Second, suppose that the cone Cy is a regular cone, whereby C~ is also
a regular cone. Let be the norm approximation vector for the cone C (see
Proposition 2.1), and consider the following program:

Pv(d):
v(d)= minimum

w,9
lIwli + 101

(41)bO- Aw - E Cy
w E Cx
0>0

The next Theorem is a restatement of Theorem 3.5 of [7].

Theorem A.2 (Theorem 3.5 of [7]) Suppose that d E Fp and Cy is regular,

and that pp(d) > 0. Then

_ * 1

v(d) < v(d) '

where * is the coefficient of linearity for the cone C.

(42)
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2. A Construction Using Inscribed Balls and Intersecting Sets

We state the following result, which is Proposition A.2 of the Appendix of

[7]:

Proposition A.1 Let X be a finite-dimensional normed linear vector space with

norm II 11 and let S and T be convex subsets of X. Suppose that

(i) li E S n T, B(xl, ri) c S, where rl > 0, and B(i 1, r1) C B(O, R 1) and

(ii) X2 E S n T, B(i 2, r 2 ) C T, where r 2 > 0, and B(x 2 , r2) c B(0, R 2 ).
r2 ar 2Let a = r and r3 = r2 , and R 3 = aR1 + (1- a)R2 . Then the point

rl + r2 rl r2
x = al + (1- a)si 2 will satisfy:

(i) B(x, r3) c S n T,

(ii) B(, r3) C B(O, R3),

(iii) 3< 2max r
r3 rl rr2

(iv) r 3 > minfrr,r2

and (v) R3 < max{R1, R 2 }

_^��______E�__111111I I�L·L··IIIII -·--- 1111 1_11·�11 1 II
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