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ABSTRACT

Despite the progress made during this century in understanding atmo-
spheric cyclogenesis, frontal cyclogenesis still remains largely an enigma.
This thesis attempts to shed new light on this subject by studying the
stability of a finite-amplitude Eady wave and its associated frontal sur-
face, ’

By eliminating from consideration at the outset meteorologically un-
important high frequency phenomena, a system of semigeostrophic equations
are derived. These equations are then transformed into a quasi-Lagrangian
coordinate system which allows a great deal of the nonlinearity to be
eliminated from the preblem.

We adopt as our basic state Hoskins and Bretherton's constant potential
vorticity model for describing frontogenesis as a large-~scale, finite~
amplitude baroclinic wave in a zonal flow. It is shown that as a result
of the eddy transports of heat and momentum generated by a growing baro~-
clinic disturbance, the zonal available potential energy is reduced
sufficiently so that the finite-~amplitude baroclinic wave becomes
neutrally stable. It is the stability of this neutrally stable, finite-
amplitude baroclinic wave which we will study.

Assuming that the potential vorticity always remains constant, it is
found that this finite-amplitude baroclinic wave is indeed unstable to
further perturbation. The most unstable perturbations are associated
with length scales of the order of the Rossby radius of deformation,
receive their energy from the available potential and kinetic energy
of the basic state, and move with the speed of the uniform zonal flow,

The distribution of the perturbation's velocity and potential temper-
ature demonstrates that the instabilities are essentially baroclinic in
nature arising from the variations of the potential temperature of the -
basic state Eady wave along the boundaries. The assumption that the
potential vorticity of the basic state is constant inhibits Rayleigh
instability from being a source of instability.
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Our analysis suggests, but does not prove, that the major frontal
disturbances are essentially baroclinic and that only the smaller
scale, fast moving frontal waves are of the Rayleigh type..

Thesis Supervisors: Jule G. Charney, Peter H. Stone
Titles: Sloan Professor of Meteorology, Professor of Meteorlogy
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1. Introduction.

The.general circulation of the extratropical zones of the atmosphere
is dominated by great migratory vortices (cyclones) trayeling in the belt
of prevailing westerly winds. During this century, one of fﬁe fundamental
problems of meteorology has been the explanation of the origin and devel-
opment of these cyclones. |

With the formulation of the polar-front tﬁeory of the Norwegian (Bergen)
school, J. Bjerknes and Solberg (1922) were able to show that new cyclones
may be formed in the crest of amplifying waves on a preexisting polar
front. These cyclone waves would then grow in amplitude, occlude, and
end as an almost symmetric vortex. To theoretically investigate this
model for _atmospheric cyclogenesis, Solberg (1928) studied a system con-
sisting of two statically stable, barotropic layers of different density
moving zonally at different speeds on a flat, rotating earth. With this
basic state, he found two types of amplifying waves were possible: one
of short wévelengths of the Helmholtz type and one at wavelengths of the
order of 1000 km. The latter possesséd several of the kinematic features
iﬁ common with a young frontal wave.

In the late 1930's, with the ever increasing availability of upper-air
data, it was found that the upper-air flow patterns were predominantly
large-scale waves embedded in the weéterly current with wayvelengths of
the order of 3000-6000 km. V. Bjerknes (1933) had originally envisioned’
that cyclones originated as dynamically unstable wavelike disturbances in
the westerly current. In 1937 J. Bjerknes (1957) postulated that cyclo;
genesis could be studied using the concept th;t the upper-air wave acts

. as an independent entity. Starting with the tendency equation, Bjerknes
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hypothesized that the deepening of cyclones may be attibuted to the rela-
tive displacement of the upper-~air wave with respect to the surface
cyclone. Consequently, there should be a one-to-one correspondence
between the surface frontal perturbation and the major perturbation in
the upper atmosphere.

However, subsequent findings bgsed upon improved upper-air observations
failed to verify this one-to-one correspondence. Since the number of
surface frontal perturbations was found to greatly exceed the relatively
small number of major waves and vortices at the upper levels, Charney (1947)
concluded that there was a fundamental difference between the long (3000-
6000 km) waves and the frontal waves of wavelengths 1000-2000 km, although
there was undoubtly a connecticn between the twd types.

Since the late 1940's, Charney (1947) and many others have estabiished
that the origin and development of large-scale extratropical weather
systems result from the baroclinic development of disturbances with the
typical Waveiength of several thousand kilometers. However, the expla-
nation of the origin and development of the frontal cyclone, and its
connection with the large-scale baroclinic wave, remains largely an enigma.

Recently, there have been several new attempts to understand these
frontal cyclones. Nitta and Ogura (1972) have numerically simulated the
genesis and development of an intermediate-scale cyclone in a moist model
atmosphere as a result of the finite-amplitude effects of an amplifying,
nonlinear baroclinic wave in a channel flow. Starting with a wave with
a ﬁavelength of 6000 km, the initial disturbance intensified and an
extended front formed. After several days a frontal cyclone formed on

the extended front with a longitudinal wavelength of about 1500 km and
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a latitudinal half-wavelength of about 600 km.

One important feature of their model was the inclusion of the latent
heat of condensation. When the numerical model lacked a contribution
due to moisture, the distribution of the meteorological variables became
flater, less distinct, although the broad features remain unchanged.

As an alternative to numerical simulation, Orlanski (1968) has
throughly analyzed the instability of a Margules frontal surface (i.e.,
tw§ incompressible homogeneous fluids with shear and a slight density
difference, bounded above and below by two rigid horizontal planes) to
further perturbation. He found that the frontal instability combines
conventional baroclinic instability with Helmholtz instability and baro-
tropic instabiltty of the Rayleigh type. An important assumption in
Orlanski's study of frontal cyclogeunesis is that cyclogenesis occurs
only after the front has been formed.

Another stability analysis which might be useful in the understanding
of frontal cyclogenesis is the study of nongeostrophic baroclinic instability.
As was first shown by Stone (1966), nongeostrophic baroclinic instability
in‘tﬁe Eady model is a combination of three types of instability which
are well known from earlier work; the most unstable modes are assoc-
iated with conventional baroclinic'instability if the Richardson number
(Ri) > 0.95, with symmetric instability if 0.95.> Ri > 0.25, and with
Kelvin-Helmholtz if Ri < 0.25. 1In Stone's analysis, there are two
growth rate peaks if Ri < 1; one is that of the ordinary baroclinic
mode at £(the meridional wavenumber) = O and the other is that of the

symmetric instability at k(the zonal wavenumber) = 0, lz! = w,
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A distinctive difference between conventional baroclinic instability and
symmetric instability is that conventional baroclinic instability draws
its energy primarily from the available potential energy of the basic
state while the symmetric instability draws its energy primarily from
the zonal kinetic energy.

Recently Gambo (1970) and Tokioka (1970,1971) have reinvecstigated the
nongeostrophic baroclinic problem for the Eady model in the hopes of
applying their results to explain frontal cyclogenesis along the "Baiu
front" - a persistent phenomenon in the lower atmosphere near Japan
or over China during the season of June or July. Upon using parameters
representative of a frontal situation, both Gambo (1970) and Tokioka
(1971) found that the growth rate peak for the baroclinic mode at £ = 0
when Ri < l-became a saddle point in the stability diggram {with k as
the abscissa and 2 as the ordinate) and a new growth rate peak appeared
for small k and a moderate %. Since the motions associated with this
new peak were more rapidly varying in the meridional direction that in
;he zonal direction, they classified this new growth rate peak as a
symmetric instability even though k # 0. However, if one tries to
invoke nongeostrophic baroclinic ipstability to expalin frontal cyclo-
genesis, then one must reconcile the large values of the Richardson
number found in thé actual atmosphere (normally ~10) with the small
Richardson number needed for the "symmetric" instability of Gambo
and Tokioka to become important.

It is the intention of this thesis to study frontal cyclogenesis in
a manner dirfferent from that of Nitta and Ogura (1972), Orlanski (1968),

and Gambo (1970) and Tokioka (1970,1971). It is now well known that
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the deformation fields in a developing baroclinic wave produce fronto-
genesis (see Williams,1967). Moreover, once the front has formed, this
frontal surface may itself be unstable to further perturbation.

Recently, analytic expressions for a nonlinear, finite-amplitude Eady
wave which has formed frontal surfaces have been derived by Hoskins and
Bretherton (1972) using the semigeostrophic equations (Eliassen (1949),
Fjortoft (1962), Hoskins and Brétherton (1972), and Hoskins (1975)) using
a coordinate transformation first introduced by Eliassen {1959). This
immediately suggests that theif solutions could be used in an analytic
hydrodynamic stability calculation of a frontal surface created by a
finite-amplitude baroclinic wave embedded in a westerly zonal current.
The resulting stability properties could then be applied to understand
the dynamics of frontal cyclogenesis.

Consequently, it is the purpose of the present investigation to
determine the stability of a finite-amplitude, nonlinear Eady wave
which has generated frontal surfaces to further perturbation. We will
determine the speed of propagation of the disturbances, the exact
;tability criteria, and the three-dimensional structure of the most
unstable perturbation. We will then apply these results, as far as

possible, to the study of atmospheric frontal cyclogenesis.



2. Discussion of results.

In this section, the main points will be summarized so that the reader
may have a map of physical insights, unencumbered by mathematical details,
to guide him thrpugh the analysis which follows.

Starting with the hydrostatic Boussinesq equations on an f-plane where
all motions take place adiabatically and without friction, the equations
are simplified by neglecting the rate of change of the horizontal ageo-
strophic motions; the horizontal advecting wvelocities are, hovever, not
approximated by their geostrophic values. Since frontal cyclogenesis
takes place on the order of one day (see Nitta and Ogura, 1972), these
semigeostrophic equations should be able to describe frontal cyclo-
genesis without the interference of higher phenemena.

It is now well known that the origin and development of upper-air
waves result from the baroclinic development of large-scale disturbances
with the typical wavelength of several thousand kilometers. As a result
of the eddy transport of heat and momentum generated by the growing
disturbances, the amount of zonal available potential energy is reduced.
Consequently, élthough these large-scale disturbances grow initially
according to linear stability theory, sooner or later finite-amplitude
effects will start to slow, and then eventually arrest, the growth of the
baroclinic wave. Evidence that this feedback process acts strongly in
the atmosphere is shown in Fig 1.

To approximate this observed atmospheric state, our basic state will
consist of a finite-amplitude, neutrally stabl; Eady wave with no meri-
dional structure embedded in a zonal flow which may possess vertical

shear; we choose to use the finite-amplitude solutions to the semi-
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geostrophic equations found by Hoskins and Bretherton(1972, Section 5).

In our Eady model, this minimization of the zonal available potential
energy occurs if we take the zonal shear to be zero. Consequently we
shall only consider the case of no zonal vertical shear where the baro-
clinic wave which has formed a front has the wavelength of the most
unstable perturbation from linear stability theory. Fig 2 shows the
pressure, temperature, and meridional velocity fields associated with
this basic state.

This basic state is then perturbed so that the actual flow is consi-
dered to be a small perturbation superimposed on the mean flow. As a
first attempt at solving the frontal cyclogenesis problem, we take the
potential vorticity to be always constant. Our choice of this constant
potential vorticity model has not been made capriciously but has been
motivated by the results contained in a paper by Hoskins and Bretherton
(1972). 1In their paper, they obtained frontal models which compared
favorably with those observed in the atmosphere by assuming constant
potential vorticity. We are trying to extend these constant potential
vortictiy models to describe frontal cyclogenesis.

Under the constraint, the linea;ized pertﬁrbation equations are derived.
They admit solutions in the form of a sinusoidal wave traveling in the
north-south direction with constant speed. The problem which remains is
to determine the speed of propagation and the variation of amplitude with
height and along a latitude circle as a function of the meridional wave-
number, the amplitude of the Eady wave, and thé Rossby number. Since

both the velocity and amplitude of the wave may be complex, the wave

may grow exponently with time and have a phase shift in the vertical.

v
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The perturbation equations are found to be sufficiently complicated
so that they must be solved numerically. This is accomplished by solving
the perturbation equations as an initial-value problem (see Brown, 1969).
Although this method makes very efficient use of computer storage as well
as the computational time needed to calculate the speed of propagation,
the noise which is produced upon introducing the arbitary perturbation
during the initialization of the numerical scheme results in a complete
masking of very small growth rates. Mathematically this noise is assoc-
iated with that part of the general solution to the initial-value problem
which is not represented by the normal modes (see Pedlosky, 1964).

As an alternative to the numerical solution of the exact perturbation
equations, certain nonessential terms are neglected which allow the
perturbation equations to be solved analytically. The agrccment between
the solutions found using the exact and approximate perturbation equations
is outstanding.

In Section 6 we examine some of the general stability properties of
the perturbation equations using integral methods (see Charney and Stern,
1962). Besides deriving maximum bounds on the growth rates (which is
proportional to the product of the'meridional wavenumber and the maximum
difference in the basic state's velocity) and phase speeds, it is shown
that if unstable pérturbations exist their instability is a result of the
variations of the basic-state potential temperature along the horizontal
boundaries. Consequently any instabilities which are found arise from '
the baroclinic, rather than the barotropic, nature of the basic state.

For any given meridional wavelength, amplitude of the Eady wave, and

Rossby number (which do not viclate the conditions under which the semi-
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geostrophic equations are derived), unstable waves are found. The most
unétable perturbation is found to be stationary with respect to the
zonal flow, has a characteristic length scale of the Rossby radius

of deformation in both the meridional and zonal direction (NH/f where

N is the Brunt-Vaisalla frequency, H the depth of the Boussinesq atmo-
sphere, and f the constant Coriolis parame;er), and receives its energy
from the available potential and kinetic energy of the finite-amplitude
baroclinic wave.

In addition to the unstable stationary perturbations, there are mnoa-
stationary unstable perturbations. These nonstationary perturbations
have growth rates which are considerably smaller than that for the
stationary perturbation; consequently, they are of academic interest
only.

In our model, we have taken the potential vorticity of our basic
state to be constant and the potential vorticity of the perturbations
to be zero. In the case of quasigeostrophic flow, Charney and Stern
(1962) haﬁe shown that there are two possible sources of instability
in a baroclinic-barotropic circumpolar vortex. One of the sources
of instability is the variations of the potentiél temperature along
the horizontal boundaries. We have this type of instability in our
model and it is associated with conventional baroclinic instability.
Another source of instability is due to the vanishing of the meridional
derivative of the potential vortiéity in an isoentropic surface or the
pseudopotential vorticity in a level surface somewhere within the
flow. 1In our problem, this would correspond to a vanishing of the
meridional derivative of ;he basic state's potential vorticity some-

where within the flow. This does not occur in our problem and has
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the consequence of excluding Rayleigh instability in the flow.

Our results are in qualitative agreement with those of Orlanski(1968)
if the Rossby number is sufficiently small and the Richardson number is
sufficiently large so that the semigeostrophic equations are valid. The
most unstable perturbation has a length scale along the front of the
order of the Rossby radius of deformation and receives its energy from
both the basic state's available potential and kingtic energy. The
most unstable perturbation ﬁoes not, however, move with the mean zonal
flow.

In Section 9 we display the pressure, temperature, total velocity,
and perturbation's relative vorticity fields for the most unstable
perturbation. As expected of a baroclinic-like instability, warm air
rises and spreads out in the upper levels while cold air sinks and
spreads out in the lower levels. In this manner, the temperafure
contrast across the frontal surfaces is destroyed.

As’an application of the results found in our stability analysis, we
examine the development of a frontal cyclone over the midwestern United
Statés in Section 10. Although a detailed comparison shows marked
differences between our model and the observed situation, the overall,
smoothed temperature, pressure, aﬂd‘vertical velccity fields are explained.

Thus, our analysis suggests but dces not prdve that the major frontal
disturbances are essentially baroclinic instabilities and that only

the smaller scale, fast moving frontal waves are of the Rayleigh type.



-21-

3. The governing equations.

In this paper we will employ the Boussinesq‘equations, bounding the
domain with two rigid horizontal planes. The compressibility of the atmo-
sphere, which is neglected in the Boussinesq approximation, may be shown
to be qualitatively unimportant in the case of atmospheric frontogenesis
since the density scale height of the atmosphereislmichlarger than the
thickness of typical frontal zones. In addition, Nitta and Ogura (1972)
have found that an intermediate-scale cyclone is most pronounced in the
region below 700 mb, indicating that it too should be relatively unaffected
by compressibility. The replacement of the tropopause by a rigid horizon-
tal surface can be expected to give large errors in that region, but the
resulting errors near the bottom boundary, the region that will be of
greatest interest for us, should be small,

We shall also employ the hydrostatic approximation. Since the hori-
zontal scale during frontogenesis and frontalrcyclogenesis remains much
larger than fhe vertical scales, the hydrostatic balance should be valid
throughout the entire field of motion.

/ Approximating the spherical geometry of the earth with a Cartesian
tangent plane, we denote the eastward, northward and vertically upward
Cartesian coordinates by x', y', and z'; their corresponding velocities
by u', v', and w'; time by t'; the constant Coriolis parameter by f; the
departure of the potential temperature eo, a constant reference potential
temperature, by 0'; the pressure function by ¢'; and the acceleration due‘
to gravity by g. The hydrostatic Boussinesq equations can be written in
the following form:

ué' + u'u;, + v'u;. + w'u;, + ¢;, - fv' =0 (3.1)
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'

ver u'v}'{, + v'v;' + w’v;, + ¢}'7. + fu' =0 (5.2)
$or - ge'/eo =0 3.3)
u;, + v;, + w;,= 0 (3.4)
6;, + u'eé, + V‘G;, + w'e;, =0 (3.5)
where k = R/C ,
. p |
8" = T(py/p)" - 8, (3.6)
o = Cpeo(p/po)K + gz', (3.7)

T the absolute temperature of the fluid, R the (ideal) gas constant, Cp
the specific heat at constant pressure, p the pressure of the fluid, and
P, @ constant reference pressure. The subscripts in x',y',z', and t'
denote partial differentiations.

Two physical processes which have been neglected in (3.1)-(3.5) are
heating and friction. In their study, Nitta and Ogura (1972) included
the eddy diffusion of momentum, heat, and water vapor as well as surface
frictipn, evaporation, and the release of latent heat of condensation.
Of all of these above effects, they found that the release of latent heat
of condensation to be most important: At present, we shall neglect this
effect. Any scheme for the inclusion of the latent heat of condensation
into our problem, exéept for a simplistic modification of the atmosphere's
static stability, would make the problem analytically untractable. From
previous studies, however, we should anticipate that the effects of
condensation would tend to intensify the instability of the
system as well as reduce the scale of the disturbance {(Nitta, 1964).

The boundary conditions are

w' =20 at z' = 0,E,
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where H is the distance between the horizontal plates. The boundary con-
, ditions in the zonal and meridiomal directions will be specified later.
Let L denote the characteristic length scale, U a characteristic hor-
izontal velocity scale, H the distance between the twe horizontal plates,
L/U the advective time scale, then we may nordimensionalize (3.1)-(3.5)

aé follows;

(x,y) = x',y")/L; z = 2"/4; (u,v) = (u',v')/U; w = Lw"/UD; t = Ut'/L;

¢ = ¢'/£fUL; and 6 = gHG'/eofUL
Ro(ut + uu + vuy + wuz) + ¢x ~-v =0 (3.8)
Ro(vt + uv, + vvy + wvz) + ¢y +u=0 (3.9)

¢z -6=0 (3.10)
ua +v 4w =0 (3.1
X v z
6, tub + vey +we = 0 (3.12)

where Ro is the Rossby number, Ro = U/fL. Egqs (3.10) and (3.12) can be

combined to yield o . +up  + vo +wdp =0 (3.13)

zt zZX zy zz

with the boundary conditions w = 0 at z

[

0,1.

3.1. The semigeostrophic equations;

Eqs (3.8), (3.9), (3.11), and (3.13) are still too general for our use;
not only do they describe frontogenesis and frontal cyclogenesis but also
gravity wave motions. From the study of Hoskins and Bretherton (1972), we
know that gravity waves are of negligible importance in the description of
frontogenésis; from a diagnostic study of a developing wave cyclone,
Krishnamurti (1968) has demonstrated that the balance equations may be

used to accurately describe the development of a wave cyclone. Since
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results in considerable simplification of the
» we shall introduce a system of semigeostrophic

derived by Eliassen (1949) and later rederived

by Fjortoft (1962) and Hoskins (1975).

We rewrite (3.8)-(3.9)

v

[=
"

We now substitute (3.15) i

substitute (3.14) into the

‘v =
u =

where D
Dt

v
g

and ' u
g

Upon repeated substitution

vatives (in the same manne

as
¢X + Ro(ut + uu_ + vuy + wuz) (3.14)
¢y - Ro(vt + uv, + vvy + wvz) (3.15)

nto the substantial derivative in (3.14) and

substantial derivative in (3.15) and obtain

vg + Rog%g - Ro%%%% , (3.16)

v - Rope - Rolg—f?} (3.17)
= = %E-+ u%;-f v%§—+ w%;

= ¢X

= _¢y.

of (3.14)-(3.15) into the substantial deri-

r as above) to replace v and u, respectively,

we may replace (3.14)-(3.15) with the power series:

oo

v ==‘1:}'0
1l
Y= =0

The essence of the semi
(3.19) at n = 0, so that

Ro(ugt + u

(-1)" ro2" P—Z'Izl—{v + Rox—(u )} (3.18)
DBt g Dt g )
n
140 .20 D2 _ nD
(-1) Ro ﬁzgﬁiug Roﬁz{vg)} (3.191

geostrophic equations is to truncate (3.18)-

ugx + vugy + wugz) + vg -v=20 (3.20)
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Ro(vgt + uvg + vvgy + wvgz) - ug +u=0 (3.21)

Eqs (3.20)-(3.21) will be a good approximation to (3.18)-(3.19) when the
remaining terms of (3.18)-(3.19) are small compared to the n = 0 term.
For well-behaved expressions for ¢ (i.e., expressions whose derivatives
do not become large as the order of the derivatives is increased), the

semigeostrophic equations (3.18)-(3.19) are clearly valid if

D2 Du Du
pa _._g .
Ro Bzy(vg + Ro ¢ )l/\vg + Ro BEg << 1 (3.22)
D2 Dv ' Dv
2 “ - Dvg - Dv,
and Ro Bgy(ig Ro Dt ) /‘ug Ro Dtg << 1, (3.23)

The inequality in (3.22) and (3.23) might be violated if the denominator
vanishes. Although this might occur in a small region of the flow field
(when vg and ug change sign, for example), this wculd indicate that the
semigeostrophic equations were giving locally poor results but the remain-
ing portions of the flow field might be described very accurately. Con-
sequently, in using (3.22)-(3.23) to test the validity of the semigeo-
strophic equations to the whole flow field, a global view of how well
(3.22);(3.23) is being satisfied is needed.

The central difference between our cet of semigeostrophic equations
(3.20)-(3.21) and the quasigeostrophic equations is the retention of the
ageostrophic horizontal advection. As Hoskins (1975) has pointed out,
this is entirely anaiogous to the hydrostatic approximation in which the
vertical component of momentum is neglected but vertical velocity 1is
retained in the substantial derivative and continuity equation.

Besides simplifying the set of governing equations, the semigeostrophic

equations possess the following set of conservation laws:



(1) conservation of potential temperature;
D -
T3 (¢Z) =0 (3.24)
(2) conservation of vorticity
Dz )= (-v)u - kxv.6 (3.25)
Dt=g by dg/l T XYy )

(3) conservation of poteantial vorticity

D -
peldy) = 0 (3.26)
and (4) the energy equation
Dk +P) =-y . ¢ 3.2
where
C = (- 2(-~ - 02 (-
e ( Rog_, + Ro ( ¢yy¢xz + ¢yz¢xy), Ro¢yz + Ro4( ¢yz¢xx + ¢Xy¢xz),
2(-p2
1+ Ro(py, + o) + Ro2(-g2  + o8 ) (3.28)
qg = Lg'y_Be (3.29)
= 1 2 2
Kg 2R0(¢X + ¢y)

and P = -zg,
All of the above equations have been derived froﬁ (3.11), (3.13), (3.20),

and (3.31).

3.2. The Eliassen ccordinate.

Despite the fact that (3.11), (3.12), (3.20), (3.21) are simpler than ,
the primitive equations, they still have not been brought into their |
simplest form. This subsection is devoted to the derivation of a co-
ordinate transformation which results in such an amazing simplification

of the semigeostrophic equations that many of the results, which would
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normally be amendable only through numerical calculations, can be derived
analytically.

To begin the analysis, we define four new independent variables, first
introduced by Eliassen (1959), as follows:

X =x + Ro ¢X, Y =1y + Ro ¢y, Z=2z,T-=t. (3.30)

Since X u " and DY _ v
Dt g Dt g’

Hoskins and Bretherton (1972) have referred to them as geostrophic co-
ordinates since they represent the positions particles would have had if
they had moved with their geostrophic velocity at every instant instead
of their actual velocity. We shall refer to these new coordinates however
as the Eliassen coordinates.

Upen performing the transformation, we find that the Jacobian of the

transformation is

s e, = 0XY)
J k_gg 3 (%.5) (3.31)
as well as - 3 _ .
I35z " L Y3
where Eg is defined by (3.28).
If we now define
¢ =9 +IROGL +62), | (3.32)
it is easily verified that
<¢X’©Y,®Z) = (d)x’d)y’(bz)’ (3'33)
Using (3.31) and the transformation equation, we find that
1 _ . 2 - 32 3
J =1 Ro(@XX+¢YY) + Ro (QXXQYY @XY). (3.33)

Having performed the coordinate transformation, we are prepared to

derive the conservation equations in the Eliassen coordinates. Trom
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(3.31) we have

Be = . 1
Toz =L gl =g (3.35)

Therefore,

1
EEQZZ + RQ(@XX+®

since 6= 3%/37Z.

- Ro2 Z 82 ) =
YY) Ro (QXXQYY ?XY) 1 (3.36)

Turning our attention to the material time derivative, we find that

following a fluid particle
=== == =1 O =t W (3.37)

so that conservation of potential temperature and vorticity becomes

D _

BE{QZ) = 0 (3.38)
nd D .. N
a 5E(qg) = Q0. (3.39)

From (3.38) we find that the boundary conditions along the boundaries

are . 9 _ . o a_ -
3T ~ ®y 3% ' °x BY) ¥ =0 (3.40)

on Z = 0,1.

Having introduced the Eliassen coordinates, we have mapped the semi-
geostrophic equations into a form which is very similar to that of the
quasigeostrophic equations. Consequeptly, many of the known solutions to
the quasigeostrophic equations may be used to solve the semigeostrophic
equations with only a distortion of the solution due to the coordinate
transformation. This distortion is vital however in the description of
frontogenesis and frontal cyclogenesis. The difficulty with this co-
ordinate system is that it is a quasi-Lagrangian system where we must

make a highly nonlinear transformation to get back into physical space.
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However, .this may be.accompl%shed graphically, a small price to pay for
having made the equations which govern .the nonlinear flows of fronto-

v

genesis and frontal cyclogenesis nearly linear.

3.3. The constant potential vorticity model.
With the derivation of (3.36), (3.38), (3.39), and (3.40), the semi-
geostrophic equations (3.24)-(3.29) have been transformed into the Eliassen

coordinate system without approximation. We shall presently place a re-

striction on the semigeostrophic equations which will allow us to con-
struct a model of frontal cyclogenesis without a cumbersome mathematical

treatment, namely, that the potential vorticity as defined by (3.35) ig_v//

always constant. With this simplifying assumption, the vertical velocity

does not appear explicitly in the governing equations. Since this as-
sumption saves us from solving a vertical velocity equation, the problem
may be attacked primarily by analytical techniques rather than as a
numerical experiment.

Our choice of this constant potential vorticity model has not been made
CapriCiquslybut'has been motivated by the results contained in a paper by
Hoskins and Bretherton (1972). In their paper, they obtained frontal
models which compared favorably with those observed in the atmosphere by
assuming constant potential erticity. We are trying to extend these
constant potential vorticity models to describe frontal cyclogehesss.

To reduce the parameters in our analysis, we shall take our character-
istic length scale L to equal the Rossby radius of deformation (NH/f where
N is the Brunt-VHisalla frequency). We further take the constant potential

. . -1 . s e
vorticity to equal Ro =, and substract out the mean atmospheric stratifi-
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cation by introducing Y so that ¢ = ¢ ~ LRoZ2. (3.41)

The governing equations now become

o

- 2 -
¢ZZ + wXX + wYY_ ROwXXwYY + RowXY 0 (3.42)
and 3 3 3 _
[ﬁ =¥y ax T ¥k Ef)‘bz =0 (3.43)

along Z = 0,1, For the remaining portions of this thesis, we shall use

(3.42) and (3.43) to study frontal cyclogenesis.
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4. The basic state: the unperturbed finite-amplitude wave and its

]

associated front.

el
To begin our discussion of the basic state, we shall take a uniform

zonal flow which may possess constant vertical shear plus an Eady

wave without any meridional structure:

v =-Y - 6(2-1/2)Y + w(E)(X,Z,T)

where § is a measure of the vertical shear and ¢ the amplitude of the

(4.1)

Eady wave. By translating the coordinate system with the speed of the

zonal flow at the mid-level, we may stbtract out the constant zonal

flow by making the substitution XO = X - T.

E
Substituting (4.1) into (3.42)-(3.43) we find that w(

(E) (E)
I =0
zz X5%,

subject to the boundary condition along Z = 0,1

o\ (®)

39
G+ 6(Z~l/2)axo)¢z S ¥y

0

The solution to (4.2) is

o) = exp(08T) (A cosh k(2-1/2) cos kX

0
with 02 = (x-coth(x)) (tanh(x)-x)
where x = k/2
and oA = B(1 - x coth(x))

0B = A(x tanh(x) - 1).

To complete our derivation of the basic state, we must now choose

E _

+ B sinh k(Z-1/2) sin kXO)

is governed by?

(4.2)

(4.3)

(4.4)

(4.5)

those values of § and k that best approximate finite-amplitude baroclinic

waves as they exist in the atmosphere.
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Fig 1. The shear profiles from the local baroclinic stability criterion,
¥ 00 ~ ﬁ700 = 4QaS cos (lat.)/sin?(lat.) for S = 0.00é and the
ogserved mean summer and winter values of T(200mb) - U(700mb)
(Oort and Rasmusson, 1971).
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It is now well known that the origin and development of upper-air

waves result from the baroclinic development of disturbances with the
o

typical wavelength of several thousand kilometers. As a result of the
eddy transporgg of heat and momentum generated by the growing dis-
turbances, the zonal available potential energy is reduced. Consequently,
altﬁough these large-scale disturbances grow initially according to
linear stability theory, sooner or later finite-amplitude effects will
start to slow, and then eventually arrest, the growth of the baroclinic
wave.

Evidence that this feedback process acts strongly in the atmosphere
is shown in Fig 1 which compares the observed zonal shear from summer
and winter (Oort and Rasmusson, 1971) with the zonal shear from the /5
local baroclinic instability criterion derived from a two-level,
B-plane model:

ﬁl - ﬁ3 > 4QaS cos(lat.)/sin (lat.)

where Q@ and a are the angular velocity and radius of the earth, and ..
S the nondimensional static stability of the atmosphere (Phillips, 1954).
The observed vertical shear is computed by differencing observed
seasonal values of U at 200 mb and 700 mb. Fig 1 suggests that the
observed, finite—amplitude baroclinic waves in the extratropical regions
of the atmosphere limit the zonal available potential energy to such
a degree that it does not greatly exceed the amount necessary for
instability.

In our Eady model, the flow is unstable for any vertical shear of
the zonal flow; hence, the consistent minimization of the zonal

available potential energy occurs for zero zonal shear. Consequently,

from this point forward, we shall take § = 0. Furthermore, since there
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igs no physical freason why Y?velengths other than that asso iated with
the most unstable Eady mode as found from linear stability theory
(i.e., k =~l.g062) should be excited, we shall also use that value of

k in our analysis. Although the finite-amplitude effects have probably
chaﬁged it from its original value, this value is certainly near the
correct one. Also B will have the same relation to A as in the case

of the most unstable Eady wave.

Using (4.1), (3.20), (3.21), and (3.13), we find that the basic

state consists of

g = az = Roﬂl(z—l/Z) + ¢Ak sinh k(Z-1/2) cos kXO +

+ eBk cosh k(z-1/2) sin kX, 4.6)"
w=0
u=1 %.7)
Y =3 = -eAk cosh k(z-1/2) sin kX_. + eBk sinh k(2Z-1/2) cos kX (4.8)

g 0 0

Fig 2 shows vertical cross sections of 5(E) (i.e., the temperature field
with the mean stratification subtracted out), v at y = 0 in the un-
stretched coordinates, and ¢ at z = 1/2 (corresponding to 500 mb) when
¢kRo = 0.4. Since the magnitude of v is associated with e; A may be
taken to equal one without any loss of generality.

In certain respects, the case of no zonal shear is a generalization
of Orlanski's model. Instead of a discontinuity for a front, we have
continuous variations of temperature and vorticity. Also the properties
of the front are directly associated with the finite-amplitude baroclinic
wave that produced it. Finally, we also have vertical and horizontal
shear across the front, as Orlanski's model does, without any temperature

variations along the front.
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Fig 2.1. The basic state's pressure field at z = 1/2.
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Fig 2.3. The basic state's meridional velocity field at y = 0.
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As a point of departure, we do not have a discontinuity of potential
vorticity as dows Orlanski?s model at his frontal surface, We will
return to this point later.

Finally we must test (4.6)-(4.8) to see when the semigeostrophic
eqdétions break down according to (3.22)-(3.23). Since p"v/pt" =
D™u/Dt™ = 0 when n < 1 and D/Dt = /3T + u /X + v 3/3Y +w 3/0z,

then (3.22)-(3.23) is satisfied for all €, k, and Ro. However, since

the vertical component of the basic state's absolute vorticity (which

(E) )"'
Xo%o
reality ekRo < 0.4.

. 1 . - R .
is equal to (1-eRoy ) must remain finite, it is found that in
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5. Perturbation equations.
5.1. The linearized equations.

We now consider that the actual flow is a small perturbation super-—

imposed on the steady flow described in Section 4. Thus,

Vo=
(5.1)

W= w!

Substituting the perturbed ¢ and w into (3.42)-(3.43), subtracting
out the basic state, and neglecting quadratic perturbation terms, we

obtain the system

w + w' ' - eRow( ; wYY (5.2)
X¥o Xo%o
and 9 (E)3 (E)
' [BT ey aY]wz eVx 7y = .3
0 0
Since w(E) is independent of Y,T we may assume that ' varies as

exp(ifY + iAT) where % is the (real) meridional wavenumber and A

may be complex. If A Im(x) < 0, then we have found an unstable

i

mode for the given value of e, &, Ro. Assﬁming'that

V' v ¥(Xg,2) exp(ilY + 1AT) (5.4)
then (5.2)-(5.3) becomes
E)

Y+ V¥ - 22¥ + ¢Rog? w( ¥ =0 (5.5)

YAA XOXO XOXO
and Ay, e£¢éE) ¥, - ezyéE; ¥ =0 (5.6)

0 0
The XO,Z dependence of w(E) is rather complicated. The simplest

solution to (5.5)—=(5.6) which takes the sinusoidal<X0 dependence of
the baroclinic wave into account assumes the form of

v= 7 v @) explinkxy + ikX,) (5.7)
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whgrg ko,is any érbitary zqnal.wavgnumbgr. qu Fhe prgs?nF spudy, we
shall rés;rictkgursglvgs Fo.k0 = 0.,. The”mqsp general solution to.(5.5)-
(5.6) would, of course, require that the kO = qQ condi;ion wounld have
to bg relaxed.

Upon substituting .(5.7) into (5.5)-(5.6), we obtain the following set
of ordinary differential equations:

( -
Y;g)wﬁﬂnzk??gn) = 226™) = cRok2e2 Ah_lw(n Dy oerok2e2 A, vy @) (5 g

n+l
and
_iAYén)+ekl Bn+l$n+l)+ ekg Bn_lw(n‘l)+gkz cn+lw§n+l)+ekzcnﬁlw§n'l) =0 (5.9)
along Z = 0,1 where //
An+l = 3 A cosh k(Z-%) + %i B sinh k(Z-%)
An—l =1 A cosh k(Z-%) - %i B sinh k(Z-k)
Bn+l = -3ik B cosh k(Z-%) - %k A sinh k(Z-%)
Bn—l = -%ik B cosh k(Z-%) + %k A sinh k(Z-k%)
Cn+l = %i B sinh k(Z-%) + % A cosh k(Z-%)
and Cn—l = %i B sinh k(Z-%) - % A cosh k(Z-k%)

Due to the complicated form of An+l and An—l’ a general analytic sol-
ution to (5.8) cannot be found which could then be substituted into (5.9)

to find A. Therefore, we must solve (5.8)-(5.9) numerically.

Instead of solving (5.8)-(5.9) in the manner suggested by Orlanski

(1968), (5.9) is rewritten

W(n) w(n+l)

y @ ey D)
2T 1

(n-1) _
tekiB ) ntl’z =

+ekB 0 (5.10)
n+

+€k£cn-l%

and (5.8) and (5.10) are solved as an initial-value problem.
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15
5.2. The numerical technique.

The.numericalutechnique employed in .the preseﬁt investigation to obtain
the linear solutions to (5.8) and (5.10) is one of an initial-value type.
The major advantage of this method is the compactness of the computer
memory necessary for large vertical resolution; the major disadvantage
is the presence of background noise due to the initialization scheme.

For a given Rossby number, meridional wavenumber, amplitude of the

Eady wave, and basic state zonal wavenumber, an initial perturbation Wén)
is generated by a random number generator along the upper and lower
boundaries. Eq (5.8) is then solved in the interior (0<Z<1l) and the
value of W(n) is found along the upper and lower boundaries. Using
(5;10) a new value of Wén) along the boundaries at the next time step
is found and the above process is repeated.

(n)

During the initial stages of the time integration, the values of V¥
are highly chaotic;v As the integration proceeds, the unsteady eddy begins
to move and grow at a more homogeneous rate, as dictated by the most
unstable mode of the finite-difference set. Consequently, the time
integration is terminated when the most unstablé mode dominates all the
other perturbations.

It is readily shown that the total kinetic plus potential energy behaves
as exp(fZAiT). Therefore we may calculate A; a8 =hy = dE/dT/2E where,

as it will be shown in Section 7,

; ) 27\']2, 2w
k= J I , j ——2{12‘;2 w}‘(2+ vyt (1—eRoxp)§E))( )w;{?—}dxo dy 4z (5.11)
0°0 0 0 ' g0

In this manner we gain a contribution from each Fourier mode.
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In;determiningflr = Re()),,we cannot use energy integrals such as
(5.11). . However, using the Fourier component for n = 0 at the mid-level

(since it is the most accurately determined), we do find that
. * *
o= 109 0w l0) e (0 6oy 0% 0y y 21 1 00 gy |2 (5.12)

Straightforward center differences in time and vertical space were used
throughout the investigation. The exception to this was the forward time
step taken initially. To damp the effects of the separation of the sol-
ution between the even-~ -and odd-numbered time steps, which results from
a first-forward-then-centered time step, the first time step was sub-

divided into six subdivisions and time integration out to the first time ,

step was carried out using forward time steps.

Due to the coupling of the Fourier modes in (5.8), the system of linear
equations resulting from the finite-differencing of (5.8) gives a sparsely
populated matrix which must be inverted. Since this can be very time

consuming, we treat the right-hand side of (5.8) as a known quantity.

(n)

As a first quess we take V¥ as given from the previous time step (except

for the first time step when we set it equal to zero) and solve the tri-

diagonal system from the finite-differencing of the left-hand side of

(n),

(5.8). The ¥ s are then compared with the quessed values that were

used in the right-hand side. If they agree to within 10_5 (after all

\y(n)v

the s have been properly normalized), then the calculation proceeds

(n) (n)
Z

to the calculation of the new V¥ at Z = 0,1; otherwise, V¥ is used
as the new quess to evaluate the right-hand side of (5.8). This process

is repeated until convergence is obtained.
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5.3. The approximatevperturbifion equations.

The solution of the perturbation equations using the numerical tech-
niques describeduabove is not entirely satisfactory. For small growth
rates, we wiil be unable to find solutions to the perturbation equations
sinceithe background noise, which is produced Whén the random pertur-—
bations are introduced, completely masks the unstable mode. Also the
errors associated with the finite differencing, especially for the higher
harmonics, also limits the accuracy of the solution which are found.

For these reasons, we shall approximate the perturbation equations (5.8)
by neglecting the right-hand side. Formally, such an approximation results
in our neglecting 0(Ro?) terms and we are, in fact, using the quasigeo- ’
strophic equations. However, as Hoskins (1975) has pointed out, there
may be several occasions when the Jacobian terms in (3.34) may be neg-
lected and yet the ageostrophic effects will be retained. Consequently,
we shall apply the approximate perturbation equations to those situations
whaere Ro << 1 as well as Ro < 1 and see how they compare to results

obtained from the completely general equation (5.8).

Upon neglecting the terms on the right-hand side of (5.8), we may write

the solution to T(n) as
o= 3 ™ expGmix raraTh (5.13)
n =
where ?(n) = A coshm (Z-%) + B sinh m (Z-%)
n n n n 2
1
and m = (nz,k2 + 22)*

Substituting (5.13) into the boundary conditions along Z = 0,1, the

linear equations which form the eigenvalue problem for A are
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(- ickg A cqsh@x) hn—l sinh(xn_l) + iek?f A sinh(x) cosh(xn_l))An_l

sinh(kn+l) - iek2p A siﬁh(x) cosh(xn+l)) A

+ (iekg A cosh
(icks A cosh(x) m -

ntl

+ (~ekf B sinh(x) n_ 4 cosh(gﬁ;l) + €k?% B cosh(x) sinh(xn__l))Bn_l

—ek, oy 2 <) si
+ (-ekf B sinh{x) mo cosh(xn+l) + ek“2 B cosh(x) slnhtxn+l))Bn+l

- 2X m sinh(xn) An =0 (5.14)

(- ¢kg B sinh(x) m sinh(xn_l) + ¢k?2 B COSh(X)‘COSh(Xn_l))A

-1 n—-1

. ; . 2
+ (-'ekf B sinh(x) mog Slnh(xnfl) + €k“% B cosh(x) cosh(xn+l))An+l

. : . 1,2 L .
+ (-ickf A cosh(x) o COSh(Xn-l) +iek 2 A sinh(x) s1nh(Xn_l))B

-1 n-1

+ (+iek® A cosh(x) m

a1 cosh(xn+l) -iek2% A sinh(x) sinh(x_,.))

Bn+l

- 22 m cosh(xn) B =0 (5.15)
where x = k/2 and x = mn/2. The coefficients of (5.14)-(5.15) are
sufficiently coamplicated and the matrices are sufficiently large

(for n = 0,1, there are six equations), so that (5.14) and (5.15)

were solved numerically.

Eqs (5.14)-(5.15) are solved along the lines outlined in Duffy (1975).
The infinite set of equations symbolized by (5.14)-(5.15) is truncated
by setting An = Bn = 0 for n > N. This truncated set of equations is
solved and 4N+2 eigenvalues and eigenvectors are obtained. Upon taking
a larger N, in addition to new eigenvalues and eigenvectors corresponding
to the higher harmonics, eigenvalues and eigenvectors are found which
correspond to the eigenvalues and eigenvectors found in the system
with the smaller N but are of greater accuracy. Therefore, the process

of repeatedly expanding the system of truncated equations for larger and

larger N may be repeated until the desired accuracy is obtained.
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Thg gigenvalugéﬁand eigenvectors.were obtained by using a modified LR
algorithm. In Rgr;icular, a Fortran IV version of the Algol routines
balance, comhes, comlr, comlr2, and balbak developed by Wilkinson et al
(1971) were used. Balance and balbak were modified to handle the complex

arrays.

5.4. Check of the semigeostrophic equations.
As was shown in Section 3, the semigeostrophic equations are valid only .
under certain conditions which are given by (3.22)-(3.23). Before we can
proceed to the numerical calculations, we must determine what values of
R, and g are allowed by the semigeostrophic equations for a given k.
Turning first to (3.22), we note that the largest term in the denom-
inator will be ;g; the remaining terms will be of the order (or less)
of the amplitude of the perturbations ué and vé. In the numerator, the
magnitude of the terms will be of the order of the perturbation's ampli-
tude. Consequently, if k, g, and Ro are finite, the amplitude of the
perturbations can always be so choosen so that (3.22) will be satisfied.
Turning to (3.23), we see that since Gg = 1 the denominator will be
of 0(1). The numerator will, on the other hand, have terms of the order
of the perturbation's amplitude. As in the case of (3.22), the pertur-
bation's amplitude may always be so choosen so that (3.23) will be sat-
isfied.
The mathematical problem now reduces to solving (5.8) and (5.10) or
(5.14)-(5.15) for specific values of ¢, &, and Ro. Before inyestigating
this general problem, however, it is useful to consider some general

stability criteria and energetics.
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6. Stability théorems.

D

A great deal of useful information pertaining to our stability problem

-

o

can be obtained by integral methods (see Charney and Stern, 1962). These
theorems yield necessary conditibns for instability and bounds on the

growth and phase speeds of the disturbances.

6.1. Necessary conditions for instability.

Consider our meridional flow vg(XO,Z)thich is perturbed by a wave dis--
turbance W(XO,Z) exp (i2Y+iAT). We showed in the previous section that
W(XO,Z) satisfied (5.5) with the associated boundary conditions (5.6).

Suppose A # 0, we multiply (5.5) by Y*, integrate over a vertical crosg
section, and apply the boundary conditions (5.6). We obtain

zm sw(E)zleZ z=1
)y |¥|? ax.dz = Xo?

O -
0 (€2 vi)21z=0
0

(E)

XX

1(2
j J ﬂ]w |2+]¥, | 2+22 (1-eRoy
o 2 X %o

0 dX0(6.l)

The real and imaginary parts of this integral must be satisfied separately.

2m ezwéE% l¥|2 |z =1
The imaginary part yields A, -9 _ dX. =0 (6.2)
i (E) 0
leswy™” + A2 |z =0

0

I1f li is not to equal zero, then it is necessary that the integral quan-
tity vanish. The vanishing of this integral is thus a necessary condition
for instability. If unstable perturbations exist their instability is a
result of the boundary variations of the potential temperature of the
basic state. Consequently any instabilities which are found arise from
the baroclinic, rather than the barotropic, nature of the basic state.

More information can be obtained from the real part of (6.1)
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Uy 2 g e 24 g2 eero vy J3]2 -
J JO 2 Iy, + 22(1-¢Ro onXo) |v] dx dz =
0 ° '
2q 2=1 ' =1
2Py v Tl v
.2 Xy "o X, + 2 s X2 ax, (6.3)
lesp(E) + A|2|z=0 leﬁw(E)+%|2 z=0
BRS¢ X
0 0 0 °

For unstable waves, the third term which is multiplied by Ar must vanish
according to (6.2). In addition, (1-5Ro¢§E) ) is always greater than
00

zero for the vertical component of the absolute vorticity to remain

finite. Thus a necessary condition for instability is

P2T
X %oz
) > 0.
|ez¢§E) + a2
J 0 Z=0
0
Hence a sufficient condition for stability is that
o8B x e Ex,,1) < o
X 0’ %7270
0 0
and
E)
W(E{X ,0)¢( x.,0) > 0 everywhere.
X, 0 X4z 0

6.2. Phase speed and growth rate.
In this subsection, we shall derive certain bounds for the speed of

propagation and growth rates of unstable waves.
(E)
Since X 1is not zero, we may make the transformation:V¥ = (ekwx -A)x-
1 0
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Upon making the substitution into. (5.5)~(5.6) and simplifying, we find
' . . . . [ S :

{}zg A)Z Xy}, * {(szw(E)~A52 X x v~.22(1~¢ng§ ) ) Ry E)j)2 4 =0
X0 050 0
(6.5)
Xg = 0 (6.6)

*
along Z = 0,1. Multiplying (6.5) by x , and integrating over a zonal

cross section, and applying (6.6), we obtain

1

J J (ew( ) A2 {xg 17+ Ixg [2 + 22(l~eRoLp( ) )] |2} dax,dz =0 (6.7).
0 °'0

Taking the imaginary part of (6.7), we find

1 .27
J J (gzw( )—Ar){IXZIZ +|x |2 + £2(1~eRow( ) )[ 12} dX, dzZ = 0 (6.8) -
0’0 *o%o

It is clear from (6.8) that Ag/ez caunot be greater than the maximum
velocity nor less than the minimum velocity of the meridional flow.

Further, there must exist a line in the X -Z plane on which the phase

0
speed of the unstable wave (i.e., A;/ﬁ ) is equal to the local fluid
velocity.

1f we define

bxgl? + g2 + 22a0- Em( ) RIF: |2

1 (27 .
0°0

then the real part of (6.7) may be written as

(E)

,3222¢§E)2Q 20)_Yy€ Xt Q+ (A2-29Q =0 (6.9)
0

and the imaginary part as

elwéE)Q -3, Q=0 (6.10)
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Applying (6.10) to. (6.9) a

Ae%l@p)g?)z Q= (212 Q. (6.11)

Since we can always choose a V and V_, such that
, v max -+ min

0>e2020® v Hyu® _v g

XO max XO min
(E) (E)
292 2 —- 292 292 a
0 > €% (WXO Q) (Vmavamin)e L wXO Q + 4% Vmax minQ’ (6.12)
we can form the inequality
~ 1 20 2 0 - (L - 20
0> QO - %es (V_ AV . D2Q+ 25 Q- Cee (Vo Voi))%Q (6.13)

or Ceer V-V . NZ> O, -% e (V. -V

2 2
max min )) + Ai (6.14)

min
According to (6.14),:x lies, for unstable waves, in a semicircle whose
radius is given by the square root of the left-hand side of (6.14) while
the origin of the semicircle is on the real axis of the )\ plane at the
mean velocity of the meridional flow.

To obtain an upper bound on Aj» we use (6.14) to obtain

A2 < T 1e2y2 VTV )? (6.15)

As we would expect, when the velocity field becomes uniform (i.e., Vmax =

Vmin)’ the growth rate vanishes. It should also be noted that the upper

bound - on Ay does not depend upon the Rossby number. For our particular

n

flow, V =V ., =3.07.
max © o mi
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7. Energetics. 5
In order to.c%arify»ﬁhe:nature of the instabilities found in the next
section, we shall derive in this section energy equations for both the
exact gnd the approximate perturbation equations. We will then be able
to describe the conversion of available potential energy (APE) into

kinetic energy and vice versa between the baroclinic wave and the per-

turbations.

7.1. The exact energy equation.
The energy equation for the constant potential vorticity model can be

derived from (3.38) and (5.2). We may write these equations in the form;

9. (E) é_}[ 1 ' (E) ' } B

toev Yoy ¥ + (1-eRoyy 4 )V =0 (7.1)
{BT X, oY) (Yzz T Yxx, XX ‘YY

e [gT * E?éi) gy)wé B ewéﬁi by T (R e¢§§’>w' =0 (7.2)

Taking the Z derivative of (7.2), (7.1) can be rewritten

9 (E)? } : . (E) (E) -1, v (E)

— + ey { v + ¢! (1-eRoy Y} + ¢ ¥l - Ro “w' - (wey ).=0

[3T XO oY XOXO YY» XOXO XOZZ Y 772 'Z
(7.3)

Turning our attention first to the thermodynamics equation, we multiply

it by W£ and integrate over the volume:

‘%?4' 4Ro y 2 4V = 1] ero wéi% Yoy - (1—5Ro¢§E) ) w'yy Ay (7.4)
0
v \Y
where 21 2m/4 1
= I S I ,
JJJ( A O dz aY dX,.
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The lgfﬁﬂhand sidefofv(7.4).r§Presents the rate of change of the pertur-
ba?ion's.APE,, The :igh;—hand side of (7.4) reveals that the perturbation's
APE is generatedbby the baroclinic instability of the finite-amplitude
baroclinic wave, and depleted by the conversion of the perturbation's APE
to itshkinetic energy by the rising of warm air and the sinking of cold

air.

It should be noted that the second term on the right-hand side of (7.4)

(E)

contains the term (l+£Ro¢ZZ

). This corresponds to a modification of the
static stability of the mean atmosphere due to the presence of the baro-
clinic wave.

Turning our attention now to the perturbation kinetic energy, we mul-

tiply (7.3) by y'and integrate over the volume to obtain

0 X520 Xo¥0 %o

(7.5)

%T-jJJ%RO{wiz + (l—eRowézégwéz}dV = JJJ(1—5R0¢(E))w‘wé + eRow(E) wé w% av.
A

The terms on the left-hand side of (7.5) represent the rate of growth

of the perturbation kinetic energy. It should be noted that the

(E) ) term which multiplies ¢!2? results from the distortion
X X P Y
00

introduced by the Eliassen coordinates.

(1 - eRo ¥

The generation of the perturbation kinetic energy is due to two effects.
The first term on the right-hand side of (7.5) represents the conversion
of perturbation APE into perturbation kinetic energy through warm air
rising and cold air sinking. The second term represents a barotropic in-
stability from the horizontal shear generated by the finite-amplitude baro-
clinic wave which feeds its kinetic energy into the perturbations through

the Reynolds stresses yg ¥

'.
0 Y
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Consequently the total epergyaequation may be written as

9. . Jj] 12 12 12
— 4Ro{¢ + w + (l—ERO¢ )w }ay =
T X, XOXO :
v
A (E ) (E)
=1 eRo w ¢ w + eRoy w ¢ day (7.6)
j j j %%, X

vV

7.2. The approximate energy equation.

We may derive the approximate energy equation by neglecting the

- 2-—>+ ew(E) é—- RAw(E) y! term in (7.3). The derivation then pro-
3T XO Y 0 0 YY

ceeds as before and we obtain (7.4),

] syt o ol
LRo{yl4 + by } ay (1- eRody ) w ¢ + eRow w w dv (7.7)
oT X0 Xo%o XOXO
\ Y
and

9
— LRo{¥'Z + y!2 + yl2}dv = eRow(E) P! w + eRow(E) w w dv (7.8)
oT Z X Y XOX
0 0 0
v
The interpretations of the source terms can be made in the same manner
as above.

An important point concerning our set of approximate energy equations
is that, despite our neglecting certain terms in the exact perturbation
equations, we have done it in such a manner that we have not generated
fictious sources of energy. Rather we have only modified the definition
of the perturbation kinetic energy. This suggests that our choice of
approximate perturbation equations is physically realistic.

We may summarize the energetics, irrespective of whether we are using

the exact or approximate perturbation equations, as shown in Fig 3.
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APE KE
C(APE, APE") C (KE ,KE")
WV \4
APE! > KE'
C(APE',KE")

Fig 3. Energy flow diagram for the constant potential vorticity model,
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8. Results.
Eigenvalue solutions to (5.8) and (5.10) as well as (5.14)-(5.15) were

obtained for ekRo = 0.1 and 0.4 for % varying from 0.1 to 2.0.

8.1. The approximate perturbation equations.

In the solutions to the approximate perturbation equations, eigenvalues
of the form ilkrl * iL Ail were always fgund. These eigenvalues would
further be classified according tobwhethervikr[ = 0, Jlil =0, or .-
neither. (For convenience, X = 0 has been incorporated into thelllrl =0
class.) Since the approximate perturbation equations are independent of e
Ro, all thev]Arl's and_lxi]'s which were found could be displayed on
l Ar/eﬁl - andvlki/sl -2 planes., However, since we are interested in
the most unstable solutions, we shall restrict ourselves to the three
largest,lkil's.

In Fig 4 we depict the variations Of.}krlazl with & for the three most
unstable modes. 1In Fig 5, we give the corresponding‘}ki/al for each of
the curves presented in Fig 4.

Curve A in Figs 4 and 5 illustrates the behavior of the unstable,
stationary perturbation (i.e.,lkrl = 0) found in the calculations. As
shown in Fig 4, these unstable s?ationary perturbations existed only
for 2's below a critical value, approximately 1.6. For *'s greater
than this critical &, the stationary perturbation ended and a non-
stationary perturbation was generated.

It was found that the stationary perturbations, when they existed,
were the most unstable. The magnitude of_lki/ﬁl increased as % increased

from 0.1 to 1.0 and then decreased as % increased as 1.6. 1In the region
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Fig 4. Absolute magnitude of the real part of A/ef as a function of &
for the three most unstable modes (right-most scale). The center
-1

and left scales give this phase speed in units of d for Ro = 0.187

and 102 km/d if L = 750 km.
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Fig 5. The absolute value of the imaginary part of )3/e as a function of g
for the three most unstable modes {(right-most scale) from both the
exact and approximate perturbation equations. The dimensional growth
rate given by the left-most scale for Ro = 0.187. The shaded area
indicates those eigenvalues which are forbidden by stability theorem

(6.15).
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of & f 1.5, a A{% 0 sqluﬁigﬁ,déyglqped a nqnzgrq‘|hij whgsg,magniFude
increased extremely rapidly as g inc‘);ea’sed‘.ﬁ Tiiis.stationary.perturbatj_on
then joined the other stationary perturbation approximately at & = 1.55.
After this point of junction, a nonzerollkrl deyeloped; as & increased
further,,IAr/ell increased and}])i/g[ decreased. Although not shown in
Fig 5, these nonstationary perturbations eventually tocame neutrally
stable.

0f the eigenvalues found, the majority fell into the classification
of nonzerollxr| andAIAiI. Curves B and C in Figs 4 and 5 aré typical of
those found in this classification and were choosen for presentation since
they possessed the largest growth rates of the nonstationary perturbations
faund. It was further found that for ¢<<1 there was associated with

cach x || + i [n,|s another [al] & & |n| such that || =[xl and

|

| A.] = [a}] with IA_|> |A"] and |A,|>|r}]|. As & increased the mag-
-7 A7 ATpdT ATy A% i

nitude of.lkil decreased and eventually this eigenvalue became neutrally
stable. Thellxi|'s, on the other hand, grew as % increased and then,

at a critical point, started to decrease towards zero. Eventually, these

unstable perturbations also became neutrally stable.

8.2 The exact perturbation equations.

Eqs (5.8) and (5.10) were solved numerically to obtain A as described
in Section 5. There were 41 points in the vertical and (5.2) was trun-
cated so that the Fourier components ran from n = -10 to +10. On Fig 5
we have plotted '"data points" obtained from our numerical experiment for
various ekRo. As can be readily seen, the agreement between the Iki/el's

found using the approximate and exact perturbation equations is excellant
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t

for & 5 1.5. This is also true fqr'lAr/elfwhich_was found to be very
closé to zero. .Beyound % = 1.5, solutions could~not,he obtained due

to the smallness of thegrowth rates that may have been present and the
noise which was introduced during initialization. Consequently we

cannot absolutely confirm the existence of the nonstationary perturbations
found above using the approximate perturbation equations.

When (5.8) was finite-differenced in the vertical, inhomogernous terms
were generated in two different ways. The first was from the evaluation
of the terms on the right-hand side of (5.8) with the quessed values of
w(n); the second was the use of the boundary conditions, i.e., Yén)
specified along Z = 0,1, to eliminate ?(n)(O) and w(n)(l) from tﬁe
system of linear equations. Up@ncomparing these two effects, it was
found that the boundary effects greatly dominated over the terms gen-
erated by the right-hand side of (5.8). Consequently, the sglutions to
(5.8) were determined mostly by the boundary effects. This is reflected
in the very good agreement between the results obtained from the
approximate and exact perturbation equations since the approximate
perturbation equations merely neglect the terms on the right-hand side

of (5.8).

8.3. Energetics.

In Table 1, the energetic conversions are listed which took place for
the most unstable perturbation. Since the results from the exact per-
turbation equations are essentially independent of Ro, we have given the
energetics for the case when ¢kRo = 0.3. We have also normalized all the

conversions by taking C(APE,APE') to equal 1. It was found that the
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Table 1. Normalized energy conversion rates for the most unstable per-—

turbation ( & = 1.0 ) found in the constant potetial vorticity model.
Conversion Exact perturbation equations Approximate pertur-
for €ekRo = 0.3 bation equations
C(APE,APE") 1.00000 1.00000
C(APE',KE") 0.16417 0.16460

C(KE,KE") 0.39248 0.35680
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perturbation reFeived energy not only from the APE of the baroclinic wave
but also the KE., Some of ghe perturbation's APE was then transformed into
the perturbation's KE. _

Further computations revealed that.whenlkrl # 0, in the approximate
perturbation solutions, the perturbation received APE from the baro-
clinic wave and some of the perturbations's APE was then transformed
into the perturbation's KE. However, unlike the lxrl = 0 case, some
of the solutions were found to transform the perturbation's KE into the

KE of the baroclinic wave,

8.4. Physical interpretation of the results.
As Fig 5 shows, the most unstable perturbations are associated with
£ = 1. Furthermore, upon examining the eigenvectors, it is found that

the Fourier coefficients having the largest amplitude have n = 0, *1;

It

the amplitude of the n = %2 Fourier components are approximately 10%

of the amplitude for n #l. Consequently, the length scale of the
most unstable perturbation in both the zonal and meridional directions
is the Rossby radius of deformation.

In our model there are two possible sources of instability: con-
ventional baroclinic instability and Rayleigh instability. Since our
basic state never generates the small Richardson numbers necessary

"symmetric" instabilities (similar to

for either Kelvin~Helmholtz or
those found by Gambo and Tokioka, see pg. 13) to become important,
we need not consider these types of instability further.

Unquestionably the instabilities found in the previous sections result

in part from conventional baroclinic instability. 1In the previous
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sections, we have shown that the instabilities found in this thesis
]

(1) arise from variations of the basic state's potential temperature
along the horiiontal boundaries, (2) grow by conversion of the basic
state's available potential energy into the perturbation's available
potéhtial energy, and (3) have a characteristic length scale of the
order of the Rossby radius of deformation - all properties which are
characteristic of conventional baroclinic instability.

In our mndel, we have taken the potential vorticity of our basis
state to be constant and the potential vorticity of the perturbations
to be zero., 1In the case of quasigeostrophic flow, Charney and Stern
(1962) have shown that there are two possible sources of instability
in a baroclinic-barotropic circumpolar vortex. One of the sources
of instability is the variations of the potential temperature along
the horizontal boundaries. We have this type of instability in our
model and it is associated with conventional baroclinic instability.
Another source of instability is due to the vanishing of the meridiomal
derivative of the potential vorticity in an isoentropic surface or the
pseudopotential vorticity in a level surface somewhere within the flow.
In our problem, this would correspond to a vanishing of the meridional
derivative of the basis state's potential vorticity somewhere within
the flow. This does not occur in our problem and has the consequence
of excluding Rayleigh instability in the flow.

Another intriguing aspect of our perturbation analysis is that the
results are mathematically isomorphic to those for a finite-amplitude

Rossby wave in a perturbation analysis employing the quasigeostrophic

equations. In the previous sections, we have shown that a baroclinic
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wave with a strong frontal zone which is described by the semigrostrophic
]

equations in Eliassen toordinates is mathematically, though not physically,
isomorphic to“an Eady wave without a frontal zomne.

In summary, Hoskins and Bretherton's constant potential vorticity
model for describing frontogenesis as a large-scale, finite-amplitude
wave in a zonal flow leads to frontal instabilities which themselves
are essentially of baroclinic character, not shear instabilities of

the Rayleigh type. For the latter to exist, gradients of potential

vorticity in the basic state flow are required.
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9. Kinematics of the unstable wave.

]
In this section we shall display the pressure, temperature, velocity,

and vorticity fields associated with the most unstable perturbation found
in the previous section. TFor concreteness, we shall take € = 1, Ro = 0.187,
k = 1.60. With these values, the most unstable perturbation is a statioq—
ary perturbation with kecy of 1.7 d“l, corresponding to a doubling time

of 10 hr, and £ = 1.00. Since the amplitude of the perturbation is
arbitary, we shall take it to be 107 of the basic state's amplitude

(except for w and the relative vorticity which have been normalized

so that most of the values plotted are 0(1)).

Figure 6 shows the total pressure field (perturbation plus basic
state) at z = 1/2. The pressure perturbation is such that intensifi-
cation of the basic state trough occurs between y = 1/2 and 37/2 and
pressure rises occur between y = 0 and n/2 and 3n/2 and 2n. Since the
perturbation pressure field is slightly out of phase with the basic
state trough (in the x direction) there is a slight asymmetry in the
total pressure field.

Figure 7 shows the total potential temperature field at the level
2z = 1/2. TFrom this figure we see that there are intrusions of cold
and warm air across the frontal surface (located at kx = 1 at z = 1/2).
These intrusions of warm and cold air are characteristic of the baro-
clinic instability of our model where there is a positive correlation
between u' .and 8'.

Figure 8 shows the total potential temperature field at z = 0.

As would be expected of a baroclinic instability, relatively colder

air predominates in the lower levels. It should be note that
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the only large area of warm air left is in the lower right quadrant. We
shall return to this point jin the next section.

Figure 9 pFesents the vertical velocity field at z = 1/2. As would
expected, the largest vertical velocities are in the neighborhood of the
froptal surface where warm air is rising and cold air is sinking. We
shall also return to this figure in the next section.

Figures 10-13 show vertical cross sections of the total potential
temperature and total velocity fields. As would be expected of a
baroclinic instability, there is rising motion associated with warm
air and sinking motion with cold air. The u velocity field (with the
constant u = 1 subtracted out) shows that sinking cold air would spread
out in the lower levels while the rising warm air will expand in the
upper regions.

Figure 14 shows the relative vorticity field associated with the
perturbatinns. From the figure we see that the largest cyclonic
as well as anticyclonic vorticity occur in the neighborhood where
the frontal surface intersects the plates. Intense centers of
cyclonic and anticyclonic vorticity are in qualitative agreement
with the atmospheric observations of frontal cyclones as noted by

Palmen and Newton (1969, Section 10.9).
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Total pressure field at z = 1/2 in nondimensional units.
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Total potential temperature field at z = 1/2 in nondimensional units.
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Cross section of the total potential temperature field at y = 0 in nondimensional units.
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Fig 11.
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Cross section of the total zonal velocity (with U = 1 subtracted out) field

at y = 0 in nondimensional units.
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Cross section of the total meridional velocity field at y = 0 in nondimensional

units.
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Cross section of the total vertical velocity field at y = 0 in nondimensional

units.
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10. A synoptic examples a deyeloping wave cyclone.

In this sectionkwe,shall apply the results ohtained in.the preyiocus
sections to a synoptic situation. In particular, we shall apply our
solutions to a frontal cyclone development over the midwestern United
Statés during 12<13 April 1964.

In Figs 15-17 we present the 500 mb surface heights, surface isobars,
and vertical velocities for 00Z and 12Z 13 April 1964 as analyzed by
Krishnamurti (1968) using conventional data and Tiros data,

In our analysis we shall associate the 00Z maps with our basic state.
If we take the 500 mb surface to coincide with our z = % 1eyel; the
agreement between the trough depicted in Fig 2 and the smoothed 500 mb
trough depicted in Fig 15 is excellant. At the surface there is a frontal
surface which is essentially running north-south. The presence of the
small surface lows indicate that the small perturbation, which will form
the large-scale surface cyclone, is already present in the system.

In our model, we have taken w = 0. Fig 17 shows that this is not
quite accurate but compared with the vertical velocities that occur in
the next 12 hr it is a good approximation. The strong sinking motion in
the Colorado area is due to strong cold adyection taking place in the
Rocky Mountains area.

If we now associate the 127 13 April 1964 map with the flow field
which results after the unstable perturbation has set in, then the
pressure, temperature, and yertical yelocity fields of the previous
section can be used to explain the 127 maps in Figs 15-17,

As Fig 15 shows, the trough has deepened in the northern Plains with

the 540 dm contour Coming down into Nebraska and a cutoff low has formed
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over,thg.Dakotas: Although we did not generate a cutoff low if Fig 6,
we do haye a deepening of the trough in the reéion y = m/2 and 3m/2.

At the surface in Fig 16, a‘major;‘largevscale‘low:has fOIied with
a cold front trailing southward and a warm front eastward from the low.
Comparing with Fig 8, we may associate the diyiding line hetween the
cold air in the southwestern quadrant and the warm air in the south-
eastern quadrant with the cold front found in Fig 16, Likewise, the
dividing line between the warm air in the southeastern quadrant and the
cold air in the northeastern quadrant may be associated with the warm
front. We cannot, however, explain the small slice of warm air in the
northern half of Fig 8.

The most striking similarity between our model and this case study
is in the vertical velocities. A comparison of the predicted yertical
velocity field given by Fig 9 and the observed field given by Fig 17

shows that they are in good agreement with each other.
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11. Conclusion.
2

In this thesis we have attempted to study frontal cyclogenesis primarily
by analytical ggthods. Starting with the adiabatic, frictionless Boussi-
nesq equations, we neglected high frquency phenemona and obtained the semi~
geosgrophic equations (see Hoskins, 1975). Through the use of a coordi-
nate transformation, the Eliassen coordinates, the governing equations
were brought into a form which allowed a great deal of the nonlinearity
to be eliminated.

As our time-independent basic state, we used a finite-amplitude solu-
tion, found by Hoskins and Bretherton (1972), to the semigeostrophic
equations. Through the use of atmospheric statistics we showed that this ’
finite~amplitude solution could be interpreted as a finite—amplitude Eady
wave which had exhausted all of the zonal available potential energy.

Fig 2 gives the pressure, velocity, and temperature fields of our basic
state.

As a first attempt to study frontal cyclogenesis analytically, we
adopted a constant potential vorticity model. We then perturbed the
finite-amplitude baroclinic wave and obtained a set of perturbation
equations. Although the exact perturbation equations could not be
solved analytically, upon neglecting certain nonessential terms,
analytical solutions were obtained and unstable modes were sought.

The baroclinic wave with its associated frontal surface was indeed
found to be unstable to further perturbation. The most unstable per—
turbation was found to be staticnary with respect to the zonal flow
and derived its energy from both the available potential energy and

kinetic energy of the finite-amplitude baroclinic wave. The character-
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istic length scale of the most unstable disturbances was the Rossby
radius of deforéation 2

The reason for these large-scale disturbanées were shown to be
two—-fold. In our model, we bave taken the potential vorticity of
our basic state to be constant and the potential vorticity of the
perturbations to be zero. In the case of quasigeostrophic flow,

Charney and Stern (1962) have shown that there are two possible
sources of instability in a barotropic-taroclinic circumpolar vortex.
One of the sources of instability is the variations of the potential
temperature along the horizonta boundaries. We have this type of
instability in our model and it is associated with conventional
baroclinic instability. Another source of instability is due to

the vanishing of the meridional derivative of the potential vorticity
in an isentropic surfaces or the pseudopotential vorticity in a level
surface somewhere within the flow. In our problem, this would
correspond to a vanishing of the meridional derivative of the

basic state's potential vorticity somewhere within the flow. This
does not occur in our problem and has the consequence of excluding
Rayleigh instability in the flow.

This suggest, but does not prove, that the major frontal disturbances
are essentially baroclinic in nature and that only the smaller scale,
fast moving frontal waves are of the Rayleigh type.

In addition to performing stability calculations on the no zonal
shear case, caluclations were also made for the short wavelength cutoff
case. In this case, the boundary variation of the potential temperature

is such that instability cannot occur unless a zonal flow with shear

is present. However, we are not interested in conventional baroclinic
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instability, modified somewhat due to the presence of the neutrally stable
Fady wave, and %his analys{s was not pursued further.

Finally, the first obvious modification tovour analysis will be to
relax the constant potential vorticity constraint to allow the per-

turbations to have a nonconstant potential vorticity and allow the

perturbation solution to have a monzero ko.
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