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ABSTRACT

Despite the progress made during this century in understanding atmo-
spheric cyclogenesis, frontal cyclogenesis still remains largely an enigma.
This thesis attempts to shed new light on this subject by studying the
stability of a finite-amplitude Eady wave and its associated frontal sur-
face,

By eliminating from consideration at the outset meteorologically un-

important high frequency phenomena, a system of semigeostrophic equations

are derived. These equations are then transformed into a quasi-Lagrangian
coordinate system which allows a great deal of the nonlinearity to be
eliminated from the problem.

We adopt as our basic state Hoskins and Bretherton's constant potential

vorticity model for describing frontogenesis as a large-scale, finite-

amplitude baroclinic wave in a zonal flow. It is shown that as a result

of the eddy transports of heat and momentum generated by a growing baro-
clinic disturbance, the zonal available potential energy is reduced

sufficiently so that the finite-amplitude baroclinic wave becomes

neutrally stable. It is the stability of this neutrally stable, finite-

amplitude baroclinic wave which we will study.

Assuming that the potential vorticity always remains constant, it is
found that this finite-amplitude baroclinic wave is indeed unstable to

further perturbation. The most unstable perturbations are associated

with length scales of the order of the Rossby radius of deformation,
receive their energy from the available potential and kinetic energy

of the basic state, and move with the speed of the uniform zonal flow,

The distribution of the perturbation's velocity and potential temper
ature demonstrates that the instabilities are essentially baroclinic in

nature arising from the variations of the potential temperature of the

basic state Eady wave along the boundaries. The assumption that the

potential vorticity of the basic state is constant inhibits Rayleigh

instability from being a source of instability.
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Our analysis suggests, but does not prove, that the major frontal
disturbances are essentially baroclinic and that only the smaller
scale, fast moving frontal waves are of the Rayleigh type.

Thesis Supervisors: Jule G. Charney, Peter H. Stone
Titles: Sloan Professor of Meteorology, Professor of Meteorlogy
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1. Introduction.

The general circulation of the extratropical zones of the atmosphere

is dominated by great migratory vortices (cyclones) traveling in the belt

of prevailing westerly winds. During this century, one of the fundamental

problems of meteorology has been the explanation of the origin and devel-

opment of these cyclones.

With the formulation of the polar-front theory of the Norwegian (Bergen)

school, J. Bjerknes and Solberg (1922) were able to show that new cyclones

may be formed in the crest of amplifying waves on a preexisting polar

front. These cyclone waves would then grow in amplitude, occlude, and

end as an almost symmetric vortex. To theoretically investigate this

model for.atmospheric cyclogenesis, Solberg (1928) studied a system con-

sisting of two statically stable, barotropic layers of different density

moving zonally at different speeds on a flat, rotating earth. With this

basic state, he found two types of amplifying waves were possible: one

of short wavelengths of the Helmholtz type and one at wavelengths of the

order of 1000 km. The latter possessed several of the kinematic features

in common with a young frontal wave.

In the late 1930's, with the ever increasing availability of upper-air

data, it was found that the upper-air flow patterns were predominantly

large-scale waves embedded in the westerly current with wavelengths of

the order of 3000-6000 km. V. Bjerknes (1933) had originally envisioned

that cyclones originated as dynamically unstable wavelike disturbances in

the westerly current. In 1937 J. Bjerknes (1937) postulated that cyclo-

genesis could be studied using the concept that the upper-air wave acts

as an independent entity. Starting with the tendency equation, Bjerknes
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hypothesized that the deepening of cyclones may be attibuted to the rela-

tive displacement of the upper-air wave with respect to the surface

cyclone. Consequently, there should be a one-to-one correspondence

between the surface frontal perturbation and the major perturbation in

the upper atmosphere.

However, subsequent findings based upon improved upper-air observations

failed to verify this one-to-one correspondence. Since the number of

surface frontal perturbations was found to greatly exceed the relatively

small number of major waves and vortices at the upper levels, Charney (1947)

concluded that there was a fundamental difference between the long (3000-

6000 km) waves and the frontal waves of wavelengths 1000-2000 km, although

there was undoubtly a connection between the two types.

Since the late 194.0's, Chrney (1947) and many others have established

that the origin and development of large-scale extratropical weather

systems result from the baroclinic development of disturbances with the

typical wavelength of several thousand kilometers. However, the expla-

nation of the origin and development of the frontal cyclone, and its

connection with the large-scale baroclinic wave, remains largely an enigma.

Recently, there have been several new attempts to understand these

frontal cyclones. Nitta and Ogura (1972) have numerically simulated the

genesis and development of an intermediate-scale cyclone in a moist model

atmosphere as a result of the finite-amplitude effects of an amplifying,

nonlinear baroclinic wave in a channel flow. Starting with a wave with

a wavelength of 6000 km, the initial disturbance intensified and an

extended front formed. After several days a frontal cyclone formed on

the extended front with a longitudinal wavelength of about 1500 km and
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a latitudinal half-wavelength of about 600 km.

One important feature of their model was the inclusion of the latent

heat of condensation. When the numerical model lacked a contribution

due to moisture, the distribution of the meteorological variables became

flater, less distinct, although the broad features remain unchanged.

As an alternative to numerical simulation, Orlanski (1968) has

throughly analyzed the instability of a Margules frontal surface (i.e.,

two incompressible homogeneous fluids with shear and a slight density

difference, bounded above and below by two rigid horizontal planes) to

further perturbation. He found that the frontal instability combines

conventional baroclinic instability with Helmholtz instability and baro-

tropic instabiltty of the Rayleigh type. An important assumption in

Orlanski's study of frontal cyclogenesis is that cyclogenesis occurs

only after the front has been formed.

Another stability analysis which might be useful in the understanding

of frontal cyclogenesis is the study of nongeostrophic baroclinic instability.

As was first shown by Stone (1966), nongeostrophic baroclinic instability

in the Eady model is a combination of three types of instability which

are well known from earlier work; the most unstable modes are assoc-

iated with conventional baroclinic instability if the Richardson number

(Ri) > 0.95, with symmetric instability if 0.95 > Ri > 0.25, and with

Kelvin-Helmholtz if Ri < 0.25. In Stone's analysis, there are two

growth rate peaks if Ri < 1; one is that of the ordinary baroclinic

mode at k(the meridional wavenumber) = 0 and the other is that of the

symmetric instability at k(the zonal wavenumber) = 0, II = m
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A distinctive difference between conventional baroclinic instability and

symmetric instability is that conventional baroclinic instability draws

its energy primarily from the available potential energy of the basic

state while the symmetric instability draws its energy primarily from

the zonal kinetic energy.

Recently Gambo (1970) and Tokioka (1970,1971) have reinvestigated the

nongeostrophic baroclinic problem for the Eady model in the hopes of

applying their results to explain frontal cyclogenesis along the "Baiu

front" - a persistent phenomenon in the lower atmosphere near Japan

or over China during the season of June or July. Upon using parameters

representative of a frontal situation, both Gambo (1970) and Tokioka

(1971) found that the growth rate peak for the baroclinic mode at k = 0

when Ri < 1 became a saddle point in the stability agram (with - as

the abscissa and k as the ordinate) and a new growth rate peak appeared

for small k and a moderate R. Since the motions associated with this

new peak were more rapidly varying in the meridional direction that in

the zonal direction, they classified this new growth rate peak as a

symmetric instability even though k # 0. However, if one tries to

invoke nongeostrophic baroclinic instability to expalin frontal cyclo-

genesis, then one must reconcile the large values of the Richardson

number found in the actual atmosphere (normally 4!0) with the small

Richardson number needed for the "symmetric" instability of Gambo

and Tokioka to become important.

It is the intention of this thesis to study'frontal cyclogenesis in

a manner different from that of Nitta and Ogura (1972), Orlanski (1968),

and Gambo (1970) and Tokioka (1970,1971). It is now well known that
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the deformation fields in a developing baroclinic wave produce fronto-

genesis (see Williams,1967). Moreover, once the front has formed, this

frontal surface may itself be unstable to further perturbation.

Recently, analytic expressions for a nonlinear, finite-amplitude Eady

wave which has formed frontal surfaces have been derived by Hoskins and

Bretherton (1972) using the semigeostrophic equations (Eliassen (1949),

Fjortoft (1962), Hoskins and Bretherton (1972), and Hoskins (1975)) using

a coordinate transformation first introduced by Eliassen (1959). This

immediately suggests that their solutions could be used in an analytic

hydrodynamic stability calculation of a frontal surface created by a

finite-amplitude baroclinic wave embedded in a westerly zonal current.

The resulting stability properties could then be applied to understand

the dynamics of frontal cyclogenesis.

Consequently, it is the purpose of the present investigation to

determine the stability of a finite-amplitude, nonlinear Eady wave

which has generated frontal surfaces to further perturbation. We will

determine the speed of propagation of the disturbances, the exact

stability criteria, and the three-dimensional structure of the most

unstable perturbation. We will then apply these results, as far as

possible, to the study of atmospheric frontal cyclogenesis.
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2. Discussion of results.

In this section, the main points will be summarized so that the reader

may have a map of physical insights, unencumbered by mathematical details,

to guide him through the analysis which follows.

Starting with the hydrostatic Boussinesq equations on an f-plane where

all motions take place adiabatically and without friction, the equations

are simplified by neglecting the rate of change of the horizontal ageo-

strophic motions; the horizontal advecting velocities are, hovever, not

approximated by their geostrophic values. Since frontal cyclogenesis

takes place on the order of one day (see Nitta and Ogura, 1972), these

semigeostrophic equations should be able to describe frontal cyclo-

genesis without the interference of higher phenemena.

It is now well known that the origin and development of upper-air

waves result from the baroclinic development of large-scale disturbances

with the typical wavelength of several thousand kilometers. As a result

of the eddy transport of heat and momentum generated by the growing

disturbances, the amount of zonal available potential energy is reduced.

Consequently, although these large-scale disturbances grow initially

according to linear stability theory, sooner or later finite-amplitude

effects will start to slow, and then eventually arrest, the growth of the

baroclinic wave. Evidence that this feedback process acts strongly in

the atmosphere is shown in Fig 1.

To approximate this observed atmospheric state, our basic state will

consist of a finite-amplitude, neutrally stable Eady wave with no meri-

dional structure embedded in a zonal flow which may possess vertical

shear; we choose to use the finite-amplitude solutions to the semi-
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geostrophic equations found by Hoskins and Bretherton(1972, Section 5).

In our Eady model, this minimization of the zonal available potential

energy occurs if we take the zonal shear to be zero. Consequently we

shall only consider the case of no zonal vertical shear where the baro-

clinic wave which has formed a front has the wavelength of the most

unstable perturbation from linear stability theory. Fig 2 shows the

pressure, temperature, and meridional velocity fields associated with

this basic state.

This basic state is then perturbed so that the actual flow is consi-

dered to be a small perturbation superimposed on the mean flow. As a

first attempt at solving the frontal cyclogenesis problem, we take the

potential vorticity to be always constant. Our choice of this constant

potential vorticity model has not been made capriciously but has been

motivated by the results contained in a paper by Hoskins and Bretherton

(1972). In their paper, they obtained frontal models which compared

favorably with those observed in the atmosphere by assuming constant

potential vorticity. We are trying to extend these constant potential

vortictiy models to describe frontal cyclogenesis.

Under the constraint, the linearized perturbation equations are derived.

They admit solutions in the form of a sinusoidal wave traveling in the

north-south direction with constant speed. The problem which remains is

to determine the speed of propagation and the variation of amplitude with

height and along a latitude circle as a function of the meridional wave-

number, the amplitude of the Eady wave, and the Rossby number. Since

both the velocity and amplitude of the wave may be complex, the wave

may grow exponently with time and have a phase shift in the vertical.
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The perturbation equations are found to be sufficiently complicated

so that they must be solved numerically. This is accomplished by solving

the perturbation equations as an initial-value problem (see Brown, 1969).

Although this method makes very efficient use of computer storage as well

as the computational time needed to calculate the speed of propagation,

the noise which is produced upon introducing the arbitary perturbation

during the initialization of the numerical scheme results in a complete

masking of very small growth rates. Mathematically this noise is assoc-

iated with that part of the general solution to the initial-value problem

which is not represented by the normal modes (see Pedlosky, 1964).

As an alternative to the numerical solution of the exact perturbation

equations, certain nonessential terms are neglected which allow the

perturbation equations to be solved analytical11y. The agrment between

the solutions found using the exact and approximate perturbation equations

is outstanding.

In Section 6 we examine some of the general stability properties of

the perturbation equations using integral methods (see Charney and Stern,

1962). Besides deriving maximum bounds on the growth rates (which is

proportional to the product of the meridional wavenumber and the maximum

difference in the basic state's velocity) and phase speeds, it is shown

that if unstable perturbations exist their instability is a result of the

variations of the basic-state potential temperature along the horizontal

boundaries. Consequently any instabilities which are found arise from

the baroclinic, rather than the barotropic, nature of the basic state.

For any given meridional wavelength, amplitude of the Eady wave, and

Rossby number (which do not violate the conditions under which the semi-
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geostrophic equations are derived), unstable waves are found. The most

unstable perturbation is found to be stationary with respect to the

zonal flow, has a characteristic length scale of the Rossby radius

of deformation in both the meridional and zonal direction (NH/f where

N is the Brunt-Vaisalla frequency, H the depth of the Boussinesq atmo-

sphere, and f the constant Coriolis parameter), and receives its energy

from the available potential and kinetic energy of the finite-amplitude

baroclinic wave.

In addition to the unstable stationary perturbations, there are non-

stationary unstable perturbations. These nonstationary perturbations

have growth rates which are considerably smaller than that for the

stationary perturbation; consequently, they are of academic interest

only.

In our model, we have taken the potential vorticity of our basic

state to be constant and the potential vorticity of the perturbations

to be zero. In the case of quasigeostrophic flow, Charney and Stern

(1962) have shown that there are two possible sources of instability

in a baroclinic-barotropic circumpolar vortex. One of the sources

of instability is the variations of the potential temperature along

the horizontal boundaries. We have this type of instability in our

model and it is associated with conventional baroclinic instability.

Another source of instability is due to the vanishing of the meridional

derivative of the potential vorticity in an isoentropic surface or the

pseudopotential vorticity in a level surface somewhere within the

flow. In our problem, this would correspond to a vanishing of the

meridional derivative of the basic state's potential vorticity some-

where within the flow. This does not occur in our problem and has
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the consequence of excluding Rayleigh instability in the flow.

Our results are in qualitative agreement with those of Orlanski(1968)

if the Rossby number is sufficiently small and the Richardson number is

sufficiently large so that the semigeostrophic equations are valid. The

most unstable perturbation has a length scale along the front of the

order of the Rossby radius of deformation and receives its energy from

both the basic state's available potential and kinetic energy. The

most unstable perturbation does not, however, move with the mean zonal

flow.

In Section 9 we display the pressure, temperature, total velocity,

and perturbation's relative vorticity fields for the most unstable

perturbation. As expected of a baroclinic-like instability, warm air

rises and spreads out in the upper levels while cold air sinks and

spreads out in the lower levels. In this manner, the temperature

contrast across the frontal surfaces is destroyed.

As an application of the results found in our stability analysis, we

examine the development of a frontal cyclone over the midwestern United

States in Section 10. Although a detailed comparison shows marked

differences between our model and the observed situation, the overall,

smoothed temperature, pressure, and vertical velocity fields are explained.

Thus, our analysis suggests but does not prove that the major frontal

disturbances are essentially baroclinic instabilities and that only

the smaller scale, fast moving frontal waves are of the Rayleigh type.
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3. The governing equations.

In this paper we will employ the Boussinesq equations, bounding the

domain with two rigid horizontal planes. The compressibility of the atmo-

sphere, which is neglected in the Boussinesq approximation, may be shown

to be qualitatively unimportant in the case of atmospheric frontogenesis

since the density scale height of the atmosphere is much larger than the

thickness of typical frontal zones. In addition, Nitta and Ogura (1972)

have found that an intermediate-scale cyclone is most pronounced in the

region below 700 mb, indicating that it too should be relatively unaffected

by compressibility. The replacement of the tropopause by a rigid horizon-

tal surface can be expected to give large errors in that region, but the

resulting errors near the bottom boundary, the region that will be of

greatest interest for us, should be small

We shall also employ the hydrostatic approximation. Since the hori-

zontal scale during frontogenesis and frontal cyclogenesis remains much

larger than the vertical scales, the hydrostatic balance should be valid

throughout the entire field of motion.

Approximating the spherical geometry of the earth with a Cartesian

tangent plane, we denote the eastward, northward and vertically upward

Cartesian coordinates by x', y', and z'; their corresponding velocities

by u', v', and w'; time by t'; the constant Coriolis parameter by f; the

departure of the potential temperature 60, a constant reference potential

temperature, by e'; the pressure function by '; and the acceleration due

to gravity by g. The hydrostatic Boussinesq equations can be written in

the following form:

uI, + u'u', + v' ', + w'u', + ', - fv' = 0 (3.1)
t x y z x
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vt + u'v', + v'v' + w'v', + ', + fu' = 0 (3.2)
t x y z y

I - g°'/0 = 0 (3.3)

u', + v', + w',= 0 (3.4)x y z

0, + u'e', + v'O', + w'e', = 0 (3.5)
t x y z

where < = R/C ,

0' = T( 0/p) - 00, (3.6)

' = Cpe0 (p/p0)K + gz , (3.7)

T the absolute temperature of the fluid, R the (ideal) gas constant, C
P

the specific heat at constant pressure, p the pressure of the fluid, and

p0 a constant reference pressure. The subscripts in x',y',z' , and t'

denote partial differentiations.

Two physical processes which have been neglected in (3.1)-(3.5) are

heating and friction. In their study, Nitta and Ogura (1972) included

the eddy diffusion of momentum, heat, and water vapor as well as surface

friction, evaporation, and the release of latent heat of condensation.

Of all of these above effects, they found that the release of latent heat

of condensation to be most important. At present, we shall neglect this

effect. Any scheme for the inclusion of the latent heat of condensation

into our problem, except for a simplistic modification of the atmosphere's

static stability, would make the problem analytically untractable. From

previous studies, however, we should anticipate that the effects of

condensation would tend to intensify the instability of the

system as well as reduce the scale of the disturbance (Nitta, 1964).

The boundary conditions are

at z' = 0,H,w' = 0
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where H is the distance between the horizontal plates. The boundary con-

ditions in the zonal and meridional directions will be specified later.

Let L denote the characteristic length scale, U a characteristic hor-

izontal velocity scale, H the distance between the two horizontal plates,

L/U the advective time scale, then we may nondimensionalize (3.1)-(3.5)

as follows;

(x,y) = (x',y')/L; z = z'/H; (u,v) = (u',v')/U; w = Lw'/UD; t = Ut'/L;

S= #'/fUL; and 6 = gHO'/60fUL

Ro(u t + uu + vu + wu ) + x - v = 0 (3.8)t x y z x

Ro(v + UVx + vvy + WVz ) + y u = 0 (3.9)

#z - 6 = 0 (3.10)

u +v w = 0 (3.11)
x y z

et + u0 + vey + we = 0 (3.12)

where Ro is the Rossby number, Ro = U/fL. Eqs (3.10) and (3.12) can be

combined to yield zt + uzx + vzy + wzz = 0 (3.13)

with the boundary conditions w = 0 at z = 0,1.

3.1. The semigeostrophic equations.

Eqs (3.8), (3.9), (3.11), and (3.13) are still too general for our use;

not only do they describe frontogenesis and frontal cyclogenesis but also

gravity wave motions. From the study of Hoskins and Bretherton (1972), we

know that gravity waves are of negligible importance in the description of

frontogenesis; from a diagnostic study of a developing wave cyclone,

Krishnamurti (1968) has demonstrated that the balance equations may be

used to accurately describe the development of a wave cyclone. Since



neglecting gravity motions results in considerable simplification of the

analysis that is to follow, we shall introduce a system of semigeostrophic

equations which were first derived by Eliassen (1949) and later rederived

by Fjortoft (1962) and Hoskins (1975).

We rewrite (3.8)-(3.9) as

v = x + Ro(ut + uu + vu + wu ) (3.14)x y z

u = -y - Ro(v t + uv + vv + wv ) (3.15)
We now substitutex y z

We now substitute (3.15) into the substantial derivative in (3.14) and

substitute (3.14) into the substantial derivative in (3.15) and obtain

Du 2D2v
v = v+ ROD-t - Ro b- (3.16)

Dv D2u (3.17)
u = - Rot - Ro(3.17)

where D a 3 3 + u- + v-- + w--
Dt = t + Ux + Vy + z

v = xg x

and u = -.

Upon repeated substitution of (3.14)-(3.15) into the substantial deri-

vatives (in the same manner as above) to replace v and u, respectively,

we may replace (3.14)-(3.15) with the power series:

S= (-1 )n Ro2n D v + Ro (U) (3.18)
Dt g Dt

D2n 2n D
u = (- 1 )n Ro 2n  u - Ro D (v ) (3.19)n=0 Dt g (3.19)

The essence of the semigeostrophic equations is to truncate (3.18)-

(3.19) at n = 0, so that

Ro(ug t + uu + vu + wu ) + v -v = 0 (3.20)gt gx gy gz g
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Ro(vg t + UVg x + Vgy + WVgz) - Ug + u = 0 (3.21)

Eqs (3.20)-(3.21) will be a good approximation to (3.18)-(3.19) when the

remaining terms of (3.18)-(3.19) are small compared to the n = 0 term.

For well-behaved expressions for p (i.e., expressions whose derivatives

do not become large as the order of the derivatives is increased), the

semigeostrophic equations (3.18)-(3.19) are clearly valid if

Ro2 y(v + Ro ) / v + Ro g << 1 (3.22)
1D 9 Dt IIg Dt

22 Dv<and Ro D-_ (g - R - Ro - << i. (3.23)
Dt g Dt lg Dt

The inequality in (3.22) and (3.23) might be violated if the denominator

vanishes. Although this might occur in a small region of the flow field

(when v and u change sign, for example), this would indicate that theg g

semigeostrophic equations were giving locally poor results but the remain-

ing portions of the flow field might be described very accurately. Con-

sequently, in using (3.22)-(3.23) to test the validity of the semigeo-

strophic equations to the whole flow field, a global view of how well

(3.22)-(3.23) is being satisfied is needed.

The central difference between our set of semigeostrophic equations

(3.20)-(3.21) and the quasigeostrophic equations is the retention of the

ageostrophic horizontal advection. As Hoskins (1975) has pointed out,

this is entirely analogous to the hydrostatic approximation in which the

vertical component of momentum is neglected but vertical velocity is

retained in the substantial derivative and continuity equation.

Besides simplifying the set of governing equations, the semigeostrophic

equations possess the following set of conservation laws:
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(1) conservation of potential temperature;

D(z) = 0 (3.24)

(2) conservation of vorticity

( g) = (.V 3 )u - kxVe (3.25)

(3) conservation of potential vorticity

D
D (q) = 0 (3.26)

and (4) the energy equation

D-(Kg + P) = -V (3.27)Dt g 3

where

= (-Rox + Ro2 (- + (ypp), -Ro', + Ro2(_-yzp + (ypxz)
g xz yy xz yz xy yz yz xx xy xz

1 + Ro( + ) + Ro 2( 2xy + ~ y )) (3.28)
yy xy xx yy

qg = *V 36 (3.29)

K = Ro( 2 + 2)
g x y

and P = -ze.

All of the above equations have been derived from (3.11), (3.13), (3.20),

and (3.31).

3.2. The Eliassen coordinate.

Despite the fact that (3.11), (3.12), (3.20), (3.21) are simpler than

the primitive equations, they still have not been brought into their

simplest form. This subsection is devoted to the derivation of a co-

ordinate transformation which results in such an amazing simplification

of the semigeostrophic equations that many of the results, which would
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normally be amendable only through numerical calculations, can be derived

analytically.

To begin the analysis, we define four new independent variables, first

introduced by Eliassen (1959), as follows:

X = x + Ro #x, Y = y + Ro y, Z = z, T = t. (3.30)

Since DX DY-= U and - v
Dt g Dt g

Hoskins and Bretherton (1972) have referred to them as geostrophic co-

ordinates since they represent the positions particles would have had if

they had moved with their geostrophic velocity at every instant instead

of their actual velocity. We shall refer to these new coordinates however

as the Eliassen coordinates.

Upon performing thc transformat-ion, we find that the Jacobian of the

transformation is

S= k X,Y) (3.31)
- -g (x,y)

as well as =

@Z -! -3

where & is defined by (3.28).

If we now define

S= 4 + Ro(42  + 2), (3.32)x y

it is easily verified that

(X ,yQz) = (xx, y, z). (3.33)

Using (3.31) and the transformation equation, we find that

-1 = - Ro( +y) + Ro 2 (XXY - '2). (3.33)

Having performed the coordinate transformation, we are prepared to

derive the conservation equations in the Eliassen coordinates. From



-28-

(3.31) we have

ae
~ g3 = g (3.35)

Therefore,

1 + Roo°)4) - 2( Q - 2 ) = (3.36)
q ZZ XXYY XX YY XYg

since 8= 94/Z.

Turning our attention to the material time derivative, we find that

following a fluid particle

D D a a ( 9
-- + iX + w - (3.37)Dt - DT T Y X X Y + Z

so that conservation of potential temperature and vorticity becomes

Db(4Z) = 0 (3.38)

and D
__(q ) = 0. (3.39)

From (3.38) we find that the boundary conditions along the boundaries

are - -+ - = 0 (3.40)
2T Y ax x ay Z

on Z = 0,1.

Having introduced the Eliassen coordinates, we have mapped the semi-

geostrophic equations into a form which is very similar to that of the

quasigeostrophic equations. Consequently, many of the known solutions to

the quasigeostrophic equations may be used to solve the semigeostrophic

equations with only a distortion of the solution due to the coordinate

transformation. This distortion is vital however in the description of

frontogenesis and frontal cyclogenesis. The difficulty with this co--

ordinate system is that it is a quasi-Lagrangian system where we must

make a highly nonlinear transformation to get back into physical space.
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However, this may be accomplished graphically, a small price to pay for

having made the equations which govern.the nonlinear flows of fronto-

genesis and frontal cyclogenesis nearly linear.

3.3. The constant potential vorticity model.

With the derivation of (3.36), (3.38), (3.39), and (3.40), the semi-

geostrophic equations (3.24)-(3.29) have been transformed into the Eliassen

coordinate system without approximation. We shall presently place a re-

striction on the semigeostrophic equations which will allow us to con-

struct a model of frontal cyclogenesis without a cumbersome mathematical

treatment, namely, that the potential vorticity as defined by (3.35) is

always constant. With this simplifying assumption, the vertical velocity

does not appear explicitly in the governing equations. Since this as-

sumption saves us from solving a vertical velocity equation, the problem

may be attacked primarily by analytical techniques rather than as a

numerical experiment.

Our choice of this constant potential vorticity model has not been made

capriciously but has been motivated by the results contained in a paper by

Hoskins and Bretherton (1972). In their paper, they obtained frontal

models which compared favorably with those observed in the atmosphere by

assuming constant potential vorticity. We are trying to extend these

constant potential vorticity models to describe frontal cyclogenesss.

To reduce the parameters in our analysis, we shall take our character-

istic length scale L to equal the Rossby radius of deformation (NH/f where

N is the Brunt-VHisalla frequency). We further take the constant potential

vorticity to equal Ro-, and substract out the mean atmospheric stratifi-
vorticity to equal Ro , and substract out the mean atmospheric stratifi-
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cation by introducing so that = - RoZ 2. (3.41)

The governing equations now become

+ +XX YY - RoX + Ro = 0 (3.42)

and- + 4 Z = 0 (3.43)
aT Y 3X X aY Z

along Z = 0,1. For the remaining portions of this thesis, we shall use

(3.42) and (3.43) to study frontal cyclogenesis.
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4. The basic state: the unperturbed finite-amplitude wave and its

associated front.

To begin our discussion of the basic state, we shall take a uniform

zonal flow which may possess constant vertical shear plus an Eady

wave without any meridional structure:

= - Y - 6(Z-1/2)Y + (E)(XZ,T) (

where 6 is a measure of the vertical shear and E the amplitude of the

Eady wave. By translating the coordinate system with the speed of the

zonal flow at the mid-level, we may stbtract out the constant zonal

flow by making the substitution X0 = X - T.

Substituting (4.1) into (3.42)-(3.43) we find that p(E) is governed

(E) (E) (
zz +X =0

subject to the boundary condition along Z = 0,1

(-+ 6(Z-1/2)3 (E) _ 6 (E) = 0
T X z x0 0

4.1)

by

4.2)

(4.3)

The solution to (4.2) is

(E) = exp(a6T)(A cosh k(Z-1/2) cos kX0 + B sinh k(Z-1/2) sin kX ) (4.4)

with 02 = (x-coth(x))(tanh(x)-x) (4.5)

where x = k/2

and aA = B(1 - x coth(x))

aB = A(x tanh(x) - 1).

To complete our derivation of the basic state, we must now choose

those values of 6 and k that best approximate finite-amplitude baroclinic

waves as they exist in the atmosphere.
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It is now well known that the origin and development of upper-air

waves result from the baroclinic development of disturbances with the

typical wavelength of several thousand kilometers. As a result of the

eddy transports of heat and momentum generated by the growing dis-

turbances, the zonal available potential energy is reduced. Consequently,

although these large-scale disturbances grow initially according to

linear stability theory, sooner or later finite-amplitude effects will

start to slow, and then eventually arrest, the-growth of the baroclinic

wave.

Evidence that this feedback process acts strongly in the atmosphere

is shown in Fig 1 which compares the observed zonal shear from summer

and winter (Oort and Rasmusson, 1971) with the zonal shear from the

local baroclinic instability criterion derived from a two-level,

B-plane model:

U1 - U3 > 4QaS cos(lat.)/sin (lat.)

where Q and a are the angular velocity and radius of the earth, and

S the nondimensional static stability of the atmosphere (Phillips, 1954).

The observed vertical shear is computed by differencing observed

seasonal values of U at 200 mb and 700 mb. Fig 1 suggests that the

observed, finite-amplitude baroclinic waves in the extratropical regions

of the atmosphere limit the zonal available potential energy to such

a degree that it does not greatly exceed the amount necessary for

instability.

In our Eady model, the flow is unstable for any vertical shear of

the zonal flow; hence, the consistent minimization of the zonal

available potential energy occurs for zero zonal shear. Consequently,

from this point forward, we shall take 6 = 0. Furthermore, since there
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is no physical keason why wavelengths other than that asso iated with

the most unstable Eady mode as found from linear stability theory

(i.e., k = 1.6062) should be excited, we shall also use that value of

k in our analysis. Although the finite-amplitude effects have probably

changed it from its original value, this value is certainly near the

correct one. Also B will have the same relation to A as in the case

of the most unstable Eady wave.

Using (4.1), (3.20), (3.21), and (3.13), we find that the basic

state consists of

-4

S= 4Z = Ro (Z-1/2) + cAk sinh k(Z-1/2) cos kX0 +

+ cBk cosh k(Z-1/2) sin kX0  (4.6)/

w= 0

u = 1 (4.7)

v = v = -EAk cosh k(Z-1/2) sin kX0 + EBk sinh k(Z-1/2) cos kX0  (4.8)

-(E)
Fig 2 shows vertical cross sections of E (i.e., the temperature field

with the mean stratification subtracted out), v at y = 0 in the un-

stretched coordinates, and ( at z = 1/2 (corresponding to 500 mb) when

EkRo = 0.4. Since the magnitude of v is associated with E; A may be

taken to equal one without any loss of generality.

In certain respects, the case of no zonal shear is a generalization

of Orlanski's model. Instead of a discontinuity for a front, we have

continuous variations of temperature and vorticity. Also the properties

of the front are directly associated with the finite-amplitude baroclinic

wave that produced it. Finally, we also have vertical and horizontal

shear across the front, as Orlanski's model does, without any temperature

variations along the front.
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Fig 2.1. The basic state's pressure field at z = 1/2.
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Fig 2.3. The basic state's meridional velocity field at y = 0.
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As a point of departure, we do not have a discontinuity of potential
0

vorticity as dows Orlanski's model at his frontal surface. We will

return to this point later.

Finally we must test (4.6)-(4.8) to see when the semigeostrophic

n- nequations break down according to (3.22)-(3.23). Since D v/Dt =Dnu/Dt n = 0 when n < 1 and D/Dt = /OT + u 3/qX + v 9/3Y + w /3Z,
-g g

then (3,22)-(3.23) is satisfied for all e, k, and Ro. However, since

the vertical component of the basic state's absolute vorticity (which

is equal to (1-Ro (E) )-1) must remain finite, it is found that in

reality EkRo < 0.4.
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5. Perturbation e'quations.

5.1. The linearized equations.

We now consider that the actual flow is a small perturbation super-

imposed on the steady flow described in Section 4. Thus,

(5.1)
W =  Wl

Substituting the perturbed * and w into (3.42)-(3.43), subtracting

out the basic state, and neglecting quadratic perturbation terms, we

obtain the system

~' +  ' 0+ ' -+XRo(E) ' = 0 (5.2)

and (E) , , (E),, = 0 (5.3)
S XO Y Z X-EXoZ Y

Since i(E) is independent of Y,T we may assume that i' varies as

exp(ikY + ilT) where £ is the (real) meridional wavenumber and X

may be complex. If A. = Im(X) < 0, then we have found an unstable

mode for the given value of E, k, Ro. Assuming that

,' T (X0 ,Z) exp(ikY + iAT) (5.4)

then (5.2)-(5.3) becomes

Z + _X , 2x + ERok 2 X(E) = 0 (5.5)zz XX X0
(E) (E)

and AT Z + E£ X 0  0 = 0 (5.6)

The X0,Z dependence of i(E) is rather complicated. The simplest

solution to (5.5)-(5.6) which takes the sinusoidal X 0 dependence of

the baroclinic wave into account assumes the form of

S= Y (n) (Z) exp(inkX0 + ik0X0) (5.7)

n = -w
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where k0 is any arbitary zonal wayenumber. For the present study, we

shall restrict ourselves to kg 0.. Themost general solution to (5.5)-

(5.6) would, of course, require that the k0 = 0 condition would have

to be relaxed.

Upon substituting (5.7) into (5.5)-(5.6), we obtain the following set

of ordinary differential equations:

(n) - nk2 (n) okAn) (n-) + Rok2 2 A (n+) (5.8)
ZZ n-l n+l

and

iXY (n)+k B n+l) k (n-1) (n+l) (n-1)
i +k B If + k B T +k C IF +kC 0 (5.9)Z n+l n-l n+l Z n-l Z

along Z = 0,1 where

A = 2 A cosh k(Z- ) + i B sinh k(Z- )

An 1 = A cosh k(Z- ) - i B sinh k(Z- )

B = - ik B cosh k(Z- ) - k A sinh k(Z- )
n+l

Bn-1 = - ik B cosh k(Z- ) + k A sinh k(Z- )

Cn+1 = i B sinh k(Z- ) + A cosh k(Z- )

and Cn- 1 = i B sinh k(Z- ) - A cosh k(Z- )

Due to the complicated form of A and A , a general analytic sol-
n-fl n-l

ution to (5.8) cannot be found which could then be substituted into (5.9)

to find X. Therefore, we must solve (5.8)-(5.9) numerically.

Instead of solving (5.8)-(5.9) in the manner suggested by Orlanski

(1968), (5.9) is rewritten

(n) (n+1) (n-1) (n+l) (n-l)T +EkXB T +EkYB +ckkC T +Ek£Cn= 0 (5.10)
ZT n+1 n-l n+1 Z n-

and (5.8) and (5.10) are solved as an initial-value problem.
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5.2. The numerical technique.,

The numerical technique employed in the present investigation to obtain

the linear solutions to (5.8) and (5.10) is one of an initial-value type.

The major advantage of this method is the compactness of the computer

memory necessary for large vertical resolution; the major disadvantage

is the presence of background noise due to the initialization scheme.

For a given Rossby number, meridional wavenumber, amplitude of the

Eady wave, and basic state zonal wavenumber, an initial perturbation Zn)

is generated by a random number generator along the upper and lower

boundaries. Eq (5.8) is then solved in the interior (0<Z<1) and the

value of T(n) is found along the upper and lower boundaries. Using

(n)
(5.10) a new value of along the boundaries at the next time step

is found and the above process is repeated.

During the initial stages of the time integration, the values of y(n)

are highly chaotic. As the integration proceeds, the unsteady eddy begins

to move and grow at a more homogeneous rate, as dictated by the most

unstable mode of the finite-difference set. Consequently, the time

integration is terminated when the most unstable mode dominates all the

other perturbations.

It is readily shown that the total kinetic plus potential energy behaves

as exp(-2X T). Therefore we may calculate as -X. = dE/dT/2E where,

as it will be shown in Section 7,

n i m we g o a o 2+ (f-eaRoX ) i (E) dY dZ (5.11)
0 0 0 0r X 0

In this manner we gain a contribution from each Fourier mode.
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In determining Ar = Re(),owe cannot use energy integrals such as

(5.11). However, using the Fourier component for n = 0 at the mid-level

(since it is the most accurately determined), we do find that

r ( )* 3 ( )) ( ) (0) ( ) }/2i I ( 0 )( ) 12 (5.12)
r T T

Straightforward center differences in time and vertical space were used

throughout the investigation. The exception to this was the forward time

step taken initially. To damp the effects of the separation of the sol-

ution between the even- -and odd-numbered time steps, which results from

a first-forward-then-centered time step, the first time step was sub-

divided into six subdivisions and time integration out to the first time

step was carried out using forward time steps.

Due to the coupling of the Fourier modes in (5.8), the system of linear

equations resulting from the finite-differencing of (5.8) gives a sparsely

populated matrix which must be inverted. Since this can be very time

consuming, we treat the right-hand side of (5.8) as a known quantity.

As a first quess we take p(n) as given from the previous time step (except

for the first time step when we set it equal to zero) and solve the tri-

diagonal system from the finite-differencing of the left-hand side of

(5.8). The (n)'s are then compared with the quessed values that were
-5

used in the right-hand side. If they agree to within 10-5 (after all

the (n) 's have been properly normalized), then the calculation proceeds

(n) (n)
to the calculation of the new Y at Z = 0,1; otherwise, (n) is usedZ
as the new quess to evaluate the right-hand side of (5.8). This process

is repeated until convergence is obtained.
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5.3. The approximate.perturbation equations.

The solution of the perturbation equations using the numerical tech-

niques described above is not entirely satisfactory. For small growth

rates, we will be unable to find solutions to the perturbation equations

since the background noise, which is produced when the random pertur-

bations are introduced, completely masks the unstable mode. Also the

errors associated with the finite differencing, especially for the higher

harmonics, also limits the accuracy of the solution which are found.

For these reasons, we shall approximate the perturbation equations (5.8)

by neglecting the right-hand side. Formally, such an approximation results

in our neglecting O(Ro2 ) terms and we are, in fact, using the quasigeo-

strophic equations. However, as Hoskins (1975) has pointed out, there

may be several occasions when the Jacobian terms in (3.34) may be neg-

lected and yet the ageostrophic effects will be retained. Consequently,

we shall apply the approximate perturbation equations to those situations

where Ro << 1 as well as Ro < 1 and see how they compare to results

obtained from the completely general equation (5.8).

Upon neglecting the terms on the right-hand side of (5.8), we may write

(n)
the solution to (n) as

4 = (n) exp(iinkX0 +£kY+AT}) (5.13)
n = _m

where (n) = A cosh m (Z-12) + B sinh m (Z-12)
n n n n

and m = (n2k 2 + £2)2

Substituting (5.13) into the boundary conditions along Z = 0,1, the

linear equations which form the eigenvalue problem for X are
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(- iEkk A coshx) mn- 1 sinh(xn-1) + iEk2 g A sinh(x) cosh(x n-))An-1

+ (ickk A cosh(x) mn+ sinh(Ckn ) - iSk 2 % A sinh(x) cosh(x n)) An I

+ (-skk B sinh(x) m cosh(x ) + k2 k B cosh(x) sinh(x ))Bn-1 n-i n-i n-i

+ (-Ekk B sinh(x) mn+I cosh(xn+l) + Ek2 % B cosh(x) sinh(xn+l ))Bn+

-2 m sinh(x ) A = 0 (5.14)n n n

(- csk B sinh(x) mn_ I sinh(x n_l) + ck2, B cosh(x) cosh(x nl))An I

+ (-- skk B sinh(x) m sinh(x ) + Ek2t B cosh(x) cosh(x ))An+l n+1 n+i n+i

+ (-iEkk A cosh(x) min_ cosh(xnl) +ik 29 A sinh(x) sinh(xnl))Bn-1

+ (+isck A cosh(x) mn+1 cosh(xn+l) -iEk 2 Y A sinh(x) sinh(xn+l))Bn+I

- 2X m cosh(x ) B = 0 (5.15)
n n n

where x = k/2 and x = m /2. The coefficients of (5.14)-(5.15) are
n n

sufficiently complicated and the matrices are sufficiently large

(for n = 0,1, there are six equations), so that (5.14) and (5.15)

were solved numerically.

Eqs (5.14)-(5.15) are solved along the lines outlined in Duffy (1975).

The infinite set of equations symbolized by (5.14)-(5.15) is truncated

by setting A = B = 0 for n > N. This truncated set of equations isn n

solved and 4N+2 eigenvalues and eigenvectors are obtained. Upon taking

a larger N, in addition to new eigenvalues and eigenvectors corresponding

to the higher harmonics, eigenvalues and eigenvectors are found which

correspond to the eigenvalues and eigenvectors found in the system

with the smaller N but are of greater accuracy. Therefore, the process

of repeatedly expanding the system of truncated equations for larger and

larger N may be repeated until the desired accuracy is obtained.
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The eigenvalues and eigenvectors were obtained by using a modified LR

algorithm. In particular, a fortran IV version of the Algol routines

balance, comhes, comlr, comlr2, and balbak developed by Wilkinson et al

(1971) were used. Balance and balbak were modified to handle the complex

arrays.

5.4. Check of the semigeostrophic equations.

As was shown in Section 3, the semigeostrophic equations are valid only

under certain conditions which are given by (3.22)-(3.23). Before we can

proceed to the numerical calculations, we must determine what values of

Ro and k are allowed by the semigeostrophic equations for a given k.

Turning first to (3.22), we note that the largest term in the denom-

inator will be v ; the remaining terms will be of the order (or less)

of the amplitude of the perturbations u' and v'. In the numerator, the
g g

magnitude of the terms will be of the order of the perturbation's ampli-

tude. Consequently, if k, £, and Ro are finite, the amplitude of the

perturbations can always be so choosen so that (3.22) will be satisfied.

Turning to (3.23), we see that since u = 1 the denominator will be

of 0(1). The numerator will, on the other hand, have terms of the order

of the perturbation's amplitude. As in the case of (3.22), the pertur-

bation's amplitude may always be so choosen so that (3.23) will be sat-

isfied.

The mathematical problem now reduces to solving (5.8) and (5.10) or

(5.14)-(5.15) for specific values of E, k, and Ro. Before investigating

this general problem, however, it is useful to consider some general

stability criteria and energetics.
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6. Stability theorems.

A great deal of useful information pertaining to our stability problem

can be obtained by integral methods (see Charney and Stern, 1962). These

theorems yield necessary conditions for instability and bounds on the

growth and phase speeds of the disturbances.

6.1. Necessary conditions for instability.

Consider our meridional flow Vg(XOZ) which is perturbed by a wave dis-

turbance Y(XO,Z) exp(iZY+iXT). We showed in the previous section that

T(X 0 ,Z) satisfied (5.5) with the associated boundary conditions (5.6).

Suppose X # 0, we multiply (5.5) by {*, integrate over a vertical cross

section, and apply the boundary conditions (5.6). We obtain

ff J (E) kQ, 12 Z=10 2rIPZJ2+I TXj 2 + y 2 ( I - E  o X ( ITI 12 dXodZ

aJx )(EE $ 12 z=0010 0 X 0 0 0 d0 dZ ( = (E)+±)2 X0 (6.l)

0

The real and imaginary parts of this integral must be satisfied separately.

27r ck (E) I 2  Z = 12. 1 (E) 0

The imaginary part yields i (E) = dX = 0 (6.2)

0 
0

If Xi is not to equal zero, then it is necessary that the integral quan-

tity vanish. The vanishing of this integral is thus a necessary condition

for instability. If unstable perturbations exist their instability is a

result of the boundary variations of the potential temperature of the

basic state. Consequently any instabilities which are found arise from

the baroclinic, rather than the barotropic, nature of the basic state.

More information can be obtained from the real part of (6.1)
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1 I z12 + Ix 12 + Z2 (1-cRo EX ) IT 2 dX0 dZ
0 Z x0 O X d 0

2 (E) (E) I Z=

2 Xo X0

jCll (E) + X 12  Z=.
X 0

0

dX0 + £1X0 r

2 I2  Z=l
2 .E(E) T 2

, +(E)+Xl 2 Z=o
0 x00

dX0  (6.3)
0

For unstable waves, the third term which is multiplied by X r must vanish

according to (6.2). In addition, (1-ERop(E) ) is always greater than
x0x0

zero for the vertical component of the absolute vorticity to remain

finite. Thus a necessary condition for instability is

2 T

(E) (E) T12 Z=1
X0 X 0 Z

SacE) + X12
0 Z=O

> 0.

Hence a sufficient condition for stability is that

(E)0 (X0 1) ( E ) (X1)
x0xo (Xo oZ(o

< 0

XE X0,0 ) E O(E) X  > 0
~Xo (X0 ,O) > 0

everywhere.

6.2. Phase speed and growth rate.

In this subsection, we shall derive certain bounds for the speed of

propagation and growth rates of unstable waves.
(E)

Since i is not zero, we may make the transformation:T = (ck X -X)X.
i XO

and
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Upon making the substitution into. (5.5)(5.6) and simplifying, we find

6 { (gX0(.)2 ( E)2 2l (E) (E)
{ub X£4 + (E .A)2 X .2 (1-FRog(E) OX (ER )2 = 0

0 0 0 0 0 (6.5)(6.5)

XZ = 0 (6.6)

along Z = 0,1. Multiplying (6.5) by X , and integrating over a zonal

cross section, and applying (6.6), we obtain

1 2(Y (E)X)2 XZ XX 12 + R pE (E) ) X 2  d X  dZ = 0 (6.7).

00 '0 0

Taking the imaginary part of (6.7), we find

1 27

o0 Z 1x+ 0 2 y2 (1-ERo ) X 2 } d X X dZ = 0 (6.8),

It is clear from (6.8) that A I/sE cannot be greater than the maximumr

velocity nor less than the minimum velocity of the meridional flow.

Further, there must exist a line in the X0 -Z plane on which the phaiise

speed of the unstable wave (i.e., X '/Z ) is equal to the local fluid
r

velocity.

If we define

IxZ1 2 + XX92 + 2(1-ERoIX(E0) )j2 _ Q

1 2v
and ( ) dX 0 dZ = (),

O 0

then the real part of (6.7) may be written as

SE E)Q 2 rX X r-A)Q = 0 (6.9)
0 0

and the imaginary part as

z (E)Q - A Q = 0. (6.10)

0
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Applying (6.10) to (6.9)

2~ 4 2 Q -(X2+2) 'Q. (6.11)

Since we can always choose a V and V. such that
max -4 min

0 > E22((E) - V )((E) - V )Q
X max X min
0 0

0 > ((E)2Q) (V +V ) 2 2  (E) Q + 2 V, (6.12)

X max min X max min0 0

we can form the inequality

0 > (r - E , (V ma+V ))2 + 1 Q - ( E£ (V -aV in))2  (6.13)
r max min 1 max min

or ( ~e. (V -Vmin))2 > r - s(V +V ))2+ 2 (6.14)
max min r max mm I

According to (6.14),X lies, for unstable waves, in a semicircle whose

radius is given by the square root of the left-hand side of (6.14) while

the origin of the semicircle is on the real axis of the X plane at the

mean velocity of the meridional flow.

To obtain an upper bound on Xi, we use (6.14) to obtain

S< E k 2 2 (V -V. )? (6.15)2 < max min

As we would expect, when the velocity field becomes uniform (i.e., Vmax

V . ), the growth rate vanishes. It should also be noted that the upper
min

bound. on. X. does not depend upon the Rossby number. For our particular
1

flow, V = V . = 3.07.
max min
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7. Energetics.

In order to clarify the nature of the instabilities found in the next

section, we shall derive in this section energy equations for both the

exact and the approximate perturbation equations. We will then be able

to describe the conversion of available potential energy (APE) into

kinetic energy and vice versa between the baroclinic wave and the per-

turbations.

7.1. The exact energy equation.

The energy equation for the constant potential vorticity model can be

derived from (3.38). and .(5.2). We may write these equations in the form;

r + (E) k ' + + (1-ERo (E) = 0 (7.1)
T Xo  Y zz +  XoX o  X oXo

and (E) (E) + (Ro-1 + (E) = 0 (7.2)
3 C 0  Z - 0T o (o + Z )w' = 0 (7.2)

Taking the Z derivative of (7.2), (7.1) can be rewritten

E(E)) (E) (E) I -l w (E)
EX X + Iy(l-Ro1 0)} + EXoz 1 - Ro w - (w

1 _ + EI 0I y X0X 0 Y (1-ERoX O 0 X ZZ Y -R W, (E)) 0

(7.3)

Turning our attention first to the thermodynamics equation, we multiply

it by I'P and integrate over the volume:

2 J Ro '2 dV JJ Ro ( E)1Ro ) dy (7.4)
--T @Z =X 0o Z 4 y -)

where V 2f 1Zj:

( ) dV =  
2 dZ dY dX0.

V 0 0 0
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The left-hand side'of (7.4) represents the rate of change of the pertur-

bation's APE. The right-hand side of (7.4) reveals that the perturbation's

APE is generated by the baroclinic instability of the finiteamplitude

baroclinic wave, and depleted by the conversion of the perturbation's APE

to its kinetic energy by the rising of warm air and the sinking of cold

air.

It should be noted that the second term on the right-hand side of (7.4)

(E)
contains the term (1-ERo~Z). This corresponds to a modification of the

static stability of the mean atmosphere due to the presence of the baro-

clinic wave.

Turning our attention now to the perturbation kinetic energy, we mul-

tiply (7.3) by p'and integrate over the volume to obtain

+ (l-eRol4E) 2 14V = (B) (E)
- (2Ro{X J (1-eRo X)wr~ + ERo Xo 0 X0Y dV.

V V
(7.5)

The terms on the left-hand side of (7.5) represent the rate of growth

of the perturbation kinetic energy. It should be noted that the

(1 - Ro ) term which multiplies results from the distortion

introduced by the Eliassen coordinates.

The generation of the perturbation kinetic energy is due to two effects.

The first term on the right-hand side of (7.5) represents the conversion

of perturbation APE into perturbation kinetic energy through warm air

rising and cold air sinking. The second term represents a barotropic in-

stability from the horizontal shear generated by the finite-amplitude baro-

clinic wave which feeds its kinetic energy into the perturbations through

the Reynolds stresses
0 Y
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Consequently the total eniergy equation may be written as

a-T JJ{ Ro{i 2 jY p2 + (1-Ro (E) }d =

V

S ERO (E) + R (E) dV (7.6)

V

7.2. The approximate energy equation.

We may derive the approximate energy equation by neglecting the

S + (E) D Ro (E) term in (7.3). The derivation then pro-

ceeds as before and we obtain (7.4),

T1  -R{v + 2} dV = JJJ(1-cRolXE ) w'Z + ERO XO dV (7.7)

V V
and

j- RoI{' + '2 + 2 }dV = jRo (E) + Ro(E) I 1' dV (7.8)
T Z X Y i d  -YRXoZ ZY XoXOX 0 Y  (7.8)

V V

The interpretations of the source terms can be made in the same manner

as above.

An important point concerning our set of approximate energy equations

is that, despite our neglecting certain terms in the exact perturbation

equations, we have done it in such a manner that we have not generated

fictious sources of energy. Rather we have only modified the definition

of the perturbation kinetic energy. This suggests that our choice of

approximate perturbation equations is physically realistic.

We may summarize the energetics, irrespective of whether we are using

the exact or approximate perturbation equations, as shown in Fig 3.
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C(APE, APE') C (KE ,KE')

C ( APE', KE')
KE'

Fig 3. Energy flow diagram for the constant potential vorticity model.

APE

APE'

~
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8. Results,

Eigenvalue solutions to (5.8) and C5.10) as well as .C5.14)-(5.15) were

obtained for ekRo = 0.1 and 0.4 for £ varying from 0.1 to 2.0.

8.1. The approximate perturbation equations.

In the solutions to the approximate perturbation equations, eigenvalues

of the form ±IXj ± i 1Xij ere always found. These eigenvalues would

further be classified according to whether = , = , or -or

neither. (For convenience, X = 0 has been incorporated into the AlXr = 0

class.) Since the approximate perturbation equations are independent of

Ro, all the rlA 's and 1xi 's which were found could be displayed on

I Xr/ES -Z and IX.i/E -k planes. However, since we are interested in

the most unstable solutions, we shall restrict ourselves to the three

largest 1xil's.

In Fig 4 we depict the variations of Ir/Ei' with Y for the three most

unstable modes. In Fig 5, we give the corresponding xi /e1 for each of

the curves presented in Fig 4.

Curve A in Figs 4 and 5 illustrates the behavior of the unstable,

stationary perturbation (i.e.,l Ar = 0) found in the calculations. As

shown in Fig 4, these unstable stationary perturbations existed only

for 's below a critical value, approximately 1.6. For V's greater

than this critical k, the stationary perturbation ended and a non-

stationary perturbation was generated.

It was found that the stationary perturbations, when they existed,

were the most unstable. The magnitude of Ixi/El increased as Z increased

from 0.1 to 1.0 and then decreased as £ increased as 1.6. In the region
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2.0

Xi 0.1-

E .08- C

0. I -- .06-
do y
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x EkRo = 0.1
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.03--
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Fig 5. The absolute value of the imaginary part of XI/ as a function of R

for the three most unstable modes (right-most scale) from both the
exact and approximate perturbation equations. The dimensional growth
rate given by the left-most scale for Ro = 0.187. The shaded area

indicates those eigenvalues which are forbidden by stability theorem

(6.15).
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of X = 1.5, a = 0 solutioi developed a nonzero .li whose magnitude

increased extremely rapidly as Y increased. This.stationary .perturbation

then joined the other stationary perturbation approximately at , = 1.55.

After this point of junction, a nonzero I XI developed; as k increased

further, ,lkr/kIl increased and kiA/l decreased. Although not shown in

Fig 5, these nonstationary perturbations eventually bl came neutrally

stable.

Of the eigenvalues found, the majority fell into the classification

of nonzero IXrI and IAiI. Curves B and C in Figs 4 and 5 are typical of

those found in this classification and were choosen for presentation since

they possessed the largest growth rates of the nonstationary perturbations

found. It was further found that for £<<1 there was associated with

each+ jr! +  i jxiJ, another ± 'Ir i j1'J such that IAr! IAr and

Swith r1> ' and I .>X' l. As k increased the mag-
r 1

nitude of Ihi' decreased and eventually this eigenvalue became neutrally

stable. The [ix.'s, on the other hand, grew as £ increased and then,

at a critical point, started to decrease towards zero. Eventually, these

unstable perturbations also became neutrally stable.

8.2 The exact perturbation equations.

Eqs (5.8) and (5.10) were solved numerically to obtain A as described

in Section 5. There were 41 points in the vertical and (5.2) was trun-

cated so that the Fourier components ran from n = -10 to +10. On Fig 5

we have plotted "data points" obtained from our numerical experiment for

various ckRo. As can be readily seen, the agreement between the 1Ai/ 6's

found using the approximate and exact perturbation equations is excellant
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For R i 1.5. This is also true for I)/r!e-I which was found to be very

close to zero. Beyound k = 1.5, solutions could not be obtained due

to the smallness of the growthrates that may have been present and the

Soise which was introduced during initialization. Consequently we

cannot absolutely confirm the existence of the nonstationary perturbations

found above using the approximate perturbation equations.

When (5.8) was finite-differenced in the vertical, inhomogenous terms

were generated in two different ways. The first was from the evaluation

of the terms on the right-hand side of (5.8) with the quessed values of

(n) (n)p ; the second was the use of the boundary conditions, i.e., (n)

specified along Z = 0,1, to eliminate (n)(0) and Y(n)(1 ) from the

system of linear equations. Upon comparing these two effects, it was

found that the boundary effects greatly dominated over the terms gen-

erated by the right-hand side of (5.8). Consequently, the solutions to

(5.8) were determined mostly by the boundary effects. This is reflected

in the very good agreement between the results obtained from the

approximate and exact perturbation equations since the approximate

perturbation equations merely neglect the terms on the right-hand side

of (5.8).

8.3. Energetics.

In Table 1, the energetic conversions are listed which took place for

the most unstable perturbation. Since the results from the exact per-

turbation equations are essentially independent of Ro, we have given the

energetics for the case when EkRo = 0.3. We have also normalized all the

conversions by taking C(APE,APE') to equal 1. It was found that the
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Table 1. Normalized energy conversion rates for the most unstable per-

turbation ( - = 1.0 ) found in the constant pot i:tial vorticity model.

Conversion Exact perturbation equations Approximate pertur-

for EkRo = 0.3 bation equations

C(APE,APE') 1.00000 1.00000

C(APE',KE') 0.16417 0.16460

C(KE,KE') 0.39248 0.35680
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perturbation received energy not only from the APE of the baroclinic wave

but also the KE. Some of the perturbation's APE was then transformed into

the perturbation's KE.

Further computations revealed that whenljrl # 0, in the approximate

perturbation solutions, the perturbation received APE from the baro-

clinic wave and some of the perturbations's APE was then transformed

into the perturbation's KE. However, unlike the Alri = 0 case, some

of the solutions were found to transform the perturbation's KE into the

KE of the baroclinic wave.

8.4. Physical interpretation of the results.

As Fig 5 shows, the most unstable perturbations are associated with

= 1. Furthermore, upon examining the eigenvectors, it is found that

the Fourier coefficients having the largest amplitude have n = 0, +1;

the amplitude of the n = ±2 Fourier components are approximately 10%

of the amplitude for n = ±1. Consequently, the length scale of the

most unstable perturbation in both the zonal and meridional directions

is the Rossby radius of deformation.

In our model there are two possible sources of instability: con-

ventional baroclinic instability and Rayleigh instability. Since our

basic state never generates the small Richardson numbers necessary

for either Kelvin-Helmholtz or "symmetric" instabilities (similar to

those found by Gambo and Tokioka, see pg. 13) to become important,

we need not consider these types of instability further.

Unquestionably the instabilities found in the previous sections result

in part from conventional baroclinic instability. In the previous
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sections, we have shown that the instabilities found in this thesis

(1) arise from variations of the basic state's potential temperature

along the horizontal boundaries, (2) grow by conversion of the basic

state's available potential energy into the perturbationts available

potential energy, and (3) have a characteristic length scale of the

order of the Rossby radius of deformation - all properties which are

characteristic of conventional baroclinic instability.

In our imodel, we have taken the potential vorticity of our basis

state to be constant and the potential vorticity of the perturbations

to be zero. In the case of quasigeostrophic flow, Charney and Stern

(1962) have shown that there are two possible sources of instability

in a baroclinic-barotropic circumpolar vortex. One of the sources

of instability is the variations of the potential temperature along

the horizontal boundaries. We have this type of instability in our

model and it is associated with conventional baroclinic instability.

Another source of instability is due to the vanishing of the meridional

derivative of the potential vorticity in an isoentropic surface or the

pseudopotential vorticity in a level surface somewhere within the flow.

In our problem, this would correspond to a vanishing of the meridional

derivative of the basis state's potential vorticity somewhere within

the flow. This does not occur in our problem and has the consequence

of excluding Rayleigh instability in the flow.

Another intriguing aspect of our perturbation analysis is that the

results are mathematically isomorphic to those for a finite-amplitude

Rossby wave in a perturbation analysis employing the quasigeostrophic

equations. In the previous sections, we have shown that a baroclinic
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wave with a strong frontal zone which is described by the semigeostrophic

equations in Eliassen coordinates is mathematically, though not physically,

isomorphic to'an Eady wave without a frontal zone.

In summary, Hoskins and Bretherton's constant potential vorticity

model for describing frontogenesis as a large-scale, finite-amplitude

wave in a zonal flow leads to frontal instabilities which themselves

are essentially of baroclinic character, not shear instabilities of

the Rayleigh type. For the latter to exist, gradients of potential

vorticity in the basic state flow are required.
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9. Kinematics of the unstable wave.

In this section we shall display the pressure, temperature, velocity,

and vorticity fields associated with the most unstable perturbation found

in the previous section. For concreteness, we shall take c = 1, Ro = 0.187,

k = 1.60. With these values, the most unstable perturbation is a station-

ary perturbation with kci of 1.7 d
- 1 , corresponding to a doubling time

of 10 hr, and k = 1.00. Since the amplitude of the perturbation is

arbitary, we shall take it to be 10% of the basic state's amplitude

(except for w and the relative vorticity which have been normalized

so that most of the values plotted are 0(1)).

Figure 6 shows the total pressure field (perturbation plus basic

state) at z = 1/2. The pressure perturbation is such that intensifi-

cation of the basic state trough occurs between y = 7/2 and 37/2 and

pressure rises occur between y = 0 and 7/2 and 37/2 and 27. Since the

perturbation pressure field is slightly out of phase with the basic

state trough (in the x direction) there is a slight asymmetry in the

total pressure field.

Figure 7 shows the total potential temperature field at the level

z = 1/2. From this figure we see that there are intrusions of cold

and warm air across the frontal surface (located at kx = 7 at z = 1/2).

These intrusions of warm and cold air are characteristic of the baro-

clinic instability of our model where there is a positive correlation

between u' and 6'.

Figure 8 shows the total potential temperature field at z = 0.

As would be expected of a baroclinic instability, relatively colder

air predominates in the lower levels. It should be note that
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the only large area of warm air left is in the lower right quadrant. We

shall return to this point jn the next section.

Figure 9 presents the vertical velocity field at z = 1/2. As would

expected, the largest vertical velocities are in the neighborhood of the

frontal surface where warm air is rising and cold air is sinking. We

shall also return to this figure in the -ext section.

Figures 10-13 show vertical cross sections of the total potential

temperature and total velocity fields. As would be expected of a

baroclinic instability, there is rising motion associated with warm

air and sinking motion with cold air. The u velocity field (with the

constant u = 1 subtracted out) shows that sinking cold air would spread

out in the lower levels while the rising warm air will expand in the

upper regions.

Figure 14 shows the relative vorticity field associated with the

perturbatinns. From the figure we see that the largest cyclonic

as well as anticyclonic vorticity occur in the neighborhood where

the frontal surface intersects the plates. Intense centers of

cyclonic and anticyclonic vorticity are in qualitative agreement

with the atmospheric observations of frontal cyclones as noted by

Palmen and Newton (1969, Section 10.9).



Fig 6. Total pressure field at z = 1/2 in nondimensional units.
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10. A synoptic xale; a daeyealopig wave cyclone.

In this section we shall apply the results obtained in the previus

sections to a synoptic situation. In particular, we shall apply our

solutions to a frontal cyclone development over the midwestern United

States during 12-13 April 1964.

In Figs 15-17 we. present the 500 mb surface heights, surface isobars,

and vertical velocities for 00Z and 12Z 13 April 1964 as analyzed by

Krishnamurti (1968) using conventinnal data and Tiros data,

In our analysis we shall associate the 00Z maps with our basic state.

If we take the 500 mb surface to coincide with our z leyel, the

agreement between the trough depicted in Fig 2 and the smoothed 500 mb

trough depicted in Fig 15 is excellant. At the surface there is a frontal

surface which is essentially running north-south, The presence of the

small surface lows indicate that the small perturbation, which will form

the large-scale surface cyclone, is already present in the system.

In our model, we have taken w = 0. Fig 17 shows that this is not

quite accurate but compared with the vertical velocities that occur in

the next 12 hr it is a good approximation. The strong sinking motion in

the Colorado area is due to strong cold advection taking place in the

Rocky Mountains area.

If we now associate the 12Z 13 April 1964 map with the flow field

which results after the unstable perturbation has set in, then the

pressure, temperature, and yertical velocity fields of the previous

section can be used to explain the 12Z maps in Figs 15-17.

As Fig 15 shows, the trough has deepened in the northern Plains with

the 540 dm contour coming down into Nebraska and a cutoff low has formed
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over the Dakotas, Although we did not generate a cutoff low if Fig 6,

we do have a deepening of the trough in the region y = r/2 and 37/2.

At -the surf ace in ig 16, a major, large-scale lo has formed with

a cold front trailing southward and a warm front aastward from the low,

Comparing with.Fig 8, we- may associate the dividing line hetween the

cold aix in the southwestern quadrant and the warm air in the south-

eastern quadrant with the cold front found in Yig 16, Likewise, the

dividing line between the warm air in the southeastern quadrant an the

cold air in the northeastern quadrant may be associated with the -warm

front. We cannot, however, explain the small slice of warm air in the

northern half of Fig 8.

The most striking similarity between our model and this case study

is in the vertical velocities. A comparison of the predicted yertical

velocity field given by Fig 9 and the observed field given by Fig 17

shows that they are in good agreement with each other.
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11. Conclusion. I

In this thesis we have attempted to study frontal cyclogenesis primarily

by analytical methods. Starting with the adiabatic, frictionless Boussi-

nesqequations, we neglected high frequency phenemona and obtained the semi-

geostrophic equations (see Hoskins, 1975). Through the use of a coordi-

nate transformation, the Eliassen coordinates, the governing equations

were brought into a form which allowed a great deal of the nonlinearity

to be eliminated.

As our time-independent basic state, we used a finite-amplitude solu-

tion, found by Hoskins and Bretherton (1972), to the semigeostrophic

equations. Through the use of atmospheric statistics we showed that this

finite-amplitude solution could be interpreted as a finite-amplitude Eady

wave which had exhausted all of the zonal available potential energy.

Fig 2 gives the pressure, velocity, and temperature fields of our basic

state.

As a first attempt to study frontal cyclogenesis analytically, we

adopted a constant potential vorticity model. We then perturbed the

finite-amplitude baroclinic wave and obtained a set of perturbation

equations. Although the exact perturbation equations could not be

solved analytically, upon neglecting certain nonessential terms,

analytical solutions were obtained and unstable modes were sought.

The baroclinic wave with its associated frontal surface was indeed

found to be unstable to further perturbation. The most unstable per-

turbation was found to be stationary with respect to the zonal flow

and derived its energy from both the available potential energy and

kinetic energy of the finite-amplitude baroclinic wave. The character-
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istic length scale of the most unstable disturbances was the Rossby

radius of deformation

The reason for these large-scale disturbances were shown to be

two-fold. In our model, we have taken the potential vorticity of

our basic state to be constant and the potential vorticity of the

perturbations to be zero. In the case of quasigeostrophic flow,

Charney and Stern (1962) have shown that there are two possible

sources of instability in a barotropic-baroclinic circumpolar vortex.

One of the sources of instability is the variations of the potential

temperature along the horizonta boundaries. We have this type of

instability in our model and it is associated with conventional

baroclinic instability. Another source of instability is due to

the vanishing of the meridional derivative of the potential vorticity

in an isentropic surfaces or the pseudopotential vorticity in a level

surface somewhere within the flow. In our problem, this would

correspond to a vanishing of the meridional derivative of the

basic state's potential vorticity somewhere within the flow. This

does not occur in our problem and has the consequence of excluding

Rayleigh instability in the flow.

This suggest, but does not prove, that the major frontal disturbances

are essentially baroclinic in nature and that only the smaller scale,

fast moving frontal waves are of the Rayleigh type.

In addition to performing stability calculations on the no zonal

shear case, caluclations were also made for the short wavelength cutoff

case. In this case, the boundary variation of the potential temperature

is such that instability cannot occur unless a zonal flow with shear

is present. However, we are not interested in conventional baroclinic
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instability, modified somewhat due to the presence of the neutrally stable

Eady wave, and this analysfs was not pursued further.

Finally, the first obvious modification to our analysis will be to

relax the constant potential vorticity constraint to allow the per-

turbations to have a nonconstant potential vorticity and allow the

perturbation solution to have a nonzero k .
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