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Abstract

The structure of the inertial peak in deep ocean kinetic energy
spectra is studied here. Records were obtained from Polymode arrays
deployed in the Western North Atlantic Ocean (400W to 700W, 150N
to 42oN). The results are interpreted both in terms of local sources
and of turning point effects on internal waves generated at lower
latitudes.

In most of the data, there is a prominent inertial peak slightly

above f; however, the peak height above the background continuum varies

with depth and geographical environment. Three classes of environment

and their corresponding spectra emerge from peak height variations:
class I is the 1500 m level near the Mid-Atlantic Ridge, with the
greatest peak height of 18 db; class 2 includes (a) the upper ocean

(depth less than 2000 m), (b) the deep ocean (depth greater than 2000 m)

over rough topography, and (c) the deep ocean underneath the Gulf

Stream, with intermediate peak height of 11.5 db; class 3 is the deep

ocean over smooth topography, with the lowest peak height of 7.5 db.

Near f, the horizontal coherence scale is 0(60 km) at depths from 200 m
to 600 m, and the vertical coherence scale is 0(200 m) just below the

main thermocline.

A one turning point model is developed to describe inertial waves at

mid-latitudes, based on the assumption that inertial waves are randomly

generated at lower latitudes (global generation) where their frequency-

wavenumber spectrum is given by the model of Garrett and Munk (1972 a,
1975). Using the globally valid wave functions obtained by Munk and
Phillips (1968), various frequency spectra near f are calculated
numerically. The model yields a prominent inertial peak of 7 db in the

horizontal velocity spectrum but no peaks in the temperature spectrum.

The model is latitudinally dependent: the frequency shift and bandwidth

of the inertial peak decrease with latitude; energy level near f is

minimum at about 300 and higher at low and high latitudes. The

observations of class 3 can be well-described by the model; a low zonal

wavenumber cutoff is required to produce the observed frequency shift of

the inertial peak.



The differences between the global generation model and the

observations of class 1 and class 2 are interpreted as the effects of

local sources. A locally forced model is developed based on the

latitudinal modal decomposition of a localized source function.

Asymptotic eigensolutions of the Laplace's tidal equation are therefore

deriveO and used as a set of expansion functions. The forcing is through

a vertical velocity field specified at the top or bottom boundaries of

the ocean. For white noise forcing, the horizontal velocity spectrum of

the response has an inertial peak which diminishes in the far-field.

With the forcing located at either the surface or the bottom, several

properties of the class 2 observations can be described qualitatively by

a combination of the global and local models.

The reflection of inertial waves from a turbulent benthic boundary

layer is studied by a slab model of given depth. Frictional effects are

confined to the boundary layer and modelled by a quadratic drag law. For

given incident waves, reflection coefficients are found to be greater

than 0.9 for the long waves which contain most of the energy. This

result suggests that energy-containing inertial waves can propagate over

great distance as is required by the validity of the model of global

generation.
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Chapter 1 Introduction

Inertial waves (sometimes called inertial oscillations, or inertial

motions, etc.) have been observed in the ocean for almost half a century

(for a historical review see Webster, 1968). They are characterized as a

transient rotation (clockwise in the Northern Hemisphere) of horizontal

current with frequency near the local inertial frequency f, defined as

2 ) sin , where f) is the rotational frequency of the earth and

is latitude. Webster (1968) documented their world-wide existence at all

depths and described their general properties. In his words, inertial

waves are "essentially transient phenomena of thin vertical extent".

Their coherence scale is at least several kilometers in the horizontal

(Webster, 1968 ; Schott, 1971) but only a few tens of meters in the

vertical (Webster, 1968 ; Fomin and Savin, 1973). In frequency space,

inertial waves are represented by a rather broad spectral peak located

slightly above f; they are the most energetic components of the internal

wave field. One of the important recent observations of inertial waves

was their vertical phase propagation reported by Sanford (1975) and

Leaman and Sanford (1975). They showed evidence of a dominant upward

phase propagation with near-inertial periods in their profiler

measurements in the open ocean. The same feature has also been observed

in near-shore regions (Johnson et al, 1976; Kundu, 1976) and shallow

seas (Fomin and Yampol'skiy, 1975). These findings constitute direct

evidence for the interpretation of inertial waves as propagating

internal waves. In the atmosphere, inertial waves have not been observed

in the troposphere; however, evidence of their existence and downward
\



phase propagation in the stratosphere has been recently reported by

Thompson (1977). Thus the observed helical vertical structures of

ionospheric winds at heights from 90 km to 150 km (Rosenberg, 1968) may

be indeed manifestations of inertial waves generated in the lower

atmosphere as proposed by Moses (1971).

The importance of inertial waves as transient response of the ocean

to impulsive external forcing has been recognized for a long time (e.g.,

Rossby, 1938; Pollard, 1970). Hence knowledge of inertial waves is

crucial to the understanding of the energetics of ocean circulation as

the result of atmospheric forcing. On the other hand, recent work on

resonant interactions of internal waves (e.g., Olbers, 1976; McComas and

Bretherton, 1977) suggests that inertial waves are important in internal

wave dynamics at mid-latitudes: low vertical wavenumber inertial waves

serve as an energy source for high frequency waves with relatively high

wavenumbers through a diffusive mechanism in wavenumber space; high

vertical wavenumber inertial waves serve as an energy sink for waves

with twice the frequency and relatively low wavenumbers as the result of

subharmonic instability, and the energy then is dissipated through the

mechanism of shear instability. Garrett and Munk (1972 b) have shown

that the shear instability in the latter case could be an important

dissipation mechanism for oceanic internal waves and hence provide the

turbulent mixing energy in the thermocline. Disturbances caused by the

internal wave field in which inertial waves are most energetic are the

major sources of noise in undersea accoustic communications; hence the

study of inertial waves also has its important military and commercial

applications.



In the last decade, research in oceanic internal waves was greatly

enhanced by the advent of the frequency-wavenumber spectrum (f-w

spectrum hereafter) developed by Garrett and Munk (1972 a, 1975). With

the synthesis of a great number of observations, they deduced a

universal model spectrum for internal waves in the deep ocean using

linear dynamics under the hypothesis of horizontal isotropy and vertical

symmetry of the wave field. This attempt to estimate the complete energy

spectrum of internal waves from existing observations led to the design

of critical experiments such as the Internal Wave Experiment (IWEX;

Briscoe, 1975) to directly measure the wave field in frequency and

wavenumber space. The results reported by Muller et at (1978) have

confirmed the general validity of the Garrett-Munk model (GM model

hereafter) in the frequency regime away from f, N(z), and the tidal

frequencies ( N(z) is the buoyancy frequency at depth z). The problem at

f is two-fold : theoretically, the WKBJ approximation of wave functions

underlying the GM model fails near f, which is a latitudinal turning

point; observationally, the IWEX record is too short (40 days) to draw

statistically significant conclusions with sufficient resolution near f.

The latter limitation also explains the general lack of a detailed

spectral description of inertial waves after so many years'

proliferation of moored measurements. For example, a frequency

resolution of the order of two percent of f at mid-latitudes requires

six months' data to obtain five degrees of freedom for spectral

estimates. Most pre-Polymode (for a description of Polymode see US

POLYMODE Organizing Committee, 1976) observations simply do not meet

this requirement. Because the Polymode arrays were originally designed



to study the variability of meso-scale eddy field in the North Atlantic,

there was at least nine months' continuous record at each mooring site.

Thus, the Polymode arrays have provided an excellent data base for us to

attempt an up-to-date spectral description of inertial waves in a

wide-range of latitude and geographical environment in a typical open

ocean. Such a description is presented in Chapter 2 with emphases on the

answers to the following questions:

(a) Is there a universal frequency spectrum near f in the

deep ocean? If not, how does the spectrum vary with the

physical environment (instrument depth, topography,

etc.) ?

(b) What are the coherence scales of inertial waves in the

deep ocean ? Are they consistent with existing theories

and observations ?

Because this study is confined to inertial waves in the ocean interior

(we will call it the "deep ocean"), i.e., away from both the horizontal

and vertical boundaries, those data within 100 m from either the surface

or the bottom were excluded from the discussion. Due to the fact that in

the inertial frequency band moored temperature measurements are subject

to possible contamination from both the mooring motion and horizontal

advection (discussed in Appendix A), the descriptions in Chapter 2 are

restricted to velocity data only.

The failure of the WKBJ approximation also accounts for the

inaccuracy of the GM model near N(z), which is a vertical turning point.

Using an exponential N(z), Desaubies (1975) derived uniformly valid

vertical wave functions with a single turning point to remove this



apparent singularity and to successfully describe observed spectra near

N(z). Eriksen (1978) used a two turning point model to describe high

frequency waves trapped in the main thermocline. Thus by using

appropriate latitudinal wave functions, we can proceed in the same way

to describe the observed spectra near f in terms of the GM model.

Latitudinal wave functions with global validity were obtained by Munk

and Phillips (1968; MP hereafter). They used the spheroidal wave

equation to approximate the Laplace's tidal equation and obtained

approximate one turning point solutions which are valid globally with

error terms no greater than O( E -1/3), where 6 is a large parameter

( 105). For the description of mid-latitude inertial waves which are

our major concerns, the one turning point solutions are appropriate

because the waves are unlikely to form latitudinal modes by phase

locking between the two turning latitudes. However, at low latitudes

where there is strong evidence for the existence of latitudinal modes

(Wunsch and Gill, 1976), two turning point solutions must be used. Using

equatorial modes on a beta plane, Eriksen (1979) developed a spectral

model for equatorially trapped waves.

The latitudinal wave functions of horizontal velocity obtained by MP

are proportional to the Airy function which is evanescent poleward

(oscillatory equatorward) of the turning latitude. The Airy function

reaches its maximum when the argument is slightly above zero. Thus, by

using these wave functions in the construction of various frequency

spectra, one would expect to obtain a spectral peak slightly above f in

the horizontal velocity spectrum simply due to the kinematic turning

point effects on internal waves, without the need of a specific forcing



mechanism. The possible use of such a model to account for the observed

inertial peak was independently noticed in a recent review paper by

Garrett and Munk (1979), and has been investigated using a beta plane

model by Munk (1979).

With the appropriate wave functions available, an adequate f-w

spectrum is needed to calculate various spectral quantities. Munk and

Phillips (1968) attempted to calculate the velocity spectrum using a

crude model of the f-w spectrum, with a relatively weak inertial peak in

the resulting spectrum. Today a decade later, detailed knowledge of the

f-w spectrum near f is still lacking. The GM model is not applicable

near f; nevertheless, it is a good description of high frequency waves

far from f, i.e., far from their turning latitudes. Hence the part of

the inertial wave energy which results from random sources sufficiently

equatorward of the observation site can be readily calculated using the

GM model. Under the assumption of linear propagation, all the low

-2
frequency internal waves can be traced to the equator where the W GM

frequency spectrum is valid over an extensive frequency range. Thus,

once the f-w spectrum at the equator is known, we can, in principle ,

calculate the spectrum at all latitudes and obtain a unified

interpretation of measurements at different latitudes. It is quite

reasonable to define this part of the inertial wave field as the "global

wave field". However, with a beta plane model whose validity is

restricted to low latitudes, such calculations would be very inaccurate.

Apart from the random global generation mechanism, it is well known

that the local wind could be an effective source for inertial waves in



the upper ocean. Ekman (1905) in his classical paper showed that

inertial waves could be generated by changes in the wind field. Rossby

(1938) pointed out that inertial waves could be generated as transients

during the flow adjustment toward geostrophic equilibrium. Using a

two-layer model with a body force acting on the upper layer, Veronis

(1956) showed that inertial waves were most efficiently generated by an

impulsive wind field. Pollard (1970) refined Veronis' model to include

continuous stratification and showed that the amplitudes of

wind-generated inertial waves were realistic at the surface but too

small to account for the maximum amplitude observed in the deep ocean.

Furthermore, Pollard and Millard (1970) demonstrated that observed

inertial currents in the surface layer could indeed be simulated by

their model using local wind data. Using a different approach, Kroll

(1975) considered the forcing imposed by a vertical velocity field which

resulted from the divergence of a viscous Ekman layer generated by

surface winds. For sudden onset of the wind field, inertial oscillations

were generated in the Ekman layer with frequencies slightly above f;

these disturbances radiated downward along their ray paths which Kroll

derived from a beta plane model. Because the wave amplitudes generally

increase with decreasing forcing scale which enhances the divergence of

the Ekman layer, small scale severe storms (scale - 100 km, stress

10 cm2 /sec 2 ) could, in Kroll's model, give wave amplitudes of

10 cm/sec at great depths. But the forcing used in Pollard's model is

the wind stress itself, not its curl, and hence is insensitive to

forcing scales; even for a wind stress of 10 cm2 /sec 2 , the maximum

speed at great depths is only order 1 cm/sec.



In the context of wave-current interaction, Stern (1977) showed that

deep inertial waves could be reinforced by surface wind through an

over-reflection mechanism at the base of the mixed layer. Ageostrophic

instability of the mean flow as a local source for inertial waves is

currently being investigated by Tai (ongoing PhD thesis, Harvard

University).

The observed dominance of downward energy (upward phase) propagation

with near-inertial frequencies is a direct evidence of significant local

generation (Leaman and Sanford, 1975). It seems relevant to define a

"local wave field" to represent these inertial waves which are forced by

some specific local sources. The distinction between the global and

local wave field is that, the latter is generated locally as inertial

waves, whereas the former is generated at lower latitudes as

super-inertial internal waves, which are well described by the GM model

and only appear as inertial waves when they reach their turning

latitudes. As pointed out in MP, the observed inertial wave energy is

most likely a mixture of these two sources. To distinguish these two

contributions from each other in moored measurements is the main task of

this study. The first step is to calculate a model spectrum for the

global wave field using globally valid wave functions and the GM model.

In Chapter 3, the general theory of low frequency internal waves on

a rotating sphere is reviewed. In Chapter 4, the construction of a model

spectrum for the global wave field is presented; its limitations and

sensitivities to model parameters are discussed; comparisons between the

model and observations are made with the differences interpreted as the



contribution from local sources.

In order to explain the observed spectra in terms of forced waves,

we need the oceanic response spectrum for a specified forcing spectrum.

The ratio of these two is usually called the transfer function. Because

most of the existing models of this kind are based on the f-plane

approximation, a spurious infinite response at the inertial frequency

usually occurs. For instance, using a balance between wind generation

and dissipation by vertical friction, Kase and Tang (1976) derived a

response spectrum which had an infinite cusp at f. However, this

apparent singularity can be removed by including the variation of f with

latitude (i.e., the beta effect) in the equations of motion. In Chapter

5, the spectral response of the ocean to a highly idealized forcing is

derived, using asymptotic eigenfunctions of the Laplace's tidal

equation. The purpose is to explain the qualitative difference between

some of the observed spectra and the global wave model.

The existence of the global wave field requires that the dissipation

of low frequency waves, especially those energetic long waves, be small

enough. Presumably most of the dissipation of these waves with large

vertical wavelengths is taking place near the bottom. Because most of

the existing models (e.g. Phillips, 1963; Leaman, 1975) of the

reflection of near-inertial waves off rigid boundaries are of laminar

Ekman layer type, they become singular (boundary layer depth is of order

one) when W ~ f. However, the benthic boundary layer is turbulent and

of small depth -- of order 20 m (c.f. Wimbush and Munk, 1970; Armi and

D'Asaro, 1979); its dynamics are different from the ocean interior and

this should be taken into account. A simple model is presented in
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Chapter 6 to describe the possible effects of the benthic boundary layer

on the reflection of inertial waves propagating from a laminar, inviscid

interior. A slab model is used to describe the boundary layer and the

frictional effects are modelled by a conventional quadratic drag law.

The major purpose is to calculate the resulting reflection coefficient

and to assess the possibility of the existence of the global wave field.

Conclusion and discussion appear in Chapter 7.



Chapter 2 Spectral Description of Inertial Waves in the

Western North Atlantic

2.1 Introduction

The major purpose of this chapter is to describe the internal wave

spectrum based on long term (usually > 9 months) moored current

velocity data. These data are primarily from various Polymode arrays

located in the Western North Atlantic. The emphasis is in the inertial

frequency band; with sufficient frequency resolution, characteristics of

the inertial peak -- energy level, frequency, and bandwidth -- were

analyzed to study their variability; spatial coherences were calculated

wherever there were closely spaced instruments, and coherence scales

(both horizontal and vertical) were estimated. Theoretical

interpretation of these observational results is the main task of later

chapters.

2.2 Data base and analysis procedure

Listed in Tables 2.1 and 2.2 are the moored current velocity data

used in this study. All of them are from the Polymode Array I, II, and

III (PMI, PMII, PMIII hereafter) except mooring 520, which is part of

the Muir Seamount Experiment (c.f. Wunsch, 1976). There are altogether

thirty-five stations and ninty-nine instrument levels. The mooring

positions and topography (from Uchupi, 1971) are displayed in Fig. 2.1.

The area covers approximately twenty-seven degrees of latitude (from

150N to 420N) and a variety of topographic features : abyssal

plains, seamounts, mid-ocean ridge and its associated fracture zones.

At each instrument level of the Polymode arrays, there is at least

one segment of continuous data of approximately eight months duration.
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Table 2.1

Tabulation of Records From the Polymode Array II. Latitudes are North, Longitudes West (in deg).

Depths Are in Meters, Data Lengths in Hours. Record ID are WHOI Designation Numbers.

Station #
(latitude,
longitude)

water depth

1

(35.9, 55)
5054

2

(36, 54.7)
5318

3
(35.6, 55.1)

5115

4
(36, 53.8)

5467

5
(34.9, 55)

5506

Record ID

5571
5573
5575
55710

5833
5835
58310

5791
5793
5794

5589 5796

5651
5653
5654
5656

6081
6083
6085

6001
6003
6004
6006

5821 6091
6093

5824 6094
5826 6096

5591 5781
5783

5594 5784
5595 5785

5661
5663
5664
5665

5811
5813
5814
5815

6011
6013
6o14
6015

6111
6113
6114

Instrument
Depth

6oo
1000
1500
4000

600
1000
1500
4000

6oo
1000
1500
4oo000

600
1000
1500
4000

600
1000
1500
4o000oo

Data Length

5460o
4320
546o
5460

5664

"

Aw/f PH(db) Lp/f

.05

.13

.18

.05

x2

5312 x 3

5336
5336

5280
5640
5280
4300

x3
x2

5320 x 3
T

5312 x 3
5312 x 2

14

10.5
9.5
7.5

.1 11

.15 11

.05 11

.15 6.5

.I1

. 04

.03

.13

.1

.07

.05

.14

11.5
15
12.5

7.5

9
12.5

9.5
8

Class

1.05
.99
.99

1.02

1.03
.96

1.00
1.08

1.05
1.00
1.00
1.03

1.01
1.01
1.02
1.13

.05 13.5 .99 2a

.1 12 .99 2a

.11 10 .99 2a

.1 6.5 1.08 3



Table 2.1 (cont'd.)

Station #
(latitude,
longitude)
water depth

6
(35.9, 59)

5206

7
(31.6, 55.1)

5595

8
(37.5, 55)

5334

9
(38.5, 54.9)

5340

10
(39.5, 55)

5266

11
(40.5, 55.1)

5173

Record ID

5681
5683
5684

5843
5844
5845

5671 5801
5673 5803

580o4
5675 5805

5641
5643
5644
5645

5771
5773
5774
5775

5983
5984
5985

6125
6126
6129

6063
6064
6065

5761 6051

5751 6041

5611 5741 6031

Instrument
Depth

600
1000
1500
4000

600
1000
1500
4000

600
1000
1500
4000

h000

4000

h000

Data Length

5220 xl
4770 x 3
5220 x 3
5664 x 2

4032 x 2
5152 x 3
5856 x 3
5152 x 3

5170 x 2

5152 x 3

6384 x 2

6432 x 2

5152 x 3

Aw/f PH(db) lp/f

.1 10

.04 14

.14 10
4.5

.09

.09

.1

.1

.08

.19

.13

.15

10
13
11

9.5

12.5
9

10
7.5

Class

.98
1.02
1.04
1.04

.99
1.02
1.07
1.06

.99
1.04

.96
1.04

.05 9.5 1.05 2c

.08 9 1.0o4

.05 11 1.00 2c

12 6021

(41.5, 55)
4772

4000 6552 x 1 .o8 15 1.01 2c



Table 2.2

As Table 2.1 Except For Records Other Than the Polymode Array II.

Station #
(latitude,
longitude)

water depth

542
(28, 69.7)

5462

Experiment

PMI

543
(28, 65)

5363

545
(27.8, 55.6)

6015

546
(27.9, 54.9)

5773

547
(28.2, 54.9)

5785

548
(31, 60)

5550

549
(34, 60)

4687

PMI

It

Record ID

5421
5424
5427

5431
5435

5451
5453
5454
5456

5461
5463
5465
5467

5471
5473
5475

5481
5485
5486

5491
5494
5495

Instrument
Depth

500
1500
400ooo

500
4ooo

500
1000
2000
4000

500
1000
2000
4ooo

500
1000
4000

500
2000
4ooo

500
2000
4000

Data Length

6500
5000

6496
5700

6720

5616

6720

It

5616

6720
I?

5616

6664
66o00
5160

6400
5670
6400

Aw/f
PH(db) ( /f

.1 14

.1 11.5

.09 9.5

.06

.05

.11

.1

.06

.09

.1
.09
.1
.13

15
12

12.5
11
12.5
11

12.5
12.5
13.5
12

.06 14

.09 12.5

.05 12

.09 11

.07 15

.1 12

.07 11.5
.08 12
.07 11

1.01
1.04
1.07

.96 2a

.97 2b

1.07
.99

1.02
1.03

.99
1.02
1.04

.96

1.03
1.00

.98

.98

.98
1.01

1.03
1.08
1.08

Class



Table 2.2 (cont'd.)

Station #
(latitude,
longitude)

water depth

520
(33.5, 62.6)

4400

623
(27.4, 41.1)

4307

624
(27.3, 40.8)

4372

625
(27.2, 4o.4)

4723

626
(26.9, 41.2)

627
(26.2, 41.7)

3857

628
(27.4, 47.8)

4961

Experiment

Muir Smt.

PMIII B

PMIII B

PMIII A

Instrument
Record ID Depth

5202

6231
6234
6237

6242
6243
6245

6251
6253
6255

6263
6265

6271
6273

6283

3023

128
1426

3927

529
1528
4028

189
1488
3990

1514
4014

206
1505

1489

Data Length

3182

8160

It

4150

816o
II

"

Aw/f PH(db) W/f

.21 7.5

.2 10

.06 18.5

.11 11

.09 15

.0o6 19

.2 9.5

.21 9

.09 17.5

.11 13

.1 18

.08 10

.12

.2

7920

8.5
15

.1 17

Class

1.01

1.03
1.00
1.06

1.00
1.00
1.12

1.12
1.02
1.02

1.03 1
1.1 2b

1.03 2a
1.03 1

1.05 1

629
(28, 48.1)

4954

.18 10

.08 20

.05 16

6291
6293
6295

203

1500
4006

1.04
1.01
1.04



Table 2.2 (cont'd.)

Station #
(latitude,
longitude)

water depth

630
(27.9, 48.7)

4908

631
(27.9, 48.9)

5106

632
(26.9, 49.2)

4881

79
(16.7, 54.3)

5523

80
(15.4, 53.9)

5294

81
(15.2, 53.2)

5281

82
(15, 54.2)

5248

Experiment

PMIII A

PMIII C

PMIII C

Record ID

6301
6304

6311
6315

6321
6323
6325

7901
7903
7904
7908

8003
8004
8008

8101
8104
8107
8108

8201
8203
8204
8207
8208

Instrument
Depth

200
1498

212
4016

190
1488
3993

194
338
538

4038

319
520

4020

160
510

2508
4oo8

172
322
522

2446
3946

Data Length

7920
r1

3936
7920

8400
IT
i,

it

It

IT

'I
It

It

Aw/f PH(db) Wp/f

.09 13

.1 17.5

.05 14.5

.14 14

.15 11.5
.1 18.5
.05 15.5

.1

.16

.21

.27

.16

.11

.19

.11

.13

.19

.15

.1

.15

.26

.19

.24

10.5
10.5

7.5
7.0

9.5
9.5
9.5

9.5
9.5
9.5

10.0

10.0
9.5
6.5
9.0

10.0

Class

.99 2a

.99 1

1.02 2a
.99 2b

1.03
1.00

.99

1.03
1.01
1.06
1.15

1.04
1.06
1.13

1.01
1.09
1.00
1.04

1.00
1.02
1.03
1.08
1.13



Up to three consecutive segments of data have been collected (,.27

months) at some sites of the PMII. In order to avoid contamination from

low frequency motions, each segment of data was first tapered to zero at

both ends and then Fourier transformed. The tapering data window is

t = 0.5 - 0.5 cos( 1071 t/T ) for 0 < t < 0.1 T

and 0.9 Tit JT , (2.1)

wt = 1 for 0.1 TK-t-0.9 T,

where T is the data length. The leakage of power to adjacent bands is

less than 10 % (see Hendry, 1975, Appendix A). Compromising between

resolution and stability, the spectral estimates were obtained by

averaging the resulting periodogram over several adjacent frequency

bands. Near the inertial frequency f, the resulting resolution is about

0.0012 cph, which is, for instance, 2.4 % of f at 360. For those

stations with more than one segment of data, the spectrum of each

segment was then ensemble averaged to obtain more degrees of freedom.

The least degrees of freedom is 14.

2.3 The observed spectra

For a typical record in the main thermocline (600 m at Station 5),

the two cartesian components of horizontal kinetic energy spectrum are

displayed in Fig. 2.2. Because these two spectra generally cannot be

distinguished in the whole internal wave band, either one can be used to

represent the horizontal kinetic energy spectrum FH( 0 ). For

frequencies remote from the inertial, tidal, and buoyancy frequencies,

FH( W) ) can be well described by a power law of the following form :
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Figure 2.2 Spectra of u and v components at 600 m at Station 5 of
the PMII. CPH represents cycle per hour. The straight line
represents the power law EON W -P with N = 2.27 cph,
Eo=0.0 9 6 cm2/sec 2/cph 2, and p = 2.23. Shown on the bottom
are the 95 % confidence intervals.



FH( W ) = N(z) Eo (w/ ,)-P, (2.2)

where N(z) is the buoyancy frequency in cph at depth z, Eo a constant

in cm2/sec 2/cph 2 , W a frequency in cph, WJ = 1 cph, and p a

dimensionless constant. Presumably the constants Eo and p are

independent of z, because in this frequency regime FH( W ) should be

proportional to N(z) as consistent with the WKBJ scaling. As W

approaches f, the spectral level begins to rise above that given by

(2.2) and forms a prominent peak near f -- the so-called inertial peak.

Because the essential characteristics of a spectral peak are its energy

level, frequency Wp, and bandwidth AJ, we have tabulated these three

parameters for each record in Tables 2.1 and 2.2. The bandwidth is

defined as the difference between the frequencies where the power falls

to one half of its peak value. The tabulated values of both Wp and bW

are in units of f. The energy level of the peak is expressed in terms of

its ratio to the value given by (2.2) with W equal to the peak

frequency, and the logarithm of this ratio is defined as the "peak

height", denoted by PH in decibels (db hereafter, defined as 10xlogl0).

For the spectrum shown in Fig. 2.2, D'u= .05 f, Wp= f, and PH= 13.5 db

(with Eo= .096, p= 2.23).

In order to determine the peak height in a precise way, we first

need a standard procedure to determine the constants Eo and p in

(2.2). For the universal spectrum proposed by Garrett and Munk (1972),

E 0 0.13, and p 2. Because significant deviations from the

universal spectrum have been documented by Wunsch (1976) and Wunsch and

Webb (1979), we will not use the universal values but apply a

- _ _ _ : - -- , - - -



least-squares to fit the observed spectra to (2.2) between 0.1 cph and

0.8 N(z) for each record, with Eo and p as parameters to be found. All

the tabulated values of PH were estimated based on Eo and p obtained

through this procedure. As expected, the values of Eo and p do not

vary much over most of the records, but we have found some anomalous

records. For selected stations which are representative of nearby ones,

if any, within 200 km, the values of Eo and p are listed in Table 2.3

together with those of EH5', which is the value of FH( LW )/N(z)

calculated at the frequency corresponding to a 5-hour period (for GM

spectrum, EH5' Z 3.3). Note that EH 5 ' is different from E5

tabulated by Wunsch (1976); this latter is the normalized total energy

at 5-hour period.

The anomalous records are those of the PMIII clusters A and B,

where the values of Eo and p at nominal depths 1500 m and 4000 m are

significantly different from the others -- Eo is higher and p is

lower. The values of E'H5 are also higher here, but by less than an

order of magnitude; together with the small values of p, the higher

values of E'H5 imply that internal wave energy at periods shorter than

5 hours is significantly higher in these records than the others, up to

an order of magnitude. The WKBJ scaling does not work here at all (see

Fig. 2.3c), but it works so well at other stations that the values at

one depth are representative of the whole water column (away from the

upper and lower boundaries though). The reason for the breakdown of WKBJ

scaling here is unclear; however, it is very likely associated with the

proximity to the Mid-Atlantic Ridge (about 300 km from either cluster)

and the very rough underlying topography.



Table 2.3

Tabulation of Estimated Buoyancy Frequency N, Parameters Eo and p in Eq. (2.2)

(parenthetical values are standard errors of fit), and the normalized

horizontal kinetic energy at 5 h period (EH5') for selected records.

Station # Experiment
Latitude (N),
Longitude (W)

(deg)

Instrument
Depth (m)

35.9, 55
36, 53.8
34.9, 55
35.9, 59
31.6, 55.1
37.5, 55
39.5, 55
41.5, 55
28, 69.7
28, 65
27.9, 54.9
31, 60o
34, 60
27.4, 41.1
it

PMIII A 28, 48.1

PMIII C 15, 54.2

600oo
6oo

TI

4oo000

500
500

128
1426
3927

203
1500
4006
522

2.16
2.23
2.27
2.34
2.3
2.35

.4

.36
2.18
2.32
2.32
2.1
2.12
2.92
.97
.22

2.32
.96
.32

2.03

.14 (.17, .12)

.087 (.11, .071)

.096 (.12, .078)

.084 (.1, .071)

.061 (.073, .051)

.097 (.12, .079)

.078 (.11, .057)

.041 (.064, .027)

.042 (.05, .035)

.046 (.055, .039)

.066 (.084, .051)

.047 (.057, .039)

.053 (.066, ,043)

.16 (.2, .12)
1.2 (1.6, .96)

1.7 (4.2, .66)
.14 (.18, .11)
.96 (1.2, .75)
.59 (1.25, .28)
.061 (.071, .053)

2.13 + .11
2.28 + .13
2.23 + .14
2.13 + .11

1.97 + .12
2.25 + .13
2.41 + .18
2.56 .+ 25
2.03 + .11
2.04 + .11
1.96 + .16
2.2 + .13
2.3 + .14
1.65 + .15

.86 + .16
1.05 + .5
1.71 + .16

,97 + .16
1.27 + .41
1.91 + .1

N (cph) E EH5

PMII
T

'V
I

PMI
1T

"

I?

PMIII B
Vt

1
4
5
6
7
8
10
12

542
543
546
548
549

6231
6234
6237
6291
6293
6295

82

4.3
3.4
3.5
2.6

1.5
3.6
3.8
2.6
1.1
1.2
1.6
1.6
2.2
2.2
4.9
9.0
2.2
4.6
4.6
1.3



2.3a Variability and classification

The three parameters discussed above can be used as three different

indices for the description of the spectral shape near f, while the

corresponding energy level can be inferred with the aid of Table 2.3. A

variety of spectral shapes have been reflected in the great variability

of these parameters : from 4 db to 20 db for PH; from .03 f to .27 f

for A W ; from 0.96 f to 1.15 f for tOp . Hence a universal frequency

spectrum near f is impossible. One of the major tasks of this chapter is

to find if there is any correlation between this variability and the

physical environment (instrument depth, topography, etc.) in which the

measurements were taken. Because the spectral shape is grossly

determined by its peak height, we first consider the variability of the

peak height.

Normalized spectra of horizontal kinetic energy at three stations

which are typical of three different topographic features -- abyssal

plain, rough relief, and very rough relief close to the Mid-Atlantic

Ridge-- are displayed in Figs. 2.3a, b, and c respectively. In Fig 2.3a

the peak height at 4000 m (-, 7 db) is significantly less than that at

upper levels ( > 10 db), but the high frequency portion of the spectra

scale in the WKBJ sense. In Fig. 2.3b spectra at different levels are

almost indistinguishable from one another through the whole internal

wave band, with peak height about the same as that at upper levels in

Fig. 2.3a. Displayed in Fig. 2.3c are the anomalous spectra noted

before; the peak height at 1426 m is outstanding as compared to the other

two levels where the peak height is about the same as in Fig. 2.3b. The

separation of spectral levels at high frequencies is striking here; at



o 600M

x 1500 M

* 4000 M

*0
.00

r ,- r
a.
o

UO

2
.2 -1

I0

FREQUENCY (CPH)

4
10

3
10

20

0

0

10-I
I00

10

o 500M
x 2000 M

* 4000 M

o

X x

xo

-2
10 -I 010

FREQUENCY (CPH)

Figure 2.3 Normalized horizontal kinetic energy spectra at (a)

Station 3 of the PMII (smooth topography) and (b) Station 546 of

the PMI (rough topography). Error bar is 95 % confidence limit.
. ... .-- .- ~ , . . -. . -- ....

10

10

a.

1 00
UI

o 0

10

I0
10

10
0

10

| |
g V



o 128 M

x 1126 M

+ 3927 M

10- 1 1 f

FREQUENCY CCPH)

Figure 2.3c As in Fig. 2.3 except at Station 623 of the PMIII
cluster B (near the Mid-Atlantic Ridge, very rough topography)

10 r

10a*cJ

0X
C_)x
X

X

Lu

U)

10' -

tO 

10o- 10'-3

- ---̂-~

--- ---~------



1426 m and 3927 m, p 1 and the normalized high frequency energy is

significantly higher than that at 128 m. After further exploration, it

was found that the peak height at 4000 m underneath the Gulf Stream

(Stations 9, 10, 11, 12) was also about the same as in Fig. 2.3b,

although the topography was smooth there. Thus, the different kinds of

environment can be roughly grouped into three classes according to their

corresponding peak height as follows

class 1

nominal depth of 1500 m near the Mid-Atlantic Ridge.

average PH : 18 db

class 2

(a) depth less than 2000 m (excluding class 1);

(b) depth greater than 2000 m over rough topography ;

(c) nominal depth of 4000 m underneath the Gulf Stream.

average PH : 11.5 db

class 3

depth greater than 2000 m over smooth topography.

(excluding class 2c)

average PH : 7.5 db

The classification of each record has been noted in Tables 2.1 and

2.2. Displayed in Fig. 2.4 is the histogram of the distribution of peak

height of all the records examined, with contributions from different

classes properly labeled. The substantial overlap between class 1 and

class 2 is basically caused by the ambiguity in identifying the class

for some smooth areas which are adjacent (within about 100 km) to rough

__YII__YY_ _I1I1_111Y__-IIIYYPII_-L IW~



Figure 2.4 Histogram of the peak height (PH) distribution.
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areas. Due to the propagation of inertial waves, the influence of rough

topography can easily spread to nearby areas. Despitd some degree of

looseness, this scheme of classification does provide a sensible way to

describe such a great variability of spectral shape.

The lowest peak height from a class 3 environment is associated with

the record at the 4000 m level of Station 6, which is in the midst of

the New England Seamount Chain and is partially surrounded by seamounts

(about 1800 azimuth -- SE, NE, and NW). Normalized kinetic energy

spectra of this record are shown in Fig. 2.5. The disappearance of a

prominent inertial peak here is a unique feature in the whole data set.

It is probably caused by the nearby seamounts (the nearest one is about

50 km away), of which some penetrate to less than 2000 m from the sea

surface. However, the record at 3000 m of Station 520 which is only

12 km away from the Muir Seamount, shows a prominent peak of 7.5 db.

Therefore the overall influence of seamounts on the spectrum of inertial

waves, if any, is not particularly clear.

2.3b Frequency shift of the inertial peak

It is well known now that in the deep ocean the inertial peak usually

occurs not right at the local f, but at a frequency slightly above it.

Theory suggests that only waves with super-inertial frequencies can

propagate downward from the surface layer, which presumably is the major

source for deep inertial waves. But does this so-called blue shift occur

universally in the deep ocean ? Does it vary with depth and geographical

environment and consequently with peak height ?

The ratios of the peak frequency Wp to f for all the records are

I
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plotted against depth in Fig. 2.6. The dashed lines represent the limits

of the frequency resolution associated with wp/f = 1, i.e., Wp/f is

significantly different from 1 for those points outside the strip

enclosed by the dashed lines. Over smooth topography, it is clear that a

significant blue shift occurs at great depths except near the Gulf

Stream, where the peak height is greater. The results over rough

topography are mixed; a clear blue shift with depth only occurs at the

PMIII cluster C, where the topography is not particularly rough and the

corresponding peak height is on the lower side of the class 2

distribution (see Table 2.1). Thus there seems to be some correlation

between the blue shift and peak height. In Fig. 2.7 W0p/f is plotted

against peak height for all the 4000 m records except Station 6 where

there is no peak. The blue shift is apparently associated with records

having lower peak height, which are primarily from the class 3

environment. This result is consistent with the notion that inertial

waves in the class 3 environment are free waves coming from elsewhere,

whereas those in the class 1 and class 2 are strongly influenced by

local sources.

2.3c Bandwidth

The inverse of the bandwidth in a frequency spectrum is a measure of

the persistence time scale of a quasi-periodic motion. For instance,

if A~W/f = 0.1, then the persistence time scale of inertial waves is

about ten inertial periods. From Tables 2.1 and 2.2 Aw/f has no

specific relations with PH but has some weak, if not definite,

correlation with latitude. Listed in Table 2.4 is the ensemble average
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of AW/f within given latitudinal belt. The value at subtropical

latitudes (150 - 200) is significantly greater than those at

mid-latitudes. This result is consistent with the model to be described

in chapter 4.

Table 2.4

Average bandwidth (in percentage of f) at various latitudes.

Errors are standard deviations.

latitude average bandwidth

150-200 .17 ± .055

250-300 .1 ± .044

300-350 .095 + .036

350-420 .097 + .047

2.3d Rotary spectrum

In addition to cartesian components, horizontal kinetic energy also

can be decomposed into its rotary components. These have proven useful

in separating inertial wave energy from other current components

(Gonella, 1972; Mooers, 1973). For the same record shown in Fig. 2.2,

the spectra of the two rotary components are shown in Fig. 2.8. The

rotational nature of inertial waves is clearly demonstrated by the

dominance of the clockwise component spectrum E_( () ) over the

counter-clockwise component spectrum E+( u) ). This dominance begins at

sub-inertial frequencies, reaches its maximum near f, and continues

through the whole internal wave band; on the other hand, E+( W )

-r-~._i...r -r._~
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Figure 2.8 Rotary spectra of the same record as in Fig. 2.2.
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decreases monotonously and smoothly with frequency. This behavior is

typical of all the records and basically consistent with the linear

internal wave theory which predicts

--_ () w f (2.3)

Because (2.3) was derived from an f-plane model, the infinite ratio

at Wi = f is spurious (see Chapter 4). The cause of the dominance of

clockwise energy at sub-inertial frequencies (as low as 0.4 f in Fig.

2.8) is unclear. It may be due to nonlinear interactions between

inertial waves and low frequency motions. Otherwise, spectra in this

frequency regime presumably is determined by the process of geostrophic

turbulence (Charney, 1971), and the coherence between u and v should be

zero and hence no clockwise dominance. Because the turbulent cascading

would allow certain amount of energy to be transferred from low to high

frequencies, until f is reached, inertial waves would be resonantly

forced by energy in the clockwise component; however, energy in the

counter-clockwise component would continue cascading to higher

frequencies and account for part of the observed finite amount of

counter-clockwise energy and its smooth spectrum. By this mechanism, low

frequency eddies could be potential local sources for inertial waves.

However, a model is needed to verify this speculation.

The most important feature of the rotary spectrum near f is the

large ratio of E_(f) to E+(f). So it is desirable to use the

logarithm of this ratio, denoted by f , as an index for the

description of the rotary spectrum near f. For instance, f is 25 db in

ia~cl---i - I~Zt~L~n~~iil~) ~^i~-- Y------~ DLI
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Fig. 2.8. As E+( W ) decreases smoothly and monotonously with W , its

shape does not vary much from record to record. Thus 1 should be

roughly proportional to PH and should have the same variability. In Fig.

2.9 r is plotted against PH for all the records except those of the

PMIII clusters A and B, which exhibit the same behavior as the other

records near 280N and hence are omitted. A roughly linear correlation

between r and PH is visible. The systematically low values of r near

280N are probably caused by the closeness of f to the diurnal tidal

frequencies; because tides are forced motions, they could have an

appreciable amount of counter-clockwise energy.

2.4 Coherences

The calculation of spatial coherence at a particular frequency w

usually yields two kinds of information: from the coherence scale, A x,

defined as the separation distance at which the coherence drops to one

half, one can estimate the wavenumber bandwidth, Ak, of the underlying

process at W as Ak = 4/Ax (c.f. MP, eq.(59)); from the phase

difference and separation distance, one can estimate the dominant

wavenumber at W .

2.4a Horizontal separation

There have been few convincing estimates of the horizontal coherence

scale for inertial waves in the open ocean. The horizontal spacings of

array measurements have usually been either too small ( < 0( 1 km),

e.g., Webster, 1968; Schott, 1970; Briscoe, 1975) or too large. The only

conclusion which can be drawn from previous investigations is that the

horizontal coherence scale is at least several kilometers. HoweVer, the

L---~u~sirra-^---- -- I;r*-rra~ugl~Lli~ra*Tr~ -Y*~x---- I I*IY*LI^--L-i~----- IILII~ -
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theory of MP suggests that the coherence scale is of the order of tens

of kilometers. There are five clusters of moorings of this size in the

Polymode arrays (see Fig. 2.2) : the central cluster of PMII (360N,

550W), the eastern cluster of PMI (280N, 550 W), the clusters A,

B, and C of PMIII. It is possible now to test the theory of MP using the

coherences estimated from these clusters. Because the major concerns are

inertial waves, all the coherences discussed below are between the

clockwise components of horizontal velocity.

Fig. 2.10 shows the coherence and phase at 600 m between Stations 1

and 2 of the (MII; these moorings are 30 km apart in the zonal

direction. Within a narrow band centered at the local f, the high

coherence and small phase are quite conspicuous. For each of the five

clusters mentioned above, the coherences in the inertial frequency band

have been calculated between selected stations and plotted against

horizontal separation in Fig. 2.11. Each point represents the highest

coherence estimated in three adjacent frequencies of which the central

one is the local f. The coherence is the result of averaging over eleven

frequencies, so the level of no significance at 95 % confidence is about

0.51. In the upper ocean the coherence drops with increasing separation,

yielding a coherence scale of approximately 60 km, which is not

inconsistent with the prediction of MP. So the estimated bandwidth is

1/15 radians/km. In the deep ocean the coherence does not vary so

systematically with separation, and the coherence scale seems to be less

than that in the upper ocean (some high values with large separations

are probably not significant).

h_ ____~JI__~_L___CW___gy -IIII~-C- -~LI
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The estimates of coherence and phase difference at different depths

for the three closest stations of the central cluster of PMII are listed

in Table 2.5. Horizontal wavenumber spectra have been calculated at each

frequency using these coherence and phase estimates (for the method, see

Wunsch and Hendry, 1972). Due to inadequate array size, the results do

not yield any dominant wavenumbers which are significantly different

from zero and its aliased values. However, recent profiler observations

suggest a horizontal wavelength of the order of 60 km (Sanford, 1979;

personal communication).

2.4b Vertical separation

There have been more reports of the vertical coherence of inertial

waves than of the horizontal one. For example, Webster (1968) reported a

low coherence of 0.3 over 80 meters vertical separation in the upper 100

meters at Site D; Perkins (1970) reported significant coherences even

over 1500 meters separation below the mixed layer in the Mediterranean;

Fomin and Savin (1973) reported that above the main thermocline in the

Black Sea, the coherence decreased rapidly over a distance from 20 to 30

meters, and that below the thermocline, it decreased relatively slowly

with alternating maxima and minima. However, it is generally believed

that below the mixed layer in the open ocean, the vertical coherence

scale of inertial waves is 0(70-140m) (Muller et al, 1978). The large

values found in the Mediterranean are probably caused by the atypical

dominance of low modes; indeed, Perkins (1970) showed that the vertical

structure of inertial waves in the Mediterranean could be well described

by the third vertical mode.

_I_
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Table 2.5

Tabulation of Clockwise Component Coherence Between Horizontally Separated Instruments

at Three Period Bands of Which the Central One is the Inertial Period.

Parenthetical Values are Phase Differences in Deg. with 95% Confidence Error Bars.

Station pair
(separation in km) Instrument Depth (m)

21.51 h

Coherence

20.61 h

.79 (-45 + 21)

.56 (-49 + 44)
.16 (-6)

.51

.35

.44

(42 + 52)
(49)
(-86 + 72)

.53 (41 + 48)

.69 (143 + 29)

.4 (92)

.88 (-13 + 15)
.88 (2 + 15)
.62 (2 + 36)

.6 (37 + 38)

.72 (31 + 27)

.22 (-26)

.71 (55 + 28)

.73 (41 + 26)

.37 (-119)

.76 (10 + 24)

.76 (10 + 24)

. 8 (18 + 58)

.78 (-3 + 22)

.39 (-18)

.48 (-57 + 58)

.79 (-11 + 21)

.3 (-78)

.19 (-64)

1- 2
(29)

1- 3
(29)

2- 3
(57)

6005oo
1500
4000

600
1500
4oo000

6oo
1500
4o000oo

19.78 h



The third mooring at Station 7 (31.6 0N, 550W) was heavily

instrumented below the main thermocline: three additional instruments

were set at 800 m, 950 m, and 1000 m. Clockwise component coherences at

three adjacent frequencies centered at f for these three instruments and

the one at 1500m are listed in Table 2.6. The estimated coherence scale

is of the order of 200 meters. The phase estimates differ significantly

from zero and do not change much from frequency band 1 to band 2, but

drop substantially in band 3; moreover, they are approximately

proportional to the separation distance, suggesting a dominant upward

phase propagation with "local wavelength" about 450 m in bands 1 and 2

and 1100 m in band 3. It should be noted that for the clockwise

component, phase propagation is from the lagging station to the leading

one. From the dispersion relation for internal waves (c.f. Phillips,

1977), upward phase propagation implies downward energy propagation.

This result is consistent with the findings of Leaman and Sanford (1975).

The coherence scale, 4?y, is related to the "equivalent vertical

wavenumber bandwidth," e , or its equivalent mode number, je, as

follows (c.f. Muller et al, 1978):

2 2b No (2.3)

where b is the scale of the variation of buoyancy frequency and NO the

buoyancy frequency at the top of the thermocline. Using the values from

IWEX profile which is not significantly different from that at Station

7, we have bN = 5500 m.cph, N(900m) ~ 2.2 cph. With A Z/2= 200m, we

obtain je 8, which is closer to je = 9 of Cairns and Williams

(1976) than j e = 11 of Garrett and Munk (1975)(c.f. Miller et al,

1978, Table 1).



Table 2.6

As Table 2.5 Except For Vertically Separated Instruments at Station 7 of the PMII.

Instrument Pair

24.2 h(#l)

.68(92 + 30)

.7(77 + 28)

800m-950m

950m-1000m

800m-1000m

1000m-1500m

Coherence

23.1 h(#2) 22.2 h(#3)

.79(106 + 21) .48(57 + 58)

.82(44 + 14) .93(13 + 11)

.64(160 + 34) .83(162 + 19) .43(62 + 78)

.28(20) .3(130) .2(-174)



2.5 Summary

There is no universal spectrum near f, but the deep ocean

environment in the Western North Atlantic can be roughly divided into

three classes according to the height of the inertial peak above the

power law which best fits the high frequency portion of the internal

wave spectrum (from 0.1 cph to 0.8 N) : class 1 is the 1500 m level near

the Mid-Atlantic Ridge, with the greatest peak height of 18 db; class 2

includes (a) the upper ocean (depth less than 2000 m), (b) the deep

ocean (depth greater than 2000 m) over rough topography, and (c) the

deep ocean underneath the Gulf Stream, with intermediate peak height of

11.5 db; class 3 is the deep ocean over smooth topography, with the

lowest peak height of 7.5 db.

Substantial blue shift of the inertial peak is basically associated

with low values of peak height at great depths. The bandwidth near

150 N ( - 0.17 f) is greater than that north of 250 (, 0.1 f).

For horizontal separation, the coherence scale in the inertial

frequency band is of the order of 60 km at depths from 200 m to 600 m,

and probably less than this value at great depths. The order of

magnitude is consistent with the prediction of Munk and Phillips (1968).

The wavenumbers estimated from phase differences tend to be

indistinguishable from zero. For vertical separation, the coherence

scale is of the order of 200 m just below the main thermocline and the

phase differences suggest an upward phase (downward energy) propagation.

The estimated vertical wavenumber bandwidth is in close agreement with

the result of Cairns and Williams (1976).

Interpretation of the results summarized above is the central theme

r~ s ~~_
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of later chapters, especially the answer to the following question: Can

we describe the differences among the three classes of observations in

terms of the proposed global and local wave models ?
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Chapter 3 Theory of Low Frequency Internal Waves on a

Rotating Sphere

3.1 Dynamical equations

An approximation to the dynamics of internal waves is most easily

formulated using the equations of motion on an f-plane (e.g., Phillips,

1977), under the assumption that the horizontal wavelengths are so small

that the variation of f will not be "felt". This is essentially the WKBJ

approximation to the horizontal wave equation. From the dispersion

relation

=--- (3.1)

where C and m are the horizontal and vertical wavenumbers respectively,

we can clearly see the breakdown of the WKBJ approximation when U0 =f,

resulting in an infinite horizontal wavelength. To resolve this problem,

we have to resort to the theory of planetary waves which takes the

sphericity of the earth into account. In order to obtain a tractable set

of equations of motion, the usual assumptions made about the earth's

oceans and atmosphere are

(i) small perturbations relative to a uniformly rotating spherical

earth,

(ii) a uniform gravity field,

(iii) radial variation of the metrical coefficients is negligible,

(iv) the depth of the atmosphere and/or ocean is constant and small

when compared to the earth's radius,



(v) Boussinesq approximation for the stratification.

The validity of (i)--(iv) was discussed by Miles (1974), and that of

(v) was discussed by Spiegel and Veronis (1960). Then the perturbation

equations can be written as (c.f. Eckart, 1960)

a :2 I sS sn 2 osos / (3.2)

cv I a?
+ 2 sin U (3.3)

+. -n -U (3.4)at I? #

Rcos a . aea h a -) 0 (3.5)

Y O K (:*) W -- 0 (3.6)

where u, v, w, are the zonal, meridional and radial components of

velocity; p is the pressure; P and PO are the perturbation and mean

density; g is the gravity constant; N(z*) is the buoyancy frequency at

depth z*; R and .Q are the radius and rotational frequency of the

earth; and A are the latitude and longitude.

Because the inertial frequency is usually much smaller than the

buoyancy frequency in the ocean, the acceleration of vertical velocity

can be neglected in (3.4) for inertial waves -- the hydrostatic

approximation. For wave motions of small vertical extent, which is the

case of large scale waves as a consequence of condition (iv), the

vertical velocity is smaller than the horizontal ones by a factor of
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order (H/R), where H is the ocean depth. Therefore the term 2fD cos / w

in (3.2) can be neglected on this ground. The term 2ncos u in (3.4) is

almost always neglected for the convenience of maintaining a self-adjoint

system (Eckart, 1960). Phillips (1966) showed that these two terms had

to be neglected in Eqs. (3.2)-(3.6) in order to satisfy the conservation

of angular momentum (also see Veronis, 1968). The approximation

associated with the neglect of the horizontal component of the earth's

rotation is usually called the "traditional approximation", which makes

the solutions to (3.2) -- (3.6) separable.

3.2 The traditional approximation

Among the various approximations mentioned above, the traditional

approximation is the most controversial one and satisfactory

justification is hard to find in the literature. The neglect of the

terms involving 2f cost is formally correct in the limit H/R--0. For

a homogeneous fluid, the resulting equations are the famous Laplace's

tidal equations (LTE hereafter; c.f. Lamb, 1932). Stewartson and Rickard

(1969) carried out a formal expansion in powers of H/R, in which the

first term was the Longuet-Higgins' solution of the LTE (1968). They

found that, near the inertial latitudes where sinR = - , there was an

unintegrable singularity in the second order terms. After developing an

inner expansion around the inertial latitudes, they could not match the

inner and outer solutions and described the perturbation solutions as

"pathological". Moreover, the pathological solutions were not confined

within the neighborhood of inertial latitudes, but spread over the whole

sphere. By introducing a constant weak stratification N and making a
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double expansion in H/R and (N/ 2)(H/R), Stewartson and Walton (1976)

were able to resolve the matching problem and obtained regular solutions

2 2 3/z

for 1 >> (N/ (H/R (H/R) > (H/R) . However, these solutions are still

pathological in the sense that the scale of the second order motion is

order (N/fl)(H/R) smaller than that of the basic motion and vanishes as

H/R-> 0. This leads to an infinite velocity shear as H/R-+ 0 . Miles

(1974) pointed out that the fundamental problem of Stewartson and

Walton's expansion was the failure of the solutions of the LTE for

homogeneous fluid (the first order terms) to provide an adequate

description of the characteristics of the primitive equation in the

hyperbolic domain. He showed that, by retaining stratification in the

basic equations, the resulting double infinity of modes (i.e., the

barotropic and an infinite set of baroclinic modes) could be used as

expansion functions to obtain uniformly valid second order solutions.

The barotropic and baroclinic modes are coupled by the horizontal

component of the earth's rotation at the second order. This coupling

decreases with increasing stratification. The inhibiting effect of

stratification on the influence of the horizontal component of the

earth's rotation was also noted by Phillips (1968), Needler and LeBlond

(1973), Kamenkovich and Kulakov (1977).

Miles (1974) showed that, for free oscillations with frequency

W < 2Q < N, the partial differential equation resulting from

(3.2)--(3.6) is elliptic (hyperbolic) poleward (equatorward) of the two

critical latitudes satisfying

-- Z 4 f2



In general, the critical latitudes are greater than ± Sin ) ,the

inertial latitudes. For strong stratification such that / la IZ , the

critical latitudes tend to coincide with the inertial latitudes, and the

traditional approximation is formally valid. In the deep ocean

where Z * I , then one may find some appreciable sub-inertial energy

due to this broadening of internal wave frequency band.

3.3 Asymptotic solutions

It is well-known that packets of internal waves in the ocean

propagate along ray paths which undergo reflections at the vertical

boundaries and the turning latitudes where the latitudinal wavenumber

vanishes. A linear random wave field is represented by the superposition

of ray paths of different frequencies and wavenumbers. However, the

statistical behavior of the wave field also can be described by a set of

equivalent modes as proposed by Garrett and Munk (1972). Because modal

solutions are more easily obtained than ray solutions, we proceed based

on periodic solutions which have modal structure in depth and are

separable in each coordinate as follows:

U cos; U(0)

vcs A Rel {( *)exP;(kXwt) f I ( 3 . 7 )

p2R P2R
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where U, V, P, F, W are dimensionless functions, and

normalization factor with the dimension of velocity.

dimensionless depth z = z /H, frequency 6-= W /2f ,

frequency N(z) = N(z*)/No, the substitution of (3.7)

(3.2) -- (3.6) yields

2

p N(r t)

-W

t

( 3.8)

A is a

Defining the

and buoyancy

and (3.8) into

+ 5i V = kP (3.9)

cP

(3.10)

z 2

%J0H r J'
1E 4 SlRI4a-

(3.11)

SCO J~ 6 (3.12)

T~C0G P Ho F d

where the hydrostatic and traditional approximations have been used. Eq.

(3.12) states the condition of separability, where E is the separation

constant which is related to the equivalent depth h (Lindzen, 1967) by

I7-

4E = (3.13)

5 h

S;n L +



The vertical equation can be obtained from (3.11) and (3.12),

+ E j(a) / - 0 (3.14)
d )2

where S = NoH/2 a R. The boundary conditions are

W = 0 at z = 0, -1 (3.15)

Because the specific form of N(z) is not crucial to the qualitative

results, we use the same N(z) of Garrett and Munk (1972),

N(z)= No exp( -zH/b ) , (3.16)

where No = 3 cph, b = 1.3 km, and H =4.5 km. The solutions of the

eigenvalue problem posed by (3.14) and (3.15) are readily obtained and

the eigenvalues are

E, = 1,63 A o0

, =  7. 39 x I0' ,

f j = I.. to x96x j2 ( j - 3 )

where the subscripts are the vertical mode numbers. For high modes, the

WKBJ solutions for F(z) and W(z) are

- fl OexrPL Y OIV2I-?
Wj(N) = o -I epC j /

F5 (R) N 1 z 4 i '] (3.17)Fj (V = N ex "~- Ai )jz/



The latitudinal equation can be obtained by eliminating U from

(3.10) and (3.12), yielding

d P k s.2-
n 0 S(3.18)

Eliminating P from (3.18) and (3.19), we have the LTE in terms of V:

Cos~ +, V +k jV-
(3..20)

2 21

Longuet-Higgins (1965) showed that, for large 4 , the right-hand side of

(3.20) can be neglected with an error 0( E ) of the left-hand side. As

pointed out in MP, this error is not uniform in / , and becomes O(E )

near the inertial latitudes (5in = I cr ).

But another more serious non-uniformity associated with the apparent

k
singularity at cos' = C-- , where the denominator in (3.20)

vanishes, has not been discussed. For inertial waves, k . 0( E )
k

(see MP); hence - if 0-,O(1). The singular latitude is near

the poles which is far from the turning latitudes of mid-latitude

inertial waves. Because the wave amplitudes are virtually vanishing

there, this singularity is of no importance. But for low-latitude

inertial waves with " < 1, this singularity would occur equatorward
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of their turning latitudes and seriously affects the solutions. The

lower limit in latitude for the validity of neglecting the right-hand

side of (3.20) is about 40 for the first baroclinic mode and decreases

with mode number. Thus the following discussion is restricted to

latitudes greater than 40 and the right-hand side of (3.20) is

neglected for now. It is shown in Chapter 4 that, however, the validity

of one turning point solutions on which our model is based is restricted

to latitudes at least greater than 100.

The following derivation of the asymptotic solutions basically

follows MP. Introducing the Mercator coordinate 1U which is defined as

Sec d (3.21)

we can eliminate the first derivative term in (3.20) and obtain the

spheroidal wave equation in the following form,

+f V 0 (3.22)

where

2 2 A 2(3.23)
2 Cs sOSin k

It is clear that f is equivalent to a latitudinal wavenumber. The

turning latitude is then defined as the latitude where = 0. From

(3.23) we have

ca kb n- s b
k - (l-- + )+ 1 (3.24)

It can be seen from (3.22) that A is the boundary between the



evanescent (poleward) and oscillatory (equatorward) domain of the

solution. It is also the latitude where the wave rays reflect back to

the equator (Longuet-Higgins, 1965). Hence the basic behavior of the

solution is controlled by the location of 0. In Fig. 3.1, A is shown

as a function of 27( /k for different vertical modes with cO = 0.5878.

In general, 0 approaches the inertial latitude with increasing E

and/or 2 71 /k.

In terms of A , (3.23) can be written as

2= (s S h)2 ) 052 co + sec ) (3.25)

With the Langer transformation in ,

--- -- (s,.,,- i;n ') d (3.26

a uniformly valid asymptotic solution of (3.22) is obtained :

V ( C1A ) Ak(-t ) [l+0, (E 1 (3.27)

where Ai is the Airy function which satisfies the boundary condition V =

0 at oo . Because we are considering a one turning point problem, the

boundary conditions at the other turning latitude can be ignored, and a

continuous spectrum in k is allowed. The solutions for U and P can be

readily obtained by substituting (3.27) into (3.9) and (3.19). The

integral of (3.26) can be evaluated in terms of elliptic functions (see

Appendix B). When , the Taylor expansion of (3.26) is
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Figure 3.1 Turning latitudes of waves with 6 =0.5878 as
functions of zonal wavelength for different vertical modes. The
number next to each curve is the mode.number. Dashed line indicates
the inertial latitude (360).



(3.28)

The controlling scale near is the "Airy scale" defined as

-V3

L ( 52 s ) (3.29)

whose values for the first and tenth vertical modes at selected

latitudes are shown in Table 3.1. L is symmetrical about the latitude of

450, and approaches infinity near the poles and the equator, where

this scale becomes irrelevant. Fig. 3.2 shows schematically the

Table 3.1

Airy scales for the ist and 10th vertical modes.

Parenthetical values are in km.

Latitude(deg)

5

15

30

45

L
1

.033 (210)

.023 (146)

.019 (121)

.018 (115)

LI0

.0066 (42)

.0046 (30)

.0039 (25)

.0037 (24)

variation of the solutions represented by (3.27) with respect to k

and E . For latitudinally propagating waves with k = 0, 05 is equal to
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of latitude; O" corresponds to the inertial latitude. k ' means
increasing the value of k.
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sin-l( - ). An increase in k tends to shift $ equatorward of

sin-l( - ); an increase in E tends to decrease the latitudinal scale

as implied in Eq. (3.29). Therefore, the observations of inertial peak

only a few percent above f imply a fairly large zonal wavelength. For

instance, assuming that the dominant wave has a tenth-mode vertical

structure, then the observation of an inertial peak with 2.5 % blue

shift at 350 implies that should be 35.30. From Fig. 3.1, we can

infer that the zonal wavelength is of the order of 100 km.

3.4 The WKBJ approximation

For high frequency internal waves, O >> sin , we can apply the

WKBJ approximation to (3.22) and obtain the zero order solutions used in

the GM model. But how much greater than sin should 06 be for the

WKBJ solutions to be valid ? To answer this question, we have to look

into the error terms in detail. In general, the error of the WKBJ

solutions, denoted by a , is growing when approaching turning points.

For Eq. (3.22), S can be written as (Mathews and Walker, 1970, p.27)

d(fl)
[ = d~ (3.30)

Then from (3.25), we have

2

VS + +sin +2 5iO C - 2 S )

For given , E , and k, we can find from (3.31) a frequency 0G beyond

which S is less than some pre-specified value, say, 0.1. In general, O c



is the root of a nonlinear algebraic equation. However, when k = 0, 6-

can be approximated by

cr sinc( i lo L otc ) ) (3.32)

where L is the Airy scale at . Because for given , , and ,

S is minimum when k = 0, the Crc given by (3.32) represents a lower

bound for frequency below which the WKBJ solutions are invalid for any

value of k. The values of Ce calculated using (3.32) for the first and

tenth modes at selected latitudes are shown in Table 3.2. Since the

observed vertical wavenumber spectrum (Leaman and Sanford, 1975)

suggests that most of the internal wave energy is contained in low

modes, G~ of the tenth mode is probably the lower bound for the

validity of the WKBJ approximation and the GM model.

Table 3.2

Values of the critical frequency of the 1st and

10th vertical modes.

Latitude (deg) (j=1) - (j=10)

5 4.75 1.75

15 1.86 1.17

30 1.33 1.07

45 1.18 1.04

60 1.11 1.02



3.5 Discussion

At latitudes sufficiently away from the equator ( }, 40), the

asymptotic solutions to the spheroidal wave equation as obtained by MP

are valid with an error no greater than O( ! ). The WKBJ solutions

used in the GM model are valid for frequencies higher than a critical

value 0c , which is dependent on vertical mode numbers. The value

of OT corresponding to the tenth vertical mode is used as a critical

frequency in the calculation of wave functions in the next chapter : for

frequencies higher than - , the WKBJ solutions will be used; for

frequencies lower than a- , the spheroidal wave solutions will be used.



Chapter 4 A Model Spectrum for the Global Inertial Wave Field

4.1 Introduction

In the light of the observations presented in Chapter 2, whatever

mechanisms are responsible for the universality of the internal wave

spectrum at high frequencies do not seem to apply near f. The spectral

shape near f has a strong dependence on geographical location,

suggesting a strong influence of local sources and/or sinks. Presumably

the internal wave spectrum is determined by the radiation balance

equation which involves generation, dissipation, propagation and

nonlinear interaction (c.f. Muller and Olbers, 1975). Because low mode

waves contain most of the energy, they have a dominant influence on the

frequency spectrum. McComas and Bretherton (1977) reported that near f

the interaction time scales for low mode waves are very long as compared

to their periods. Therefore nonlinear interactions may not be important

for the existence of the inertial peak. Major dissipation of these waves

is probably taking place only at the ocean bottom, and it will be shown

in Chapter 6 that the resulting reflection coefficient is near unity and

hence the dissipation rate is small. Therefore the main cause for the

observed inertial peak is likely to be a combination of the generation

and propagation of internal waves in the open ocean.

Low frequency internal waves randomly generated at lower latitudes

can propagate to their inertial latitude and become, by definition,

inertial waves, as long as their zonal wavenumbers are small enough. The

inertial wave field of this origin is defined in Chapter 1 as the global



wave field. In addition, there are several possible local forcing

mechanisms for inertial waves : wind forcing, energy cascades from

sub-inertial frequencies, interactions between low frequency eddies and

rough topography, etc. Among these, the wind forcing is probably the

best understood and also the most important source. In the mixed layer,

inertial currents are forced as a direct response to local winds and

could propagate along ray paths to the deep ocean nearby with possibly

appreciable amplitudes (Kroll, 1975). This would result in a

predominantly downward propagating wave field which is defined in

Chapter 1 as the local wave field. To distinguish the local wave field

from the global wave field in the observed spectra is the major task of

this chapter. Determination of the spectrum of wind forced inertial

waves requires detailed knowledge of the wind spectrum which is poorly

known near the inertial frequency. Furthermore, boundary layer dynamics

near the inertial frequency are also poorly understood. We will

therefore proceed in the other direction -- first determining the global

wave spectrum and then ascribe the residual to local forcing.

Because the f-w spectrum of the global wave field is well described

by the GM model at lower latitudes where the WKBJ approximation is

valid, the frequency spectrum near f can be obtained by using the GM

model and the wave functions derived in Chapter 3. Thus the difference

between the global wave spectrum and the observed spectrum can be

interpreted as the result of locally forced waves.

4.2 The Garrett and Munk Model

Under the assumption of stationarity and homogeneity of internal
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waves in the ocean, Garrett and Munk (1972) patched together a great

number of observations of different origins, trying to seek a universal

f-w spectrum. In their work, the following additional assumptions were

made :

(1) the observed motion is interpreted as linear superposition of

internal waves with random phase relations.

(2) horizontal isotropy and vertical symmetry, i.e., there is no

preferred directionality.

(3) the WKBJ approximations for the wave functions in both the

vertical and latitudinal variable.

Then the energy density can be written as E( oc, w ) , which depends only

on two variables : the frequency W and horizontal wavenumber O .

Because the observed vertical coherences were independent of frequency,

they proposed the following separable form for E(o,W )

E( ,) = EC A(A) (w) (4.1)

oc
where O= -- W'it 7(.2- )0 (4.2)

A ) 0 ( A>) (4.3)

-s
2-- (4.4)

The spectrum represented by (4.1)--(4.4) is usually referred as "GM72".

The wavenumber spectrum A(\ ) is of top hat shape with cutoff mode

number j, deduced from vertical coherence measurements. The particular
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-2form of B(w) is chosen to behave like Wu when Wt ; f and also to

-2
have an integrable cusp at f. The W 2 behavior when v >> f is

supported by observations in most parts of the deep ocean. But the cusp

with s = 1/2 is arbitrary, and is there only to satisfy the condition of

integrability which requires 0 < s < 1. After admitting that observed

motions with relatively high wavenumbers are indeed internal waves

rather than fine structures, Garrett and Munk (1975) modified A(A ) so

that it falls off smoothly with a high wavenumber slope,

-t/d 45

where t = 2.5, and O* corresponds to j, = 6. The model with this

modification is usually referred as "GM75". Using relatively less

contaminated observations from a mid-water float, Cairns and Williams

(1976) showed that t = 2 and j,= 3 are probably better fits.

With normalized wave functions of horizontal velocity X(2, W ), and

vertical displacement Z( -,vj ), the corresponding frequency spectra are

-oO

As a consequence of the underlying WKBJ approximations for X and Z, the

above description applies only for f <Z Wv <4 N(z). Analytical

representations of various spectral quantities based on GM75 were

derived by Desaubies (1976).



4.3 The global inertial wave model

4.3a Normalization

In order to be useful in the spectrum calculations, the wave

functions derived in 3.3 have to be normalized at some low latitude

where the WKBJ approximation is valid. Quite naturally and conveniently,

we choose the equator for formal normalization. The observed small

vertical coherence scales near the equator (Wunsch and Webb, 1979)

suggest that the wavenumber bandwidth there is greater than what is

given by the GM model, but this is irrelevant because the model is not

applied on the equator. The normalization condition requires that

2 2
o + V + 2  p (4.7)

at the equator. After substituting (3.7) and (3.8) into (4.7), we have

SF2 (U V )+ W' (I+P ]d F1 (4.8)

-I

where F1 and W1 are the squares of F(z) and W(z) averaged over depth.

From (3.17), we have

SN Z

and

F2  N( )

Using the solutions obtained in 3.3 for U, V, and P, and their



asymptotic approximations at = 0, the following

16 sin Os

S;h (2a - -

where

b (1- e- "4 )
S7z H--

4.3b Construction of frequency spectra

With wave functions given by (3.7), (3.8), and (4.9), the frequency

spectra of v component velocity and density at latitude and depth z

can be written as

E, (w,,, F) =

EY(w., Cz)=

;2.

C' , ,,
(4.10)

where j is the vertical mode number, m is the maximum mode number,

and W) is the frequency. G(k, j, uW ) is the f-w spectrum of the

following form :

(k,j, w) =E,( )

where Cj) =

'(j) Dk j. W)

j --(T 
/*

+ ./f

A2A + O(
(4.9)

(4. 11a)

(4. l1b)

results are obtained :



and Eo is the total energy per unit mass per cph averaged over depth

at the equator. The frequency and vertical mode distributions have the

same forms as those of GM75, but we need some arguments to choose a

proper zonal wavenumber spectrum D(k, j, W ) for given W and j.

For w >> f, the assumption of horizontal isotropy requires that

energy density be a function of total wavenumber of only, which is

defined as

= ( k 2 + j2)1/2,

where j is given by Eq.(3.23). It can be shown that for W:> f,

V(2- - 1 Q(/ O ) (4.12)

212

Because k = ex c05

and D (k ,j,d ) d - - 8 ,

where 9 is the azimuthal angle, we have

7(I j, t) - L (w > f) (4.13)

For w f, we can no longer interpret . as a local latitudinal

wavenumber, because the wave functions are no longer periodic in

latitude; the direction of propagation is primarily zonal, and we do not

have a clear definition of horizontal isotropy for inertial waves. The
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following two models are therefore proposed for D(k, j, u ) when W f :

Model 1

Let us first find the range of k for given W and j, i.e., the

cutoff wavenumbers -k1 and k2 which satisfy the following equation :

2s (-Lj) =- 1+ C" - k - (I- T+ ) + (4.14)

which are obtained from (3.24) by setting = - Lj. Thus -k 1 and

k2 are the zonal wavenumbers for which the jth mode wave with

frequency 0 will turn at 0 - Lj. The reason for setting A =0- L

instead of $ =  is that, the wave amplitude is appreciable to

latitudes one Airy scale north of the turning latitude (see Fig. 3.2).

The solutions of (4.14) are

-k, _ 1 O e-s + C os 2
k2 1  4- (o16 j os

where =: - Lj . For f, the above expression can be

approximated by

k 10 0 (1) (4.15a)

where CI=os LA 3 W c + L3j --- 0( )  (4.15b)

Thus the zonal wavenumber of inertial waves is restricted to -k <
o

k < ko. If inertial waves, as in the case of global generation, are

propagating from equatorward of their turning latitudes where D(k, j, W )



is given by Eq. (4.13), we must have (when w - f)

D(k, j, ) OC I-(I )1 with 1ki  k
ot- O

because k is conserved along ray paths. From Eqs. (4.15b) and (4.12), we

have k -'/

and

D(k,j,w) o( i + O ~Q )

Hence D(k, j, w ) can be approximated by a constant when Iki k

and the Model 1 for D(k, j, W ) is formally defined as

D(k, j, w ) 2ko for (ki( ko (4.16)

= 0 for Ikj > ko .

Eq. (4.16) therefore represents the zonal wavenumber spectrum of an

inertial wave field which can be mapped onto an isotropic internal wave

field at lower latitudes.

Model 2

Although there is no latitudinal propagation when W - f, we can

still think of (k 2 + k 2)1/2, which is equal to ko as given by

(4.15b), as a total wavenumber and define D(k, j, w ) according to Eq.

(4.13) as follows :



I
D(k, j, ) = -( for Ikl k °  (4.17)

=0 otherwise.

This is actually an artificial definition of horizontal isotropy for

inertial waves which can propagate only in the zonal direction. There is

not any physical ground for the Model 2 except using the same form of

D(k, j, W ) at all frequencies. Fig. 4.1 shows the zonal wavenumber

spectra corresponding to these two models.

With these two models for D(k, j, w ), the integrals in(4.10) were

calculated numerically up to the critical frequency Lc of the tenth

vertical mode as discussed in Section 3.4, where the spectra can be

matched with GM75. The accuracy of the results was assured when no

significant improvements were observed by reducing the integration step.

4.3c Model results and their sensitivity

Because of the nearly circular motion of inertial waves, the spectra

of the two horizontal velocity components, Eu(w) and E v(W), are

the same, and the result for Ev(W) can be viewed as the horizontal

kinetic energy (H.K.E.) spectrum. The potential energy (P.E.) spectrum

can be derived from E (W) as

E t NZ (4.18)

Because of the WKBJ approximation in the vertical wave functions, Ev

and EPE are proportional to N(z).



D(k,j, w)

-ko o

a

b

-k. O

Figure 4.1 Schematic representation of the zonal wavenumber
spectra of (a) Model I and (b) Model 2.
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With D(k, j, u) ) given by Model 1, m = 20, t = 2.5, and j,= 6,

Ev( CO )/N(z) and EPE ( )/N(z) were calculated at five selected

latitudes, of which some were chosen to be where there were

observations. The results are shown in Fig. 4.2, where the scale of the

ordinate corresponds to Eo/No = 0.03 cm2/sec 2/cph 2 , an estimate

from the comparisons with observations to be discussed later in 4.4.

Using the same values for j,, t, m, and Eo/No, the normalized

energy spectra at 320 with D(k, j, W ) given by Model 2 are shown in

Fig. 4.3. Because the latitudinal dependence is the same as in Fig. 4.2,

the spectra at other latitudes are not shown. The only difference

between these two models is a slightly weaker peak in the kinetic energy

spectrum of Model 2 -- 4.5 db as compared to 7 db. Because such a small

difference -- a factor less than two -- is very difficult to distinguish

in the observations, only Model 1 will be used from hereon.

Fig.4.2 thus describes a mapping of the GM spectrum from the equator

onto higher latitudes. The changes in spectral shape and energy level

with latitude are simply due to the properties of wave functions on a

rotating sphere. The most encouraging result is the presence of

prominent inertial peaks in the velocity spectra, whereas there are no

such peaks in the potential energy spectra. The reason for the formation

of the inertial peaks in the velocity spectra is the constructive

interference of velocity wave functions near their turning latitudes;

however, note that each individual wave function does not have a sharp

peak near its turning latitude (see Fig. 3.2). The corresponding peak

height, peak frequency, and bandwidth of the velocity spectrum at each

latitude are listed in Table 4.1. The blue shift and bandwidth decrease
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Figure 4.2 Model normalized spectra of (a) horizontal kinetic
energy and (b) potential energy at five latitudes, with D(k, j, D)
given by Model 1, m = 20, j- = 6, t = 2.5, and Eo/No =0.03
cm2/sec2/cph 2 . The numbers are latitudes in deg.; the
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Figure 4.3 Model normalized spectra of horizontal kinetic energy
(solid line) and potential energy (dashed line) at 320, with
D(k, j, Wt ) given by Model 2 and the other parameters the same as
in Fig. 4.2.



Table 4.1

Spectral characteristics of the model spectra shown in

-2
Fig. 4.2. Peak height is in db above the W -2spectrum,

bandwidth in percentage of f.

Latitude (deg)

6

15

31.6

41.5

60

Wp

1.07

1.03

1.01

1.006

1.004

Peak Height

4.5

7.

7.

7.

6.5

bandwith

31.5 %

14 %

7%

5%

3.5%

Table 4.2

Values of frequency scale L- for the ist and 10th

modes at various latitudes.

Latitude(deg) L

i=i

.376

.086

.033

.018

.011

.006

j=10

.076

.017

.0067

.0036

.0022

.0012
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with latitude, and this can be explained as follows. As e 0s £ and o-'r

sin j , the argument of the Airy function in (3.27) can be approximated

by (Eq.(39), 1NP)

O-E Sin 2 

( in2 ) cos1

For given , the controlling frequency scale L , is given by

LEsin 2) 3 cos# (4.19)
sin

which decreases with latitude as shown in Table 4.2. After superposition

of many modes, L r determines the latitudinal dependence of the blue

shift and bandwidth of the resulting spectrum.

In Fig. 4.2, note that the energy level at a particular frequency

increases with latitude, and this can be explained as follows: When a

wave packet propagates poleward, the conservation of wave action (c.f.

Bretherton and Garrett, 1969), A, defined as (wave energy)/frequency,

requires that

at + V.(c A) = 0
or

at A - - A .V) C1

where Cg is the group velocity of the wave packet. Because wave rays

converge with increasing latitude, from the equations above, A increases

with latitude. Thus the background spectral level increases with

latitude. Now we can explain why the energy level of the inertial peak
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varies with latitude as shown in Fig. 4.2. Because the peak height is

almost independent of latitude and the background spectrum is red, the

peak energy would decrease monotonously with Latitude if the background

spectral level were independent of latitude. At low latitudes, the

poleward increase of the background spectral level is relatively slow

while the poleward increase of the inertial frequency is relatively

fast, so the peak energy decreases with latitude. At high latitudes, the

situation is reversed, so the peak energy begins to increase with

latitude; the minimum occurs at about 300.

Fig. 4.4 shows the ratio of P.E. to H.K.E. at the same five

latitudes together with the curve representing

(4.20)H.K1. ( w+ )

the result of the WKBJ approximation (Garrett and Munk, 1972). The range

of the validity of the TWKBJ approximation in frequency increases with

latitude as described in Table 3.2. Significant deviations occur at low

latitudes. The approximation is a good one down to 1.02 f at mid-

latitudes, where Fofonoff (1969) showed that Eq. (4.20) was consistent

with observations at frequencies very close to f. The minimum ratio of

P.E. to H.K.E. near f varies from 0.125 at 60 to 0.006 at 600.

Displayed in Fig. 4.5 are the rotary spectra at 320. When W f,

E+ is finite rather than zero as would result from an f-plane model.

The latitudinal dependence of r ( W ), defined in Chapter 2 as

log(E_/E+), is shown in Fig. 4.6 together with the WKBJ approximation

(c.f. Eq.(2.3)). The behavior of the deviations from the WKBJ result is

the same as in Fig. 4.4 as expected.
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Figure 4.4 Model results of Log(P.E./H.K.E.) at the same
latitudes and with the same model parameters as in Fig. 4.2. The
envelope of the curves represents the WKBJ result.
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Figure 4.5 Model rotary spectra at 320 with the same model
parameters as in Fig. 4.2
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Figure 4.6 Model results of Log(E_/E+), i.e., F , at the

same latitudes and with the same model parameters as in Fig. 4.2.
The envelope curve is the WKBJ result.
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Although the results presented above are encouraging in some

respects, it remains to be seen whether they are sensitive to the

parameters ji, t, and m in the vertical wavenumber spectrum A(j) and

the special assumptions about D(k, j, W ).

The variation of the spectrum of H.K.E. with respect to j,, t, and

m is shown in Figs. 4.7, 4.8, and 4.9 respectively. There are only a

slight increase in peak height and a decrease in blue shift with either

increasing j, or decreasing t -- both are equivalent to increasing the

"equivalent band width" as discussed by Muller et al (1978). This

reflects the wavenumber dependence of the horizontal wave functions. The

case with j, = co corresponds to the top hat spectrum of GM72. Fig. 4.9

reveals that, for m > j*, the results are virtually insensitive to

m, the number of modes used in the calculations. Thus the results

discussed in the previous section are not particularly sensitive to the

model parameters.

As indicated in Fig. 3.2, the magnitude of the blue shift should be

most sensitive to the zonal wavenumber content of the wave field.

Because the turning latitude of a single wave decreases with increasing

zonal wavenumber, one would expect an increase in the blue shift of the

inertial peak if there exists a low wavenumber cutoff kc, i.e.,

D(k, j, W ) = 0 for jk / kc. The model spectra at 320 were

calculated with two values of kc : 100 (340 km wavelength) and 400 (90

km wavelength). The results are not particularly sensitive to kc in

this range. When kc = 100, the peak frequency is essentially

unchanged, i.e., 1.01 f; when kc = 400, it increases to 1.03 f. The

other characteristics of the spectra essentially remain the same.
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4.4 Comparisons with observations

4.4a Horizontal kinetic energy spectrum

As noted in Table 4.1, the peak height of the model spectrum is of

the right order to account for observations from the class 3

environment, i.e., the deep ocean over smooth topography far from strong

currents, where there are no apparent local sources. With the energy

level Eo/No as an adjustable parameter and other assumptions the

same as used in Fig. 4.2, the model was fitted to the deep observations

at six latitudes by requiring that the peak value of H.K.E. be equal to

the observed value at each latitude. The results for Eo/No are

listed in Table 4.3. These six records belong to class 3 except those at

150 and 41.50, which are classified as class 2 in Chapter 2 with

some ambiguity. The average of the estimates for Eo/No is 0.03

cm2 /sec 2 /cph 2 with 15 % standard deviation. Fig. 4.10 shows the

Table 4.3

Estimated values of Eo/No for six records at

4000 m. The latitudes and classification of the records

are as indicated.

Latitude(deg) Eo/N o  Class

15 .035 2b

28 .022 3

31.6 .033 3

35.6 .0267 3

37.5 .031 3

39.5 .033 2c
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Figure 4.10 Model (smooth curves) and observed normalized spectra
of H.K.E. at 4000 m. Latitude, station number, and 95 % confidence
error bar for each record are shown.
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comparisons of the H.K.E. spectra between the model with Eo/No given

above and the corresponding observations. The agreement is fairly good,

indicating that the inertial wave field here is consistent with the

global model.

The estimated value for Eo/No can be compared with direct

equatorial observations. An "eyeball fit" of an energy spectrum of the
-2

form ET W to the observations of Eriksen (1979, Fig. 3), with the

assumption of equi-partition of H.K.E. and P.E., yields ET = 5.2 x

10-2 cm2 /sec 2 /cph 2 . From the relation

-I

and the N(z) given by (3.16), we obtain

Eo/N o = 0.0146cm2 /sec 2 /cph 2 ,

which is about a factor of two less than the extrapolation from

mid-latitude observations. This difference seems to be within the

uncertainty of the estimation of N(z), considering the difference in

N(z) at mid-latitudes and equatorial region.

We have now obtained a reference energy level for the global wave

-2

field -- 7 db higher than the W spectrum extrapolated from high

frequencies, and identified the observations of class 3 with this

category. The average peak height of the class 2 observations is 12 db,

indicating that the energy level is about three times the value given by

the model. Thus the partition of inertial wave energy of the class 2

observations is likely to be the following : one third of the total

energy is due to global generation and two thirds local generation.
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Assuming that all the local waves are generated at the surface and

propagate downward, which is the case relevant to smooth topography

areas, then the vertical wavenumber spectrum of the class 2 observations

is such that 5/6 of the energy is travelling downward and 1/6 upward,

because the global wave field is vertically symmetric (one half upward

and one half downward) as a consequence of the underlying GM model. From

a recent observation of Sanford (personal communication, 1979), about

72 % of the inertial wave energy is travelling downward, and 28 %

upward; this differs from the above interpretation by about 11 % of the

total energy, probably within the estimation errors.

The order of magnitude variation of energy levels with latitude at

super-inertial frequencies (Fig. 4.1) seems contradictory to

observations, because Wunsch and Webb (1977) reported nearly constant

energy levels at 5-hour period regardless of latitude. However, Eriksen

(1979) reported that near the equator, there is always a jump in energy

level across the M 2 tidal frequency. Thus, if the super-M 2 energy

level is constant, the sub-M 2 energy level near the equator must be

less than that at higher latitudes, consistent with the model. For high

frequency waves, nonlinear interactions are important in determining the

spectrum; for a mid-latitude model see McComas and Bretherton (1977).

As noted in Table 4.1, the blue shift predicted by the model is

smaller than the observed values in the class 3 environment (generally

greater than 3 % of f). As discussed in the previous section, a low

zonal wavenumber cutoff with k Z 0(400) is therefore required to

account for the observed magnitude of the blue shift. Because the

spectral shape is not affected by the value of kc, we can freely
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adjust kc to fit the observed blue shift for each individual record.

However, such a "tuning" was not attempted in Fig. 4.10.

The decrease of the bandwidth with latitude as indicated in Table

4.1 is consistent with observations (see Table 2.4). The predicted

values of the bandwidth are generally less than the observed values;

however, the differences are probably not significant, i.e., not

substantially greater than the frequency resolution limit. On the other

hand, the pressence of a low frequency current can cause the broadening

of the inertial peak through two mechanisms. Firstly, a uniform mean

current could cause a Doppler shift of the inertial frequency (White,

1972). For example, a uniform current of 10 cm/sec would result in a

Doppler shift with magnitude of 8 % of f at 300, provided that the

wavelength of the inertial waves is 100 km. Secondly, Fomin (1973) and

Mooers(1975) have shown that a horizontal shear can cause an "effective

inertial frequency" defined as

fe= (f(f + ))1121

where is the vertical component of the relative vorticity of the mean

current. For a relatively strong eddy with I-I v 0.05, we have

I e - fl= 0.025f. This effect has been observed at Site D by Perkins

(1976). The result of these two mechanisms is to broaden the observed

inertial bandwidth in long-term measurements by an amount of the order

of 10 % of f, which is large enough to account for the difference

between observations and the model results.

In summary, by assuming a low zonal wavenumber cutoff with



105

kc > 400 (1/90 cycle/km) in the Model 1 for D(k, j, W ), the H.K.E. of

the class 3 observations can be well-described by the model in terms of

both the peak height and blue shift. The slight difference between

observed and calculated bandwidth can be attributed to the kinematic

effects of mean flow on inertial waves.

4.4b Potential energy spectrum

When multiplied by m  , observed temperature spectra can be

converted to P.E. spectra and compared with the model. Fig. 4.11 shows

the results at the same latitudes. Here the model cannot account for the

observed apparent inertial peaks. As mentioned earlier, temperature

signals in the inertial band are subject to contaminations (see Appendix

A), and the inconsistency between the observed H.K.E. and P.E. near f is

not unexpected. Using the measurements of isotherm depth from a

mid-water float, Cairns and Williams (1976) reported a vertical

displacement spectrum without inertial peaks similar to the model.

4.4c Rotary spectrum

Although the counter-clockwise energy level E+'at the inertial

frequency predicted by the model is finite rather than zero (see Fig.

4.5), it is still much smaller than the observed values (see Fig. 2.8).

At mid-latitudes the calculated 1(f) is about 40 db, as compared to 15

db in the observed class 3 spectra (c.f. Fig. 2.9). This implies that

there is an excess of counter-clockwise energy which must be accounted

for by other mechanisms; local energy cascade from low frequency motions

is a possible candidate (see Section 2.3d).

4.5 Latitudinal limits of the model

Because the poles are singular points of Eq. (3.20), a special



106

Figure 4.11 As in Fig. 4.10 except for potential energy. 95 %

confidence error bar is the same for each record.



PIIIC 4000M

LAT.= 15.0
102

1 0 -i
CU i

rI

a-

S100I

I

(a 0-
LU

10-

FREQUENCY (CPH)

{ WH5428 4000M

S i LAT.= 28.0
10e r

u' ±u
I

ucoS10-
L)09
u- l -'-

- 10-t 
1

100 10-2 10-Q

FREQUENCY (CPH)

100 10 -e

F

I ,.7 PMII3 000M

n I LAT.= 31.6

10-' 10

FREQUENCY (CPH)

#3 PMII3 000o M

S LAT.- 35.6

-r-,

u

10-'

FREQUENCY (CPH)

100 10-2 10t'

FREQUENCY (CPH)

100 10- e 10'

FREQUENCY (CPH)

10e r

oo100

10 -

10!

10'

100

1 0-2
10-2

r



108

expansion is needed to obtain valid wave functions there. Consequently,

the model discussed above breaks down when 900. But how close

to - 900 is the model formally valid ? The validity of the Airy

solution represented by (3.27) depends on the implicit assumption

that 1.s <( 900, i.e., there must be a turning latitude between 00

and 900. For o'> 1, there is no turning latitude; the Airy solution is

not applicable. However, at latitudes far from 2 900, the Airy

solutions can be replaced by the WKBJ solutions when o > 1 because o"c

there is well below unity (see 3.4); hence the model is valid at all

frequencies. Thus the poleward limits of 0 for the validity of the

model are the latitudes where Cc = 1. From (3.32), these are

approximately ± 680.

On the other hand, when 1Z 00, the latitudinal equatorial modes

for low frequency waves are likely to be established (Matsuno, 1966),

and the continuous wavenumber spectrum underlying the model is

irrelevant. The question about where the transition from the one turning

point problem to the two turning point problem occurs is not easy to

answer. Presumably for each vertical mode m, there exists a maximum

latitudinal mode number nmax such that no equatorial modes exist with

mode number n > n max Then the turning latitude of mode nmax is the

transition latitude in question for the particular vertical mode m.

Hence the answer is dependent on the wavenumber spectrum. Because the

first vertical mode is usually the most energetic one, we proceed to

discuss, based on m = 1, some possible implications from equatorial wave

dynamics and observations.
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Near the equator, Eq. (3.23) can be approximated by

The condition for the establishment of equatorial modes requires

(Matsuno, 1966)

where n = 0, 1,

n is

k k = Em (2 ) (4.22)

2, ....... . Then the turning latitude sn for mode

- (En+1 )2 (4.23)

We do not have a theory to determine nmax; presumably it depends on

the dissipation and the time T which is required to establish the mode.

With the latitudinal group velocity denoted by cg, T can be written

- Sh-Sr (4.24)

the time it takes a wave packet to make a complete excursion in the wave

guide. From (4.21) and (4.22) we have

V2 E /

(4.25)

2rE~n +- 0Z

(4.21)

a s
Cg = at
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For simplicity, we assume that k = 0 in (4.25) and obtain

(EVA ) (r ~ (4.26)

Substituting (4.26) into (4.24), we have

T = T G (2n. ) (4.27)

The values of 4mare related to C, the gravity wave phase speed for

vertical mode m, as follows:

4}2 R
CM

With cl = 2.6 m/sec as used by Wunsch and Gill (1976), we have 6, =

1.27 x 105. The values of 5 sn and T for m = 1 and some selected

n's are tabulated in Table 4.4. The increase of T with n implies that

higher modes are more difficult to set up as we expected. Wunsch and

Gill (1976) showed clear evidence for the existence of equatorial modes

up to n = 4 in the Pacific; Considering the increase of T with n, the

value of nmax is likely 0( 5 ) and the transition occurs at 0( 100).

For higher vertical modes, T increases and 0 sn decreases; 100 is

probably an upper bound for the relevance of a two turning point model.

Using discrete modal solutions on an equatorial beta plane, Eriksen

(1979) developed a model spectrum for equatorially trapped waves. He

found that there were no apparent inertial peaks at ^ 00, and

that a weak peak first showed up at about 30 with the blue shift equal
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Table 4.4

Tabulation of kh and T of the ist baroclinic mode

equatorially trapped gravity waves for selected

meridional mode numbers n. Parenthetical values of T

are in wave periods.

n O sn(deg.) T(days)

1 5.30 103 (19)

2 6.80 133 (31)

3 8.00 157 (44)

4 9.10 178 (57)

5 10.0 197 (69)

6 11.0 214 (82)

10 14.0 272 (132)

to 23 % of f. At 60 the blue shift predicted by his model is 18 % as

compared to 7 % by our model; hence the amount of the blue shift is a

good parameter to distinguish these two models. The observation at

70 N quoted by Eriksen (1979) showed a 10 % blue shift, which lies

between the predictions of these two models, implying only part of the

wave field (presumably the low vertical modes) has equatorial modal

structure. This supports the speculation that 100 is an upper bound

for the existence of equatorial gravity modes.

4.6 Summary and discussion

A model spectrum for the global inertial waves randomly forced at
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lower latitudes has been developed. The model results vary with

latitude. In general, there is a peak a few percent above f in the

horizontal kinetic energy spectrum, with peak height a few decibels

above the extrapolation of the spectrum at high frequencies; there is no

distinct peak in the corresponding potential energy spectrum whose shape

is very similar to the result of the GM model. The normalized energy

level at the inertial frequency has its minimum at mid-latitudes

(approximately 300) with variation less than one order of magnitude;

the normalized energy level at super-inertial frequencies increases with

latitude monotonously, yielding a difference greater than one order of

magnitude between low and high latitudes. The general model results are

not particularly sensitive to the model configuration and parameters.

However, the assumption of a low zonal wavenumber cutoff slightly

increases the blue shift.

Except at very low latitudes (less than 100), the peak height of

the H.K.E. spectra is about 7 decibels and accounts for the observations

in the deep ocean over smooth topography far from strong currents

(class 3). With the difference between the model results and the upper

ocean observations (class 2a) attributed to a downward propagating local

wave field, we have estimated an energy budget in terms of upward and

downward travelling wave energy; the result is fairly consistent with

recent observations. A forced model is proposed in Chapter 5 to describe

this local wave field.

The model predicts a slight decrease in both the bandwidth and blue

shift with latitude, which is consistent with observations. In order to

produce the observed magnitude of the blue shift, a low zonal wavenumber
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cutoff of 1/90 cycle/km is required, i.e., the wavelength is required to

be less than 90 km. The frequency bandwidth predicted by the model is

slightly less than what is observed, but this difference can be

accounted for by the kinematic effects of low frequency motions.

The latitudinal range of the validity of the model is roughly from

100 to 680.
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Chapter 5 A Forced Model for the Local Inertial Wave Field

5.1 Introduction

The purpose of this chapter is to study the oceanic response to a

localized forcing mechanism in the inertial frequency band. As the

details of the forcing spectrum near f are essentially unknown, we

consider an idealized model which is as simple as possible. Our focus is

on the following question : Can we show qualitatively that the observed

spectral characteristics which cannot be described by the global model,

are the results of local forcing ? Quantitative results in this chapter

are only suggestive, not conclusive.

The forcing is imposed through boundary conditions of the vertical

velocity field wb at the base (or top) of the surface (or bottom)

mixed layer. In the surface layer wb could be produced by either the

convergence and divergence of inertial currents in the mixed layer, or

the advection of its large scale corrugations by mean surface currents.

In the bottom layer wb could be produced as a result of the

interaction between low frequency eddies and rough topography. But the

details of the boundary layer dynamics will not be pursued here.

At any particular latitude 0 , we consider the response only in a

narrow frequency band around the local f, in which the forcing spectrum

can be simply modeled as white noise. Furthermore, we assume that the

corresponding spatial structure is localized and not varying with

frequency. The assumption of localness does not imply that remote

forcing with frequencies in this particular range does not exist, but

that it has been already accounted for by the global model.
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In order to describe the transition of wave functions from

evanescent when wu f to oscillatory when WJ > f, as noted in Chapter

1, the variation of f with latitude must be taken into account in the

governing equations. The simplest approximation of this kind is the

equatorial beta plane approximation with f = R y; however, this

aproximation is not strictly valid for the problem of mid-latitude

inertial waves (see Lindzen, 1967). With f = fo + P y at mid-

latitudes, the resulting equation is the Weber equation whose solutions

are not particularly easy to handle. The recent developments in

asymptotic solutions of the LTE (e.g., Kamenkovich and Tsybaneva,

1975 a, b) have provided a feasible way to deal with the LTE directly.

With proper boundary conditions, the eigensolutions of the LTE form a

complete set (Longuet-Higgins, 1968) which can be used to expand the

latitudinal structure of the forcing function. Then the problem

remaining is to solve the vertical equation for each latitudinal mode

subject to specific boundary conditions. At the forced boundary, the

vertical velocity is given, but the other boundary condition needs some

arguments. Should we let the waves reflect from the vertical boundaries

with the possibility that they form normal modes with the incident waves?

The answer depends on the travel time to take a wave packet through a

vertical round trip in the ocean. In Kroll's model (1975) of the ray

paths of internal waves on a beta plane, it was implied that the travel

time was of the order of 60 days for those rays which had encountered

their turning points, and of the order of 10 days for those which had

not. Because the travel time is longer than the time scale of the

forcing (usually less than a week), it seems appropriate to neglect the
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reflected waves. This conclusion also can be reached by considering the

nearly horizontal propagation of the rays when w~ f. With the

mid-latitude beta plane approximation, the equation for the amplitude of

the velocity v, which is proportional to exp( i (k\ - w t)) can be

written as (c.f. Philander, 1978)

Vy -( p. )v + _(fTW2) a ) 0 (5.1)

where f{- 0 + y, j-- -± , and = . If, for

simplicity, we assume k = 0, the ray paths lie in the y-z plane and can

be represented by

+ - (5.2)

Then for a surface-generated wave packet reflecting back to the surface,

the latitudinal distance it travels, d, can be estimated by repeated

uses of (5.2). For H = 5 kim, and 0o = 300, we obtain d ~ 500 km. If

the latitudinal scale of the forcing is less than 500 km, the reflected

waves will be out of the forced region and can then be neglected in the

local dynamics. Based on these two considerations, it seems justified in

a local model to assume that the ocean is infinitely deep and that the

waves never reflect; hence we should use appropriate radiation boundary

conditions whenever they are relevant. So the model configuration is

basically the same as that used by Wunsch (1977) in his study of the
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equatorial Indian Ocean. But where does the energy go ? Presumably part

of it is lost through friction and/or redistributed through nonlinear

interactions; the remaining energy will eventually become, through

"remote reflections," part of the internal wave field equatorward of the

forced region.

In order to put this model into its proper perspective, we briefly

review some previous models with emphasis on their differences from this

one. The purpose of the model of Pollard (1970) was to study the oceanic

response to a wind event of finite duration as an initial value problem.

It was an f-plane model with vertical modal decomposition and its focus

was on the amplitudes and structures of wind forced inertial waves. The

model of Hendershott (1973), on the other hand, studied the response to

periodic forcing with the diurnal tidal frequency; its focus was on the

response at this particular frequency as a function of latitude. The

procedure for obtaining a solution is similar to that used in our model,

but it involved vertical modes rather than propagating waves, and the

beta plane equations rather than the LTE. The model of Kroll (1975) was

used to study the propagation of inertial waves from the surface mixed

layer to the deep ocean based on ray theory; its focus was on the ray

paths at a particular frequency near f and the variation of amplitude

along them. For the ray solutions, however, it is generally difficult to

obtain their Eulerian representations which can most easily be compared

with field observations. Furthermore, the response at sub-inertial

frequencies cannot be adequately described.

The organization of this chapter is as follows : Section 5.2

describes the formulation of the model and methods of solution; Section
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5.3 presents an asymptotic expansion procedure for the LTE in the

parameter regime of inertial waves; Section 5.4 presents the model

results; Section 5.5 is a summary.

5.2 The model and methods of solution

At a particular position ( %o , O, ), the local forcing generally

can be represented as a Fourier integral in frequency space as follows:

Wb(,,t) Relf b ( =, ) -ex t d a (5.3)

A s (I, N )
with Wb= for T7 >1o C, > 0 (5.4)

= 0 otherwise,

where L. , and f = 2 sin o . Thus the forcing
2S o

energy is evenly distributed in a narrow frequency band centered on

ifo and is( ) represents the spatial distribution of its root

mean square amplitude. In particular, we consider s(X, ) of the

following form :

SS,- (5.5a)

where k = RoS~ o (5.5b)

L

and L is a length scale. Eqs. (5.5a) and (5.5b) represent a disturbance
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of which the latitudinal dependence is a Gaussian distribution centered

at 0o with scale L, and the zonal dependence is sinusoidal with

dimensional wavenumber equal to 1/L. With s( A , ) given by (5.5a) and

(5.5b), Eq. (5.3) represents a group of zonally propagating waves whose

amplitudes are localized in latitude with scales comparable to their

zonal wavelengths. This is the simplest model for a latitudinally

localized forcing.

Now the solutions of all the field variables can be written as

Z A

AV (,', t) P , ,=)

with W( ,o)= W b at the forced boundary and proper radiation

conditions at the other. Following Eq. (3.8), (, Zla) generally can

be written as the sum of an infinite series of functions separable in z

and as follows:

co

w (tZ, ,v) =(7) i , (.7)

Each term in (5.7), when multiplied by exp(i(k oX - t)), is a

solution to Eqs. (3.2)-(3.6) with terms involving 212 cos neglected.

A A
Similarly, v( ' z, (r) and p( , z, a- ) can be written
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00

A Z(5.8)
COSV 1 =1

Cos 6

2 i

The latitudinal problem

The equation for Pn,c can be obtained by eliminating V from (3.18)

and (3.19), yielding the conventional form of the LTE in terms of

pressure:

2 2

47, 2 +( 1-- x kI .. ] (5 10)

. c - o)

where V = sink . With appropriate homogeneous boundary conditions

imposed at the latitudinal boundaries, + #b 1 ,,is the eigenvalue for

the nth eigensolution Pn,6 . Eq. (5.10) then poses a Sturm-Liouville

problem. For given T and ko, we have the following orthogonality

condition

IL Phrq P",1 ) = (S /h (5.11)

Moreover, P,6's form a complete set in -b, +bJ (Longuet-Higgins,

1968).

From Eq. (3.18), V,0 ( ) can be obtained as

S - r - v o- ,



121

The boundary conditions and corresponding eigensolutions of Eqs. (5.10)

and (5.12) are discussed in Section 5.3.

The vertical problem

The vertical equation for W,,,( 2 ) is the same as (3.14) with E

replaced by the eigenvalue E,, :

2

ci 1,()
z ^ 2

A/ (Z) Wnor,0) - 0

The boundary condition at the forced boundary can be written

Z -i 1b)

A
=Wb(~

where zb = 0 for surface forcing,

= -1 for bottom forcing.

Multiplying both sides of (5.14) by P,,( ) and integrating from - b

to , with the use of (5.11) we obtain

h(5.15)

where (5.16)
= f b

From Eq. (3.12) we can obtain F (z) from W (z) as follows :

p () R d W.,
EHa o

(5.17)

(5.13)

(5.14)

A

Wq) CO
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Before proceeding to solve the vertical equations, we should choose

a suitable N(z). With surface sources, using an exponential N(z) Wunsch

(1977) encountered two problems : Firstly, Wunsch (1977) has pointed out

that, as z -> - co , N(z) eventually becomes smaller than any given

frequency a and waves reflect even in an infinitely deep ocean.

Secondly, D. Moore and J. McCreary (personal communication via C.

Wunsch) have recently pointed out that the solutions obtained by Wunsch

(1977) in terms of Hankel functions are erroneous because the argument

of the Hankel functions in his problem is small in the far-field

(z - - cc ) where the radiation condition should be applied, and the

asymptotic behavior (upward phase propagation to produce downward energy

propagation) invoked is not correct. Both problems can be resolved,

however, by assuming the following form of N(z) :

N(z) = Nb/No + exp(zH/b) (5.18)

where Nb is a constant representing a nearly uniform stratification as

z -- - 00 . If the value of Nb is chosen to be at least several times

greater than f (usually the case in the deep ocean), inertial waves

would not reflect and the WKBJ solutions are valid as z-- - 0 . Hence

the appropriate solutions are those with upward phase propagation, as

the consequence of requiring downward energy propagation. The parameter

H, defined as the ocean depth before, is an arbitrary scale for z now,

because we have assumed that the ocean is infinitely deep. However, for

the problem of bottom forcing, we will assume that the source is located

at z = -1 (or z* = -H), and let the ocean extend to z -> + o..
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With N(z) given by (5.18) and boundary condition given by (5.15),

the WKBJ solutions can be readily obtained from Eq. (3.17). Defining

S= IEI(5.19)
H (5.19)

Sz - .o
I/o 4

S4 -fi/b
y~(e -e+,) !9 !

the results for both surface and bottom forcing are written as follows

Surface forcing

(i) E,,>)0

/yp. O i)

A.,"= O) A, 47N0)A hic (0)exp rI-00

(5.21)

e)p ; &() (5.22)

(5.23)
G i4t,- )

When multiplied by exp(-i 0 t), Eqs. (5.21)-(5.23) represent a wave

solution with upward phase (downward energy) propagation.

WhP1 o () = -l° 0

2Q. o-

Ad - 2
ALr I B tcr - )-

(5.24)

(5.25)

(5.26)

- fShV exp o) ( , ) i

and

(5.20)

where

where
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Eqs. (5.24)-(5.26) represent an evanescent solution trapped to the

surface (z = 0).

Bottom forcing

(i)E, > 0

20 N M exp (5.27)
where

h,=C (-I)] ahO) (5.29)

When multiplied by exp(-i 0" t), Eqs. (5.27)-(5.29) represent a wave

solution with downward phase (upward energy) propagation.

(ii)E, < 0

W,,,()= ,.,, ,( e , - -. (5.30)

= ylo !/ZEh C' sJL04 (5.31)

Eqs. (5.30)-(5.31) represent an evanescent solution trapped to the

bottom (z = -1).

To complete the solutions, we proceed to the latitudinal problem in

the next section, solving for the eigenfunctions P ,, and V I, and their

eigenvalues (hc for given ko0
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5.3 Asymptotic solutions of the Laplace's tidal equations in the

parameter regime of inertial waves

5.3a Introduction

General eigensolutions of the LTE , the so-called Hough functions,

were investigated extensively by Flattery (1967) and Longuet-Higgins

(1968), but they are global in character and inconvenient to apply in

describing a localized, high wavenumber phenomenon such as oceanic

inertial waves. Because the non-dimensional parameter of the

LTE, 6 , where R is the radius of the earth, h the equivalent

depth for a particular mode, g the gravity, is very large ( . 10 5 )

under oceanic conditions, asymptotic approximations in terms of E have

been applied by several investigators. The spheroidal wave equation was

applied by Longuet-Higgins (1965), and by Munk and Phillips (1968) to

approximate the LTE for large E . Solutions obtained by the latter

authors were applied in Chapter 4 to construct the global wave model;

however, these solutions are invalid for cos- 1( - I ) (see

Section 3.3). For a forced model, we need uniformly valid eigensolutions

to expand a given forcing function, therefore the solutions of MP cannot

be applied here. Using matched asymptotic expansion methods, Kamenkovich

and Tsybaneva (1975 a, b) obtained uniformly valid asymptotic solutions

in two limits : (a) k is of order unity; (b) k is of order E/ . As

originally pointed out by MP, the zonal wavenumber of inertial waves is

of order 6 or less; in this limit, Kamenkovich et al (1977) have

derived asymptotic formula for positive E but not for negative

Miles (1977) has extensively discussed asymptotic eigensolutions of the
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LTE with large E ; however, for 0- < 1, his results are formally valid

only for k/0 r 0O().

The purpose of this section is to present an asymptotic expansion

procedure for the LTE with zonal wavenumber ranging from zero to order ,

which includes case (a) of Kamenkovich and Tsybaneva (1975 a) as a

limiting case. However, the geometry is different; the ocean is not

assumed to cover the whole earth but to be bounded by two latitudes + b"

The reason for this assumption is to avoid the complexity involved near

the poles, which actually are separated from the major oceans. Moreover,

the high modes of interest are insensitive to the details of the

boundary conditions. To be remote from the mid-latitudes which are our

major concern, 9b has been arbitrarily set to be 600. For given

and k, approximate eigensolutions and eigenvalues have been obtained.

The results for positive eigenvalues, which are not affected by boundary

conditions poleward of the turning latitude, have been compared with

Longuet-Higgins' numerical results (1968).

5.3b Solutions

Dropping all the subscripts, we rewrite (5.10) here for reference

( v-- +2V I- - ] P =  (5.32)

The eigenvalue E can be either positive or negative, and we call the

corresponding eigensolutions "positive modes" and "negative modes"

respectively.

In the parameter regime of oceanic inertial waves, i.e.,Je 6 1,
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cr 0(1), and k C 0( ( ), from the dispersion diagrams of

Longuet-Higgins (1968), only the type 1, type 4, and type 5 waves as

classified.by him are present. Type 1 waves are inertia-gravity waves

with E > 0; type 4 and type 5 waves are westward-going and

eastward-going waves respectively with C ( 0, which are trapped in the

vertical. We shall treat first the case of positive modes.

(i) Positive modes

If we write

k< = , ( s (I) (5.33)

and -(y) = ( - )(- 2 ) ( ) - ~ (5.34)

then Eq. (5.32) becomes

dP i-a dP '4 0 1 -(-V ---- + 29 ----1 - - 0 (5.35)

there are two positive roots, -Vo and I,, of the equation G(9 ) = 0.

Assuming that <o V. , then we have

T2 0Cc ) (5.36)

sz  - c/ 2
V' / + 2 2+ ( E  /) (5.37)

The latitudes corresponding to + 1)~ are the "turning latitudes," where

Eq.(5.35) changes from hyperbolic ( [vj < V0 ) to elliptic ( jvl > 3o ).
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The latitudinal boundaries, ~ b , are presumably poleward of the

turning latitudes; to be specific, we assume that - Sih > in

what follows. Following the method of matched asymptotic expansion

(Nayfeh, 1973), we shall first derive the "turning point solution" which

is valid in the vicinity of V. , and the "outer solution" which is valid

as (v-vo) -v 0(1); then obtain a uniformly valid composite solution

using the matching conditions.

Turning point solution ( P;)

In the vicinity of 2Vo , we define

= (V- -P) E (5.38)

and Pi = BO t BE + B: . (5.39)

If we substitute (5.38) and (5.39) into (5.35) and equate terms of equal

power in E , then the balance among dominant terms yields 01 = -1/3,

= 1/3 and

C, dBo t b o=
2 bs (5.40)
21o 2Vo

where

2 V, (1 to ) s (5.41)

An approximate solution to (5.40) was found to be
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r( ) = r Ai (c )- c/ A; (c/3 .) (5.42)

where ' -'  (5.43)

I- V~0

Ai and Ai' are the Airy function and its derivative which are bounded at

+ cO .T ( 5 ) satisfies Eq. (5.40) with the b's replaced by r's. From

Eqs. (5.36), (5.37), and (5.43) we have

r b [It o 3

and consequently

F( ) = Bq( ) + 0 ( -'

Therefore ( ) ) is a consistent first order approximation of Pi,

i.e.,

Pi = 11 + 0 4 (5.44)

Outer solution ( Po)

Solutions poleward of the turning latitudes are exponentially small

as indicated by the Airy functions in (5.42); hence they have no effects

on solutions equatorward of the turning latitude,, and we shall not

derive them in detail. For V ( -o , an appropriate expansion was found

to be

Po(v)= M( Ao E E AAct A61tC A + E A3 +(j)p (5.45)
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where M is a constant to be determined by the matching conditions. It is

clear from (5.44) and (5.45) that we must carry the second order term

Al in (5.45), in order to obtain a uniformly valid solution.

Substituting (5.45) into (5.35) and equating terms of equal power in C ,

we obtain

(1i - (5.46)

2.4Vo -
Ao.v) = (5.47)

1 F ) (5.48)A, (,) = - Ao lv) FC C

where the signs correspond to those in (5.45), and

*- V'- I '-,- I ._ .fc, d.,'
vI( v-1) (L v (5.49)

2. 2

+- = (5.50)

V(v,'- )V /.

We should note here that each term on the right-hand side of Eq. (5.49)

is singular when 'V = 0, but it can be shown that

lim F(v) = O ) .

Composite solution

In the vicinity of 9o I Pi and Po should macch each other in the
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following sense,

lim ). Fv)
V -- VO'

= IT ,,, P( (5 )

Using Eq.(5.44) and the asymptotic behavior of the Airy function, the

right-hand side of (5.51), denoted by Pm, can be written as

C7i C

C

-1/6 -8S Sbi
cos V+ (2- )- rw< (-,- i4 ) 4-

34 - )(vov)+

Now the constant M in (5.45) can be determined through the use of Eqs.

(5.45)-(5.52), yielding the following result :

I,2 2 4 -1 1

i - to " T-,7. 7i 7
2V0 /

The outer solution which satisfies Eq. (5.51) can be written as

0 = MAo(v)CosE &+~ /6 hp) sWfatv)+J=M Ac,(v) Cos IE a (v) f C-F.V) ai v I

thus a uniformly valid composite solution can be expressed by

P = Po + Pi - Pm

Velocity solutions can be obtained from the pressure through the use

where

(5. 52a)

(5.52b)

(5.53)

(5.55)

(5.51)

(~o - Y)

+ 14" - (5.54)

M= (
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of (5.12), which has been rewritten as

V I- r i L P 

From Eqs. (5.44), (5.52), (5.54), (5.55), and (5.56), the following

expressions are obtained,

V;= v, Ai ( C'/3 )

-V0  / Ao
-VI v': f Liiia,~ fCt +3

" Po I (t-L F)csC v t
2 4 J

f.. (av.) V)~-V
V (,- v)sn2

V = Vo V ,-7 - Vmh

The meanings of the subscripts are the same as before.

Eigensolutions

Since the positive modes are either even or odd functions in the

interval !-b, #b , we must have either

P I - 0 (even), (5

--- -----

.58a)

or p( 0)

(5.56)

(5.57)

= 0 (5.58b)(odd)
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Substituting the asymptotic series for P (Eq. (5.54)) into (5.58a) and

(5.58b), the first order approximation to the eigenvalues can be written

as

a( = 0co) + O ( E ' ) (5.59)

where the upper sign corresponds to k > 0 and the lower sign to k < 0;

n is the number of zeros of P( V ) ( V( V ) ) in the interval [- bI

if k > 0 (k < 0). Eq.(5.59) is equivalent to the result of Kamenkovich

et al (1977, Eq.(4)) within 0( E ). The reason for using the zeros of

different variables to label the eigensolutions for eastward and

westward waves is the following : The number of zeros of P(V ) (V( 0 ))

is invariant with respect to E if k > 0 (k < 0) (Longuet-Higgins,

1968); thus we are able to identify the eigen-curves (, vs a- for given

n and k) calculated using (5.59) with those of Longuet-Higgins (1968)

for small and moderate E . The relation between the number of zeros for

P and that for V is varying with E , so the formula given by Odulo

(1972), which is independent of Eh, is not strictly correct (e.g.,

compare his formula with Longuet-Higgins' Fig.11).

With the eigenvalues given by (5.59), Eqs. (5.58a) and (5.58b) are

not satisfied to second order. Hence the eigensolutions represented by

(5.55), (5.57), and (5.59) have error terms of order E , although the

proposed asymptotic series could produce solutions accurate to O(E- )

if the true eigenvalues were known. Second order calculations of 6, are

straightforward, but require considerable efforts; however, they are not

significant for the problem of inertial waves due to the largeness of E.

Since a(0O) itself is dependent on C , Eq.(5.59) was evaluated using
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an iteration method. Comparisons of the eigenvalues obtained form (5.59)

with those taken from Longuet-Higgins' paper (1968) are presented in

Table 5.1. Note that the first order approximations to E,1 are degenerate

and lie between the numerical results for positive and negative k. The

error is only about 6 % even when Eh is as small as 23. The accuracy of

Eq. (5.59) has also been confirmed by Kamenkovich et al (1977) using

numerical results. Eigensolutions with k = + 50, O" = .5878, En = 370.2,

and n = 63 (k > 0), 62(k < 0), are displayed in Figs. 5.1a and 5.1b.

Note that P has n zeros for k > 0 and (n-1) zeros for k< 0, while V has

(n-1) zeros for k > 0 and n zeros for k < 0.

Table 5.1

Positive eigenvalues with Iki = 5 (E is from Eq.

are from Longuet-Higgins' numerical calculation for k

respectively. n+ and n. are the numbers of zeros of P

of V for k ( 0 respectively.

0"

.2303

.2886

.3408

.3885

.4329

.4859

.5456

.6132

.6902

.78

'4

102.7

89.3

81.

75.3

70.9

56.6

45.2

36.2

29.

23.3

(5.59), E.,and _

= 5 and -5

for k > 0 and

E-

94.3

84.2

77.5

72.6

68.8

54.6

43.3

34.4

27.2

21.6

98.6

86.8

79.3

73.9

69.8

55.6

44.3

35.3

28.3

22.9



Figure 5.1a Eigensolutions of v-velocity (upper one) and pressure

(lower one) with T = 0.5878, k = 50, n = 63, and E' = 370.2.
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Figure 5.1b As in Fig. 5.1a except that k = -50, and n = 62.
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(ii) Negative modes

If we define Y =E1 , then Eq. (5.32) becomes

( P +2  -' + E(v) Y~ s + - p = o0
4v2  o--v dv I-v' 0- --

where E () = (v 2 o- d (-v 1 )- S2

The two positive roots for E( V ) = 0 are

O 8 2 I -r " +

and S /3 - 3
V, - ' O (

It is obvious that the solution now is oscillatory between the two

turning points Vo and I, , exponentially decaying equatorward of >' ,

and having a complicated boundary layer between 3-1 and 1. The problem

associated with the poles will not be pursued here ; the boundaries we

have chosen, ± ,9b are sufficiently distant from the poles to avoid the

turning point I and its boundary layer. Because the expansion procedure

is exactly the same as that used in (ii), only the results are presented

below.

Pressure

Pi = -b A;c" (vo v - c a A+ c (v,- vj
(5.60)
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~4 V4pn,( 2 Yb1Z'II. " ~) 4Pm , (2L.j v..90

where

and

C@- y s Sh (v-z2o V
fLv0 (9O volJ/

= 3-Y 3V- ) +

v"...

'2.
: cv

The expressions for M, Ao( -V ), b, c, and F( -V ) are the same as

before.

Velocity

2vo=-.r( '2- )
--VO

I
y% Aocv)

- vi (l s;ICzLL alv) +71

6, Lz + Ev) c cos Lr) a' ~ y + .

V,=- Y v. Ai c (-

V,/ = _ - 1 / )
1V ,)/4 (- Vo)(V- VO)

Eigenvalues

The boundary conditions at t ± b are simply V = 0; hence the

approximate eigenvalues are

y j/ (V.
+ O (y-1/)

(5.61)

51
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where 1V = In~i; n is the number of zeros of V( - ) in 0, P . The

eigensolutions with k =+50, 03 = .5878, >h= 573.1, and n = 31, are

displayed in Figs. 5.2a and 5.2b. Now the number of zeros of P

in [0,M is (n-1) for k > 0 and n for k< 0. Solutions in the

Southern Hemisphere, which are not shown here, are either symmetric or

anti-symmetric with their counterparts in the Northern Hemisphere; thus

these two cases are degenerate.

5.4 Results

Our major interests are in finding model spectra of v and w at 0 as

functions of depth, which can be directly compared with the observations

presented in Chapter 2. In other words, for each C0 in , "0-) , we

2 A2

want to calculate w(, ez, ( ) and v( o , z, a ) . With the

knowledge of P,,( ( ), V,.( 0 ), W 8, ( z ), and F,,,( z ) as derived in

5.2 and 5.3, the calculation is straightforward using Eqs. (5.7) and

(5.8). To be specific, we choose , = 360, - = .94 si ; , and

2z = 1.26 sin o . For given 0- in lT I,0rJ , we have calculated

14 I and I% I with three different forcing scales at the following four

depths : 200 m, 600 m, 1500 m, and 4000 m. Calculations have been made

for both surface and bottom forcing.

For given 0 , the first step was to calculate the a,,,s from

(5.16), in which the integration was evaluated numerically using the

trapezoidal rule. For both positive and negative modes, the value of

a,,, initially increases with n ; after reaching a maximum at some

intermediate n, it then decreases with n. In general, the calculation

was truncated at four mode numbers n1 , n2, n3 , and n4 such that



Figure 5.2a As in Fig. 5.1a except that n = 31 and (- )= 573.1.
Figure 5.2a As in Fig. 5.la except that n = 31 and (- E) 573.1.
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Figure 5.2b As in Fig. 5.1a except that n = 31,
and k = -50.
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, 1  l 'm? =:n3 (5.62)

bn, <0 E,> 0

where fb ?
Values of n1, n 2, n 3 , and n4 for nine selected frequencies

in [0-1 62J are listed in Table 5.2 for three different forcing

scales: L = 300 km, 150 km, and 75 km. For frequencies sufficiently

greater than sin o , we need only positive modes to describe Wb( )

because negative modes are trapped far to the north of the forced

region. For frequencies close to sin 0o , we need both kinds of mode and

the expansion is not particularly efficient; it needs several hundred

modes. It is conceivable that for frequencies much less than sin#0

(not shown), only negative modes will contribute because positive modes

are trapped far to the south of ~o It is also expected from Fourier

theory that smaller scale forcing requires more modes to describe. Note

that although some mode numbers in Table 5.2 are small, their

corresponding eigenvalues are at least 0(2000) -- still large enough for

the validity of the asymptotic expansion. For the case with L = 300 km,

A

the forcing function Wi/6( ) and its expansion in terms of PX,r are

displayed in Figs. 5.3a and 5.3b for L0 = sin o and 0 = 1.12 sin

respectively. Slightly wavy behavior is observed when 0- = sin ;

however, the localized shape is well reproduced. The results for other

forcing scales are similar.
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Tab le 5.2

Values of n 1 , n2, n3, n4

L = 300 km

110

140

1111.01

1.02

1.035

1.06

1.12

1.19

1.26

L = 150 km

94

1.01

1.02

1.035

1.06

1.12

1.19

1.26

80

181

61

386

226

141

106

.94
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Table 5.2 (contd.)

L = 75 km

Sn1 n 2  n3 n 4

.94 11 102

1. 53 450 54 1010

1.01 60 102 54 440

1.02 52 261

1.035 48 170

1.06 44 158

1.12 19 140

1.19 16 130

1.26 25 125
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Figure 5.3 The forcing function Wb( A ) (solid curve) and its

expansion in terms of Pn,r(symbols) for (a) a- = sin 0, and

(b) 6- = 1.12 sin 0 , where = 360 and the forcing scale

L = 300 km.
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5.4a Surface forcing

We first discuss the response spectrum for the case of surface

forcing. With the arbitrary assumption that 1 W1 = 1 cm2 /sec 2 /cycle

per 2D1 , the spectra at different depths are shown in Figs. 5.4(a, b),

5.5(a, b), and 5.6(a, b) for L = 300 km, 150 km, and 75 km respectively.

At sub-inertial frequencies, the response is trapped near the surface as

expected. At super-inertial frequencies, the response is propagating

downward with IVI decreasing and IWI increasing with depth. At

frequencies sufficiently higher than f, the vertical variation scales in

the WKBJ sense. In the velocity spectrum there is a peak slightly above

f whose characteristics vary with depth and L : in general, its

frequency increases and its strength (peak height) decreases with depth;

its bandwidth decreases with L. For instance, at 200 m where the peak is

strongest, the bandwidth and peak height (the latter is defined as the

difference between the maximum power and the minimum power with W> f)

are listed in Table 5.3 for different values of L. The peak height is

not particular dependent on L although the bandwidth is.

Table 5.3

Characteristics of the horizontal velocity spectra for

different values of L

L (km) peak height (db) bandwidth

300 8.5 0.14

150 9. 0.09

7- Q_ 0.04
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Figure 5.4 Response spectra of (a) w-velocity and (b) v-velocity
at four different depths (numbers are in meters). The unit of the
vertical axis is cm2/sec 2/cph. The forcing is imposed at the
surface (zb= 0) with L = 300 km and a = 360. A straight line
representing the & -2 spectrum is drawn for reference.
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Now we can qualitatively explain why the observed spectra have

stronger peaks and smaller blue shifts in the upper ocean (class 2a)

than in the deep ocean over smooth topography (class 3). In the upper

ocean, inertial waves are primarily locally forced as described by the

model; hence the resulting peak frequency is indistinguishable from f,

and the forced response is confined to the upper ocean. Together with

the global wave spectrum whose shape is the same at all depths, the

inertial peak is then stronger in the upper ocean. This interpretation

can be illustrated by a schematic diagram, as shown in Fig. 5.7, of the

ray paths of both the global and local wave field. Because of the nearly

horizontal propagation of inertial waves, locally surface-generated

waves will propagate away from their forced region before reaching the

bottom; hence they can be measured only by instruments at shallow

depths. On the other hand, globally generated waves can be measured at

all depths. Therefore what the upper instrument measures is a

combination of the local and global wave field, while the lower

instrument only measures the global wave field. In the absence of the

local wave field in the deep ocean, the significant blue shift there is

accounted for by the global model (Chapter 4). Because the upper ocean

observations suggest that the bandwidth is less than 0.1 f, we expect

from Table 5.3 that small scale forcing is more important in producing

the observed features.

Can we interpret the dependence of the response spectrum on depth

and L in terms of the properties of the excited waves ? We have seen

from Table 5.2 that considerably more high order negative modes are

excited at near-inertial frequencies than super-inertial frequencies.
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N S

Figure 5.7 Schematic diagram showing the ray paths of the local
wave field (dashed lines) and the global wave field (solid lines).
A mooring with two current meters measuring the wave field is also
shown.
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For negative modes, the vertical structure is exponential (c.f. Eqs.

(5.24), (5.25)) with trapping scale decreasing with increasing IE16.

Therefore a substantial amount of the near-inertial wave energy is

confined to small depths, but most of the super-inertial wave energy can

penetrate to great depths. This is why the blue shift increases with

depth. Moreover, because super-inertial waves are far from their turning

latitudes, the wave amplitudes are only weakly dependent on frequency

and the result of superposition has no prominent peaks. Hence with a

white noise local forcing at the surface, there will be no prominent

inertial peaks at great depths unless there is a global wave field.

The fact that the inertial peaks are stronger for smaller forcing

scales can be explained as follows. As noted before, smaller scale

forcing excites more high order modes; because high modes tend to

interfere with each other more severely than low modes outside the

inertial frequency band (see Chapter 4), the resulting peak will be

stronger if there are more high modes involved.

Because the bandwidth of the inertial peak is controlled by the Airy

frequency scale Lg,(c.f.Eq. (4.19)) which decreases with latitude, the

latitudinal dependence of the response spectrum should be similar to

that of the global wave spectrum as shown in Fig. 4.2. With L = 150 km,

the response spectrum was calculated at 150 and 500 to explore the

latitudinal dependence. The results for the v component of velocity are

shown in Figs. 5.8a and 5.8b; the results for the vertical velocity are

not sensitive to latitude and are not shown here. As expected, the

inertial peak is generally weaker at lower latitudes. At 150 the

substantial response at sub-inertial frequencies results in the absence
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of an inertial peak at 200 m. The large magnitudes of the blue shift

reflect the character of equatorially trapped modes; recall the results

of Eriksen (1979). At 500 the bandwidth is reduced to 0.05f, and the

sub-inertial energy is also greatly reduced. However, the peak energy

level does not change much with latitude.

One way to estimate the possible forcing amplitude,I lb 0 is to

find the value of lWbi such that the energy level of 1j near f is

consistent with the upper ocean observations. For instance, by comparing

the spectra at 200 m in Figs. 5.4b, 5.5b, and 5.6b with the observed
2.

spectra at 200m of the PMIII, we have Wlbo = 2 x 10-3

cm2/sec 2/c.p.211 , which yields a root mean square amplitude of w

in o o 1,o" equal to 2 x 10-2 cm/sec. For a mixed layer 40 meters deep,

this vertical velocity field could be produced by the convergence and

divergence of surface inertial currents of amplitudes 50 cm/sec and

wavelength 100 km. Another interesting quantity is the corresponding

downward energy flux G which can be calculated as follows,

T I d- (5.63)

With p obtained from Eq. (5.9) we have

G = 9.3 erg/cm 2 sec for L = 300 km,

G = 3.2 erg/cm 2sec for L = 150 km.

G = 1.3 erg/cm 2sec for L = 75 km

The reason for the increase of G with L is that, larger scale forcing

excites more low modes which have larger vertical group velocity. These

numbers suggest that this forcing mechanism, if realistic, is an



157

important one for the internal wave field, which, with total energy 4 x

106 erg/cm 2 (Garrett and Munk, 1972), can be set up in couple of

weeks by this mechanism.

5.4b Bottom forcing

The response spectra at 360 for bottom forcing with L = 150 km

are shown in Figs. 5.9(a, b). Now the sub-inertial response is trapped

to the bottom, while the super-inertial response behaves the same way as

in the case of surface forcing. The inertial peak is strongest at deep

levels and the blue shift increases with height from the bottom (at

z*= -4500 m). This explains why the observed inertial peak at deep

levels over rough topography (class 2b) is as strong as that at upper

levels (class 2a). In fact, what one would observe over rough topography

is predominantly a local wave field with both surface and bottom

sources, and the observed spectra is a superposition of the results

shown in Figs. 5.9 and 5.5 with proper forcing amplitudes. By requiring

that the modelled inertial wave energy levels be equal to the observed

values, such a superposition is shown in Fig. 5.10. The spectral shape

is basically the same at all depths, consistent with the observations

over rough topography (see Fig. 2.3b). The dependence of the results on

L and latitude is essentially the same as that for the case of surface

forcing.

The forcing amplitude required at the bottom to produce the spectra

shown in Fig. 5.10 is such that wb 2 = 8 x 10-3 cm2/sec 2 /c.p.2,

corresponding to a root mean square vertical velocity of 8 x 10-2

cm/sec. The resulting vertical energy flux from the bottom to the

interior is about 1.6 erg/cm 2 sec. Assuming that the energy source is
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from the interaction between rough topography and a barotropic eddy with

horizontal velocity amplitude of 5 cm/sec, it will take about 40 days to

convert the eddy energy into internal wave energy. This result suggests

that rough topography could be a potential sink (source) for eddy

(internal wave) energy and explains why the observed eddy energy at

great depths over rough topography is an order of magnitude less than

that over smooth topography (Schmitz, 1978; Fu and Wunsch, 1979).

5.5 Summary and discussion

A forced model based on latitudinal modal decomposition is developed

to study locally forced inertial waves. Asymptotic solutions of the LTE

which are suitable for inertial waves are obtained and applied to the

problem. The modal decomposition is cumbersome as expected of a

localized function; however, it provides an accurate description of the

transition of oceanic response from sub-inertial frequencies to

super-inertial frequencies, a singular problem in the conventional

f-plane model.

The forcing is through a specified vertical velocity field in a

narrow band centered on f at the top and/or bottom boundaries. For

surface forcing, the differences in the observed inertial wave spectra

between upper ocean (class 2a) and the deep ocean over smooth topography

(class 3) can be qualitatively described by the model. For bottom

forcing, the strong inertial peaks observed in the deep ocean over rough

topography (class 2b) also can be accounted for by the model.
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The model results are dependent on forcing scale and latitude; the

inertial peak is stronger for smaller forcing scale and/or higher

latitude. In order to produce the observed energy level in the upper

ocean, a downward energy flux with magnitude from 1.5 to 12 erg/cm 2sec

is required for forcing scale from 75 km to 300 km. Over rough

topography with scale of 150 km, an upward energy flux of

1.6 erg/cm 2 sec is estimated.
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Chapter 6 The Reflection of Inertial Waves from the Benthic

Boundary Layers

6.1 Introduction

The foregoing interpretation of the observed inertial wave energy

over smooth topography as the combination of a vertically symmetric

global wave field and a downward propagating local wave field is based

on the crucial assumption that dissipation is negligible for the

energy-containing low wavenumber components. If dissipation is

substantial, then the waves are not able to propagate for great

distance, and the energy balance is between local forcing at the surface

and dissipation at the bottom. This is the interpretation proposed by

Leaman (1976) for the observed dominance of downward energy propagation

in profiler measurements. Displayed in Fig. 6.1 is a schematic diagram

showing the difference between Leaman's interpretation and ours. Another

assumption underlying Leaman's interpretation is that all the reflected

wave energy can be measured by a local profiler. This would be the case

if the wave field is horizontally homogeneous, which requires that the

wave frequency be at least greater than 1.15 f. However, as noted in

Chapter 5, because ray paths are nearly horizontal for inertial waves

(c.f. Eq. (5.2)), their reflections from the bottom occur at a great

distance from their source region (see Fig. 5.7), and cannot be measured

by a local instrument. Even for perfect reflections, the propagation of

local inertial waves as observed by a profiler tends to be predominantly

downward. Hence the reflection coefficient estimated by Leaman as the

ratio of upward energy to downward energy observed in profiler measure-

ments is likely an underestimate, and the observed appreciable amount of

upward energy should be interpreted as part of the global wave field.



BOTTOM
DISSIPATION

PRIMARILY
EQUATORWARD
PROPAGATION

LOCAL

GLOBAL

Figure 6.1 Schematic diagram showing two different

interpretations of the observed dominance of downward energy

propagation of inertial waves. The left figure is Leaman's (1976),

and the right figure is ours. The arrow represents the direction of

propagation and its length is proportional to the corresponding

amount of energy.
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Existing models for the reflection of inertial waves from rigid

boundaries (e.g. Phillips, 1963; Leaman, 1975) usually assume a constant

viscosity coefficient and solve for the Ekman boundary layer. For near-

inertial frequencies, the resulting boundary layer depth is of the order

of the ocean depth and the reflection coefficient is zero. However, this

singular solution is not applicable to the real ocean for the following

reasons: firstly, such an order-one viscous layer is not observed (e.g.

large amplitudes at great depths are inconsistent with a viscous decay);

secondly, the benthic mixed layer in which most dissipation occurs has

been neglected. Recent observations (e.g. Armi and D'Asaro, 1979)

suggest that near the bottom, a well-mixed boundary layer with depth a

few tens of meters is quite common. For a review of theoretical models

and earlier observations of this boundary layer see Wimbush and Munk

(1970). The inclusion of this layer in the dynamics is important

especially when dissipation is concerned. It is the purpose of this

chapter to present a simple model for the reflection of inertial waves

from the bottom in the presence of a benthic mixed layer. The major

question is whether we can obtain a reflection coefficient comparable to

that estimated by Leaman (1976).

6.2 The model

The benthic ocean is modelled as a uniformly stratified layer of

infinite depth on top of a homogeneous layer of depth D. The existence

of this mixed layer is assumed a priori; presumably it is maintained by

turbulence produced in the shear zone near the bottom. Fig. 6.2 shows

the model configuration. Wave packets come from infinity and reflect
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Z

Figure 6.2 Schematic diagram of the model configuration. Solid
arrows represent the ray paths and their directions of propagation;
dashed arrows represent the directions of phase propagation.
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back from the boundary layer. Because our major interests are the energy

containing waves with low vertical wavenumbers, the viscous effects can

be neglected in the interior. For instance, the wave Ekman number,

V m2/f, is 0(10-4), where -) is the eddy viscosity (, 1 cm2/sec), m

is the vertical wavenumber (, 10- 4cm-1 ), and f=7.27 x 10- 5sec-1.

In the mixed layer, all the dynamic variables are nearly uniform in the

vertical as the result of turbulent mixing (Armi and D'Asaro, 1979).

Hence the slab model used in the upper oceanic mixed layer (Pollard and

Millard, 1970) and in the atmospheric boundary layer (Geisler and Kraus,

1969) can be applied here. The frictional drag produced at the bottom

can be written as

SCD Iu , (6.1)

where CD is a drag coefficient which is hardly dependent on velocity

at high Renolds number; u is the velocity vector, and u is its

magnitude. Then the effects of Z in the mixed layer is simply modelled

as a uniform body force Z /D. Mean flow effects (including low

frequency eddies) are not considered in this model; this is a serious

restriction because the nonlinear drag law has been used to model

frictional effects. However, for places in the mid-ocean where low

frequency flow is weak, this model should be a zero order approximation.

The Boussinesq equations on an f-plane can be written

tt - fV = - PX 1 (6.2)
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{t - v = -Pr
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Vt -~ f
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+ y + h =a 0 for D > z> 0

where

(6.10)

B = ( u'2 + v'2 )1/2CD/D , (6.11)

u, v, and w are the east, north, and vertical velocity components, fo

mean density, J = perturbation density, p= pressure/f. , Nb= buoyancy

frequency, g= gravity; the primed variables are the corresponding ones

in the mixed layer. The hydrostatic approximation is assumed in (6.5)

and (6.10). At z = D, the matching conditions are

P = p' (6.12a)

w = w' (6.12b)

At z = 0, the boundary condition is
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(6.3)

for z >D, (6.4)

and

(6.5)

(6.6)

(6.7)

Uxx

(6.8)

(6.9)
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w' = 0 (6.13)

Eqs. (6.2)-(6.13) are nonlinear because of the nonlinear dependence of B

on u' and v'. However, for typical values CD = 2 x 10 - 3 (Wimbush and

Munk, 1970), u'= 3cm/sec and D = 20 m (Armi and D'Asaro, 1979), we have

B = 3 x 10-6sec- I, which is only 0.04 f at 300 latitude. Hence the

linear wave solution should be a good zero order solution. Moreover, at

near-inertial frequencies the horizontal particle speed,

(u'2+v'2)1/2, of the zero order solution is independent of both

time and space (properties of inertial waves). So we can simplify the

equations by treating B as a constant, and seek wave solutions of the

following form:

(u, v,...) = Real (, , ... ) exp(i(kx + mz - W t)) (6.14)

(u', v',...) = Real(u', v',...) exp(i(kx- w t)) (6.15)

where the hatted variables are complex amplitudes; k and m are the

horizontal and vertical wavenumbers; W is the frequency. Assuming m>

0, then the upper sign in (6.14) corresponds to the incident (downward

energy) waves and the lower sign to the reflected waves. Substituting

(6.14) and (6.15) into Eqs. (6.2)-(6.10), we obtain

IW It " V (6.16)

-I W V 4t ( (6.17)
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Differentiating (6.23) with respect to z, we have

A

zz = 0 ,

of which the solution satisfying (6.13) is

A A
w' =-iku'z

From (6.21) and (6.22) we obtain

-;k 1' (B-;)

(B-;w)'+ fz

A kAf
VI 

k

The matching conditions (6.12a) and (6.12b) become

A
+ 'Pr

(6.26a)

S ;IA

(6.26b)
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ik z > D (6.18)

and

(6.19)

(6.20)

(6.21)

(B-iwt ) v'

A

D>z>0 (6.22)

(6.23)

(6.24)

A'

p

(6.25)

W
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where "i" and "r" represent the incident and reflected waves

respectively. From (6.19) and (6.20) we have

I
i

Then from (6.26a),

is obtained:

W;

A
Wi

2

and Pr W. /wl (6.27)

(6.26b), (6.25), and (6.27), the following expression

(6.28)

where the dispersion relation

k2NJ = m2 ( W 2 - f2)

has been used. The reflection coefficient r is defined as the ratio of

the reflected energy flux to the incident energy flux, which is

At A
proportional to I r2/ ]ii12, so we have

r = Z 2

Because B is still unknown, another equation is needed to solve for Z in

terms of the parameters of incident waves. From Eqs. (6.25)-(6.27) we

obtain

S -;kpe (3 -w) (I- Z)

(-iw ) I f 2 (6.29)

with the use of Eqs. (6.16) and (6.17) which yields

Pi =  
uiwk

% I ) +~-;w f'

Yn (W7- F2) D (B-i *w (3 Zw%
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the following relation between u' and ui is obtained:

P

0i-Z)
(6.30)

w(3-iw )z + fI ]

In order to be consistent with the requirement that B be a constant, we

must have

Li-'
=-1i (6.31)

As a consistency check of the solutions, we should test the validity of

(6.31). From (6.25) we have

A

U/ -B--- 4'- ---
A'
V 4

(6.32)

For B < f and ) ., -f, our solutions are self consistent. Therefore a

consistent approximation for B can be written

B =- iu' 1 (6.33)

For given u , Eqs. (6.28) and (6.30) then form a closed set of

A
nonlinear algebraic equations with unknowns Z and u', which can be

solved numerically using an iteration method.

6.3 Results

The model results are presented by showing r and d (u iu' /kuiu),

the reflection coefficient and the ratio of the horizontal velocity in

CA'

-;
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the mixed layer to that of the incident wave, as functions of frequency

with the other five model parameters -- m, D, CD, Nb, and luil --

varying in their typical ranges. Instead of the vertical wavenumber m,

we use its equivalent mode number j defined as

A
m = j r7 M Nb/No (6.34)

where No = 3 cph, M = 0.122 x 10- 3 cycle/meter. Eq. (6.34) expresses

the relation between j and m above the mixed layer where we have assumed

constant buoyancy frequency Nb, according to the N(z) used by Garrett

and Munk (1972).

There are five cases to be discussed; in each case we vary only one

parameter with the others fixed at the following reference parameters: j

= 3, D = 20 m, CD = 0.002, Nb = 0.2 cph, luil = 3 cm/sec. The

value for j is the mode number scale, i.e., j, proposed by Cairns and

Williams (1976) for the vertical wavenumber spectrum, corresponding to a

870 m wavelength in the thermocline. The values for Nb and 1ui are

typical of the benthic ocean (D'Asaro, 1979; personal communication).

Fig 6.3 shows r and d as functions of w with different j. For W

1.2 f is probably the upper bound for the validity of the solutions.

First of all, r is greater than 0.9 for j 4 20, where lies most of the

energy of the vertical structure of inertial waves. Thus the estimate of

Leaman (Fig. 13, 1976) -- r ; 0.6 for 75 % of the energy -- cannot be

accounted for by the model. When W = f, the vertical velocity of the

incident waves vanishes in an f-plane model, so the mixed layer is
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decoupled from the interior, yielding lu' = 0 and r = 1. When (W - f)

increases, B becomes increasingly negligible in the denominator in

(6.30); hence u' increases toward its inviscid limit 2 1ui1 for

mD << 1. For wZ 1. 04 f , both d (u'f /uJ ) and the dissipation

rate, CD u 3, increase very slowly; the slight increase of r

with tW can then be explained by the rapid increase with w of the

vertical group velocity, yielding a rapid increase of the dissipation

rate for fixed r, therefore r has to increase with W at a rate which

makes the dissipation rate change slowly as shown in Fig. 6.3. Similarly

the decrease of r with increasing m also can be explained by the

decrease of the vertical group velocity with increasing m and the

insensitivity of d (hence the dissipation) to m. Recall that the

vertical group velocity can be written

z 2.

S- (6.35)

Is the result of nearly perfect reflection at small j sensitive to

the particular model parameters used ? Fig 6.4 shows the sensitivity of

the model results to the mixed layer depth D. Note that the scale for

the r-axis has been changed -- from 0.5-1. in Fig. 6.3 to 0.9-1. For

typical range of D observed in the ocean -- from 5 m to 60 m (Armi and

D'Asaro, 1979), r varies only in a narrow range from 0.94 to 1. Because

B (frictional effects) decreases with increasing D, d is closer to the

inviscid limit for larger D, resulting in smaller r.

Fig 6.5 shows the sensitivity to Nb, the buoyancy frequency above

the mixed layer. For a rather unlikely large value, Nb = 0.8 cph, the
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Figure 6.5 As in Fig. 6.3 except for different values of the
buoyancy frequency Nb (in cph) on top of the mixed layer.



177

lowest value of r is about 0.93. The behavior of d does-not change with

Nb at all -- the same as in Fig. 6.4 with D = 20 m. The decrease of r

with increasing Nb is cause by the increase of vertical group velocity

with Nb (c.f. Eq. (6.35)).

Fig. 6.6 shows that r ', 0.99 is essentially insensitive to the drag

coefficient CD in the range 0.002- 0.01; the typical range of CD in

the benthic ocean is from 0.002 (smooth bottom) to 0.005 (rough bottom)

(Wimbush and Munk, 1970). As expected, d decreases with increasing CD.

The crossings of the r curves at intermediate frequencies can be

explained by the following relation:

(1 - r) oC CD d 3 lui (6.36)

For different values of CD, the behavior of the corresponding r could

be different from that of d.

The behavior of r for different values of the incident wave

velocity Iui1 (Fig. 6.7) is pretty much the same as that shown in Fig,

6.6, because jui plays the same role as CD in Eq. (6.36). Smaller

uil induces smaller IJu'f and hence smaller frictional effects, so d

is larger for smaller uias shown.

6.4 Summary and discussion

A simple model has been developed to calculate the reflection

coefficient of inertial waves in the presence of a well mixed bottom

boundary layer. The interior dynamics is assumed to be inviscid. The

mixed layer is modelled as a slab and the frictional drag at the bottom
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is quadratic in the horizontal wave speed. An approximate wave solution

has been obtained with error of order max.( - ), where

CD= drag coefficient, D = boundary layer depth, = wave amplitude

in the boundary layer. For typical conditions in the benthic ocean, the

resulting reflection coefficient is generally greater than 0.9 for waves

with equivalent mode number less than 20, and the results are not

sensitive to model parameters. The relatively low values estimated by

Leaman (1976) cannot be accounted for by the model.

Because of the nonlinearity introduced by the friction law, we

cannot superpose wave solutions. However, the observed vertical

wavenumber spectrum is dominated by low wavenumber components; our

results for low wavenumber waves should be fairly representative. The

existence of inertial waves in the benthic boundary layer and its high

coherence with those above (Armi and D'Asaro, 1979) suggest that the

effects of low frequency flow on inertial waves through nonlinear

frictional effects are probably not important. The model results are

then a valid zero order description; however, a numerical model

including a mean flow would be necessary to verify this speculation.

That the reflection coefficient is near unity is consistent with the

existence of a global inertial wave field as described in Chapter 4.
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Chapter 7 Conclusions

Our work can be summarized as a spectral description of inertial

waves observed in the Western North Atlantic from subtropical to

temperate latitudes, and an attempt to interpret it in terms of the

proposed models of the global and local wave field.

The observations presented in Chapter 2 suggest that a universal

frequency spectrum does not exist near the inertial frequency f, where

the spectral shape is very sensitive to the local environment. In most

of the data, there is a prominent inertial peak slightly above f in the

horizontal velocity spectrum as previously described; however, the peak

height above the background continuum varies with instrument depth and

geographical environment. According to the peak height, three classes of

environment and their corresponding spectra emerge: class 1 is the 1500 m

level near the Mid-Atlantic Ridge, with the greatest peak height of 18

db; class 2 includes (a) the upper ocean (depth less than 2000 m), (b)

the deep ocean (depth greater than 2000 m) over rough topography, and

(c) the deep ocean underneath the Gulf Stream, with intermediate peak

height of 11.5 db; class 3 is the deep ocean over smooth topography,

with the lowest peak height of 7.5 db. In the inertial frequency band,

the estimated horizontal coherence scale is 0(60 km) at depths from 200 m

to 600 m, and probably less than this value at great depths. The order

of magnitude is consistent with the theory of Munk and Phillips (1968).

The estimated vertical coherence scale is 0(200 m) just below the main

thermocline, resulting in a wavenumber band in close agreement with the

result of Cairns and Williams (1976).

A model spectrum for the global wave field is developed in Chapter 4
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based on the wave functions obtained by Munk and Phillips (1968) and the

assumption that the frequency-wavenumber spectrum is given by the GM

model at lower latitudes. The most significant result of our work

perhaps is the success of the global wave model in describing the

observations of class 3. Both the energy level and the height of the

observed inertial peak are well-described by the model. The amount of

the blue shift of the inertial peak predicted by the model is dependent

on the zonal wavenumber band. To be consistent with the observed blue

shifts, zonal wavelengths are required to be less than 0(90 km). The

observed frequency bandwidths of the inertial peak are slightly larger

than the model results due to the kinematic effects of low frequency

motions; however, their latitudinal dependence is consistent with the

model. The latitudinal limits of the validity of the model is roughly

from 100 to 680.

For the observed spectra of class 1 and class 2, the excess inertial

wave energy above what the global model predicts is interpreted as the

result of local forcing. In the upper ocean, the most likely local

forcing is from the mixed layer and the forced waves transfer energy

downward. With this assumption , we have estimated a budget for downward

and upward travelling energy which is in close agreement (10 %

difference) with a recent estimate of Sanford. To make the idea of local

forcing more concrete, a forced model is develped in Chapter 5 based on

the latitudinal modal decomposition of a localized forcing function

using the asymptotic eigensolutions of the-Laplace's tidal equation. The

forcing is through a vertical velocity field specified at the top and/or

bottom boundaries. For surface forcing, major characteristics of the
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class 2a spectra can be qualitatively described by the model. For bottom

forcing, the resulting spectra show prominent inertial peaks at deep

levels, consistent with observations over rough topography (class 2b).

The estimated vertical energy flux from local sources to the interior

suggests that both the surface and bottom sources are fairly efficient

to generate inertial waves; the total internal wave energy could be set

up in couple of weeks. If the bottom source is from typical mid-ocean

eddies, the resulting "spin- down" time scale for the eddies is about a

month.

In order that energetic low mode waves can propagate over great

distance to form the global wave field, dissipation rates must be very

small for these waves. A model is proposed in Chapter 6 to study the

reflection of inertial waves from the benthic boundary layer, which is

turbulent and homogeneous and hence can be modelled as a slab.

Frictional effects are confined to this boundary layer and modelled by a

quadratic drag law. For given incident waves, reflection coefficients

are calculated. For waves with equivalent mode number less than 20,

which contain most of the energy, the reflection coefficient is greater

than 0.9 and increases with decreasing mode number. This is inconsistent

with Leaman's estimate ( 0.6; 1976) from the difference between

downward and upward travelling energy as measured by velocity profilers.

From the geometry of the ray paths of locally surface-forced waves, it

can be shown that most of the reflected waves cannot be measured by a

local profiler. Hence the interpretation that the excess downward

travelling energy measured by profilers is primarily dissipated in the

bottom boundary layer is misleading.

--------LLlliOnasaar^ar~liui
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In summary, among the different classes of observations, we have

successfully interpreted class 3, class 2a, and class 2b. In order to

explain the observations of class 1, interactions between the

Mid-Atlantic Ridge and low frequency motions which is the only apparent

energy source available at intermediate and deep levels, must be

adequately modelled. Time dependent models like Bell's (1975) are

possible approaches. In addition to the huge inertial peaks, other

features of the class 1 spectrum are also interesting: huge M 2 tidal

peak, prominent super-M 2 tidal peaks, small spectral slope and excess

high frequency energy. Are these caused by the topographic effects of

the Mid Atlantic Ridge ? When the moorings of the PMIII were deployed, a

discontinuity in water mass was found in the cluster B area (Joyce,

1977). Is this frontal feature dynamically important ? Some theoretical

work is needed here.

Concerning the strong inertial peaks found underneath the Gulf

Stream (class 2c), observations at upper levels are important to

determin the nature of the forcing. But the maintenance of moorings

within the core of the Gulf Stream is still beyond the current

capability of mooring technology. Theoretical work on the interactions

between ineritial waves and strong time dependent current would be

illuminating.
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Appendix A Temperature Spectra in the Inertial Frequency Band

The occurrence of apparent inertial peaks in observed temperature

spectra as shown in Fig. 4.11 is not universal in the data examined. For

instance, Fig. A.1 shows the temperature spectra at Stations 1 (3500 m)

and 7 (600 m) of the PMII, where no prominent peaks show up near f;

however, prominent inertial peaks were observed at the 4000 m depth of

Station 7 and at the same depth of Station 3 (see Fig. 4.11) which was

only 30'km north of Station 1. We have not found any correlation between

the occurrence of the temperature inertial peaks and their physical

environment except that, there is always a strong temperature inertial

peak at all depths of those stations roughly along 280N. Because the

diurnal tidal frequencies are so close to the local inertial frequency

there, the observed temperature peaks are probably due to tidal motions.

Elsewhere, the occurrence of temperature peaks is essentially

unpredictable. We hereby investigate two possible mechanisms to account

for their occasional occurrence.

As shown in Fig. 4.11, the observed inertial peaks in the

temperature spectra are not consistent with the global wave model which,

on the other hand, is consistent with the corresponding observed

velocity spectra. For frequencies near f, the motion of free linear

waves is nearly horizontal, and there should be no appreciable

temperature fluctuations if the temperature gradient is essentially

vertical. However, in the presence of meso-scale eddies, appreciable

horizontal temperature gradient could exist in the mid-ocean

occasionally; when advected by large horizontal inertial currents, it
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could produce appreciable temperature signals with near inertial

frequencies. The possibility that this mechanism accounts for the

observed temperature peaks is discussed in Section A.1.

It is well-known that moored temperature measurements are subject to

contamination caused by vertical mooring motion. Pressure spectra

measured by TP recorders (Wunsch and Dahlen, 1974) show fairly strong

inertial peaks, indicating strong vertical mooring motion in the

inertial frequency band. A typical pressure spectrum is shown in Fig.

A.2. Possible effects of this mechanism on observed temperature spectra

are discussed in Section A.2.

A.1 Advection of horizontal temperature gradient by inertial waves

The propagation of internal waves in the presence of a baroclinic

mean flow was investigated by Mooers (1975). For low frequency waves, he

showed that the combined effect of mean shear and its resulting

horizontal density gradient was to extend the free wave frequency band

to an anomalous low frequency limit. It can be shown that this low

frequency limit is at most a few percent lower than the local f for

typical mid-ocean conditions, and that the characteristics of velocity

solutions are only slightly modified by the mean flow. However, the

density (or temperature) solutions are seriously affected by the

presence of a horizontal density gradient. Assuming that all the field

variables are independent of y, the temperature equation can be written

BT aTT t + u --- + w --- = 0, (A.1)

where T is the mean temperature field. For wave motion with frequencies
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near f, it can easily be shown that the horizontal advection dominates

the vertical advection. Then the temperature spectral shape is the same

as that of the horizontal velocity, having an inertial peak. The

amplitude of the temperature fluctuation, T' , can be estimated as the

product of I ? and the radius of inertial circle, uo/f (uo is a

typical horizontal speed of inertial waves). For a typical mid-ocean

eddy, 1 in the main thermocline is about 3 x 10-2 deg.C/km (see
MODE-1 Atlas Group, 1977). With u = 10 cm/sec and f=7.27 x 10- 5 sec-1

we have T' -0.04 deg.C, which is within order of magnitude of the

observed values in the main thermocline (c.f. Table A.1, which shows the

values for some strong temperature peaks). Therefore this mechanism

could, to some extent, explain the observed inertial peaks in

temperature spectra.

A.2 Mooring motion in the inertial frequency band

If the observed temperature signals are solely caused by the

vertical mooring motion, we should have

For a linear vertical temperature gradient, which is approximately the

case for small vertical excursions, we should have significant coherence

between T and P with 1800 phase difference. The T-P coherence was

calculated for a great number of stations, and significant coherence

with 1800 phase difference in the inertial band was found only at

those stations where the mooring motion was relatively strong. At these

----*-1LL^II*--eua;~~*U
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stations, the temperature spectra indeed have strong inertial peaks. It

seems that strong mooring motion is a sufficient (but not necessary)

condition for the occurrence of temperature inertial peaks. To test

whether the observed temperature peaks are indeed caused by mooring

motion, we have calculated for four selected stations the root mean

square amplitudes of both temperature and pressure fluctuations in the

inertial frequency band, denoted by T'2 and P' respectivcely, and also

calculated the corresponding local temperature gradient dT/dp from CTD

casts. By comparing T' with dT/dP x P'2 , we can tell the significance

of the contribution of mooring motion to the temperature peaks. These

values are listed in Table A.1. For the three records (5482, 5792, and

5492) where mooring motion is strong and the T-P coherence is high, the

temperature fluctuations are mainly caused by mooring motion; with weak

mooring motion and low T-P coherence, the temperature fluctuations at

5422 cannot be attributed to mooring motion.

Table A.1

Tabulation of T'2 (deg), P'2 (dbar), dT/dP (deg/dbar), and

' x dT/dP (deg) in the main thermocline for selected records.

Record T' P'2  dT/dP P' 2 x dT/dP

5482 .252 9.6 .0203 .195

5792 .152 5.34 .0206 .11

5492 .1 2.91 .0202 .06

5422 .16 .586 .0187 .011
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A.3 Summary

For records from moorings with high T-P coherence with 1800 phase

difference in the inertial frequency band, a prominent inertial peak is

usually observed in the temperature spectrum and is mainly caused by

mooring motion. For records from moorings with low T-P coherence in the

inertial frequency band, the occasional occurrence of temperature peaks

is probably due to the advection of horizontal temperature gradient by

the strong horizontal motion of inertial waves.
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Appendix B

In the

Eqs. (3.27

quantities

Evaluation of Elliptic Integrals with Parameters

Greater than One

calculation of the wave functions V( ' ) and P( ) using

) and (3.19), we need to evaluate the following three

, , and . From Eq. (3.26),

2 3 5 I (B.1)

S( -slhp') dO'

we have

_ / Z2 I

(.Sin S;40)2

and

(B.2)

_--..- . . ... . - 1

(B.3)

Once is known, - and can be easily calculated using Eqs. (B.2)

and (B.3). The integral on the right-hand side of (B.1) is an elliptic

integral of the second kind. Using the notation of Abramowitz and Stegun

(1964), (B.1) can be written

2

3
4/2E( )-E(4,i~) , (B.4)

where m = S (hence m > 1); m is the parameter and 0 is the

amplitude of the elliptic integrals. Because most of the formulae and

numerical methods for the evaluation of elliptic integrals are

formulated under the assumption that Iml < 1, we have to transform the

elliptic integrals in (B.4) into their corresponding forms with

parameters less than one.
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In terms of u defined as

(12 dA, (B.5)

we have (see Abramowitz and Stegun, 1964; p.593)

E( 1,= )1~( U~lln~ ')-hlYZL ; (m>I ) (B.6)

The relation between u and is usually written as

sn( u m ) = sin (B.7)

where sn is a Jacobian elliptic function. The integral in (B.5) is the

elliptic integral of the first kind, i.e.,

L = F( I)

=S $m/1(Q1T h ) ( f>I)

0 s- in (fl , 5a

F(e I m-1) can be calculated by using a rapidly convergent series

(Dwight, 1968) :

2j - _h_ -+ 4 1.3- 5 _ + +--) (B.10)
71 2-4 ?n I.44 n

where

(B.8)

(B.9)



where

K = (i- 'Sih") (complete ellipti
o

I 7.

(i- (

LI.t. cJ~vvfI)/LJ

2.

c integrals of the Ist kind)

1.3 I
>4 .z.

2.4-. 4 s i &
I . 4

-- - sa6

with u known the remaining calculation in (B.6) is E(uml/2 I ri),

which has a similar series representation :

2. AM-bE+ ijoLCOsO( (~4.-4 1-.3. A3--- 4 ..- (B. 11)
1.3
2. 4

S = Sh (U

E
0

-h1 'sih') \ (complete elliptic integral

2 ( 1i= - 1+ 2 .4i' 4 T
4

P t
-3
2. L

2-4 -6

Al, A2 , A3 .... are the same as before except that

replaced by sin 0o.

of the 2nd kind)

I.--- ]

sin is
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.3 F 4-

3 I s;n 0

E (umI=1 )

where

P t -- **-( p)[
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The value of sn(uml/2 I m- 1 ) can be calculated by using the

ascending (increase m- 1) or descending (decrease m- 1 )

transformations (Abramowitz and Stegun, 1964), depending on whether

m- 1 > 0.5 or m- <l 0.5. Then sn(x I r) can be approximated by

-

-r 1 OS X - X;: faxLx e , ( -h1).
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