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ABSTRACT

We have presented a unified MHD treatment of the Kelvin-
Helmholtz and the interchange (or "ballooning") instabilities
in what we called the shear flow-ballooning instability and
we have applied these results to the stability analysis of the
plasmapause. This approach is analogous to the investigation
of the stability of hydrodynamic flows and for this reason we
have adopted the hydrodynamic terminology, but adding the
term magnetic to its vocabulary. In the hydrodynamic problem
the gravitational effects exert stabilizing influences on the
flows. Its influence is represented by the quantity called
the Brunt-Vdisl& frequency (Q ). In the hydromagnetic con-
text, the "magnetic buoyancy" ue to curvature of the field
lines behaves very much like the gravitational buoyancy and
it is the principal term in the expression for the magnetic
Brunt-V&ishld frequency in the magnetospheric environment.
It is also found that the stability criterion depend on
the ratio of the gravitational, thermal, rotational and mag-
netic effects to the shear flow influence and thIs condition 2
is called the magnetic Richardson number (Ri = Q (r)/(3v /ar) ).
The unstable waves in the hydromagnetic case are ound to Be
drift waves. These waves are very much analogous to gravity
waves, its hydrodynamic counterpart, and similarly the unstable
modes are trapped in the shear zone.

This treatment was applied, in particular, to the analysis
of the stability of the plasmapause to investigate the erosion
process that occurs during periods of enhanced magnetic acti-
vity. The injection of hot ring current particles across the
plasmapause is a destabilizing mechanism for which a convec-
tive instability could be established. However, using real
density, pressure and magnetic field data we find that it is
unlikely for this region to become convectively unstable.
Estimates of the magnetic Richardson number show that shear
instability can arise for velocity gradients which are confined
to a zone of 10 to 40 km thick. However, at present there is
no data to estimate the velocity (or electric field) gradient
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across the plasmapause. We can, however, predict the wave
parameters associated with the drift waves that would be
excited if there were an instability. These estimates give
wave periods in the range of 1 to 4 minutes with wavelengths
of 65 to 365 km. This mechanism may explain the plasma ero-
sion across the plasmapause but two important problems,
which deserve more experimental and theoretical investigation,
emerge from the study of this instability. A more complete
analysis requires the explanation of the penetration of the
electric field and the steepness of its gradient across the
plasmapause.

Finally, we should mention that this treatment of the
shear flow-ballooning instability could be applied to other
shear flow boundaries in the space environment, as for
example, the magnetopause and the shear flow boundaries in
the Jovian magnetosphere.

Thesis Supervisor: Prof. Theodore R. Madden
Professor of Geophysics
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CHAPTER I

INTRODUCTION TO MAGNETOHYDRODYNAMIC PLASMA INSTABILITIES

I.1 Introduction

The objective of this work is to investigate the

stability of the plasmapause. The stability analysis of

this region, which includes the study of the distribution

and the dynamics of the thermal plasma, are of fundamental

importance for understanding many magnetospheric processes,

e.g. large scale plasma motions. The currently accepted

definition of the plasmapause is the region between the

high density thermal plasma of the inner Earth's magneto-

sphere and the low density hot plasma of the outer magneto-

sphere, e.g. see Figure 1.1. The region enclosed by the

plasmapause is called the plasmasphere and it contains

the cold plasma (e.g. particles with energies of 0.1 to 1 ev)

in corotation with the Earth (Carpenter, 1963, 1966; Angerami

et al., 1966; Carpenter et al., 1973; Mozer, 1973 and

Vickers, 1976). It is generally accepted that the origin

of the plasma inside the plasmasphere is mainly due to

the outflow of ionospheric particles. Park (1970)

estimated the outflow rate of ionospheric particles into

the plasmasphere as 3 x 108 particles/cm
2-sec at an altitude

of 1000 km during the daytime when the ionosphere is heated

by the Sun. During the night, an inward flow of particles



from the plasmasphere into the ionosphere at a rate of

1.5 x 108 particles/cm2-sec has also been observed. The

difference between this outward and inward flow of particles

implies a net excess of plasma particles in the plasma-

sphere. It has also been observed that the position of the

plasmapause region is influenced by the level of magnetic

activity (e.g. Chappell, et al., 1970a,b). The plasmapause

shows a general decrease in radius (i.e. an inward motion)

with increasing magnetic activity, e.g. see Figure 1.2.

Thus, the bulk of the thermal plasma in the plasmasphere

which is constantly changing in size and shape with

magnetic activity present important clues to large scale

magnetospheric dynamics. This is a clear indication that

the solar wind interaction with the geomagnetic field plays

an important role in the behavior of the plasmapause (e.g.

Nishida, 1966; Brice, 1967; Chappell et al., 1972 and Frank,

1971). This motion of the plasmapause also suggests the

unstable nature of the system.

Before the discovery of the plasmapause (initially

called the "knee") by Carpenter (1963) it was already known

that magnetospheric electric field distributions play an

important role in the behavior of the plasma in the

magnetosphere (Axford and Hines, 1961; Dungey, 1961).

Axford and Hines (1961) proposed a model based on the

effect of an induced electric field on the magnetospheric



thermal plasma. In such a model, due to the viscous

interaction of the solar wind at the magnetospheric

boundary, i.e. the magnetopause, and the geomagnetic

field; an electric field is induced across the magneto-

sphere. The induced electric field is directed from dawn

to dusk in the midnight equatorial plane causing the

sunward convection of the thermal plasma in the interior

of the magnetosphere. The electric field induced by the

solar wind gives the low energy particles a drift velocity

independent of their sign. However, the effect of this

induced electric field on the high energy particles in the

magnetosphere is different. The convective velocity V

produced by the induced electric field is given by

ExB
V= 2 (1.1)

where E is the induced electric field and B is the geo-

magnetic field. Axford and Hines argue that this convective

flow is modified by the rotation of the Earth since the

neutral atmosphere, the ionosphere and the plasmasphere

corotate with it (see Figure 1.3). The magnitude of the

convection electric field influences the precise position

and shape of the plasmasphere (see Figure 1.4), and a

change in this field is reflected in the dynamics of the

plasmapause. Therefore, continual observations of the



plasmasphere-plasmapause morphology give an excellent

indirect measurement of variations which take place in the

convection field and also in the magnetosphere.

Figures 1.3 and 1.4 show a plot of different local

time sectors of the plasmapause as a function of the radial

distance from the Earth. The solid line in Figure 1.3 and

the outer edge of the shaded area in Figure 1.4 shows the

average plasmapause position. Figure 1.4 also shows the

equatorial sections of the equipotential lines which

corresponds to McIlwain's (1972, 1974) electric field

distribution inside and outside the plasmasphere. Outside

the plasmasphere the convection pattern leadsto a loss of

thermal plasma at the magnetopause . Inside the plasma-

sphere corotation effects are most important. The local

time sector 15:00 to 22:00 corresponds to the bulge region

of the plasmasphere. This bulge is due to the difference

between the convective electric field and the corotation

electric field. Plasma elements which lie inside the

solid line in Figure 1.3, will rotate with an angular

velocity smaller than the Earth's angular velocity. This

is due to the penetration of the convective electric field

deep inside the plasmasphere, therefore reducing the

corotation electric field. Nishida, et al. (1972) has

suggested that this extension of the convective electric
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field inside the plasmasphere is probably related to the

unsteady character of the convection.

In spite of the influence of these electric fields; the

low energy ambient plasma population of the plasmasphere is

not transported to outer regions where the plasma loss is

possible, by virtue of the dominance of the corotational

motion over external electric fields. Thus, the position

of the plasmapause, namely the sharp density gradient of

the thermal plasma is determined by the balance between the

corotational and the convective electric fields.

An interesting aspect implied by Axford and Hines'

model of the convective and corotational electric fields is

that the flow velocity V given in equation (1.1) changes

rapidly with position in space across the plasmapause.

Following this model we infer an apparent discontinuity in

the streaming velocity between the inner plasma, i.e. inside

the plasmasphere, and the outer plasma. We deduce also

from their model that the "boundary" between these two

regions, which is the plasmapause, may be susceptible to a

form of magnetohydrodynamic instability such as the shear-

flow or Kelvin-Helmholtz instability. This is an important

geophysical phenomenon which is crucial in the investigation

of the plasmaspheric and magnetospheric dynamics. Some

authors, e.g. Southwood, 1968 and Hasegawa, 1972;



considered this instability to be responsible for the

excitation of low frequency micropulsations such as in the

Pc 2 to Pc 5 frequency range (i.e. from 5 to 600 seconds).

However most of the micropulsations have very long wave-

lengths and are mostly related to compression of the whole

magnetosphere by the solar wind.

The Kelvin-Helmholtz is a well-known phenomenon in fluid

mechanics that occurs when two fluids are in contact,

streaming relative to each other. This instability is the

mechanism by which small perturbations of the boundary

between fluids having tangential motion with respect to each

other can be made to grow exponentially with time. The

source of this instability clearly lies in the kinetic

energy of the relative motion of the fluids. In other words,

the energy of the relative streaming is converted to wave

motion of the perturbation, and eventually turbulence and

r.ixing results. Therefore, in order to understand the

general topology and dynamics of the plasmasphere we must

incorporate the effects of the rapid variation on the flow

velocity (or the convective electric field) in the stability

analysis of the plasmapause.

A different kind of motion of the thermal plasma in

the magnetosphere was proposed by Gold (1959).- Gold

studied the conditions determining the dynamical behavior

of the plasma by means of the ideal magnetohydrodynamic



approximation which considers the plasma as a perfectly

conducting fluid. Under this representation the magnetic

field and the plasma fluid are "frozen" together through

the motion of the plasma. Gold suggested the existence of

a class of motions that will not change or overcome any

magnetic force. He proposed the adiabatic interchange

motion of magnetic flux tubes containing the plasma, as

a consequence of the insulating layer represented by the

atmosphere which decouples the magnetospheric field lines

from the Earth. Such motion would be unstable if the

interchange of magnetic flux tubes causes a decrease in

the total energy of the system. In particular, Gold

pointed out that magnetic tubes of force convect in the

magnetosphere in a manner dependent on the energy density

of the plasma contained by the tubes. If the energy

density of the plasma diminishes at a particular rate

(e.g. slower than the adiabatic gradient) with increasing

radial distance, the system will be stable against

convection or interchange. If the energy density gradient of the

plasma in the tubes is increased (e.g. faster than the

adiabatic gradient), the tube will symmetrically convect

upwards until the energy density gradient required for

stability is reached (see Figure 1.5). The instability

criterion derived by Gold for the thermal plasma confined

in a dipole magnetic field is given by



r > 47 (1.2)

where y is the adiabatic constant of expansion (i.e. y = 5/3),

Po is the thermal energy density and r is the radial distance.

This expression shows that if the thermal energy density of

the magnetic tubes is steeper than r- 4Y , i.e. the adiabatic

gradient, the tubes will be unstable and the interchange

occurs spontaneously.

An important observation of this type of motion is that

it gives a mechanism by which erosion of plasma particles

across the magnetic field lines can be achieved. That is,

this type of motion could allow the transport of plasma

from the plasmasphere into the magnetosphere. It has been

observed by Smith,et.al. (173) that during magnetically active

times the hot particles of the toroidal ring current that

circulates around the outer regions of the plasmapause

can penetrate inside the plasmasphere increasing the thermal

energy density of this system (see Figures 1.6 to 1.7).

This process could lead to the onset of the convective or

interchange instability described by Gold. Cladis (1968)

suggested that this instability may be responsible for

the Pi 2 micropulsation which corresponds to periods of

about 40 to 150 seconds. It has also been suggested,

Hasegawa (1971, 1972), that this instability could give



rise to drift waves associated with spatial non-uniformity

inherent in a plasma. In order to complete the general

picture of the dynamics of the plasmapause, the effect

of the injection of hot particles of the ring current

must be considered.

We have mentioned two different approaches that have

been used independently to study the motions or instabilities

of the plasmapause. One approach has been to study the

dynamic or shear instability as a Kelvin-Helmholtz

instability problem (Fejer, 1964; Southwood, 1968; Laster,

1970). These results are disappointing as they always

lead to instability at short wavelengths. The other

approach has been to consider the interchange or convective

instability problem (Gold, 1959; Sonnerup and Laird, 1963;

Richmond, 1973; Lemaire, 1974). This approach produces a

much more meaningful picture of the actual behavior of the

plasmapause, but is incomplete as the shear flow is ignored.

It appears that the approaches followed by many

other investigators do not account for the interaction

between the instabilities. These approaches have resulted

in the neglect of the Kelvin-Helmholtz instability on the

convective instability and vice versa. On the contrary,

there are extensive indications that both phenomena play

an important role in the stability of a system (Pierce,

1967; Claerbout, 1967; Madden et al., 1968, Bretherton,
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1966; and Booker et al., 1967).

An analogous problem is found in the atmosphere

(Bretherton, 1966, 1969, Booker et al., 1967). Ample evidence

of stable vertical wind shears point out the inadequacy of

the Kelvin-Helmholtz analysis. For vertical wind shears

such as we find in the jet streams in the atmosphere, the

atmospheric buoyancy, i.e., interchange or convective,

stability plays an important role in countering the

Kelvin-Helmholtz instability. When gravitational terms

are included, a stable regime exists for conditions

specified by a factor known as the Richardson number Ri.

This number depends on the ratio of buoyancy-free

oscillation frequency, i.e., Brunt-V&isdld frequency 0 BV

and the vertical wind shear as follows:

R v(z) 2 (- 1 P, ) (1.3)
. =  zV p C, az azOx 2 o s

The stable regime is found for values of Ri greater than

0.25. As long as the maximum wind shear is less than twice

the Brunt-V~is&la frequency, the wind profile is stable.

In the troposphere the Brunt-V&is&l& period is typically

about ten minutes. Therefore, wind shears less than

20 m sec-1 km-1 are stable. This is a typical maximum wind

shear for the tropospheric jet stream which may indicate

that the instability plays a role in shaping the jet stream
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profile (Madden and Claerbout, 1968). By similarity with

the atmospheric problem we notice that the magnetic field

line interchange or magnetic buoyancy is something very much

analogous to buoyancy effects. Thus, there must exist a

magnetohydrodynamic shear flow instability analysis

analogous to the hydrodynamic case, with a magnetic

Richardson number which measures the relative importance

of the interchange stability to the shear plasma flow

instability. Rudraiah, et al., (1972a,b,c; 1976; 1977)

studied the stability of a perfectly conducting fluid in

the presence of a magnetic field and a shear flow using an

approach parallel to the atmospheric case. In their analysis

they found an analogous Richardson criterion which includes

the effect of the magnetic field. However, their

definition of the Richardson number is not quite conven-

tional because this characteristic number has been always

defined to be dependent cn the properties of the medium

and on the flow velocity, but not on the wave properties,

as for example, the waverector. The Richardson number is

a quantity that indicates whether turbulent motions will

persist or decay in an inhomogeneous fluid. This number

provides a measure of the stabilizing or destabilizing

influence of gravitational, thermal, rotational or magnetic

forces in comparison with the destabilizing effects of the

shear flow. According to the analysis of Rudraiah et al.
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(1972b), in the case of a uniform magnetic field transverse

to the flow velocity, a decrease of the wavelength along

the magnetic field will have stabilizing influences and

will increase their Richardson number. They also include

the effects of rotation, however a series of approximations

made in their investigation lead their analysis to show

stabilizing effects in the rotational forces. On the

contrary, when the rotational velocity is increased the

system should become more convectively unstable due to

the sign reversal in the effective gravity and also thus

in the Brunt-V&ishld frequency. Another interesting

observation of Rudraiah's result is that the most unstable

mode corresponds to the case where the wavevector was along

the flow, i.e. the wavevector along the magnetic field was

zero. However, when this condition is satisfied the effect

of the magnetic field in the Richardson number vanishes in

their model and the problem reduces exactly to the

hydrodynamic case. This is due to the fact that in their

analysis, they consider only a uniform magnetic field and

therefore the effects of gradient or curvature of the

magnetic field were absent. In the Earth's situation we

shall find that both the gradient and curvature effects of

the magnetic field play an important role since they

dominate the gravitational terms. This account for the use

of the term "magnetic buoyancy" to describe the convective
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motion.

In this work we propose to carry out a magnetohydro-

dynamic analysis of both the Kelvin-Helmholtz and the

interchange instabilities combined in what we shall call

the shear flow-magnetic field line interchange instability.

The analysis of this instability will be applied to the

plasmapause region. We will extend the problem, in

comparison with previous authors (e.g. Rudraiah, et al.,

1972a,b,c; 1976, 1977 and Acheson, 1972a,b, 1973, 1978) in

order to consider the effects of a full non-uniform medium

by allowing gradients in density, pressure, flow velocity

and magnetic field. Also the gravitational and rotational

forces will be considered. In relation to the plasmapause

region, the presence of a finite conductive medium, i.e.,

the ionosphere, at the feet of the magnetic tubes, further

complicates the stability problem (Dungey, 1968; Lemaire,

1975) since the interchange motion of plasma tubes are only

possible when the integrated Pedersen conductivity is

significantly reduced below its commonly assumed infinite

value (i.e. "line-tying" effect). This implies that this

kind of motion is more susceptible to occur in the nightside

of the plasmasphere. We propose to include in a qualitative

way the effect of this finite conductive medium on the

instabilities.

In the next section we shall describe briefly the
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principal characteristic physical properties of the plasma-

pause. Then, in latter sections we shall review some of the

most important papers related to the Kelvin-Helmholtz and

the interchange plasma instabilities. We shall briefly

point out the principal results relevant to our stability

analysis. Finally, an outline of the presentation of this

thesis will be presented.
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1.2 Plasmapause Environment

As an introduction to our stability problem we shall

describe briefly our theoretical understanding of the

plasmasphere and its physical parameters inferred from

ground-based and satellite measurements.

An important feature of the plasmasphere is its

density structure. From whistler studies we have

indications of the sharp decrease in density of plasma

particles at distances of 4 to 6 Earth radii (Carpenter,

1966; Angerami and Carpenter, 1966). This boundary of

decreasing density was called first the plasma "knee"

and later the plasmapause. Carpenter inferred densities

inside the plasmapause to be about 100 particles per cubic

centimeter and outside the boundary about 1 to 5 particles

per cubic centimeter (all these values in the equatorial

plane). He also showed that the plasmapause is a

permanent feature of the magnetosphere, indicating that

the region must be stable.

Mayr and Voland (1968) estimate that the temperature

of the thermal plasma at a height of 1,000 km (the top of

the ionosphere) is about 3,000 0 K and just outside the

plasmapause about 20,0000 K. Thus, the thermal energy of

the particles is about 0.5 to 2 electron-volts. If we

assume that the plasma can be approximated as an ideal
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gas at a mean temperature value of about 10,0000 K, then

the sound velocity inside the plasmapause will be about

30 km sec-1. It is also interesting to estimate the

Alfven speed inside the plasmapause. If we take the

equatorial value of the magnetic field at the Earth's

surface as 0.32 Gauss and we extrapolate this value along

the dipole field lines to an equatorial distance of about

4 Earth radii, the Alfven speed is computed to be in the

range of 200 to 400 km sec- 1. But this technique does

not take into account the compression of the Earth's

magnetic field by the solar wind and more reasonable

values for the Alfven velocity lie in the range of 500 to

1,000 km sec-1 (Dungey, 1968).

Another parameter of interest is the distance over

which the particle density decrease occurs, i.e., the

plasmapause thickness. Angerami and Carpenter (1966)

roughly estimated that the change in plasma density

occurred over a distance of less than 0.15 Earth radii

(i.e. about 900 km). However, from the satellite data

.measured by OGO-5 and presented in Fig. 1.2 taken from

Chappell, et al., (1970a,b) we can observe that the plasma-

pause thickness is of the order of 2 Earth radii during

quiet times (i.e. kp 5 1). Also notice that x4hen the

magnetic activity increases (i.e. kp 1) the thickness of

the plasmapause decreases. Laster (1970) and Ong et al.,
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(1972) suggested that the thickness parameter becomes an

impotant factor in any s ability analysis. Roth (1976)

made a theoretical analy is of the thickness of the plasma-

pause. He computed the minimum possible plasmapause

thickness to be of the oirder of 2.1 km (i.e. about five

times the cold ion Larmor radius). In this analysis he

shows that for a thin re ion like this one, the cold plasma

is electrostatically unstable and the instability will lead

to a broadening of the p asmapause.

1.3 Previous InvestigatLons of the Kelvin-Helmholtz
Instability

In the last section we presented two characteristic

properties of the plasma ause region, i.e., a sharp change

in density and relative streaming velocity of the tenuous

plasma with respect to the denser plasma. Due to the

electromagnetic forces caused by the motions of the plasma

particles, the ions and electrons moving relative to each

other will have motions that are not independent of each

other. Thus, collective effects dominate the behavior of

the plasma. Therefore, as we shall show later, the low-

energy plasma particles can be treated as a continuous

conductive fluid. By similar reasoning it is reasonable to

expect a magnetohydrodyramic behavior of the plasmapause.

The Kelvin-Helmholtz instability has been known for

about a century in non-conductive fluids. However the
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study of this instability in conductive fluids is more

recent. One of the early papers related to this

instability was presented by T. Northrop (1956). He

considered a model consisting of a transverse magnetic

field, i.e., relative to the plasma streaming, immersed in a

vacuum on one side of the boundary and a plasma with no

magnetic field at the other side. Northrop shows that for

short enough wavelengths parallel to the plasma streaming,

the disturbance at the boundary was always unstable. Unlike

the case of ordinary fluids, in his model there was no

effect such as surface tension which was known to stabilize

the disturbance.

In recent years there have been many studies of models

quite different from Northrop's model. Some of them have

comparable results. The models have differed from Northrop's

model by considering magnetic fields of general orientations

on both sides of the boundary, by assuming compressible

plasmas, and by assuming anisotropic plasmas at both sides

of the boundary. Interest in the magnetopause has led to

the investigation of the Kelvin-Helmholtz instability.

We shall review some of these studies briefly in the

present section. Subsequently, we shall compare some of

the relevant results with our investigation.

An introductory review of the Kelvin-Helmholtz

instability is given by Chandrasekhar (1961). He covers
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both the hydrodynamic stability of non-conductive, i.e.

ordinary fluids and the hydromagnetic stability of

conductive fluids. Chandrasekhar shows that in the

hydromagnetic case of an incompressible fluid, a magnetic

field transverse to the streaming flow does not stabilize

the Kelvin-Helmholtz instability. This instability will

show up for short enough wavelengths parallel to the

streaming flow as in Northrop's case. He also shows that

the magnetic field along the streaming flow will stabilize

for all wavelengths if and only if the flow velocity does

not exceed the root mean squared Alfven speed along the

stream. Thus, he suggested that there will be a critical

plasma flow velocity for which the system will be unstable.

Sen (1964, 1965) introduced the effects of compres-

sibility. He found that a slight amount of compressibility

destabilizes an otherwise marginally stable perturbation.

He considers arbitrary orientation in the magnetic field at

both sides of the boundary, he also assumes densities, sound

speeds and magnetic fields identical in magnitude and

direction in both plasmas. Sen then studied the effect of

supersonic flow speeds. In fact, in that part of his paper,

with the magnetic field exactly parallel to the flow, he

found the interface to be stable to all wavelengths for all

ratios of the flow speed to the Alfven speed. However, he

also found that modes propagating at a small angle to the
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flow are still stable, as long as the flow velocity was less

than twice the Alfven velocity. In the case in which the

flow is not parallel to the magnetic field, Sen found the

interface to be always unstable.

Fejer (1964) had studied independently the same model

as Sen, solving numerically the dispersion relation for an

arbitrary amount of compressibility. He obtained some

results that differ from Sen's. Both authors consider the

case of identical densities, sound speeds and magnetic field

strengths on either side of the interface. They agreed on

the fact that compressibility decreases the stabilizing

effect of the parallel magnetic field. Fejer found that

when both the magnetic field and the plasma flow velocity

are in the same direction modes propagating along the flow

will have some stabilizing effects if the Alfven velocity is

greater than the flow velocity. His condition for stability

in a slightly or highly compressible case is given by

CA>  ( 1+ V ) (4)
A 2 16C (1.4)

S

where CA, Vo and Cs are the Alfven, plasma flow and sound

velocities, respectively. To the best of my knowledge, the

difference between Fejer's and Sen's stability criterion is

still apparently unresolved. A point favoring Fejer's

result is that his numerical calculation shows this
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stability condition going over smoothly with increasing

sound speed into the stability condition known to hold for

incompressible plasmas.

Lerche (1966) discussed some of the results obtained by

Sen and Fejer and pointed out that they should not be taken

too seriously if the wavelengths in consideration were less

than or equal to the ion Larmor radius. He argues that when

this occurs the magnetohydrodynamic theory fails and the

collisionless Vlasov equations, together with Maxwell's

equations should be used to describe the plasma. In his

analysis, Lerche found similar relationships to Fejer's

condition described above. There was no complete agreement

between Lerche and Sen as to the interpretation of the

results.

Talwar (1965) was apparently the first to formulate the

Kelvin-Helmholtz instability problem assuming an anisotropic

plasma and using the Chew-Goldberger-Low theory, i.e., CGL

theory. This theory is a modification of the magnetohy-

drodynamic theory. The fundamental difference is based on

the assumption of anisotropic pressures (Chew, Goldberger

and Low, 1956; Krall and Trivelpiece, 1973). Talwar showed

that when the parallel pressure was small enough compared

with the perpendicular pressure, i.e. 2P,, < P ,

stability was possible. Like Fejer (1964), Talwar found a

range of relative streaming speeds for which an unstable
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mode could always be found. The range of streaming

velocities is given by

4 2 2 2
C 4 (C + C- 4 )

V2s S A s s,, (1.5)o 2 2 212C (C + 2C )
Si, A s

where Vo , CA , CS, and CSn are the plasma flow, Alfven,

perpendicular sound velocities and parallel sound velocity,

respectively. Fundamentally, the only new results intro-

duced by the CGL theory were the possibility of two new

instabilities named the "fire-hose" and "mirror"

instabilities; but these are of no interest for our problem.

Rao, Kalra and Talwar (1968) considered the case where

the magnetic field and the streaming velocity are

perpendicular to each other, and showed that this system

is unstable. Talwar and Kalra (1967) also introduced the

effect of the Hall conductivities. They found them to be

a destabilizing factor for the Kelvin-Helmholtz

instability.

One of the more complete treatments of the Kelvin-

Helmholtz instability is that of Southwood (1968). He

allows the magnetic field on either side of the boundary

to have arbitrary orientation with respect to the one

another and with respect to the streaming velocity. He

found critical conditions in the plasma streaming velocity

for stability that are comparable to Fejer's conditions.
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The main difference in relation to Fejer's paper is that

Southwood assumed more realistic values for the densities,

magnetic fields and sound speeds in application to the

magnetospheric boundary. The most important result appears

to be that at low and middle latitudes, the first unstable

modes propagate across the Earth's field, along the

streaming plasma with a very low phase velocity and wave

fronts closely aligned to the meridian planes.

Gerwin (1968) reviewed some basic properties of the

Kelvin-Helmholtz instability and some of the papers dealing

with this phenomenon. He stggested that the origin of

the discrepancy between Sen's and Fejer's papers may be

that either (or both) of these studies fail to check that

the modes whose stability is being considered actually

remain bounded at long distances from the interface.

All the above studies have considered the transition

zone between the two plasma fluids to be of zero thickness.

It is more realistic to assume that the streaming velocity

changes continuously across the finite thickness transition

zone. Such behavior is referred to by fluid dynamicists as

"shear flow" or "plane Poiseuille flow". Laster (1970)

studied the effect of a continuously varying plasma stream

velocity in a finite thickness transition zone for the

Kelvin-Helmholtz instability problem employing the CGL

theory. He considers a compressible plasma with a varying
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stream velocity perpendicular to a constant magnetic field

and a variable plasma density. Laster found no stabilizing

effect of the finite-thickness transition zone for the

Kelvin-Helmholtz instability. Ong and Roderick (1972) had

also studied the effect of a continuously varying plasma

flow velocity across a finite thickness transition zone

employing the magnetohydro-dynamic theory. They considered

a magnetic field perpendicular to the streaming flow and

variable across the transition layer. They also included

the effect of a very small constant magnetic field along the

flow. They concluded that in the limit where the small

constant magnetic field along the plasma flow vanishes

the growth rate of the instability is decreased for all

wavelengths. This result is in contradiction with Laster's

results. We hawproved that Ong and Roderick's paper has

a series of mistakes which may have led to this discrepancy.

Thus, we tend to favor Laster's results.

Dobrowolny (1972) studied the Kelvin-Helmholtz

instability by using the two MHD equations. He considered

a high- collisionless plasma, where B is the ratio of the

plasma particle kinetic pressure to the magnetic pressure.

Dobrowolny's model assumes a constant magnetic field along

the plasma streaming, with a velocity flow and a plasma

density spatially varying in the direction perpendicular

to the field. He found that for waves characterized by



25.

parallel wavelengths much larger than the perpendicular

ones, i.e., parallel or perpendicular refers to the

direction relative to the magnetic field, the Alfven wave

and the slow magneto-acoustic wave branches of the dis-

persion relation can be separated. He also found that the

velocity shear can cause instability at both branches. An

important result presented in this paper is that the density

gradients exert stabilizing effects and these effects become

more important upon increasing 8 , i.e. >>1.

One of the most complete treatments of the Kelvin-

Helmholtz instability of anisotropic plasmas in a magnetic

field is presented by Duhau and Gratton (1975). In this

paper they study this instability by the anisotropic CGL and

MHD theory. They summarize most of the conclusions found by

previous authors and emphasize the important role of aniso-

tropy in the stability conditions.

Nagano (1978) studied the effect of the finite ion

Larmor radius (FLR) on the Kelvin-Helmholtz instability

problem for incompressible and compressible plasmas. He

concluded that when a wave vector is parallel to a magnetic

field, the effect of FLR tends to stabilize perturbations

with shorter wavelengths. However, this stabilization will

depend on the configuration of the plasma flow velocity and

the magnetic field.

All the previous work reviewed in this section show
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fundamental characteristics of the Kelvin-Helmholtz

instability under different conditions. The principal

property given by these investigations is that the most

unstable Kelvin-Helmholtz mode is the one with the shortest

wavelength propagating along the flow velocity. In the next

section we shall review some of the principal papers

concerning the interchange or convective instability.

Furthermore, at the end of that section we shall discuss

the need to incorporate both the Kelvin-Helmholtz and

interchange phenomena in a unified treatment for the

stability analysis of the plasmapause.

1.4 Previous Investigations of the Interchange Instability

As we mentioned at the beginning of this chapter, the

interchange instability of the Earth's magnetosphere was

first proposed by Gold (1959). He pointed out two important

characteristics of this type of motion. First, Gold

proposes that adiabatic interchange motion of magnetic flux

tubes containing plasma will occur, as a consequence of the

insulating atmosphere which decouples the magnetic field

lines from the Earth without overcoming any magnetic force.

Secondly, he established that such motions would be unstable

if the interchange of magnetic flux tubes causes a decrease

in the total energy of the system. In other words, he



27.

considers the interchange of two adjacent magnetic flux

tubes filled with plasma, extending from one end or "foot"

at the bottom of the ionosphere to its conjugate point.

This interchange involves deformation or rearrangement of

the plasma in each tube, therefore suggesting that such

motions may be driven by variations in the thermal energy of

the plasma. If after a slight perturbation of the plasma

tube its internal energy density is higher than its

surroundings, then the plasma tube will continue moving and

therefore an unstable situation has been created. Although

this motion leaves the magnetic field unchanged, it is still

controlled by this field.

A later study of this instability by Sonnerup and Laird

(1963), by means of energy considerations, found that these

interchanges are very important at low latitudes. They

analyzed the interchange motions in two limits: where the

gravitational energy is much smaller or much larger in

absolute value than the internal energy density of the

plasma. Smaller gravitational energy applies to the outer

tubes of force for which the energy content is dominated by

the internal energy of the plasma. Under this limit,

Sonnerup and Laird found that spontaneous interchanges occur

only if the energy content of the magnetic tubes decreases

sufficiently rapid in the radial direction. In the limit of

larger gravitational energy which applies to the inner tubes
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of force, the plasma is considered as a cold gas. They

found that under this limit, spontaneous adiabatic

interchanges may occur if the temperatures in the upper

ionosphere increases sufficiently rapidly with increasing

latitude.

The interchange instability is a form of Rayleigh-

Taylor instability, however it does not require the presence

of a real gravitational field. The Rayleigh-Taylor

instability occurs when a dense incompressible plasma is

supported against gravity by a magnetic field immersed in

a less dense plasma (Rosenblith and Longmire, 1957; Coppi,

1964, 1976, 1977; Schmidt, 1966; Krall et al., 1973;

Mikhailovskii, 1974). When perturbations of the interface

between these plasmas are present, the denser plasma will

interchange positions with the lighter one, thus creating an

unstable situation. Therefore, the Rayleigh-Taylor

instability is driven by an inverted density gradient.

However, in the interchange instability the driving

mechanism is the buoyant force due to the gradients in the

thermal energy and in the magnetic field. This buoyant

force is created by an effective gravity due to curvature of

the magnetic field lines. Suppose we move adiabatically a

parcel of compressible plasma from one level in the plasma

fluid to a higher level. The parcel of plasma should expand
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or compress in order to adjust its total pressure, i.e.

thermal plus magnetic, equal to that of the surrounding

plasma fluid. If after the expansion or compression the

elevated plasma has a larger thermal energy density that the

surrounding, the resulting magnetic buoyancy will continue

to drive up the parcel and therefore will drive an

instability. This mechanism that drives the interchange

motion is called "magnetic buoyancy" (Parker, 1955; Bateman,

1976, 1978; Roberts and Stewartson, 1977; Acheson, 1978;

Acheson and Gibbons, 1978; Moffatt, 1978). However, in

some of the recent investigations concerning the equilibrium

of a plasma in thermonuclear devices this phenomenon has

been denominated as "ballooning" instability (Coppi, 1976,

1977). In same of the former studies previously mentioned, the

authors have found a criterion for "magnetic buoyancy"

instability for a magnetic field without distortion, given

by:

L > L- (1.6)
Bo po

where LBo and L o are the scale-heights for the magnetic

field and density defined respectively by

-1 1 aB -1 .1 p0L = - L = i__ (1.7)
Bo B 0r ' P ro
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Expression (1.6) merely shows that the medium is prone to

instability when the magnetic field strength decreases

sufficiently with height in comparison with the density

variation. This condition takes into account neither the

distortion nor the curvature of the field lines. In

addition, it assumes that the thermal effects are very

small. However, in the Earth's situation this last

assumption can not be established since its thermal

effects are very important.

Greene and Johnson (1968) studied the interchange

instability with the ideal magnetohydrodynamic theory. They

used the energy principle to analyze the instability, and

showed that the energy sources that drive the instability

are associated with the change in thermal and magnetic

energies. They also suggested that the magnetic configur-

ation plays an important role in the stability analysis.

Richmond (1973) examined the importance of the inter-

change instability at the plasmapause assuming an electro-

static approximation. His analysis was based on the

evolution of the distribution function and the drift motions

of charged particles on the Earth's magnetic field. Richmond

shows that the energy density of the thermal plasma plays a

significant role in driving small-scale convective motions

and that in particular drive an instability at the plasma-

pause which will tend to limit the steepness of the density
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gradient there. He also computed a maximum growth rate for

the night time interchange instability on the order of

1.9 x 103 sec and a convective velocity of a magnetic flux

tube at 4 Earth radii (i.e. 4Re) on the order of 0.7 Re/hr.

Richmond presented instability curves (i.e. plots of the

growth rate versus the longitudinal wavelength) for three

different plasmapause models. In his first model he assumes

an isothermal plasmapause with no rotation belt plasma but

including convective shear. This first model shows that

for very short longitudinal wavelengths the plasmapause is

unstable. This result is in agreement with the theoretical

requirements for the Kelvin-Helmholtz instability. His

second model considers an isothermal plasmapause including

radiation belt plasma but no convective shear and in his

last model he only assumes the presence of a strong

outward temperature gradient. These two final models show

a slight reduction in the growth rate as the wavelength

decreases from its maximum growth rate. Richmond discussed

three possibilities that may explain how a steep density

gradient is maintained. First, he considers that due to

an enhanced ionospheric conductivity there will be a

reduction in the growth rate of the instability. Secondly,

some kind of diffusive destructive.turbulence mechanism

due to non-linearities is sufficient to limit the widening

rate. And third, rapid radial convergence of a large scale
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flow due to the presence of an Alfven layer at the plasma-

pause may also reduce the growth rate.

Hudson and Kennel (1975) studied the interchange

instability in a partly ionized collisional plasma. They

found that the Alfven mode is strongly stabilized for finite

wavelengths along the magnetic field. They also showed,

like other authors, that when gravity and density gradients

are anti-parallel to each other, the interchange mode is

destabilized. This conclusion agrees with the Rayleigh-

Taylor instability mentioned previously.

Lemaire (1974, 1975a,b) has suggested that for

moderately active magnetic conditions, the plasmasphere of

the Earth is peeled off near the midnight sector at a

distance of about 4.5 Earth radii by plasma element

interchange motion driven by centrifugal or inertial forces.

He proposes that field aligned hydrostatic distributions of

the plasma are convectively unstable for all magnetic flux

tubes beyond a critical distance referred to as the "Roche-

Limit". He estimated this critical distance of 5.78

Earth radii, however his definition of the "Roche-Limit"

is not correct. His definition differs from the conventional

description of the Roche Limit in astrophysics. According

to Lemaire, these magnetic flux tubes interchange motions

are only possible when the integrated Pedersen conductivity
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is significantly reduced below its commonly assumed infinite

value which is in agreement with Dungey (1968), Richmond

(1973) and other authors.

Although all the previously mentioned papers for the

Kelvin-Helmholtz and interchange instabilities may describe

in their own way some of the behavior of the plasmapause

boundary, their analysis has been incomplete since the

combined effect of both phenomena has been ignored. To the

best of my knowledge, there has been no complete treatment

of these two instabilities in a self-consistent way in

application to the plasmapause boundary. Furthermore, a

unified analysis of these two instabilities using the

magnetohydrodynamic normal mode theory has not been pre-

sented in the literature. The only analogous situation

found in the scientific literature but in application to

arbitrary conducting fluids, is the work by Rudraiah, et al.

(1972a,b,c; 1976, 1977). In principle, Rudraiah, et al.

presents an extension of the work done by Booker and

Bretherton (1967) in hydrodynamics but applied to conducting

fluids immersed in a magnetic field. They considered

perturbations from equilibrium of a rotating, perfectly

conducting, slightly compressible (i.e. Boussinesq

approximation), inviscid, adiabatic fluid moving with a mean

horizontal velocity Vox(z) in the presence of a transverse

uniform magnetic field. They concluded that the flow and
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the waves excited in it will be stable if the fluid satisfy

the Richardson criterion given by

2 K2C2 2
2B(z) + K 2 + Q2

R.= A R > 0.25
S=2 > 0.25 (1.8)

where 2BV is the Brunt-Vdishl& frequency, CA is the Alfven

velocity, Ky is the wavevector along the magnetic field and

0R is the rotational angular velocity. As we previously

mentioned, their definition of the Richardson number is not

quite conventional due to the presence of wave properties.

Nevertheless, a very important aspect of their analysis

shows that the most unstable mode corresponds to short

wavelengths along the flow velocity, i.e. Kx = . Notice

that when this condition is satisfied the effects of the

magnetic field in the Richardson number vanishes. This is

due to the lack of curvature in their magnetic field model

and we can expect different results for a dipole field.

In spite of the great efforts made by previously

mentioned authors in explaining the stability of the

plasmapause in terms of the interchange or Kelvin-Helmholtz

instabilities, their treatment of the global stability of

this system has been incomplete. This is due to the fact

that both phenomena has been studied in isolation and their

combined effect has been neglected. To achieve this unified
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treatment including some of the most important effects

previously mentioned shall be one of the principal aspects

of this investigation. The physical explanation of the

dynamics of the plasmapause on the basis of this unified

treatment represent the main purpose of this thesis.
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1.5 Outline of the Thesis

In the next chapter we present the magnetohydrodynamical

equations from which the stability problem will be discussed.

A mathematical formalism on the basis of the normal mode

analysis will be applied to the MHD equations in order to

describe the disturbance of the plasmapause. These analyses

lead to the derivation of the MHD - wave equations which

describe the system. Those theoretical results which are

original contributions to the stability problem are

emphasized.

In Chapter III, the plasmapause is modeled as a

continuous formation zone. Afterwards, we transform the

wave equation in such a way that its solution could be

expressed analytically. Assuming physically reasonable

boundary condition together with the analytic wave solutions,

a dispersion relation is derived. From the numerical

solution of the dispersion relation we could evaluate the

range of unstable eigenmodes of the system. Finally a

discussion of the stability of the plasmapause on the basis

of the real available data is presented. Important

conclusions in relation to the stability of the region will

be drawn from thisfinal analysis.
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FIGURE 1.1-MODEL OF THE EARTH'S MAGNETOSPHERE
IN THE MERIDIAN PLANE
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FIGURE 1. 2-EXPERIMENTAL OGO-5 RESULTS SHOWING THE PARTICLE
DENSITY PROFILE OF THE PLASMAPAUSE AND ITS
LOCATION FOR DIFFERENT LEVELS OF MAGNETIC
ACTIVITY (CHAPPELL'S ot.al. 1970).
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FIGURE 1.3-PLASMA DRIFT MOTIONS OR EQUIPOTENTIALS VIEWED
IN THE EQUATORIAL PLANE (KAVANAGH et. al. 198M).



" 40.

0600LT
Iosoon

a\

•\ " •0300LT

09WLT -- % " ' ,,E3H,,
% 

%J

su a .,.,,- -.
i ''

, 
L 

• O- .40, % ',ILI

S o Ie \ 

%

/I ~ ~~ •~\\\ \\
Ky.* 12*100 L 7\

FIGURE 1.4-MAGNETOSPHERIC ELECTRIC FIELD OF MoILWAIN (1974).
THE DASHED CURVES REPRESENT THE EQUATORIAL
SECTIONS OF EQUIPOTENTIAL SURFACES.



41.

FIGURE 1.5-SCHEMATIC VARIATION OF A MAGNETIC FLUX TUBE
(INTERCHANGE OF MAGNETIC TUBES).
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FIGURE 1. 6-PROTON ENERGY DENSITY RADIAL PROFILE DURING
A MAGNETIC STORM (SMITH, es. al. 1973).
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CHAPTER II

MAGNETOHYDRODYNAMIC WAVE EQUATION AND DISPERSION ANALYSIS

II.1 Introductory Remarks

In this chapter we shall derive the MHD wave equation

from which we shall describe the plasmapause behavior. The

derivation of the wave equation will be based on the ideal

MHD equations. Derivation of the MHD equations has been

presented in many other texts, e.g., Shkarofsky, et al.,

(1966); Rossi and Olbert, (1970), thus, we shall not pursue

a discussion of their origin in this thesis. An intensive

local analysis of the derived wave equation, shall be

presented. From the wave equation, a dispersion relation

for a quasi-uniform medium will be obtained. Analyzing the

dispersion relation, the different wave modes and their

properties will be investigated. A study of the propagation

properties of these modes and their instability conditions

in relation to the plasmapause region is considered. Finally,

a comparison and discussion of our theoretical results with

other investigations shall be presented.
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11.2 Mathematical Development of the Magnetohydrodynamic
Wave Equation

In this section we shall present a mathematical

analysis of the MHD equations with which the stability of

the plasmapause region is investigated. The general wave

equation which describes the system will be derived from

this mathematical procedure.

We shall consider the plasmapause-plasmasphere regions

in a spherical coordinate system represented by (r, 8, p)

centered at the Earth. In this coordinate system r is the

radial distance and (8,4) are the colatitude and longitudinal

components, respectively. In order to consider the effect

of rotational forces, we shall assume that the Earth is

rotating around the z-axis, in the positive @-direction with

a constant angular velocity QE. We also assume that the

plasmapause is corrotating with the Earth. Therefore, our

analysis will be given in a rotating frame of reference. We

will approximate the plasmapause in low and medium latitudes

regions by a zone of transition (i.e. a spherical shell

zone) between two moving, perfectly conducting fluids of

different densities, temperatures, velocities and magnetic

fields. A series of simplifying assumptions are needed in

order to make the problem tractable. We shall assume that

the wavelengths of the disturbance in consideration are

much larger than the ion Larmor radius (which is about 400
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meters at a distance of 4 Earth radii assuming a cold plasma),

so that the use of the MHD equations is justified (Shkarofsky

et al., 1966; Rossi et al., 1970). However, we will assume

that the wavelengths are short compared to the curvature of

the plasmapause at its particular location. In other words,

the plasmapause can be represented as a spherical shell (at

least for low and medium latitudes) enclosing the Earth.

The Earth's magnetic field shall be assumed in the (e,q)

plane and we will consider that it has a "weak" curvature.

By "weak" curvature we mean that the ccenter of the spherical

shell is far enough from its surface (i.e. the plasmapause

layer). However, this assumption will break down for the

real dipole field at very high latitudes. We shall also

consider that the Earth's magnetic field has a gradient in

the radial direction. The magnetic field curvature and

gradient are important since they are probably the main

cause of the ring current system which penetrates inside

the plasmasphere, causing an increase in the thermal energy

of the region. It is assumed that the convected plasma from

the outer magnetosphere curve around the Earth so that the

direction of the streaming velocity will be taken in the

(e, ) plane. This curving action of the streaming velocity

introduces additional centrifugal forces on the plasma

motion. In addition it is assumed that the streaming

velocity has a gradient in the radial direction. This
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model for the streaming velocity is consistent with Axford

and Hine's (1961) and McIlwain's (1972, 1974) models for

the magnetospheric plasma flow on the basis of the electric

field distribution. We shall also assume a sharp radial

density gradient across the plasmapause consistently with

Carpenter's (1966) and Chappell's et al., (1970a,b). It

will be assumed that a radial pressure gradient exists across

the transition layer, i.e., the plasmapause. This pressure

gradient effects are very important if we want to understand

the behavior of the plasmapause to the injection of the

hot particles of the ring current. This is consistent with

Smith's et al. (1973) data which shows the distribution of

thermal energy of the ring current during geomagnetic

storms. Finally, gravitational and centrifugal forces due

to the rotation of the Earth will also be included.

We shall now proceed to solve the ideal MHD equations

in the previously mentioned coordinate system and with the

previous considerations. The ideal MHD equations form a

closed system for the variables: density p, pressure P,

magnetic field B and velocity V. These quantities are

related by conservation equations of mass, momentum and

energy. In a rotating coordinate system, the ideal MHD

equations are given by:
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p + 2Q, x V + Q, x (, x r)= -VP + J x B + pg (2.1)

a + v ( ) = (2.2)

at -

B , x B = , V B = 0 (2.3)

D [P/P] 0  (2.4)

E = - V x B (2.5)

.where the operators D/Dt is the convective derivative

defined by:

D + V V (2.6)
Dt at

Equations (2.1) to (2.5) represent the momentum and

mass conservation equations, the Maxwell's equations for

the electromagnetic field, the adiabatic equation of

state and the "Frozen-In" Law (or constitutive relation)

respectively.

The system of equations (2.1) to (2.5) is non-linear

and therefore their analytic solution is extremely

difficult. In order to solve these'equations we shall

use the so-called "normal mode" analysis. This method
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assumes that the non-linear equations can be linearized

around some known equilibrium state. In other words, it

assumes that we have a system whose forces are on equilibrium

and that this system is subjected to a perturbation that

alters the forces acting on it. If these modified forces

act to increase the initial perturbation, then the system is

unstable. For example, in the case of the plasmapause, we

suppose to know all the variables, e.g., density, pressure,

etc., in the unperturbed or equilibrium state. Also, it

supposes that we know the equilibrium forces acting on the

plasmapause. Now, if we introduce a small perturbation at

this layer, the equilibrium will be modified and if the

resulting forces act to change the initial unperturbed

state, then the system is unstable. The study of plasma

instabilities with this method is usually based on perturbation

theory or Fourier-Laplace integral transformations. This

approach makes sense only if there is an initial steady

state plasma equilibrium about which it is possible to

consider small departures. Inevitably, non-linear effects

cause that growing perturbations alters the properties of

the plasma, e.g. density, pressure, etc. However, these

modifications may lead to a new equilibrium state that is

stable to the mode that destroyed the previous state.

Nevertheless, the linear normal mode method allows us
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to compute the initial growth rate of the instability.

The normal mode analysis assumes that the linearized

plasma equations for the time development of the

perturbation can be solved, subject to the appropriate

boundary conditions, assuming a time dependence exp(-iot).

This procedure gives an equation for w, i.e. the wave

frequency, in terms of the equilibrium parameters and the

wavevector k. The w's from the equation may be real,

imaginary or complex. If all the w's are real, then all

perturbed variables oscillate harmonically, and the plasma

is stable. If any or all of the 's have some positive

imaginary part, then the system is unstable since the normal

mode will grow in time. Normal mode analysis provides

complete information about instabilities associated with

a particular plasma equilibrium. The development of any

initial perturbation can be followed up to the limits

imposed by the linearization of the ideal MIHD equations.

Unfortunately, normal mode method can be applied only to

linear systems of equations and to those cases where the

plasma equilibrium is simple enough to allow solutions of

the plasma equations. There is another method widely used

in the study of plasma instabilities which is called the

"energy principle". This method is very useful in

determining general stability criterion, however the
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initial growth rate of a particular instability cannot be

determined. In this investigation we shall only consider

the "normal mode" method for the analysis of the instabilities,

therefore we shall not pursue the discussion of the "energy

principle" method.

Let us linearize the system of equations (2.1) to (2.6)

by the use of perturbation method. The perturbed quantities

are given by

p(r,6,#,t) p0 (r) 6p(r,e,c,t)

P(r,0,4,t) Po(r) 6P(r,,,t) (2.7)(2.7)

V(r,O,p,t) V (r) 6V(r,8,r,t)-o

B(r,O,0,t) B (r) 6B(r,8,4,t)

where variables with subscript "o" are the known equilibrium

values and those preceded by "6" are the perturbations.

We shall assume in the linearization that perturbed

quantities are very small in comparison to the equilibrium

values, so that second order terms in the perturbation can

be neglected. This approximation is valid as long as the

growth rate of the disturbance is small. Otherwise the

non-linear terms become important and these second order

terms cannot be neglected.

Using the Maxwell's equations in (2.3) together with
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the constitutive relation (2.5) we can rearrange the momentum

conservation equation (2.1). Similarly, we can also find a more

simple expression for the magnetic field which we shall call

the "magnetic equation". The modified momentum conservation

equation is

2 + 
p D+2_x V+,x(_,xr) =-? P+ + (B_)B+pg (2.8)

and the "magnetic equation is:

S_ x (yxBV)= (B )V-B( •y) - (y.y)B (2.9)

An important assumption in these equations is that the magnetic

field is not a "curl-free" field at the point where the instability

is analyzed, i.e. the plasmapause. Therefore, the effects of

currents are produced due to the inhomogeneities in the magnetic

field and the plasma properties, e.g. Chandrasekhar, (1962);

Alfven et al., (1962); Schmidt, (1966) and Boyd, et al. (1969).

As we previously mentioned, we shall consider radial gradients

in all the equilibrium variables. Therefore, in component form,

the unperturbed quantities are:
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p = p (r) , P = P (r)

V (r) = V e + V L-o oG 6 o¢ 0

B0 (r) = - BoB + B (2.10)

S=Q coS6 r - QE sine

where ( r' ^0 ) are unit vectors along the (r,e,4)

directions in a sperical coordinate system. Substituting

the equilibrium variables (2.10) and the perturbed variables

(2.7) into equations (2.2), (2.4), (2.8), and (2.9) and

keeping up to first order terms we can find the equilibrium

state of the system and the conservation equations for the

perturbed quantities. The equilibrium state of the system

is obtained from the radial component of the zero oder

perturbation equation. After some algebraic manipulations

using some vector identities the general equilibrium

equation of the system is given by

B2
P + -p [(B " -V)Bo] (2.11)

Br 2 PO -0 0 or]

where g(r) is an effective gravity given by

V2
2 2 o

g(r) = g - r sin r 2Q V sine (2.12)
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V (r) is the total flow velocity, g(r) is the gravitational

acceleration, B (r) is the total magnetic field and

is the longitudinal flow velocity. Note from equation

(2.11) that the magnetic field seems to modify the

distribution of thermal energy density. If we consider the

case of the real Earth's magnetic dipole field and assuming
K8

the ideal gas law for the plasma, i.e., Po(r) = -- To(r) p (r),

we can determine the distribution of thermal energy density

as a function of radial distance as

r dr'
Po(r) = P(r=R,) exp - H(r' ) (2.13)

where r =RE is the position of the Earth's surface and H(r')

is the scale height given by:

K TO (r)
H(r) = (2.14)

mg

Assuming typical values for the plasmasphere medium we

could estimate the scale height at the equatorial plane

(i.e. e 0 900). Let us consider that the plasmapause is

about 4 Earth radii in corrotation with the planet, with a

typical particle density of 3 x 103 particles/cm 3 and with

a temperature of 2 x 105 OKelvin. For these typical values

the scale height is compared to be of the order of

3.46 x 106 km, which is roughly in agreement with the observed
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density fall-off at the plasmasphere (see Chappell, et al.

1970a,b).

From the first order terms we can find the linearized

equations for the perturbed quantities. These equations

are:

DSV ]B *SB
p DI + (6V-V)V +2Qx6V = -V SP + -o - + (B *V)6BDt --o 1 -o - -

1 -0 -
O

D6B (B *V)6V + (6B-V)V - (V-V)B -6B(V*V ) - (6vV)B
Dt 0 0 0-o . 0 o

Dp _ - V'6V-6VV p -6P VV
Dt o- -o

D6P 2 D6p +
Dt - - o s Dt - -

(2.15)

(2.16)

(2.17)

(2.18)
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where CS is the sound velocity defined by

1/2

C = [P(r)) (2.19)
s p (r)

and y is the adiabatic constant, i.e. y = 5/3

The system of equations (2.15) to (2.18) is now linear

in the perturbations and we can solve it by the use of

"normal mode" technique or Fourier-Laplace integral

transform. By expanding the perturbed variables in normal

modes given by

6P(r, , ,t) P(r)

=* )exp (-iwt+ime+inf)

^U(2.20)
6V(r,O,4¢,t) V(r)

B(r)

we can obtain the equations for the disturbance. Note that

equations (2.15) and (2.16) are vector equations which

represent a system of six equations for both the components

of the velocity and the magnetic field perturbations. By

substitution of equation (2.20) into the linearized equations

(2.15) to (2.18) and using a series of vector identities,
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the transformed equations in component form are given by:

2p o~) P i(K *B o )  2(B *B)
-iQp VV r B - -pg

o o

So V i(K t Bo ) BPo r tr B__
-irp V + (rV ) =-iKPT + B + (rB )

0 r 9r 06 e T 0 ry r o0o o

(2.21)

(2.22)

Ui (K *B)
P V t-o B

-iPo V + (rV )+2p Q V =iKP B + (rBo ) (2.23)
o r ar O O Er t ' rp r O

ip +Vr 2 D_ 1 (r VR) + i (Kt )+ r rr o 2 ir )t

-i2B = i(Kt *B )Vrr t -o r

(2.24)

(2.25)

8Vo V o  [B BiB6 i(Kt Bo)  oe ol _ Bo (V. ) (2o26)
-i2B = i(K V +B -V B () (2.26)

-t -o rr r rr rIo - -

-= (+- - of o- (V ) (2.27)

-iB i(t Bo)V r+Br r r Br r o4

o 2 . o 1 i
-iPP + V C + V (B *B)

T r Dr s r r o -)
(2.28)
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where 2 is the Doppler shifted frequency, Kt is the

tangential wavevector and PT is the total pressure

perturbation defined respectively by

Q(r) = w - (K *V ) (2.29)
t -o

Kt = K6e + K K =m/r , K =n/r (2.30)

S(Bo'B) (2.31)
P = P +

T* 110

We now proceed to obtain the general wave equation for

the perturbed amplitudes which will be the governing

equation for the model. We shall manipulate the system of

equations (2.21) to (2.28) to obtain a set of two first

order differential equations coupled by a matrix system

(see Pierce, 1967a,b; Claerbout, 1968; Laster, 1970).

For dependent variables we shall use those quantities which

must be conserved at a boundary in the plasma fluid. The

quantities to be used are the radial component of the

perturbed displacement Zr defined in terms of the radial

velocity as follows:

r r (2.32)
r

and the total stress P T defined in equation (2.31) (see

Laster, 1970; Gossard, et al., 1975). For the purpose of
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obtaining the couple set of differential equations, we

shall first eliminate the density perturbation p and the

components of the magnetic field fluctuations Br B6

and B by using equations (2.25) to (2.27) and (2.28) in

the remaining equations. Then solving for V6 and V from

equations (2.22) and (2.23) and substituting all together

into equations (2.21) and (2.24) we finally get the

coupled matrix system of first order differential equations

of the form:

dX(r ) _ all(r) al2(r)
- X(r) (2.33)

dr a21(r) a 2 2 (r)

where X(r) is a column vector of the dependent variables

given by

X(r) = (2.34)

2-r Er
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and A(r) is a two-by-two coupling matrix whose elements

are defined by:

a (r) = -
11

2 __A ) 2 2/r
2 (g+ )-2(K .C ) C /r

r t A s

(l+M2 )C 2  2s M

2"(K *V )t -o
2
A

2Q3 (KtC ) (V *C ) 2Q r 2 C (K xC)
-t A o -A A t -A

r2 22 (1+M2 2 2 C 2
sMA M As

ao) 2 2 22 t A ) 2
a2(r) = -0 r -A2 A o R 2 2

4(K C ) (V *C )
t A -o -A

2
r Q

20(K *C )(V *C ) 2Cs 2(K C )(V*C)
t A o -A f s t A o -

2 2 g r rA
rC A

s A

2 B2
2 2 Q 2 o-M2~_s/r)- (+M 2  p (Po+ I +

-M+ 2 )C 22 Dr (o 2p
s Mo

2 3 (Kt *C ) (V CA )

a 2 1 (r) = 2 2 2
21 o (1+M 2 )C 2 

SsM A A

a 2 2 (r) = - all(r)

2M2 ( 2 -  C)2/M2)

+M2 2
r(l+M )QM

(2.35)

2r
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2 2 2
In the previous equations the parameters QA' M' o

and Q2 which represent certain natural frequencies defined by
R

Q2 2 (K *C )2 (2.36)
A t A

(K *C )2
2 t2 t A (2.37)
M 21+M

2
S2(r) _ 1 [po
o Po C2 Br 2p 0

S

2 2
2C 2C aB 2V

A A o o
+ +

2 rB Dr rr o

2 2 KeCAe(Kt*CA)
R EL 2

A

D o  o M 2

Tr r 

3V
o

3r

K CA (Kt-CA

(1+M2)Q 2
M

1
(1+M2)Cs A Mj

C (K *C )C K C
A4 -t -A A c t -A'
2 (1+M2  C 2 2

(M sM

+ 4,,,[ rV

2  2
C -C s

+ Ar s

((Kt .C )2 (CA (V xC A) r+ CA (V C ))
t A -o -AA

2222 A
r(l+M2 ) C  M A

S M

(2.38)

(2.39)

CCACA (K t*CA) (KtxCA) r 2
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In addition we also defined the quantities M and CA as the

magnetic Mach number and the Alfven velocity respectively

together with the parameters CA6 and CA by

C (r)
M = (2.40)C s(r)

B (r)

C (r) = o (2.41)

VP (r)p0 0

Bo (r) B (r) (2.42)
CA (r)= CA (r)= (r)

Po (r) Po()o

The wave equation (2.33) has some interesting properties.

First, the trace of the matrix A(r) is zero which implies

that the eigenvalues have the same magnitude but with opposite

signs. The eigenvalues of the matrix A are associated with

the propagation properties of the wave. Another feature of

this matrix system is that for certain values of r, some

of its elements may become singular. These singularities

are given by

Q(r) = 0

Q(r) = + KtC-A (2.43)

1+M

(r) = + (K tC )
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and are associated with the existence of drift waves, slow

magnetoacoustic waves and guided (or shear) Alfven waves in

the plasma, respectively.

A local analysis of the wave equation in relation to

the plasmapause region will be discussed in the next section.
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11.3 Local Analysis and Dispersion Relation of the Wave
Equation

In this section we shall present an extensive local

analysis of our theoretical results, i.e. the general wave

equation (2.33), in relation to characteristic properties

of the plasmapause region. In order to simplify the

investigation of the wave equation it is convenient to

establish a series of approximations in accordance with

their validity at the plasmapause. First, let us define

the parameter a, as the angle between the plasma flow

velocity and the magnetic field; and the parameters Xb

and Xv as the angles between the wavevector _Kt and the total

magnetic field and flow velocity, respectively. We shall

assume for simplicity that our theoretical results are

localized at the equatorial plane. Also, we will consider

the magnetic field B (r) as a dipole field along the

meridian plane, so that B o(r) >> Bo (r).

This approximation is very consistent with magnetic field

data at low and medium latitudes. Another approximation

will be to consider the plasma flow velocity V (r)

basically along the positive C-direction at the equatorial

plane, so that Vo (r) > > Vo (r). This is consistent

with Axford et al. and McIlwain's models previously

mentioned. Consequently, quantities which involve the

dot product V 0 C = V C cos can be neglected. This-o -A o a
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implies that the angle a is near 900, therefore the magnetic

field and the flow velocity vectors are basically perpendicular

to each other. Using these approximations in the wave equation

(2.33) we find the simplified wave equation

dX(r) = A(r)X(r) (2.44)

where the elemtns of the matrix A(r) are given by

2 C A 2(K ) 2 2
r + r 2 (KtC) Cs/r

a (r) = - I rtMA s/r

(1+M 2 )C 2 2
s M

2SI(K *V )t -o
2rQ2
A

2 C Ae (K t xC A)v
(l+M2 ) C KM As

2 2 2
p2V r +(K tC ){

a2(r) = o [.2 2 2 o A

12 2 A o R 2 2 
r r A

(2.45)

2C 2 2 B 2
1 ___;~.P-F--2--)-

(1+M )C s MP r o

2 4 K2
a 2 1 (r) = I.r M -

Po (1I+M2 )Cs M A A

2M2 2 _ t .-C A ) 2/M 2

r(l+M 2 )

a22 (r) = -all(r)
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The simplified wave equation has some interesting

properties. Note that for certain values of r some of the

elements of the reduced matrix A(r) in equation (2.45) can

become singular. These singularities are given by

w = K tV (r) cosXvto

KtCA (r)C s (r) cosXb
w = KtV o (r) cosX + (2.46)

C + C
A s

w = KtVo(r) cosX v + KtCA(r) cosXb

and they correspond to the propagation of drift waves, slow

magnetoacoustic waves and guided Alfven waves, respectively.

The singularity associated with the guided Alfven waves

occurs due to the presence of a magnetic field in the plasma.

However, the singularity associated with the slow magneto-

acoustic waves requires both, the presence of a magnetic

field and of finite thermal effects in the plasma. Another

feature that we shall discuss in a later section is the

association of these waves to the Kelvin-Helmholtz

instability problem. We shall demonstrate that the presence

of the magnetic field perpendicular to the flow velocity

has some stabilizing effects. From now on we shall refer

to the singularities associated with the guided Alfven

waves and the slow magnetoacoustic waves as hydromagnetic
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singularities and the one associated with drift waves as

the hydrodynamic singularity. If we localize the hydro-

magnetic singularities in the w-axis we find that depending

on whether the sound velocity is smaller or larger than the

Alfven velocity, i.e. low or high B-plasma respectively,

the position of this singularity changes. Also, note that

each of the hydromagnetic singularities bifurcates into

two components that corresponds to propagation parallel or

anti-parallel to the magnetic field. However, these

bifurcations do not occur at the same spatial location

and are not symmetrical relative to the hydrodynamic

singularity since the plasma is inhomogeneous. Note, from

equation (2.46) that the hydromagnetic singularities

converge to the hydrodynamic singularity when the angle

Xb approaches 900, i.e. when the wave propagation is

perpendicular to the magnetic field. In addition note

that the component of the phase velocity along the magnetic

field is much greater than the perpendicular one, since the

Alfven velocity is much greater than the plasma flow velocity.

As we previously mentioned in the first chapter, the

Kelvin-Helmholtz instability is more unstable for short

wavelengths modes propagating along the flow velocity. We

have also mentioned that for the interchange instability

the most unstable modes are those that do not change or

deform the magnetic field lines. This suggests that the
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wavelength along the magnetic field is much greater than

the wavelength perpendicular to it. It also implies that

the shear flow-magnetic field line interchange problem is

mostly associated with the hydrodynamic singularity which

is related to drift waves, since a finite component along

the magnetic field is stabilizing. Therefore, our problem

reduces to the study of modes such that satisfy the

condition Xb Z 90 0 . Nevertheless, for reasons of

completeness, a study of the solution of the wave equation

near the hydromagnetic singularities shall be presented in

Appendix A. From the study of the hydromagnetic

singularities we find that in a medium whose properties

change with position, the radial wavelength decreases to

zero as a wave approaches any of these critical levels.

From the analysis of the hydromagnetic singularities we

showed that for a purely convective system the most unstable

mode is perpendicular to the magnetic field. We have also

shown that these hydromagnetic modes can be propagating or

evanescent, depending upon the magnitude of the frequency

2 2
IWA2 with respect to the magnetic Brunt-Vdisal1 frequency 10 .

Let us now confine our attention to those modes which

propagate perpendicular to the magnetic field, i.e. Xb= 900.

In this situation both hydromagnetic singularities converge

to the hydrodynamic case. After rearranging the wave

equation (2.44) in order to see the effect of the
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hydrodynamic singularity, the simplified equation becomes

d f u

drX(r) = A(r)X(r) (2.47)

where X(r) is now defined in terms of the radial velocity

fluctuation Vr and the pressure fluctuation as follows:

P
T

X(r) = (2.48)

2-
r Vr

and where A(r) is a two-by-two matrix whose elements are

given by:

(g+2CA2/r 2Kt
a11 (r) = - 2 2 rC (V2+ +)]

C +C

a(r) iPo 02 2 4 22 Vo Vo

a 2(r) = BV-- (Vo +,r) - (Vo r )  -r (2.49)

ir 22 1 Kt2

21 (r) P O [ 2+C 2 2

A s

rKt (vo v o
a 2 2 (r) = - all(r) + -Kt rV r
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and where 0 (r) is defined as the magnetic Brunt-VdisdldBV

frequency given by

nnpo (g+2 C~/r) ZnP  M(-2C2
1 ) D£nBo 2

+r y(1+) -r (1+ ) r r ro

Note that in this matrizant wave equation the only

singularity is given by 2(r) = 0, i.e. w = KtVo(r).

As we have previously mentioned, this singularity is

associated with the propagation of drift waves. If a plasma

medium has gradients of density, temperature, magnetic field,

etc. these inhomogeneities give rise to particle drifts (or

currents). Due to these particle drifts, plasma oscillations

which are called drift waves, may be excited and move across

the magnetic field with a phase velocity on the order of the

diamagnetic drift velocity of the plasma particles. These

plasma oscillations are modes that depend on the

inhomogeneities of the plasma medium. Drift waves are

supported by these gradients and the kinetic energy of these

drifts can be transferred to the plasma oscillations, thus

creating an instability (Mikhailovskii, 1967; Krall, 1968;

Chen, 1974; Haseqawa, 1975; Cap, 1978 and Schmidt, 1979).

Let us now derive the dispersion relation for a quasiuniform

medium. As in hydrodynamics, in MHD theory it is difficult,

in a non-uniform medium to specify which
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part of an oscillatory motion corresponds to an upward

travelling wave and which to a downward travelling wave

since there is a continual interchange between the two.

In the uniform medium, on the other hand, precise and

physically important identifications can be made. In this

subsequent analysis we shall consider a quasi-uniform medium,

i.e. a medium whose properties do not vary very much over a

radial wavelength. This condition on the medium is

equivalent to a WKB approximation on the wave equation (2.47).

In addition we shall also consider that the Doppler shifted

frequency Q(r) varies very slowly as a function of the radial

coordinate. To simplify the analysis, let us modify the

wave equation (2.47) by transforming it into the so-called

"transmission-line" form (Madden, 1972). These forms

rearrange the matrix in such a way that the main diagonal

elements are zero (see Appendix A). After some algebraic

manipulations the rearranged matrizant wave equation becomes:

-fa,, (r') dr" -f (a., -a) dr -fa,, (r )dr

To PT

d -(2.51)
dr -fa.(r') dr f(a,,-az,) dr -fan(r) dr(

r2 a , 2r,,ur r, 0 r
rVr -- r
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Therefore, from the eigenvalues of the transformed matrizant

wave equation we find the dispersion relation

2
2 2

K 2(r) = K2 BV + 1 [ BV ] (2.52)
r 2 C 2 +C 2 BV

A s

Therefore, for a quasiuniform medium the general solution

of the transformed wave equation (2.51) is given by

ik r -ik r
X(r) = CV +  r + C2V_ r (2.53)

where C1 and C2 are arbitrary constants of integration,

V+ and V_ are the column eigenvectors of the transformed

matrix A(r) in equation (2.51) and kr is the radial

wavevector defined in equation (2.52) which basically

corresponds to the eigenvalues of the matrix A(r).

2 2
We shall assume that C +C is large. To study the

A s

nature of kr on the basis of quasi-uniformity, two

situations shall be considered separately. In the first

case the Doppler shifted frequency Q is much greater than

the magnetic Brunt-V.is&l& frequency QBV' i.e. high

frequency eigenmodes. Thus, the dispersion relation

(2.52) becomes
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S= KtVo(r) + K2 + K2 CA + C2] 1/2 (2.54)

The second situation occurs when the Doppler shifted

frequency is much smaller than the magnetic Brunt-Vis&l1

frequency, i.e. low frequence eigenmodes. In this case

the dispersion relation (2.52) gives

KtBV(r)
w= KtV ( r ) + (2.55)

K +K
t r

The dispersion relationship in equation (2.54) for high

frequency eigenmodes gives the propagation properties of fast

magnetoacoustic waves. These waves are non-dispersive and

they propagate perpendicular to the magnetic field.

These waves will propagate only if

1/2> (C2 + C2 )  
(2.56)

Kt A s

In the case of low frequency eigenmodes, the dispersion

relation (2.55) gives the propagation properties of drift waves.

These waves are dispersive since, as we shall discuss in a later

section, their phase and group velocities are different. These

waves will propogate only if the condition

2 2 1/2
K < (CA + Cs) (2.57)
t

is satisfied.
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By dispersion we mean that the phase velocity is dependent

on the wavelength causing both the group and phase velocities to

be different. Dispersion can arise from two distinct causes.

It can be structural in origin, i.e. it will depend on the

properties of the medium, or it can be geometric in origin and

arise from interference effects due to reflections of the

boundary of the plasma medium.

The dispersion relation (2.52) for both low and high

frequency waves can be represented in a different way. Assuming

that the medium properties and the Doppler shifted frequency vary

very slowly as a function of the radial distance and considering

rotational effects are very small, we can rearrange the dispersion

relation (2.52) in the form

^2 %2
r t =1 (2.58)

2 b2

which represents the equation for a general conical surface and

where the coefficients are defined by

2 21/2 2 2 1/2
A K (C + C ) A Kt(C + C )

r A s A s
K= K =
r BV BV

(2.59)

2 r 2 2 %2 _

a = 2 1 = = 2
BV BV
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A A

Observe that Kr and Kt represents the normalized radial

and horizontal wavevectors components or the "magnetic index

of refraction" in analogy with electromagnetic waves in a

transparent medium. The surface generated by equation (2.58)

describe the propagation properties of the eigenmodes of the

system. The propagation surfaces are plotted in Figure 2.1.

For fast magnetoacoustic or unguided Alfven modes a2 > o

and b2> o and the contours are ellipses of constant

normalized Doppler shifted frequency in the range from 1.2

to 1.8. This normalized frequency 0 is the ratio between

the Doppler shifted and the magnetic Brunt-V~isdld

frequencies. These ellipses represent the high frequency

A

eigenmodes, i.e. I Q>IB0 V with major semi-axis along K

For drift waves, a2< o and b2 > o and the contours are

hyperbolae of constant normalized Doppler shifted

frequencies in the range from 0.2 to 0.8. These hyperbolae

represent the low frequency eigenmodes, i.e. IQI < IQBVI

and they are concave toward the positive and negative

Kt -axis. Notice the analogy of these curves in Figure 2.1

to the one described by Hines (1960) and Claerbout (1967)

for acoustic-gravity waves.
h A

In Figure 2.2 we show the Q - K dispersion plot forr
& A A

constant Kt contours and in Figure 2.3 we give the Q - Kt

A

diagram for constant K contours. These curves can be
r

used to analyze qualitatively the radial and horizontal
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phase and group velocities for unguided (fast magnetoacoustic)

Alfven waves and drift waves. The most significant

observation to be made comes from Figure 2.2 where it may

be seen that for drift waves, the radial phase and group

velocities are oppositely directed. Thus, if the energy

that sustains the drift waves has propagated upwards, then

observations of the waves themselves would show a downward

movement.

Equations (2.54)and(2.55)can also be used to study the

components of the phase and group velocities for fast

magnetoacoustic waves and for drift waves. The group velocity

gives the direction of energy flow (except in a highly

dispersive medium) whereas the phase velocity is the

observed movement of the peaks and troughs of the wave.

In a highly dispersive medium, the concept of group velocity

becomes meaningless because there are not enough waves of

nearly equal phase velocities to allow a wave packet to

form. Therefore each component will travel individually

with its own phase velocity.

Assuming a slowly varying medium and using equation

2.54 we can get the components of the phase velocity for

unguided Alfven waves as
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2 2 1/2
(C + C)

- V + A s
K o - cose K

2 2 1/2
(C +C )

-V cot + A
K o K - sin8K

where GK is the angle of propagation defined by

6K = tan- [ K rKt

The group velocity components for these waves are given by:

-V +
DKt o -

1/2
(C + C ) cos e

A s K

1/22 21/2
(CA + C)

A s
sin eK

w
3Kr

In the case of drift waves, the phase velocity

components are obtained from equation (2.54) as:

+ BV- V + cos 8
Kt o - Kt K

2B cos K

- V cot e + BV K
K o K K sin 8

(2.60)

(2.61)

(2.62)

(2.63)
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and the group velocity components are:

2
SQBQV sin 8K cos 8K

- V +
Kt - Kt

(2.64)

T cos 2  sin e= + BV K K
r Kt

Note that in the case of unguided Alfven waves, when

the angle of propagation eK approaches 900, both the

radial component of the phase and group velocities

2 2 1/2
approaches the same limit, i.e. + (C A+C )1 . However,

the horizontal phase and group velocities approaches + w

and the flow velocity Vo , respectively. These should be

expected since along the radial direction, due to

compression and rarefactions of both the plasma and the

magnetic field, the fluctuations will propagate with an

effective velocity given by the root mean squared of the

sound velocity plus the Alfven velocity. In the horizontal

direction the behavior is quite different since the only

motion consists of the plasma flow velocity. Similarly,

when the angle of propagation 8K approaches 00, both the

horizontal component of the phase and group velocity

2 2 1/2
approaches the same limit, i.e. V0 + (C + C )

In this case the radial components of the phase velocity

approaches infinity while the group velocity approaches

zero.
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For the case of drift waves, when the angle of

propagation eK approaches 90 *, both the horizontal phase

and group velocities approach the plasma flow velocity V o.

In addition, both the radial phase and group velocity

approach zero. However as the angle of propagation 0 K

approaches 00 the horizontal phase velocity approaches

V + IQBV/Kt while the corresponding group velocity

tends to Vo . Similarly, the radial phase velocity component

approaches infinity while the corresponding group velocity

approaches zero. Observe that in this case an effective

velocity QBV/Kt due to "buoyant" effects modify the plasma

flow velocity.

Relations (2.60) to (2.62) for fast magnetoacoustic

waves and equations (2.63) to (2.64) for drift waves show

how the energy of these waves is distributed as the wave

propagates through the medium and the angle of propagation

changes.

Note from the dispersion relation (2.55) that in the

case of drift waves, the angle of propagation can also be

expressed in terms of the Brunt-Vdisdla frequency as

K 2 1/2

tan 6 K [ B 2 1] (2.65)

t

which implies that
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S= + I'BV COSKI (2.66)

Expression (2.66) is a surprisingly simple and useful

relation between the wave frequency, the propagation angle

and their dependence on the fundamental hydromagnetic

Brunt-Vaisl& frequency. Observe that radial variations

in the model parameters will vary the value of kr in

equation (2.55) and (2.65). The most important variations

are those imposed by gradients in the medium properties.

If kr2 becomes negative and remains negative for at least

half a wavelength, then the radially propagating waves will

not be transmitted or propagated through the region. This

means that the waves are evanescent or trapped and they

can only propagate horizontally in that region. Therefore

there will be a point, called the Alfven cut-off at which

2
kr = 0, thus giving rise to reflections and separating

both the evanescent region from the propagating region.

This point in the frequency domain is given when

(r) = BV(r) (2.67)

and it represents the reflection condition for both high

and low frequency eigenmodes. This condition also implies

that for a given maximum flow velocity (max Vo ) there will

be a minimum wavevector Kt for which the waves will remain



81.

trapped and no propagation outside of the shear flow zone

will occur. This wavevector is given by

W - BV
K > min (Kt ) = max(V (2.68)t t max(V )

where 2BV is the local hydromagnetic Brunt-Vgis&la

frequency at the point where the flow velocity is maximum.

The two modes, fast magnetoacoustic and drift waves

are analogous to the sound wave and the gravity wave

respectively of the hydrodynamic problem in the Earth's

atmosphere. It is possible to show that our problem goes

over smoothly to the atmosphere situation as the magnetic

field goes to zero. For this reason we have used the

terminology of the atmospheric acoustic-gravity wave problem

by merely adding the magnetic field effects and therefore

introducing in anology the concepts of magnetic Brunt-

Vaishl& frequency and the magnetic Richardson number.
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11.4 Wave Impedance and Boundary Conditions

In this section we shall discuss the electromagnetic

and the mechanical boundary conditions that propagating

waves must satisfy at the boundary between two medium.

When a propagating wave in a plasma medium impinges

on the boundary of a contiguous second medium, a reflected

wave is generated in the first medium and a transmitted

wave in the second medium. The ratios of the respective

intensities and pressure amplitudes of the reflected and

transmitted waves to those of the incident wave depend on

the characteristic impedances of the two media and on the

angle of incidence of the incident wave.

The electromagnetic boundary conditions are the

continuity of the radial component of the magnetic field

and continuity of the tangential electric fields. It is

found that the normal component of the magnetic field is

indeed continuous, and in fact vanishes. This is not a

surprising result since in the ambient state, there was

no normal component of the magnetic field. Furthermore,

the field lines are struck to the infinitely conductive

plasma, and since no plasma crossed the perturbed boundary,

neither did the magnetic field.

There are two mechanical boundary conditions that must

be satisfied at all times and at all points on the plane

surface separating the two media. These are: i) the dynamic
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condition which states that the total pressures, i.e.,

thermal plus magnetic pressure, on the two sides of the

boundary are equal; and ii) the kinematic condition which

states that the plasma parcel velocities normal to the

interface are equal. The first condition of continuity

of pressure results from the fundamental law that the

pressure in a fluid plasma is a continuous, single valued

function. The second condition is equivalent to the

requirement that the two media remain in constant contact

at the boundary.

Some subtleties arise upon the application of the

kinematic condition. We know that linear wave theory is

only strictly applicable to waves of infinitesimal

amplitude. If the amplitude is sufficiently small compared

with the wavelength, the normal to the interface tends to

be radial and the continuity of radial velocities becomes

(6Vr) = (6Vr) 2  (2.69)

This is the form in which the kinematic condition is

often applied in wave theory, but it has some limitations.

Rigorously, the kinematic condition should have been stated

as

(6r) ) = (67) 2 (2.70)
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i6V
where 6Er = Q r is the radial displacement of the plasma

fluid on each side of the boundary. When the unperturbed

plasma flow velocity in the two sides is not equal, i.e.,

(V)l#(V0 ) 2 then condition (2.69) can only be satisfied if

because

D6 r  ;6 r6V - + V * Vs (2.71)
r Dt Dt -o - r

Another way of representing the continuity of pressure

and velocity is by means of the wave impedance. The ratio

of the total pressure in a medium to the associated plasma

velocity (or displacement) is defined as the characteristic

impedance Z of the medium for the particular type of wave

motion present. In general the specific impedance is complex

and its real part is called the specific resistance and

the imaginary part, the specific reactance. This is because

the total pressure is not always in phase with the fluid

velocity at the boundary. The characteristic impedance of

a medium for magnetohydrodynamic wave is analogous to the

index of refraction of a transparent medium for light waves.

The characteristic wave impedance Z can be computed

using the wave equation (2.51) assuming a quasi-uniform

medium. After some algebraic manipulation of the wave

equation, the wave impedance is given by:
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Z2 + C = 0 (2.72)

where Z is defined by

T
Z = , (2.73)

rV r

and the coefficient C is given by

2 2 2
Po - BV)

C 0=BV
4 2 2 (2.74)[2 2 -

C 2+C2  t2
A s

If we assumed, as we previously mentioned, that the

rotational effects are very small in comparison to the

gradient effects, then a simple expression for the

characteristic wave impedance for fast magnetoacoustic

waves and for drift waves could be obtained. Considering

the case of fast magnetoacoustic waves where the condition

II>>IBVI is satisfied, the wave impedance is given by

2 2 1/2
r Z = + p (C + C ) (2.75)

and for drift waves, where the condition II << IQ I
BV

is assumed the wave impedance becomes
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r Z = + P'BV /Kt (2.76)

By the use of the impedance matching boundary condition

we could find an approximate dispersion relation in the

regime where we would expect the Kelvin-Helmholtz

instability to occur. Similarly with previous calculations,

we can transform the wave equation (2.44) into the so-called

"transmission line" or canonical form, in order to simplify

the dispersion analysis (Madden, 1972; Claerbout, et al.,

1968). Therefore the transmission line from of equation

(2.44) becomes

-f a, (r )dr' -f (a,,-az) dr -fa,, (r' ) dr

dT 0 C a (r) P

dr

-f aa(r )dr f(all-a,)dr' -fa,(r')dr" (2.77)

C r 2 r C a (r) 0d r2 r

where the matrix elements a.. (r) are given in equation
1J

(2.45). The simplicity of this form allows us to study the

qualitative behavior of guided Alfven waves or drift waves and

has the advantage of allowing continuity in the dependent

variables even if singularities in the matrix elements exist.
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For simplicity we shall assume that the medium

properties are slowly varying functions of r. Therefore

curvature and rotational effects can be neglected in

comparison with the gradient terms. From the analogy to

transmission lines we have for the radial propagation

2 4 Q22  2 BV ] 2 2 [ 1  BV1
K= Kt B + 11 - (2.78)

A A s M

and the characteristic impedance

2 _ V
+ p (2.79)
rr

We shall now assume that the plasmapause could be

represented as a discontinuity between two different

constant media. Therefore the correct boundary condition

at the discontinuity r = rp is given by the matching of

the wave impedance at this point. Since we assume that

the medium has constant properties, then Q2 must vanish.
BV

Also we could neglect the second term at the right hand

side of the dispersion relation (2.78) since the Alfven

velocity is very large for the plasmapause region. In

this case the dispersion relation (2.78) simple reduces to

Kr = + iKt (2.80)



88.

which is the same value obtained by Chandrasekhar (1961)

and by Laster (1970). Since the value of Kt is common

for both media at the plasmapause and assuming that the

wave solution must decay away from the discontinuity, then

by matching the impedances of the two media we finally get

2 2
l Al 2 A2=- K at r = rp (2.81)
Kt  Kt

where the subscripts 1 and 2 refer to the properties above

and below the plasmapause interface. Recallling that we

have taken a coordinate system fixed in the center of the

Earth and corrotating with the denser plasmasphere, we have

Q =w -(Kt.CA) 2 and Q =2 -(KtCA) 2. The expression given in
1 2

(2.81) is the dispersion relation for the two half-space

plasmapause problem. It provides a relation between w

andKt which must be satisfied in order for a solution to

exist for the problem as posed. We shall now study the

dispersion relation by solving this equation for the

eigenfrequency w(Kt ) . Solving equation (2.81) for

we simply get

P2 K V cosX2 1 2 C 2 2 (2.82)
v2 o2t v2  1 2 Al b1

S+P2 2 2 2  1/2

+ ( ) cos Xb2 -V cos X
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These modes can become unstable if the quantity under the

radical is negative. This occurs if

r._ 2 2 2 1+ 2 2 2 1 1/2
IVzcosXv > ( 2 )C cos Xb I+( ) C cos (2.83)

and in this case the growth rate for the instability is

given by

Im=W= +  2 2 2 P +P2 2 2 2 2 1/2
Im=. ( 1 2 C cos Xb )C cos X -V cos X

1 1 +P 2  P2  A, b p Az E O

(2.84)

Observe that the condition for instability given in equation

(2.83) is mostly satisfied when the propagation vector is closely

perpendicular to the magnetic field. Note that when the

streaming vanishes, these solutions are guided Alfven waves

with speeds determined by the average density of the form

Kt 2 2 2 2 1/2
=+ PlCCA s Xbs  + P2 CA2 co s Xb 2] (2.85)

PI2
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11.5 Dispersion Analysis in the Vicinity of the Hydrodynamic
Critical Level

In this section we shall present an anlysis of the

hydrodynamic singularity Q(r c ) = 0 in the wave equation

(2.47). We will discuss the behavior of the solution of the

wave equation and its dispersion relation in the vicinity of

the singularity r = r . This singularity has come to be

known as critical level since as the mathematical singularity

suggests, the wave behavior in that vicinity can be rather

dramatic (Booker et al., 1967; Claerbout, 1967; Acheson,

1972; Rudraiah et al., 1972a,b,c, 1976, 1977). This critical

level can be defined as a site where strong coupling between

a drift wave and the background plasma flow occurs. The

singularity (r c ) = 0 represents a critical level rc at which

the horizontal phase velocity w/Kt matches exactly the plasma

flow velocity Vo(rc).

Notice that there will be a rapid variation of the Doppler

shifted frequency across the medium since the flow velocity

changes as a function of the radial distance. Let us initially

confine our attention to the solution of the wave equation (2.47)

in the neighborhood of a rapidly varying medium. For this let

us expand Q(r) in a Taylor series around some point r in the

varying medium as follows:
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3V Vo -
r r-A(=)

whereA(r) is defined by

w +iw.-K V ( )
A(r) r 1 to (2.87)

Kt t;r r r=

and where wrand wi are the real and imaginary part of

the wave frequency w. Then substituting the expansion

(2.86) into the wave equation (2.47) we get the modified

wave equation valid around the rapidly varying medium as

d % B(T) '
d X(r) = X(r) (2.88)

r - r - A(r)

where X (r) is the vector amplitude defined in equation

(2.48) and B(r) is a two by two non-singular matrix

evaluated at the point r and whose elements are given by
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2
(g+2C2 ) 2K

2 C2 r (Vo 2E
C +C

A s r=f
b (r) =

2 [ Vo Vr

0 1 BVI r=b 12 ( r) 2 K[ V V
Dr r

r=r

. 2
ir

b (r) =21 p0
K 2 2 KtC +C
A s r=

2Kt
r- (V +Er)
r 0 E0

o- K(
t r

b2

C 2
A

b22(r) =
W V

o o0
t 3r r

Therefore, the solution of the wave equation in the varying

medium can be easily found by integrating equation (2.88)

to give

X(r) =

B( r)£n( r - _ (-()Co
X(ro)

(2.90)

(2.89)

V

rj
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where X(r ) is an initial boundary condition at some

initial point r 0 . Observe that the quantity in bracket

is a function of a matrix which can be easily determined by

Sylvester's theorem which gaves

Ar ArBrn( r 0Xin(Ar (sI - B)

S .2= (sf i) (2.91)

where the . 's are the eigenvalues of the matrix B(r)

and I is the identity matrix.

Observe that during the integration of equation (2.88)

we cross the point where the singularity exists, i.e.

Q(r)=KtVo(rc). To integrate around the singularity we must

use contour integration techniques, however it is extremely

important to know whether the path of integration goes above

or below the singularity. This problem was resolved by Booker

and Bretherton (1966) and the correct solution is to select

the path of integration below the singularity. The choosing

of the path of integration is related to whether or not

the causality condition is satisfied (see Briggs, 1961; Krall,

et al., 1972). During the integration we found that in the

limit of the vanishing of the imaginary part of w, as we

integrate from r<rc to r<r the phase of the argument of the

logarithm changes from -r to 0. Thus, in the case of a small

but finite imaginary part and
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in the limit of r+r we find that 2 (r) - KtVo(r)

and also that

£im A(r)
r+r c

iw i

S r r=rr=r
c

We also find, neglecting the imaginary part, that the

elements of the matrix B reduce to

2 [vo+ QEr rr
b ll(r) r v c

r=rc

ip
b (r) 212 c r

c

2ir
b2 1 (rc) - P

b2 2 (rc ) = 1 +

QBV(rc)

Kt r r r
Ce

Kt

v o  V
0 0

3r r r=r

2(V + Er)=r

V - Vr o 0
c 9r r

r=r

(2.92)

(2.93)
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Thus, the solution at the critical level will be given by

equation (2.90) expanded by Sylvester's theorem, together

with equations (2.92) and (2.93). The eigenvalues of the

matrix B at the critical level are determined from the

maxtri elements in equation (2.93) as

X+ = 1/2±p , = V1/ 4 -R i  (2.94)

where R. is defined as the magnetic Richardson number1

evaluated at the critical point rc and given by

Q 2 (r)
R =BV (2.95)i aV V 2 

and where QBV has been previously defined in equation

(2.50) as the magnetic Brunt-Vais&l frequency.

An important result related to the stability of the

system, i.e. the plasmapause, can be obtained from the

analysis of the eigenvalues in equation (2.94) and the complex

argument of the logarithm in equation (2.90). Note that if

R <0.25 and the imaginary part of the frequency wi is positive,

the equation (2.90) will show unstable solutions. Thus, the

magnetic Richardson number will indicate whether turbulent motions

will persist or decay in the inhomogeneous plasma. Note that, as

it was previously mentioned, this number provides a measure of
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the stabilizing influence of the magnetic buoyancy modified

by pressure and density gradients in comparison with the

destabilizing effects of the velocity gradients. Therefore,

the instability criterion for drift waves propagating in

an inhomogeneous plasma with a velocity shear becomes

R. < 0.25 (2.96)

Another important result that can be obtained from the

analysis of the wave equation around the critical level is

the behavior of the dispersion relation in this vicinity.

From equations (2.52) and (2.86) we find that as r approaches

the critical value rc, then Q(rc ) )-0 and the dispersion

relation in the vicinity of the critical level becomes:

2 R
K (r) 1(2.97)r (r-r )

c

which implies that as r-trc , Kr(r) + o i.e. the

radial wavelength tends to zero as the wave approaches the

critical level. By examining the behavior of the components

of the group velocity in the vicinity of the critical level

we find how the energy is distributed. Therefore, inserting

equation (2.86) into the components of the group velocity in

equation (2.64) and rewriting these equations we get:
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- V + (r-rc)
oK - r r r=r ct c

(2.98)

K DV Vaw _ t o  o  2
- + i(r-r)

r R. r=r
I C

Note from equations (2.98) that as the wave approaches the

critical level rc it is absorbed by the plasma flow, i.e.

it cannot be reflected or transmitted. Another way to

examine the absorption phenomena is by considering the

time required for a wave energy to propagate from one level

rI to another level r2 across the critical level. This time

is simply calculated as

r2  1/2

lAt ri 1 1 ] (2.99)K V V rl-r r 2-r
rl K

r=r
c

which implies that as r*rc, At- o approaches infinity;

therefore the wave energy approaches but never reaches the

critical level since it would take an infinite time to arrive.

An important result emerges from the analysis of the

instability criterion for drift waves. Observe that the

criterion requires the Richardson number to be small (less

than 0.25) in order for the system to become unstable. This

condition can be achieved by two means: first by an
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increase in the velocity gradient, or second, by a

reduction in the hydromagnetic Brunt-Vais&la frequency.

It can be shown that in a situation where the hydromagnetic

Brunt-Vaisl becomes small so that the condition

2
QBV(r) < 0 (2.100)

is satisfied, a purely convective instability is established.

In other words, when condition (2.100) is present, the

interchange or "ballooning" instability will result. We can

also show by examining this condition, that Gold criterion

for instability in equation (1.2) is satisfied. Assuming

that the effects due to gravitation g are very small in

comparison to the effective gravity resulting from curvature

effects of a dipole magnetic field and using equations (2.50)

and (2.100) we find the instability criterion

P(M 2 a
r o > 4y+M)2 r -(rV ) (2.101)

P ar 7C
SCA

which reduces to Gold's result when the rotation of the

planet is neglected. This relation implies that if the

energy density decreases much faster than a certain rate,

the system will become convectively unstable. Observe that

this instability condition (2.101) is more susceptible to



99.

occur for a fast rotating body than for a non-rotating one.

This obviously shows that the centrifugal force has a

destabilizing effect in the system. We shall find that for

the plasmapause problem, the effect of the rotation of the

Earth is extremely small even for situations where this layer

is far away from the planet.

Another very important result that we obtained from the

instability criterion (2.96) is that before the plasmapause

can become convectively unstable (i.e. BV(r)< 0 ), theBV

region will be unstable due to the decrease of the

Richardson number (i.e. R. < 0.25). This is an extremely
1

important result since we shall find that the terms which

include the thermal energy density gradient in equation (2.50)

for the hydromagnetic Brunt-Vaisdl frequency will have a

dominant effect. Therefore, we shall find that during the

injection of the ring current particles, a negative pressure

gradient across the plasmapause is established which accounts

for the reduction in the Brunt-V&isgld frequency, thus

leading to a decrease in the hydromagnetic Richardson number.
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CHAPTER III

STABILITY ANALYSIS OF CONTINUOUS MODELS AND NUMERICAL RESULTS

III.1 Introductory Remarks

In this chapter we shall modify the matrix wave

equation in such a way that its solution can be expressed

in terms of simple analytic functions. We shall present

the analytic solution of this modified wave equation for

a constant medium and in a varying medium, particularly

in the vicinity of the critical level. Using these

solutions and some physically admissible boundary

conditions, a dispersion relation will be derived. This

will be our starting point for the numerical procedure.

Afterwards, using a simplified model to describe the

plasma environment of the plasmapause, a solution for

the unstable eigenmodes, their growth rate and their

physical significance will be presented. Finally, we

incorporate the effects of the finite conductivity of

the ionosphere. A qualitative analysis of the ionospheric

drag on the magnetic flux tubes and the stability of the

plasmapause is investigated. The presence of the hot

plasma injection into the plasma pause and its

consequence in relation to the ionospheric drag will

also be discussed.
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111.2 Wave Equation and Dispersion Relation For a
Continuous Linear Model

In this section we shall modify the matrix wave

equation (2.45) by expressing it into a simple second

order differential equation. Then using a simple linear

model for the plasmapause environment, together with

physically reasonable boundary conditions we shall find

the dispersion relation.

The plasmapause will be modeled as a thin transition

region of thickness d with linearly varying physical

properties, i.e. constant gradients in density, pressure,

etc. The transition region will be bounded above by an

infinitely thick layer of hot plasma and below by the

plasmasphere. The plasmasphere will terminate at the

Earth's surface and will be assumed to be thick enough

(e.g. about 4 Earth radii) so that the plasmapause region

is far from the Earth. We will also consider that the

plasma properties of the plasmasphere are constants. To

reduce the matrix wave equation (2.45) into a second order

differential equation we shall express the total pressure

PT in terms of the radial displacement Cr and its

derivative. Since we are interested in studying the

most unstable modes which corresponds to propagation

perpendicular to the magnetic field we consider that (kBo) 0.
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Let us also assume that rotational effects are very small

in comparison with gradient terms. This assumption seems

to be in contradiction with previous results (see Lemaire,

1974, 1975) since the rotational effects appears only on

the expression for the effective gravity g (see equation

2.12) which multiplies the gradients in the Brunt-Vaisl1

frequency equation (2.50). Therefore significant changes

in these gradients may be produced if the centrifugal term

overcomes the gravitational term. However, if we compare

this effective gravity g with the effective gravity terms

produced by the curvature of the magnetic field lines and

2 2
given by 2CA/r and 2Cs/r we find that these latter terms

have a much stronger influence on the gradients. In

other words the terms and are typically much

greater than g. To simplify this computation we have also

2 2 -1
neglected the term (C A+ Cs ) since Q2/k << (CA + )

in the matrix wave equation. Then, after some algebraic

manipulations we get

dW+ p(r + q(r) W =0 (3.1)

dr ' dr
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where we define

S= rZ (3.2)

p(r) = (-L-1 + 2 dln (3.3)
po  dr

kz 2
SV 2 + 2k O+ 2

q(r) = k--- + -( +  - (V + Q r ) )  (3.4)St r 2 r E r o E

and L was previously defined as the density scale

height (see equation (1.7)).

Let us consider now the solution of the wave equation

(3.1) above and below the plasmapause. Since the plasma

properties for our model are constant above and below the

plasmapause, the gradient term vanishes. Rotational and

curvature terms can also be neglected since their

contributions are very small. Under these considerations,

the general solution of the wave equation (3.1) above

and below the plasmapause region becomes

W(r) = C1 exp(ktr) + C2 exp(-ktr) (3.5)

where C1 and C2 are constant of integration to be

determined from the boundary conditions.

We shall now calculate the solution of the wave

equation (3.1) in the transition region, i.e. the

plasmapause. We rearrange equation (3.1) by expanding P(r)
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in Taylor series around some particular point r' inside

the plasmapause, as follows

r-11 (-k {V /ir - V /r}r )
Q(r) r-r

where ro is defined by

r = r' +
o

Q (r) + i (:b
kt(3V o/r - V /r),,°

(3.6)

(3.7)

Finally, making the substitutions (Chandrasekhar, 1961;

Jones, 1968)

-1 r 4k2+ d2/L2
=(r-r) I exp(r/2L) , k=kt d , zd po (r-r )

o t d0

(3.8)

02
R BV

1 (% - 2

ar r

1 d/L

4 4L+ dZ/L z

po

the wave equation (3.1) is transformed to

d__ 1^0
dz

a 1/4^VlL =
S+ z

z z

Note that equation (3.9) is the well-known Whittaker's

differential equation. Its general solution may be

written in terms of the confluent hypergeometric

function or Kummer's solution as follows

(z^)= A M () + B M Z)

(3.9)

(3.10)
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where A and B are integration constants. The function

M (Z) is defined

MN () exp(- 2 /2) F,( - - , 1 2i, ) (3.11)

where the function ,F, ( a,b,4) (a= ~- a± , b=1_ 21 )

is the confluent hypergeometric function given by

a z a(a+1) 12
,F, (a,b,z)= 1 + b 1 b(b+l) 21 +  " (3.12)

Note that the solution of the wave equation (3.10)

has a branch point at z = o (i.e. r=r ). Since the real

part of the Doppler shifted frequency Q(r) can vanish

A

inside the transition layer, then z = o corresponds to

a critical level. However, since we are looking for

unstable modes such that wi>0 then we require the

eigenfunction 1 to be continuous across the branch point

z = o. Therefore, if there exist any unstable solution in

the upper halfw -plane we shall take the path of integration

below the branch point as we cross it, thus restricting

the argument of z according to (see Miles, et al., 1964)

-7 < arg z < 0 , w.> 0 (3.13)

With this condition, the analytic continuation of the

solution (3.10) around the branch point z = o can be

determined according to

M () = M (-) exp(-ir( 1 )) (3.14)
wjz~p 2-



109.

Once the solutions inside and outside the plasmapause

region are known, the dispersion relationship can be

determined using physically reasonable boundary conditions.

The boundary conditions that need to be met at the upper

and lower boundary of the transition layer is the

continuity of the wave impedance. This condition is

equivalent to the continuity of the logarithmic derivative

of the function W= r r (r) . Additional boundary

conditions are applied to the general solution (3.5) in the

regions above and below the plasmapause. We use outgoing

solutions which are evanescant in these regions. The

physical implication of this condition is that the wave is

totally reflected in the evanescant region. This is

justified by the fact that the Doppler shifted frequency

is much greater than the Brunt-Vaisdl& frequency in these

regions.

We have presented the solutions and the boundary

conditions to be met at the interfaces of the plasmapause

and at far distances. Now we can calculate the dispersion

relation or the eigenvalue equation for the plasmapause

region. Using the solutions given in equation (3.15) and

the general solution in the transition region given by

equations (3.10) and (3.8) we match the logarithmic

derivatives of W(r) at the upper (r.) and lower (r.)
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boundaries of the plasmapause. After some extensive

algebraic manipulations and using the analytic continuation

equation (3.14) of the solution inside the transition

region we get the dispersion relation

'A A A

D(Cr i, ,Ri ) =  exp(ivT) (_ ) f (Zp ,,P) f (.,p. , -a, -y)

(3.15)

- exp(-irp) (-) f(a 4 ,^p, ,-P) f(#.,% ,-Ot,i)= 0.

In the dispersion relation (3.15) we have defined the

following parameters:

d d / d

PC PO

k+ d/2L
p+ = o (3.17)

4 2+ dz/LL

( ( =e ~'- - 2 ) - + ) _(3.18)

1 A .
(z+ )= exp(-z./2) ,F, ( -l;c±ii, it 2 , Z+ (3.19)
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where c is the normalized complex phase velocity given by

.=C r + i i w/k , L = d/U (3.20)

and Uo is the maximum flow velocity.

Equation (3.15) will be the starting point for the

numerical procedure. This equation, together with the

condition

A

-7 < arg ( ) < 0 (3.21)

shall be used in order to determine the eigenmodes of

the system.

In the next section we present the numerical

procedure followed in order to determine the unstable

eigenmodes of the plasmapause system. We also show the

numerical results obtained from the dispersion relation

(3.15).

111.3 Numerical Procedure and Results For a Linear Model

In this section we shall describe the procedure

followed in order to determine the eigensolutions from

the dispersion relation (3.15). These results were

obtained for a simple reasonable linear model of the

plasmapause region.

Note that the dispersion relation (3.15) is

written in terms of the dimensionless parameters
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k and R. which allow us to study a great variety of

physical models of the plasmapause environment. However,

since we know from previous analysis that the necessary

A A

conditions for instability requires ci=Im c to be

positive and the magnetic Richardson number Ri to be less

than 0.25 we could then specify values in these regions.

Afterward, we carried out a search for values of k and Cr

until the dispersion relation D(cr,ci,k,Ri) vanishes.

Since we know the analytic form of the dispersion

relation in terms of simple analytic functions, we

prepared a computer program to evaluate the dispersion

relation (3.15). The numerical procedure followed was

more or less a predictor-corrector iterative scheme.

First, particular values of ^i and R. were chosen. Then

we evaluated the dispersion relation for an initial guess

on the parameters (k , cr ) . Since the evaluation of

the dispersion relation requires the computation of the

confluent hypergeometric function, a subroutine which

determines these functions carrying the expansion up to

terms less than 10-10 was prepared. Afterwards we

computed numerically the derivative of the dispersion
A

relation with respect to each parameter k and ci . Using

the Newton-Raphson's iterative procedure, corrections to

these parameters were computed until the vanishing of the

dispersion relation D(cr ,, k,R ) was obtained. This
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procedure was again repeated for new values of C. and R.

In this procedure we have assumed the Boussinesq

approximation by setting (i.e. d/L =0 ) equal to zero.

The Boussinesq approximation is a convenient framework

in which to develop concepts which depend essentially on

the buoyancy forces and their interplay with the shear.

These concepts may probably be extended into a wider

context, but for the present the approximation is adopted

without comment. We have also assumed that the plasma

flow velocity, density, pressure and the magnetic field

vary in a linear fashion.

The results of the search for unstable modes in a

parametric form are presented in Figures (3.1) and (3.2).

Figure (3.1) shows contour-plots of the magnetic

Richardson number at the center of the plasmapause layer

versus the normalized horizontal wavevector k for constant

values of the normalized imaginary part of the phase

velocity (Ci). These eigensolutions have a marginal

stable boundary consisting of singular neutral modes.

Singular neutral modes are eigensolutions for which c.

vanishes. This boundary represents solutions which are

marginally stable. It divides the region of stability

given by ci=Ime < 0 from the instability region

given by ci=Imc > 0 . The range of normalized
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wavevectors represents all the wavelengths which are

marginally unstable if the Richardson number lies in

the interval Ri < 0.25. The normalized wavevectors lies
A

in the interval 0 < k < 1.278 as shown by the enclosing

boundary (i.e. the singular neutral modes boundary). The

first initial marginal unstable normalized wavevector

corresponds to the maximum peak at which the magnetic

Richardson number is 0.25. This normalized wavevector is

shown in Figure (3.1) to be at k = 0.877 . We also show

in Figure (3.1) instability curves for which the normalized

imaginary phase velocity ci is greater than zero ( ci>0 ).

This corresponds to the contour-curves given by ci = 0.1

and c. = 0.2 . The surface c. = 0.1 has its maximum peak
1 1

for k = 0.689 and Ri = 0.18 . Its boundary encloses the

unstable normalized wavevectors in the range 0 < k <1.187.

The instability surface 'i=0.2has its maximum peak at

k=0.525 and R.=0.11 and it encloses the range of
1

unstable wavevectors given by 0 < k < 0.877 . A very

interesting feature found during the evaluation of these

eigenmodes is that all the eigensolutions have the same

normalized real phase velocity, that is cr=Re c= 0.5.

This corresponds to the case where the critical level is

at the center of the velocity profile.
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Figure (3.2) shows contour-plots of the normalized

growth rates ^ =Im wm=k. versus the normalized

horizontal wavevectors k for constant values of the

magnetic Richardson number. These curves represent the

rate at which the instability grows for a particular

wavelength and Richardson number. We show two contour

plots for constant magnetic Richardson number. The

contour plot at which the Richardson number is 0.0025

shows a maximum growth rate of 0.2 at the normalized

wavevector of 0.8. Similarly the contour plot at which

the Richardson number is 0.1 shows a maximum growth rate

of 0.13 at the normalized wavevector of 0.77. We have also

calculated the contour plot at which the Richardson number

is 0.2 but this is not shown in Figure (3.2). In this

situation the maximum growth rate is 5.7 x 10- 2 at a

normalized wavevector of 0.81.

In the next section we shall apply these results to

the real plasmapause environment in order to describe the

physical processes which may lead to the onset of the

instability.
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III.4 Numerical Results of the Stability of the Plasmapause

In this section we present a discussion of the MHD

instability on the basis of real data of the plasmapause

environment. For those unstable situations we shall find

the regime of eigenmodes using the eigensolutions determined

in the last section. A discussion of the physical mechanism

which gave rise to the instability will be presented.

We have seen that the necessary condition for the

plasmapause to become unstable requires for the magnetic

Richardson number to be less than 0.25 (Miles, 1960, 1963;

Howard, et al., 1962; Howard, 1963, 1964). We have also

mentioned that this number provides a measure of the

stabilizing or destabilizing influence of the pressure,

density and magnetic field gradients in comparison with

the destabilizing effect of the shear flow. The influence

of the pressure, density and magnetic field gradients,

together with rotational and gravitational effects is

contained in the expression for the magnetic Brunt-Vdisglg

frequency given in equation (2.50). Therefore we shall use

the available data of the plasmapause environment in order

to evaluate and to study those conditions which may lead to

small values of the magnetic Richardson number.

From the definition of the maghetic Richardson number

and the Brunt-Vdisdld frequency we can infer two possible

conditions for which the instability criterion can be
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satisfied. One is due to the effects of large velocity

shears across the plasmapause. This condition requires

large electric field gradient across the transition layer.

The second condition is due to small values of the magnetic

Brunt-Vaisdld frequency. This can be obtained if some kind

of cancelation between the different gradient terms occurs.

Our investigation will provide us of an insight for which

of these two (or both) conditions is relevant to the

instability of the plasmapause.

Before we discuss the problem of stability or instability

of the system, let us review the available data for which

the plasmapause models will be obtained. The essential set

of data parameters for which the MHD-stability of the

plasmapause will be investigated are the density, pressure,

flow velocity and magnetic field gradients. Typical

particle density models can be obtained from Chappell's

et al. (1970a, b; 1972) and Harris' et al. (1970) data taken

aboard the OGO-5 satellite. Some of these density profiles,

representative of different magnetic conditions, are shown

in Figure 1.2. These plots show characteristic particle

densities profile from 1000 particles/cm 3 to 1 particle/cm 3

across the plasmapause in the midnight sector (i.e. from

24:00 to +3 hr L.T.). Similar profiles for the evening

sector (i.e. from 18:00 +3 hr L.T.) ranging from 200

particles/cm 3 to 1 particle/cm 3 across the plasmapause
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has been observed (Chappell's et al. 1970a,b; 1972). We

can also infer from the density data as shown in Figure 1.2

the distance by which the density changes as well as the

plasmapause position for different magnetic conditions.

Chappell's et al. (1970a,b; 1972) results also shows the

variation in position of the plasmapause as a function of

the local time. Typical plasmapause positions, for the

midnight sector, lie in the range of 6.5 to 3.5 Earth radii,

with increasing magnetic activity. In the evening sector,

the average position lies in the range of 4 to 9 Earth radii

depending upon the magnetic conditions. Estimates of the

distance over which the particle density changes show

values in the range of 0.1 to 2 Earth radii (i.e. from

600 km to 13,000 km) depending upon the level of magnetic

activity.

Calculations for the thermal energy density gradient

across the plasmapause were made on the basis of Smith's

et al. (1973) data taken aboard the S3 satellite. Typical

plots of these data are shown in Figure 1.6 and 1.7. From

these plots we find that during periods of geomagnetic

storms (i.e. very active conditions) the hot particles of

the plasmasheet (i.e. the ring current particles) are well

inside the plasmasphere. Protons in the energy range of

1 to 138 kev become the dominant energy contributors

(e.g. about 90%) to the storm. However, during quiet
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times, this energy regime contributes only by 20% or less

to the total energy density. An important feature that we

can infer from these data is the presence of a decreasing

energy density profile across the plasmaspause. This suggests

the possibility for a convectively unstable situation since

the pressure gradient is negative and it could give rise to

an imaginary Brunt-Vaisla frequency (Gold 1959; Sonnerup

et al., 1963; Richmond, 1973; Lemaire, 1974, 1975, 1976).

Typical values of the energy density from 4.5 x 10
-7 erg/cm 3

to 6.5 x 10-8 erg/cm 3 across the plasmapause are estimated.

Assuming a perfect gas law, together with the previous

estimates of energy and particle densities we calculated

the sound velocities to be in the range of 200 km/sec to

2,500 km/sec inside and outside the plasmasphere respectively.

Similarly as for the particle density profile, we estimated

the distance over which the pressure changes to be in the

range of 0.7 to 1.65 Earth radii (i.e. from 4,000 km to

11,000 km).

Note, from both the particle and energy density data,

that during the progress of a geomagnetic storm (i.e.

during periods of increased magnetic activity) an inward

movement of the plasmapause toward lower L-shells is

observed. In addition we notice a steepening of the particle

density gradient and a local enhancement of the thermal

energy at the plasmapause. This inward motion has been
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associated with the plasma erosion process that occurs across

the field lines during periods of enhanced activity at the

plasmapause (see Chappell's et al. 1970b, 1972). This

implies a possible convective activity in the outer edges

of the plasmasphere during geomagnetic storms (Carpenter,

1970; Chappell's et al. 1970b, 1972). As we previously

mentioned (see Chapter I), two different mechanisms have

been suggested in order to explain this convective activity

or erosion process at the plasmapause. The first mechanism

is explained on the basis of an interchange or "ballooning"

instability in which convection of plasma tubes occurs

spontaneously due to an enhancement on the local thermal

energy density (Gold, 1959; Sonnerup, et al. 1963; Richmond,

1973 and Lemaire, 1974, 1975, 1976). This mechanism may

correlate very well with the energy density data previously

shown (Schmidt's et al., 1973) in Figures 1.6 and 1.7 and

thus it also relates to the possibility of an imaginary

Brunt-V~isl& frequency (or small Richardson number). The

second suggested mechanism, by which erosion activity occurs

is due to the penetration of the convective electric field

across the plasmapause. This penetration allows for the

peeling off of the plasma in the outer edges of the

plasmasphere (Carpenter, 1970; Chappell's et al. 1970b, 1972).

Once the plasma has been torn due to the electric field

it convects into the outer magnetosphere where it is lost
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at the magnetopause. In other words, since inside the

plasmasphere the corrotating electric field dominates, a

penetration of the convective electric field across the

plasmapause produces a shear flow velocity. If the shear

flow velocity is large enough to reduce the magnetic

Richardson number to small values, then an instability

could develop and plasma is removed at the outer edges of

the plasmasphere. All these processes seem to imply a

mechanism by which plasma is supplied to the outer

magnetosphere.

An interesting problem which arises from the investigation

of the last mechanism is the efficiency with which electric

fields of magnetosphere origin penetrates the plasmapause.

The fundamental idea behind this problem is that the hot

particles at the plasmasheet (i.e. the ring current particles)

extend earthward during enhanced convective periods creating

a layer which shields the inner magnetosphere from the

convective electric field. This layer is known as an Alfven

layer and it represents a region of charge separation which

arises because of the different drift paths of ions and

electrons moving in a combined electric field and a non-

uniform magnetic field (Alfven, 1963; Schield et al. 1969;

Kavanagh, et al. 1968; Wolf, 1975).- The electric field

produced by this charge separation reduces the convective

electric field shielding the inner magnetosphere.



122.

Considerable experimental evidence exists to show that

electric field of magnetospheric origin penetrate the

plasmapause (Carpenter, 1972; Vasiliunas, 1972; Mozer, 1973).

It is found that the shielding time constant of the ring

current particles is greater than six hours and therefore

electric fields of magnetospheric origin with time scale of

about one hour should penetrate the plasmapause. This is

because the inertia of the ring current causes it to respond

to changes of the magnetospheric electric field slowly

(Mozer, 1973). Therefore, it appears that there is no

inconsistency between the plasmapause shielding and the

penetration of the convective electric field.

An important parameter which seems to have been

neglected by other investigators in relation to the

magnetospheric and corrotational electric fields is the

steepness of the shear flow velocity or electric field

gradient across the plasmapause. This parameter is very

significant since, as we shall see later, the magnetic

Richardson number is very sensitive to its magnitude

allowing a possible unstable condition. To the best of

our knowledge, measurements of this parameter have not been

made. Therefore we could only predict those levels of the

shear flow velocity which are necessary in order to obtain

small Richardson numbers. Although we have no information
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of the shear flow or electric field gradient, we can find

data which supplies information of the magnitude and

direction of the electric field and plasma flow velocity.

The plasma flow velocity is approximately based on

McIlwain's (1972, 1974) magnetospheric potential distribution

taken aboard the ATS-5 satellite and Carpenter's (1970)

whistler data. Figure (1.4) shows a sample of a magnetospheric

electric field model of McIlwain (1974). From the equi-

potential lines we can infer electric field in the range of

0.4 to 0.9 mV/m. Carpenter's observations shows electric

fields in the range of 0.5 to 2 mV/m for the midnight sector

and 1 to 4 mV/m for the evening sector during geomagnetic

storms. These electric fields produce average convective

velocities in the order of 1.5 to 10 km/sec depending upon

the radial equatorial distance at which the plasmapause is

located.

There has been some theoretical calculations in

relation to the minimum thickness that the plasmapause can

support (Sestero, 1964; 1966; Roth, 1976). Roth has

calculated that the minimum thickness that the plasmapause

could support is of the order of five times the cold

Larmar radius (about 2.1 km). Their calculations also

suggest that a hydrodynamic beam instability of electro-

static origin can develop if the relative velocity of the

ions and electrons exceeds the thermal ion speed in this
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transition zone (see also Papadopoulos, 1973). These results

suggest a lower bound limit for the shear flow velocity because

the electrostatic instability will destroy the steady state

transition zone. Roth analysis seems to be valid only for

magnetically quiet conditions since his model does not show

the thermal energy enhancement due to hot particle injection

at the plasmapause, during active periods. On this basis,

it appears that his calculations can be significantly modified.

We should also point out that Roth's results can not be taken

too seriously since no discussion on the electric field

penetration or the Alfven layer shielding is presented.

The Earth's magnetic field will be considered as a dipole

with a surface value of 0.32 gauss. We computed the Alfven

velocity, using the density data to be about 240 km/sec and

3,200 km/sec inside and outside the plasmasphere

respectively.

On the basis of the previously mentioned data parameters

we show in Table 3.1 the plasma environment for six different

models of the plasmapause. Models 1 to 3 correspond to

typical conditions in the midnight sector whereas models 4 to

6 are representative situations in the evening sector. These

models represent typical conditions at the particular local

time of the plasmapause during magnetically active periods

(i.e. kp 2). We have combined the data parameters

according to the plasmapause position since the different
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data values do not correspond to simultaneous measurements of

the medium. Therefore, with this limitation on the data, we

can only rely on typical average conditions. Since no

measurements of the shear flow velocity has been made we

shall assume that its length of variation is equal to the

plasmapause thickness (i.e. the particle density scale

length). The electric field value will be taken to be

about 1 mV/m since this is a typical average value during

periods of enhanced activity. The remaining set of parameters

will be fixed from the measurements of the plasma environment.

Computations of the magnetic Richardson number and the Brunt-

Vaisdld period for the models shown in Table 3.1 yield stable

conditions. Estimates of the Richardson number gives values

greater than 0.25 for identical velocity and density scale

lengths. On this basis we could conclude that the models

in Table 3.1 are very stable. It is then apparent from these

results and the data parameters that the convective or

interchange instability given by condition (2.99) is improbable.

However, we cannot argue that the Richardson number could be

small since we have no measurements of the shear flow

velocity. With this limitation we can only predict what

levels of velocity or electric field gradient are required

to obtain Richardson numbers less than 0.25. In addition

we can also calculate the range of unstable wave parameters

corresponding to those unstable conditions. These results
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are shown in Table 3.2. The wave parameters are the range

of unstable wavelengths and frequencies (or periods). Since

linear theory can only predict the initial growth rate of

the disturbance we cannot infer how the system will behave

after the instability has grown. Therefore any discussion

on the growth rate is meaningless. However, we can infer

those data parameters for which the instability will be

sensitive. It is apparent that the steeper the velocity

gradient, the faster the instability growth. It also appears,

from Table 3.2 that the range of unstable wavelengths always

lies between the shear flow thickness and the density scale

lengths. Typical unstable wavelengths for the midnight

sector are in the range of 65 to 370 kilometers whereas for

the evening sector are in the range of 70 to 270 kilometers.

Similarly, typical wave periods for the midnight sector of

the order of 1 to 4 minutes whereas for the evening sector

we have periods ranging from half a minute up to 2 minutes.

Hasegawa (1971) studied the drift wave instability for low

energy particles at the plasmapause. His drift wave

analysis is basically studied as a convective instability

since the effects of a velocity shear are neglected and only

the effects of tne density gradient are included. He found

two conditions required for instability. The first condition

states that those unstable wavelengths perpendicular to the

magnetic field must be smaller than the density scale length
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1
(i.e. -- )-1 P ). The second condition requires for the

parallel phase velocity to be between the ion and electron

thermal velocities (i.e. Vthp< w/K!l < Vthe). Hasegawa

estimated unstable perpendicular wavelengths of the order of

350 meters. He also shows that during active conditions an

increase in the electron temperature will enhance the unstable

growth rate. However our results confirm that the

contribution of both the pressure and magnetic field gradient

terms together with the effective gravity due to the curvature

of the magnetic field are more significant to the plasma-

pause instability problem than the density gradient. Although

the Richardson number is sensitive to these gradients through

the magnetic Brunt-Vgisala frequency, it appears that the

shear flow velocity will be the main mechanism by which the

instability will develop. Nevertheless, it is very interesting

to calculate the pressure variation thickness which could

give rise to small Richardson numbers and therefore to an

instability. If we select, for example, models 1 and 4

which are typical conditions for the midnight and evening

sectors respectively, we find that pressure variation

thickness of the order of 0.512 and 0.645 Earth radii can

give rise to Richardson number of about 0.24. For this

calculations we assumed that the velocity variation distance

is equal to the particle density scale lengths. Calculations

of the magnetic Brunt-V~isala period for models 1 and 4



S128.

yields values of 2 and 4 minutes respectively. We have

also calculated the wave parameters for these models. For

model 1 we find that wavelengths in the range of 814 to

1,140 kilometers are unstable. Estimates of the wave

periods yield values of 13 to 20 minutes. Similar results

were obtained for model 4 in Table 3.1. For this model we

find unstable wavelengths in the range of 2,545 to 3,560

kilometers. Evaluations of the wave periods gives values in

the region of 18 to 27 minutes. In comparison with Gold's

instability criterion given in equation (1.2), we also

estimated the rate at which the pressure profile decreases.

From these results we find that the pressure decreases as

r- 6 .6 4 across the plasmapause. This value is still smaller

than the adiabatic gradient (i.e. r-2 0/3 ) discussed by Gold.

This immediately implies that it is very unlikely for the

Brunt-Vdis&l& frequency to become imaginary since the

pressure profile does not change fast enough. Thus, on

the basis of these results and the available data we can

infer that the interchange or "ballooning" instability does

not correspond to the main mechanism from which we could

explain the erosion process at the plasmapause.

In summary, we have presented a mechanism that may

account for the plasma erosion process and the excitation

of drift waves at the outer edges of the plasmasphere.
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Measurements indicate that the interchange or "ballooning"

instability is not likely to occur, since we have only found

large values of the magnetic Brunt-Vdisdla frequency.

Therefore it seems that the only mechanism for which

convection of plasma may be accounted for is due to the

large electric field (or velocity) gradients. However, we

can only predict those velocity gradients required for the

instability, since apparently measurements of this parameter

has not been made in the past. Nevertheless, we submit in

this investigation a range of velocity gradients that could

give rise to the instability. We also predict the range

wave periods and wavelengths that may be excited during the

unstable process. An important factor which has not been

mentioned and which plays an important role in the convective

motions is the effect of the finite conductivity of the

ionosphere. In the next section we shall qualitatively

discuss this effect and hopefully a more complete picture

of the overall instability may be established.
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TABLE 3.1

Particle Particle Density Energy Energy Pressure

Plasma Plasmapause Electric Flow Density n1  Density n2 Variation Density P1  Density P2  Variation Density Plasma

Parameters/ Position Lpp Field Eo  Velocity Inside Outside Distance Inside Outside Distance Scale Parameter

Model No. [Earth Radii] [Milivolt/ UO  Plasmasphere Plasmasphere [Earth Radii] Plasmasphere Plasmasphere [Earth Radii] Lengths 8(Lpp)
meter] [km/sec] [mrt./cm3] [part./cm3 ] AL [erg/cm 3 ] [erg/cm 3 ] AL] [kin]

1 3.78 1 2 1675 .2 0.18 3.49 x 10 - 7  1.42 x 10 - 7  1.27 127 .16

2 3.9 1 2.2 1850 .15 0.46 3.49 x 10-7  1.42 x 10-7  1.27 311 .19

3 4.63 1 3.4 1000 1 0.27 1.74 x 10 - 7  7.28 x 10-8  1.64 249 .27

4 4.52 1 3.3 100 .1 0.43 3 x 10 - 7  1.16 x 10 - 7  1.2 397 .39

5 4.42 1 3.1 150 .1 0.4 4.54 x 10 - 7  1.6 x 10 - 7  0.89 349 .50

6 4.89 1 4.1 215 .1 0.33 1.29 x 10 - 7  6.7 x 10-8  0.745 274 .31
. 25. .3 .9x1



TABLE 3.2

Velocity Magnetic Magnetic
lodel No. Variation Richardson Brunt-VHisLlg Range of Unstable Range of Unstable

Distance Number Ri Period TBV Wavelengths A Periods T
[km] [seconds] [km] [seconds)

1 10.52 0.24 10.66 67.5-94.4 67.5-94.4

2 11.48 0.24 10.74 73.6--103.0 66.9-93.6

3 40.82 0.24 24.5 262.0-366.4 154.12-215.5

4 11.48 0.24 7.12 73.6-103.0 44.6-62.5

5 14.35 0.24 14.35 92.0-129.0 59.35-83.23

6 29.34 0.24 14.65 188.1-263.4 92-128.5
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111.5 The Effect of the Ionospheric Conductivity on the
Instability

The coupling of the inner magnetosphere to the

ionosphere may have very important effects on the convective

motion at the plasmapause. The effect of the ionospheric

conductivity on the plasmapause represent another mechanism

by which the steep density gradient can be sustained in

spite of the destructive tendency of the instability. The

ionospheric conductivity produces a dragging effect at the

feet of the magnetic field lines which slows down the

instability growth rate. This process has been referred to

in the literature as a "line-tying" or a "foot-dragging"

effect (Gold, 1959; Dungey, 1968; Richmond, 1973; Lemaire,

1975).

In order to understand how this mechanism acts to

slow down any unstable convective motion we shall consider

two purely hypothetical physical situations. The results

obtained from these situations will be applied to understand-

ing a more realistic case. The purpose of this approach is

not to develop a quantitative theory but merely to establish

qualitatively the physical explanation of the influence of

the conductivity and its effects on the unstable plasma

motions. For the sake of simplicity we shall consider a

steady-state situation. As a consequence, the electric

field E may be considered as a curl-free field and can

therefore be expressed in terms of a gradient of a
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potential@ . In our first hypothetical case we consider

the Earth as a "perfect" conductor and we neglect the

existance of the atmosphere and the ionosphere. In

consequence the plasma is in direct contact with the Earth.

Therefore, since the conductivity of the plasma is infinitely

large, the frozen-in law given by E + V x B = 0 can be

applied. This condition implies that all points of a given

field line are at the same potential. However, since the

magnetic field lines are in direct contact with the Earth's

surface, which has been presumed a good conductor, it

follows that in the frame of the Earth there cannot be any

potential difference between different field lines since they

are "shorted out". Therefore, the electric field is everywhere

zero and from the "frozen-in" law, the component of the

plasma perpendicular to the field lines is also zero. Then,

the plasma is permanently attached to the field lines of the

Earth and is obliged to rotate with it. Another physical

reason for this to occur is that any attempt to move the

plasma across the field lines tends to produce an "infinite"

current which will oppose this motion. Therefore the

"infinitely" large conductivity of the Earth, in a sense

acts as an infinitely viscous medium which causes a drag in

any motion of a flux tube and its plasma content.

We now take into consideration the existance of the

atmosphere but still neglect the ionospheric layer. This
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corresponds to our second hypothetical case. Let us now

examine how the previous results are modified. For simplicity

we shall assume the atmosphere as a perfect insulator,

separating the "perfectly" conductive Earth from the plasma.

As before, in the plasma medium above the atmosphere, all

points at a given field line are at the same potential

since the conductivity along the field lines is infinitely

large. However, different magnetic field lines may now

have different potentials. This is because the field lines

are now separated from the Earth and from themselves by the

atmosphere. In whatever frame of reference we place ourselves

we may find an electric field perpendicular to the field

lines. In the Earth's situation for example, this may be the

corrotating electric field. Therefore the plasma may move

now perpendicular to the field lines with a velocity

V(=(E x B)/B 2 ) due to this electric field. Notice also that

since the conductivity along the magnetic field lines is

still very large. Any perpendicular electric field will map

exactly along the field lines. Thus, any motion of a plasma

at one point of a field line uniquely determines the motion

at all other points on the same line. It should be noted

now that the plasma no longer needs to remain confined

within a magnetic tube, but may slowly drift with it. In

other words, a particular flux tube projected down through

the atmosphere cannot be identified with any tube projecting



135.

through the surface of the Earth and therefore a slippage

between the two systems is permissible.

Finally let me discuss the more realistic case which

allows for the presence of a finite conducting region, the

ionosphere, between the atmosphere and the perfectly

conductive plasma. This case represents an intermediate

situation between the two previously discussed cases. We

can now physically interpolate how the motion of any flux

tube will be modified by the presence of the ionosphere.

Since the ionosphere has a conductivity which is smaller

than the plasmaspheric medium but higher than the atmosphere

its effect will be to slightly slow down any motion of a

flux tube as in the first hypothetical case. These effects

are dependent upon the conductivity level of the ionosphere.

We could then infer that any unstable motion which tends to

move any flux tube across the field lines will experience the

dragging effect of the ionosphere. We should point out that

since the night time conductivity is in general smaller than

the day time conductivity, any unstable motion is most

probable to occur at the midnight sector. However the

night time conductivity tends to increase during magnetic

disturbances up to levels as high as 30 mho (see Schuman

et al., 1980). This process, then, could be relevant to

the fact that the plasmapause steepens during magnetically

active times.
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Since the ionosphere tends to slow down any flux tube

motion, it then acts as a dissipative medium. Therefore, we

can roughly estimate the power dissipated at the feet of a

magnetic flux tube. The power dissipated at the feet of the

ionisphere is given by

P D J E dV (3.22)

V

where the integral is taken over a volume V of a flux tube at

the ionosphere. Since a and E are both complex vector functions

of time and position, we could average the losses over time.

To evaluate the power dissipated from equation (3.22) we shall

assume that the conductivity along the field lines is infini-

tely large and the ionosphere is then enough so that the

cross-sectional area of the tube remains constant. To estimate

the fluctuating quantities J and E we made use of the polari-

zation relations given in Appendix B. We choose a cross-

sectional tube area equal to 1 km2 and we assume that a

constant magnetic field fluctuation B6 of one gamma (i.e.

B0 = 1 gamma) is used as a normalization constant for the

perturbations. Thus, assuming that the perturbations do

not vary very much with radial distance, equation (3.22)

yields

p 1 P B2 Re IV r12 (3.23)
D 2 sin I rsin I
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whereX is the height-integrated Pedersen conductivity,

I is the dip angle of the magnetic field at the ionosphere,

Vr is the average radial velocity fluctuation, AI is the

magnetic tube cross-sectional area at the ionosphere and

Bo6 is the ionospheric magnetic field. Estimates of the

power dissipated at the ionosphere can be calculated using

typical values for the plasma tube environment. In

particular, let us consider that the ionosphere is about

100 Km (L = 1.016) above the Earth's surface and it has an

integrated Pedersen conductivity ( p/sinI) of about 0.3 mho

to represent quiet magnetic conditions in the evening to

late midnight sector. Estimates of the fluctuating velocity

for a one gamma perturbed magnetic field at the ionosphere

using the polarization relations in Appendix B yield a value

of about 0.22 m/sec using a typical growth rate of about

10- 3 rad/sec. The power dissipated is estimated to be about

3 x 10- 5 watts over an area of 1 km2 at the ionosphere.

Similarly we could determine the power input by the

disturbance on a flux tube in a localized region around the

equatorial plane. Using the expression for the total energy

of the disturbance, the power is given by

P = 2. 1 pV2 + dV (3.24)
V
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where wi is the growth rate of the perturbation and the

terms in the integrand represent the total kinetic and

magnetic energies of the disturbance. We have neglected

the gravitational and the thermal energy fluctuations

since their contribution is very small. The integral in

equation (3.24) is taken over a localized volume of a

flux tube in the neighborhood of the equatorial plane so

that the length element dk can be expressed in terms of

the latitudual angle X as rdX(i.e. dk % rdX). With this

condition the expression (3.24) for the power reduces to

Srd (3.25)
P r 2w. A ( po Re V 2 +Re r dX (3.25)1 T 2 p 0 2 0° f

0

where AT is the tube cross-sectional area and r is the

plasmapause position. Estimating the velocity fluctuation

from Appendix B for a one gamma magnetic field perturbation

at 4 Earch radii yield a velocity of about 53 m/sec.

Numerical estimates of the total input power assuming a

localized region of about 200 gives typical values of about
2

0.01 watts over a tube cross-sectional area of IKm . A com-

parison of the total power dissipated with the total input

power clearly shows that the ionosphere will not reduce

the instability. Thus, the instability may proceed with

a negligible small dragging effect at the feet of the

magnetic tubes.
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CHAPTER IV

CONCLUSIONS

IV.1 Summary

In this dissertation we have presented a

magnetohydrodynamical stability analysis for the Earth's

plasmapause environment. The plasmapause was assumed as a

continuous transition zone where the streaming velocities,

particle densities, energy densities and magnetic field

vary in a linear profile across it.

We have been able to present a unified treatment of

both the interchange or "ballooning" instability and the

shear flow or Kelvin-Helmholtz instability. With this

approach we showed that previous treatment of the Kelvin-

Helmholtz and the interchange instabilities were inadequate

since their interplay role has significant effects in the

description of the dynamics of the system. To the best of

our knowledge, this unified treatment has not been

presented in relation to the physics of space plasmas.

We were able to find complete data from which the

possibility for convective or interchange instability could

be tested through the magnetic Brunt-V&ishld frequency.

From the available data of the plasmapause environment

during geomagnetic storms we show that it seems improbable
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to have a purely convective instability since calculations

always show large positive values of the magnetic Brunt-

Visla8 frequency. Therefore it appears that the interchange

or "ballooning" instability is not the appropriate mechanism

by which the erosion processes at the plasmapause occurred.

In respect to the shear instability, represented by the

magnetic Richardson instability criterion, we do not have

any conclusive evidence which may confirm or deny that this

mechanism could describe the erosion process at the

plasmapause. The reason for this is because there are still

two important problems for which no definite resolution and

measurements have been made. These problems are related

first to the question of how deep the electric field could

penetrate the plasmapause and secondly to how steep the

electric field could be across it. Until these two

problems have been resolved we won't be able to definitely

confirm or deny the shear mechanism as the process for which

erosion takes place. We can predict from our theory which

velocity shears are required in order for the onset of the

instability to occur. We found that thickness on the order

of 10 to 40 kilometers are required. We have also predicted

the wave periods and wavelengths of the drift wave excited

by the instability. Our estimates show that wave periods

in the range of 1 to 4 minutes for the midnight sector and
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half a minute up to 2.5 minutes for the evening sector are

excited. Similarly we found longitudinal wavelengths in

the range of 65 to 365 kilometers for the midnight sector

and from 70 up to 260 kilometers for the evening sector.

IV.2 Suggestions for Further Investigations

On the basis of our results, it seems to be appropriate

to suggest to future researchers to investigate more

thoroughly other available electric field data in order to

clarify the questions about the electric field penetration

and the steepening of this field across the plasmapause.

In addition, theoretical investigations pertaining to those

two problems and their relationship to the ring current

particle injection and the Alfven layer should be motivated.

From the theoretical point of view it is obvious that

the signficance of the non-linear terms for the stability

should be investigated. However the analytical difficulties

are tremendous. Some information can be obtained using

purely numerical techniques such as finite difference.

However, the models in this case would have to be very

simple and a highly turbulent state could require very long

computation time. Another approach to the non-linear

problem could be to consider the non-steady state

equilibrium for the unperturbed variables. We have

evidence that this approach could give very important

results even for large Richardson numbers in relation to
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the finite amplitude wave interaction with the velocity

shear and its time evolution (Paul, 1977).

Finally, some of the results of this thesis could be

tested experimentally. We have predicted disturbances with

periods of a few minutes and phase velocities on the order

of one to two kilometers per second. It could be interesting

to review the available ground recorded and satellite data

to see if such disturbances are actually observed.
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APPENDIX A

ANALYSIS AROUND THE HYDROMAGNETIC CRITICAL LEVELS

In this appendix we shall present a brief discussion

of the hydromagnetic singularities of the matrix wave

equation (2.33). These singularities which correspond to

2 2
the vanishing of 2 and M are defined byA M

(K *C )
= (_Kt*A) , = A (A.1)

1+M2

where 0 is the Doppler shifted frequency (Q = w-KtVo ),

K is the horizontal wavevector and M is the magnetic-t

Mach number defined in terms of the ratio of the Alfven

velocity (CA) and the sound velocity (CS). As we

mentioned in chapter two, these singularities are

associated with the propagation of guided Alfven waves

and slow magnetoacoustic waves (i.e. or sound waves)

respectively. The plus and minus sign in expressions (A.1)

corresponds to propagation parallel and anti-parallel to

the magnetic field respectively.

Since these singularities are fundamentally related

to wave modes along the field lines, we shall simplify

our investigation by only considering these particular

eigenmodes. Thus the horizontal wavevector Kt becomes K11

to represent parallel to the magnetic field lines. With

this simplification the Doppler shifted frequency Q
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reduces to w, since the plasma flow velocity is

prependicular to the magnetic field lines. Similarly

2 2 2 2
0A and 2M reduces to wA and WM respectively.

A M A M

Furthermore, we shall ignore the centrifugal terms due

to the Earth's rotation and the curling action of the

plasma flow, since they represent very small effects in

comparison with the density, pressure, and magnetic field

gradients terms. This approximation does not altered

the physics of this analysis since the plasma flow velocity

effects vanishes for field aligned modes. With these

conditions, let us modify the matrix wave equation (2.33)

by transforming it into the so-called "transmission-line"

form which corresponds to the canonical form of a matrix

differential system. This transformation simplifies the

algebraic procedure without any modification on the

important physical parameters (Madden, 1972). As a result

and after some algebraic manipulations, the matrizant wave

equation (2.33) becomes

0/ M12 (r) Z/

d -(A.2)dr

9 M21 (r) 0 q
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where 2/ and 9 are defined by

Z' = PT exp -fa,,(r)dr 9 = r Er exp - a2 ,dr (A.3)

and the matrix elements are given by (A.4)

M (r) = a, (r) exp -2 fa,,(r)dr} , M,,(r)=a 1 (r) exp{2a (r)dr}

The matrix elements a.. (i,j=1,2) were defined in

equation (2.35) but with the previous simplifications they

reduced to
2 2 2 2

[ (g+2CA/r)-2K 11CACs/r
a,(r) = - [2_/r 2 2 s/r]

(1+M )C 2s M

2 2 2 2
p 2C 2C B 2C g B 2 p pM

a(r)= o w2 A o A o
a2 L A+r 2 P r(Po+ f p r r

r o r o C 0

(A.5)

2C 2  2 B2  2M 2 (W -K C
+ M (g-s 2 2 2r (Po+ 2 2sr p (1+M 2)C 2 o r(l+M )

o sM M

2
2 4 K

o (1+M2 )CsWMWA WA

a2(r) = - a (r)
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The "transmission-line" form of the wave equation

(A.2) is very useful in order to determine the dispersion

relation for field aligned modes. Since the parallel

propagation vector K11 is smaller than the perpendicular

one (K , Kr) , then field aligned eigenmodes are very fast.

Therefore it is convenient to investigate those modes

which lie in the range

Cs < w/K 1 1 < CA (A.6)

since for the plasmapause region the Alfven velocity is

greater than the sound velocity. With this condition and

assuming that the medium properties vary very slowly in

comparison with the radial wavelength, we can apply the

WKB approximation to the matrix system (A.2) to derive the

dispersion relation given by

2
2 2 BV (A.7)K =K - 1)
r 11 I 2 2 2

where the symbol "jI " implies the absolute value and gBV

represents the magnetic Brunt-Vaisdl& frequency defined by

2 2 2
knp (g+2C2 ) 2 knP M2 (-2C 2) knB

Q2 (r)=- A/ r 0 + s/rr r (A.8)
BV ar y(1+M2 ) (1+M2 )

Note the similarity between the dispersion relation

(A.7) for field aligned guided Alfven modes to the

dispersion relation (2.54) for low frequency drift modes.
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As in the case of drift waves, guided Alfven waves become

evanescent if the magnetic-Brunt-Vais1~l frequency 2BV(r)
2

is smaller than the Doppler shifted Alfven frequency wA

given byl2- 211CA . This implies that there will be

a radial level rA from which guided Alfven waves will be

reflected. In other words, waves that can propagate at

one side of rA will become evanescent upon crossing this

level. Thus the point r = rA represents a cut-off condition

since the radial phase velocity becomes infinitely large.

An important feature in relation to the stability or

instability of the system can be determined by rearranging

the dispersion relation (A.7) in the form

2 2 2 2 (A.9)
to K C + B (r)11 A BV

where we have assumed that K r>>K1. Since the magnetic

Brunt-VdisAld frequency can become negative due to the

gradients, the possibility for complex wave frequency

arises. This is related to the stability or instability

of the system. If the magnetic Brunt-Vdis&l frequency

satisfies the condition

2 2 2 (A.10)
BV 11 A

then the system will become convectively unstable

spontaneously. This result represents the criterion of

instability for "ballooning-modes" as described by Coppi
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(1978)1 and Hasegawa (1980)2. "Ballooning" instability is

fundamentally an interchange mode which is driven by the

presence of a pressure gradient in an unfavorable magnetic

field curvature. Another important observation that can be

obtained from the instability criterion (A.10) or the

dispersion relation (A.9) is that the presence of a finite

wavelength along the magnetic field produces stabilizing

effects to this instability. Therefore we can infer that

the most unstable modes are those for which the magnetic

field remains unchanged and no finite parallel wavelength

stabilization is present.

Another important characteristic of the general

dispersion relation (A.7) for field aligned modes is that,

as in the case of drift waves, there will be a critical

level at which the radial wave propagation vector will go

to infinity. This corresponds to a resonance condition

since the radial phase velocity becomes zero. This

condition is satisfied whenever w/K = + CA(rc)

i.e. this critical level is a point at which a field aligned

mode matches the local Alfven velocity. Examining the

behavior of the dispersion relation (A.7) near the critical

level rc we find

1Coppi, B. - Class Notes of a Plasma Physics Course offered

2at MIT (8.641-8.642).
Hasegawa, A. - Progress Report in "Ballooning Modes in the
Jovian Magnetosphere", Bell. Lab. (unpublished) (1980).
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2 ~~ 2 (r)2 rk S BV c
K '(A. 11)
r dCA  2 (

dr r

where we have made use of the Taylor series to expand the

Alfven velocity around the critical point. Similar results

were obtained in the case of drift waves propagating

perpendicular to the magnetic field.
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APPENDIX B

POLARIZATION RELATIONS

In this appendix we shall present the so called "polarization

relations". These equations give the relations and the phase difference

between the pressure fluctuations, density variations, the camponents

of the velocity variations and the components of the magnetic field

fluctuations. To find these relations, it is necessary to use and

cocbine the system of equations (2.21) to (2.28) together with the

matrix differential equation (2.33). For simplicity, let us assume that

the flow velocity Vo is perpendicular to the magnetic field B , thus

terms containing ( YC _0 ) will vanish (i.e. yO (r) = Vo (r) and

B (r)=B o(r) ̂  ). Therefore, after same algebraic manipulations the

resulting polarization relations becomes:

0 [ o BO Bo) 2 r O ( t Bo)

Sp 0 (l+MI)C l kM o or

BoB (K Bo ) Q2 (+2C /r)-2 (t A) 2 C/r
o (B.1)

o2po (1+M2) C2 2

21EBo (-Ktg Bo) CAe t" *CA) (x 9A r K M (Kt A)2

(1+M2) p AO CA A
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Cu Cui5RPL 1K QP VST r rv
o Q2 i+ 9

V Q2+ (K CA) 2
+ v ( )+ 2Q2

r 22A

(B.2)

2QE KeBoe (K Bo)

r rk = - Q V

%e Q

(1+M2 ) C 2

sM

v
r BB

Ke (t BK ) + [ -08
iJQ r

B 2 ( +2CA/r) -2 (K CA) 2C/r

+Bo e ( (1+M2 ) C2 ,2
sM

KM (It gA

(1+M2) 
2

'I

CA (t A)(Ltx CA) r

2 C2

As

] (B.4)

K =B
r2 -1 VnB- -____ ____

;C)

2QVo (K. )0-t -0

(B.5)

2Q QE K B%

02
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B=

oA

(B.3)
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Q2T

(l 42) C2 2

2K M2 E

(1+M2 ) C22
sUM

2+ E

(I+M2) )M2

PoVr 1

S LPoCs

2K M2 EKBoe (K )B

CA (Kt CA) 2 (tx CAr)

S2 c2

As

B
2

+(P 0
-- 2 o

M 2

1 p M

p 0r r

Q2 (+2C /r)-2(Kt CA)2Csr

(1+M2 ) C2 2
s 11

+ M2 (

- K (1+M2) )] (B.6)

In addition we can determine the components of the electric field

fluctuations E by the use of the "frozen-in" law. These electric field

fluctuations are given by

rT
E r 2

P oA
Q(Ktx Bo)r +

4 (Vox B )r

(1+M
2 ) C2Q

2

sM

(-Kt Bo)(Ktx V) r

- (Vox -Bor -
2 (_K CA ) (Vox Bo) r

r 2

2 (W+2C/r)-2 ( CA) 2Cs/r

(1+M2 ) C2 2
-(-Vox B) r-o -o r

2M (V x B) r CAt* CA) 2 (Kt x CE o 1__ __r ( 9A) r

(1+M2) Q2 2 C2
A s

+ ---15
2QE 22Bo6

(B.7)

iK A2 (K t CA)2
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= ( Vo -t Bo)
Sr

o6 r

(B.8)

(B.9)
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