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ABSTRACT

Tidally forced circulation can cause a net near-bed transport of sediment when
the tidal velocity is asymmetric about a zero mean (flood or ebb dominant) and the
transport rate is nonlinearly related to velocity. The relationship between elevation
and velocity is elucidated here to enable one to determine from tide gauge data
and sediment transport relations whether tidal asymmetry may cause net sediment
transport. Tidal elevation and tidal velocity are related through the equations of
motion of the fluid. If the estuary is shallow, the change in cross-sectional area of the
channel with the tide is significant with respect to total area: the equations become
nonlinear and an exact solution does not exist. A relationship between elevation and
velocity in a nonlinear system is derived through the continuity equation and shown
to be significantly different than the linear relation. Finite difference numerical
solutions of the one dimensional, shallow water nonlinear equations are compared
to the continuity relation and are in good agreement.

The relationship between elevation asymmetry and ratio of flood-to-ebb bedload
transport is calculated for both the linear relation between elevation and velocity
and the nonlinear relation. Results show that the ratio of flood-to-ebb bedload
transport as calculated from the nonlinear relation between elevation and velocity
is similar to the flood-to-ebb ratio calculated from the linear relation.
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Title: Associate Scientist

Woods Hole Oceanographic Institution



Acknowledgements

My time spent as a graduate student at the Woods Hole Oceanographic In-

stitution includes some of my most illuminating experiences. From being one of

the first Americans on a military island in China to final exams of 18.444 in the

large auditorium at MIT where they essentially shoot off a gun at the beginning

and end of the race (oops, exam), my eyes have only become larger. All of these

experiences, whether good, bad or different, I hopefully will continue to learn from

and appreciate. I thank all of my friends and acquaintances that have made this

time worthwhile. Dave Aubrey, whose time, energy, generosity and "ribbing" were

always there whenever I could find him, I thank for his support and guidance. Keith

Stolzenbach has played a critical role in providing some realism to my ideas. ("You

want to solve all the problems of the world and do it in CHINA too?!*") Thanks

to my family for putting up with too many "Don't know when I'll be home next -

depends on how my work goes." Sometimes it takes a while to get your priorities

straight. And Doug, who has put up with more than his share of my "grumpa", I

would like to thank for his ability to get rid of those balls and chains that stop one

from realizing what the point is of all of this.



Contents

1 INTRODUCTION 8

2 SHALLOW WATER EQUATIONS 13

2.1 Linear equations ............................. 14

2.2 Nonlinear Equations .......................... 21

2.2.1 Continuity Relation ....................... 22

2.2.2 Numerical Method ....................... 29

2.2.3 Continuity versus Numerical Solutions ... .......... . 31

3 SEDIMENT TRANSPORT 38

4 ERROR DETERMINATION 46

5 CONCLUSIONS 49

Page



List of Figures

1 Example of tidal velocity asymmetry as expressed by an amplitude

ratio and phase difference and its relation to net bedload transport. 10

2 Channel geometry. ............................ 15

3 Comparisons between tidal elevation and velocity amplitude ratio

and phase difference for a linear system with no friction. ....... 18

4 Comparisons between tidal elevation and velocity amplitude ratio

and phase difference for a linear system with friction. . ...... . 20

5 Comparison of the tidal velocity phase differences for the numerical

solution, the nonlinear continuity solution and the linear solution. . 32

6 Comparisons of the tidal velocity amplitude ratio for the numerical

solution, the nonlinear continuity solution and the linear solution. . 33

7 Comparisons of the tidal velocity fundamental and harmonic ampli-

tudes of the numerical solutions, the nonlinear continuity solution

and the linear solution. ......................... 34

8 Numerical solution for the elevation amplitude of the fundamental

and harmonic frequencies ......................... 36

9 Comparisons of the amplitude ratio and phase difference between the

numerical solution, the nonlinear continuity solution and the linear

solution for a channel with a fiat bottom and sloping side walls.. . 37

10 Tidal elevation asymmetry versus flood-to-ebb ratio of bedload sed-

iment transport in a linear system with a critical velocity equal to

zero ..................................... 41

11 Tidal elevation asymmetry versus flood-to-ebb bedload sediment trans-

port in a nonlinear system with a critical velocity equal to zero.. .. 42

Page



12 An illustration of how the difference between the nonlinear and the

linear solutions for the velocity amplitude ratio and the phase differ-

ence cancel each other in the calculation of the flood-to-ebb bedload

transport ratio............. .................... 43

13 Tidal elevation asymmetry versus flood-to-ebb ratio of bedload sedi-

ment transport in a linear system with a critical velocity equal to 20

cm/sec ................................... 45

14 Tidal elevation asymmetry versus flood-to-ebb ratio of bedload sed-

iment transport in a nonlinear system with a critical velocity equal

to 20cm/sec. ..... ................... ....... 47

15 Error determination of the nonlinear continuity solution in terms of

the ratio of flood-to-ebb bedload transport. . .............. 48



List of Tables Page

1 Differences between the linear and nonlinear relations between el-

evation and velocity, and their effect on the flood-to-ebb bedload

transport ratio ............................... 44



1 INTRODUCTION

Embayments comprise a large fraction of the coastline and historically have been

areas of intensive use, resulting in degraded environmental quality and substantial

reduction in living marine resources (Cloern and Nichols, 1985). Appropriate and

effective management of coastal embayments requires research to understand these

complex systems.

Circulation processes influence many aspects of an embayment. Sediment and

pollutant transport as well as location and type of fisheries all are affected by

water circulation. Three dominant types of circulation found in an estuary are

thermohaline, wind-driven and tidal. The relative importance of the different types

of circulation in transporting sediments or pollutants will vary depending on the

particular estuary and the time of year.

Tidal circulation can cause a net transport of sediment if the tidal residual

is nonzero or if the tidal velocity is asymmetric about the mean. Tidal currents

flowing by topographic features generate residual currents that are expressed by the

advective terms in the momentum equations (Tee, 1976; Zimmerman, 1981). A tidal

velocity that is asymmetric about a zero mean will be flood or ebb dominant. Flood

(ebb) dominance occurs when currents in the flood (ebb) direction are stronger but

last for a shorter duration than ebb (flood) currents. A tidal velocity that is flood or

ebb dominant may cause a net sediment transport if the transport rate is nonlinearly

related to velocity. Aubrey(1986) has calculated the ratio of flood-to-ebb bedload

transport as a function of the degree of flood or ebb dominance. The effect of a

tidal velocity asymmetry around a zero mean may cause a significant transport

asymmetry.

The tidal velocity can be represented by a summation of harmonic functions.



If the velocity is represented as a combination of a fundamental frequency and an

even harmonic, net transport can occur. Any other combination of frequencies will

not cause a net transport of sediment over long time scales. For a limited interval of

time, frequency combinations other than a fundamental and an even harmonic may

cause a net transport but over the period of the beat frequency, net transport will be

zero. The degree of asymmetry can be described by an amplitude ratio of the even

harmonic to the fundamental and the phase difference between the fundamental and

even harmonic. Defining the fundamental and the first even harmonic frequency

constituents (sea surface or velocity) as

Fund = Axcos(wt - 01)

Harm = A 2cos(2wt - 02)

the amplitude ratio and the phase difference can be written:

AmPHar7m A2
AmppF,, A,

AO = 02 - 201.

Figure 1 gives examples of how the amplitude ratio and phase difference expresses

a velocity asymmetry and how a velocity asymmetry causes a net bedload trans-

port. Flood dominance occurs when A0et, is between 270* and 90* with maximum

asymmetry at 0*; ebb dominance occurs when AO,, is between 90* and 270* with

maximum asymmetry at 180*. The closer the amplitude ratio is to 1, the lesser the

asymmetry.

In a linear system, an elevation asymmetry and thus a velocity asymmetry occur

only when the system is being forced by both a fundamental and an even harmonic

frequency. A linear system can change the amplitude and phase of a frequency

component but cannot produce frequencies that are not already in the system. In a
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nonlinear system, harmonic frequencies are produced by the fundamental frequency,

thus a velocity asymmetry can occur when the system is being forced by only one

frequency.

Tidal asymmetries or distortions have been studied previously by analyzing the

shallow water nonlinear equations. The nonlinear equations generally do not have

an exact solution thus they must be solved using another method. Numerical mod-

eling methods are commonly used to solve nonlinear equations. These methods are

not the best for determining the relationship between various parameters of the

system because each computation gives just one solution and does not tell what

would happen if the parameters were changed. The numerical models must be run

many times to determine how the various parameters of the system affect the so-

lution. A perturbation method is another means for solving nonlinear equations,

and was used by Kreiss (1957), Gallagher and Munk (1971), and Kabbaj and Le

Provost (1980) along with numerical methods to solve the tidally forced shallow wa-

ter equations. Kreiss (1957) determined that advective and friction terms produce

harmonics that cause a tidal distortion. Gallagher and Munk (1971) studied the

effects of tidal amplitude, channel geometry and friction on nonlinear distortions

in a quasi-linearized set of shallow water equations. Kabbaj and Le Provost (1980)
analyzed the importance of quadratic bottom friction in nonlinear tidal distortions.

All of these investigations used initial equations that drop nonlinear terms of O(tidal

amplitude/water depth) which are significant in our calculations. Speer and Aubrey

(1985) and Friedrichs and Aubrey (submitted) related channel geometry to elevation

asymmetry through numerical solutions.

The emphasis of this paper is to understand tidal velocity asymmetry, its rela-

tion to tidal elevation asymmetry, and the significance of the elevation asymmetry

in terms of sediment transport. Theoretically, it is of interest to show the phys-



ical basis for the nonlinear relation between elevation and velocity and how it is

represented in the equations of motion. The height and width of a channel in a

shallow water system change significantly with the tide causing a nonlinear relation

in the continuity equation. On the more practical side, a relation between elevation

and velocity enables one to determine from tide gauge data and sediment transport

relations whether tidal asymmetries around a zero mean cause a net transport of

sediment. If the tidal asymmetries are significant, an average of the tidal velocity

will not be representative of transport processes that are related nonlinearly to ve-

locity. A tidal residual alone should be used to determine the net transport only

when the sediment has a transport relation that is linearly related to velocity.

Tidal velocity is related to tidal elevation through the shallow water equations.

The 1-dimensional equations, when linear, have analytical solutions that relate ve-

locity to elevation. A relationship between elevation and velocity in a nonlinear

system is derived through the continuity equation. A nonlinear relation is calcu-

lated between elevation and velocity at the landward end of the channel and the

variation in velocity along the channel is represented by the linear solution. The

method of using the elevation at the landward end of the channel to determine the

velocity is based on the observations from the linear solutions that the elevation

asymmetry at the landward end of the channel determines the approximate veloc-

ity asymmetry everywhere in the channel. Numerical solutions are calculated to

check the validity of this method. Results show that the nonlinear relation between

velocity and elevation is significantly different from the linear relation.

In order to determine the significance of tidal asymmetry in transporting sedi-

ment, the ratio of flood-to-ebb bedload transport is plotted versus elevation asym-

metry data. Suspended load transport due to tidal asymmetries cannot be cal-

culated without defining the size of the sediment and thus is best to calculate



separately for the particular system of interest.

2 SHALLOW WATER EQUATIONS

The equations that define fluid motions in an embayment are conservation of mass

and conservation of momentum (Pritchard, 1971). The one dimensional equations

are used, not to describe a real system in total but to give insight into one aspect

of the problem. Integration of the shallow water equations over depth and width

yields

Conservation of mass-
aA aU

-t + - = 0 (1)at 9X

Conservation of momentum-

9U _ y
at = -gA-z friction term - advective term (2)

where

A(x, t) is the area of the channel

U(z, t) is the volume flux averaged over depth and width of channel

r(z, t) is the elevation of free surface above mean sea level

g is gravitational acceleration

t is time

x is positive upchannel.

These equations define motion in a channel having width, b, mean depth, h and

length, L. The width, b, and area, A, as shown in Figure 2 are defined as

b = bo + 0(h + l)

A = b(h + I) = bo(h + 1) + 8(h + )' (3)



where

# is the slope of the side walls (width/height)

b0 is the width of the channel bottom.

The channel that is being studied here is open at the ocean end (x = 0) and

closed at the landward end (x = L). For tidally forced circulation in an embayment,

the boundary conditions are

U = 0 at z = L (4)

,7 = 71cos(kL)cos(wt) + ,72cos(2kL)cos(2wt - 0) at z = 0 (5)

where

r7i, 772 are the amplitude of the fundamental and first harmonic frequency of

elevation at the landward end of the channel (z = L)

w is the fundamental frequency

k is the wave number (k = w/c, c = Vr7h)

0 is the negative of the phase difference between the fundamental and harmonic

frequency at the ocean end of the channel.

2.1 Linear equations

In a linear system, an elevation asymmetry and thus a velocity asymmetry occur

only when the system is being forced by both a fundamental and an even harmonic

frequency. The equations are linear if width, b, and area, A, are constant in space

and time, a linear friction term is used and the nonlinear advective terms are ne-

glected. If t/h < 1 then width, b, and area, A, are approximately constant. The

linearized shallow water equations are

a1 1 aUa +  = 0 (6)
Bt be 8z



p= Ay/Az O bo

- bo(h + l)

Figure 2: Channel geometry. The area of the channel that is marked by the vertical

stippling is the area that changes in height due to a change in tidal elevation: the

horizontal stippling indicates the area of the channel that changes in height and

width due to a change in tidal elevation.



a = -gAol - fU (7)

where

f = linear friction factor (t-1 ).

The 1-dimensional linear equations of motion can be combined into the wave

equation when the friction term is neglected.

a2rl- (w\) a21
at2 \k aX2

The solution to the wave equation with the above boundary conditions (Equations 4

and 5) is a standing wave where

7 = r17cos(k( - L))cos(wt) + 772cos(2k(z - L))cos(2wt - 0)

U = bcrjlin(k(z - L))in(wt) + bcI2,sin(2k(z - L))sin(2wt - 0)

The elevation asymmetry in a linear system having no friction is represented by

the amplitude ratio and the phase relationship. The amplitude ratio of the first

harmonic (Hi) to the fundamental frequency (F) is

AmpH,,el. _ 72 cos(2k(z - L)) S12
Ampp,,,, 1i7 coa(k(z - L)) 1

For channel lengths of 0(10 km) and water depth of 0(3 m), k(z - L) is small

and thus cos(k(z - L)) is approximately one. The phase relationship between the

fundamental and the first harmonic is

AOev = 04,,l - 20,,,e = 0,

where

0F,el,, is the phase of the fundamental frequency in elevation, set to 0 in standing

wave equation for ease of calculations,

0Hl,,ev is the phase of the first harmonic frequency in elevation, equal to 0 in standing



wave equation.

The velocity asymmetry due to a linear system having no friction is represented

by the amplitude ratio and the phase difference. The amplitude ratio of the first

harmonic to the fundamental is

AmPH,,.r 12 sin(2k(z - L)) -n
AmpF,,e 1 sin(k(z - L)) ll

Since k(x - L) is small, sin x ; z. The phase relationship between the fundamental

and the first harmonic is

AOv,, = 0H,,v, - 20eF,,, + 90 = 0 + 900,

where

OF,vl is the phase of the fundamental frequency in velocity, equal to zero in the

standing wave equation

OH ,, is the phase of the first harmonic frequency in velocity, equal to 0 in the

standing wave equation.

The calculation of AO ,, is shifted by 900 from AOa . due to velocity being rep-

resented by sine functions. The amplitude ratio and phase relationship for both

elevation and velocity of a linear solution with no friction are depicted in Figure 3.

The solution to the linear equations (Equations 6 and 7) with the friction term

not equal to zero has been solved by Dronkers(1964). Dronkers' solution gives a sea

surface elevation,

Cpcoswt + Dpsinwt
1 cosh(sbp) + co +(sep)

CHcos2wt + DHsin2wt

cosh(s6b) + co"(H)
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and a volume flux,

boco Epcoswt + FFsinwt
62 + iep cosh(.b.) + cos(se,)

boco CHcos2wt + DHsin2wt
12 6j2 + E, cosh(6H) + Cos(sEH)

in which

C = 2[pl,i(L)pl,i(z- L) + p 2,(L)2,i(z - L)]

D = -2[jl,j(L)P2,i( - L) -L 2,iL)l,i( - L)

Ej = 26[~l,j(L)p3 ,(z - L) - 2,i(L)P,i(z- L)

-2f[pjl,(L),i(z - L) + P ,i(L)p3,i(z - L)

F = 2E[pl,i(L)S,i(x - L) - 2,i(L)P4,/i(Z- L)]

+2[ptl,(L)4,i (z - L) + c2,i(L)s,(zx - L)

i= F (fundamental) or H (harmonic)

and where

1 x 1 x
P2,,(z) = sinh(-s6,-)sin(-,-L)2 L 2 L

ps,i(z) = cosh(-s6i )ain( -S-)2 L 2 L
1 1 z

P4,i(z) = sinh(-s6-)cos(-(2 -)2 L 2 L

b = [-0.5 + 0.5(1 + (_)2 )1/2]1/2
Wi

Ji= [0.5 + 0.5(1+ (_)2)1/2]1/2

47rL
a =td

Atid
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Results of Dronker's solution in terms of velocity asymmetry related to elevation

asymmetry are depicted in Figure 4.

A linear system of the shallow water equations with and without friction shows

the following velocity asymmetry as compared to elevation asymmetry. The ampli-

tude ratio of the first harmonic to the fundamental is

AmpH,, AmpH,, (8)2(8)Amp.,v,, Ampp,e (z=,)

The phase relationship between the fundamental and the first harmonic is

AOe = AOe,,(z=) + 900 (9)

Linear solutions show that the relationship between elevation asymmetry and

velocity asymmetry (Equations 8 and 9) holds best toward the landward end of

the channel. In linear solutions, velocity asymmetry varies insignificantly down the

channel for a channel geometry on the order of 10 kilometers in length and 3 meters

in depth (Figures 3 and 4). Linear solutions thus show that velocity asymmetry

everywhere in the channel can be determined by the elevation asymmetry at the

landward end of the channel.

2.2 Nonlinear Equations

The shallow water equations (Equations 1 and 2) are nonlinear when area, A, or

width, b, are not constant in time or space, or when the friction term and/or advec-

tion term is nonlinear. The velocity asymmetry is determined from the elevation

asymmetry in the nonlinear equations by using an elevation that is representative

of the elevation at the landward end of the channel when x=L and computing the

velocity through the continuity equation. This method is based on the observations

from the linear solutions that the elevation asymmetry at the landward end of the



channel determines the velocity asymmetry everywhere in the channel. Although

the asymmetry in a linear system is produced by a tidal forcing of a fundamental

and an even harmonic frequency at the inlet, and the asymmetry in a nonlinear

system can be due to the forcing of only a fundamental frequency at the inlet and

generation of the harmonic frequency within the channel the validity of this method

will be tried and checked by comparisons with numerical solutions.

2.2.1 Continuity Relation

Tidal velocity is determined from a tidal elevation that is representative of the

elevation at the landward end of the channel (z = L). This elevation is expressed

as

S= r71cos(k(x - L))cos(wt) + ri2co,(2k(z - L))co,(2wt - 0) +

773coa(3k(x - L))cos(3wt - ). (10)

The second harmonic (3wt) is included in this expression because it is possible to

create a first harmonic (2wt) from nonlinear terms that multiply the fundamental

(wt) and the second harmonic (3wt). The velocity due to this elevation asymmetry

is calculated from the volume flux which is found using the continuity equation.

VERTICAL SIDE WALLS

A channel with vertical side walls has an area that is expressed as

A = bo(h + i)

where bo is the width of the channel. The volume flux is calculated through the

continuity equation from the tidal elevation (Eqn. 10);

U Aa- -- (continuity equation)ax t



OA = boa
at a- 0t

aA = -boh[(w l/h)cos(k(x - L))sin(wt) + (2wtl2 /h)cos(2k(x - L))sin(2wt - 0)+

(3wrs/h)cos(3k(z - L))sin(3wt - ")]

U f A dxat

U = boh(w/k)[(r7/h)sin(k(z - L))sin(wt) + (T'/h)sin(2k(z - L))sin(2wt - 0)+

(rs/lh)sin(3k(z - L))sin(3wt - )] + C

Since U = 0 at z = L, then C = 0.

Velocity asymmetry can be determined from volume flux by

Velocity = V = U/A,

with a binomial expansion,

-= 1- + 0( 7 )2
A boh h h

V = !-[sin(k(z - L))sin(wt) + (,72/,r)sin(2k(z - L))sin(2wt - 0)-

(771/4h)sin(2k(x - L))sin(2wt) + O((ll/h)2) + O(?l,/h)]

Two sinusoidal functions having the same frequency but different amplitudes and

phases can be expressed as a single function of the same frequency with one ampli-

tude and phase.

Fsin(2wt) + Gsin(2wt - 0) = (F + Gcose)sin(2wt) - (Goine)cos(2wt)

= [(F + GcosO)' + (GainO)2 1/ 2sin(2wt - 4)



= arctan + Gsin - 90

In tidal velocity

F = -1sin(2k( - L)),
4h

G = sin(2k( - L)),

thus

V 1 {sin(k(x - L))sin(wt) +
kh

co + sin /2 sin(2k(x - L))sin(2wt - ) + (11)

O((l/h)2 ) + O(th/h)}

where
nc0 - n

= arctan - 90

The velocity asymmetry for a nonlinear system with a channel having vertical

side walls is represented by the following equations. The amplitude ratio of the first

harmonic to the fundamental is

AmP,,. sin(2k(z - L)) [(1 - 2 - 1/2 (12)
Sj coe - - sin. (12)

AmpF,,,l sin(k(x - L)) l 4h

The phase relationship between the fundamental and the first harmonic in the

velocity equation when velocity is expressed as a summation of sine functions is

Av,, = OH - 20pu,, + 900.

The phase of the fundamental frequency in the velocity equation is zero (OF,,ve = 0)

and the phase of the harmonic frequency is O (O ,,, = 0), thus

( cos$ - I
0, = arctan 4h

-UsinO



But

tan(1800 + A) = tan(A),

arctan() = 1800 + A or A,

therefore
!cose - !L

AOe, = arctan + 0 or 180*. (13)- sinO

Choose 0* or 180* so AO,, ve A0e, , + 900 The velocity asymmetry should be cal-

culated with tidal elevation parameters from the landward end of the channel. The

tidal elevation parameters are the following:

r1 is the tidal elevation amplitude of the fundamental

frequency at x=L

r12 is the tidal elevation amplitude of the first

harmonic frequency at x=L

0 is the phase difference between the fundamental and harmonic

frequencies of the tidal elevation at x=L

If the tidal elevation is expressed as a summation of cosine functions (i.e. equation

10),

AG,., = OH,,. - 20,v,.

Since in our calculations, Op,a,, was set equal to zero for ease of computation and

OH,ee, = O,

e = AO .

The 0 to use for the velocity asymmetry calculation is equal to AOv,, calculated

from tidal elevation data at the landward end of the channel.



SLOPING SIDE WALLS

A channel with sloping side walls has an area that is expressed by Equation

3. The volume flux due to the elevation asymmetry (Equation 10) is calculated

through the continuity equation:

aU _ A
dx dt

aA _ q a= bo + 2P (h + i )-at at dt
U= -(bo+2h)f-dz - 2 dzd

f dx = -(w/k) [~isin(k(z - L))sin(wt) + 72sin(2k(x - L))sin(2wt - 0)+

fTssin(3k(x - L))sin(3wt - )] + C1

f rdzx= -(w/k) (r12/8)[(2k(z - L) + sin(2k(x - L)))sin(2wt)]+

O(172 171) + C2

U = (bo + 2ph)! [Yisin(k(x - L))sin(wt) + 72sin(2k(x - L))sin(2wt - 0)]

+1r#iw/k [2k(x - L) + sin(2k(z - L))] sin(2wt)+ 0(772 1) + C3

Since U = 0 at x = L, then C3 = 0.

The velocity is determined from the volume flux by

Velocity = V = U/A,

where
1 1
A bo(h + 1) + 3(h + )2 '

A v-shaped channel (bo = 0) simplifies the expansion of 1/A and therefore the

calculation of the velocity as shown in the following equations:

1 1
A 0(h + v)2

1 (1 2r + ))

A ph2 h



U =2ph2(w/k)(t/llh){sin(k(z - L))sin(wt) + ' 2/1r1sin(2k(z - L))sin(2wt - 0)+

(ri1/8h)[2k(x - L) + sin(2k(z - L))]sin(2wt) + O(7 2/h)}

V = UIA

V = 2(w/k)(rii/h){sin(k(z - L))sin(wt) +

(r2/i1)sin(2k(z - L))sin(2wt - 0) +

(1l/8h)[2k(x - L) + sin(2k(z - L))s]in(2wt) -

(il/2h)sin(2k(z - L))sin(2wt) +

O(. 2/h) + O((l/h)')}

V = 2(w/k)(,1/h){sin(k(z - L))sin(wt) +

(r72/ii)sin(2k(z - L))sin(2wt - 0) +

(i1/8h)(2k(x - L))in(2wt) -

(3t1i/8h)sin(2k(z - L))sin(2wt) +

O(17 2/h) + O((ql/h)')}

As shown previously in the section on vertical side walls, two sinusoidal functions

having the same frequency but different amplitudes and phases can be expressed as

a single function of the same frequency with one amplitude and phase.

Fain(2wt) + Gain(2wt - 0) = (F + Gcoa0)ain(2wt) - (GsinO)cos(2wt)

= [(F + Gcoe)' + (GsinO)'2]/ 2sin(2wt - #)

= arctan .+Gao) - 90*

(1 2k(z-L) 1  31 asn(2k( -L))
F= sin(2k(z- L))h 8h



G = sin(2k(z - L))

The velocity asymmetry for a nonlinear system with sloping side walls is repre-

sented by the following equations. The amplitude ratio of the first harmonic to the

fundamental is

AmpH,vd sin(2k(x - L)) [(,2cos 317 1 2k(z - L)1 2 2] 1/2

=1 .o - z+ + 1-sin0
AmpF,, sin(k(z - L)) I - 8h 8 8in(2k(xz L))h 2

The phase relationship between the fundamental and the first harmonic is

AO,, arctan - 8si 8si(2k(-L))h
- in0

+00 or 1800

Choose 00 or 180* so that AO,, leads A0a,, in phase by approximately 900.

The velocity asymmetry determined for a v-shaped channel geometry is similar

to the solution for a rectangular channel. The difference between the two solutions

exists when 2k(z - L) 0 sin(2k(z - L)). This difference is small for channel lengths

much less than the tidal wavelength which is true for the channels considered here.

Channels with geometries that are not rectangular or v-shaped but somewhere

in between (i.e., flat bottom with sloping side walls) are more likely to be found

in the field. Determination of the velocity asymmetry for a channel having a flat

bottom and sloping sides becomes more difficult mathematically due to the binomial

expansion of 1/Area,

where

Area = bo(h + rl) + (h + rl)2 .

A rectangular channel has an area where P is zero and a v-shaped channel has

an area where b0 is zero. Channels with flat bottoms and sloping side walls require

both terms to express the area of the channel. Numerical solutions for geometries



between a rectangular and v-shaped channel will be shown in the section comparing

numerical and theoretical results.

2.2.2 Numerical Method

The validity of the theoretical solutions will be checked by a comparison with nu-

merical solutions. The nonlinear shallow water equations were solved numerically

using a quadratic friction term in the momentum equation.

friction term =
A2

where

f is the friction factor

P is the wetted perimeter (P = b0 + 2[fl(h + r)2 + (h + r1)2]1/2)

A quadratic friction term with a constant friction factor, although commonly

used (e.g.,Uncles, 1981; Speer, 1984), has its drawbacks. It is felt that odd har-

monics of the fundamental frequency are overemphasized (Prandle, 1980), although

Pingree and Maddocks (1978) have reproduced Ms and M4 amplitudes and phases

accurately. The quadratic friction term will be used in the numerical solution to

determine the relation between elevation and velocity.

A numerical solution of the nonlinear equations is found via an explicit finite

difference model using a forward-time, centered-space scheme (Speer, 1984). Sea

surface elevation and volume flux are staggered spatially. The accuracy of this

scheme is O(At, Az 2). The equations in their discrete form are given below:

OA 8U
Ot az

A = bo(h + t7) + P(h + 17) 2

aA a1r= [bo + 2P(h + 1)]at at



a?) 1 BU+ =0at bo + 2#(h + ) cz
n+x n n?j+1/2 - ? +1/2 _ +1 U

At bo + 2P(h + 1)7+1/2 Az

l -gA +1 , f UAt Ax A7 A
At ' z Al * A,

The boundary conditions are

U=Oatz=L

17 = 7)1cos(kL)cos(wt) at x = 0

Numerical solutions also require initial conditions. The analytical solution to the

linear equations with no friction will be used for the initial conditions:

71 = 17cos(k(z - L)) at t = 0

U = 0 at t = 0.

The stability criterion for the linearized numerical problem is the CFL condition

(Roache, 1972):
Ax
- > /ghx

This condition is met by using Ax = 250 meters and At = 30 seconds. Speer(1984)

compares this numerical scheme (with a linear form of friction) with Dronker's

analytical solution to the linear system with friction. Comparisons between the

numerical and analytical show good agreement with the amplitude and phase of

elevation.

Time series of elevation, volume flux and velocity of length 5 days are calculated

with the above equations. The first day is not included in the analysis to be sure the



effects of the initial conditions are not biasing the results. The amplitude and phase

of the tidal elevation and velocity are determined through least squares harmonic

analysis (Boon and Kiley, 1978; Aubrey and Speer, 1985).

2.2.3 Continuity versus Numerical Solutions

The continuity method used to determine velocity asymmetry from elevation asym-

metry is based on the observations from linear solutions that the elevation at the

landward end of the channel determines the velocity asymmetry everywhere in the

channel. The validity of the continuity solution for determining the relation be-

tween elevation and velocity in the shallow water nonlinear equations is shown by

comparisons with numerical solutions.

The velocity asymmetry calculated from the continuity relation is shown through

comparisons with numerical solutions to approximate best the velocity asymmetry

at the landward half of the channel. The continuity solution determines a phase

of the tidal velocity asymmetry that does not vary significantly from the numerical

solution throughout the channel (Figure 5). The numerical solution of the amplitude

ratio of harmonic to fundamental frequency decreases more than the continuity

solution toward the inlet (Figure 6). The amplitude of the fundamental frequency

matches the numerical solution on the inlet end of the channel but the amplitude

of the harmonic frequency does not decrease as much as the numerical solution

toward the inlet (Figure 7). The continuity solution takes into account the nonlinear

relation between elevation and velocity at the channel end but the variations in

asymmetry down channel as expressed by the continuity solution are similar to the

linear solution. The nonlinear variations in velocity down channel as seen in the

numerical solution cause a decrease in the amplitude of the harmonic frequency

relative to the fundamental which is not accounted for in the continuity solution.
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The velocity asymmetry determined from numerical solutions decreases towards the

inlet as the amplitude ratio of harmonic to fundamental decreases and as the phase

difference between fundamental and harmonic (AOe,) tends away from 0*. This

is generally the case for the channel geometries of interest here. If the numerical

solutions can be assumed to be the "true solution", the continuity tidal velocity

asymmetry is an upper limit for the asymmetry and thus the sediment transport in

the inlet.

Numerical solutions show that tidal elevation at both the fundamental and har-

monic frequencies reaches an amplitude half way down the channel that stays rela-

tively constant to the end of the channel (Figure 8). Tide gauge data collected from

any point in the landward half of the channel should provide the necessary input

to determine the velocity asymmetry.

As mentioned previously, rectangular and v-shaped channel geometries are not

found commonly in the field. Channel geometries that have flat bottoms and sloping

side walls are more likely. Since the relation between velocity and elevation is

difficult to determine mathematically for these cases, it is shown numerically that

the velocity asymmetry for rectangular channels, calculated through the continuity

relation, is also a good approximation for various channel geometries between the

rectangular and v-shaped extremes. Figure 9 shows the continuity versus numerical

solutions for a channel shape midway between the two extremes. Similar to the

rectangular case, the velocity asymmetry at the landward half of the channel is

approximated well by the continuity solution. A tidal velocity asymmetry for any

channel geometry between a rectangular and v-shaped can be approximated from

the continuity solution for a rectangular channel. The solution is valid for the

landward half end of the channel and is an upper limit for the asymmetry and thus

the sediment transport in the inlet.
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3 SEDIMENT TRANSPORT

Any sediment whose transport equation has a nonlinear relation to velocity may

have a net transport in the flood or ebb direction if tidal velocity is composed of a

fundamental frequency and its even harmonic. The previous sections have shown

how to estimate tidal velocity from tidal elevation data. The purpose of this section

is to relate tidal elevation asymmetry to net sediment transport. To determine

the degree of net bedload transport due to tidal circulation, the flood-to-ebb ratio

can be calculated with a knowledge of the tidal velocity. The sediment parameters

cancel out in the ratio allowing a convenient relation independent of sediment type.

The flood-to-ebb ratio of suspended load transport cannot be calculated without

defining the sediment size and thus is best to calculate separately for the particular

system of interest (e.g. Madsen,1975; Smith,1977).

Bedload sediment transport has been expressed in a variety of ways. The Meyer-

Peter and Miller bedload formula was derived from purely empirical relations

(Meyer-Peter and Miller, 1948). The agreement between data and the equation

is good. The original equation has been changed by Wilson (1966) to include the

Shield's parameter:

6 = 8 d ( - 1)pgd (4 - ,)/2

where

q,b is volume rate of transport per unit width

is Shield's parameter

4 is critical Shield's parameter defining initiation of sediment movement

d is grain diameter

p, is density of sediment



p is density of water

(2 - 1)pgd

ro = Up

U, OC U

where

ro is shear stress

u, is shear velocity

i is depth averaged velocity

If ?k , 0;

qf oc (fi - )S/2

If Ie = 0;

q,b oc g

The Meyer-Peter and Miller equation thus shows that bedload transport is

proportional to velocity cubed. The Bagnold equation of bedload transport which

is based on the assumption that the volume of transport is proportional to the

energy loss per unit area of the bed due to friction between the fluid and the bed

is also proportional to velocity cubed (Bagnold, 1963).

Aubrey (1986) calculated the relation between velocity asymmetry and the flood-

to-ebb ratio using the Meyer-Peter and Miller formula with a 0, = 0. Elevation

asymmetry for both linear and nonlinear systems now can be related to the flood-to-

ebb ratio of bedload transport using the relationship between elevation and velocity

asymmetry as calculated in the previous sections. The Meyer-Peter and Miller

equation will be used for this analysis. This information will allow a prediction of



the ratio of flood-to-ebb bedload transport from knowledge of tidal elevation at the

landward end of the channel. The ratio of flood-to-ebb sediment transport is

fflood2 i 2 3/2dt

Jes(f,2 - fL2)3/2dt

where i is derived from elevation information through Equation 12 (V is equal to

fi). The elevation asymmetry of a linear system is plotted versus flood-to-ebb ratio

of bedload transport in Figure 10. The linear relation between elevation and velocity

is shown by Equations 8 and 9. Phase differences of 0* and 180* in elevation will

translate into a velocity that will not have a flood or ebb dominance: velocity still

may be distorted but will be symmetrical between flood and ebb. The larger the

amplitude ratio, the more distorted the velocity signal becomes with potential for

greater asymmetry and thus larger differences in the flood and ebb transport.

A nonlinear system shows a similar flood-to-ebb ratio in relation to elevation

asymmetry as the linear system (Figure 11). Equations 12 and 13 relate elevation to

velocity for a nonlinear system. Results showed earlier that the nonlinear continuity

solution for the amplitude ratio and the phase difference were significantly different

from the linear solution. The differences between the nonlinear and the linear

solutions for the velocity amplitude ratio and the phase difference cancel each other

in the calculation of the flood-to-ebb transport ratio. These differences combine

to predict a flood-to-ebb ratio that is along the isoline of the flood-to-ebb ratio as

calculated in the linear solution. This result can be shown best by Table 1 and

Figure 12. Table 1 shows that when AO,, is within 0-90* (ebb dominant), cose is

positive causing the nonlinear velocity amplitude ratio to be less than that predicted

by the linear relation (Equation 12). A decrease in the velocity amplitude ratio by

the nonlinear relation causes the system to become less ebb dominant, increasing the

flood-to-ebb ratio. The vertical arrow in Figure 12 in the 0-90* quadrant represents
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AOee,, cosO AmPH,.,l Flood* e,- AO Floodt
I I AmppF,, AM Eb A 0,1e, NL Ebb

0 - 90 + < 2 Ampr,. T > 900 1800
Ampp,,,,

90- 1800 - > 2 AmP,l 4 > 900 --+ 0
Ampp,,,

180 - 2700 - > 2 AmP' '  < 900 -+ 1800 1
Ampp,41,

270 - 3600 + < 2 AmPHmI'" < 900 - O0 T
I_ I Ampp,,,, _ _

Table 1: Differences between the linear and nonlinear relations between elevation

and velocity, and their effect on the flood-to-ebb bedload transport ratio. * The

change in the linear flood/ebb due to the nonlinear change in the amplitude ratio.

t The change in the linear flood/ebb due to the nonlinear change in the phase

difference. (NL=nonlinear,f= increases, 1= decreases, -+= approaches)

the increase in the flood-to-ebb ratio due to the nonlinear velocity amplitude ratio.

When 0 is between 0 - 90*, the phase difference between velocity and elevation

is greater than 90* (Equation 13). AOe,, is between 0 - 90*, thus the O,,e is

900+ - 1800+. AOve, gets closer to 180* due to the nonlinear relation, the system

becomes more ebb dominant, and the flood-to-ebb ratio decreases. The horizontal

arrow in the 0 - 900 quadrangle in Figure 12 represents the decrease in the flood-

to-ebb ratio due to the nonlinear phase difference. The rest of the quadrants show

similar results.

For coarser sediments, the velocity has to reach a certain magnitude before

initiation of sediment movement. Figure 13 shows the flood-to-ebb ratio of a linear

system with a critical velocity of 20 cm/sec (tk, = .12, u, = 1.17). This critical

velocity corresponds to a fine sand with a grain size of .07 mm. A greater flood-to-

ebb ratio occurs when sediment is stationary for part of the tidal cycle. A nonlinear
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system with a critical velocity of 20 cm/sec also shows similar flood-to-ebb ratios

as the linear system (Figure 14).

Calculation of the flood-to-ebb ratio of bedload transport for a nonlinear system

can be determined from the linear relation. Other sediment transport relations will

be related to velocity in various ways which may necessitate the calculation of the

nonlinear velocity to determine the sediment transport. The flood-to-ebb transport

ratios are calculated here based on the assumption that the continuity solution

approximates the true solution adequately. The following section shows the error

associated with the continuity relation in terms of the sediment transport.

4 ERROR DETERMINATION

The relation between elevation and velocity as determined through the continuity

solution of the nonlinear equations does not represent exactly the numerical solution

(Figures 5 to 7). The continuity solution predicts the nonlinear relation between

elevation and velocity at the end of the channel as determined through the numerical

solution but the variation in velocity along the channel is similar to the linear

solution. The continuity solution does not take into account the nonlinear variation

along the channel. Numerical solutions show that most of the nonlinear variation

along the channel occurs at the inlet end of the channel.

Estimates of the error in the continuity solution are determined in terms of

the difference between the continuity and numerical solutions of the flood-to-ebb

ratio of bedload transport. The error in the flood-to-ebb ratio of a nonlinear sys-

tem is dependent on the parameters of the system and the distance down channel

(Figure 15). For channel geometries of interest here, the flood-to-ebb ratio of the

continuity solution is similar to or greater than the numerical solution and their dif-
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ference increases towards the inlet. This is due to the unpredicted decrease in the

amplitude of the harmonic frequency of velocity shown by the numerical solution

moving toward the inlet (Figure 7). As the system becomes more nonlinear, the

error in the continuity solution at the inlet increases (Figure 15). The difference

between the continuity solution and the numerical solution increases towards the

inlet and as the system becomes more nonlinear.

5 CONCLUSIONS

Net transport of coarse sediment in a coastal embayment is dependent on the differ-

ences in circulation between flood and ebb tides. These differences can be quantified

by calculating a mean and a measurement for the asymmetry around the mean. A

mean circulation caused by wind-driven flow, thermohaline flow or tidal rectifica-

tion processes may cause a net transport of sediment. But even when the mean

circulation is zero, a distortion in the tide causing an asymmetry between flood and

ebb may cause a net transport if the sediment transport rate is nonlinearly related

to velocity. In a flood or ebb dominant system, the practice of using a tidal resid-

ual to determine the net sediment transport neglects transport that is nonlinearly

related to velocity.

The type of tidal asymmetry that will cause a net transport is when the tidal

velocity is composed of two frequencies, one of which is an even harmonic of the

other. Any other combination of frequencies may cause a net transport for a limited

interval of time but over the period of the beat frequency, net transport will be zero.

The extent of the velocity asymmetry between flood and ebb is measured by the

amplitude ratio of the harmonic frequency to fundamental frequency and their phase

difference. The closer the amplitude ratio is to 1.0 and AO~,, is to 0* or 180*, the



greater the asymmetry.

Tidal velocity asymmetries can be estimated from tidal elevation data. The re-

lationship between elevation asymmetry and velocity asymmetry in a linear system

(Equations 8 and 9) is determined from the equations of motion of the fluid. In

a nonlinear system, the equations do not have an exact solution. The relation be-

tween elevation and velocity in a nonlinear system is found through the continuity

equation (Equations 12 and 13). The differences between the nonlinear estimate of

velocity amplitude ratio and phase difference and the linear estimate are significant

in shallow water systems (amplitude of tide/depth of water > 0).

Finite difference numerical solutions of the one dimensional, shallow water non-

linear equations are compared to the continuity relation. The continuity relation is

in excellent agreement with numerical solutions at the landward end of the channel,

however, the variation along the channel in a nonlinear system as represented by

the numerical solution differs from the continuity relation increasingly toward the

inlet. Numerical solutions show the greatest velocity asymmetry at the landward

end of the channel and the least at the inlet end. The greatest variation in asym-

metry along the channel (velocity and sea surface) concentrates at the inlet end.

The more nonlinear the system, the greater the difference between the continuity

relation and numerical solutions at the inlet.

Calculation of the flood-to-ebb ratio for bedload transport and its relation to

elevation asymmetry is similar whether the linear or nonlinear relation between

elevation and velocity is used. The differences between the nonlinear and the linear

solutions of the amplitude ratio and the phase difference cancel each other causing

a similar flood to ebb ratio as predicted by the linear relation. Sediment whose

transport rates are related to velocity in ways other than velocity cubed may need

to take the nonlinear variations into account when calculating the flood to ebb ratio.



A combination of velocity asymmetry, maximum velocity, and the critical ve-

locity of the sediment will cause a variation in the net transport along the channel.

Velocity asymmetries for the channel geometries shown in the previous sections de-

crease towards the inlet causing the ratio of flood-to-ebb net transport to decrease

towards the inlet. In a channel with one end closed, maximum velocity increases

towards the inlet. If velocity asymmetry (flood-to-ebb transport ratio) and critical

velocity were constant along channel, a greater volume of transport would occur

toward the inlet due to the increase in velocity. A depositional area in the channel

will occur where there is a decrease in the volume of sediment transported. This

could take place when velocity decreases toward the end of the channel more than

the increase in the velocity asymmetry. If the velocity asymmetry increases toward

the channel end more than the decrease in the maximum velocity, an erosional area

could occur. Sediment type may vary along the channel and bedforms may change,

consequently, the critical velocity may vary. Determination of the net transport

into or out of the embayment as well as depositional and erosional areas within

the channel should consider these three mechanisms that affect the sediment trans-

port. Lateral effects as well as bathymetric variations in the channel may also be

important in determining the sediment transport.

The number of parameters involved in trying to generalize the sediment trans-

port in a coastal embayment is prohibitive. Each system must be looked at sep-

arately. The emphasis of this analysis is to determine from tidal elevation data

whether, for the particular system of interest, there will be a net transport of sedi-

ment due to tidal asymmetries and in what direction. Estimates of the transport of

sediment from field data or theoretical analysis should take into consideration the

possibility of net transport due to tidal asymmetries.
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Appendix 1

Summary of the relationship between tidal elevation and velocity.

Tidal elevation can be represented as a summation of cosine functions with

varying amplitudes and phases.

1 = Alcos(wt - O1) + A 2cos(2wt - 02) +...

A harmonic analysis of the tidal elevation will provide the amplitudes (A1 , A2 , ...)

and phases (01, 02) of the tidal constituents. If the elevation can be represented

as a combination of a fundamental frequency and its even harmonic, net sediment

transport can occur. The degree of asymmetry of the tidal velocity in a channel

and thus the sediment transport can be determined from the tidal elevation at the

landward half end of the channel.

The velocity asymmetry in a channel is represented by the following equations.

The amplitude ratio of the first harmonic (HI) to the fundamental (F) is

Ampue,H _ sin(2k(z - L)) A( 0 A,) 2 + A 2si . 21/2

Amp,,l,p sin(k(z - L)) [A 4ho A

The phase difference in the velocity is

AO,, = arctan , 4h + 0* or 1800.
- sin0

Choose 0* or 180* so AO,, AOej,,e + 90*. The tidal elevation parameters are the

following:

A, is the tidal elevation amplitude of the fundamental frequency at the landward

half end of the channel

A 2 is the tidal elevation amplitude of the first harmonic frequency at the landward

half end of the channel



0 is the phase difference between the fundamental and harmonic frequencies of the

tidal elevation at the landward half end of the channel. 0 = AOe,I = 02 - 201

L is the length of the channel

h is the mean water depth


