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ABSTRACT

HOMODYNE STUDIES OF LIGHT

SCATTERED FROM A TURBULENT WATER JET

by

JOHN BARTON DeWOLF

Submitted to the Department of Earth and Planetary Sciences
on May 21, 1969 in Partial Fulfillment of the

Requirement for the Degree of Doctor of Philosophy

It is found experimentally that the homodyne spectrum of coherent
light scattered from particles suspended in a turbulent fluid is broader
than the spectrum observed when the particles undergo Brownian motion in
a fluid at rest. A theoretical and experimental study has been under-
taken in order to relate the measured spectral widths and profiles to the
parameters describing the turbulence. It is found theoretically that
as long as the Lagrangian integral space scale is large compared to the
wavelength, the homodyne spectrum has the same shape as the relative -
velocity distribution. A simple Gaussian model is advanced for
calculating spectral profiles numerically for the complicated
situations which arise in practice. The experimental study involved
scattering from uniform latex particles suspended in a turbulent water-
into-water jet, and homodyne spectra were taken at different positions
within the jet and for different Reynolds numbers. The variation of
spectral width with position in the jet and with Reynolds number was as
expected, but in cases where comparison with measurements on similar jets
by other investigators was possible, the widths were systematically less
than expected. Some possible explanations are offered.
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When we try to pick out anything by itself, we find it hitched

to everything else in the universe.

-John Muir
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I. THE PROBLEM AND ITS CONTEXT

1. Introduction

An interesting optical technique has been developed recently for

measuring molecular diffusion coefficients of monodisperse systems of

small particles in fluid suspension (Cummins, Knable, and Yeh, 1964;

Dubin, Lunacek, and Benedek, 1967). The technique is to measure the

frequency spectrum of laser light (continuous wave) scattered from the

particles with a device known as an optical homodyne spectrometer. The

diffusion coefficient is determined directly by measuring the width of

the spectrum. The technique requires some kind of low frequency spectrum

analyzer (a wave analyzer works very well), but does not require any other

elaborate electronic apparatus and places only modest requirements on the

laser power.

It has been suggested (Frisch, 1967, and others) that similar

spectral studies of light scattered from fluid turbulence might yield some

useful information about velocity fluctuation distributions and

correlations. The optical technique is particularly attractive because it

can be used to investigate tu'rbulence in liquids where hot wire

anemometry is difficult, and because there are no mechanical probes

involved which might disturb the flow. Several optical heterodyne studies

of turbulent flow in pipes have already been reported (Pike, Jackson,

Bourke, and Page, 1967; Goldstein and Hagen, 1967; Goldstein and Kreid,

1967), and the results suggest that the homodyne technique will work well

and give useful information.

Development of the homodyne technique would be of geophysical

interest for several reasons. A technique for the measurement of



turbulenca parameters on a small scale in the. atmosphere would be of use in

micrometeorology, particularly for the measurement of the vertical

component of fluctuation velocities. There is also a need for a technique

to detect the presence of clear air turbulence at a distance. Since the

homodyne spectrum is not frequency shifted by changes in the mean velocity

(see below), homodyne as opposed to heterodyne detection may be

advantageous for detecting the presence of turbulence in situations for

which the mean velocity varies widely or is unknown. It may also be

difficult to provide a reference signal for heterodyning in atmospheric

experiments. Another geophysical application not related to turbulence

concerns measurement of the molecular diffusion coefficient for various

types of aerosol particles. It might be possible, for example, to

determine particle size distributions for naturally occurring atmospheric

aerosols by measuring the sh )e of the homodyne spectrum.

Some preliminary unsccessful experiments were carried out by the

author which involved homodync detection of light scattered by aerosol-

gaseous mixtures. Not enough light was scattered by naturally-occurring

aerosols in our laboratory to allow a spectral measurement with the He-Ne

laser available. An experiment with a steam jet had to be abandoned when

it became evident that observed spectra were due to concentration

fluctuations and not phase modulation. These experiments did yield some

useful results concerning the ratio of aerosol-to-molecular scattered

light when the scattered spectrum was observed interferometrically (see

Fiocco and DeWolf, 1968).

We report here on the application of an optical homodyne spectro-

meter to the study of turbulence in liquids. We have observed the

transition between diffusion-broadened spectra in the absence of turbulence

8



to spectra broadened by velocity fluctuations in a water-into-water jet.

The variation of spectral width with position in the jet and with Reynolds

number was as expected, but the actual widths measured were systematically

less than expected on the basis of measurements due to other investigators

on similar jets. The discrepancy is presumably due to differences between

their jets and ours, and some possible explanations are offered in

connection with the more detailed description of the experiment in

Chapter III.

It is hoped that the results obtained in this experiment on

liquids may be of some use in planning and interpreting experiments to be

carried out later using aerosols to study atmospheric turbulence.



2. Homodyne versus heterodyne spectroscopy

The process of spectrum measurement and the distinction between

homodyne and heterodyne spectroscopy may be understood by considering the

following experiment.

A laser beam is scattered by small particles suspended in a fluid

medium of low scattering power.* A portion of the scattered light is made

to fall on the light-sensitive cathode of a photomultiplier. As the

particles move about in the fluid, their individual scattered electric

fields are each phase-modulated or Doppler shifted. The total scattered

intensity fluctuates because "beats" occur between the frequencies of the

individual scattered electric fields. The power spectrum of the intensity

will contain these difference-frequencies which will generally be confined

to a narrow band centered about zero frequency. Since the photocurrent is

proportional to the intensity, the power spectrum of the photocurrent also

contains these difference-frequencies. A spectral analysis of the

fluctuating photocurrent therefore contains some information about the

statistics of the particle velocities. By analogy with radio-frequency

detectors, this device is known as the self-beat or homodyne spectrometer.

In the optical heterodyne spectrometer, the scattered light is

mixed with a relatively intense portion of the unscattered light which

corresponds to the local oscillator signal in a radio heterodyne. Beats

(intermediate frequencies) are now generated between the frequencies of

the individual scattered electric fields and the local oscillator frequency.

*Alternatively, the laser beam may be scattered by the fluid medium
directly.



With this type of detection, one can also determine any non-zero average

frequency difference between the scattered and unscattered light. This

feature allows the heterodyne spectrometer to be used as a velocimeter for

measuring mean flow velocities. The optical homodyne on the other hand is

:cot sensitive to a mean flow velocity, but only to velocity differences.

The width of the spectrum therefore will depend not only on the magnitude

of the turbulent velocity fluctuations, but also on the spatial correlation

of velocities in the scattering volume.



3. Historical sunp ry

A few words may be in order about the development of the homodyne

technique and some other uses to which it has been put.

Optical mixing spectroscopy dates from a remarkable experiment

performed by Forrester, Gudmundsen, and Johnson (1955) using incoherent

light. They were able to observe a beat signal between Zeeman components

of the mercury green line by constructing a sensitive photodetector,

modulating the signal relative to the noise, and by using very long

integration times. The experiment helped to settle a certain controversy

about optical coherence.

When laser sources became available, mixing experiments became

relatively easy to perfonn and a number of applications were suggested

including studies of laser mode structure and spectral line shapes

(Forrester, 1961; but see Smith and Williams, 1962).

The first light scattering experiment using optical mixing for

spectral analysis was that of Cumins, Knable, and Yeh (1964). They used

a heterodyne detection scheme and scattered He-Ne laser light from a

dilute solution of small, uniform polystyrene latex spheres to measure

diffusion coefficients. Slightly modified versions of this apparatus were

used to obtain spectra for scattering from concentration fluctuations in

binary mixtures near the critical temperature (Alpert, Yeh, and Lipworth,

1965; Alpert, 1966).

The first light scattering experiments to use a homodyne detection

scheme were those of Ford and Benedek (1965; 1966), who were able to

measure spectra of light scattered from density fluctuations in a pure

liquid near the critical point. They developed a simple version of the

homodyne spectrometer which has been used in several subsequent

12



investigations, including the present. Other experiments were those of

White, Osmundson, and Ahn (1966) who scattered from a critical solution of

macromolecules, and Lastovka and Benedek (1966 A, B) who measured the

spectrum of the central component of light scattered from a normal liquid.

Homodyne studies of the diffusion of macromolecules have been

reported by Dubin, Lunacek, and Benedek (1967), Arecchi, Giglio, and

Tartari (1967), and Dunning and Angus (1968). Diffusion coefficients for

liquid-in-liquid solutions have recently been measured using the optical

homodyne by Aref'ev, Kopylovskii, Mash, and Fabelinskii (1967). These

experiments are described briefly in section 8 after the theory has been

discussed.



4. Overview of the thesis

The body of the thesis is divided into two parts: one dealing with

the spectrum of the scattered light from the theoretical point of view

(Chapter II), the other dealing with experimental results obtained by

scattering from a turbulent water jet (Chapter III).

In Chapter II, it was our intention to show how the

homodyne spectrum can be related to the probability density function for

the relative displacement of two particles. When the Lagrangian integral

space scale (roughly, the average distance it takes a small fluid lump to

change its velocity appreciably) is long compared to the wavelength of the

light (more precisely, compared to the reciprocal of the magnitude of the

difference vector K), then the homodyne spectrum has the same shape as

the relative velocity distribution for particles in the volume. This will

depend in general on the size of the scattering volume relative to the length

over which velocities are correlated.

In Chapter III, the width and shape of the homodyne spectrum

observed as a function of position in the jet and jet Reynolds number are

described. An attempt was made to compare widths calculated on the basis

of a simple model with measured widths, but the results are somewhat

inconclusive due to some uncertainties about the jet behavior.

Conclusions and suggestions for future experiments will be found

in Chapter IV,

The reader's attention is called to the summary of definitions

and formulas concerning the autocorrelation and spectral density of a random

process which is presented in Appendix I.

A list of symbols with page references and the bibliography will

be found at the end.



II. SPECTRUM OF THE SCATTERED LIGHT

5. Introduction

The object of this chapter is to relate the spectrum of coherent

light scattered from a collection of small, randomly-located, moving

particles to the statistics of the particle motion. A theoretical

development is given which shows that the power spectral density of the

intensity of the scattered light depends in general on the joint

probability density function (p.d.f.) of particle displacements for two

particles. This function is readily evaluated for particles undergoing

Brownian motion. By introducing a number of simplifying assumptions, one

can also calculate the function approximately in the more complicated case

in which the particles are suspended in a turbulent fluid.

We are interested in the situation in which the scattered light

is detected using a homodyne spectrometer. In the homodyne spectrometer,

the spectrum of the light intensity incident on the surface of a photo-

multiplier is determined by measuring the spectrum of the anode photo-

current.* The relation between the spectrum of the anode photocurrent and

the spectrum of the light intensity has been given by Freed and Haus (1966)

and can be written (the low frequency approximation to the shot-noise

spectrum is used)

*in this chapter, we consider only the case in which the photocathode is

by assumption coherently illuminated, by which we mean illuminated such

that a given intensity fluctuation occurs simultaneously over tih, entire

cathode. Such a situation may be always realized in practice by placing

a sufficiently small aperture in front of the cathode. A brief considera-

tion of the more general spatial-temporal coherence problem for light

scattering from a dilute suspension of particles having homogen ,,s

statistics is given in Appendix IV, where an expression is found -or the

size of a naturally-occurringccoherence area.



Si(f) = Ge i + SI(f) , (1)

where Si(f) is the spectral power density of the photocurrent i, Si(f)

is the spectral power density of the light intensity I, G is the current

gain of the tube, e is the electronic charge, and i and I are the mean

values of the photocurrent and the light intensity respectively. The photo-

current spectrum is seen to consist of a variable part due to fluctuations

in the light intensity, and a constant, shot-noise part which is due to the

discrete nature of the photoelectron pulses. A derivation of equation (1)

will be found in Appendix II.

Previous authors have obtained an expression for the spectrum of

the scattered intensity by first obtaining an expression for the electric

field spectrum and then relating the two by assuming that the electric

field is a Gaussian random variable (Ford and Benedek, 1966). The electric

field spectrum is given by several authors (e.g., Komarov and Fisher, 1963);

for incoherent scattering of a monochromatic plane wave from a statistically

homogeneous collection of infinitesimal particles, it can be written

SE(f) - const. ftfap( ;1) exp i[217(fo - f) - K , (2)

where f is the incident frequency, K = k - k is the vector difference

between incident and scattered wave vectors, and p(? ; t) is the p.d.f. for

the probability that a particle is displaced a distance18 in the time

interval T .* If the electric field has Gaussian statistics to second

order, then the intensity spectrum is given by

*Since we consider only incoherent scattering, the corresponding probability
density function for distinct particles has been omitted.



SS(f ) = 12 (f)SE(f' + fdf SE + f) SE(f' )  , (3)

where C is a constant. Once an expression has been found for p('; T),

then equations (2) and (3) constitute a solution to the theoretical problem.

When the scattering particles are suspended in a turbulent fluid

however, it is no longer possible to assume that the electric field

statistics are Gaussian to second order since, as will be shown,

in order to derive equation (3) it is necessary to assume that particle

motions are independent. Particle velocities in the turbulent flow will

in general be spatially correlated because of the velocity correlations

which exist in the fluid.

In section 7 of this chapter, we show that when particle statistics

are homogeneous, the intensity spectrum is in general given by

S1 (f) = i2[ g(f)

+f f jf L x [ - 2) - 2Tf , (4)

where p(A,p , A;I) is a joint p.d.f., /1 andp 2 are the displacements

in a timeT of particles 1 and 2 respectively, and, is the separation

of the particles at the initial instant.

Of great importance in determining the shape of the observed

spectrum is the ratio of the Lagrangian integral space scale of the particle

motions to the quantity 1 / 11, as is shown in connection with a

discussion of scattering from Brownian particles in section 8.

In most turbulent situations, the integral scale will be large

compared with 1 / II , so that equation (4) neglecting molecular

diffusion can be written directly in terms of the turbulent velocities



S(f) 221() f) + dAdVzjdV 1  1 2 ,~ )[f j{) (5)

as will be shown in section 9. The spectrum in this case consists of beats

between Doppler shifted frequencies scattered by the individual particles.

Although the experiment discussed in this paper can be interpreted

in terms of equation (5), it should be pointed out that the general form in

equation (4) might be of use in other situations. If experiments could be

devised (at longer wavelengths, for example) in which the Lagrangian integral

scale is comparable with (or smallet than) 1 / ItI , then information on

the function p (,,;j) could be obtained using equation (4). This

function is of considerable interest in the theory of turbulent diffusion.

An interesting possibility would be to observe the spectrum as a function of

scattering angle, thus making 1 / K large or small with respect to the

Lagrangian integral scale. These and other possibilities are readily

visualized by use of the bivariate Gaussian model which is introduced in

section 9 below.

We begin by considering in the next section, the speps which lead

to equation (2) for the electric field spectrum.



6. Autocorrelation and spectral density of the scattered
electric field

In this section we give a brief derivation of the expression for

the (power) spectral density* of the scattered electric field. The

procedure is to derive an expression for the electric field autocorrelation

and then Fourier transform it to find the spectrum. The electric field is

treated as an ergodic stationary random process, and the autocorrelation is

found by ensemble averaging using the method discussed in Appendix I.

After an expression for the spectral density is derived, two special cases

are discussed for illustration.

The expressions discussed in this section can be found in several

recent papers (Komarov and Fisher, 1963; Pecora, 1964; Fiocco and DeWolf,

1968). Our purpose in this section is to demonstrate both the method of

derivation and the usefulness of this type of approach. The same method is

used in the next section to find a similar expression for the scattered

intensity.

An expression for the scattered electric field is derived in

Appendix III. The associated geometry is shown in Fig. 1. The incident

electric field E ( ,t) is assumed to be a plane, monochromatic wave of

the form

- --4 2
E ( r ,t) = Eo exp i(cot - k o  r ), (6)

where

=ko o
c

The terms "spectral density" and "spectrum" in this paper always refer to
power spectral density, a quantity which is defined in Appendix I.
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Fig. 1. Geometry associated with the scattering region.



and w = 2rrf o is a real, constant angular frequency. The scattering

particles are assumed to be point electric dipoles with velocities small

compared to the velocity of light. Attenuation of the wave and multiple

scattering are neglected. With these assumptions, the scattered electric

field at a distance s large compared to the dimensions of the scattering

volume was shown to be

N
qo I

E(st) - exp i(cot - kos )
j=1

exp - i K rj(t)

(7)

where N is the total number of particles, rj(t) is the location of the jth

particle, and

K = ko - ks, (8)

where ks is a wave vector in the scattering direction. The constant qgo is

given by

qo = ocko 2 Eo sin" , (9)

where o< is the polarizability of the particle, and ' is the angle between

the incident electric field and the scattering direction.

It should be noted that

K = 4r sin
Ao 2 (10)

where Ao is the incident wavelength ( A = /() and 0) is the angle between

the incident and scattered wavevectors.

In constructing the autocorrelation of the electric field using

equation (7), we will assume that the scattering is incoherent for the sake

of simplicity. The significance of this assumption is most readily seen

when the mean value of the scattered intensity is calculated.

The scattered intensity I( , t) (power crossing a unit area

placed normal to the scattering direction) is by definition

21



I( s ,t) = ( SE( ,t) E ( s- ,t), (11)

where the asterisk denotes complex conjugate and

_2 m.k.s.

94 Gaussian c.g.s.

Using the above expression for E( s ,t) we find

2 N N

I( , t) - 2 exp i K- (t) - j(t) (12)

The intensity is defined as a real quantity and the complex exponentials

could be replaced by cosines, but we choose to leave it in the above form

to simplify later manipulations.

To find the mean value of the intensity, we divide the double

summation in equation (12) into N terms for which j = k and (N2 - N) terms

for which j + k. The result is

S [N + exp i K- k(t) - r (t(
S 2J1 k=1 * (13)

j~k
The mean intensity is seen to consist of two terms: the first term

represents incoherent scattering; the second term takes into account

diffraction by the scattering volume as a whole and coherent phase relation-

ships which may exist between different particles.

The assumption that the scattering is incoherent implies that the

second term in equation (13) is negligible; that is, that the phases

scattered by different particles are independent and that diffraction may

be neglected. The phases will be effectively independent if the

concentration is dilute so that the particles are non-interacting. As long

as the scattering volume is large compared to the wavelength, diffraction

will be negligible except near the forward direction where K is small and

the phase of the exponential doesn't vary much over the volume. In the
22



following discussion we neglect terms of this type.

For our purposes then

Y= Cqo2N

s 2  (14)

In the case of incoherent scattering, the mean value of the scattered

intensity is just N times the intensity scattered by a single particle.

Essentially the same procedure is now used to find the auto-

correlation of the electric field. Using equation (A9) as the definition

of the complex autocorrelation and equation (7) for the electric field, we

find

2 N

RE() - exp (iUor) exp i K (t) - (

+ exp i K- rkj )  - r (t t

=*k

(15)

where T' = t1 - t2 , and we have divided the terms in the double summation

as was done for the intensity. As with the intensity, the summation over

terms for which j = k is assumed to be negligible. Since the particles are

indistinguishable, the average of the first summation may be expressed as

N times the average of a given term. Constructing the ensemble average as

indicated in Appendix I, one has

Nq0 2

RE m 2- exp (i4ot) d r 2 exp i rK - I p( ; ),r( ' (16)

SV V
where p( rl, r2 ; -r ) is the joint probability density that a given

particle is located at rl at time t1 and at r2 at time t2 = t1 -"r

The integrals are to be taken over the scattering volume V. This is the



general expression for the electric field autocorrelation when the

scattering is incoherent.

When the particle statistics are homogeneous, the expression for

the electric field autocorrelation may be simplified. In this case*

-+ - - I
p( rl, r;t) - p( r2 r;0 rf V (17)

where / 0 rl - r2. Thus p( rl, r2 ;t) depends only upon the displace-

mentp of the particle in the time 'r, and not upon location in the

volume. The autocorrelation becomes

R() Nq2- exp(iUo) pexp[- i Kp P(p; )  , (18)
s

V®V

where the d, integration must be over a weighted volume which represents

the convolution (designated * ) of V with itself.

The spectrum of the electric field may now be obtained by Fourier

transforming the autocorrelation function with respect to i'(see equation

(All)). For the homogeneous case, one obtains

SE(f) fdf exp i [2n(f0  f p (,;') . (19)

-oo V®V

Equation (17) is essentially the result given by Komarov and Fisher (1963)

(their equation (24)) restricted to the case of incoherent scattering (our

p(P ;t) is the same as their G 1 (r;)). When the scattering volume

is large compared with, the non-zero region of p(/?;), then the

spectrum of the electric field is seen to be the space-time Fourier transform

*The notation p(alb) denotes a conditional probability density function;

that is, the probability density of a, given b.

24



of the correlation P( 1 ; t ).*

The connection between equation (19) and the ordinary Doppler

shift concept is readily seen. For if all the particles move with

constant velocity v , then

p(p; )- g( - v- ), (20)

and the integrals may be carried out (see equations (A18) and (A19)) to

obtain

2 K-vK
Nq0  K *v

SE(f - f)
s 2R

(21)

More insight into the usefulness of equation (19) for light

scattering problems can be obtained by considering two other slightly more

complicated examples.

First consider the case in which the particles move with constant

velocity but in which the velocities are distributed according to a

Gaussian law (e.g., scattering from the molecules of a low density gas).

The correlation function may be written

S);)P(v) (22)

where p(; ) is the probability density that a particle travels a

The functions P( r2 I rl; -v ) and the special case P(/P ; 1 ) are
functions of considerable importance in a number of statistical particle
theories, notably Brownian motion, turbulent diffusion, and fluid
statistical mechanics. In the latter connection, p(p ; 7" ) corresponds
to the self-correlation part of the van Hove correlation function introduced
by van Hove (1954) to describe neutron scattering from systems of inter-
acting particles.



distance P in a time 1" given that the initial velocity of the particle

is v In the case postulated

P(p v - v ), (23)

and

3

p( v) =texpE -2
2 V2 2 v

(24)

On substituting into equation (22) one finds

Pt 3 ; =  -

(25)

The expressions for the electric field autocorrelation and spectrum are

2  [ 2v 2

E(I) ---2 o
8 6

(26)

and

Nq( 6 p [ 6T (f- f)2
SE) 2 2c2 exp - 2 *s K v K v

(27)

The familiar expression for the spectrum of light scattered from a low

density gas may be obtained by substituting for K2 as given in equation (10)

and recalling that v2 = 3kBT/m where kB is Boltzmann's constant, T is the

temperature, and m is the mass of the particle.

The second example we consider is scattering from particles under-

going a random walk. If the particle suffers n displacements per unit time

and the mean square length of a step is 12, then asymptotically as the

number of steps becomes large (Chandrasekhar, 1943, p. 16)
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(28)

where

D = n 12

6 (29)

is a diffusion coefficient. This leads to the following expressions for

the electric field autocorrelation and spectrum:

2RE(-) q0
2N exp (i Wot ) exp (- K2D jT ) (30)

s

and

(f )  q
2 N 1 (K2 D/2Tr)

SE(f) 2 2 z

s (fo - f) 2 + (K2D/2T )Z (31)

The spectrum has a Lorentzian shape in this case with a half width at half

maximum (HWHM) of K2D/21 hz. Although the Doppler shift concept is

difficult to apply in this case, equation (19) formulated in terms of the

correlation function P( l ; 1) gives the answer directly.

The interpretation of this result is most illuminating from the

continuum point of view. In this view, the light is scattered by random

fluctuations in the concentration of the particles caused by the random

walk. These concentration fluctuations decay exponentially in time causing

the spectrum of the electric field to have a Lorentzian shape. The

function P( /p; ?7) is sometimes referred to as a density correlation

function.



7. Autocorrelation and spectral density of the scattered
intensity

The spectral density of the scattered intensity can be calculated

using the same assumptions and procedures that have been used in the

previous section. As indicated in the introduction to this chapter, we are

particularly interested in the case in which the particles do not move

independently. That is, we want to allow for the possibility that particles

may be carried along more or less en masse by the fluid.

The autocorrelation of the scattered intensity is found by

substituting from equation (12) into the definition equation (A5) to find

2 4 N N N N

R,(" - 2 g exp i Ko rk(tl)  - rJ(t )  t(t 2  (t4 pk 1 1 2 +rm 2)]

(32)

Fortunately, this formidable expression has comparatively few non-

negligible terms. In fact, the only terms which we need consider are

those for which

j = k = I = m N terms

j = k; 1 = m; j 1 N2 - N terms

and

j = m; k = 1; j k N - N terms

The other terms are negligible since they are of the same order of magnitude

as the diffraction term in equation (13). Separating out the above terms

we find for the autocorrelation

2 4

I(-) _ N + (N - N)

N N

+ exp i K. (t 2  - rj(t) - rk(t 2 ) + l .

j-1 k=1 (33)
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The averaging is carried out in the same manner as in the previous section.

One finds (assuming N is large) that

R () 1 + dr2 dr ' " d 2 2 exp i K* rl 2-r r1 - r 2 2 + r 2

X P ( r1,r2,r21,r22) (34)

where rjk denotes the position of the jth particle at time tk. Equation

(34) is the general expression for the intensity autocorrelation

corresponding to equation (16).

This expression reduces to a familiar result if it is assumed that

particle motions are independent. In that case

-0 -* -0_. -4,
P( r1 1 , r1 2 , r2 1 , r2 2 ; 1 ) = p( r11 , r12 ; ) p( r21 , r2 2 ; - )

(35)

and one finds

R( ) = 2 RE() RE () , (36)

where RE(-) is given by equation (16). This equation is equivalent to a

result obtained by Lawson and Uhlenbeck (1950) (section 6.2, equation (8))

in connection with radar scattering from systems of random particles or

clutter. Their result is of interest because they were able to derive

first and second order probability densities for the electric field and the

intensity. Both first and second order probability densities for the

electric field are Gaussian as long as 1.) the number of scattering

particles is large, and 2.) particle motions are independent. Equation

(36) is recognizable as the autocorrelation of the output of a square-law

device when the input is a complex Gaussian random process.



The spectrum for this case is easily found by application of the

convolution theorem for Fourier transforms, equation (A17):

-00

These simple relations are no longer valid when particle motions

are correlated. In that case one must consider the general function

p( rll , r12, r21, r22;"r) displayed in equation (34).

Equation (34) may be simplified when the particle statistics are

homogeneous. In that case

P( r11, r 1 2 , r 2 1 , r 2 2 ;i) = p( r2 2, 1 rl22  1;) ( r1 1)

. -3 1S? = r r1, r2 r;) p( r

_ _~ _~ - IVwhere l = rll - r1 2 'P 2 = r21- r2 2, are the displacements of particles

-- j - * -

1 and 2 respectively, and A = r11- r2 1 is the separation of the particles

at the initial time. The autocorrelation becomes

2 KF r. -; -xi 1
R (T) 1 + dA dpjd 2 p9, 2 ,;) exp Ki 2 -, (37A)

so that the expression for the spectrum is

=-2 F
S (f) = 12 [(f

+ fdrfAfl rlf02 p(j2, A;I) exp i K(Q -/'2 - 2rf , (37B)

which is equation (4) of the introduction.

We will see in section 9 below that when it can be assumed that

over distances long compared to 1 / i1l, the particle velocities are

constant, the spectrum is determined by the distribution of relative velocities,

as one might expect from elementary considerations. Before showing this, we

consider the case of scattering from Brownian particles.



8. Particles undergoing Brownian motion

We now make use of the results obtained in the previous two

sections to obtain an expression for the intensity spectrum of light

scattered' from Brownian particles. The particles are assumed to move

independently so that equations (36) and (37) are applicable. We wish to

show the importance of the ratio of the Lagrangian scale for the diffusion

process to the reciprocal of the difference wave vector K in determining

the shape of the observed spectrum.

The intensity spectrum for scattering from particles undergoing

the special type of random walk mentioned in section 6 may be readily

obtained by substituting from equation (31) into equation (37). We find

S (f) = i2 (f) + I (K2D/Ir)

Sr f2 + (K2D/I )Z (38)

which apart from the delta function is a Lorentzian curve having a HWHM of

K2D/U hz. This is the spectrum obtained when the individual steps of the

walk become vanishingly small, since equation (28) for p(, ; i ) is

asymptotically valid only in that limit.

It is not difficult to show that equation (38) is actually valid

as long as the Lagrangian integral scale of the diffusion process is small

compared to 1/ (~K

The general expression for p( ); 9) for an Ornstein-Uhlenbeck

type of random walk in which the particle velocities have a Gaussian

distribution can be written (Chandrasekhar, (1943))

p(2' ;7 ) = 2(T p]2-) exp 2 7(T) , (39)



where

0 *EaZ [e B-or - (40)

in which B represents the friction constant. For spherical particles of

radius a and mass m in a medium of viscosity 1 , B is given by

Thus the p.d.f. for particle displacements is Gaussian with a time dependent

variance) 2 (t). By expanding the exponential in equation (55), one can

show that when Il\ is small, 02 is proportional to 7. Wheni l is large

however, f is proportional to T , as would be expected for a diffusion process.

2
Furthermore, by setting D = v / 3B so that

_____. 9 (41)

cnaNl
one can show that equation (39) reduces to equation (28) for large t.

The ratio v2/B is the Lagrangian length scale for the diffusion

process (Hinze, 1959) which we designate A

Substituting equation (39) into equation (18) one finds

L * R13\ (42)

When K22  >> 1, then RE(t) is negligible except for small ' in which

case the spectrum has the Gaussian form given in equation (27). In general

one must expand the second exponential to obtain (Pecora, 1964)

3 3
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and then Fourier transform with respect to r to obtain

2 - Z 12A2 I n

SE(f) = 2  2 exp i K2 2  B f + 2 (43)
2 e 2 _K 2

n=0 42 (fo-f) 2 +B n+K 2 2

When K 2<< 1, terms beyond n = 0 in this expression are negligible and

the electric field spectrum has the Lorentzian form given in equation (31).

Thus the shape of the spectrum depends critically on whether the

integral scale P is large or small compared with 1 / I I . For light

scattering from small Brownian particles in a liquid, A is small compared

to 1 / IKI , and the intensity spectrum should be given by equation (38).

This prediction has been investigated experimentally by several

researchers.

The first experimental (heterodyne) observation of the spectrum of

light scattered by Brownian particles was that of Cummins, Knable, and Yeh

(1964). They used spherical polystyrene latex particles in a water

solution and investigated angular dependence and particle size dependence

of the scattered linewidths. The measured linewidths were larger than

predicted, particularly for the larger particles (2a = 5500). They

attributed the excess broadening to thermal convection currents in the

medium.

Dubin, Lunacek, and Benedek (1967) investigated the spectra

obtained from solutions of similar latex particles as well as solutions of

various other biologically interesting macromolecules. The latex particles

gave spectra which were accurately Lorentzian having widths in close

agreement with the predicted values. Angular dependence and particle size

dependence of the spectra were as expected. The largest latex particle



size measured was d = 3660T. The more complicated macromolecules gave non-

Lorentzian spectra.

Arecchi, Giglio, and Tartari (1967) found theory and experiment

in agreement for the smaller latex particles, but for the d = 5500

particles, the measured widths were again systematically too large.

Dunning and Angus (1968) reported good agreement with theory

using latex spheres coated with a monolayer of soap to prevent

agglomeration. They investigated the temperature dependence of the

diffusion coefficient and reported some difficulty with convection currents

at the higher temperatures. They also emphasized that care must be taken

to prevent light scattered from stationary surfaces in the apparatus from

reaching the photomultiplier.

Aref'ev, Kopylovskii, Mash, and Fabelinskii (1967) reported

satisfactory results in measuring diffusion coefficients for liquid

solutions of acetone in carbon disulfide, and bromoform in n-propanol.

One may conclude that the theory given in this section for

scattering from Brownian particles seems to explain the observed spectra

except that a residual broadening due to something like convection

currents is sometimes apparent and is particularly noticeable in the

narrower spectra (due to the larger particles).

Photophoresis may also be of importance here.
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9. Particles in turbulent motion

In this section, we apply the results of section 7 above to the

problem of scattering from particles in a turbulent fluid. In section 7,

an equation was derived (equation((378)) which expressed the intensity spec-

trum in terms of the function p(P ~ 1 ,/ 2 , . If it is assumed that the

Lagrangian integral scale for the turbulence is large compared with

1 / I(1J as it ordinarily would be at optical wavelengths, then the spectrum

can be expressed directly in terms of the turbulent velocities, as we shall

see.

We make the following additional assumptions. 1. It is assumed

that the particles are passive, that is, that they do not have any influence

on the flow or on each other. 2. It is assumed that the particle is of

approximately the same density as the medium and that it is small compared

to the scale of the smallest turbulent fluctuation. Under these circum-

stances, the particle will closely follow the fluid motion except for

molecular diffusion (see Hinze, 1959, pp. 352-64). 3. Finally, it is

assumed that the Brownian motion of a particle is independent of its motion

due to turbulence so that the processes may be considered separately. The

observed spectrum would then be a convolution of a spectrum due to

Brownian motion (equation (38)) with a spectrum due to the turbulent veloci-

ties. This is probably a reasonable assumption as long as the turbulence

does not create large density gradients in the fluid.

Let us suppose then that molecular diffusion is absent and that

over a scale length 1 / KI, turbulent velocities are constant though

correlated and distributed according to some law.

The intensity spectrum can be expressed in terms of the velocities

by a procedure similar to that used for the electric field spectrum (see
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equations (22) and (23)). One can write

p(J2,J) v 2 pY01vl, v2 ,;) P(V 1 , v 2 ,A) , (44)

where v1 and v2 are the velocities of particles 1 and 2 respectively.

According to the above assumptions

p9 0- 21v . -v2  V 1 2- P1 21v2 t) . (45)

When equations (44) and (45) are substituted into equation (37B) one obtains

=) e4jK V-- f11 T" VZV2.1 (46)

The integral over 7 can be performed to give

2- (VVI A)J. (47)

The spectrum is thus determined by the distribution of relative velocities

in the volume.

Two limiting situations are of interest. First, if the

scattering volume is small compared to the (Eulerian) velocity correlation

scale, then the fluid velocity is essentially the same throughout the volume.

The spectrum given by equation (47) is very narrow. Second, if the

scattering volume is large compared to the velocity correlation scale, then

most velocity pairs in the volume will consist of two independent velocities.

In this limit, the relative velocity distribution and resulting intensity

spectrum would be found by convolving the ordinary velocity distribution

with itself.

To illustrate these results, let us suppose that p (av, v2
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has a bivariate Gaussian distribution. Although it is found experimentally

that the distribution of turbulent velocities p( v ) is often Gaussian,

it is generally recognized that higher order distributions are usually not

Gaussian (see for example, Batchelor, 1953, p. 169). If a more refined

analysis is needed, the Gaussian model we use here might be modified using

Hermite polynomials as suggested by Frenkiel and Kelbanoff (1967).

To simplify things, let us suppose that v1 and v2 are the components

of the vector velocities in the K direction, and assume that the mean

velocity is zero.

We write for p (v I , v 2 11)

(48)

v ,-2.K)VA V% VZ Vz

where

\ \jZ/,Z . V I

and

The spectrum can be found from equation (46) by substituting for

p (vl, v2,Z) the product p (v, v 2 1&) p () with p (vl, v21l) given by

equation (48). The result for the correlation R I() is

the spectrum is 2 f

jiS=I +()M (50);f [ I x(



These equations demonstrate the expected behavior when the velocity

correlation length is made large or small with respect to the dimensions

of the volume (to see this let% approach 0 or 1). In particular, whenc(= Q,

the spectrum is gaussian with a HWHM of -Ji K / .T

Nonhomogeneous situations and situations with non-zero mean

velocities can be treated by using appropriate generalizations of the

bivariate Gaussian distribution in place of equation (48). As an example,

the general expression for the correlation RI() is

V V

We have used this expression as the basis of a numerical calculation to

obtain spectral widths to be compared with experimentally measured widths.

The details of the calculation are taken up in section 14.

Finally, it should be noted that it is not difficult to construct

a Gaussian model for the general situation in which the Lagrangian scale

may be comparable to the length 1 / '1(. One simply writes a bivariate

Gaussian distribution for p 901 ,2 2 1) similar to equation (48) in which

/1 and 0 2 are the components of1 and A2 along K. Upon substituting

into equation (37A), one finds

This expression reduces to equation (49) (52)

This expression reduces to equation (49) when /0 _Vjt.



III. EXPERIMENTAL STUDY OF A TURBULENT WATER JET

10. Introduction

The underlying idea in the experiment was to set up an optical

homodyne in which light was scattered by some kind of uniform particle,

verify that the homodyne was operating properly by observing the spectrum

of the Brownian motion, and then study the effect on the spectrum of

producing turbulence in the medium. To produce the turbulence, it was

decided to use an underwater jet, water-into-water, a type of flow which is

easily constructed and which has been extensively studied.* As with any

type of non-homogeneous, shear-flow turbulence, mathematical analysis is

somewhat difficult, but using an extrapolation of data published by Rosier

and Bankoff (1963) concerning turbulent intensities and correlation

lengths, and using the simple Gaussian model described in section 9, we

compared calculated and measured widths. There seemed to be less

turbulence than expected, but otherwise the measurements gave reasonable

results. We have investigated the width of the homodyne spectrum as a

function of jet velocity up to a Reynolds number of 7580, and lhave also

investigated the spatial variation of the observed width at low Reynolds

numbers for which the jet is partially laminar and partially turbulent.

These observations will be described in this chapter.

*See, for example, Hinze, 1959, pp. 404-434, or Abramovich, 1963.



11. Description of the apparatus

The apparatus consisted of the jet and associated hydraulics,

the laser, the photomultiplier, and the wave analyzers and other electronic

equipment. The hydraulic system is shown in Fig. 2.

The jet nozzle was made by drilling out a .632 cm o.d. brass rod

to an i.d. of .472 cm, and then drilling a.102 cm hole through the

blank end as shown in the figure. The nozzle was inserted into a hole

through a number 11 rubber stopper, and the stopper was used to plug one

end of a 26 cm long glass-walled circular tube with an i.d. of 4.88 cm.

Since the duct radius is approximately 24 nozzle diameters (ND), and since

the jet radius (to the point where the axial velocity falls to half its

maximum value) is less than 8 ND at the farthest point used for taking data

(80 ND downstream from the nozzle), we have assumed that the jet behaves

approximately as a free jet for the purpose of making calculations.

Water was circulated through the system using a small

centrifugal pump, and the flow velocity was controlled with a needle valve

and measured with a Gilmont size 13 calibrated flowmeter. The maximum

nozzle Reynolds number* which. we could obtain using the system was only

7580, but this was also about the upper limit for obtaining usable

homodyne spectra. The system also included a reservoir with a thermometer

for measuring the water temperature and a Fulflo 20 r filter for removing

unwanted particulate matter.

V d
0 0

, where d is the nozzle diameter, vis the kinematic2viscosity, 
and

V is the exit velocity which we have taken to be 4Q/Td , where q is the

volume flowrate.
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Fig. 2. Diagram of the hydraulics.
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In order to observe the jet structure at the Reynolds numbers

used in the experiment, Fluorescein dye was injected into the stream below

the nozzle and photographs were taken of the marked fluid.

The transitional behavior of a jet in region of small Reynolds

number is rather complicated, and has been studied by A. J. Reynolds

(1962). The fully laminar jet breaks down in a "shearing puff"

instability near the nozzle when 10 < Re < 30, but as the Reynolds

number is increased, a laminar-like length of jet returns and the unstable

region moves progressively farther downstream. At Re = 380 for our jet

(see Fig. 3) this thin, slowly spreading stream extended the full length

of the duct. At still larger Reynolds numbers, the length of the laminar-

like jet is reduced, the thin stream ending in an abrupt breakdown after

which the jet spreads rapidly (see Fig. 4, Re = 630). As the Reynolds

number is further increased, the length of the thin stream in reduced

(Fig. 5, Re = 2530)' until the jet becomes fully turbulent, spreading

immediately after exiting from the nozzle (Fig. 6, Re = 5055). *

The Reynolds numbers used in our experiment ranged from 545 to

7580.

The scattering particles chosen to mark the jet were uniform

spheres of polystyrene latex (available from the Dow Chemical Company) with

a diameter of 910 ±+ 6R. The concentration of particles was roughly one

part per thousand by volume. Since the particles tended to adhere to the

walls of the reservoir and the hose, the system had to be cleaned from time

to time. Fresh particles were always used when taking data.

The glass duct containing the jet was mounted on a three-

dimensional positioning table so that the scattering volume could be

located as desired. A picture of the apparatus showing the duct, laser

*The asymmetry of the jet apparent in these photographs is probably due to
the bend in the hose leading to the nozzle.
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Fig. 3. Photograph of the jet. The Reynolds number is 380.
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Fig. 4. Photograph of the jet. The Reynolds number is 630.



Fig. 5. Photograph of the jet. The Reynolds number is 2530.



Fig. 6. Photograph of the jet. Reynolds number is 5055.
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beam, and photomultiplier tube is shown in Fig. 7.

A diagram of the homodyne spectrometer is shown in Fig. 8.* The

laser was a He-Ne Spectra Physics Model 120 with an output of 5.Ovww at a

wavelength of 6328g. The scattering was observed at an angle of 900 with

an EMI 9558B photomultiplier placed one focal length away from a lens. An

aperture was placed in front of the lens to limit the scattering volume,

and a pinhole was placed directly in front of the cathode to control the

range of scattering angle admitted, and to reduce the overall photocurrent

to a convenient level. The size of the scattering volume was determined

by shining the laser beam onto a fine wire placed in the scattering region

and then observing the photocurrent while the wire was moved using the

three-dimensional table. The scattering volume used in the experiment had

a diameter of 4.0 ND.

One of the factors influencing choice of scattering volume size

was a desire to avoid broadening the spectrum spuriously because of

movement of the particles through the volume. o dizusz:zde in a-tion-- 7

ard - abeove. The largest velocity encountered in the experiment (at 80 ND

with Re = 7584) was about .43 m/s. The transit time T in this case is

9.3 X 10-3s and the spurious broadening which results for the homodyne is

of the order (2/T) or 215 Hz . Since the measured width for this curve was

39.7 KHz, the spurious broadening was neglected.

The anode resistor must be large enough so that the voltages

generated across it are easily measured, but not so large that the

*A brief discussion of the signal-to-noise ratio for the homodyne
spectrometer will be found in Appendix V.
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Fig. 7. Photograph of the apparatus.
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Fig. 8. Diagram of the spectrometer.
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frequency response of the photomultiplier over the range of frequencies

being measured is affected. A value of 619SL was used in our experiment,

and it was found that the shot-noise power at 430 Kkz was 90% of its low

frequency value. The response was sufficiently flat in the 0 - 50 Wz

region.

Three quantities were recorded at intervals.

The mean value of the photocurrent was monitored by measuring

the voltage across the anode resistor with a Hewlett-Packard 3440A digital

voltmeter (3443A high-gain plug in) coupled with a low-pass filter. The

photocurrent amplitude spectrum (square root of the power spectrum) was

measured using one of two wave analyzers, a General Radio 1900A for spectra

having widths less tha: about 10 Khz, and a Hewlett-Packard 310A for wider

spectra up to about 40 Khz. A Tektronix type CA preamplifier in a type

132 unit power supply was used to amplify the voltage generated across the

anode resistor before detection with the wave analyzer, and the wave

analyzer output after detection was fed to the digital voltmeter through

additional external filtering and a mechanical switching device. The

digital voltmeter alternated between a reading of the mean photocurrent

and a reading of the voltage spectrum. The frequency of the wave analyzer

was monitored using an electronic counter (Hewlett-Packard 5216A)

connected to the BFO terminal. The readings of the digital voltmeter and

the counter were printed at one second intervals using a Hewlett-Packard

562A digital recorder.



12. Analysis of the printed data

The printed data together with measured shot-noise levels were

punched onto IBM cards for analysis with a digital computer. The computer

was programmed to carry out some arithmetical operations, and then to make

a least squares fit of the measured spectrum to a rational function.

Output information included the parameters of the least squares fit, and

the frequency at which the fitted curve had fallen to half of its zero

frequency value.

The arithmetical operations were as follows. The wave analyzer

voltage output was squared to obtain a quantity proportional to the

spectral power; the result was divided by the mean photocurrent to

compensate for a gradual decrease (and other small changes) observed in

the photocurrent; the shot-noise power as measured at a high frequency

and compensated for roll-off was then subtracted; finally, the result was

again divided by the mean photocurrent. The rationale behind dividing a

second time by the mean photocurrent may be seen from equation (1): the

shot-noise power is proportional to the mean photocurrent, but the

homodyne spectrum is proportional to the square of the mean photocurrent.

The least squares fit was made to a rational function of the

form- 1/(a o + al f 2 + a 2 f4), where f is the frequency, and ao, al, and a 2

were parameters to be determined. The size of the parameter a2 was an

*This decrease was ascribed to a decrease in the particle concentration

due to gradual adhesion to the walls of the apparatus. The laser power

was not monitored, but it is unlikely that it fluctuated very much.



indication of whether or not the experimental points lie on a Lorentzian

curve. The actual procedure was to fit the reciprocals of the data points

to the quadratic (in f2) function (a o + alf
2 + a 2 f 4 ) using the analytic

solution to the normal equations. The reciprocal data points were

weighed so that the actual data points would contribute equally in

determining the fit.



13. Observed spectrum when particles undergo Brownian motion

The apparatus was tested by observing the width and shape of the

spectrum when the jet was turned off and the particles underwent Brownian

motion. According to the theory given in section .8' above, the curve

should have a Lorentzian shape centered at zero frequency with a half

width at half maximum (HWHM) of K2Dr hz. The diffusion coefficient D can

be calculated from the Stokes-Einstein relation, equation (4t).

The data points obtained in this case at 280 C with a 50 hz

bandwidth are shovrn in Fig. 9. This spectrum took about 90 minutes to

record. The least-squares fitted curve had a width of 674 hz. A Lorentzian

having this width is shown in the figure and it may be seen that the

agreement is quite good.

The diffusion coefficient (adjusted to 250C) obtained from this

+ . - 12 2
data was (5.74 ± .15) X 10 m /s. The value calculated from equation (41)

was (5.34 ± .30) X 10 m /s, the variance in the figure being due to the

variance in the particle sizes. Dubin, Lunacek, and Benedek (1967)

-12 2 o
measured a value of (5.9 ± .2) X 10 m /s at 25 C for slightly smaller

particles (d = 880A). It was concluded that the agreement between theory

and experiment was satisfactory, and that the homodyne spectrometer was

working properly.
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Fig. 9. Spectrum of light scattered from spheres of 910 R diameter undergoing Brownian motion in
a water solution. Solid curve is Lorentzian with 674 Hz width.



14. Observed spectrum as a function of velocity and
position in the jet

When the jet was turned on, the spectrum was observed to

broaden. In order to guard against the possibility that the broadening was

being caused by gross concentration fluctuations due to the turbulence, the

observation was repeated using an incoherent light source. In this case

only the flat shot-noise spectrum was observed. It was concluded that the

spectrum being observed with the laser source was indeed a homodyne

spectrum.

The broadening observed using the laser source was quite large

and it was necessary to keep the fluctuation velocities small in order to

obtain spectra with measurable widths. For this reason, the behavior of

the spectrum as a function of velocity was investigated reasonably far

downstream (80 ND). The behavior of the spectrum as a function of position

was investigated at a maximum Reynolds number of 660. The results

obtained were quite reasonable, but a detailed comparison with theory was

difficult because of uncertainties about the turbulent intensities at low

Reynolds numbers and as far downstream as 80 ND.

The behavior of the jet as a function of velocity is shown in

Figs. 10, 11, and 12. The scattering volume was located on the axis of the

*The author's experience suggests that this check should always be carried
out when mixing experiments are done with turbulent fluids. A very
similar light scattering technique which measures spectra of concentration
fluctuations has been described by Becker, Hottel, and Williams (1967).
Such spectra have been observed by the present author in scattering
experiments on jets of steam. The spectra are similar in appearance to
homodyne spectra, but are observed with both incoherent and coherent light.
Homodyne spectra are, on the other hand, not observed with incoherent light
sources under ordinary circumstances.
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Fig. 10. Spectrum of light scattered from 910 ~ diameter spheres suspended in a turbulent water jet.

Scattering volume is on the axis, 80 nozzle diameters downstream from the nozzle. Reynolds
number: 505. Solid curve is Lorentzian with 2.16 Khz width.
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Fig. 11. Spectrum of light scattered from 910 R diameter spheres suspended in a turbulent water jet.
Scattering volume is on the axis, 80 nozzle diameters downstream from the nozzle. Reynolds
number: 2530. Solid curve is Lorentzian with 10.78 Khz width.
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jet, 80 ND downstream. Fig. 10 shows a spectrum obtained with a bandwidth

of 200 hz when Re = 505. The smooth curve is a Lorentzian having a width

of 2.16 KHz . Fig. 11 shows a spectrum obtained with a bandwidth of 200 hz

when Re = 2530. The smooth curve in this case is a Lorentzian having a

width of 10.78Khz. In general, the measured curves tended to be more

Lorentzian in shape than Gaussian.
Reynolds number

The width of the spectra is shown plotted as a function of 4

ra e in Fig. 12 (300 ml/min corresponds to Re = 7585). The straight line

represents a least-squares fit. The widest curve (Re = 7585) had a width

of 39.7 KHz and was measured with a 1 KHz bandwidth.

In order to compare these results with the theory of section '9

a numerical integration of the correlation function equation, equation (51),

was carried out using a digital computer. The geometry is such that only

radial components of the velocity are detected. The turbulent

fluctuation velocity gradients are usually much larger than the radial mean

velocity gradients, so that the latter have been neglected. The two

volume integrals were replaced by two one-dimensional integrals in the

radial direction. The velocity correlation function oC (A) was chosen

arbitrarily to be either exponential

L (53)

or Gaussian

e 4LL

(Eulerian)
where L. is the integral scale (Hinze (1959), p. 41). The input data

consisted of the turbulent intensities as a function of radial position,

the nozzle velocity Vo, the integral scale L , the location and size of



the scattering interval, and the time'at which R () was to be evaluated

initially. The computet calculated the value of the double integral, then

chose a new value oft and repeated the calculation until it found the first

value of the time '0 for which the double integral had fallen to half of

its maximum value plus or minus 1 percent. The HWHM of the spectrum in

hz was taken to be In 2/2TVr, as it would be if the correlation function
0

were a simple exponential.

Information on turbulent intensities and integral scales in,'a

water-into-water jet was taken from Rosler and Bankoff (1963). One of the

interesting features of jet turbulence is the fact that the radial

distribution of the axial component of the turbulent intensity becomes

self-preserving (maintains a similar form determined only be a length

scale and a velocity scale) beyond about 30 ND downstream from the nozzle.

Radial profiles of the turbulent intensity in the self-preserving region

are roughly Gaussian in shape with the intensity on the axis being given by

V'

-- 1.72 , (55)
V z + z

0 0

where v' is the rms turbulent velocity, V is the nozzle velocity, d is the

nozzle diameter, z is the distance from the nozzle, and z is the distance

to the geometrical origin of the jet (usually less than a nozzle diameter

in front of the nozzle; for Rosler and Bankoff, z /d - 0.9). The HWHM

of the curve is given roughly by

(dr), = .108 (z + zo). (56)

The radial component of the turbulent velocity fluctuation is

known to be of approximately the same magnitude as the axial component

(Hinze, 1959, p. 434). The radial component of the turbulent intensity at

80 ND required for our theoretical calculation was obtained therefore by
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using the data supplied by Rosler and Bankoff for the axial component at

30 ND together with the scaling laws (65) and (KG).

The laterial integral scale for jets as given by Rosler and

Bankoff can be determined approximately from the relation (we have chosen

the value for jets in which there is no free surface)

L- = .076 (z + zo ) . (57)

At z/d = 80 and with zo/d = - 0.9, L /d = 6.01.

The width calculated using the exponential velocity correlation,

equation (53), for a flow rate of 100 ml/min (Re = 2530) was 45.8 Khz. The

Gaussian velocity correlation, equation (16), at the same flow rate gave a

width of 19.7 Khz. The measured width was 13.0 Kz. The data would seem

to indicate less turbulence present than expected on the basis of the

extrapolation from the measurements of Rosler and Bankoff.

There are several possible explanations for this result.

1. The particles might be affecting the turbulence. A study by White

(1967) on jets formed by polymer solutions showed that adding certain

polymers to a water jet caused the jet to spread at a greater angle so that

the center-line velocity was reduced. One might expect a similar

reduction in the fluctuation velocities. 2. The effect of the duct might

not be negligible as far downstream as 80 ND. The ducted jet grows faster

than the free jet (Becker, 1961), so that the center-line velocity would

also be reduced. 3. The turbulence may not be self-preserving as far

downstream as 80 ND, so that the use of equations (55) and (SG) may not be

justified. It would seem that the best way to resolve these uncertainties

would be to measure the turbulent fluctuation velocities directly.

4. The problem may be due to our having replaced the volume integrals in
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equation (SI) with one-dimensional integrals in making the calculation.

This would tend to overemphasize the importance of volume elements lying

on a line passing through the axis of the jet and might cause the

calculated spectrum to be too wide.

The other experimental project undertaken was to investigate the

behavior of the spectrum as a function of position. The Reynolds numbers

used were in the range of 505 to 660 so that the jet was not fully

turbulent but had a structure similar to that shown in Fig. 4 (Re = 630).

In order to allow a large number of positions to be investigated

easily and quickly, the spectral power was measured in a 50 hz bandwidth

centered at 300 hz as the position of the scattering volume was scanned

radially and axially. For curves with a width of several kilohertz, the

spectral power at 300 hz is effectively a measure of the height of the

curve. If it is assumed that the spectrum has a Lorentzian shape and that

the total power is constant, then the product of width and height will be

constant. Thus, an effective width may be obtained by measuring the

height.

Fig. 13 shows a full spectrum obtained when the scattering

volume was on the axis of the jet at 40 ND with Re = 505. The solid curve

is a Lorentzian with a width of 8.48 Khz. This curve was used to

determine the product of width and height.

The spectrum in Fig. 13 was taken under identical conditions to

the spectrum shown in Fig. 10 except that the scattering volume was at

40 ND instead of 80 ND. Thus, the turbulent fluctuation velocities appear

to increase as one goes closer to the nozzle. That this trend does not

continue as one moves closer to the nozzle than 40 ND is indicated in

Fig. 14, where the width of the spectrum (determined from the height) is
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Fig. 13. Spectrum of light scattered from 910 R diameter spheres suspended in a turbulent water jet.
Scattering volume is on the axis, 40 nozzle diameters downstream from the nozzle. Reynolds
number: 505. Solid curve is Lorentzian with 8.48 Khz width.
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plotted as a function of axial position. The apparent decrease in the

turbulence is reasonable in view of the laminar-like flow which is observed

to occur in this region (see Fig. 4).

A set of five radial scans at axial positions of 5, 10, 20, 30,

and 40 ND respectively is shown in Fig. 15. The width of the spectrum is

shown plotted as a function of radial position. The growth of the

turbulence with increasing axial distance is apparent, as is the spread of

the jet. Corrections have been applied to the data to take into account

the refraction which occurs at the curved surface of the glass duct.

Fig. 16 shows a theoretical curve at 30 ND based on the

Gaussian model calculation for a fully turbulent flow. The curve was

obtained using an exponentially decaying velocity correlation law (equation

(53)), and is shown merely to indicate the shape of the curve one might

expect for the fully turbulent jet. The experimental points plotted on an

expanded vertical scale are seen to describe a somewhat narrower, more

pointed curve. The asymmetry of the experimental points corresponds to the

asymmetry of the jet which is evident in the photographs, and is believed to

be due to the bend in the hose leading to the nozzle.



IV. CONCLUSIONS

15. Summary of results

We have made a theoretical and experimental study of the homodyne

spectrum of light scattered from particles suspended in a turbulent fluid.

The principal theoretical result of this paper is equation (37B) for the

spectral density of the scattered intensity; this equation is useful for

situations in which particle motions are not independent. In most scattering

experiments involving turbulence, the Lagrangian integral scale will be

large compared with 1 / , where K is the vector difference between

incident and scattered wavevectors, and equation (37B) can be written in

terms of the two-particle, relative velocity distribution as in equation (47).

Experimentally, we have been able to observe spectral broadening due to

velocity fluctuations in a turbulent jet. It was possible to observe the

transition from a diffusion-broadened spectrum to a turbulence-broadened spectrum

by varying the position of the scattering volume within the jet and by
both

varying the jet nozzle velocity. A numerical calculation based onAthe above

theory and measurements on similar jets by other investigators indicated that

less turbulence was present than expected for a free jet of pure water;

simultaneous measurements by other means of the turbulence parameters are

needed to resolve this problem. Nevertheless, the experiment was useful

to demonstrate the possibility of the measurement and indicate the type of

results which can be obtained.



16. Suggestions for future experiments

There are a number of suggestions which should be made with

respect to future experiments.

It would be useful to make a homodyne study using a field of

homogeneous turbulence with known rms velocity and known velocity correlation

structure. It would then be possible to study the broadening and change of

shape (from Lorentzian to Gaussian) of the homodyne spectrum as a function

of scattering volume size. Some experiments of this sort have been carried

out by Bourke, et al (1969) at Harwell. They were able to compare their

homodyne spectra with other data taken using hot wire anemometers and

optical heterodyne spectroscopy.

It would be interesting to try to select the wavelength, scattering

angle, and type of turbulence so thattthe Lagrangian scale for the particles

in the flow was comparable to the wavelength ( 1 / \KI ). It would then be

possible to obtain information about the joint p.d.f. of particle displace-

ments for two particles as given in equation (37B). As in the previous case,

it would greatly aid interpretation of the spectra if the turbulence were

homogeneous over the scattering volume.

In experiments with large scattering volumes, it is necessary to

keep the rms velocity of the turbulence small so that the spectrum is not

broadened so much as to be unobservable. In out experiment, the maximum

observable spectrum width using the largest bandwidth available (3 Khz) was

judged to be between 50 Khz and 100 Khz, which would be produced by rms

turbulent velocities of only .01 to .02 m/s if the scattering volume were

large. Larger turbulent velocities could be used if the scattering angle

were reduced, if the scattering volume were reduced, or if a more powerful



laser were used.

If the scattering volume is small compared to the turbulent

microscale, the width of the spectrum should be determined by the

molecular diffusion coefficient. It would be interesting to see

experimentally whether or not the turbulence in the fluid has an effect

on fluctuations at the molecular level.

When the scattering volume is small, one must be especially

careful about two things: 1. The scattering volume should not be made

so small that the reciprocal of the particle transit time becomes

comparable to the width of the spectrum bein observed. 2. It must be

verified that the spectrum being observed is not due to fluctuations in

the total number of scattering particles in the volume. Repeating the

measurement using incoherent light is helpful since observation of the

homodyne spectrum requires a highly coherent source.



APPENDIX I

17. Autocorrelation and spectral density of a random process

In this section we collect together some definitions and formulas which

concern the autocorrelation and spectral density of a random process. A

good discussion at an introductory level about random variables and

processes will be found in such books as Davenport and Root (1958) or

Papoulis (1965).

In general, a real random process x is a function of time t and a list

of random variables which may be written compactly as a multi-dimensional

vector a . In most cases such a process is statistically determined by

th
knowledge of its n--order distribution function

from which one determines by differentiating with respect to all the

th
variables xi, the n-t-order probability density function (p.d.f.)*

(A2)

The various moments of the random process are then found by multiplying the

quantity being averaged by the appropriate p.d.f. and the integrating over

the necessary arguments. For example, the mean value of x (which is a

function of time for the general, non-stationary process) is given by

-o-

The various p.d. functions for the random process x are found by

combining and transforming the p.d. functions for the random variables on

*For an explanation in detail of the properties of such functions, see
Davenport and Root (1958), chapters 2 and 3.



which x depends. In calculating the moments of x, it is often easier to

average directly over the random variables a instead. For example, the

mean value of x would be

xlt) =fA x ( t4),- (A4)

where f( a ) is the joint p.d.f. of the random variables a . This is the

way that averages will be constructed in this paper.

It should be pointed out that in spite of the notation, the various

p.d. functions are of course different functions. We shall depend on the

context to make it clear which function is required rather than obscure the

derivations with unnecessary subscripts or superscripts.

In addition to the mean value, we shall be interested in the

autocorrelation of the random process which is in general

(A5)

where again, the last expression is the one we shall use in making

calculations. If a complex process is involved, then one has

f r,(-z (A6)

and also (the asterisk denotes the complex conjugate)

(A7)

from which one has

S(A2t,  ) - (A8)

By averaging over the random variables a one avoids having to consider the

real and imaginary processes separately.

If the process is stationary, then the autocorrelation function depends

only on the time interval 'T= t1 - t2 . Thus we have

R I (t) --- (t -t(A9)

and also

R= 
(A10)



The Fourier transform of the autocorrelation function is the spectral

power density function (or simply, power spectrum) S (f), where f represents

a frequency, R (T) and S (f) are related by

S R) fa., P, (r + 4( ZiTrit) (All)

f 5 M -P-4 07 -Wi T) (A12)

Using equation (A10), one can easily show that the power spectrum is real.

It will be an even function of the argument f when the autocorrelation is

real, but otherwise not necessarily. In fact, in the special case where the

imaginary part of the complex process z is minus one times the Hilbert

transform of the real part process x, then z is known as the analytic

signal associated with x and one can show (Papoulis, 1965, p. 357)*

( ) = (A13)

*There are unfortunately a multiplicity of ways of defining the set of
correlations and transforms associated with the theory of random processes.
In this paper we shall follow Bracewell (1965) who defines the Hilbert
transform x(t) to be

0o

(the singularity is allowed for by taking the Cauchy principal value) and
the analytic signal z(t) to be

With these definitions, the analytic signal associated with cos(a ± bt) 'S eup(oatb)
where b is taken to be a positive constant. These definitions together with
the definitions of the autocorrelation (equation (A9)) and the spectrum
(equation (All)) provide a consistent set of relations such that equation
(A13) holds. In optical coherence theory however, it is customary to
define the imaginary part of the analytic signal as plus one times the
Hilbert transform of the real part and to compensate by using the opposite
sign convention in defining the Fourier transform relations, equations
(All) and (A12) (see for example, Beran and Parrent, 1964). With this set
of definitions, the analytic signal associated with cos(a ± bt) is exp -
(a + bt). The present author prefers the previous situation in which the
frequency b in the exponential always appears with a positive sign,
suggesting the fact that the analytic signal contains only positive
frequencies.



In the discussion later on, we shall have occasion to use the

convolution theorem which, stated briefly, says that the Fourier transform

of the product of two quantities is equal to the convolution of their

respective Fourier transforms. For example, if

p,) = \ RIo, ) (A14)

and if S.(f) and S (f) are the respective Fourier transforms of Ro(T-) and

R (t), then the Fourier transforms S.x(f) of R: (') is given by the

convolution integral

siU) = (A15)

A simple extension of this result shows that if

R ) Rol 0-). (Al6)

then

S (if I i'i s (i ) ) (A17)

Both of these results may be easily proved by using the Fourier transform

equations (All) and (A12).

Finally, let us write down what we shall consider to be the definition

of the Dirac delta function as the Fourier transform of unity,

-(w-*U ~= fc~ 2[L(A~U4. (A18)
-Co0

The most important formula we shall use involving delta functions is the so-

called sifting integral
Oo

flwvc (W-A)U-) - Y Q (A19)

Other important properties of the Dirac delta function are given in

appendix 1 of Davenport and Root (1958).



APPENDIX II

18. The anode photocurrent random process

Studies of shot noise in electronic devices have in the past

stimulated the development of the statistical theory of random processes.

More recently, attention has been given to the problem of a shot-noise

process with a time-varying mean value. This is the type of process which

is generated when a photomultiplier is illuminated by light of varying

intensity as in the :ptical homodyne or heterodyne. The autocorrelation and

spectral density of the resulting photocurrent in this case are discussed in

an appendix to a paper by Freed and Haus (1966). The method used is

similar to that used by Davenport and Root (1958) in their discussion of

ordinary shot noise. We shall give a brief account of the derivation here

for the convenience of the reader. This will also serve to illustrate the

method of statistical averaging discussed in section 17.

1B.l1 Mean Value of the anode photocurrent

We shall assume that the intensity of the scattered light is a

stationary random process, and hence that the photocurrent process is also

stationary. It is helpful however to consider first the case in which the

intensity is not a statistical function at all, but merely a function of

time. The photocurrent process in this case is non-stationary. After the

required averages have been computed, stationarity is restored by averaging

again over the intensity considered statistically.

Let us represent the anode photocurrent as a sum of identical current

pulses ie(t) which occur at random times tk. We shall neglect the

statistical variation in pulse height and shape caused by secondary

emission in multiplier tubes. Suppose one considers a photocurrent process
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which is non-zero only over an interval of time T during which a random

number K of pulses are produced at the anode. If the pulse length is short

compared to the length of the interval T, then one may write for this

process with negligible error

otherwise (A20)

If G is the current gain of the tube and e is the electronic charge, then

each current pulse must satisfy the relation

C7A (A21)
-00

After finding the mean value of the above truncated process, we shall take

the limit as T becomes infinitely large:-; ie.

C i ~(T(A22)

The random variables involved here are the K electron emission times

and K itself. The statistical average is constructed as in equation (A4)

I k l (A23)

Interchanging integrations and summation and integrating over variables not

involved in the expression being averaged, one has

X(Tt) fck~ Z K,(*- 5~)4p') a (A24)

Now let us assume that each emission time is independent of the total number

of pulses. Then

= (t K) (tk K) +(K) = (t +(K), (A25)

where 4(t kK) is the conditional p.d.f. (Davenport and Root, 1958, p. 29)

Next we assume that the emission time probability for each electron is

the same, and that it is proportional to the intensity on the photocathode

at any given time. If w(t) represents the light intensity* integrated over

the area of the photocathode, then one may write
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2 I Z

O otherwise. (A26)

Furthermore, if the emission times of the various electrons are

independent, then it has been shown by many authors (for example, Mandel,

1963) that -(K) is a Poisson distribution

O otherwise , (A27)

where the emission rate k is given by

T/Z

I IT/ (A28)

Here 5 is the quanthem efficiency of the photosurface (that is, the mean

number of electrons emitted per incident photon), X is the optical wave-

length, h is Planck's constant, and c is the velocity of light. /

represents the number of photoelectrons emitted per unit of incident light

energy (joules). The above expressions all simplify to the ordinary shot

noise expressions in the event that the power w(t) is constant.

Substituting the results of equations (A25) and (A26) into the

expression (A24), one finds

[af wr)] K= (A29)

*Light intensity has units of power per area, so w(t) has units of power.



But since as can be easily shown

K=o - (A30)

the expression for the mean value becomes

I -- /Z (A31)

Letting T go to infinity and making a change of variable, one has
oo

- I6k ') ( ') . (A32)

-00
Finally, we assume that w(t) is a stationary random process and

average the above expression over the statistics of this process and use

equation (A21) to obtain

-- r (A33)

which is the result obtained for the ordinary shot noise process except

that the light power is replaced by its mean value.

18.2 Autocorrelation and spectral density of the anode photocurrent

The autocorrelation is calculated with the same procedure used to

calculate the mean value. First we consider the intensity to be a simple

time function and let the photocurrent be zero except for an interval of

time T. The autocorrelation is written as in equation (A5), (we write t for

t, and t +' for t2) ,

Aa (A34)

Interchanging integrations and summations and integrating over extraneous

variables, one has



4l ft (A35)

Next we separate the double sum into the K terms for which j = k and the

(K2 - K) term for which j k. Assuming that the random variables tj, tk,

and K are mutually independent and that the emission time probabilities are

the same for each electron, then

+ K %b4-LkOW) ]-' (A36)

Since +(K) is given by equation (A27), it can be shown easily that

0o -r/2

K-zo -T/z" (A37)

If (tk) is given as before (equation (A26)), then using equations (A30) and

(A37), one has

-T2. -T/2z- 2TI

+ i tJk iLk(tJ A~Z-x4+ (A38)
Now let T become infinitely large and change the variables around to find

0 00 OR D

(A39)

The final step is to consider w(t) a stationary random process and to carry

out an average with respect to this process. If we let

o (A40)



then

-Ob (A41)

which is the result given by Freed and Haus (1966) when all the current

pulses are assumed to be of the same shape. If the light intensity is a

constant, this result reduces to equation (7-36) of Davenport and Root

(1958).

It is usually the case in the homodyne experiment that the intensity

fluctuation is small over a time as short as the current pulse length.

Mathematically, this situation can be approximated by assuming the current

pulses to be delta-functions such as

A, (A42)

in which case

R(t= (Gef C5 (A43)

Equation (A41) becomes

Gr __TL + RGre AV
(A44)

The spectral intensity of the anode photocurrent is defined for our

purpose by equation (All). The general expression obtained by Fourier

transforming equation (A41) (making use of the convolution theorem,

equations (A14) and (A15)) is

o (A45)

where So(f) and Sw(f) are the Fourier transforms of Ro() and Rw(-, ) .

When the intensity varies only slowly over the duration of a pulse, an

approximation to the spectrum valid at low frequencies is found by

transforming equation (A44)
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Thus the photocurrent spectral density consists of two parts: the shot-

noise part which is frequency independent at low frequencies, and the

optical fluctuation part which at low frequencies is simply proportioned to

the spectrum of the light power.

If it is now assumed that the photocathode is coherently

illuminated so that

where A is the cathode area and I(t) is the intensity of the light, then

equation (A46) becomes

Xh r ( I) e (

This result is given in the text as equation (1).



APPENDIX III

19. The scattered electric field

Expressions for the radiation fields of an infinitesimal electric

dipole can be found in Born and Wolf (1965). Using these results, we shall

obtain an expression for the scattered electric field when a collection

of point dipoles is illuminated by a plane electromagnetic wave. Attenuation

of the wave and multiple scattering are neglected. The dipoles may move

about, but their velocities must be small compared to the velocity of light.

A particular solution of Maxwell's equations for the electric

field E as a function of position 4 and time t is given by Born and Wolf,

(1965; p. 80):

where

R (B2)

P is the polarization field induced by the incident radiation, E is the

free space permittivity, and the space derivatives are with respect to the

field point A . If the illuminated dipoles are confined to some fixed

finite region, and if the electric field is to be evaluated at a point

outside this region, then the integration does not involve a singularity and

the derivatives may be taken inside the integral. One may carry out the

indicated differentiation as Born and Wolf have done for a single 06int

*Equations are given in rationalized MKS form. To obtain Gaussian cgs

equations, omit the factor in braces.
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dipole. In the radiation zone one obtains

where T is angle between the incident electric field and the direction

of the scattering.

The polarization field is found by summing the polarization

fields produced at the individual dipoles. The polarization induced in

the j t dipole located at At (t) is assumed to be proportional to the

incident electric field E ( r ,t) and a constant, scalar polarizability

O(. The polarization field is then written as a sum of Sd-functions
N

where N is the total number of dipoles.

Although the electric fields and polarization fields are real

quantities, we shall find it more convenient to deal with the associated

analytic signals (see Appendix I, particularly the note on p. 73) In

particular, let us assume that the incident electric field is a plane wave

of the form

where

and OW, =20 iT is a real, constant angular frequency.

The dipoles are assumed to move with velocities that are small

compared to the velocity of light. In taking the time derivatives

required in equation (4), we neglect the slow variation in-P due to particle

motion compared with the rapid oscillations of the incident field and write
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also

Substituting into equation (4), we find

N

where

=ch zE ~ (lo)0 = 0 o o - (To10)
The geometry associated with the scattering region is shown in

Fig. 1. Let be the wave vector in the scattering direction and note

that J , j I If the distance to the field point is large compared

with the dimensions of the scattering volume, then approximately

/--op

and

-R (612)

We-define a difference wave vector K

K A) 13)

and note incidentally that

A, 2 (14)
where ho is the optical wavelength (c/fo) and G is the angle between the

incident and scattered wave vectors. Upon substituting these geometrical

approximations into equation (9) we find
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APPENDIX IV

20. Space-time correlation of the scattered intensity
and the area of coherence

In Chapter II it was indicated that fluctuations in the

scattered light intensity produce fluctuations in the photocurrent which

are spectrally analyzed in the optical homodyne. The discussion was

restricted to the case in which the cathode was coherently illuminated.

In this section, we consider the more general case and show that the

coherence area for scattering from a random collection of particles is

given approximately by 2 /0 , where G is the solid angle subtended

by the scattering volume at the cathode. The results of this section and

the one to follow further show that the signal-to-noise ratio for the

optical homodyne is independent of the number of coherence areas seen by

the cathode, as long as there is at least one.

The basic concepts discussed in this section were outlined

qualitatively by Forrester, Gudmundsen, and Johnson (1955) and by Forrester

(1961). Their results as applied to a homodyne experiment were confirmed

recently by Berge, Volochine, Calmettes, and Hamelin (1968).

We will assume that the scattering particle statistics are

stationary in time and homogeneous in space, and that the particles are

located and move independently. The results are compared with an

expression given by Berge, et al.

The spectrum of the homodyne photocurrent was given in terms of

the spectrum of the scattered light power w(t) by equation (A46) above.

The light power is, by definition, the integral of the scattered

intensity I( s ,t) over the photocathode area A, that is,



w(t) = ds I(s ,t).

A (A48)

The autocorrelation of the light power is thus

Rw(,r) d I RI( Sl, s2; Y ) '

A A (A49)

where

RI( Sl, s2; ) = I( 1, tI ) I(2, t2)' (A50)

If the intensity fluctuations occur simultaneously over the entire photo-

cathode, the cathode is said to be coherently illuminated, and

Rw(') = A2RI(I). (A51)

In general, however, one must consider the complete space-time correlation

indicated in equation (A50).

As in Chapter II, it is easier to consider first the space-time

correlation for the electric field RE( sl, s2; r ). Starting with the

electric field as given in equation (7) (toe nctlz ticn cf -- -9 etie''-

th e gh-th 4 -81--' ), and following the procedure which led to equation (16),

we find the result

2.t

(A52)

where

Kl= ko ksl, (A53)



K2 - ko . ks2,

and ksl atd ks2 are wave vectors pointing in the sl and s2 direction,

rog~pctively. Let

AK = Ki -1 K2  ks2 - ks1 (A54)

and eliminate K2 from equation (A52) to obtain

X I EK*,o 3?Z] (A55)

Note that K is a function of and s 2 . If the particle statistics

are homogeneous, then equation (17) holds and one has

Vf i(A56)V
where RE(I') is given by equation (4 ). Equation (A56) is an interesting

result in that it shows that the space-time correlation can in this case

be factored into the product of the time correlation at a single point and

the space correlation it a single time. This property is referred to as

oss-spectral purity (Mandel, 1963) and is seen to depend on the

assumption of homogeneity.

The space-time intensity correlation is found by starting with

equation (12) for the intensity and by following the procedure which led

to equation (34). When it is assumed that the particle motions are

independent so that equation (3) holds, then one obtains

c s (A57)

which is the generalization of equation (6).



Let us evaluate the integral in equation (A56) when the

scattering is observed at an angle of 900 from a segment of laser beam of

length a and diameter b. It is possible to perform the calculation by

integrating over the cylindrical volume thus defined, but it is easier to

ignore the thickness of the beam in the scattering direction and to

replace the volume integral by a two dimensional integral over a rectangle

of length a and height b (see Fig. 17). The two results differ only by a

numerical factor.

The vector AK is easily shown to lie in the plane of

integration normal to the scattering direction, and to be of magnitude

ko C /s, where a- was defined in equation (A53) and lies in the plane of

the cathode. One can write

(A58)

where x and y designate components of the vectors in the plane

perpendicular to the scattering direction, with the dimension a along x

and the dimension b along y. The integration yields

-AfJ -bl2 2,- 2A

(A59)

which is the diffraction pattern of a rectangular aperture. The

identification of the spatial correlation function of an incoherent, plane

source with the diffraction pattern of an aperture having the same shape

as that source is the substance of the van Cittert-Zernike theorem of the

theory of partial coherence (see Born and Wolf, 1965, p. 508).
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Equation (A56) now reads

ec24 (- i j A2A

2.4 24 (A60)

so that the intensity correlation (equation (A49)) can be written

222.

(A61)

If the area of coherence is taken to be the rectangular area on the

cathode bounded by the first zeros of the two sine functions, then it is

found that

A -(coh ()R A62)

where

= ab (A63)

is the solid angle subtended by the source as seen from the cathode.

Equation (A62) is approximately true regardless of the shape of the source

volume, as long as the scattering particles have homogeneous statistics

and are located and move independently.

Let us now substitute equation (A61) into equation (A49) and

obtain an expression for Rw(T). We assume that the coherence area is

small compared to the cathode area so that the integration over sl may

be replaced by integration over ; with limits extended to infinity. The

integration over s2 gives the area A. We have



pAR siC2

TA (A64)

The final step in this development is to Fourier transform

equation (A64), and substitute the result into equation (A46) for Si(f)

(note that w = tA) to obtain

ACp (A65)

Apart from the zero-frequency impulse, the anode photocurrent spectrum is

seen to.consist of a shot-noise part and an optical fluctuation part.

Moreover, since the mean photocurrent for a given mean incident intensity

is proportional to the cathode area A, one can see from equation (A65)

that increasing the area of the cathode causes the shot-noise part and the

fluctuation part to increase proportionally. As we shall see in the next

section, the signal-to-noise ratio for the experiment is independent of

the cathode area utilized, so long as it includes at least one coherence

area.

A comparison with the experimental study of Berge, et al (1968)

is easily obtained from equation (A65). Suppose that the electric field

spectrum 4Ph is Lorentzian with a HWHM of fo hz, and then ask how much

power from the fluctuation part of the spectrum passes through a frequency

band from - Af to + Af where .f is small compared to fo. The result

is

(q -A. -

F J= A (A66)
=92
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which is equation (1) of Berge, et al. They measured i 2(f) in a homo-

dyne experiment as a function of Aco h and A and found good agreement with

this result.



APPENDIX V

21. Signal-to-noise ratio for the homodyne spectrometer

In this section we give a few results concerning the

observability of the homodyne spectrum that may be of interest to someone

planning an experiment. An expression for the signal-to-noise ratio is

given and discussed, though an explicit derivation is not provided.

Let us first of all compare the magnitude of the power in the

fluctuation part of the spectrum with the magnitude of the power in the

shot-noise part (see equation (A65)). Equation (A66) gave the amount of

power in the fluctuation part of the spectrum which passes through a

frequency band extending from - Af to + Af where ALf is small compared

to the width fo of a Lorentzian electric-field spectrum. The analogous

result for the shot-noise power is

i N (f) = 2 Ge i ZLf. (A67)

Forming the ratio and recalling that equation (A33)

i - BGe w - BGeAT, (A68)

one has

N =0 (A69)

where S is the quantum efficiency as introduced in equation (A28) and

is the degeneracy parameter for the incident light. represents the

number of photons incident on a coherence area of the cathode in a coherence

time. The ratio in equation (A69) is thus equal to the number of photo-

electrons emitted by a single coherence area in a coherence time. Mixing

experiments using incoherent light such as the one performed by Forrester,
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Gudmundsen, and Johnson (1955) are generally very difficult because the

degeneracy parameter for such sources is usually very small. Note that

increasing the cathode area has no effect on the fundamental ratio in

equation (A69).

The signal in the experiment may be taken to be the power in the

fluctuation part of the spectrum iF 2 (f). The noise in the experiment

should be taken to be the experimental uncertainty in determining this

quantity. Detection of the homodyne spectrum is accomplished by passing

the photocurrent through a narrowband filter of width Afl, a square-law

device, and a low pass filter of width Af 2. The signal-to-noise ratio

for such a process can be shown to be given by

N3 2 a, fAz
J= 0

Thus, even though , may be small compared to unity, the experiment may

still be made possible by making the ratio Afl/ Af 2 large enough.

This is equivalent to using a longer integration time in observing the

output.

Ivj
N



LIST OF SYMBOLS

Symbol

a

a

a,b

A

B

c

d

D

e

E( r ,t)

f; fo

G

h

i(t)

ie(t)

I( r ,t)

k

k ko ; ks

Meaning

multi-dimensional vector
representing a list of random
variables

radius of spherical volume;
particle radius

dimensions

area of photocathode

friction constant

velocity of light

specified constant

nozzle diameter

diffusion coefficient

electronic charge

complex electric field

frequency; incident laser
frequency; pr ;bability dn.aity

photomultiplier current gain

Plahck's constant

photocurrent

shape of elementary current
pulse

light intensity (power/area)

mean rate at which photoelectrons
are emitted

wave vector; incident wave vector;
scattered wave vector

96

Page

71

32

89

86

32

22

60

27;32

19



Symbol Meaning Page

kB Boltzmann constant

K number of photoelectrons
emitted in an interval 76

K k - k 21
o s

-*A -4
AK K1 - K2  88

m mass of particle 32

N total number of dipoles 21

p(x) probability density function 71

P( r, t) polarizability field 82

qo specified constant 21

r ; s position vectors (source point; field
point) 20

-4 th
r (t) location of j particle at time t 20

rl location of particle at time tl, etc. 23

r12 location of particle 1 at time 2, etc. 29

R (-) autocorrelation of random
process a(t) 72

Re Reynolds number 40

S (f) power density spectrum of random

process a(t) 73

t time

T particle transit time 47

v( , t) velocity 36

V nozzle velocity 60
o

V scattering volume 23

w(t) light power 76

z; z axial distance from nozzle;

o location of geometrical origin 60



Symbol

o

V

--

I C Wo
ovwo

Meaning

polarizability

velocity correlation function

specified constant

angle between incident electric
field and scattering direction

degeneracy of parameter

Dirac delta-function

permittivity of free space

viscosity

scattering angle

solid angle

wavelength

integral scale (Lagrangian; Eulerian)

permeability of free space

kinematic viscosity

quantum efficiency

space intervals

time interval

angular frequency; incident

angular frequency

1. '11,

Page

83

37

77

21

94

74

32

20

91

21

32;59

40

77

24;87;30

19
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