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ERRATA

be , b. as defined on pp. 53 are respectively equal to C,0, C
which are defined on pp. 60. Therefore, the second notations should

be discarded.

Chapters I through VII, the equations are numbered between two

parenthesis. The same notation is also used to indicate the ref-

erences referred to in the Bibliography.
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ABSTRACT

The transient heat transfer phenomenon in laminar incompressible
flow at the entrance region of tubes having small length-to-diameter
ratios has been investigated.

To introduce the effect of heat capacity of the tube-wall, the
principle of conservation of energy for the tube-wall was considered in
addition to the usual fluid continuity, momentum and energy equations.

Assuming that the velocity profiles at the entrance region of the
tube can be approximated by velocities of the laminar incompressible
flow over a flat plate, the solution of the fluid flow problem was taken
from previous work. The remaining two partial differential equations,
the fluid and tube-wall energy equations, have been solved by using the
method of successive approximations. The first two approximations were
considered. Because of the analytical difficulties encountered in the
solution of the second approximations, these approximations have been
evaluated only for small values of the dimensionless number M FO/X ,
that is AO/x . 0.4 .

The theory applies to viscous oils, water and air in the range of
Av/R less than 0.3, and to the liquid metals where Jr/I is less

than 0.1.

A modified Nusselt number based on the step temperature input
was defined as

Nu(xJ) e/
k4TeD

_1 __ /_II^ C_



The use of this number in a one-dimensional. analysis to predict the mean
temperature variations of the fluid and tube-wall, uncouples the two energy
equations. This method is most convenient for analytical solutions.

The theory has been checked by some experimental measurements. The
first approximation of the tube-wall temperature has been compared with a
quasi-steady theory. The result is that, for very small and very large
values of 'O/X 12/ , the quasi-steady theory closely approximates
the present theory.

Thesis Supervisor: Professor Warren M. Rohsenow
Department of Mechanical Engineering
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I. INTRODUCTION

1. General Problem

Consider a fluid flowing over a fixed solid ' with a boundary

surface 6 (Fig. 1), and suppose that either fluid or solid is sub-

jected to a transient effect throughout its volume or at one of the

boundaries. This effect can be accomplished by a time-dependent heat

generation within the solid or fluid, by a time-dependent temperature

change at one of the fluid boundaries, or by a time-dependent fluid

velocity. The temperature field in the fluid and solid, and the vel-

ocity field in the fluid, are desired.

The relevant equations are those of the conservation of mass, mo-

mentum, and energy, and the equation of state. The energy equation is

written for the solid as well as for the fluid. The continuity and

momentum equations are not independent of the energy equations and the

equations of state, being related through the physical properties of

the fluid and wall. At the same time, the fluid energy equation will

also be connected with the solid energy equation through the boundary

condition on the fluid-solid interface. These two types of dependence,

or coupling, which are basically different, often result from the ap-

plication of fundamental laws to physical problems.

Owing to the mathematical difficulties encountered in solving the

general problem, very little attention in the past has been devoted to

solutions of the problem in which the second type of coupling is in-

cluded. The major effort to obtain information about transient heat

__
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transfer phenomena has been confined to problems with certain simpli-

fied boundary conditions. These conditions are those of constant or

prescribed temperature or heat flux at the fluid-solid interface. In

this way, the second type of coupling described above is avoided. As a

first step in the solution of the general problem it is possible to

neglect the first type of coupling and to consider the second type in

detail.

The second problem is actually analogous to one encountered in

many mechanical problems, that of determining the speed of rotation of

a system which is composed of a driven element which is connected with

a driver by means of a real coupling (Fig. 2). For a stable system,

the answer is simply that steady angular velocity W and torque C,

for which the C. a characteristics of the driven element and driver

intersect. Thus, in order to predict the speed and torque in advance

of an experiment it is necessary to know the speed of each element at

any torque load.

Similarly, in the heat transfer problem, the temperature and the

heat flux at the fluid-solid interface for all values of this tempera-

ture and flux must be known. In analogy to the mechanical illustration,

the solution to the problem would require that the boundary conditions

agree, that is, that the temperature and heat flux of the fluid and

solid be equal at every point of 6 .

Before the second world war, the problem described so far--even

for steady-state cases--was too complicated for analytical solution.

The usual steady-state procedure was to assume either the conductivity

_ _________ _. . ^I~
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of the solid so high that the temperature throughout is approximately

uniform or an approximate temperature or heat flux based on experiments

on similar bodies.

2. Present Problem

In view of the importance of circular tubes to many applications

of engineering, the above mentioned second problem is considered for

the entrance region of tubes having small length-to-diameter ratios.

In such short tubes, the fluid and heat flows are found to be greatly

influenced by the rapid change of the velocity and temperature profiles.

As a result of these rapid changes, the use of a steady or transient

but lengthwise one-dimensional analysis to predict the pressure drop of

the fluid and the mean temperatures of the fluid and tube-wall requires

specific knowledge of the variations of the apparent friction factor and

the heat flux along the fluid-tube interface. Therefore, radial varia-

tions of the velocity and temperature profiles must be taken into ac-

count. For the present problem, a time-independent developing laminar

velocity boundary layer is considered and necessary information is taken

from previous works. Then the transient heat transfer phenomena for the

fluid and tube, for a step temperature change at the entrance of the

tube, are investigated.

__ _ _~1IL_



-4-

3. Previous Work

Original interest in this problem, arising in connedtion with the

study of transient heat exchange systems, is found in the German liter-

ature dating back to thirty years ago. Generally speaking, there are

two types of systems by which this is effected: heat exchangers and

heat regenerators. For the present discussion, double fluid heat ex-

change systems are omitted. In heat regenerators the hot and cold

fluids are passed cyclically over a solid wall. The storage of heat in

the wall is fundamentally important and must be taken into account.

For a slug flow of an incompressible fluid, theoretical analyses

of length and time-dependent fluid and wall temperatures are given by

Anzelius (1), Nusselt (2), Schumann (3), Hausen (4) (5), Carslaw and

Jeager (6) and Rizika (7) (8). In each of these cases, a step tempera-

ture change or a temperature sinusoidal in time is considered.

The same problem has recently been extended to transient power

variations within the tube wall by Clark, Arpaci and Treadwell (9) and

Arpaci and Clark (10) (11) (12). Allowing radial variations in fluid

temperature, another extension resulting from the combination of (1)

with the first Graetz problem (13) has also been made by Arpaci (14).

In all the above analyses, excluding the last, a constant heat transfer

coefficient was assumed.

The recent appearance of papers by Bryson and Edwards (15), Emmons

(16) and Yoshihara (17) in laminar boundary layer flow, deal with quasi-

steady heat transfer phenomena over a flat plate, including the effect

of the heat capacity of the wall.
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4. Method of Present Study

As previously indicated, the fluid flow part of the problem has al-

ready been solved. The solution obtained by Blasius (18) using a simi-

larity variable is well known. With respect to the heat flow, the exis-

tence of the terms at and _ in the fluid energy equation
t r dr

preclude a similar type of solution. Therefore, the calculation of the

commencement of the temperature boundary layer will be carried out by

successive approximations.

Most of the starting flat plate velocity boundary layer problems

assume (after Blasius), on the basis of physical reasoning, that at the

beginning of the motion, the boundary layer is very thin and the viscous

term Y 4L is very large, whereas the convective terms retain their
ay2

normal values. For a first approximation, neglecting the convective

terms U and V , the momentum equation is reduced to the

heat conduction equation. Then the convective terms of the second ap-

proximation are calculated from the first approximation, and so on.

Therefore, for a non-similar velocity or temperature boundary layer

problem, the general method should be to seek a first approximate solu-

tion which gives the closest answer to the problem. Then the successive

approximations are iterated from this first approximation.

This logic has been followed for the first approximation of the

present problem by simply taking a slug velocity r , which means a

convective term i instead of U , y ; This reduction

of the fluid energy equation appears to correspond to the well-known

Oseen approximation for the fluid momentum equation. However, there is
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a fundamental difference between these two cases. For fluidflow, the

change is mathematical and is the approximation of the momentum equations

through a linearization. But the physical character of the problem is

not altered. For heat flow, on the other hand, the physical character of

the fluid flow is basically changed by taking a slug (perfect fluid) flow

instead of the proper viscous profile.

Now, suppose TO and 4 are the first approximations of

the fluid and the tube-wall temperatures. A set of exact solutions may

be written in the form

" = 7" (~ rC ) +.. -I (rk -

k,0

For a sufficiently large number of terms, the solutions do not depend on

the first approximations. But as a result of the increasing domplexity

of the higher order approximations, only the first two approximations

will be considered. Therefore, the accuracy of the solutions will depend

primarily on the first approximations.
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II. ANALYSIS

The system under consideration is shown in Fig. 4 and consists of

the entrance region of a constant-diameter circular tube in which a

fluid is flowing.

The following assumptions are made:

a) The fluid flow is steady and laminar,

b) The velocity profile along the tube is approximated by the laminar

flow over a flat plate,

c) The outer surface of the tube is adiabatic,

d) Axial heat conduction is negligible, both in the fluid and the

tube-wall,

e) Radial heat conduction is infinite in the tube-wall. Therefore, the

tube temperature is not a function of radial distance,

f) The physical properties C, p ' ' Cp, k) of the fluid and

tube-wall are constant,

g) Initially both fluid and tube-wall have the same constant temperature,

which may be taken equal to zero,

h) Kinetic energy and dissipation terms in the fluid energy equation are

negligible compared to the others,

i) Boundary-layer assumptions are valid for fluid momentum and energy

equations,

j) The transient effect is introduced by a step change in the fluid

temperature from an initial condition.
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A system of co-ordinates fixed to the stationary tube is chosen.

The equations of conservation of mass and momentum are omitted here

because the fluid flow problem is taken to be already solved in previous

assumption (b). The application of the first law of thermodynamics

(energy equation) to a tube element (a closed system) and fluid control

volume results in the following two partial differential equations.

Details of this derivation and the integration of the differential equa-

tions are outlined in Appendix A.

For the fluid

R 4- r w- a 4 ar) )

For the tube-wall

.6 'L O (2)

where

The initial and boundary conditions of the problem are:

T(r, x, 0) =0 (4)
Initial ( ) =0 (5)

r(r,O,t) u rTe (s)

Boundary dT(ox,) 0 (7)
8r

As indicated in part 1.4, the problem is solved by a method of

successive approximations. The first two approximations are obtained.
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In terms of these approximations, the fluid and tube-wall temperatures,

respectively, are

T= ToC + (g)

Then the first approximations satisfy the following two simultaneous

partial differential equations, and proper initial and boundary condi-

tions

4a r at) N

ago 7,1' 0 (12)

7T(r ,x,O) = 0
67(x,O) = o (4)

- (5)
a((o,.x0X) 0 6)

ar
ro(Rax,) = 9/x, ) (17)

If these equations are subtracted from equations (1), (2), (3), (4),

(5), (6), (7) and (8), and the convective termsU-- anda are approx-

mated by and -- , the following system is obtained for the
X ar

second approximations
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4.u/ 8) a zrJ I
' r4, u 2P ax- 4- /

S(rx, ) = a

T (r,0, )= 0

ar
r'( ', xe, i)='(e )
The method of solution described below is general and applies to

both of the approximations.

Let Aji(xI) (i 1,2) be any arbitrary function which is zero

when 1 - ,where U is the core velocity of the tube flow.

Suppose boundary conditions (17) and (24) are equal to this function.

Then each approximation of the fluid energy equation can be solved in

terms of this arbitrary function. For convenience, the simple Laplace

transform in the time variable is employed first. Next a transformation

fi (r, x, p) = T (rx,p)e for the dependent variable is used

to simplify the problem. Then the use of finite Hankel transforms in

the radial direction and the inverse transformation results in the fol-

lowing expression for the Laplace transformed fluid temperature

S i(r x,ip)t= fA tp)o] (25)

If this equation is substituted into the tube-wall energy equation,

(8)

(19)

(20)

(21)
(22)

(23)

(24)
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a Volterra integral equation of the second kind

is obtained. In this equation ,1(xp) is the unknown function to be

de termined.

Since in the present case the tube-wall temperature is taken to be

independent of the radius, the solutions of the Volterra equation above

give the successive approximations of the tube-wall temperature. Then

substitution of these temperatures into 7(r.X.*P) followed by in-

verse transformation gives the successive approximations of the fluid

temperature. In the solution of the Volterra equation, the kernel

KX, ) , and the function 6i(x) involve summations over one

or two indices. Although a theoretical solution is possible and has

been obtained in Appendix C, numerical application is considerably dif-

ficult. To avoid this difficulty, K(',C) and G- (x) are first cal-

culated and plotted. Then simple curves are used to represent the re-

sults so obtained. The solution is carried out with these approxima-

tions.

Inspection reveals that, for successive terms of the tube-wall tem-

perature expansion, the kernel K(X,3) is the same. The reason for

this is readily seen after investigating the mathematical behaviour of

(A-40) and (A-99). The exact and approximated curves for k(X, ) are

shown in Fig. 5. Since the theory applies within the range 0-4 4 ' i

the maximum error introduced, in the approxination of K(X, ) , is

4.52/o#occurring at the extreme value, = i 0 I
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The function i (X) is different for each value of 1 . The

curves for G (K) are shown in Fig. 5. The analysis described above

gives the following equation for the first approximation of the Laplace

transformed fluid temperature in terms of the unknown function A',p ) *

)(2)

By zreans of this, and the first approximation of the Laplace trans-

formed form of the tube-wall energy equation (12), the following in-

tegral equation results

Ax~ e(28)
This is the first approximation of the Laplace transformed tube-wall

temperature. In this equation, K(xj) and 4(K) are approxi-

mated by curves in Fig. 5.

Then the solution for the first approximation of the tube-wall tem-

perature is

Substitution of this result into r0(r.X, ) gives the first

approximation of the fluid temperature
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xI)= { 2Zi4 X/ Mo -4A '0 (Jo)

where X/A

4 D. Mo) ;je d(Q) ($1)
Ai 0

The use of equations (12) and (29) gives the following expression for the

modified Nusselt number 2

N) /7vCe (32)

Following the same procedure, the second approximation of the Laplace

transformed fluid temperature in terms of the unknown function

is obtained as follows
., 02('(,m,)) /

S where) - ).. (O4)

Again, by substituting this equation into the second approximation

of the Laplace transformed form of the tube-wall energy equation (19), a

Volterra equation of the second kind, involving the second approximation

of the Laplace transformed tube-wall temperature is obtained.



4

A(x,p)
OfD

(R - e :fr

Because of the complicated form of (35), only the first term of

Fr l ,p) is considered.

For large values of E/, the tube-wall temperature

asymptotically approaches unity. For small values of FOa/( )2

in the expansion of /1 X, ) , the first term is proportional to

OM / / q ,the second one to 1! [MF , etc. Thus,

for small values of this argument, the first term of (35) is alone satis-

factory in determining the second approximation of the tube-wall temper-

ature. Therefore, for small values of MAO/( ) '  , the second

approximation can be written as

01 (XD IsDPr
-- r
Lie

0. 2E.-

D~it r, "-- CP(3')
I)F I f)

where a)I . ,Pr') is defined with (A-119).

,(pr) 4and 1 , , have been evaluated

by a high speed digital computer. If the approximated forms of these
by a high speed digital computer. If the approximated forms of these

(s)

-14-
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functions are substituted into (36), the following is obtained

- e - 2P r)/- 5'f - S(i- Pr)er PrV J

In Appendix A, P(Pr) is given by (A-124). The terms in the square

brackets have appreciable effect on the temperature only for nuclear

metals.

Then the use of (19) and (37) gives the following expression for

the second approximation of the modified Nusselt number

Finally, because of the linear nature of the problem, the tube-wall

temperature and the modified Nusselt number can be written in terms of

the first and second approximations as

NU = NUo NuV4 (40)
or, explicitly

4 -jCgr) erf (. p
X 38



f

and

0) U
Vau (XI, Pr) e X

e (W) - a0 P(Pr)[

-(- f P) e4c (p

U
(42)

-16-
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III. EXPERIMENT

1. Description of the Test Apparatus

Ordinarily, experimental verification of analytical boundary layer

theories requires delicate and expensive experiments involving much time

and instrumentation. This fecessity arises from the fact that the con-

dition of a constant or prescribed temperature or heat flux, is usually

imposed at the fluid-solid interface. These theories, therefore, can

be checked only by taking measurements in fluid stream. The advantage

of the present theory is that it can be checked by making only tube-

wall or fluid temperature measurements, or both. In this report, ex-

perimental work based on tube-wall temperature measurements was carried

out. A schematic representation of this work is shown in Fig. 10 (see

also Plate 1). For simplicity, a once-through water system was used.

Water drawn from the central supply mains was conducted to a tank of

constant temperature and head through standard 1/2 in. pipe lines. To

obtain a temperature level above room temperature in the tank, two hot

water heaters (each having two elements rated at 240 V., 7 KW.) were

connected to the input of the tank. One element of one of the heaters

was directly connected to the circuit. Two elements were controlled by

two on and off switches, and the remaining one was adjusted by means of

a variac type autotransformer (50-60 cycles, 10 A., 240 V.). The de-

sired temperature was obtained and kept constant by the proper adjust-

ment of heater elements.



The test section was constructed from a 1/2 in. (0.625 I.D., 0.840

O.D.) copper tube 24 in. long and had a 0.1075 in. wall thickness. To

insure laminar flow, a boundary layer suction slot (Fig. 11) was pro-

vided at the entrance of the test section in addition to two small
f 2.5

heads, 2 in. and It in. Up to 15% of the flow could be removed from

this slot by means of an ordinary valve. Four pairs of 30 gauge Iron-

Constantan thermocouples (Fig. 12) were mounted to the test section.

These thermocouples were chosen because of their availability at the

Laboratory and high EMF output per degree of temperature difference.

In the theory of this study the tube-wall temperature was assumed in-

dependent of the radial distance. To check the validity of this as-

sumption, two thermocouples were planned to fix at each location, one

on the outside of the tube-wall, the other on the inside. However, the

finite thickness of thermocouples located at the fluid-solid interface,

would prevent exact measurement of the inside wall temperature. For

this reason a vertical-tangential saw cut was made (Fig. 12) at four

locations on the tube in order to measure the inside wall temperature,

assuming that the remaining wall thickness has negligible transient

effect compared with the entire tube-wall thickness. For small Reynolds

numbers, because of free convection effects, the temperature profiles

in tubes become slightly non-symmetric with respect to the tube axis.

To eliminate the possible influence of this fact, thermocouples were

located vertically at both sides of the tube. For convenience, each

thermocouple was connected to two cold-junctions. A rotary switch was



included in the circuit to connect the desired pair of thermocouples to

the automatic recorder. Two thermometers were suspended in constant

level tanks as a check of the average water temperatures.

To obtain a constant pressure difference, another tank of constant

head was connected to the end of the test section. In addition to this

pressure difference, the undesired velocity transient also depends on

the valve opening as a function of time. To keep this transient as

small as possible, two quick opening valves were attached to the en-

trance and exit of the test section. The flow rates were measured by

weighing the drained water over a period of time.

The test section was insulated with 1 in. of 85% Magnesia. Two

layers of 1/2 in. glass fibre blanket were used to cover the tank of

constant temperature and heaters.

A Sanborn 150 recording oscillograph with a 150-1500 Preamplifier

and a 152-100 B Recorder was used to measure the time dependent EMF pro-

duced by the thermocouples in the test section. The recorder was cali-

brated against a known voltage before each run.

Some characteristics of the recorder used are listed below:

Sensitivity - 100 microvolts to 0.1 volts per centimeter,

Rise time - 0.03 seconds, which is the time response of the recorder to

a unit step input,

Calibration error - + 0.25%,

Zero suppression error - + 0.05 millivolt on low range.
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2. Test Procedure

The flow rate of the tank of constant temperature was adjusted to

keep a constant head during the experiment. Approximately two hours

were necessary to bring the tank temperature 500F above room temperature.

During this time, all electric heater units were loaded at full power.

Later on, by proper use of these units, tank temperature equilibrium

was maintained. In addition to the axial insulation at the suction

slot, reverse flow through this slot was used to decrease the axial

conduction along the tube-wall. This reverse flow, also, decreases the

cooling time of the test section between two runs.

With the recorder in operation, the quick opening valve at the en-

trance was suddenly opened and the transient EVF was recorded. This EMF

was converted to a temperature by the use of the proper calibration curve.

L

_ ~_ _~sl__l ___
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IV. REITS

The method described in 1-4 has been used to obtain the heat flux

on the fluid-tube interface, and the fluid and tube-wall temperatures.

The first two approximations were considered. The resulting solutions

may be written implicitly as follows

7-(r x, 1) 0 r /DMp Pr

Are

Na(xd) = [ For.Pr ] (4)

Because of the analytical difficulties encountered, the second ap-

proximations were obtained only for small values of HP0/( ,

less than . 4. The theory applies within the range O- L  1-

This includes Viscous Oils, Water, Air and partially covers Nuclear metals.

In this range, XAD and MrO appear in a single dimensionless group,

namely 1-70/D/4 .

As indicated by Toong and Shapiro (25), the assumption that the

growth of the boundary layer for tube flow may be approximated by that

for plate flow is valid when * C . . Therefore, using the Blasius

solution for flat plate, the upper limit of validity of the present

theory may be summarized in the following table:
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Fluid I ,ued etals Air Water Viscous O/

Pr 10J  f2 0.7 1 1 001o
X/D - 4 5 7

Each approximation of the tube-wall temperature has been reduced to the sol-

ution of a Volterra equation of the second kind which may be written in a

transformed form as

/(p) I fKtrxi) (eip)ded (46)

The kernel of this function is the same for all approximations, and, if

X/D 4 2, it can be approximated within f.52 % error by the upper

line of Fig. 5. This maximum error occurs at the upper limit. However,

C' is different in form for each value of i . C4 * h) , which

corresponds to the first approximation, has been calculated by the use of

a desk calculator and potted. The resulting plot was approximated by

the lower line in Fig. 5. The maximum error is 2545 when - 10.

Complicated form of 4 4 (X, Pr) requires the use of computer.

The two functions indicated in (A-126) and (A-127) in the first term

(x, Pr) of (XP, Pr) have been evaluated in this manner.

For constant values of specific heat, viscosity and thermal conduc-

tivity, as previously assumed, the first two approximations of the tube-

wall temperature and heat flux at the fluid-tube interface versus I

were obtained for values of X/D , as shown in Figs. 7 and 9a.were
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The second approximations have been evaluated only for small values of

MFO /IJP . Two experimental runs based on the tube-wall temperature

measurements are presented versus in Figs. 9b and 9c.

In 9d is shown the dimensionless tube-wall temperature versus the length

Reynolds number.

The first approximation for the tube-wall temperature of the present

theory has been compared with the first approximation of a quasi-steady

theory, which is based on the constant surface temperature assumption.

The results are shown versus MF4 ) /o  in Figs. 6 and 8.

In Fig. 9 is shown the first approximation of the Modified Nusselt

number versus MO/(D. In the same figure, the results of

the Graets problem for slug flow which hold when ,are

indicated.

In Fig. 8a, there are shown the first approximations to the three

Nusselt numbers /o 1,, UDA Miu which are respectively functions of

the differences between, (a) - the entrance temperature and the initial

tube-wall temperature, (b) - the entrance temperature and the instantaneous

tube-wall temperature, (c) - instantaneous mean fluid temperature and the

instantaneous tube-wall temperature.

The present theory is compared with two other theories (7) and (27),

at one location and for one flow condition. The results are shown in

Fig. 8b.

The first approximation to the tube-wall temperatures is plotted in

Fig. 8c for two locations and at various times.
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V. DISCUSSION OF RESULTS

The present theory shows that through an approximate theory the

modified Nusselt number (Fig. 9a) may be represented by

N(X,~ Pr), )t

- ( - MPr) erc (SPr ') 1,
.(42)

provided that the dimensionless number MO/(xf)2 is small

enough, that is P/{ ) i4

Initially FO .,this equation may implicitly be written

in the following form

NuO',Pr): [.. i~ Pr] (47)

On the other hand, if the problem of free convection on a vertical plate

is considered, the Nusselt number is

,Au( .,D) .- * I A,8

Noting that, resulting from the dimensional analysis, the Reynolds

number of a forced convection problem is analogous to the Grashof number

of any free convection problem, the analogy between the above two problems

may be clearly seen. Moreover, instead of taking a free convection prob-

lem, a forced convection problem can also be taken for a direct analogy.
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In Figs. 6 and 8, the first approximations to the tube-wall temn-

perature and modified Nusselt number of the present study are compared

with a quasi-steady theory developed in Appendix E. Both theories, for

small values o f , agree closely because of the assumption

made in the calculation of the quasi-steady theory. For large values of

this argument (the steady-state case or in the neighborhood of the en-

trance) good agreement is again obtained. Therefore, for very small or

very large values of MFO( ) , the quasi-steady theory can be

conveniently used in place of the present theory. For intermediate

values of this ratio, a greater difference exists. For example, the dis-

crepancy between the two theories assumes a maximum 17% for the tube-

wall temperatures near and a maximum of 2 in

the heat fluxes near o 14

In Fig. 8a are shown, the first approximation of the three Nusselt

numbers which are respectively based on the differences between, (a) -

the step temperature and the initial tube-wall temperature, (b) - the

step temperature and the instantaneous tube-wall temperature and (c) -

instantaneous mean fluid temperature and the instantaneous tube-wall tem-

perature. MNU decreases with increasing time as expected. On the

other hand, J and /u increase without limit. At first,

this seems rather surprising. However, if a fluid which flows through a

tube having the same temperature as the tube, is subjected to an infin-

itely small temperature decrease (or increase), the conditions are

physically identical to the entrance conditions for which AU 0 and
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A/U1 become infinite.

Dusinberre's (27) and Rizika's (7) simplified analyses are compared

with the present theory for the tube-wall temperatures in Fig. 8b. Both

of these works give somewhat higher (f) %) tube-wall temperature re-

sponses compared to the present theory. A steady heat transfer coeffi-

cient at the entrance of the tube was used for these analyses. However,

in the actual case, the conventional heat transfer coefficient increases

with increasing time. Therefore, in these works the value of the heat

transfer coefficient was less than its true value. As Fig. 8a shows,

smaller heat transfer coefficients as conventionally defined, correspond

to higher heat transfer coefficients as defined in this study. For that

reason, both of the simplified analyses give higher val.es for the tube-

wall temperature response. Therefore, the conventional heat transfer

coefficient, for the present type of transient problems is irrelevant

and should not be used.

The first approximation of the present theory initially gives the

same solution as the Graetz problem (13) for slug flow. Therefore, in

Figs. 6 and 9, the ordinate corresponds to the solution of the Graetz

problem.

The theory of this study, assuming a time independent, developing

velocity field, was obtained for a step temperature change at the en-

trance of the tube. However, for the experimental work, it was neces-

sary to take a fluid which was suddenly subjected to pressure and tem-

perature differences. In this way a velocity transient is introduced
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as well as a temperature transient (Appendix D). Therefore, the exper-

imental work is meaningful only for T than the other transients.

Consider the experimental data when '=-/ 1' . I .. ,

) afffx' ~Dif- 9 . 9 5 (this value may even be smaller

in the actual case).

Then from (D-17)

(49)2.2 /x/2 .
(2?X 32.1ImKIf2

and from (D-20)

S(/4 ; 0 sec.
-144 96x sO 5

This transient depends on the thickness of the velocity boundary layer,

and at the fluid-wall interface is equal to zero. On the other hand, the

effect of this transient on the temperature transient increases as the

fluid-wall interface is approached. As an average value, if v/IR a #5

is taken instead of d/R 030

(S)vb ; * 20.8 = 52 se.
4

(50)

results.

For the first location (X-Si,) , from (D-21)

t r i - -,'- f2 18.S
5 r .0 0 w. (.52)

Actually, by the use of the second approximation, this transient time is

(uLt p
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approximately increased by an amount of 4 as

t" 1~2 (Bsip 624,, .3 S UCOP _ 12eOfc. ($51

Another simplification was made in the theory neglecting the axial

conduction within the fluid and the tube-wall. This axial conduction

effect in the tube-wall may be found simply by taking a pipe insulated

at the inner and outer surfaces and at one end, and subjected to a

sudden temperature change at the other end. The solution of this problem

(?8) can be written as

, erfc a L -erc L e J L -.. (54)

This series converges quite rapidly except nsmall values of o

As was done in Appendix D, if a transient time is defined according to

i/rlT &18 ,by trial-and-error

i found.

In the experimental work, CX (copper) = 4 2% , 1-22 i.

(fourth location) were used. Then from (.5)

2124.3 0 6 6

S . h585 our* (o57)

is obtained. This value is very small compared to the temperature tran-

sient. The same calculation can be made for the fluid. In this case an
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even greater transient time should be obtained.

Due to the acceleration, the hot fluid moves with the velocity ,

which increases in the flow direction, and is different from . The

ratio of these velocities (26) is

. = (58)

Therefore, the time required for the hot flow to travel from the

entrance to the location considered is

/ L L # (,.6

U= - = -VA) d)
The difference is

The worst case occurs when / N for which

U .=" 1.,25 and ($2)

A - 0 LM.... (63)
2. 25 U

For the fourth location, L X r2i. and Yz . f 656 / .

dt= oi= 02315 s.. (64)

Again At is negligible compared to the temperature transient. There-

fore, the theory may be safely used to check the experimental work.

Experiments were run at two velocities. Figs. 9b and 9c show the

dimensionless tube-wall temperature versus O/(Ifor a fixed

Prandtl number. Temperature measurements were made at four locations
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along the tube (see Fig. 12). As these figures show, experimental points

are spread around the theory. It seems rather difficult to make any in-

terpretation. On the other hand, for a fixed MFV/( ) 2 , for example

0.. , the same dimensionless tube-wall temperature /4 e may be

plotted versus length Reynolds number (Fig. 9c). For 'e 4 . 93 A*1 ,

the first station for the temperature measurements is in the laminar

region, and for eb = x6,x O7 3 , the first point is at the beginning

of the transition region. In the laminar region, mean experimental tube-

wall temperature is a little higher than the theory predicts. This may

be due to the fact that experimental points were taken as the arithmetic

mean of the inner and outer tube-wall temperatures. In the actual case,

the mean temperature is much less than the arithmetic mean, being nearer

to the inner surface temperature.

To simplify the theory, radial variations of the tube-wall tempera-

ture were neglected in this analysis. To check the validity of this

assumption, the inner and outer tube-wall temperatures were measured.

At the first location, the difference between these two temperatures was

at most 7 04 of the mean temperature. This maximum value occurred in

the neighborhood of Mdx/ j= 5 . As expected this tempera-

ture difference decreased with distance downstream (Fig. 9d). The runs

for lower velocities must be discarded, since Cv/R becomes appreciably

greater than 0,3 . Also, temperature measurements at shorter distances

could not be made due to the large temperature gradient in the tube-wall.

The separation point moves upstream with increasing diameter Rey-
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nolds number as expected. For Re,$ 6w17x 0 , the separation

occur w when ex - 2. 7 0 4  , and for eb a 4.3 x J it

takes place at RLe ca .3 9 104  . These values are very low com-

pared to the case of steady flow in smooth tubes (26). This probably

was due to the disturbance caused by the quick opening valve at the en-

trance of the test section.



VI. CONCLUSIONS

The problem has been solved for a step temperature change at the

entrance region of tubes. A method of successive approximations was

used. It is readily seen, from the expressions for tube-wall tempera-

ture (x, ) , fluid temperature .(rXI ) and modified Nusselt

number AIU(9, ) , that these are linear with respect to the input

step temperature. Therefore, by the use of the principle of superposi-

tion, the results can be applied to any type transient input at the

entrance of the tube.

In order to use a lengthwise one-dimensional analysis, the neces-

sary heat flux at the fluid-tube interface has been obtained as a

function of axial distance and time. If the conventional Nusselt number

is used, the resulting one-dimensional- equations become

Fluid

T ar ah c(r- ) - (65)
at ax

Tube-wall

- b4 (r-J). (66)

where 6, b are related to the geometry and thermal properties of the

fluid and tube-wall, and h is the conventional heat transfer coeffi-

cient.

Complication in the solution of above equations arises from the

coupling between them. For this reason a modified Nusselt number

NU(X,1) --- ,) based on the step-temperature input L , haskdre/D



been defined. With this definition, the above differential equations

may be written as

Fluid

.o oq(.4*)o (67)

Tube-wall

(g, o(66)
at

These equations are uncoupled and can be solved separately. The re-

quired analysis is considerably simplified in comparison to the previous

problem. Therefore, instead of the conventional Nusselt number, the

modified Nusselt number has been used throughout.

The theory presented applies to viscous oils, water and air in the

range of v/R less than 0.3, and to liquid metals when d v is

less than 0.1.



VII. RECOMMENDATIONS

Further analytical and experimental investigations are needed. At

the entrance region of tubes, when 1O - 10 the theory applies

approximately, and when "O !4 40 it gives appreciable error.

The latter may be important in nuclear metal applications. Better ap-

proximation is necessary in this range for 1(x) (Fig. 5). However,

a primary calculation indicated that even the addition of a constant to

the previous approximation results in three additional terms in the tube-

wall temperature function.

For small values of time, the first terms in each of the expansions

for C, , 2 ... are much larger than the succeeding terms. Due to the

complexity of C2  relative to I , therefore, only the first term

of 2 was evaluated, instead of obtaining the complete function as with

S, In future work, the remaining terms of C2  should be numerically

calculated by computer for some characteristic values of the Prandtl

number (7.., Z~ f, 07, v 10, 0,10) . Then the approximate form of

these results can be used in the solution of the Volterra equation (A-1OS),

giving the successive terms of the second approximations.

By the use of the present apparatus, it is difficult to obtain better

experimental results, For more points in the laminar region two methods

are suggested. First, additional temperature measurements between the

entrance and the first location may be used. However, the temperature

difference between the inner and the outer surfaces for which the present
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theory is no longer valid, increases appreciably. Secondly, the velocity

may be decreased. For this case, the entrance region defined by 0. 03

becomes very small.

The experimental work, instead of using the present quick opening

valve should be repeated with the use of another quick opening system

which results in less disturbance. Under these circumstances, for the

same diameter Reynolds number, it would be possible to delay the begin-

ning of separation.
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NOMENCLATURE

A cross-sectional area of tube,

A, instantaneous cross-sectional area of tube exit,

A' (k)th term of function defined in Appendix A,

a shown in Part VI and related to fluid geometry and physical

properties,

B8 B? functions defined in Appendix A,

h, bf,b defined in Appendix A,

b shown in Part VI and related to tube-wall geometry and physical

properties,

C torque,

C0 steady torque,

C0  specific heat of fluid at constant pressure,

Cpw specific heat of tube-wall at constant pressure,

C ,C, C defined in Appendix A,

D inside diameter of tube,

dimensionless stream function,

Fdefined in Appendix A,

FO Fourier number of fluid,

S Grashof number of fluid,

644,G functions defined in Appendix A,

S function defined in Appendix A,

7 heat transfer coefficient,

constant fluid level,
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4O modified Bessel function of the first kind, of order zero,

Bessel function of the first kind, of order zero,

J1  Bessel function of the first kind, of order one,

rfunction defined in Appendix A,

thermal conductivity of fluid,

(k)th term of series,

14 modified Bessel function of the second kind, of order zero,

Kfunction defined in Appendix A,

function defined in Appendix A,

function defined in Appendix A,

I approximated length of fluid flow before test section,

L length of test section,

dimensionless number defined in Appendix A,

NV (N)th term of series,

A/U Nusselt number based on the difference between the entrance

fluid temperature and initial tube-wall temperature,

N/ Nusselt number based on the difference between the entrance

fluid temperature and instantaneous tube-wall temperature,

1N/ Nusselt number based on the difference between the instantaneous

mean fluid temperature and the instantaneous tube-wall temperature,

pstatic pressure,

P Laplace transform variable,

P Total pressure

Pr Prandtl number of fluid,
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P4 Peclet number of fluid,

P(Dr) defined in Appendix A,

9 Laplace transform variable,

S instantan.ous heat flux at fluid-tube wall interface,

S inside diameter of tube,

outside diameter of tube,

r radial distance from tube center,

r radius of fluid stream as shown in Fig. 16,

radius of fluid stream as shown in Fig. 16,

Qe diameter Reynolds number,

4ex length Reynolds number,

S defined in Appendix D,

S curvilinear coordinate along fluid flow,

ttime

t axial conduction transient time,

t temperature transient time,

potential flow transient time,

boundary layer transient time,

& defined in part V,

S (k)th approximation of fluid temperature,

ssurface temperature,

Ar step temperature input,

U1 axial velocity in boundary layer,



V radial velocity in boundary layer,

I entrance velocity for tube flow or free stream velocity

for plate flow,

core velocity for tube flow,

V potential velocity for tube flow,

Ve exit velocity for potential flow,

Ve steady-state value of exit velocity,

X axial distance from entrance of tube or leading edge of

flat plate,

X dimensionless axial distance,

/ radial distance from plate wall,

Y
S Bessel function of the second kind, of order zero,

Z dummy variable,

Z height of potential flow,

Sthermal conductivity of fluid,

defined in Appendix A,

S defined in Appendix A,

S defined in Appendix A,

dimensionless velocity boundary layer thickness,

S defined in Appendix A,

4 (k)th approximation of tube-wall temperature,

. (k)th term of eigenvalues,
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(k)th approximation of Laplace transformed tube-wall temperature,

kinematic viscosity of fluid,

S (k)th term of Laplace transformed fluid temperature,

// (k)th approximation of Laplace and Hankel transformed fluid

temperature,

defined in Appendix B,

density of fluid,

density of tube-wall,

6 fluid-tube wall interface,

implicit function notations,

, ,., implicit function notations,

dummy variable,

dimensionless dummy variable,

S dimensionless variable defined in Appendix A,

C dimensionless variable defined in Appendix D,

4) angular velocity,

1) steady angular velocity,

Sdefined in Appendix A,

D2 defined in Appendix A,

1 defined in Appendix A,

n; defined in Appendix A.
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VIII. APPENDICES

APPENDIX A

Derivation and Integration of the Differential Equations

Consider Fig. 3 and the assumptions made in part II. Then between

the sections X and x#dX , for a tube element (a closed system) and

for a control volume of an incompressible flow, the terms of the energy

equations may be written as shown in Fig. 4.

The transient energy equation for the tube-wall expresses the fact

that the time rate of change of internal energy within the tube element

must be equal to the net rate of heat transfer (by conduction) to the

surface of the system. The transient energy equation for the flow

through the control volume states that the time rate of change of in-

ternal energy within the control volume plus the net efflux of enthalpy

is equal to the net rate of heat transfer (by conduction) from the sur-

face of the control volume.

Using the foregoing figure and definitions, the energy equations of

the fluid and tube-wall may be written in the form

Fluid

Tube-wall

- V (A.2)
where

c 2 f(A-3)

The initial and boundary conditions to be taken according to the

outline of this problem are



Initial conditions

r(r,x, O) = 0 (Ad4)

0 (x. o) - 0 (A.5)
Boundary conditions

r(r,o,f) a * (A.-)
dr(O,x,i)/Qr 0 (A. 7)
r ,,) OB(xe,#) CA-8)

Let the first and second approximations for the fluid and tube-wall

temperatures, respectively, be

r= r, 4r (A-o)

Within this assumption the first approximation of the fluid and tube-wall

temperatures T0  and ig satisfy the following partial differential

equations and the proper initial and boundary conditions:

Fluid . _..

dl = UJr , r. (A.

Tube-wall

0r x, ) = 0 (A.

o(r, ) o A A.-rTo ,) a, (A.
ar 0,

where AgOX,L) is a function to be determined and, as it will be seen

later on, for only mathematical convenience it is introduced here.

,Y)

f2)

f4)
5)

16)



Before giving the details of derivation of the differential equa-

tions and initial-boundary conditions satisfied by the second approxi-

mations of the fluid and tube-wall temperatures 7; and 8 , it may

be convenient to solve the aboe problem.

Frm the theory of Multi Laplace transforms (19), it is known that

partial differential equations in which the several independent variables

are in the domain (, -) may be converted to transform differential

equations by simultaneous Laplace transformations in these variables.

Therefore, the present problem can be considered as one of partial dif-

ferential equations of T(rX, ) and (x, ) defined in the region

0 X 9 , 0 4 CdcO ,with r as a parameter which varies

between - R and 4 . However, in the present study the most con-

venient and shortest solution, the use of one dimensional Laplace trans-

forms in the - variable and finite Hankel transforms in the . variable

are chosen.

From the definition of the Laplace transforms

p -4e6 x.& (A 1

it follows that

o (rXP) - (A.620)

d.t ar,., t  = a ,-.6p) 2,(0) (A.21)

dr-

D ax

f 00?) e adi r dT (re,xp) (A. 24)
drz d&

~__~_;~ __._______ ~1~-~---, - I-



so that multiplying both sides of equations (A-ll), (A-12), (A-15), (A-16)

and (A-17) by e , integrating with respect to t from 0 to 0 , and

using (A-13), (A-14), (A-20), (A-21), (A-22), (A-23) and (A-24) gives

1 (A.

Pdr ra
drP' R 0d o (A.

6r _ -

P X lo~p) - z Av (m /1 P)

25)

.z26)

.27)

(A- 26)

(A. )

The above equations may be put into more convenient form with the

substitition

Tp(rX,p) m

The result is

,U 9/7,dj~
ax

/~(',p) e U

; r) .0

(A 3O)

(A. J

(A,4.)

(A 55)

,~7ax,p) - .~(,P)

where (A-32) is obtained by the combination of (A-26) and (A-29).

(A.-J4)

A.- ,)

This problem, defining a new function (rP , f,P) which satisfies

(A-31), (A-33), (A-34) and

7YR,x,6 p)

=P~s__ ~ ~~__ _~

ArP W rat"

T(r Are

, (f.)



where E and p are parameters, can be solved by using the method of

separation of variables, or another application of the Laplace transforms

in the X. variable (Appendix B).

However, the use of finite Hankel transforms is most convenient. For

a radially symmetric problem, (A-34) is identically satisfied. Denoting

by A (A, XP) the finite Hankel transform of order zero of the

function Av(px p) , then

After two integrations by parts - this becomes

Consider the radial dimensionless form of (A-31) in terms of (Y)

U O e V(39)r

Multiplying (A-39) and (A-33) throughout by 4()and in-

tegrating with respect to (/R) over the range (0, ) it is found that

j (4 x, p) is determined by the solution of the first-order linear

differential equation

d /74{) 4i - ak)4 x (A.4)

with the boundary condition

where

4 or
D y k2



The solution of this differential equation is in the form

P (A42)

Inverting this equation by means of the following theorem (20)

T(rx, p) = NL (A.-5)

gives

T,(raxp) 24Ze e! Y (,OY

(A .44)

which is the first approximation of the Laplace transformed (in variable t)

fluid temperature in terms of the unknown function # (X,p) . Now, by

using (A-32) and (A-44), a Volterra integral equation of the second kind

is obtained in which A,0 Xp) is the only unknown function. This in-

tegral equation is of the form

0(X) 12eh 4. 14

&W Wkz (A. 45)
The exact solution of this equation is given in Appendix C. The solu-

tion is rather complicated and is not practical for the calculation of

second approximations. Here, an approximate method is chosen for con-

venience.



Consider the above integral equation (A-45) in the following form

(A.4)
where

e a I x-!)/D (A.47)

,le 0C AD (a4.48)
P9 kal

r (A4o)

This Volterra equation includes an ordinary convolution integral on

its right-hand side. If use is made of the fact that the Laplace trans-

form of the convolution of two functions is equal to the product of the

transforms of these functions, the problem of solving the above Volterra

equation is reduced to the problem of determining an inverse transforma-

tion.

By taking the transforms of (A-46) in the X -variable, and carry-

ing out the calculation in terms of (and ( , the

following form is obtained

Solving this equation for /i~C ji) and rearranging gives
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After an inverse transformation from p to I , this becomes

and the integration with respect to S gives

qe ) 1 ] (A.54)

P
At this stage, it is necessary to specify the functions (4

and F(, /t' . If use is made of Fig. 5, these two functions may be

approximated by the following functions

_ 42 
(A. )

X) D2 (A.56)

where

X/() - 4 K() (A-57)

- .f4O f' (DP) (A..58)

O 00176327(.DPe%* (As5)

If 4 1 , the effect of on is at

most 1.521/o, assuming this latter value when the equality holds. There-

fore,. in the approximation of i , n ) can be safely neg-

lected. For the values of /D 4 10 , the maximum effect of .2 (x)

on G4(' is 6.07', which occurs when X For that
on 677i



reason, in the following procedure a theory is developed which is based

on the assumption that when W/ /  , the terms (x) and 02)

are of negligible effect on the calculation of the tube-wall temperature.

The theory is also approximately true for the values of 10 f-

Maximum error occurs when =1 , giving about 50/0 error in

temperatures and 24098 in heat fluxes.

The Laplace transforms in the X - direction of the above two

functions may be written in the form

w(gj = (6nq')
Substituting these transformed functions into (A-53),

erv . . (A 62)
2 sI q 4

is obtained. The use of transform pair No. 803 (pp. 92) in reference (21)

results in the first approximation for the tube-wall temperature

.... - er f Iro (A.6 )

where

M = 2 ( . I (A64)

Then, inverse transformation of (A-44) and (A-57) gives the first ap-



proximation of the fluid temperature

Ad1r. [ZfV44 4(t 40 1I)J

where X/b

For the first approximation of the fluid temperature, only

A*Jk,x,) remains to be determined. Indeed, the integral involved can

be numerically calculated for different values of and AF .

However, for the second approximations of the fluid and tube-wall tem-

peratures, the explicit form of A(JkXt ,) is convenient. The expansion

of erf [ FO for small values of M cannot be used

owing to the indefinite forms of the resulting integrals. This diffi-

culty is avoided if the following expansion

2i 3

is used. This function, taking a sufficient number of terms, can be ap-

proximated by er C(z). Since the range 000 M 4il .00 in-

cludes 85% of the transient phenomena, a two point approximation

valid for this range and based on the equality of the two functions at

-r4~i~E~



If and d 8 gives a maximum error or w471 when du -2 .

If A r OO is taken as the step temperature, the discrepancy due to

the above error is 22. 8- 22 27 w/5'F.FIWith this approximation, the

error function may be written as

er'z z 4. 0f.OAAz 3d? .27f84 z 4

By using this expansion, (A-66) gives

AkOk.x. i) 14

S4A'X 4A'
A .x) ,A X e B (4) 4 4,X e a tkx)

+ o6 4 X/ 8 ,K,) X
where

b ~ ooo 6 (M/ro)4

b. .27f 4 (MrF) 3

B00,X)

kPkX)

moO
Mae#

( O (C X )
jso

z (24X)
MAO 07 (1j 7)

d ( -.
m =o j 0)

wi/ X c .

(A. -8)

L so#of n
51S) d.-

(A. 9)

(A-7)

(A. 74)

(A.72)

(A. 73)

(A 74)

(A. 75)

(A- 76)

-w63-
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Equations (A-63) and (A-65) give in final form the first approxi-

mations for the fluid and tube-wall temperatures.

The differential equations for the second approximations, T, and

4 , are obtained by the use of equations (A-1), (A-2), (A-ll) and

(A-12) which are in the form

tar a ar re r r

d v# =o (A-l)

i+ = 0 (A2)

+ r ) (A- 2)

Adding OT U- to (A-i) and subtracting (A-2) from (A-1),

the following equation is obtained

S4 ; ar Hr (A. 77)
In this differential equation, the convective terms are to be estimated

from the first approximation (- X, .)

Defining (r , X,) as

17 (A. 8)

the differential equations satisfied by the second approximations of the

temperatures, 7 and 9, may be written as follows:



"- a ex r +

ar Ir-e

7;(r x, a)
, (, 0)

ar, (a, x, )
dr

T (R,x, 1)

:0

= 0

- 0

,(x,,) 

Uvr(r x. )

O. A<-

where again A (Xi) is defined only for mathematical convenience, as

will be seen in the following procedure.

By the use of the method previously outlined in the calculation of

first approximations, that is, by first taking the Laplace transforms of

the above equations with respect to , there is obtained

p , + O = M 4 _ + 1..
dx dra r

lJ(r , .p) N O

dT(Ox,,p)
r -x

R XR, .p) =(xP) x ., ,(XP)e

eP
(A. 86)

(A-86)

(A.8)

(A.0)

d +

dB
(Cs

(A. I)

(A-80)

(A-82)

(A-84)

(A.85)

---55-



a.56*

Making use of the same transformation

(r,x,p ) 
the above equations are converted into the form

df
dx + Uf(r,x,p)

F (r, ., p)

ar

r"(R. x.p) , A,(x,p)
Equation (A-92) can also be written in the following dimensionless form

in the r. variable in terms of (VR)

Uda 40r0 + LIT(RC XP)

Denoting by T n, n x,)

zero of the function (r Xp)

IT (),x~= RI

the finite Hankel transform of order

Oih

by definition. Multiplying equations (A-94), (A-95), (A-96) and (A-97)

throughout by R 2 ( R) and integrating with respect to

over the range(, ) , it is found that 17 jO ,p) is deter-

mined by the solution of the following first-order linear differential

equation

(A.J1)

(A.2)

(A-4)

(A. 95)

(A.96)
(4.96)

(A-97)

(AJ)

XP
nl(rxp)e U

dr

p) d NOr

f z



dx (A') /W = ),,b) Axp) # Rf(A) ( xP)J(A4)dk)

(A. 99)

with the boundary condition

I(T., 1  p) - oVlJ
(A.foO)

The solution of this equation is in the form

X 4f
4.n e (A

Again inverting this equation by means of the same inversion

theorem (A-43) results in

ftr f 2A I

4(e e ()d (A. 02)
rrrlin t) va-

as the second approximation of the transformed (in time) fluid tempera-

ture in terms of the unknown function , (,p) . If use is made of (A-93)

and (A-102), there follows

. . j,, f~f 4)4 ,

* (p pA)

+. _4 1 '_IM
(A. 05)

_ _i~ __



This equation gives the second approximation of the tube-wall tempera-

ture, again in the form of a Volterra equation of the second kind. Here

'r ,P) , which is the transformed form of (A-78) may be written as

As previously indicated in part II (pp. 7), the growth of the velocity

boundary layer at the entrance region of a tube is approximated by that

for laminar flow over a flat plate. This latter problem is well-known

and, using the concept of similarity of velocity profiles, was first

solved by Blasius (18). The flat plate solution, which includes the

usual boundary layer approximations, gives

(DPO- (7,e}(?f
(0)

- - (A. 105)where

and ( Y) (A. 106)

(A. A67)
is the dimensionless stream function.

In addition to r/1 and X, another dimensionless parameter, the

Prandtl number Pr is introduced. Considering this dependence and de-

fining a new function A(X, Pr) , the above integral equation may
2

be written in the following form

%(,prPr) =t pr(X.pt-) +j ,e % p)X, p op)

(A f08)

~J~C-L I~- -I~; I-~ ---- ~----- -- ^---- - -



where

Xl
(K.p xp (X) - -e)

(A. 09)

Comparison of the integral equations (A-45) and (A-108), corres-

ponding to the first and second approximations of the transformed tube-

wall temperature, shows that both have the same kernel. Therefore, the

approximation made by (A-56) for this kernel can be used again. For the

approximation of 62(X,p,Pr) , first (A-65) is considered for the

radial and axial fluid temperature gradients. Taking the Laplace trans-

forms in time and combining the result with (A-30) gives

Now, calculating the transformed temperature gradients INO and(

from the above equation and substituting into (A-104) results in

f 4)

B 4k))e

(A- ut)

~ ii~~



where

14 / Pr) W4

0-4NJ

A k
c0 2/ff'(MFV)

C4 = a2&/s (MfFo)

C2 = I 27184 (Xre)

(A. H4)

(A- 11)

(A - 16)

In the calculation of G(X, P, Pr) , because of the complicated

form of (A-111), numerical integration is necessary. In this study the

first term of (A-ill) was taken into account. Since the first term is

proportional to M•/( while the second varies with 2 fMF !he

error made is about 10/ , for values of OMLD A2. However,

if the second approximation is assumed to be JO I/ of the tube-wall

temperature, fO 0/ error in the second approximation gives approxi-

mately 3 00 error in the final solution.

The integral equation (A-108) is linear with respect to (X, PPr).

Therefore, it may be separately solved for each term of (X,p'Pr) . If

the first two terms of this function are considered instead of first term

alone, it would be sufficient to solve the integral equation for the second

term and superimpose the solution on the solution obtained from the consi-

deration of the first term alone.

-~ -

(A, W)

r
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The first term of the second approximation of the transformed tube-

wall temperature may be obtained from the following integral equation

PA4 pJo x-(417)

where

,21(xPr)

and

Ix (f 4) -4lnX- J~
"D r)Le '4'ddJ

S4(J. ~,)
(A #8)

Pr) = 4 At/Z)* e

Pr . 4 )j

As indicated previously, the second approximations are investigated

for small values of ;F/I ()' owing to their complicated form.

These values allow the use of the first term alone, that is ( ,Pr) ,

for the second approximation of the transformed tube-wall temperature.

(A. f2a)

Then, the first term of the second approximation of the tube-wall tempera-

ture may be vritten as X 4X

O,(x.4, Pr) Moff (r4) (~I(e Pr) 8Z)ne JA)d7? )d4,'

,(A. 2 l)(A.e~)

x,pPr) = 2 &.,.
p2
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--,

has been evaluated for different

values of r/Q

values of r/R

and X

X a

9 and h

nd P'

results may be approximated by the following I

Z J,, e"J1's .,""

(DPW X/I% .pt -
Zhe

ZI

20

for different

, by high speed digital computer. The

runctions

X&/2

1-r4R e 16'K
I(P l)l2
( ),+ ,,,,

(A4. 422)

(4. 23)

where

Pr 00l 4 0 00
p(Pr) 9.J .3 .5

(4.

(A- 24)

Substituting the approximate forms given above into (A-121)

eoI 1Z (A. 125)

is obtained.

The above equation may be put into more convenient form with the

substitution

(A. -M )Y = 1-r/R

where
r-

4o(x,,.Pr)
Te

(A 
090

i+
,,/ PIR/

•()+.
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The result is

,(Pr)

Tre
a2 P(r) YJ

I6 o

x s/4A2-
_____ eV5 fnV

\(C J' Oi

where

x

dYdOE

(A. 127)

(A. M)

Integrating (A-127) by parts in the Y -variable

T1 ePr)
A Te

02 pPr)MF f
- IJP f~Y

f~X-~I3 ril

or, explicitly

X
P f rat fie',,,, .-'

d, 2 .zP(A) APX, L tJ ,er ,),"
4 re "'

- 5 ( o XY (x )
Using the convolutive property of the transform calculus and taking the

Laplace transforms of (A-130) in the X -variable, the following form is

obtained

N(qIsP)
_-r

r- (PP)X fl-(
-.s(XPrA2so (P) 0q'

e
q2

-' (1-s9xPO
-J(~~

gives

,)

(A .0

a* OR 6
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The use of transform pairs NO. 04. (pp. 92) and 0o. 60 6. (pp. 93)

in reference (21) results in the second approximation for the tube-wall

temperature

which holds for small values of ( )
Excluding nuclear metals, the terms in the brackets have negligible

effect on the second approximations.

By the use of equations (A-80) and (A-132), the following expression

for the second approximation of the modified Nusselt number is obtained

A/ (aPr) fO, eiq.. pe) 5 Pr

iT e (15Prefc1 kr

(A. 33)

M0-o

- U



APPENDIX B

Alternate Solutions of g (r,X.,

The purpose of this appendix is to give alternate solutions to

7T (rX,) by means of more familiar but longer methods.

The differential equation (A-31), assuming S instead of X ,

can be considered as a transient heat conduction equation with variable

surface temperature. When surface temperature varies with time in a

transient heat conduction problem, Duhamel's theorem (22), can be used

to reduce that problem to one of constant surface temperature.

Suppose now that the transformed temperature function (CX, P)

depending on the fixed parameters ( and P is a solution of (A-31),

(A-33), (A-34) and (A-35) in which case the surface temperature 1 0  is

a function of the parameters I and P , but not of the axial dis-

tance X . Then the function 7J (r, ) satisfies the following

equation and boundary conditions

1 , ) (n-)

Or .laxc x 1,)p) (B J

Two different methods may be used in the solution of the above boundary

value problem:



a) Separation of variables

Assuming 4

two separate problems:

i a-*
r Oedr2

Br

g(R" ,f P)

, the problem is divided into the following

(B. 5)

(B. 6)

(8.. 7)

and

dx
-

7r( 4ex. ,o) 0ar(.. .p): o

? (r, fp)

For the first problem, (B-5) has a general solution

and with (B-6) and (B-7) becomes
and with (B-6) and (B-7) becomes

i~ (r~ ~,p) = A (f. p)
For the second problem, if Use is made of the well-known methods

of separation of variables technique, a general solution of (B-8) is ob-

tained in the form/

"d' (.8- 1)

(.86)
(B- 6)

(B.S)

(a.8 -(2)

(a. 13)

3--1 1

0 Zq 0, P )

S-r e.YC ( Cra
ar2



which with (B-9), (B-10) and (B-11) gives the following solution

Threforp) 21 sol(inof ZJk J f0)P kl

Therefore, the solution of 3is in the form

zTh.i. p x 4 ,p 2[- .TO- 1 ' (8.

Before proceeding further, it may be shown that the application of

Laplace transforms in the X.variable leads to the same result.

b) The use of Laplace transforms in the X-variable

Multiplying both sides of equations (B-i), (B-3) and (B-4) by

e and integrating with respect to X from 0 to 42 , it is

found that

dr2
with

4r P ol

dr

rtl . .s.) /l0
(a.. ig)
(&f ~)

The differential equation (B-17) has a general solution in the form

W-w,. Ii)re ~ /<
rzu e

- -

(B- f6)

f6)

(a. 7)

(B- 2)

r



If use is made of (B-18) and (B-19), there follows

By the use of the following Inversion theorem for the Laplace trans-

formation (23) in the X -variable

the same result with (B-16) is obtained.

Now, according to Duhamel's theorem, the solution for J. X(r, p)

in the boundary value problem with variable surface temperature (A-31),

(A-33), (A-34) and (A-35) is given in terms of the solution 7(r, 1.,P )

of the boundary value problem with constant surface temperature (B-1),

(B-2), (B-3) and (B-4) by the formula

TT,(rxx p) = -x) dF (B-25)

The use of the inversion theorem (A-43) results in the following iden-

tity for the transform of unity

2 (24)

Substituting (B-16) into (B-23) and then using (B-24) gives, finally

7 ( 2 1iL e.A kw / 2()i idee /TOa ( (p)d e
P kuk DPh t(B- 25)

which is identical with (A-44).



APPENDIX C

The Exact Solution of /8 (X,p)

Equation (A-45) may be written as

-' CO 2 A

The second term of the right hand side is an ordinary convolution in-

tegral, and therefore the above integral equation may be solved by using

Laplace transforms technique (24). However, for the present case, the

problem is solved by a method of successive approximations.

The analysis is considerably reduced if an integral operator Xx()

defined by the equation
X

is introduced. Then the solution of (A-45) can be expressed in terms

of the following finite series
N4

jhxep) I (K
AdTe CIIfb

where

, (x- F

X ,) K(=e) (, z ,

.._ ~~ _ _ __



It remains to determine the conditions under which the last term

of the above series converges. However, it may be formally proved (24)

that the series (C-2) converges to a unique and continuous solution of

the Volterra equation (A-45) for all values of - , in

any interval (a, b) in which (X, ) is continuous.

Inverse transformation of the above equation from 0 to I and

use of (A-17) gives the zeroth approximation of the wall temperature,

which may be written in the following form

-, N )
_ 4 _ A (%41

_e e 4 _____

(c_4)

Equation (C-2) may be used also to obtain the zeroth approximation

of the fluid temperature. Taking the value of A 0 (,p) from (C-2)

and substituting into the equation (A-44) results in

/ (r,.p) €4P .4, Nl A)

A k - kf ItJ MC IP

(C.5)
Referring to the transformation (A-30) gives the zeroth approximation

of the fluid temperature, Laplace transformed in variable t . Then, by

an inverse transformation, the zeroth approximation of the fluid temper-

ature may be written as



22Leof L
I:.1

2(4)4.2
8PZ I2; 1A
., )/' )(L----.

a t( c. s)
The following recurrence formula may be given if this is to be

used for digital computation.

OD go*Z

jaV IZI

i --ja

2

Ilq '

I

I

I

: _s -

Al 14+f A06(XX ,,t. 0. .o k ", Ij - .X.
j , ,

-2j.-q

,and

e '

e
(C-.)

(C.P)

are taken by definition.

Care must be given to the indefinite forms of the above recurrence

formula, determining each indefinite case separately by the well-known

methods for these forms.

ATre

Xxcij)

whoere N A I

x (i)

- - -i~~- ~ - - - -1 , , 0 _ _ _ - _- - WMM I I

N 741X (ijo kj,..)
X l"k

4MM-WMM2

S4

2

3Xc O.Pj (,"V (c.7)
no 2 4r Ii



APPENDIX D

The Physical Problem

The present transient theory, assuming a time independent, devel-

oping velocity field, was introduced by a step temperature change at

the entrance region of the tube. However, if a fluid at rest, and in

the test section having a temperature equal to the tube-wall, is sub-

jected to a sudden pressure difference, and the new fluid enters the

test section at a temperature LiT above the tube-wall temperature,

both temperature and velocity transients are introduced. The tempera-

ture transient depends primarily on the heat capacity of tube-wall

material.- M -1 - Li l.JL , o

The purpose of this appendix is to derive some approximate for-

mulas which make possible a comparison of the temperature and velocity

transients. Thus, it would be possible to find cases in which

tr (temperature transient time))) 4y(velocity transient time). For

these cases, the velocity transient effect on the temperature transient

phenomena may be neglected.

Consider Fig. 14 with a constant-level tank connected to a closed-

end tube having a small length-to-diameter ratio. The end of the tube

is now opened in a time-specified manner, and the resulting velocity

transient is desired.

__ ;_i~ __



For the transient, incompressible, potential flow, for a control

volume between S and S4ds , the terms of the continuity and

momentum equations may be written as shown in Fig. 13.

The transient continuity equation for an incompressible flow through

a control volume states that the r-t efflux of mass from the control

surface is equal to zero. The transient momentum equation in stream-

line direction expresses the fact that the resultant of all external

forces must be equal to the time rate of change of momentum within the

control volume plus the net e ux of momentum from the control surface.

Using these fundamental laws and Fig. 13, the combination of the

continuity and momentum equations may be written in the form

where ( )

If this equation is integrated along a streamline between the points

I and 2 , the result obtaine is

2

P2 P _ds .(D 0)

With incompressibility, the con~pnuity equation may be written also in

the form

A.V v Ae e V(D4)
Differentiating with respect to time and rearranging gives

___ _~_ __



For simplicity, sudden opening of the valve is assumed (Fig. 15).

=.. 0 r, whn 1 - 0

which reduces (D-5) to

Substituting (D-6) into (D-3) and considering Ve V ( () results

in

di

where 2

~dsi (Da.e)

From the definition of (D-2)

e 2
Since

P2 w , and for the steady state case

Ve * f h (2. )

(D-9) may be written

- - - (D.)2
Combining (D-7) with (D-ll) and integrating gives

or

Ve
Yt lo * €  " (D.1S - V

as 14-



In the calculation of S , the actual stream tube may be approx-

imated by the straight tube (Fig. 16). Then substituting

Ae r _o Pg ( d)

and

ds =& dx (D. s)
into (D-8) results in

If a characteristic time for the potential velocity transient is

defined as that time for which .' . , then from (D-10),

(D-13) and (D-16)

(iv)p 2 00
is obtained.

Now, if it were possible to find cases for which (6v)b  (i/)o
where (Vy) is the characteristic time for the boundary layer, the

potential transient effect could be neglected relative to the boundary

layer transient effect. In this way, the problem would be considerably

simplified. For the flat plate, the problem was solved by Blasius (18).

Since the velocity profile of the present problem is taken to be the

same as the flat plate velocity, the solution is

where

4 (. b



Defining a transient time corresponding to Lu(x., oI/ . ,

= 0.9 is found. If use is made of AP r0. 3 ,

(/ 4v)b D / 4 (A 20)

results for the boundary layer transient time.

A solution to the temperature transient may be found from the first

approximation of the present theory. If a transient time is defined

according to .8 from F . , from Fig. 6, D results.

Thus

(LOf

is obtained.

_ __ ___~L_ _ ___



APPENDIX E

The Quasi-steady Theory

To investigate the validity of well-known quasi-steady theories, a

simple quasi-steady analysis based on a constant surface temperature is

given. For simplicity, only first approximations of the quasi-steady

theory are compared to the more exact theory of this report.

As previously formulated (A-12), the transient energy equation of

the tube-wall is

_C -(O (A12)

in which an infinite conductivity has been assumed in the radial direc-

tion.

The basic assumption of the quasi-steady theory is to take a

steady temperature distribution on the fluid-solid interface and to

solve the fluid temperature problem in terms of this steady interface

temperature. In the final solution, the interface temperature is as-

sumed to be dependent on time, and the fluid temperature gradient found

in this way is substituted into (A-12). Then an integration in time

gives the approximate, unsteady tube-wall temperature.

For the first approximation of the fluid temperature, the differ-

ential equation resulting from the first law of thermodynamics (energy

equation) and the boundary conditions to be satisfied are:

|



dx o 2  4ar

To (r, o)=e (. 2)

Vk(, ) - (.)

This problem is well-known and was first solved by Graetz (13). One

of the convenient ways of solving the above differential equation with

the proper boundary conditions is the use of finite Hankel transforms in

the radial direction, which are frequently employed in this study.

The resulting solution is

Now if the fluid-solid interface temperature is assumed to depend

on the axial distance and time, i.e., -r $T) , the above equa-

tion may be written as

Calculating the fluid temperature gradient on the fluid-solid in-

terface from (E-6) and substituting into (A-12) results in

B h eo h sme apx ao e ) o (E 7)

By the use of the same approximation (Fig. 5) for the sum of the expon-

I __~_ _



-I

ential function

I K ,d19 I=
1x~bV7r f" Z Bo

is obtained. The initial condition is

The solution of this equation may be obtained in the form

srTe

2 M F0
S--P4p (E-19)

where ATre re-". '

To calculate the heat flux from the fluid-solid interface, again

(A-12) may be used but in the following form

Combining (E-10) and (E-11), and rearranging gives

d)

2 Mt7-0

Ny~w~t) V. D) Vz/
Nu2c,6): I

(E '12)

The functions (E-10) and (E-12) are given in Figures 6 and 8.

(E. )

_ "~C-~-31L - ---

"k 94~
e 49

q(,,I) x -k.2&)

/ ,9I-
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FIG. I

a) General

Driven element
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b) Characteristics
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Tube element

pu2mtrdr.hdt

(a)

pv2rnrdx.hdt +

8 (pv2nrdx.h) drdf
Vr

pu2 trdr.hdt +

. (pu 2nrdr. h )dxdt

pv2Krdx.h dt

Ix+dx
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(b)

I I

pnr(Ro R2 )dx.e. (at time t)
p n(RF R?) d x . +(R2 R2)d + (at time t+dt)
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(a) Fluxes of enthalpy through control surfaces,
(b) Heat conduction through tube element and control surfaces,
(c) Time rate of change of internal energy within tube element

and fluid control volume.

FIG. 4

II--~
i

_ I _~~ _ __



-84-

106

104

102

10

I

i0O"

SI I I 1\[11 i 1 I i l i

- Viscous oils
10- 2

I0-6 10'

5574 x 102 -
5576 x 102 (0.04%)

1 7632.7
7632.7 (0.00%)

558.166
57.595 (-0.10%)Ik

k i fl I - - iI~ IX H..

44.608 (0.58I e(

17 9054
13.853 17.6327 (- .5216)
14. 106 ' (1.83 %)

S4.20558--
4.46077 (6.07%

1.14304
1:41062 (23.40

Liquid metals
I I I I I I

WV lo 7 T

I I I Il I

10-4

rrr~i~irr~~rI~r ri

I I I I I I I i 71 -7i7r1 \ A I I I I

10-3
x/D
Pd

10-2 10-

FIG. 5

, , , , , ,

i !H ,, , , I I III i q lJ

• I I I I II I I I i i 1 ! I I I 1 I ; : I i I I I I

I I I I1 I 11 1 1 ! 1

I
r

: : : : ; ; ; : : : :- I I

' '""" "'"'"' '"'~" ' ' ""'
I

I
I

A i'



I.0

0.0 0.2 0.4 0.6 0.8 1.0
MFo
Ix/D 1/2

Pe/

FIG. 6

.- r e I III I r- •A,

8 -

6 - -- Present theory
Or _ -Quasisteady theory

O

4 _ t

2 ZVI

0 - -j-

0.

0.

0o.

0.

0.



-86-

MFo1/2

Fig.7
1.0 ......

-Pr= 0 (First approximation)
-l -Pr = 0.01

0 - / -Pr = 0.7
-- Pr= I

Pr 100

0.2

00
0.6 0.8

MFo
F 1/2

Fig.9a

I-

_ __ ___~~~_ ~

O.0



1.0

0.2 0.4 0.6 0.8 i.
MFo
(7 x- 1/2

1.2 1.4 1.6

FIG. 8

z

I®
N 0.

0.

0.'

0.'
0.0 1.8

2- Present theory
8

Quasi.steady theory

6

..

0.



D8 -4-

Olb -- 4/ O'

d b b
l= --- - --R 01' X

-,----1E

oC --- -- -I- 0 ;

0 0 00= / .
IT !, -NV , -9,4



-89-

8o

/' .Dusinberre 27)
4 - 1" 0- F irstapp. P r

0 P

2// Pr = 5.76
Re%= 4.93xlO

3

3-- Fo
Fig.8b

6xIO-3

-lo
0)'V.

0.

0.

0.

Q

0"

.0

'V 0



-90-

1010 3

102

10-1 o \x/\/2\ \ )

'-" XI1/2

FIG.9



S-

-91-

I.U

0.*;t-

0.6 -

x=15 3

/x-22/ x x 4 -

0.4I Sr-- Inside Outside N2
--x=5" 0 S I

,,- -- ,I , A 2
- - - - -- x=15 v V 3

_-x=22 x x 4
- - - - - - - - - -I I I I I I I I

0.0

1-

0.6 MFo 0.8

Fig/D.92

0.6 MFo 0.8 1.0

Pig.9c
Fig.9c



Flow direction - Experiment
- Cooling

Water
Drain supplyl

SCHEMATIC DIAGRAM

Water
supply

SDrain

--~- II L _I I I..L~L~ --

FIG. 10



-93-

- 1/2" Copper pipe
(0.625 I.D.,0.840 O.D.)

Not to scale

FIG.II BOUNDARY LAYER SUCTION SLOT



Not to scale

Section A.A
-1/2" Copper pipe (0.625 I.D.,0.840 O.D.)

A

i i II I -

THERMOCOUPLE LOCATIONSFIG.12



-

-95-

I. Continuity
pAV+ ~ (pAV) ds

s+ds
A+dA

pAV

A+S

2. Momentum in
a) Forces

streamline direction

p A + 8 (pA) d s

s + ds
A+dA

s

b) Momentum
Momentum

fluxes +
change

pV + (pAV2)ds
as

-s+ds
A+dA

pAVds
pAVds

(at time t)
+ -(pAVd s)

(at time t+dt)

(dt is common for all terms)

FIG. 13

pgAds

+s



A

2

FIG. 14

As

o t

FIG. 15

Ao rV,A

FIG. 16

-_


