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ABSTRACT

Title: Convective Instability in a Layer of Radiating Fluid
Author: John C. Gille

Submitted to the Department of Geology and Geophysics on February
28, 1964 in partial fulfillment of the requirements for the degree
of Ph.D.

The Rayleigh theory of convective instability applies to a medium in which
heat is diffusively transferred. Recent work is reviewed which predicts added
stabilization in a medium capable of both diffusive and gray radiative transfer.

A thermal and interferometric experimental apparatus capable of verifying
these predictions is described. After calculating the radiative properties of
ammonia and the physical properties of air and ammonia, it is shown that the
temperature distribution and heat flux can be calculated for a medium in which
the absorption coefficient is frequency dependent (nom—gray), as is the case
for ammonia. Experimental observations of radiative—-diffusive temperature
distributions, obtained for the first time with the interferometer, show
striking agreement with calculated values. The change of heat flux with optical
depth (gray medium) or pressure (non—-gray medium) are calculated for the first
time. The observed ammonia results agree satisfactorily with the calculated
values.

The radiative stabilization is divided into one part due to the concen-
tration of the gradient near the boundary, and another due to radiative dissi-
pation of perturbations. The former is calculated by techniques due to
Chandrasekhar, the later is shown closely equivalent to the results of a
dimensional argument which predicts stabilizations of one plus the ratio of
radiative to diffusive dissipation times. Non-gray radiative and diffusive
dissipation times are calculated, put into the dimensional statement, and the
total stabilization calculated as the product of gradient and dissipative
stabilization.

Experimentally the Rayleigh numbers were changed by changing X and .
through the pressure dependence of the density. The measurement of critical
Rayleigh numbers in air by locating the change of effective conductivity gave
a mean value for air Ra, = 1786 + 16, This is the first accurate determination
of Ra, in a gas. Comparison with measured Rayleigh numbers in ammonia gave
observed stabilizations which agree well with those calculated.

The findings are summarized and future problems suggested. The radiative
data is thought to have wide applicability in physical problems.

Thesis Supervisor: Richard M. Goody
Title: Professor of Meteorology, Harvard University
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PREFACE

Since this thesis contains some review material and other
relgvant material which the author chose to include for con-
venience, it seems desirable to state clearly what the author's
contribution is.

iie 1s responsible for the design, construction and oper-
ation of the apparatus described in Chapter 2. It was his dec-
ision to use ammonia, and his method of using the spectroscopic
data and theory to calculate the several emissivities and the
comparison with Port in Chapter 3. He also devised the numerical
integrals to obtain’E(n) in 6.4.5. The necessity for very acc-
urate physical properties and their temperature depencences were
recognized by him, and the calculation of ammonia properties
in 4.3 is his.

The working out of the theory of interferometric temperature
measurement in 2.11, showing the refraction is not important
(2.8), and the necessity and calculation of the corrections to
the e. quations for deviations from the perfect gas laws (2.12)

were first done by the author.



One of the prime results of the thesis is the measurement
of the radiative-diffusive temperature profile with an accuracy
of 0.02°C. This measurement and its data reduction (5.4) is due
to the author.

Another major result is the measurement of the critical
Rayleigh number in air (6.6.1). A third is the measurement of
the critical Rayleigh number in ammonia (6.6.2) and thus the
stabilization(6.7). These are due to the author.

Theoretically, the several calculations of the stabilization
due to the gradient (6.3) are the author's work, as is the sugg-
estion of separating the calculation of the stabilization due
to gradient and dissipation (6.2). In addition, in (6.4) he
altered Spiegel's dimensional argument, showed the existencé of
another term in the non-gray temperature perturbation equatioms,
and provided the interpretation of q.

These are not exclusive, of course. Suggestions of others
have been incorporated in these sections, and he has contributed
in other areas.

The total impact of his work in this thesis is to verify
Goody's theory of radiative stabilization for the specific

case of narrow layers of ammonia.



CHAPTER 1
THE NATURE AND HISTORY OF THE PROBLEM

1.1 The Problem of leigh Convection and Radiative fer

The convection problem named for Rayleigh concerns thermally driven
motions in a thermally conducting, viseid fluid between two flat, infinite,
horizontal surfaces maintained at uniform temperatures with a temperature
difference between them, The temperature difference creates density
differences which can become unstable in the gravitational field and
initiate motions within the fluid if the temperature difference is in
the right direction and exceeds a certain finite amount,

This can be expressed by saying that the Rayleigh number, Ra ,
a dimensionless combination of the temperature difference, fluid proper-
ties, and layer thickness, must exceed a certain value, Ra(a) , which
depends on a , ‘the dimensionless horizontal wave number of the disturb-
ance, On inecreasing Ra , the first observed motion will be of that a
for which Ra(a) is a minimum , Ra.c R

Goody[1956] treated the problem of Rayleigh convection in which
the temperature equation had terms for both diffusion and gray (frequency
independent) radiative transfer, He solved for the two extremes of
optically very thin and very thick layers, and extrapolated to the region
of intermediate thickness for several ratics of radiative to diffusive
conductivity, Radiation was found to have a stabilizing effect (i.e,,
raising Ra ) in all siﬁuations. In concluding that paper he suggested

that it might be possible to investigate this problem in the laboratory
with a substance like water vapor,

-1-
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This work is then concerned with the extension of the theory to
the prediction and measurement of stabilization due to radiation in the
l‘boratoryo

1,2 Convection in Natur. Oce dia s

Thermal convection 13 a common and widely occnrr;i.ng phenomenon, It
is known or thought to occur in the interiors, oceans, and atmospheres of
planets, and in the bodies of stars, Certainly in the latter two
radiative transfer is important,

The inclusion of radiative transfer introduces two new dimension-
less quantities, which are f s the ratio of radiative to diffusive
conductivity, and T , the optical depth of a layer, In Table l-l
some typical values of length scales , ]C, and T are given for the
sun, earth's atmosphere, and present laboratory investigation, The
table further contains tR(l/} ) , the time for radiative dissipation
of a sinusoidal temperature disturbance of wave number £ -1 . This
can be compared with the time scales of hydrodynamic motions to give an
indication of the importance of radiative transfer on fluid motions,
Also included are tR(oo) , the minimum radiative dissipation time,
and the expected critical Rayleigh number, Rac s over the critical
Rayleigh number for diffusion alone, Rac(diff ) . This last is the
measure of radiative stabilization, or increase of stabilization over
that of the standard Rayleigh problem, Data on the sun are from
Goody [1956] and Spiegel [1960] , that on the atmosphere from Goody
[1964]. |



Table 1l=l1

COMPARISON OF RADIATIVE PARAMETERS IN NATURE
AND THE IABORATORY

Quantity Sun Af.‘z;:;hg}':re Laboratory
Length(%) 500 km 10 km 2 -5 cm,
)C 10%2 9.3 x 10 6.3 - 25

T 1.1 0,2 0,05 - 0,1
tR(I/[) 2.4 x 10% sec. 1.4 x 10 sec, 7 = 10 sec,
tR(oo) 2 sec, 1,2 x 10° sec, 1 sec,

Z: T 1012 5.2 x 10° 0-2.1

It should be remarked that tR is a strong function of length
scale, as are X and Rac[B.a J(diff) for the atmosphere and the labora-
tory, where T is a weak function of length, In the sun f is a constant
and T is linear in length, because the sun is much more nearly a gray
nmedium,

The quantity BRa O/Rac(diff ) is the one with which this investigation
will deal primarily, In the atmosphere, as Goody remarks, the Rayleigh
number can be many orders of magnitude larger than the stabilization of
105 , 8o that the radiative effect on the onset of comvection is not
immediately applicable, However, it is in itself an interesting and
challenging problem that can be expected to offer insight into the actual



structure of the atmosphere, In addition, Malkus [1954b] has a theory of
turbulence based on the eigenmodes of the stability problem, For an
understanding at very large Rayleigh numbers in this view, an under-
standing of the stability problem with radiation is necessary, Moreover,
the growth rates and spectrum of the eddy sizes may be expected to be
strongly influenced by radiative transfer,

In an astrophysical context, Spiegel [1960] remarks that the degree
of instability must in some way determine the importance of the convective
zones in certain stellsr classes, The theory thus has applicability not
so much in indicating stability or instability (although he does this
for a BO star), but in measuring the degree of instability, The same
remarks on the modifiecation of the turbulent field by radiation that
applied to the planetary atmosphere applies in astrophysies also,

As listed in Table l-l1, the maximum stabilization predicted in the
laboratory is 2,1 , not large compared to natural stabilizations because
of scale differences, but large enough to encourage an experimental
attempt to demonstrate the effect and compare it with theory,

1,3 Scope of the Present Investigation
This investigation will attempt to predict and measure the Rayleigh

number in a radiating fluid at which convection begins, This is composed
of several problems, which are:
1) Extension of the theory to a non-gray medium,
2) Extension of the theory to a variable gradient between rigid
boundaries,
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3) Obtaining complete radiative and physical data for the radiating
material and for a non-radiating material to be a control,

L) solution of the zeroth order field (the steady state) in the
radiating and non-radiating media, This means not only tempera-
ture distribution, but heat fluxes as well,

5) Measurement with as great accuracy as possible of the initial
static state to verify the validity of the solutions of (&),

6) Measurement of the critical Rayleigh number in a non-radiating
and a radiatifxg medium under similar conditions, and comparison

of these measurements,

For this investigation air has been chosen for the non-radiating
fluid and ammonia for the radiating fluid,

The choice of ammonia over mt.er vapor was dictated by two considera-
tions, The first is that it appears to have a higher emissivity and effective
absorption coefficient in laboratory conditions than water vapor, The
second reason is that it is not subject to the vapor pressure limitations
at room temperature that water vapor is,

molecutes  lamgedipole moment and
The spectra are similar in that bothpahave,small moments of inertia,

which give them extensive rotation bands, The latter fact makes them

effective in transferring appreciable amounts of energy,

1.4 Organization of the Thesis
The remainder of Chapter 1 will be devoted to a survey of the history

of theoretical and experimental investigations of convection and a mathe-
matrical look at the most pertinent theoretical papers, those of Goody [1956]
and Spiegel [1960].

The apparatus for making thermal and interferometric measurements ars
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described in Chapter 2, with the theory of interferometric measurements,

The radiative properties of ammonia in forms applicable later are
calculated in Chapter 3 from spectroscopic and total emissivity data.

The physical properties of air and ammonia and their temperature
variations are calculated in Chapter 4,

The equations for the static state distribution of temperature
and heat flux in a non-gray gas are derived, solved, and compared with
experiment in Chapter 5,

The problem of predicting radiative stabilization is broken into
the two problems of determining gradient stabilization and heating rate

stabilization in Chapter 6, The gradient stabilization, S is cal-

B b
culated by a technique formulated by Chandrasekhar, and the heating rate
stabilization SH is shown to be given by a dimensional argument., The

ratio of diffusive to radiative time constants is calculated and inserted

to give numerical values for S The taking and reduction of the data

g
for air and ammonia that leads to the determination of eritical Rayleigh
numbers is then described, The results for alir are discussed, and the
comparison with ammonia results give observed stabilizations, These
are compared with SB . SH and found to give good agreement,

In Chapter 7 the overall resulis of the investigation are presented

and some future problems suggested,

1.5 An Historical Survey

1.5,1 A_History of Theoretical Development
The problem was first discussed by Rayleigh [1916] to explain

experiments by Benard [1901], Pellew and Southwell [1940] completed

theoretical work on the onset problem with constant coefficients by
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demonstrating the principle of exchange of stabilities and finding a

variational principle for evaluating the critical Rayleigh number, The
exchange of stabilities says that if we insert a time dependence for our
(or+ ioy t ,

solution in the equations of motion of form e for O >0,

it can be shown that =0 ., This means that no instability that grows

c.
i
can be oscillatory, and that we can solve for the conditions of instability

by putting or=ci=0 .

Doing this leads to a sixth order differential equation involving
Ra , the Rayleigh number (see below) , as a parameter, It is an eigen-
value equation, in which only certain values of Ra are allowed, The
first allowed value, Rac s is the critical Rayleigh nmumber; for Ra< Rac
there is no fluid motion even though an adverse density gradient may
exist, while for Ra~> Ra.c motion is allowed, An exposition of the
stability theory and its modern formulation is given by Chandresekhar [1961],
who also summarizes the experimental findings,

The theoretical inclusion of radiative transfer was first performed
by Goody [1956], who considered a medium in which absorption is independent
of frequency -- what is termed a gray medium, He turned the integral form
of the equation for radiative heating into differential forms for two
limiting cases -- those of optically thick and optically thin layers --
which he used to extend the Pellew and Southwell treatment., He also solved
the equations for radiative flux by means of the Eddington approximation,
in closed form to obtain the actual gradiemt B, relative to the mean
gradient B . The ratio B/§ is a coefficient in the equations which

provides additional stabilization, Even with this non-constant coefficient



~8~

Goody found a variational principle for free boundaries, From critical
Rayleigh numbers for the two limiting cases he was able to extrapolate to
cover the region of intermediate opacity.

A complement was provided by the work of Spiegel [1958, 1960], who
started with the three-dimensional integral form for the equation of
radiative heating in a gray medium, integrated out the horizontal integrals,
and arrived at an integral over fluid depth, depending on the horizontal
wave number, for the heating rate, He was able to show that if B = é-
(applicable to the stellar interiors he was considering), then the exchange
of stabilities holds, He also found a variational principle for general
B/B for rigid boundary conditions, but solved for B =B and two trial
functions for the temperature © , These showed good agreement with
Goody's results (allowing for different boundary conditions), except for
one region where the difference was ascribed to the effect of the gradient,

The work of Goody and Spiegel will be outlined in mathematical
detail below,

1.5.2 Experimental Investigations of Convection
The experiments on convection in the 1930's were aimed for the most

part at discovering whether there was a critiecal point or not, i.,e., a
critical Rayleigh number below which convection did not occur even if an
adverse density gradient existed, In this class is the work of Schmidt
and Milverton [1935] and the corroborating work of Schmidt and Saunders
[1938]. More recently have bean careful experiments by Malkus [1954a]
and those of Silveston [1958], which are cited by Chandrasekhar [1961],
In Silvqston's article there is an extensive bibliography of experimental



convective work, The last two investigators have worked with liquids in
making accuvate determinations of the critical Rayleigh number, which was
found to agree very closely with the theoretical value of 1708,

In the case of gases, no such accurate determination has been made,
Chandra [1938] looked for the cessation of motion in air, as indicated by
a tracer of cigarette smoke, when the apparatus was allowed to cool off
through the eritical Rayleigh number, He used layer thicknesses from
4 to 16 mm, , and a graphical and tabular presentation of his data
suggests errors of perhaps 25 percent, He is not explicit as to his
values for the properties of air, The presence of the cigarette smoke
also exerts some effect, which he made no attempt to assess,

Schmidt and Saunders [1938] used an optical method that showed by
changes in optical density the onset of convection, This indicated a
value which they state as Rac Jjust under 2000 , Again, they do not
state what values of the properties they have used,

Benard and Avsec [1938] did experiments on air with tobacco smoke
as a tracer and observed the onset of convection in layers between 1 and
5 em, thick, Their results lie nearly exactly in the middle, between the
free-free and rigid-rigid boundary theoretical results, which is perhaps
due to the use of a poorly conducting glass plate as the upper boundary
of the convecting region,

Sutton [1951] reports unpublished work of Dassanayake on 002 s in
which he used much the same apparatus and method as Chandra [1938], This
indicated a mean value for Rac observed of 0,978 Rac theoretical, with

an r.m,s, deviation of 7 percent, He did not state his physical parameters,



The most recent previous observations seem to be those of De Graaf
and Van der Held [1953], which used both the previous methods and a third,
the change in the heat transfer with convective onset,

Using the optical method, they corroborated Schmidt and Saunders
[1938] values of Racrv 2000 . Their smoke measurements also indicated a
value of Ra = 2000 . Their heat transfer measurements indicated a change
a RachlerO . They do not give their values for the air properties either,

Thus, the Rayleigh théory for liquids had been established in detail,
but only in its broad outlines for gases, Aside from experimental diffi-
culties is the possibility that uncertainties in the values of the physical
properties of gases, especially conductivity and viscosity, made precise

assigmment of Rayleigh numbers impossible,

1,6 Convective Onset in a Gray Absorbing Medium
This is a brief outline of the treatments of Goody[1956] and Spiegel

[1960]. The following symbols will be used in all subsequent sections:

7
V = kinematic viscosity

H

viscosity

g = gravitational acceleration

= rectangular coordinates (z vertical)

al
-
o
-
©

I

u,v,w = velocities in rectangular coordinates
L
V’“— J - 3& -+ al = V&-#- ——i
T 9x* dy* oz ' d 2+

© = temperature
90 = temperature in the static state
or = 6-90 = temperature fluctuation from the initial static state



=
i}

rate of radiative heating/vol,

H = rate of radiative heating in the static state/vol,

m
-

#
o

]
oﬂ:'c
n

fluctuations of radiative heating from the static
state/vol,

K = thermal conductivity

X =K/ pey, = thermometric diffusivity
p = fluid density/vol,
cp,v = specific heats per unit mass

k = absorption coefficient (gray)

The linearized equation governing heat transfer by fluid motion in

a steady state was given by Pellew and Southwell [1940]
<+ ol /
-~y Vw =«99V 8 (1.1)

Although they made use of the fact that without radiative transfer,
the temperature gradient is almost constant, the same result can be ob-
tained if B is allowed to vary with gz

The steady state temperature distribution is given by

H i =8
W E Rer T P Ve (1.2)

when the fluid is in motion, and

H, K 2
= e + e \% = (1.3)

o

in the initial static state,



Temperature is assumed constant over the upper and lower boundaries,
and therefore Ho and 60 are functions of 2z only, The vector flux
of radiative energy in the initial static state will also be in the =z

direction, and a function only of z , If F 2 is this flux, then
H, = — _c_J_f_;_ (1,4)

and (1,3) may be integrated to

Fi "1K/3 = F.r (C_an;'l'.)

Combining (1.2) and (1,3),

_ vie’ (1.5)
wps = T +K/np

Following Pellew and Southwell, assume that w and ©' are

separable functions of x, y, and 2z , and that

a a’
The = - %

w (1.6)

where h is the distance between the upper and lower surfaces and a is

a characteristic number, Also let

I _ (i _ _I__ Qa. _ DGL
- h :L) ) RS -
so that
v¥n = L (Da'-— &l) I (1.7)
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Eliminating ©' between (1,1) and (1,5) with the aid of (1.,7)

leads to
3
-/
a Vv | Ku (D:"-aa')
—_—w /G - - - v = w  (1.8)
h rLee 4 PGk
Still paralleling the conventional (non-radiative) Rayleigh
problem, we will look for values of the Rayleigh number Ra
o /3 h
Cc
Ro.r-—-%/s/o? (1.9)
Ky

at which there is marginal stability, In general, Ra will be a function
of s.z s and the least stable mode will correspond to the value of az
for which Ra is a minimum,

The crux of the problem is the evai.uation of Vlz H* , This
Goody [1956] did by taking limiting forms of the equation of transfer

dT _ - T /=
= k [B I (s )] (1.10)
The radiative heating rate is
H = - f.é—I- duw (1.11)
ds

where the integral is over a solid angle of 4 m , Since the Planck
funetion is isotropic,

H;-wh6+\ef'-"<§)=‘w (1.12)
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in which the first term represents local cooling by heat emission and the
second absorption from other regions of the fluid and the boundaries, The
mean free path of the radiation is of the order k™- , and if this is
mach greater than the cell dimension, h/a , the radiation will not show
much divergence over a distance comparable to the cell dimension, and the

variability of H will be due to the variability of B . Hence
2 & !
V7R = - 47k V8 (1.13)

This is the transparent approximation, h2k2< <a,
Linearizing the Planck function,

98 _ 4T o298 . o 99
Ox M e Ox R 3% (2.14)
or, by (1.1),
\7l"~H’ 3 _q..n.hq_v“z*e' = —T-T-:-(-%-@'—’-’— v w (1.15)

Conversely, for large k (1.10) may be formally solved to yield

S
T(s) = e'hsflaef'rﬁ (@)da (1.16)
CL

where q remains to be determined from the boundary conditions, These

will have an appreciable effect only for distances less than KL

from
the boundary, Away from the boundary Goody neglects boundary contributions
and after some manipulation finds
2, ! Hr Qv
T =

)
\ 3'2«0(3, V w (1.17)



This is the opaque approximaticn, kzh2 > a? .
If the quantity f is defined as the ratio of the Eddington
radiative conductivity to the diffusive conductivity,

- L A
F o= Ak K

equation (1,8) can now be rewritten

o = ,
F\a.-:—:_— = - o.&a,) [(DA"'O:L> -3 ‘3*5135]“’ ) (1.18)
KEh (L a™

L _ )3 2
_(o — ) (V+ K)w KEh*>> ™ (1.19)
where the first corresponds to an optically thin layer, the second to
an optiecally thick one,

The form of (1.18) and (1.19) illustrates the fact that radiation
not only affects Ra by altering the transfer of energy, but also by
changing the initial mean temperature field, B .

This he calculated from the equation of transfer and the Milne-
Eddington approximation for black boundaries,

If the right side of (1,18) or (1.19) is considered as an operator
Q on w, it may be shown that for free boundaries, w = D% =@+ =0 ,
a variational principle is applicable, Consider the expression

l/;_,
[ UJ/Q_(LO') ds
- =7

/ |

Re.

= Y (1.20)
/3
f u’-Z:" w'ds
_.l/

<
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in which w*' is a trial function which satisfies the boundary conditions,
If w' contains an adjustable parameter, the value of Ra' , minimized
with respect to this parameter, will be the best value of Ra o obtainable
with this form of trial function and cannot be less than Ra o ¢ Its value
lies in the fact that if we guess a function w' that differs from the
true function w by a small quantity € , the value of Ra ' that we
calculate differs from the true value of Ra o by terms of order & 2 o
Goody made this caloulation for w' = sinw®{[+ 1/2) , the solu-
tion of the conventional problem, and found R* lowest for n=1, The
resulting expression must now be minimized with respect to cell size, a .

It is found that &2 = n°

/2 in the opaque case (as in the conventional
case), and m°/2 ¢ 8% n° in the transparent case, indicating & tendency
foi' cell size to decrease in more transparent situations,

Values of Ra o computed in this way are shown in Fig, lel, taken
from Goody, The dashed lines are an interpolation over the range where
neither approximation is valid, The chain lines do not concern us here,

Spiegel obtained rigorous results for general k by the use of
the operator ( _ ’)

-k (F=-r
AF—-F')= ke - S(F-T-") (1.21)

4T (F-F/y*

One can then write
W4 = wTRA[SE R (F-F )T

where the integral is over the whole fluid, which is infinite,
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Inserting a horizontal variation of temperature as in the diffusive
problem, non~dimensionalizing distances, and performing several ingenious
transformations, he can write the heat equation

oo = o e+ BBy (11 ¥1)0 ) e

where w _o.'gls

22(1%]) = _}f L 4 - §(D) o0

§ %= |

\]\4—‘1:!'70,3-

’t - kh (1.25)

is the optical depth of the whole layer,

The problem for which he finally got answers was that with B =8 ,
K =0, which are reasonable simplifications for the stellar interiors
he was considering, He also found a variational method for this case

A, %N,
313y [, 43 [ 4T FOFE) 2315 -3)
Ho. = a , (1.26)
S F @)~ (@) 48
where "‘/.:..

? = (Da‘_ a,a")hw o e

F(z) = F(-z) =0

Because of computation difficulties, Spiegel used two trial

(1.27)

functions with no variational parameters that satisfied the boundary
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conditions but had much different first derivatives, These turned out to
yield rather similar results for 7¢1 (transparent), while for T>1
(opaque), the solution to the standard diffusion problem

?: = cosr g
gave the lowest value, The Rayleigh numbers given by (1.26) are not
immediately comparable with those calculated by Goody for mixed radiation
and diffusion, but when this and different boundary conditions are taken
into account, the results are in good agreement [Goody, 1964] except for
a region near A = 10° where Goody's results show a kink attributable to
variable B , which provides some extra stabilization,



CHAPTER 2
APPARATUS

2,1 Iptroduction
The apparatus was designed for two different types of measurement:

the determination of heat flux across the gas layer, and the measurement of
the temperature at several points within the fluid, This latter could also
be styled a gradient measurement, The techniques used are quite different,
and could be called respectively thermal and optical or interferometriec,

The thermal apparatus, the process of making measurements, and the necessary
corrections will be discussed initially, followed by a description of the
interferometer, with its measuring and data reduction procedures, Finally,
since the theory of this type of measurement is not so well known, it will
be given, along with corrections necessary to the simple theory.

2,2 Description of the Thermal Apparatus
The purpose of the apparatus in the convective onset measurements is

to maintain a uniform heat flux and measure the temperature drops, while
maintaining the conditions within the cell constant,

The thermal apparatus (see Fig, 2-1) was maintained inside a removable
plexiglass cylinder with 10 in, I,D, and 1/2 in, walls, Within this,
heat was supplied and removed from the two ends by water circulating through
1/4 in, copper tube, wound in a double flat spiral and soldered on the backs
of Ybrass plates 1/2 in, thick and 10 in, in diameter, The coils were
then covered with a low melting point alloy to make solid pileces about 1 in,
thick, 10 in, in diameter, weighing about 8300 grams (18-1/2 pounds) each,
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The insulating discs were two pieces of nylon, machined flat to a
few thousandths of an inch, 5/8 in, thick by 10 in, diameter, The
nominal conductivity according to the mamufacturer was 6 x 10'"'
cal/cm,sec, deg, , and p = 1,14 gn/cm3 , ¢=0,32 cal/gm,

The aluminum plates were of the purest commercial grade of
alumirum, flat on the face to about 0,001 in,, 1/2 in, thick
by 10 in, diameter, The rear was tapped to take 5 6/32 thermocouple
mounting screws, each hole being about 3/8 in, deep,and grooves about
0.05 in, deep carried the leads to ths edge,

Before installation, the surfaces were chemically cleaned and plated
to give a smoother and brighter surface, Unfortunately, over a year elapsed
between this step and the first determination of emissivity, by which time
the plates had become somewhat cloudy, and had been in contact with glycerine
and kerosene, Small amounts of this clinging to the plates in spite of
cleanings would increase the emissivity considerably, A high reflectivity
was desired to increase the radiative effects on the gradient,

The exact diameter of the plates was 25.337 + 0.025 em,, giving an
area of 504,2 + 1.0 n? . Both aluminum plates weighed 1644 + 25 grams,

The plates were separated by three spacers, located equidistantly

from each other and near the outer wall, with the following dimensionss

Spacer Actual Height Diameter
5 cm, 5.048 + 0,006 cm, 0.635 cm,

2 cm, 1,987 + 0,002 cm, 0.635 cm,
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The total area of the spacers is thus 0,95 cm2 . Giving the

phemolic a conductivity about 10 times that of air (i.e., 6 x 10~
cal,/em,sec,deg,) would indicate 2 percent of the flux between the
plates is carried by the spacers, However, they are located at the walls,
where this effect appears as more leakage along the walls, The large

area of the plates gives us an effective guard ring area for our measure-
ments at the center, Preliminary measurements (see below) indicate that
over the eircle within the inside half of the radius, the temperature is
constant to within 0.01° C. Conductive fluxes through the spacers and
walls thus cause no distortion of the lines of heat flow in the central
region, although they may cause an unpredictable distortion near the outer
walls, which will affect the interferometer measurements,

On the outside of the brass plates a phenolic dise, 1 in, thieck,
is placed as an insulator, The whole apparatus rests upon an aluminum
ring, which stands about 1-1/2 in, above the bottom of the outer tank
on three iron stove bolts, The plexiglass cylinder is slid around the
series of discs mentioned above, which are stacked to form two sandwiches
with the aluminum discs to the center on either side of the gas layer,
nylon next, and brass and phenoliec on the outside, It has windows opened
at either end of a diameter to allow a light beam through,

The outer tank is composed of a cylinder about 14 in, in diameter,
with 3/8 in, walls, and two end pieces about 15 in, in diameter and
1/ i;x. thick, An alloy of alumimum with a high silicon content to
minimize corrosion by NB'B was used, 'I“he purpose of this tank was to keep

the ammonia confined, and to allow pressure regulation, both of which
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require a gastight apparatus, O-ring seals were installed in the top and
bottom of the cylinder, and at the two side windows., These were cut at two
ends of a diameter at a height such that the holes in the inner cell could
be aligned with them, Water lead-throughs were constructed to screw into
the top and bottom plates, For the ingoing water they were constructed of
nylon to avoid any influence of tank temperature change on the ingoing
water, The outgoing lead is aluminum to allow the water temperature

(very nearly the plate temperature) to control to some extent the tank top
and bottom temperatures and create an interior temperature whose mean is
the mean of the between-plate temperatures, .

The thermocouple leafé'sé:a;:":r?ught out through packing glands in
the cylinder 1lid,

(notshowm)

In the lid,are also lead-throughs for the manometer hose, a fitting
to the vacuum pump, and a gas inlet,

The marometer is a mercury column, mounted on a ruled mirror, The
vacuum ptmp is a conventional fore-pump, fitted with a vented exhaust to
avoid diésolving gases in the pump oil,

During the taking of heat flux data, the holes for the light beam
were closed over with cardbpard to avoid large-scale motion through the
inter-plate region, and the whole was enclosed to reduce the effects of
short-term room temperature variations,

Heating and cooling were accomplished by circulating water from
temperature~controlled baths through insulated hose at a rate of about
.3 liter/minute, The baths themselves were ceramic tanks holding a few
gallons of water which were vigorously stirred, Cold water from the ecity

water supply circulated through cooling coils in the tanks,
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The heating was supplied by krife heaters controlled by a mercury
expansion switch which actuated a solid state switching device, which in
turn controlled a relay, The manufacturer claimed O.OZLo C temperature
control or better. Temperatures were measured in the apparatus, and
showed steadiness (d1‘1e in part to the large thermal inertia) of 0,005° ¢
over several hours, Slow changes were observed which could be traced to
the influence of diurnal variations, and long-term changes due to deposits
forming in the tubeé and slowing @he water flow,

The temperature sensors were copper-constantan (Cu-Cs) thermo
couples, no, 24 gauge wire, mounted in the center of the heated and cooled
plates, and in the center of the aluminum disc, In all cases the junction
was formed and soldered lightly, and then soldered into a mounting screw
of the same material as the plate in which it was to go, i,e,, a thermo=
couple was soldered in an aluminum screw with aluminum solder for mounting
in an aluminum plate, The holes in which the thermocouples were to go
were tapped to receive the screw, Screw mounting was utilized to facili-
tate the change of thermocouples and provide good thermal contact, The
thermocouples were thus in electrical contact with their plates at the
Junction,

The leads from the thermocouple in the brass plates were brought
out through holes in the center of the copper tube spiral and in the center
of the insulator, These provided no special problen,

The leads from the thermocouples in the aluminum plates were brought
out through chamnels in the aluminum just deep enough to contain them and
up the inside wall of the plexiglass cylinder, It was necessary to make
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certain that there was no electrical contact between the wire and the
plates; for this purpose the wires were coated with glyptol and the
inside of the chamnel painted with Duco cement, A probe, run through
the channel, showed no electric contact to the plate, This channel was
on the side of the aluminum plate next to the insulating dise, allowing
any disturbance in temperature caused by the chammel to smooth out before
reaching the other face,

In the construction and calibration of the thermocouples, the
important point was that at the same temperature they should all read the
same e.m.f. within 0,01° ¢ (0.4 pv,) . From manufacturing stendards,
it is known that the probable error of absolute temperature measurement
is 0,44 percent = 0,11° ¢ at 25° ¢, [Finch, 1962] , which a rough
check confirmed, For absolute temperature measurements the N.B,S. [1955a]
tabulated values were used to convert e.m.f.'s to temperatures; the
temperature differences were converted with thermoelectric powers derived
from the tables, The probable error here is again 0,44 percent in NO
used to get the Rayleigh number, but zero to first order for the ratio of
temperature differences,

Thirteen thermocouples were made and soldered into fittings, of
which eleven were standardized, All were made from one roll of wire,
including tllxe copper wires from the ice point,

The cold junction was always immersed in a tube of kerosene, which
was inserted about 8 in, into a Dewar filled with a mixture of finely
cerushed ice and water, The use of tap water in the ice and atmospheric
pressure variations are known to. cause errors not greater than 0,003.0 c

[Fineh, 19627, which were neglected,
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To avoid errors due to stray e.m.f,'s in the switches, leads, and
potentiometer during comparison, the thermocouple leads were shorted with
no, 18 copper wire, the potentiometer set to zero and the galvanometer
zero position noted, Galvanometer deflections were noted from this point,

All thermocouples were required to have an e.m.f., < 0,2 uv
(= 0.005° ¢) when both junotions were inserted in the same ice bath,

The hot junctions in fittings w;re then put in separate glass tubes sealed
at the bottoms, about 6 mm, in diameter, filled to a depth of 6 in, with
kerosene, and immersed to a depth of 6 in, into a temperature-controlled
bath,

The bath was run at three temperatures, nominally 23.4° ¢ ’ 22,1° C,
and 28,1° C s and all themocouples were found to give readings within
0.4 wv = 0,01° C of each other at these three temperatures, The readings
corresponded within the errors of thermometer temperature measurements to
the absolute N.B,S. tabulated values as well,

The thermocouples were then mounted in the brass and aluminum plates.
In the preliminary stages, four thermocouples i‘rere put in each aluminum
plate, one in the center and one halfway to the edge on three perpendicular
radii, This wad done to test the uniformity of each platd, When the
apparatus wag 4ssembled with the aluminum plates touching, the whole
well insulated from the outside, and hot and cold water circulated through
the end plates, both plates were isothermal within 0.01° C. There was a
slight difference in the temperatures of the two aluminum plates that
implied a thermal contact resistance between them equivalent to 0,003 in,
of air,
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This is not unreasonable, since the aluminum plates were flat to
0.001 + 0,001 in, and 0,001 + 0.,0005 in, respectively, These values
were found by putting the plates on a plane table and going over them
with a surface gauge. |

This difference was not due to thermocouple differences, since if
the water was turned off and the mass allowed to come to equilibrium, all
the center temperatures were within 0.01° C. (Radial temperatures agreed
with these,)

When spacers were inserted between the plates, temperatures within
a plate were found to be equal to within 0,01° ¢ , Once this was esta-
blished, further measurements at the radial thermocouples were discontinued,

Several times since, all heating and cooling has been turned off,
the aluminum plates put together, and the apparatus allowed to become iso-
thermal, The thermocouples caontinue to read to within 0,01° ¢ in this
case,
_ In these readings and all that follow, the constantan lead from
the apparatus went to the ice junction, from which a copper wire came to
the same terminal board as the direct copper lead from the apparatus, This
terminal board was immersed in oil to limit temperature differences between
terminal strips, From the terminal board leads went to a shorting switch,
also immersed in oil, which could measure either a dead short or the
thermocouple voltage directly, The leads from the shorting switch went
through a selector switch and reversing switch to a Leeds and Northrup
potentiometer, capable of reading to 0,1 pv, with a galvanometer as
a mull instrument,
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2.3 Treatment of Gases

The gases used in this investigation were air and ammonia, Since
the properties of these gases are affected by water vapor, it is necessary
to have them as dry as posgible, The air was dried by passing it slowly
through a tube of Drierite (Nazsou) . The process of manufacture of
ammonisa involves several condensations and evaporations at temperatures
near -70° C o wWwhich should remove HZO . Refrigeration grade NH3 is
stated to contain less than 0,01 percent HZO . Condensing & cc of
NE13 revealed no Hzo crystals, Since this is pure enough for our pur-

poses, no further efforts were made to dry the tank ammonia,

2.4 Corrections to Heat Flux Measurements
If the spacers are removed and the aluminum plates put face-to-face

in contact, the ratio of temperature drops

NS, B, — 6,
A0y 6, — 9, (2.1)

o measures temperature in the lower brass plate,
91 measures temperature in the lower aluminum plate,
92 measures temperature in the upper aluminum plate,

@3 measures temperature in the upper brass plate, )

is found to be 0,850 + 0,026 , This is presumably due to different contact
resistance and boundary conditions on the nylon discs, as well as thermal
differences and inhompgeneities, A measure of the latter is obtained by
assembling one sandwich of brass heating plate, insulating disec, and
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aluminum plate, shiny side toward the insulating plate, If one applies a
sudden step function temperature disturbance to the heating plate, and ob-
serves the response of the alumirum plate temperature, one has a measure
of 1t..he time constant of the insulating disc, which is inversely proportional
to the conductivity, if all other factors are constant,

Getting time constants, T , graphically, the values obtained are

T, = 45,9 + 1 wminmutes

T, = 56.6 + 1 mimutes

which have a ratio 'rl/'rz = 0,882 + 0,031 , within the limits of the more
accurately determined conductivity ratios,
To correct for the difference between the plates, the quantity

AB, + O.8S Ay

S = o, = o, (2.2)

was calculated for each point,

There were eight experimental situations, arising from the permute-
tions of the three factorss gas (air or ammonia), plate separation (5 or
2 cm,), and temperature difference (2° and &° roughly). In each situation
there was a further separation into those with heating below (but not cone
vecting) yielding values of ST, and those with heating above, leading to
S~. Since the Rayleigh mummber for the onset of convection, Rac , could
be roughly determined by eye from plots of ST vs, Ra , only S~ corre-
sponding to Ra £ 0,8 Rac were included as definitely non-convecting,

th

The means of S¥and S™ in the i situation, SF and 5.~ were

i i
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found, and combined to give §i « The §i- were always slightly larger
than §i by an average of 2,3 percent, (The maximum was 6,3 percent,)
This presumably is due to heat leakage, and provides an estimate of the
ra.tio of leakage heat to impressed heat flux,

The factors §i/§i" and §i/'s'i"’ were then used to convert
individual Si" and S_{" respectively to _S-i ’
pressure, For air (Fig, 2-2), there is no pressure dependence axpected or

which were plotted against

observed, the temperature differences do not matter, and only the layer
thickness has importance, From the mean vaiﬁes at 2 and 5 om,, gz
and '§5 » the conductivity of the nylon discs and the emissivity of the
aluminum surfaces will be calculated in 2,5 ,

For apmonia, the heat flux Fp is a function of pressure (see
Fig. 5=-11), due to its interaction with the radiation field. This effect

will be explored in Chapter 5.

2,5  Derivation of Formula Relating S and Radiative and Conductive

Fluxes

Defining quantities with a subseript I as referring to conditions
between thermocouples 0 and 1 , II referring to those between thermo-
couples 2 and 3, and g referring to those between thermocouples 1

and 2 ,
"BRASS &)
ALUMINVA
Gas A © = temperature difference
ALUMINUM () -
wvion 777777 7277777 E h = Uhckness
BRA® © R = 2 = radiative flux/temperature

AQ% difference,
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With the assumption of constant heat flux, when the two alumirum

plates are in contact:

. ’
LG T LB T (2.3)

it is observed that

ke
é?L_ - O.95 = ‘f‘-‘
AS Ke (2.5)
I nr
or
hSr X, 46 ¥z = (2o +O“55—Aeﬂ>_«3_
HI "‘E’ \'\I
_ a2se [5_3_ N ﬂ} (2.5)
LRI
¥
and
( = = = + & (2.6)
L h (o) °
or,
K
.. = F(Z= + R
¥ hg ) (2.7)

2,6 Calculation of Emissivity and Nylon Conductivity
For two h's K and S are known, allowing one to solve for ®

and f , However, ﬁ a:93 , and K = K(8) , so these must be
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corrected for the various temperatures at which the results were obtained,

The following tabl» is constructed.

Table 2«1

DATA FOR CALCULATING EMISSIVITY AND NYLON CONDUCTIVITY

K
(er s X 103
O No. cnm,

- o of sec, K/K(29 3
h(em) Sh (CK)  cases _deg,) (1/298,16)
5,048 + 0,006 296,91 13 2.601 0,9960 0,987k

0.2385 + 0,0005 297,89 23 2.609 10,9980 0,9991
0.9979  0.9949
1.987 + 0,002 301.66 43 2,637 11,0096 1,0355

0.3454 + 0,0003 298,84 39 2,616 1,0016 1,0019
1,0058 1,0195

These conductivities are based on K(250 C) = 2,612 x 103 erg/cm,sec,deg,

Solving the above equations,

1/f = 7,852 + 0,063 x 10° erg/em.sec. ° C

X = 1,363 + 0,018 x.lo3 erg/cm,sec, °c.
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This does not include the uncertainty in the value of air conduc-
tivity, which may be as large as 4 percent according to N,B,S, circular

564.[1955b]
Defining
4B - Yoe?
- = (2.8)

and taking the value mQ = 6.0108 x 10° erg/cm.sec, at 25° C ylelds

QR
< 0.2268 +0,0030 .

The values [Handbook of Chemistry and Physics, 38th ed,, hereafter
referred to as HCP]

0° ¢ = 273.16° K
o =5672x 10™2 erg/cm.zsec.degan

were adopted,
By making the assumptions of isotropic emmissivities and absorbtivities,
and infinite horizontal extent, we write for the emissive intensity from
sy 8., the lower boundary £ B (GL) .
Then €, E_B () is absorbed
at the upper surface with no

reflection, € € (\ -eu)( - 6;,_) B(Q.)

7/////éL///// W/Q._////,/\,ﬁ' after 2 reflections, and
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Eue._("eu)h<\'eu)n8(9._> after 2n reflections, or Summ;r)?

. ELE.B(B)

€,x

v T I= (e (1-EL) (2.9)
Similarly,
- _ e, €.8(8y)
eLI - \—(\—éu)(\_el_) (2,10)

Denoting upward flux as [Goody, 1956]

= :f/u Tdw = fwfa;r?cos)bsmy’ dy d¢

alo so ~bed
where 50 is the angle from the 2z axis, the net,flux is

PR N SELICD

- (1) (1-€.) (2.11)
It
S,., = ';,: <@|_ + eu> (2.12)
we approximate in our scheme
B(S.) - B(6,) = (8L ~8) R(S) (2.13)
and - )
® = F . A TR (©m
A EL+E _—ELE (2.14)
S.€ S
I~ (1=€u)(1—€L) TQ (2.15)



if we further assume & = €

- ?

& _ €&

Making use of the value of ®/TQ above, we find
€ =0,3697 + 0,008 .

The value of the emissivity depends markedly on the conditions of
the plate surfaces, An alteration with time might be expected in that case,
The value obtained above, . & = 0,370 + 0,005 , should be assigned to the
central date of the measurements on which is is based, or June 1, 1962,

A re-measure, on August 4=6, 1963, using a different pair of
spacers (h = 0,9271 and 1,987 cm) gave & = 0,417 + 0,010 ,

From measurements made in October, 1961, before the temperature-
controlled baths were installed, measurements on which the same procedure
nmay be used gave (for'spacers h = 1,987 and 1,52 e;n) € =0.,421 + 0,085,

The greater uncertainty is due to the less accurate definitions of
gh and the less well-conditioned matrix to be solved for (R and 1/f .

This also indicates that the difference in & may be due to the
use of different spacers, The change is in the anticipated direction,
since as h 1is increased, the aspect ratio is decreased and more radiation
goes out of the sides of our finite system, This appears in the measure-
ment as a greater drop in heat flux with distance, which the equations
attribute to the conductive flux, and remove from the radiative flux,
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2.7 A Description of the Apparatus for Interferometric Temperature

Measurement,
The temperature distribution in two gases between two flat, iso=

thermal plates as a function of the distance from the plates has been
measured by measuring the optical path lengths at different distances
from the plates, and relating this to density and thus to temperature,
This is a quentitative use of a principle used qualitatively by Kennard
[1940] and semiquantitatively by Croft [1958].

The difference in optical path lengths is measured with a Michelson
interferometer, in one arm of which is the gas cell, See Fig, 23,

2,7.1 The Interferometer
The whole critical optical assembly is mounted on a rigid table

30 x 44 x 8 in, thick, constructed of 1/4 in, thick aluminum in a honey-
comb structure, glued together with epoxy, This was cantilevered out
from the base of a pillar which rested on a piie driven well down below
the building. These precautions were necegsary to obtain fringes free
from vibration in the presence of building vibration and nearby heavy
road and subway traffic,

The two end mirrors are front surface mirrors of aluminum deposited
on a quartz flat, 2 in, in diameter x 1/2 in, thick, flat to. 0,1 A for
the sodium D doublet, They are mounted on heavy brass stands, with
complete freedom of adjustment,

The beam splitter is a piece of optical glass, 3 in, in diameter x
5/8 in, thick, upon which a half-reflecting coating has been deposited,
This is also flat on both sides to 0.1 A and highly parallel,
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The compensating plate is identical to the beam splitter except
that it has no reflecting coating,

The windows are 2-1/4 in, diameter x 1/2 in, thick, also flat to
0.1 A and highly parallel, The windows are mounted in tubes that insert
into the pressure tank and wze the dead space beyond the heated
plates to 0,68 em, SSee Fig, 2-4,)

The length of the arms was about 44 ocm,

The light source was a G,E, A-H=11l bulb in a housing with a low

quality lens that provided some parallelism, The light was rendered
parallel for the present purposes by passing it through a mask with the
same aperture as the plate spacing (2 cm), located 4 meters from the
beam splitter, or 5 meters from the lens of the camera,

A Wratten 77A filter was used to remove all but the 5461 2 line

of mercury,

2,7.3 Image System
The Michelson interferometer was adjusted to give thin wedge fringes,

which are localized near the reflecting surfaces, A Burke and James view
camera with a 4 x 5 in, back and a Schneider-Kreuznach Symmar lens,
1:5,6 , 210 mm, fo:cal length, was focussed on the reflection in the rear
mirror of the rear edge of the convecting region in order to provide |
sharp top and bottom boundar;i.es to the convecting region, The fringes

were as distinect here as at the mirror surface,
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To provide a vertical reference mark in the image, a thin wire
with a plumb bob on the end was hung in the plane of focus, in the amm
not traversing the cell,

For focussing, a ground glass could be used, Pilot pictures to
check the photographic arrangement were made with a Polaroid back and
type 42 film, and later with a Polaroid film back and type 52 f£ilm, These
films were used because they were within a factor of 3.5 in speed for the
5461 g line of the Kodak metallographic plate which was used for the
actual measurements,

At this point the conditions which led to this type of data acqui-
sition should be mentioned, The attempt was made to measure to 0,01° C,
which meant for this situation 0,01 fringe displacement, The difficulties
of maintaining very accurate temperature differences and pressures between
the plates for extended periods, the possibility of instability with the
cell or turbulence in the room path, and the vibrational shudder and
thermal drift of the apparatus demanded a short time for recording the
physical situation, Practical considerations (and the example of others)
suggested photography over any electronic systems, The availability of
a densitometer and Brown type recorder with variable speed drive meant
that the photographic records of dark and light lines could be converted
into a quantitative record of light intensity versus distance, with a
variable magnification in length scale, As finally used, the marks indi-
cating passage ‘of the film carriage by 1 mm, were 15,2 cm, apart on
the records, a magnifiecation of 152 , which made possible measurement to
0,01's of a fringe, Glass plates were necessitated by the demand for
dimensional stability,



- 43 -

2,7.4 Film

Kodak Metallographic Plates were used with good results, They were
chosen because of ther speed in the green region, high contrast, and high
resolution of 115 lines/mm, Since tho fringes were approximately 1.3 mm,
wide, a resolution of 0,007 fringewas possible, The use of High Resolution
Plates could have reduced this by an order of magnitude, but their speed is
prohibitively slow, and there are other sources of difficulty which make their
we pointless,

The plates were developed according to instructions for highest
contrast, in D=19 for 8 minutes, stopped in stop bath S-5 for 1
minmute, and fixed in Kodak Rapid Fix for 5 minutes, all at 20° C . After
washing for one~half hour in rumning water, they were treated for 30
seconds with Kodak Photo-Flo to prevent streaks and spots and dried overnight.

2.7.5 Densitometer T ues
A1l profiles were taken with h = 1,987 cm, (A size limitation is

imposed by the aperture of the optics,) The size of the photographic
images was about 1,10 em. high by 2 em. wide, which was magnified by the
optical system on the densitometer to allow easy adjustment with the naked
eye, The densitometer aperture slit was set to be a few thousandths of a
cm, wide, and the projection of the vertical reference mark aligned with
it, This assured that the tracks across the plate would be perpendicular
to the vertical reference, or through a horizontal layer of gas, The
occurrence of the fiducial mark at the same carriage displacement (as
deduced from marks automatically placed on the record at each mm, of
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carriage displacement) proved that the track was accurately hori.
zontal,

The slit height was now set equal to sabout 0,025 em., By means
of a micrometer mounted to measure the densitometer carriage position,
the locations of the top and bottom of the image were found., The image
was then divided into ten tracks, and the center of the densitometer slit
set to coincide with the center of the first track, The carriage was
turned manually to one side of the image, the amplifier adjusted, and
the motor started to drive <the plate uniformly across past the densi-
tometer slit, The recorder drive was also begun, When the first track
had been run, the carriage was returned mamually to the start, the correct
sgtting of the track verified with the micrometer, and the next track set,
and so forth until all ten tracks had been scanned., A portion of a
scan record which includes the fiducial mark is shown in Fig, 2.5,

2.7.6 rd ent

The following designation will be adopted. Imagine the space
between the plates divided into 20 regions by 19 lines and two boundaries,
A J value ranging from -10 at the bottom to O in the center and +10
at the top is assigned to each boundary and line, Then even Jj's correspond
to lines dividing the region into tenths and odd j's correspond to the
centers of each tenth, the lines along which the plate was tracked,

For measurement, the paper record corresponding to j = -1 was
chosen as a reference, a line was drawn through the center of the fiducial
mark on the record, and its distance from the carriage displacement mark
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(automatically recorded for every mm, of densitometer carriage displace=
ment) noted, The spacing of ten of these carriage displacement marks on
the recorder record was also measured, as an indication of relative speeds
of carriage and recorder drives, This was never found to vary by more
than one part in a thousand, The recorded track corresponding to j = +1
was then superposed on j = -1 , and a line was put through the record
of the fiducial mark at the same distance from the carriage displacement
mark as on the j = =1 track, This distance was never ;aore than one or
two mm, from what one would have ;neasured as the center of the fiducial
mark record,

Now the J = 41 record was slid over the J = «l1 record and the
two fringes closest to the fiducial line were superposed as-closely as
possible by eye, The displacement of the fiducial line of J = +1 relative
to j = -1 was measured, This was then done for all the other pairs of
corresponding fringes, and the displacements averaged, In effect, what
one is doing is performing # visual cross~correlation between a record
of the form

y, =4 sin 2m x/L (2.17)

with a record of the form

= A sinzn(§+a ) (2.18)

Y +1

in order to obtain §_, . This was done for all records for that plate,
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giving a § 3 + 053 for each tragk (j odd) relative to j = ~1 . Note
that if & changes by more than 1 , only the fractional portion is
measured: the integral portion is known exactly.

A little thought will convince one that the quantity & 3/1. is the
number of fringes displaced between the j = -1 1level and the j level,

N, - N-l . L is thus needed to convert the measured 63'3 to Nvs ,

J
Talking the best sinusoidal curve on the j = -1 track as a refer-
ence and putting a reference mark through its center, the successive
maxima of the j = 41 record are overlaid on it, and the reference line
transferred to the j = +1 record, When this has been completed for all
j = 41 maxima, a series of approximately equally spaced marks is the
result, The distance between each pair of adjacent lines is measured:
these are measures of L . The mean and standard deviation are taken,
The same is done for J =49 , No significant variation across the space
was found for these values of L , which differed by less than 2 per-
cent, and were between 20-24 cm, for different plates, This introduces

an uncertainty into N, - N 1 but sinece this quantity can be written

b
+ o
ny g+ 85 /L where n j,-1 isan integer known from inspection of
the plate, the uncertainty only applies to the measured portion § 3 _1/L .
' 9

The uncertainty then is a constant, + 0,01 fringe, since =0,5¢ 6;] l/L < 0.5.
- - -

2.8 Interferometer Adjustments
The cell was first placed so that the rear mirror could be seen

through the beam splitter and cell, The aluminum plate was then made hori-
zontal by leveling a highly polished steel plate and going over the
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aluminum plates with a surface gauge and indicator, In this way the plates
were made horizontal from side to side, to 0,001 radian, and from back
to front to 0,004 radian.‘ No difference could be detected between

upper and lower plates,

The rear mirror was next aligned by trial and error, to be perpen-
dicular to the plane of the plates, This was necessary so that a ray of
light parallel to the plates would traverse the same horizontal layer
through the gas after the reflection as before,

The side mirror was then adjusted to give circular fringes, and
moved until the central region filled the entire field of view, The two
mirrors were then at nearly equal distances from the beam splitting sur-
face, When the side mirror was tilted slightly, a thin wedge was formed
which produced straight parallel fringes. The compensating plate could
be rotated a few degrees to remove any last curvature from the fpinges,

In order for the measureme:‘lts to be valid, the temperature
measured at the center of a layer must be representative of
that layer. For this to be so, any light beam which falls in track J
on the plate should have spent: its entire path through the fluid between
levels j-1 and j+l , so that it has not gone up or down more than
0.2 em, in 50 em, through the fluid, an angular deviation of 0,004 ,
Since the whole space must be illuminated, an aperture 2 cm, high mst
be located 5 meters from the camera lens, or about 4 meters from
the beam splitter. The light source was adjusted to the proper height by
trial and error, by minimizing dark and reflecting regions at upper and
lower boundaries,
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The apertures of the system were drawn in the image space of the
camera lens, and it was graphically verified that the light forming the
image on track j had spent all or virtually all of its travel within
the j+1 to Jj -1 space,

It was necessary to show that the steep gradients near the
boundary for the case of ammonia would not displace the image so much
as to make the method inaccurate, Consider an extreme case, in which the
temperature profile is as shown in a. below, and in which N changes by
1 between two adjacent tracks, (See b below,) The path difference = A,

which over 0,2 cm, corresponds to an angle o = g.. =2,5x 10'4 radians,
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The downward displacement is given by f o in the first traversal
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Total displacement = 3+ 2,5+ 107" +25 em, = 1.9 107 cm,

Since one track is 0,2 cm, wide, this corresponds to a maximum of about
0.1 track width, which is about 0,01 of the plate separation, Since a
scanning section is about 0,02 plate separation, this is not a large
deflection, Because the temperature distribution is very nearly anti-
symmetric about the <eéwiter; the gradient is nearly symmetric. Thus,
taking the means of upper and lower halves of the fluid gives a good
approximation to the profile that would be obtained if there were no

vertical refractive displacement,

2.9 Experimental Procedurses
In making measurements on a temperature profile, the témperature

baths and plates were brought to a temperature difference of about 7° Cs
the hot plate at the top., This enables higher temperature differences
and pressures to be used without convective instability., The gas being
studied, air or ammonia, was admitted to the proper pressure and allowed
to come to equilibrium for several hours,

After blowing new isothermal air into the window wells, three
photographs were taken as quickly as possible, The exposure was about
3 seconds eachy all photographs were taken in 45-60 seconds, The A&
was measured before and after th? pictures, as well as the pressure,
Temperature differences never changed by>0.002° C. A§ s00n a4s pressure
and temperature had been measured, the tank was evacuated, During the
photographs all rotating machinery was turned off to stop vibration, In
about 15 mimites, when the manometer read p about 0, (<0,3 em, Hg,),
pressure and temperature were read again, three photographs were taken as

before, and pressure and temperature were again read,
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Identification of the plates was by tape on the plate holder,
which was transferred to the plate itself prior to development.

Photographs taken in the sequence vacuum, gas, vacuum, indicated
that there was no measurable change in the vacuum fringe system due to
mechanical or thermal drifts over periods of one or two hours, The
constancy of the visual pattern to the eye over 2 or 3 days supports

the assertion that drift may be neglected between gas and vacuum photo-

graphs,

2,10 Data Reduction

After developﬁent, densitometer tracking, and measurement of
records from the 6 plates, weighted means of the fringes with and without
gas were obtained with their standard deviations, The vacuum case has
no applied difference between the two plates and gives the reference
state of the system, provided by the positioning of the optical elements,

Thus, denoting Ng - N?-l as the mean of the three measurements of

N 5 N-l with the gas in the apparatus and Ng - Nzl as the same

quantity with the apparatus evacuated, the raw net change is

v

)

R G G v
. — N = N - S———“ N- =
<Na L) e () ( p T M (2.19)

This st now be corrected for the slight pressure remaining in
‘s ol .
the evacuated tank, by multiplying by p o(po- pVAC) where p_ is the
pressure at which the gas photographs were made and Pyac is the pressure
remaining when the evacuated photograph was taken, This factor was always
less than 1,006, Now
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= Po <N3 - N—|>R
'a' -1 PQ— P\/AC,

(2.20)

These are the data with which the *heory must deal,

2,11 Theory of the Interferometer Measurement
The following symbols will be useds

A = wavelength of light at given conditions,

L= length over which differential conditions are applied, (Here
the length over which the gradient is applied, )

n = index of refra;ction,

ec=n-1,

©
L]

gas density,

pressure,

® o
i

= temperature,

Subseripts:

S = standard temperature and pressure,
0 = conditions at j =0 in the fluid,

m = conditions at j=m , the point being measured,

At j=m there is the condition

™

N < _ﬁ:"' N (2021)'
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where Nm is the order of interference at m while at j =0

L
N, = >~ "o

For gases, the relation

/OM /aa ﬁs /Jm /’o //')-S

i

gives
N =Ny = (o™ (B - ')
m >‘VA'C- o

R N . )
Avac RPs V2o

-l
n

(2.22)

(2.23)

(2.21)

(2.25)

where, since ¢ is about 4 x 107 , A_= Ag = Ag = ko Very nearly,

Consider the case of a perfect gas where, since

Pm = Po
om = e,
ﬁa em
or writing e, = e° + DO,

N - N, = £ Lo =08~
° >‘VAC /P.S 90 + A@m

(2,26)

(2,27)

(2,28)



Similarly,
L ¢, P - A
— N, = = Csle
N“"" ° Avae LBy G+ a8 (2.29)

For a temperature distribution symmetric about the median plane

(2.30)
AB . = —A&e
Therefore, taking the mean
N N (New= No) = (N__ = No)
m -~ YD a
=X ¢ P ("')< ABm AS_,,
Dae  Bs * \B,+AB8,.. B.+ CH (2,51)

= L cipe (-)L (L8m —2E_. )
>‘VAC /.95 o : 90
The (=1) occurs because a positive N . No means greater optical

density at m , which implies greater density and lower temperature,

as here formulated, in which it has been assumed that the path traversing
the cell is longer than the reference beam, If it is shorter, the sign
is positive, The sign is not knowm, but the direction of the
temperature gradient is, and may be corroborated with the direction in
which the fringes move on evacuation, Fringes are measured as positive
and the negative sign is omitted,

One could consider writing

T = X ¢ Zeag, /L3
T L i et /_.,—Sg)a (2.32)
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For a perfect gas

(.LQ.f) _

\
~ 8 /o eo (2.33)

or

Roesfe (L) Eom (2.34)

N,.-Np =
° Avac  Ps go

The same result occurs upon inclusion of the correction for gas
imperfections that taking the mean of expressions for the upper and lower
halves of the layer is identical to treating the density difference as

being obtained from the first term of a Taylor expansion, The mean
LIV Ne) = (V= No)] = L[N =) =01 N2Y] s

will be interpreted using (2,34), The quantities on the right-hand side
of (2.35) are the ones measured,

The corrections necessitated by gas imperfections can be seen by
writing the equation of state in the virial form:

v e L e BN(TT
—g-é‘ = |+§§,—)-:|+ y ) (2.36)
Then
L _ P '
v ‘/D‘Re | + P (2.37)
Re

Corrections for gas imperfections enter the calculations in two

places:
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P o Py B ()

__'_°_ - o e.s Vo Ry

1) s Ps®& | + Po B(S,) (2.38)
RS,

2) Li/ﬁ) V[ PeB(®)  p(3B(O
K. 5, | "é‘é':""ﬁ'("“"))o

400)]

- - = [I + Lo
©, R e

By writing 1 + %e-) =1+@® (9) s the corrections were calculated

from N,B,S, tabulated values for air and from virial coefficient data

in Hirschfelder, Curtiss, and Bird [1954] for ammonia for the conditions

at which the measurements were Ma.

2,12 Ggs Imperfection Corrections for Interferometer Measurements

The corrections must be calculated for the following conditions:

Air p, = 76.05 cm, Hg. 8 = 298,07° K.
Amonis  p_ = 53,00 cm. Hg. O = 300.60° K.
p, = 98.32 cm. Hg. € = 298,06° K.

2,12,1 Air

/90//98 was interpolated from tables of ,0(6)/,03 given by N,B.S,
Circular 564 [1955b] at intervals of 10° C, This gives

/_f:_

/Ps

= 00,9163
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From tabulated values of B(®) at several © , a table of
B(6)/e vs, © was made, a graph drawn, and a slope picked off, The

values are given in Table 2.2,

Table 2«2
B(e)/e FOR SEVERAL VALUES OF ©
(FOR AIR)
o(°x) ' B(6)/6[ cc, /deg. ]
270 =0,05179
280 -0,04156
290 -0,03267
300 -0,02493
310 =0,01816
320 =0,01222

S 8@
96 e = 0,00075 cc,deg,”
PeBy BSG)
] 16 o = 0,002724
and
4 9s\ _ _ 1,00272 -1
(/c e)o - eo ,deg.
2,12,2 Ammonia

From Hirshfelder, Curtiss, and Bird [1954]
W R
BE) = b B8 (THt™)
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where for ammonia

™ = 8/320

*
t =1.00

and
b, = 22.12 ce, /mole

The following data are given or easily calculable,

Table 2-3
VIRIAL COEFFICIENT DATA FOR AMMONIA
: *
dB
.p* g* ™
0.85 18,40 80,20
o O 90 -'1)‘". 92 57 . 79
0.95 -12,42 43,04
Table 24 follows immediately,
Table 2i
CAICULATION OF ':7::‘ FOR AMMONTA
PoGs phS(T_ 1+r8s A
p(em He,) % (®x) Ps €0 ORQ_'B 1+ @ | +Be Los
76,00 273.16 1,0000 =-0,0178 0.9822 1,0000 1.0000
53.00 300,60 0.6336 «0,0080 0,9920 0.9901 0.6273
1,1825

98,32 298,06  1,1853  -0,015% 0,984  0,9976




-5 -

Similarly, one can calculate the following,

Table 2-5

CALCULATION OF( l FOR AMMONIA

d 8(8) 1y
o o o o, ar @bl nods(738)
plemHz,) deg,™ a1 d6 _ 67d6 (em=) R d8O _deg”

dc.g"’ &?L
53,00 -0,0426 45,0 0,141 0,184 0,04960 0,0346 1,0346
<)

98,32 -0,0443 47,5 0,148 0,192 0,05176 0,0670 1,0670

i




CHAPTER 3
RADIATIVE PROPERTIES OF AMMONIA

3.1 Introduction

In this treatment of radiative effects in a gas, use is made of
the functions & (r) and € '(r) , which might be called the perturbation
emissivity and its spatial derivative, Unfortunately, these functions'; are
not those usually measured, From the data typically taken by spectroscopists,
such as line positions, widths and numbers, and from calculations of rela-
tive strengths, it is possible to calculate & (r) and E'(r) . A
useful check is provided by comparing calculations of ordinary emissivity
with measurements made by heat transfer engineers, So that E(r) and
£+'(r) are available when required, the calculations will be described
here and results presented,

3.2 Description of the Quantities Desired
It will be seen in Chapters 5 and 6 that the theory can be stated

in terms of the quantities
[ 48, (1 - hyr) dv
(-]

f d By (3.1)

E(rhe,p) =
dv

and

flz -

*dB, dy
d©

El(r) ©,p) = (3.2)

- 60 -
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where
B, = Planck function at frequency v (erg/@m.2 sec, sterad cm.'l).
“v = monochromatic volume coefficient of absorption at frequency Vv
(eu??),
r = distance (em,),
® = temperature (deg. K),

p = pressure (atmospheres),

£ may be described as a modified emissivity, by analogy to the emissivity

fooB,, () - e.—kyr) dy

[- 4]
[ B, du
o J8,

It might be remarked that £ and E should be rather similar, since - TS

and B, are similar [Elsasser, 1942], g' 1is the distance derivative

(3.3)

E(re,e) =

of the modified emissivity., ‘As remarked, ¥ and €' are functions of
ry 8, and p, The r dependence enters only in the exponential, The
Planck function B,, is a function of temperature. It will be evaluated
at 300° K. The absorption coefficient is strongly dependent on density,
and therefore on press;n'e. It is also in general dependent on temperature,
but this dependence seems very slight in this case, Dowding [1939] showed
that the energy radiated by ammonia at €45° K was predicted by using

the Planck function for 6#5° K and the same absorvtion coefficients
measured at 300° K,

Clearly, since

1
®

[~ ]
g 9
!By dv = — 8 (3.4)
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oo
- d8 40 3
= dy = = = Q .
e (3.5)
(=}

The problem of evaluating the numerator of (3.1) and (3.2)
directly is very difficult, if not impossible, because of the rapid
variation of R, with v , (See Fig, 3-1.) From a line peak to an
adjacent trough, factors of 104 are not uncommon, Therefore a pro-

cedure which is analogous to that employed for meteorological problems

will be followed [see Goody, 1964]. Since dBy is a smooth, slowly

de
varying function of v , the spectrum may be broken up into a series of
regions of mean d8y , and
d6
o déy )/, _ =
g = ) ;(1‘?1(‘ T.) Ay, (3.6)
| —— —
E = ) Z Bvr_ (1 _TL)AV(_ (3.7)
¢

where the mean transmission is

- _ -k
To= f e y"&u (3.8)

sz
£' can be obtained by a differentiation of (3.6). A band model may

then be used to desecribe the integral over frequency in (3,8)., The use
of band models is fully described by Goody [1964], and in the context of
combustion engineering, by Penner [1961],

The band model chosen was that of a random distribution of lines
with equal intensities, Since the choice of intensity distribution makes



PERCENT TRANSMISSION

500 4000713000 2500 2000 1500 1400 1300 1200 1100 1000 950 900 850 800 750 700 p-t

WOUTTT ey T (N | )
m I Ik W”
40' I ) |
U A%

o '" LI

2 3 4 d 6 1 8 9 10 1] R 13 14 15
WAVELENGTH, MICRONS

Fig, 3-1, A LOW RESOLUTION ABSORPTION SPECTRUM OF NH3 [from Pierson, Fletcher and Gantz,1956]
Curve A, pNH; 700 mm,Hg; Curve B, pNH3= 45 rm, Hg; Cell length = 10 cm,

~€9-



- 64 -

little difference in the random model [Penner, 1961], the latter restric-
tion is not important, In addition, our method of correction to observed
values reduces still further any differences., This model has certain
advantages of simplicity,

Then, let

a = Lorentz line width (cm."l),

6 = mean line spacing (m.'l) = Av [N,

N = number of lines in the range,

S = line intensity (cm, atmos, )'71 {cm. "),
Ay = frequency width of the range (cm..l),

r = distance (cm,),

p = gas pressure (atmospheres),

y=a/s,

*

th

The mean transmission for the 1 range can then be shown to be

[Goody, 1964; Penner, 1961]

3-27‘3&'— (“i->

T, = (3.9)
[N

where

L(w) = we™ " [T, (w+ I, (W] (3.10)

is the Ladenberg and Reiche function [Elsasser, 1942], which has been
tabulated by Kaplan and Eggers [1956]. Finally we have



3.3 Spectroscopic Constants for Vibration-Rotation Bands of Ammonia at
300° K
Comparing a curve of black body intensity, B, , and its tempera-
ture derivative, é% s V8. J o [see, for example, Elsasser, 1942] with
Table 3-1 indicates that the only bands that will matter are » , and lJu .

Table 3-1
OBSERVED FUNDAMENTALS OF GASEOUS NH;‘

Frequency
Mode gcm,‘12 Remarks
3335.9
Y1 33%7.9 I strong
%) 931,58 || Stro
2 ' 988.08 "
!
Y 3414 4
Yy . 1627,5 L Very strong

*[after Herzberg, 1952]
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Herzberg's Table 73 indicates that overtone and combination bands,

with the exception of 2w are not important in the spectral

2" Y2
region of interest,

Figure 3-l1 gives an indication of the complexity of the ammonia
spectrum, the interpretation of which lies beyond the scope of this thesis,
An introduction to the extensive literature is given by Herzberg [1952],
and more recent work of Benedict, Plyler, and Tidwell [1958], and Garing,
Nielson, and Rao [1959].

A few brief points should be made, Armonia is a symmetric top
molecule whose rotation is described by the quantum numbers J , the total
angular momentum, and K , the angular momentum about the symmetry axis,
Clearly, |K|< J . The relative strengths of lines in a given type of
vibrational transition depend on J , K, and a number of other factors
vwhich can be calculated once and for all, This has been done for NH3
by Benedict Tei__aé_l_,_ [1958] wp to J =16 ,

Vibrational transitions are classified according to whether the
change of dipole moment is parallel (1|) to the symmetry axis or
perpendicular (L) to it, Rotational changes may occur simultaneously
with vibrational changes, leading to the branches P, Q, R according to
whether A J = -1, 0, 41 .

The molecule is in the form of a squat pyramid with the three H
atoms at the cornmers of its triangular base, The N atom is either above
or below the plane of the hydrogens, but since the two configurations are
not identical, the molecular state is described by symmetric and anti-

symmetric wave functions, which have large energy splittings for parallel
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vibrational states, The energy difference between the V 2 transitions
1* - 0° and 15 . 0% (superseript s refers to symmetric, a to
anti-symmetric states) is about 38 cm, "t s leading to two very similar

spectra displaced by 38 cm.'“l from each other,

The intense V 2 band, near the peak of the black body curve, was divided
into 7 ranges; the anti-symmetric Q branch (aQ) , the symmetric Q
branch (sQ) , the region between (I) , the strong and weak portions of
the P branch ( P(s) and P(w) ) , and the strong and weak portions of
the R branch ( R(s) and R(w) ) . The division into strong and weak
portions was somewhat a,rbitra::"y, The 2 u; - v; transition was treated
in two parts == the P and Q branches (2aP, 2aQ) were lumped together,
and the R branch (2aR) was lumped with the P(w) , which it overlaps,
falls in the center of the intense L/

The 202 .8 band, which is

2 2 2
much stronger, and its strength is neglected, The u , band is treated
as a single region, Sources of band parameters are given in Table 3-2,
The relative range strengths were obtained by adding relative strengths of
the individual lines [from Benedict, et al,] included in the range,

The intensities used were those listed in Table 3-2, obtained by

calculating

= K. AX
A ) (3,13)

where the relative strength of the ith range is K, and the integrated

i
intensity of the band is A ,
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Range

aQ

sQ

P(s)

P(w)

R(s)

R(w)

2aQ
2aP
2aR

Table 3-2

*
SOURCES OF NH3 RANGE PARAMETERS

y Relative
1% — Range Strengths
Adv(emS™) Y (BPT) N
910=945 52
GNR Obs, 0.976 0.196 GNR Obs.
945-952 11
GNR Obs, 0.998 0.013 GNR Obs,
952-970 45
GNR Obs, 1,011 0.196 GNR Obs,
785=910 59
GIR Obs, 0.892 0.19843 GNR Obs.
(Includes aP(6,K) and sP(7,K), less P(0,0) in I ,)
648-785 1
GNR Obs, 0,746 0.02232 GNR Obs.,

(Includes J" = 14 (final rotation number) , the same
limit as that to which BPT calculate relative strengths,)

970-1123
GNR Obs,

1,101 0,37850

51
GNR Obs,

(Includes aR(9,K) and sR(8,K), less R(1,0) in I .)

1123-1265

GNR Obs R 10 257 oc 03500

70
GNR Obs,

(Includes lines to J" =15, This is slightly more than
calculated by BPT, but the lines here tend to overlap,

giving fewer but stronger lines,)

1324=1940 1.0 1,00000

Formla
BPT, J"=16,

648603 0,392
GNR Obs,

603=325 0,226
Same 25 P of 4,

In with P(w) 0.382

of 2

549

Counting lines

in Bf.g with strength >
2x10=° of total band,
194

Line count of BPT
calc, foryband, P
and Q branches,
Lines measured with
those of P(w),

*Abbreviations useds BPT - Benedict, Plyler, and Tidwell [1958]
GNR - Garing, Nielson, and Rao [1959]
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For complete consistency, the yalues obtained by cglculati:xg

relative intensities should be used, i.e., the relative strength of
Y R

b

the ith range is proportional to = . Letting

the intensity of the ith range may be written

>
]
l
tq
W

i (3.14)

The values calculated from (3,14) differ by only a few percent
from those calculated with (3.13), and when the correction is considered,
the final results will be unaltered by using values of A, from (3.13).

‘The integrated intensities in the ranges are [McKean and Schatz,

1956]

Ay, = 600 cm, L (atmos, cm, )™t

Ay, =110 em, "L (atmos, cm.)’l

and from these,

A | -%.Tr—z’k
S -y - — ®
Aau R o 9 AU e

il
W
O
N |
[
3
*
&
3
S
n
n
3
N
!



Table 3-3
RANGE PARAMETERS FOR NH3

Range
Spectral Intensity
Range Range Av [A=n§ N : s, &= %“
cm, cm,
Icm,"ll lcm,"ll atmos, cm) — Satnos,cmi?] Icm',ll
aQ 910 - 945 35 114.8 52 2,207 0.67
I 945 - 952 7 7.8 11 0.708 0.64
sQ 952 = 970 18 118,9 b5 2,642 0,40
P(s) 785 = 910 125 106,2 59 1.800 2,12
gg) 648 = 785 137 11.3 W, 0.081 0.97
R(s) 970 -1123 153 224,11 51 b, 39k 3.00
R(w) 11231265 142 26,40 70 0,377 2,03
Yy, 13241940 616 110 549 0.200 1,12
% 3 325 - 647 322 1.90 19 0,010 1,66

3.l Pressure Effects
3.4,1 Pressure Broadening of INIH3

E has been mby Port [1940] for mixtures of ammonia and
nitrogen at a total pressure of' one atmosphere with constant » , These
results are presented by Hottel [1954], from whom Fig, 3-2 is taken,

To duplicate the results of Port, the amount of line broadening
due to nitrogen must be separated from that due to the ammonia self-
broadening, One expects the latter to be considerably larger, due to
the permanent dipole moment of ammonia, which suggests a larger collision
radius with other dipoles and resonance broadening according to Anderson's
[1949] theory.
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The expression for the line width is given in a convenient form
ty Hirschfelder, Curtiss, and Bird [1954]

3 |p ) @)*]
«, = L [Pu—\/-;,—: + A ] (3.15)

where a is the half width in the Lorentz expression for the line shape
k, o< m.-)&;_‘-_:‘—; » caused by collisions between emitting atoms of
species a , and perturbing atoms of specigs a or b, Here m is
the mass of the species denoted. by the subseript and kB is the Boltzman
constant, The collision radii are Oaa for self-broadening and %b for
broadening by b .

The figures in Teble 3=l are for the J =3 , K =13 1line in the

microwave region, taken from Hirschfelder, Curtiss, and Bird [1954],

Table 34

RELATIVE EFFECTIVENESS OF AMMONIA AND NITROGEN
. IN LINE BROADENING

Gas 05.22 m o&:{m
ml3 13.8 17.03 k6,2
NZ 5.54 28,00 5.80

Thus

G_N..Hl,..%z?,g?

Q .80
N, |

?



- 73 =

or ammonia is eight times as effective per unit pressure broadening itself
as nitrogen is, for the 3,3 1line,

The broadening for a particular J,K value depends directly on
K/ /3% + J [Bleaney and Paurose, 194¢], Thus the lines with highest K
value will be most broadened, and the greatest broadening increases with
J . The values of the collision radii for different states listed by
Hirschfelder, Curtiss, and Bird [1954] for self-broadening of ammonia in
the microwave region range from 8.82 (=5, K=1) to 14.13 (5,5)
and (6,6) and 15,2 2 (6,4), but the (3,3) line is the only one for which
broadening by nonpolar gases is given, Their collision diameters are close
to kinetic theory values, as one might expect, and those values might be
used for other transitions, but this added complexity will provide no
useful information since accurate quantitative data for the application
of these microwave values to the infra-red sg_;:grum is lacking,

We might also expect that the ratio would show less variation

N
than either of the parameters separately = 2 an easily perturbed state

presumably showing an increase in both c’lim3 and N and conversely,

o 9

The above formula yields = 0,515 em, "L for an atmosphere of
pure ammonia, while a.Nz = 0,065 cm.°1 for a small amount of ammonia
broadened by 1 atmosphere of nitrogen, when collisions between ammonia
molecules could be assumed to be extremely rare,

This compares favorably with the values measured in the infra-red
combination band ¥ 2t )‘13 o
values of line width from 0,16 = 0,59 cm,

Benedict, Plyler, and Tidwell [1958] find

"1 for lines of differing J,K

in pure ammonia, For four lines measured by three different methods, they
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get an average of 0,42 cm."l s Wwhile for the same rotation lines the

microwave average is 0,52 cm,-l . This follows a general trend for
the vibration-rotation lines to be 20 = 25 percent narrower than
microwave lines, This can be explained on the basis of Andersont's [1949]

theory and the existence of ground states split by less than 1 cm, =l

while the upper vibration states are widely separated (e,f., 37 m.’l for
the v, band), This prevents simultaneous dipole changes of colliding
molecules and the upper states, Another factor contributing to the
different average widths is the fact that the narrow K = 0 transitions
are very narrow, and are forbidden in the microwave region,

The value “NH; 0,515 will be used, however, since the microwave
values are more accurate, and to weight the broader lines that will have
a greater effect at higher pressures, where they will show considerable
broadening and influence a wider portion of the spectrum,

From Port's [1940] data the pressure of NH3 ’ pml3 s and the total

broadening pfessure given (bscause of (3,16)) by

(3.17)
-r

-
1
-2
2
o
w
= |5

and the ratio of pNH?/pT can be calculated, These are presented in

Table 3<5,

The transmission, as remarked above, is defined as

— —&Tﬂj'—(”)
T = 1 - &£ (3.18)
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Table 3=5
TOTAL BROADENING PRESSURES IN PORT*S EXPERIMENTS

o
F|E

pL pL
[ft.atm, ] [om,atm, ] [atm, ] [atm, ]

.007 .213 0,0043 0,129 0.0333
.01 .305 0,0061 0.131 0,066
L015 57 0.0092 0,134 0.0687
.02 .610 0,012 0.136 0,0882
.03 .91k 0,018 0,141 0,128
Ol 1,22 0,025 0,147 0,170
.05 1,52 0,031 0,153 0,203
.07 2,13 0.043 0,161 0.27
.1 3,05 0,061 0,18 0,34
o2 6,10 0.12 0,23 0.52
o3 9.14 0,18 0.28 0,64
.5 15.2 0.31 0.40 0,78
o7 21,3 0,43 0,50 0,86

1.0 30.5 0,61 0,66 0,92

1.63 49,7 1,00 1,00 1,00

where
(-4
4 = ’*g (3.19)
U = SrP (3.20)
oL TT &

The relationship between line width and pressure is accurately

given by

o (p) = =y —T (3.21)
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where o, is the line width at pressure p o and Pp is the total

broadening pressure, In Section 3.,4,1 we found a = 0,515 an.°1 at

P, = 1 atmosphere for ammonia, so that we have for ammonia, denoting

/ g{c
X =
F° (3022)
e _,q_-n—&_' Pr L (u)
T = 1- e ¢ (3.23)
_ S Pnhs . _ oo’
VoS xR T Fr (3.24)

3.5 Treatment of the Pure Rotation Spectrum

3.5.1 Relative Intensities of the Rotation Lines

An expression for the total intensity of the J°0

rotation line
in absorbtion is given by Gerhard and Demnison [1933] for the positive
branch of an oblate axi-symmetric molecule,

Y.
¢ )VJ' e a T(aa)”
- L [T(+R - | = QAT a -3 T+
Ia"-;[-rr Je {mifﬁuclu-crﬂ } (3.25)
(V)
where
e o= A~ (3.26)
C
and a = 'H.L
2k, O
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A and C are moments of inertia of the molecule

amrny

Y4 qr Q'y;,- N,ua' (. - e Rg & ) (3.27)
dch

L

where Va— = location of the "line" center,
N = number of absorbing molecules,
The following values are available [Herzberg, 1952]:
A=2,86x lO"L"0 gn, cm.z
C =443 x 10~%0 gm, on,®

p=13 x 1078 CoBoBo 8.8,U,
[Foley and Randall, 1941 ],

Taking ¢, , k and Avagadro's number from the HCP,

6 9

B =-0.3653 , (3.28)
o= 0,04770 , (3.29)

L depends on temperature through N , It was evalpated at 300° K,
L also depends on the frequency of the J lines, which to our accuracy
is [Herzberg, 1952]

x—h 7 1
e A J 19,890 J em, Vo (3.30)
Then
L = 346,80 J at 300° K . (3.31)
‘ _-ZT‘K XJJ-
h@@, a
For values of J from 5-20, the quantity T (1-e - ) was

caleulated,
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3.5.2 Widths of Rotation Lines

nLines" of equal J are actually split into their K components,
forming small bands, The measurements of the widths of rotation bands
show considerable scatter, but all show an increase with J , The

values taken are Au:r =k om, -1

for J<¢10 [Wright and Randall, 1933;
Slawsky and Dennison, 1939] and theoretical values from Hansler and

Oetjen [1952], Foley and Randall [1941], and Hadni [1953] for 10 < J £ 16,

3.5.3 Number of Lines
Bach J %line" is composed of 2J + 1 lines, due to splitting of

K components,

3.,5.4 J=Line Parameters
From the 'intensities, line widths, and numbers of lines, with

O‘NHB = 0,515 em,™L as for all bands, 5 and 6 for the bands were
found, From L ; =19,89J and Ay g » the area under the black body
curve was found by linear interpolation, At complete absorption, 3,35

percent of the black body curve would be absorbed,

3.5.5 Rotation Band Calculations

The values of ‘Ep (emissivity under Port's conditions, i,e.,
amonia broadened by nitrogen), & and ©.° were calculated for each
J , and summed for several values of r on each curve, For Ep these
were plotted, a smooth curve drawn through the points, and the values thus

obtained added to the results calculated from the vibration-rotation bands,
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For & and &' the sums of the rotation bands were expressed
as a fraction of the sums of the vibration-rotation bands, These were
found to be within 0,005 of a constant value over wide ranges of p and
r , A mean percentage was taken and applied over these regions, The
mean was of the order of 1-1/2 percent, and never more than 2.4 per-

cent,

3,6 The Weak Line Correction Band in NH3

Calculations based on the vibration-rotation bands and pure rotation
bands are found to predict an Ep which is on the average about 8 per-
cent below that observed,

There is evidence [Godson, 1955] that this band model underestimates
the number of weak lines, This is exacerbated by the use of the number of
observed lines on the ranges of the Uz band, leaving out those toc weak
to be observed,

Consider, therefore, the effect of a number of weak lines, randomly
spaced with respect to other lines across the entire spectrum, and use
the multiplicative property of transmission functions to write [Goody,

1964]

- T. 7T = \—TWCI—E'> (3.32)

where = emissivity including weak lines,

]

emissivity omitting weak lines,

~
E
E
T = transmission function without the weak lines,
Tw

= transmission function of the weak lines,
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The transmission function for this random collection of lines can
be written
W
- '§' .
(A

T, = = |- —g— (3.33)

since their total absorption is small, Here W is the equivalent width
of the lines,
Inserting (3.33) in (3.32)

E = E + S 0-F) (3.34)
or
£ _ | w L€
< - s € (3.35)
and
- _L:-.__ - 5.;'_“; €) (3.36)

For w the formula relating to any distribution of line shapes
could be used, The Ladenberg-Reiche function (3,10) will again be used

in the expression

< = am gL (v) (3.37)

corresponding to all lines have a mean intensity S s and where, as above

- 82m p
B T (3.22)
L = —— Pusy (3.23)
2T ot fr



Then

m|m>

|- E
Lo = amy L(v) LT::—) (3.38)
There are two disposable parameters: S and 6, Froman
inspection, the value u =1 was put at pNH.3 = 0,12 atmos, This
is equivalent to fixing ) s 8ince |

-5-4- _FN.*_,
2ol Pr

[ (3.39)

On substitution
S = 0,1252 (3.40)

Since the weakest band included was the P(w) + 2aR , with
S = 0,0811, this is merely adding more lines of about this strength,
As this is near the limit of what can be measured with the spectrometers,
the existence of these lines can be neither proved nor disproved, The
exact location of u =1 is not very important either, Putting u=1
at p]’m3 = 0,43 would give S = 0,076, but would not change the correc=
tion appreciably,

When I = pp L(u)(1-E)/E is plotted against AE/EO.DS. =

= (Byps. = Bea1, )/ Eops, (since

' N
<= - 't = (3.41)
E‘_ = ..A..E )



the points exhibit a great deal of scatter, A straight line was drawn
through by eye, which was found to satisfy the relation

A
Ln ._CE_ = 0a3T (3.43)
Note that this implies
/
_’z_____’;"" o. a3 (3.44)

or

6 =1h’006 Omo‘l .

Since the black body curve has 99 percent of its energy below
2089 em,”™l , this indicates that only sbout 149 lines are being added,
or an increase of total intensity of 2,6 percent —- much less than the
20 percent uncertainty stated by McKean and Schatz [1956],

Using (3.44) in (3,43) gives

m‘ﬁ\)

|- &
= V¥ o3 It Pk (v) (3.56)
or

E"\ z EE -0, P'I'L(U>J + O0.%3 Py L(v) (3.47)

From the same argument and parameters, it follows that

| - &

A
% =1 4 0. a3 or L(v) (3.48)
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S¢E SE T
— = ==\ - 0.2 3p 1s(v)
or or LT 77 . a2 ) (3.49)
L (v)
+ 0.a3 -
PT<' E') o r
3,7 Calculation of E
All is now ready for the evaluation of Ep .
ol
== L(v)
i 5, 1
Ep) = 3 2B (I-¢ )0y, + Egorylr,p)  (3.50)
_ S - PNH[, .
Vi 2 ard TR (3.24)
EP = E‘,E -o.a—BP-.-L(”):J + 0.a3pr L(v) (3.47)

In Port's experiment, the path length r = 1,63 feet was a con-
stant, For each of Port's values of pL the pressures from Table 3=5
are inserted and the expression (3,47) evaluated, The results are
presented with the circumflex dropped in Table 3=6 and Fig, 3=3. The

accuracy is seen to be about + 2 percent,

3.8  Caleulation of & and B ¢

We have thus validated the method and parameters by comparison with
experimental data related to that which will be used, The quantity E (ryp)
can now be evaluated with the same band parameters and correction as we
used above, and ¥ ' , obtained by differentiating the expression for & ,

can also be evaluated and corrected,

' 'R-"ﬂ":"'L,PNN L(“'a‘)
ECr,p) = Z ‘%’(‘ —e &1 M)

L

ay, + g, (re) (3.5)



Table 3-6
CALCULATED AND OBSERVED VALUES OF Ep

E_ before weak

pm_i: E_(cale,) E (obs, ) p I-Line correction
.0043 .0587 055 .0570
,0061 .0728 .070 .0765
.0092 .0922 .087 .0887
,012 1069 «105 «1025
0018 1335 13 1273
.025 .1582 .16 1501
.031 o 1771 19 1677
043 .2092 22 .1970
061 2489 o26 .2333
.12 OW .37 .3161
.18 L4105 RiS) <3801
31 « 5143 .53 H718
M43 5733 .60 .5217
.61 6371 .68 .6315
1,00 .7215 .71 .6315
S, -
() -
[™ o ) ol / (30 52)
(Since for an atmosphere of pure ammonia, p,. = Pp ») By differentiating
’ e’
SOy, R Py, ()
a/ = Z} Q'., A U: o TTind PNH s 8; &) o L) + £ (r_ P)
D @ s. M o RTIT (3.53)
dLW) _ aLlw) dy - L) S
dr - du dr- - dv 2o’ (3.54)
[ QL(“) PM»‘JL(“L (
St 3.55)
Z Z Q e 5 Pmi? Ju 4_5'&01- JP)

‘I‘he values of §© and @w ' are presented for a range of r and p
in Tables 3-7 and 3-8 and graphically in Figs, 3-4 and 3-5, respectively,

after being corrected according to (3,48) and (3,49) respectively (but with
the circumflex dropped),
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Table 3.7

& AS A FUNCTION OF PRESSURE AND DISTANCE

Pressure [atmospheres]

s 1 2 2 nh' L6 Y 8
.000015 ,000285 ,000419 ,000512
.000366 ,000802 ,00120 .,00160
.000809 ,00184% ,00277 00368
.00323 ,006456 ,00974 ,01278
.00577 ,O01145 ,01696 ,02230
.00784% ,OL547 ,02283 ,02993

.00525 ,01053 ,02068 ,03342 ,04264
.01720 03326 ,0r8l5
01438 ,02796 ,05214 07547 ,09396
-O4563 ,08373 ,1161
.03045 ,05736 1032 ,1414 1754
.03766 06996 ,1237 ,1674  ,2045
0524 09751 ,1672 ,2216 2664
.07600 1364 ,2258 ,2928  ,3u66
.10679 ,1850 ,2983 ,379% 4409
<4838 2458 3829 4743 L5301
18695 ,3066 4612 ,5560 6191
* 2’"’211 ° 382"6 ° 5513 L] 62"21 » 6977
30793 4725 ,6357 7164 7637
JJ1797 48l2 669 L7259 L7722
035217 ,5213  ,6823  ,7557  .7992
»37980 ,5521 ,708L ,777% .8190

1,0 1,2 1.4 1,6
.000640 ,000747 ,000764 ,000229
.00201 00227 002634
- 00k 5k 00730 ,00854
.01590 02157 02459
.02756
03684
-05150 .05615 ,06423 ,0724
07521
L1109 L1313 1468 L1615
.1705
2029
2363  .2641 ,2890 ,3113
o J0H2
3906 429k 575 4Bh6
4820
5870  ,6229  .6521 6756
6634
7351 ,7623 7837 .8019
7960
. 8040
.8298
8493 8737 ,8951 ,91k0




Table 3-8

€' AS A FUNCTION OF PRESSURE AND DISTANCE

Pressure [atmospheres]

om] 1 .2 i .6 .8 1,0 1,2 L.k 1,6
0,001 L1109 ,2217 L3324 4432 5539 L6669 ,779% 8884
0.003 1108 ,2211 ,3308 4406 5500 .6632 7722 8810
0,010 Jdogk 2181 L3257 4324 5384  ,6hh2 7478 8503
0,030 1065 ,2099 3104 4080 ,5029 ,5989 ,6889 7771

0,10 ,05005 ,09784 ,1872 ,2668 3411 4094 4799 5394 5947
0,30 .04173 ,07864 ,1409 ,1789 ,2365 ,2697 .2987 3286 342l
1,00 ,02070 ,0470% ,07316 ,0929 ,1080 ,1198 ,1312 ,1381 1435
3,00 ,01478 ,02435 ,03670 0443 ,O0M91 ,0522 ,0551 ,0557 .0562
10,00 ,00733 ,01119 ,0150 .0l64 L0172 ,0158 ,0153 ,0146 ,0140
17,00 ,00522 ,00694
30,00 ,00337 ,004532 ,00489 ,00434 ,00394 ,00368 ,00391 ,00331 ,00326
55.00 .002534 ,00236 ,00202 ,00180 Q0169
60,00 ,00196 ,002314 ,00212 ,00179 ,00159 ,00151
80,00 ,00153 ,001719 ,00148 ,00124 ,00114 ,00111
100,00 ,00131 ,001368 ,00111 ,0009% ,000877 ,000863 ,000868 ,000876 ,000879
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CHAPTER &
THE PHYSICAL PROPERTIES OF AIR AND AMMONIA

L,1 Introduction

Since so many of the physical properties of a fluid enter into the
determination of the Rayleigh number, it is imperative that they be known
with the highest accurac& possible, In addition, for the understanding
of the steady state and the heat fluxes, it is necessary to have the cone
ductivity, Many of these factors vary with temperature, and some with
pressure, making it necessary to allow interpolation between known values,
In this chapter the source and manipulation of data concerning the physical
properties will be collected and presented in a usable form for our later
purposes,

The indices of refraction will also be discussed,

h,2 The ical Properties of

These data are taken from data tabulated in N.B,S, Circular 564 [19550.
The only quantities we need to interpret the experiments are K(€) and
?5:' (6,p) (and the index of ‘refraction),

The conductivity K(8) should be independent of pressure, and all
evidence suggests that this is so, This is given as K/I(Q as a function
of 6, and a value for K, . Values of K(0) are given in Table =l
and plotted later with K‘e’p)NHB in Fig, 4=l ,

The properties of the fluid that enter into the Rayleigh number for

a gas are highly temperature dependent, That is, considering

- 90 -
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L
e
7)K o 9‘/'7~
|
See e
or
ol |
K ,Z o= e* (u’ol)
L P

according to the simplest kinetic theory model, A 2 percent change of
temperature across a layer can indicate an 8 percent change of Rayleigh
number, This fact imposes a limit on the temperature difference if equa=
tions with constant coefficients are to be appropriate, The quantity

9% g« *Cp 2/ p \*
o S

for a gas has a strong pressure dependence which may be removed by writing
gd(‘-‘afa‘ Po' = = %d Cor/o.h P°/° =
K »7 P K 77 P/O (’4.3)

which depends only upon the temperature,

To obtain the Rayleigh number, one multiplies

o{c Po 3
2% pe 3K77F/° YOR f; - %dﬁe = Ra (ut)

where the first two quantities are set before a run begins, the third by
the temperature and nature of the fluid, and the fourth by the pressure,
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2 -*
dCy. A
To calculate the qusntity EK,';/) (ﬁ)

K = K° _5_(9)
Ko
. 7 (e 7
v L - 7 - (8) . T 7,
£ S LR S LGee) A
/% £

we conmbine

From p(6,p) we can get

IV s cio ~ B+
oL (&,p) = "5 %8 & T o
Combining these, we find
o 1P 1\
%dw"’(f’o)’“_._ saR [ F (£ F> ] (.5)
K7 P K, % K 7
Ko 7,

The quantity in brackets has a slight pressure dependence ( £ .3 per=
cent), It was caloulated at pressures (in atmospheres) of 0,1 , O,k ,
0,7, and 1,0 , and a mean taken,

Using the values from N,B,S, 564,

K, = 5,770 x 10.5 cal,/cm,sec,deg, = 2,414 x lO3 ergs/cm,sec,deg, ,
70 = 1,716 x 107% gm,/om,sec, ,
Py = 12930410 gm./ca,”,

R = 0,0686042 cal,/gm.deg,, and
2

g = 980,398 cm,/sec,” [HCP] ,
it is found
*R
3 R | 1,13575 x 10 om,>
K. 7,

The values from (4,5) are presented in Table 41,
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Table 4l
PHYSICAL PROPERTIES OF AIR

: N o
«ce(2.L s (o
Temp, K/K, [erg / R &,.P,) -g- K7 P >
[° k] cm, sec,deg, ] |deg'l, atm, ] o |cm:3 deg:ll
290 1,065 2,547 0.010738 1,048 110,301
300 1,087 2,624 0,009702 1,076 94,21
310 1,119 2,701 0,00879% 1,103 80,92
The results of the last column are graphed in Fig, U4=2,
4,3 Ihe Physical Properties of Ammonia
k,3.1 Method of Calculating Conductivity
To find the conductivity of ammonia, we make use of the kinetic
theory relationship [Chapman and Cowling, 1952]
K(e,p) = £7(8)c, (8, p) (%.6)

The quantity f has been studied by Mason and Monchick [1962]
and found to be an extremely slow function of temperature, In order to
calculate f (it is not clear what data were used to get the f reported
by Mason and Monchick, so we will make our own determination), we must

have the values of cv(99p).
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4,3.2 Pressure and Temperature Dgendence of ¢ and ¢ for NH3

Kaye and Laby [1956] cite data from Spencer and Flannagan [1942]
for the temperature dependence of cp « This is a least squares fit of
the form

[« ]
c_f = ow *+ bO + c 6%

(superscript o refers to zero pressure) to values of c; from Thompson
[1941] in which o; was calculated from spectroscopic data for several
temperatures between 291.1000° K, An experimental determination is
reported in Osborne, Stimson, Sligh, and Crague [1924], This seems to

be an extremely carefully done experiment, They find their results can

‘be fitted by the empirical relation

76.8
Cp(\")e) = |, l&aS5S + 0.00a38 © -+ )

: s
S4S p log+ e ((a,5'+3489)"0-27+ 2.37¢ 10" (8.7)

+ e"‘ ’ el-}- ea_a

over the range ~15°Cc to +150° ¢ s and 0,5 = 20 atmospheres, In
their expression, ° is in joules/gm,° C ,

P is in meters of mercury, and

e is °c + 2731,
This is fitted to the experimental data with an average error of 0,07
percent and a maximum error of 0,27 percent,

Since the two sets of data differ by only 1 percent, they confirm
each other, The experimental data will be utilized because it is observed,
and has the pressure dependence included in it, as well as because improved
knowledge of vibrational constants might change the calculated specific
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heat slightly, In addition, with a highly polar gas not too far from its
critical temperature, calculations of thermodynamic quantities must be

somewhat suspect,

o ) o _ R
Thus cp(e) and cp(e) have been found, Since ey = Cp =

one immediately has c:,(e) . To obtain cv(e) , the difference of the
following expressions [HCB]*is considered to first order in v .

=}

Cv - Cy a‘(et*'" Ba.*)
R v (4.8)

i

(&)
co - o B,
R 2 I,

In the above,
B(e) = b, B* (1} t*)
* * dB*
B =T g™
= e/'rR
* = */81/2
v = v’“ bo
c= C/M

The second virial coefficients which enter in terms involving
(l/V"[h)2 are not tabulated in this region for polar gases, At the low
densities in which we are interested, the C*/v* 2 terms are much smaller
than the B*/V¥ terms, so we may suppose that one term will give the
.pressure correction with sufficient accuracy,

The following values are listed for ammonia [HCB]

* 'Ehis %esignation will be used hereafter for Hirschfelder, Curtiss and Bird
19541, :
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bo=1.47 x 1008 e,5,u,, t%=1.0

Tp = 320° K
b, = 22,12 ce/mole,
The values of B* and BY - BY are tabulated for £* = 1,0 [HCB],
from which values of B: are obtained, These are presented in Table 4.2,

Table U2
VIRTAL COEFFICIENT DATA FOR AMMONIA

¢ % ¥

o+ g* B -B B
0075 - 300)4' 16302 13208

0180 - 2302 u603 9301

0,85« 18,4 86,6 68,2
0,90 (= 14,92 66,93 52,01
0095 - 120“'2 53031 40089
1,00{~ 10,54 b3, 54 33.00

e
By

are shown with the calculated results in Table 4=3,

was graphed and a smooth line drawn through the points, which

Table 4=3
CAICULATED SPECIFIC HEATS OF AMMONIA
o 1

5 o o '
[SK] ¥ By T c ¢ Cy Oy
[cal, /gm.deg. ) [cal, /em.deg. ]
273 .8531 5 »0153 L0917 <5194 3751 «3875
283 . 8844 .0 012k 4950 5168 3784 .3878
(o}
0

66

56
293 9156 48, .0103 4985 5161 3819 3892
303 <9469 k1 0085 .5021 5167 »3855 3916
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The values used in obtaining 2b o/M were

M = 17,031 gm,/mole [HCP]

1 atmos, = 1,01325 x 10° dyne/en? [HCP]
J = #,1855 x 10’ erg/cal. [HCP]

R = 1,98646 cal,/mole degree [HCP]
2b ‘

-ﬁ‘i = 0,06288 cal,/gm, atmos,

The quantity °p is linear in p from pressures of 0 to 1
atmosphere, according to (4.7) . Values were calculated at intervals
of 0,1 atmosphere at 293° K and 303° K , and the values graphed,

*
! d0 ,\=R b, B,
— (R+22.0 )= -2
From each of these values the correction — (R+ . p) F"*-'b e s

subtracted and the result plotted similarly in a graph of c (@,p) .

4,3.3 The Conductivity of E%

To get the conductivity of NH3 as a function of pressure, we make
use of the relationship (4,6)

K(e,p) = + 7 (8) c, (8, p)
and the following valuesg

K(0°C, 240 mm,Hg,) = 516 x 10~7 cal,/cm,sec,deg, [Franck, 1951]
”7(000)? = 926 x 10~/ gn, /em,sec, [Van Cleave and Masss, 1935]
ev(OQC, 240 mm,Hg,) = 0,3791 erg/om.seé.'deg.

These values yield f = 1,47 ,
The experimental viscosities of Van Cleave and Maass [1935] were
plotted, a curve passed through them, and Table 4-it was constructed,
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Table 4=l
CONDUCTIVITY OF AMMONIA

6 © K©° cl K1

e 7x 10~ V. o 3 v o 3
ergs x 107 ergx 10 ergs x 10 ergs x 10

_°__;I__ gm/cm, sec, cm,sec,deg, cm,sec,deg, cm,sec,deg, sec, deg,

285 972.0 1,5877 2,267

290 992.5 1,5943 2,326

293 1905 ° o ° 1 Q.m 2. 361 10 6290 2 .!40?

298 1025.5 1,6060 2,21 1,6340 2,463

303 1046,0 1,6135 2,481 1,6390 2,520

The conductivities are plotted in Fig, 41, It will be noted that
this predicts a 1,75 percent increase in conductivity for a pressure
change from O - 1 atmosphere,

4,3.4 The leigh Number in

Pla _ ax (P, ©)
Ky K(e,©) () (4,10)
YT £(e,8)ce( p,®) A(p,8) |
B N I L. 1 CP SURIN [ﬁi -e] (4,11)
£ 7 76 e (e )/‘;(P’ )

Thus p(@,p) , A p(6,p) , and a(O,p) are needed, The virial

form of the equation is again employed, as given by HCB:

v
L = | 4+ _E.ﬂ_@ (4,12)

Re \Y;
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and on the right-hand side we can use the first approximation for V

N P
v T Re (%.13)
giving
- Pm l - IPM — Fbo 8* S
7 7 Re T+ruer T Re (! R ( )> (4 14)

v
We may also define

_‘3

e30 P R® ve (%.15)

\_J

Employing the same data for ammonia as in 4,3,2, B¥ was graphed
and read as a function of temperature and the correction term calculated,
This was combined with the first term to give p/p o + Then

£ ) (2)
Y _ o Je-io /o /e+io (4.16)

\
£l T ().
e

was found, The specific heats from the previous sectmn, c and c, ,

°((9) = -

are combined with these quantities to give e (o ) )[ ( P 9)
@ o
which are all the quantities which have pressure and temperature dependence,
For the density,
=0 - 17,031 _ -3 o,
Po TV = 2z,015 = 078 x 107 oo
The viscosity was read from the graph of the data of Van Cleave and
Maass [1935], Putting all these together in the expression

9= %( % .y el o)l o °B
Ky FF:) T 7(e)” (v(P,e)( )L (e)J (4.17)
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the results in Table kw5 are obtained, It can be seen from (4,17) that

Fg 2
-';-) (€ P) , as seen

in Tghle 45 and Fig, 4~2. For intermediate values of pressure, an inter-

A
there is still a small pressure dependence of %—:— (

polated value was used to ccmpute Rayleigh numbers,

Table 45
3« ( P\
Ky /O(’.-? ()O ,
6 Pressure [atmospheres]

° xj 0 0.2 0.4 0,6 0.8 1,0
290 1564 159.9 163,2 166.7 170,1 1736
300 1294 131,7 13%4,0 136,4 138,8 41,2
310 109.6 111.5 113,3 15,2 17,1 119.0

The results are graphed in Fig, i 2.

The accuracy of the data for air is discussed in N,B.S, Circular
564, The two quantities which supply most of the uncertainty are the
transport quantities 7 and K , The authors state that reliabilities
are within 2 percent and 4 percent respectively, though this may be
large, It is a fact that the two most recent determinations of air cone
ductivity differ by over 3 percent at room temperature, giving an indi-
cation of the difficulty of the measurements, and the somewhat unsatis-

factory state of the art,
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The accuracy of the ammonia dats is of the same order, The data
used here for NHB viscosity is that favored by Krieger [1951], on which
tha transport datu in H,C.B, is based, Other data for viscosity exist
which differ from this by 2 percent (in a direction to increase the
Rayleigh rumber), There is not so much data for conductivity, but the
spread in values is at least 2 percent, and probably at least the
same as the 4 percent for air,

The accuracy of p is seemingly quite a bit better, as is ¢

P
for air, lhe values of cp and c, are not much better than 1 per-
cent each, giving an accuracy for - g for air of 3 percent and for

Kw
ammonia of 4 percent,

4,5 Refractive Indices
k,5,1 Air

o
The value accepted internationally for the mercury 5462,26 A
(green) line is

6

(n-1) x 10° = 277,901 at 15° ¢, 760 mm,Hg. ,

quoted by Landholt and Bornstein [1960],

4,5,2 Ammonia
Uncertahty in the experimental data for ammonia is more due to the
method of reduction to S,T.P, than to the measurement of the refractive
index, Friberg [1927] makes clear his method of reduction, and his value
o
at 5462 A was adopteds
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(ne1) x 210° = 3,42 .

Maasureasnts by Cuthhertson and Cythbertson [1913], Klemm and
Henkel [1933], and Frivold, Hassel, and Rustand [1937] either agree with
this method or are not fully explicit as to the method of reduction,



CHAPTER 5

THE INITIAL STATIC STATE

5.1 Introduction
The initial static state refers to the state of the fluid when

there is no motion, The quantities of interest in the present case are
the temperature distribution within the fluid and the heat flux through
the fluid,

There are two immediate reasons for understanding the static
states the first is that the temperature distribution in the static
state enters the equations that tell when the fluid will become unstable
(see Chapter 6); the second reason is that the heat flux and its variation
with Rayleigh number must be known in the absence of convection to locate
the changes caused by the onset of fluid motions,

However, these problems of temperature distribution and flux are
interesting of themselves, involving as they do solutions of the radiative-
diffusive equations for heat balance in a non-gray medium. There is a
further importance, In solving for this state, many of the approximations
employed in meteorology will be used, Because of disturbances or practical
difficulties in the atmosphere, it has been impossible to compare these
approximations with nature, Such a comparison will be one result of this
investigation of the static state,

In this chapter, the relevant equations of the mixed radiative-
diffusive state will be presented and solved for gray and non-gray media,

The formulation is extended to yield heat fluxes in gray and non-gray media,

- 105 =
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The interferometric temperature measurements are presented and
compared with theory, The flux variation with pressure is also compared

with ecalculated values,

5.2 Calculation of Temperature Distribution for ed Radiation and

Diffusion

5.2,1 General Equations
//////////////////<// 2l
€

e

€L
777777777 7]777 7///////// #=0

'S

Consider the situation pictured above, The following symbols will

be useds

I = intensity of radiation

W = cos ¥
Fz = upward flux of radiation = Jf pldw
k = absorption coefficient

© = temperature

B = temperature gradient = %g

(= %’a %‘, non-dimensional height
H = radiative heating rate

K = thermal conductivity

€ = surface emissivity



<
il

subscript to indicate monochromatic value

o]
L]

subscript to indicate zeroth order quantities

&
§
n

superscripts to indicate upward and downward components

respectively

average from top to bottom of the fluid.

For the case of temperature equilibrium, when a small element is

neither gaining nor losing temperature,
H, + K%, = O (5.1)

Before motion begins, there are variations only in the 2z direc-~

tion, so (5.1) may be written, using

H = - 3%
° dz (5.2)
d Fz 476
- K [*» =© (593)
4z d=
This may be integrated once to give
R(2) - Kp(z) = Fr (5.%)

where FT is the total heat flux through the layer, a constant clearly
independent of 1z ,
Now formally

s () - P (5.5)
K

A (2) =
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and taking an average

Aa(z) _ F.(=) - F
ﬁ = T (5.6)
Py Fo- A

This has three interesting special cases,
1. The radiation does not interact with the fluid, but traverses it
without attentuation, so FZ(Z) = F; . In this case, B/f =1, This is
the usual conductive case in a transparent gas, such as air, in which an
appreciable radiative flux may pass through the gas without interaction
or distortion of the linear temperature gradient. Henceforth, noninteracting
gases will be neglected, since no radiative effects are produced, This will
also be the case of an optieally thin layer of a radiating gas, which
might be termed the transparent limit.
2, FT.>>»Fz . This will occur in geometrically thin layers of con=-
ducting material, not necessarily optically thin, It could also occur at
low temperatures, Here again, B/ =1 . This limit will not concern us
here, but might be termed the conductive limit,
3. Fz(z) = KRB(z) , Where KR is a radiative conductivity, the
Eddington conductivity, which holds when the radiation must diffuse across

a layer several mean free paths wide, In this case

F
np(z) = —— (5.8)
K + Kﬁ
4
_2—: = | (5.9)

This might be called the opaque limit,
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These limiting cases are features of the subsequent formulations,
but the physical reasons for them have now been made plain,
From (5.3) = (5.6) it is clear that the radiative flux or radia-

tive heating must be evaluated to find B/F .

5,2,2 The Basic Equations of the Radiation Field

The monochromatic intensity I+v at 2z with direction cosine u

may be expressed, with €, = €, = €,

T (g ) = €B,(0)e” ¥ (1= T} ()

2

ke (z -2 , (5.10)
+[Bu(%')kue w20/ 48
/V\.

o

where B is the Planck function, Local thermodynamic equilibrium has
been assumed,

The physical significagce of the terms is clear, The first term
on the right is the contribution of emission from the lower boundary,
ﬁttenuated by the intervening material, The second term is the part of
the downward intensity at the lower boundary which is reflected back
upward, and attenuated by the intervening material, The third term is

the contribution by material lying between the level 2z and the lower

boundary.
Similarly
i ey (- e fh-
IU <£—)/u>= e'Bu(h>Q. (h E-)/“.p(\—e)l::’(k)e Z)//‘*
(5.11)

%) \
_ku E' - ]
+ ﬂ@u(3'> k,& ( e d=
3 /



Evaluating (5,10) at z =h and (5,11) at 2z =0 yields a

coupled set of equations

jj("‘)/‘) = €8, (o) e—h”h//“-k(' -—e)e e / MG R
f ,8,(@)e (-2 de’ (5.12)
/r‘.

T-(o, ) = €6 ) e'k"h/%)q.(\-e)e’h” /~ +(k)/~)+

¢ e, 2/ (5.13)
-k, Z /M ! R
-+ fh.u By(a' (= g é_E__
(] /4.

Equations (5,12) and (5.13) can be solved simultaneously to
yield expressions for I;(h,p.) and I;(O,p,) , which can be put into
(5.10) and (5.11), After a partial integration these become

- 38, (x) )R v
sy (E)/‘*> = BV(?) f NP ?) + R () (5.14)
where
R, 2/
- (1- 5) JBV _ "h h//“' -k, 2
Rv (z)= = (1-€) -a.»wh/».U( aie -(! M) /;‘E](E 15)
and h
_ 38, (e_l) "ku(e'-é)//* -
I (s )= B () 7 [P20EL R
Z
where

R;@):\u-e)&‘"(“"’/" [f 2u(2)_ (1) ™ h/wf b, (- a)) o e)/fj(s 17)

'(l-e)a'e_'a‘k"h/’“‘
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Note that in the case of a symmetric gradient of B )

98, (')  38,(n-2)
o= - dn'
and
Ryefu
+5 (l—e)e a8y<?‘) —'nyz//" /
v (z) 1+ (1-€) Euh/a f oz ! dz (5.18)
0
h
R’S( . (-e) c.ueu(n- )/ YO A ) Q+$<h-e)
Y - e e ;kuh/,u‘ Dz’ v (5.19)
The flux is related to the intensity by
*l
R (3) ® J';Z-rr/«. T, (M e)dpm (5.20)
-
where
o
T(m 2 = T, (54 ) y VEp20
. - (5.21)
Fazy = F, () - ® (2)

! t
+ -
y z)dpm -
= fQ”/‘IvOA’ ): /" f‘”/“ru ()2 (5.22)
) [
[} .
The operator (&-W‘/A— d applied to an isotropic quantity
]

such as B,, leads to m B,,, Applied to exponential terms, it yields
the exponential integrals, Followihg meteorological usage and the argument
presented by Goody [1964, Ch, 2], the approximation



- 112 =

]

-/

Jo?-‘n'/u.e / du = Te = (5.23)
[+]

(wvhere s is the diffusivity factor)’ is introduced. Good results have

been obtained for s = 1,667 [Elsasser, 1942; Goody, 1964],

On application of the flux operator to (5,14) and (5,16)
z
Fr(z) = 7B (2) - F%')TE%_“”(E'E’L;’ + R7(=)  (5.2m)
2

h

B ! —Sky(i’-e -
Fr(z)= TR, (2)+ ,(QT%;—(E)Q )da' - Ry () (529
v
3

-k, h .
Since (1-€)e™ ¥ e < | for € 2 0, &, > 0, the
denominator of (5,15) may be expanded, integrated term by term, and

re-collected, to yield

h
~sk, 2 . - 5 Y ek =
RT (=) = o f [9”5”(* )_(1-e)e ,S‘buuh"?ﬂ-evSh-i]fkﬁda'(i%)

l‘(l*e>a€,;5kuh ge‘ - s gz
o

Similarly,
H
~_ _ —shv(k-i) | sk N e (h- |
)= mri e f F "g&'(?)' () QLE“(“,—-*}-S L¥) (5.20)
2 z

These complete the expression of the radiative flux, which can be
used in equations (5.3) - (5.6) to get B/F .
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5.2.3 The Radiative-Diffusive Equations

Introducing the linear approximation

48, = @&, d6 (5.28)
where
48,
Q“ ae

is justified for the small temperature differences here considered,
Combining (5.24), (5.25), and (5.21) with (5.28)

|

E o _sky(z-2") 3 ek, (2 - 2)
_ Ve dz' + ! d
F(e)= mQ, ‘([/5( e z' ( (2)e z

2

—'—ez%.m—yhfﬁ(* - (- é)‘f_s‘eulﬂ/é’(h-*')] R ATUNNTR'S

- (l-

_ (é-e);-slt:( -%)ﬂ:ﬂ(z) - ee.sle h (h- ):}_sk L (h- e ,
I=(1-e)e-3kub

19

and with (5,2 ) , )
- ey $(2#)
H' J'/G(E )k, Qe wsle é’—fﬂ (*,)kuQue )d'%
2
) e, k, -sky 2!
B \(‘(t?)ﬂ- _isltu J[ﬂ&) (‘ €>€ /3 (+- é>] 4 (5.31)

(1=€)le, e -Jh”(h-?)f[p(z')-("é) /g(h e)] -skevl }) 2

‘ (\ e)z - Sku P

To get the radiative heating due to all frequencies, it is

necessary to integrate over frequency
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oo

which may be done by making use of the function

qu ("G-tp%> Au
E(x) = &—

(5.33)
f Q, dv
Writing )
Qo
fQuau = Q (5.34)
(<]
then
~ k,, %
! -ky
£ (x) = —é—f@k»e dv (5.35)
and

He = T5Q {-[;czvz'fs&-z‘ﬂaz'-f;@') Efs-2)] de’
+ (|_e)r‘:f:9(2'>(51[5 (e+e‘ﬂ - E,[s (an-2- 2‘)])
] (5.36)
. \,.(|-e)/3(h-e')(2'[5(h+3 +z')] - El[s (3h=-2- e')‘-))
+ (1-e)°'/3 (2) (E'[S(-”‘ +2+ ?')J - &'[s(1n-2 -a’):))' ' Az}}

At this point, the assumption of a symmetric temperature gradient

ﬁ(?—') :ﬁ(h-i') (5.37)



- 115 -

will be made, This is in accord with the necessary assumptions that the
emissivities of the plates are equal,
Putting (5.37) and (5,36) in (5.3) now gives the equation to be

solved for B(z') or o(z*') .

5.2,4 Temperature Profile in a Gray Gas
Goody [1956] has gotten an expression for B/F in a gray gas with

slightly different assumptions, That treatment will be presented and
extended to general radiative boundary conditions, to provide an insight
into the problem,

Starting with the equation of transfer

2

dI
== = k(B8 —-TI (5.38)
e ( )
and making use of the Eddington approximation
T = 17 <
(/«, z) = 1 E) ; YN
(5.39)
T(mxez) = 1T (2 y —lEpmlo,
and the definition of the flux
I
F = am /,«._I cl/u, (5.20)

he obtains, on integrating (5.38) over a complete solid angle

4% . Yrk@ - 2Tk (I*+ I') (5,40)
dz

since B 1is isotropic,
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Multiplying (5.38) by u and integrating over a solid angle gives

QT

d + . =") = —k F,
T e (T =
3 clz-< o+ )

2 (5.41)

Eliminating IW and I~ between (5.40) and (5.41) ,

A::i. - 4ol ti + 3% F,_ (5.42)
Now using
F - KB = F_ (5.4)
and
%ii_ - -3-6%- je@ = Qg (5.43)
% - wka(ﬂ.\_;_'?_) -3F, = O (5.14)

It might be noted parenthetically that a gray version of (5.30)

derived with the use of the approximation (5.23) would satisfy an
equation of the form

= -
R _arskeq (Bof)_ 2t =0
K

- (5.45)
[

Putting

= _ 4
h a

L

C
™Q

¥ z

3k
o 3ernr (i + E)

n
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(5.44) becomes

- R, = -3 XA (5.46)

It is now necessary to determine the boundary conditions, For a
general partially-absorbing upper and lower boundary, the condition at

g =h is

17(m) = e 8(n) + =€) T7(h) (5.47a)

and at z =0

- - (o
TI) = €,80)r (1-€)T7( ) (5.47b)
where Gu , € ; &re the emissivities of the upper and lower plates,
respectively,
Since

o= T (T ‘I-> (5.48)
(5,47) may be simplified by writing
B (W) = TE, [I*(h) -8 (L\)j (5.49)

Equation (5,40) becomes
dF +
<a:>u wkrs(u)-av/e[(&-éu)l (h)*eug(‘")]

. ark(a-e)[8(n) - T+ ()] (5.50)

(éd_}l T °u‘<2:€u ) P2 (h) (5.51)



Similarly,

dF, a-€
= Lk ( L o .52
( =) N > ) (5.52)
Obviously these do not apply if &€ _ or € L =0 (mirror boundaries), In
that case

T = I (n) |, I*(°>=I—(°)(5.53)

- = (5.54)
F:é (\") = F, (°> =0
The general solution for (5.46) is
E
F_; = A sinh >\§ + B cosh AT + lf+ ;_ (5.55)
Writing 2-€ =m and applying the boundary conditions (5,51) and (5.52),

APcosh -;\t + M\Bsinh %: z = Akhwm (Asmhl' + Bth) + l__l-)

L+ X
(5.56)
E
AAcoh ‘3\? - )Bs(nh% = odkhm ( Rsinh & 7\ + B cosh 2\—-&‘1_?%.;_1')
These may be solved in a straightforward manner to yield
F [ A (1 l 2
-r —
A - - 4+ f Ak \m'_ mu) sinh
Q—l:] + (_>‘_.)L._‘_ _I_. Sinh L. A cosh 2 A +___ r 7-)\ te hz_) (5.57)
Ueh/m ™, & > ,g.eh
- :)C[Q..sm\n / x L)cow \;)
g = '+.75 akk ~ (5.58)

AN A 2 )( VY., 22 2\
[|+(Qk.h _L_u. Sinkh Lo Cosh 4-&% +""u s10h"L +com 2
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Now

A X F
f—z_ = f(Asmlﬂ 2§ + Becash 2T+ 1—1—32_) G'E
-4
(5.59)
- *B S;nhl_ + 3[}-""
- P 2 t+C
By
f. = ‘.:E___T (5.6)
A Fe = Fr .
or
Fr
ﬁ _ AsidAT + Beosh AT — i+ C
z B KB sah A Fr (5.60)
pY = R 2

2/ 0\ - :
R R

2
A et ¢l ot

Since (5.61) is too unwieldy for clarity, the following special

cases will be explored:
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S
In this case, A =0 by (5,57), and the profile is symmetriec,

After some simplification

l -+ A sinh 2‘
3 Leash AT + cost & Zerm SN T (5.62)
s AL _ -, D) 2 |
r? Tsmh_z + cash = ,’kaémhg.
For the special case m =1 , or black boundaries, this is
N . o
£ Lenndldcon Ty i & (5.6
g QI Siah A Agp 2 son 2 )
s Tsunh Y + Cosh y + Zen 3) =
This is the answer obtained by Goody [1956].
For m =0, or mirror boundaries,
A
/3 Heosh AL + cash T (5.68)
= 5.
A afﬁtnh— + Cosh -;\—'
> = oL

This is the case of maximum radiative profile asymmetry -~ a black

lower boundary and reflecting upper one, Now (5.61) becomes

% = E:if_h sm\,\)\ sabh A0 + f@s h% +ECoh_3__)cmh 4

- R af -
‘ A \ &) 2 ) — S >
4 Qsemhg coshg *‘;%;h(s"‘" & teoh 3][)\ T (5.65)

-\

(;tsmh) +&‘C§\ax)+ar§n oo.»kA + a-%;(s;mln %;_'\;Cos\n >)

The temperature profiles 9(‘;) = J; fé;‘ ¢ are presented in

Fig, 5=1 for certain parameters that might be applied to NH3 . From
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the equations and curves it is clear that the mirror boundaries will distort
the symmetric éradient more than black boundaries will, It was this that
dictated the choice of radiative boundary conditions. It is interesting
to see how much the profile is changed by the asymmetric boundary conditions,

The values used for the gray model of ammonia that is plotted were

=
i
o
N
Q
8

K/p ey = 0,32 cmaz/sec°

Straightforward substitution leads to

L= 5,6

A =2,38

Comparing the results of this calculation with those to be described
later for p = 1,294 atm, NH3 taking account of the non-grayness (Fig. 5-2),
one sees immediately that the gray model does not have as sharp a boundary
layer, that the maximum deviation occurs slightly further toward the
center, and that the gray model has larger effects toward the center,
These are consistent with the picture of the strong lines of a non-gray
gas having a larger short-range effect but a weaker long-range effect than
a gray gas with the same total emissivity,

Because of the crudeness of the estimate of k in this caleculation,
which was done for design purposes, no comparison with observations will

be made,
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Physically what seems to be happening in the radiative-diffusive
case with symmetric boundaries is that near the warm boundary a parcel
of gas is not only losing heat by diffusion, but also by radiation to the
rest of the gas, which lowers its temperature below what it would be
with diffusion alone, The converse happens at the cold boundary., Near
the center, the radiative gains and losses are more nearly in balance, and
the profile does not display so much curvature,

The effect of the boundaries can be understood if it is remembered
that the gas parcel can absorb directly from a black boundary and thereby
gain heat by radiation, while for a mirror boundary the parcel "sees"

mainly colder regions, thus maximizing the radiative heat losses,

5.2,5 Matrix Calculation of the Temperature Gradient
The first numerical method of solving (5.3) with (5.36) in it was

to divide the region between the plates into a finite number of thin,
isothermal layers and write difference equations in the n unknown qi’s .
Consider a series of levels, j =0, +l , +2 , ... +n (n even) (as in
Chapter 2), where j = O is the center, and j = + n are the boundaries,

The levels of odd j correspond to the centers of the layers defined by

the even n's ., The derivatives

expregsed in terms of the ej's . For & =1 (black boundaries), (5.3)

with (5.36) was written in a form equivalent to

8 ;ze.J..+e UN- E e
= 2 , Elstn omm) O, rac
° <,%n>* S -

“")' .
TTS(Q i é:.( € ) [::J af 635~ai$+i):]%%

ol
f=0

(5.66)




- 125 =

where the sums run to the region next to the boundary. For each of the n
values of j at which © j was sought, linear equations could then be

written relating A 6, = ej =8 to all other (n-1)4 ej' s , i.e.,

J
an nxn matrix for the A ej's was obtained, Making use of (5,37)

in the form

AS; = — 4SO, (5.67)

the matrix could be reduced to n/2 x n/2 , The diffusion term for
j=n =1 mst be modified to allow for the shorter distance to the wall,
The terms involving diffusion from the wall provide non-zero terms on
the 1.h,s, of (5.66),

For the case € =0 (mirror boundaries) (see equation (5.36)) ,
(5.67) was altered to allow an iterated sum over a distance equal to the
plate spacing, This allowed for perfect reflection at the walls by
extending the sums from f =0 to f =n , The intervals were counted
from each j 1level to the boundary, then back into the fluid, The quan-
tity &'(sh) = £'(n sh/n) in the first term not evaluated was not
negligible, but because of the form of the terms in the sums, differences
of form x'(fsh) - 2*(sh(f+l)) , £>10 are needed, which cannot be
obtained with high accuracy, Therefore, because the flux divergence is
small at path lengths beyond this, the remainder = (sh) was distributed
equally over the n intervals, Equation (5.66) is then written

o = Olea”*0i+ €3 Tl‘sQZ J+2.(-€+\) Lj' L‘[E(SFL) E'(s\i}

(;'hn )1 )
WS Q 2{ 4 -2% ?J -.L(H'S]'. h[ﬁ'(s-{lé) + g(i“i]

(5.68)
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The systems of equations (5.66) and (5.68) were solved for some
preliminary estimates of situations at convective onset and yielded
results in good agreement with the results of the following section,

These cases used n =10 at 2 cm,; and n=20 at 5 cm, However,

it would have necessitated more work to show that an adequate number of
points had been chosen, In addition, the isothermal layer hypothesis

is clearly in error, especially at the boundaries, Practically, solutions
demanded solving matrices larger than those necessitated by the following

method,

5.2,6 Calculation of the Temperature Gradients by Power Series Expansion
This method was suggested by Prof, R, M, Goody of Harvard University.

One would like to solve for B(z) or ©(z) from (5.3)

48(2) _ d¥e _ o
HR + K_d: = HR + Kdz" (5.3)

where H is given by (5,36) (with the insertion of (5,37))

z h ,
He = TsQ {—- f@({l) EI[S (z—?’ﬂd 2 —fﬁ(z'}E [s(z’-z )]dz- '+
0 h A , | | (5.36)
+(‘__e>‘D/3(?’)(EI[s (€+z.)] - E"Es(aw—z-z‘ﬂ - .)d‘,:]}
Since, as seen above, the temperature dependence of ©°' is

small, this is a linear integral equation of the non-dimensional

variable T , since B is symmetric about the center,

ﬁ_—(z> = A -+ 8;3'-1- C§++ - (5.69)

/3
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It follows

a8 —f‘- (287 + ‘+<’—§3"'"‘> (5.70)

d= =
while from (5.69) by integration

L= A+ 2 4+ & 4o (5.71)

Then substituting (5.69) in (5.36), one obtains integrals of the type
o}

A[EBn(E -1 74T

(<] k\ /
Bf;"a‘[sghc—c’)Jd § ' (5.72)
c)'lh | !

[Tt [sn(t-2')] 4T

Equation ( 5? 71) gives one relationship between the coefficients,
(N = 1) equations are needed to fit N coefficients; these are obtained
by evaluating (5.3) at N = 1 places between [ = 0O and I = 0,5,
By symmetry, the heating at I =0 is 0 , which is assured by the
expansion., In this investigation, (5.36) was evaluated at T =0.3 and
0.5 for the three coefficient curves.

The form in which H was eval ted was

e ’f@ﬂh{(—ﬁ)é[% )4’ fé—“)s[ sn(F-8)]a5" +
+ (- e)ff—(“(zmms 2)]-E[w0- ;+:ﬂ)a; -
O T
.l e)a( "4 ')(z[n«s-kr 5] -Eln(E-315)])d8" =
= meyt [ L) (T (o5 - EERC ““J)“g
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Values of 2 ' were taken from the grap}fs and tables of Chapter 3
for the pressure at which the profile was to be found, The first two terms
in (5.73) were evaluated at intervals of 0,05 in I s and Simpson's rule
employed to form the integral, The second pair of terms was evaluated at
§ =+0,5, +0.,25, 0, and the integral formed by the 7w32°12;32-7
rule, The evaluation of the third, fourth, and fifth terms was based on

the approximate identity

ElnGt2-80] = s+ T-8)] 2 gy,

2 (3= (5.74)
Now
Yo,
j(ﬁw BT+ CT4)(1-€)"~2Z “(shn)-hs(3-T')d] =
=" (5.75)

= (I—e)”;l;k}_"(slnn>z(ﬁ--\— T?.- + "?590_

The last term provides less than one percent of the walue of the coefficients

of A, By, and C,

w:}_c%%'% = a, (F)Ar b (Z)B + c.(5)c (5.76)

To this must be added the diffusive heat
B (2) KA 3
= - —_ = = o (an -+ &4 C
M, L — (B¢ t?)
(5.77)

“c@ s = bp(;)g + C_D(;>C
KA
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and adding to (5.7s)

Multiplying (5.77) by TTE—ZD_

results in

H(T) = © = a(@)A +6@)B +c(B)C  (5.78)

As mentioned, when this is done for N - 1 values of T and
the relation (5,71) included, enough information is available to determine
N coefficients,

In the case d = 500%' cm, , PNH3 =304 cm, Hg, = O .4 atm,, € = 0,352
(a preliminary estimate of plate emissivity), a strong deviation from
linear gradient and sharpest boundary layer of interest for this work was

expected, To see how much effect the number of coefficients had, a four=

coefficient expansion for B/B __ nade, and evaluated at T = 0.5 ,
0.35, and 0,2 ., The results are compared with a three=coefficient

expansion (described above) in Table 5=1,

Table 5«1

8 +La6-0
—— 48 INPIRE N,

h = 5,048 em,, p = 0,4 atm,, & = 0,352

Three Four
;E_ Coefficients Coefficients

0.0 0,0000 0,0000
0.1 0,0226 0,0260
0,2 0,0432 0,069
0.3 0,0565 0,0565
O.l4 0.0498 0,0480
0.5 0,0000 0,0000
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The numbers in Table 5~1 are deviations from the linear gradient,
divided by the total temperature drop, Since A& is about 7° , the
maximum difference is about 2,6 x 10 2 © C , which is close to the
limit of accuracy of the measuring apparatus described in Chapter 2, This
leads to the conclusion that a three-coefficient calculation is sufficiently

accurate,

5.2,6 Temperature Profile Calculations

© -8-146
In Fig, 53 the quantity —( ~ eI for pure ammonia at
several pressures (in atmospheres) is plotted against T for h = 1,987
cm, This quantitiy - (9 — GA;ZAQ is the fractional deviation of

the temperature from the linear gradient, The linear gradient, the
limiting case for an optically thin layer, is then the vertical axis of
the diagram,

In addition, for p = 0,6 atmospheres, the effect of a change of
€ is shown by the broken and the dashed lines, The profile is thus seen
to be rather insensitive to the plate emissivity.

It is immediately apparent that these deviations are not nearly
linear without pressure, This is due to two causess

1, For a gray atmosphere at small values of k , the

deviations are proportional to k ., However, as k is
inereased, the more complicated phenomena of (5,62)
remove the linearity,

2, Although the Planck mean (see Chapter 3) is linear in pressure,

at r of the order of a centimeter and above ¥' becomes

noticeably nonlinear in pressure,
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From both, it would be expected that at lower pressures or
smaller h , the deviations would be linear in pressure,
In Fig. 5-4, —(—9—1‘—%—;—;-5‘2—>is plotted against [ for h = 5,048 cm,
In Fig, 5«5, the coefficients A, B, and C are plotted against
pressure for h = 1,987 centimeters, As the pressure increases, A
first drops below 1,0 , then reaches a minimum and begins to return, B
climbs to a maximum and begins to recede toward zero, and C also shows
signs of bending back to zero, This is fully in accord with what was
seen in Seec, 5,1, where as the medium became opaque the profile again
became linear, The fact that C is still increasing after A and B
have passed their minimum and maximum respectively indicates a concentration
of the gradient in the boundary layer and is an indication that higher
powers of t should be included in the expansion at this point, A plot

for h = 5,048 cm, shows the same type of behavior,

5.3 Radiative=Diffusive Flux Calculation

5.3.1 Gray Theory |
Consider that in (5.4)

F(2)-kA(E = Fr (5.4)

Fz(z) and B(z) depend on the radiative parameters and so, in general,
must F‘l‘ . This possibility may be easily explored for the case of a
gray gas with the results of 5.2,4, Consider only the case of symmetric

boundaries to radiation my=mo=m,
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= X

F'a = R = Bcesh XL ~+ e

I

(5.55)
x

where F, denotes the radiation heat flux,

R
With the use of (5.58)

K, = F"”[Iic)( |- = _Lemh’*) (5.79)
_+.2k\ﬂm S

Letting F = diffusive flux

xCa_sH ); + cosh A Q%:ms’nh _3:

F =- = —~K
D KA ﬂ ;UCSM\'\ A tcom A 4 X siah A (5.80)
o= X akhm &.a
or
p)
')Cco.s\ﬂ /\; + Coslq% +mm5'ﬂ"\ }‘
F_‘r %—Zsinh %_— + cosh l -‘--‘!:‘L\m sinh %
z - (5.82)
-KA /)C co.shi ~ Cosh )\E +¢>2EH sinh 2
2 2 2
I'f‘f Qosh 3~ + 6?:\3\-"\ sinkh =
b A L A
(H—f)(cbbh Y + ;)E-m sinh X ) (5.83)
B Qﬁ 5\!’\\'\——' -‘-Coa\n) + 7\ Sc'n\'\ __>_\_
-A QH)‘\W‘ o
‘ — ﬁ-‘ (508’4’)

)
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which of course does not depend upon E , but depends markedly on m ,

Imagining that corresponding to F, there is an effective conductivity,

K L+ £
ot _ 7c (5.85)

- -
w 2 coth 7‘ ) J
o * e ‘+i€hm + ;:

The present apparatus always measures a K(eff) , mnot K , due

to the radiative flux, Let (5.85) therefore be normalized with respect
to the Keﬁ.(O) s the effective conductivity at zero pressure., (In this
and later contexts, zero pressure means that the opacity is zero, but the

molecular mean free path is much less than h , ) It is easy to show

that
Lim Keee  _ Kege(o) _ Th
kRh 20 K = i< = 1+ —x (5.86)
so that
Kege l \+ !

S 5 (5.87)
Kgglo) 1+ J (:__m.hw + ?_;—%:‘(Hf)-] + X!
This expression was first derived by Goody [1963], based on a different
approach, This has been plotted in Fig, 5-6 for several values of € ,
with d =1,987 em,, K for NH; , and all temperatures set at 25° ¢,

The phenomena presented in Fig, 5.6 can be understood in the follow=-
ing ways. The radiative flux between the plates depends on the emissivities

of the surfaces and the attenuation of the gas, As the optical density
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increases, the direet flux from plate to plate is decreased and finally
stopped altogether, The diffusive flux from the surface depends on the
local gradients, As the optical density is increased, as noted before,
the gradient at the wall increases, indicating an increased diffusive
flux, Beyond a certain point, increases in optical density decrease the
gradient and the diffusive flux returns to its original value, The
initial increase, then decrease, in total heat flux is the result of the
interplay of these forces, Another way of seeing the phenomenon is to
consider two mirror boundaries, For very low gas pressures there is no
radiative transfer between the two plates, and the total flux is the con=
ductive one, K .. = K ., With increasing optical density, the heat will
be transmitted within the gas more easily from parcel to parcel, The
initial increase is therefore to be expected,

It is a curious feature of this presentation that as k 1is
increased indefinitely, the ratio of radiative to diffusive conductivity,

= —EJE£2-3 goes to zero, so that the limiting conductivity is the

3Kk
molecular one,

5.3.2 Evaluation of the Non-Gray Flux

5.3.,2,1 Derivation of the Equations
With a hueristic journey through the lucid uplands of gray gas

phenomena behind, one descends once more into the non-gray murk, It is

now desired to evaluate

— A(® _
F (=) - X = = F_ (5.4)
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for a non-gray gas. sz(z) and B/B are given by (5.,30) and (5.,69)
respectively

z h
—sk, -z , _
'qu (z) = - mQ [fﬂ(zl)e (e Z—)Ai/ _,_/KS’(-Z)G"S““’(EI z&e/"'
2

h |
(._e_) €-§Eyi _5|€.u(h‘2)

] b
l+(1-€) e b S/ﬁ @)e e (5.30)
o

h

T4 (l—é-)e’-s“'v"‘

~E _ ppert+ gt (5.69)
>
The values of A, B, and C are known as a result of the
operations described in 5,2,5.
As in the case of the gray fluid, the flux could be evaluated at a
specific or general point within the fluid, Because of the fact that
there are two processes, acting in opposite directions and leading to near cancella-
tion, a system of avei‘aging across the fluid was adopted for greater accuracy,
The following computational scheme was suggested by Professor R, M,
Goody of Harvard University., n

h ]
— |
F o= .‘\:f:ae -:-\fi dz — K]:fﬁ(i)it
o

o o

\ (5.88)

&(h) -8 (o)
2

\
--—‘: Y—'chz--—\’(

0
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Because of the symmetric profile, the third and fourth integral in (5,30)

are the same, Equation (5,30) may be written as

da 'fauﬂ’ (z

‘;\‘yi’: -Sku(h'a") (\l‘-e) (z -Skui =
+[6 + e J H_(\_e_)e—sku /3 )

Integrating from 0 to h with respect to 2

—

»= .zau[e(k) e(o)] f Q,p ()’*““”‘ 2 e’sk" ]Ae' +

_5 ke, (2- 2—) —sk, (2 —i_'-)

fa 6(e)e

skey,
_k,k n
4 al=e)t - =) U p(F)e sevE, ’] (5.89)
-skyh ¥
5k”[\+(|—e)@ “'J
it o - lem-e@] +
—
2(2-€) (=') e_-s‘cvz"d 2! (5.90)
kv[‘ ~(1-€) e_—é\eth ijﬁ

After integrating (5.89) over frequency, the new function

x X%
~ ey
£ (x) = J‘E(%)dx = éFfQ"(‘-e 'x)dva\x
0 o o
00 oo (5.91>
LSy 'k”xd -4 _@_V_c\-v
= % * Q ,(kv “ Y QJ\QU
o o

is substituted in the fomm
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013 Oig

! v  —sk, 2’ g sz ! | v 4

-~ | v = .92
Q f . < (s 2 I

into the curly brackets of (5,90), where it is found that the third term
on the right-hand side of (5,92) exactly cancels the first term on the
right-hand side of (5,90), giving

3-:-5 = a(a'e>j£(?){[§(si')-—5%'] - (1 -e)[§<s(z--rh)) —S(z'-f—l«.)J +

(5.93)
+ (- ) [E(stervan) —s(z'san)] - - } e
Because of the symmetry of B(z') ,
femener = gl (nm2)]a(e)de
L (5.94)
= [e (n) - © (0)]
and recalling 00
| 1 " n
— = Z(—l) (1-€)
L{w)
l-e) . 2 (-1) T (1—E)"
- a(a- e)ZJ (z')s2' (-1) )" (1-€)" = —asjz'ﬁ (2')dz'
’ (5.95)

= = sh [6("‘) - 9(0)]

W

+;(a—e)z fp(z‘)nsh (—\)"'H(.- e)“:f-(‘—;-_%ib-[e(h)‘é("):) (5.96)
h:Oo

and finally
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BT L aofhfEen om0 T -
° (5.97)
+ (V- e)* T (s (2’ +2h)) -,..] da'— gg[e(h)-e(o)]sh

The second term on the right is simply the radiative flux in the
absence of intervening material, while the integral contains all the
changes caused by the change of optical depth, The integral's convergence
is assured by the alternation of sign and the supposition that beyond a
certain distance x , g (sx) varies linearly with x , This latter is
another way of stating that beyond a certain point all the radiation that
matters is included and that the emissivity has reached a constant
limiting value (by definition < 1,0 ) . The convergence, however, is
slow for small € |,

It is possible to take care of the portion beyond which the
function g (sx) becomes linear in x , Evaluating Ag out to the n°"

term, where it becomes linear, the remainder of the terms in the square

brackets in (5.97) may be written

R, =) -6 (B onE, )~ '~é)”7'(§;+Qsh’in)*'j(s.%)

ne | et g,‘ E—-ﬂéh
= (-\) (l-—e) —y + (a-e)"t} (5.99)

by again using the relationships (5.94), This cerrection term may be

fairly large, but so long as the linear hypothesis is obeyed, it is an
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analytical solution, In practice, the second term in the bracket of (5.99)
should be much less than the first, a situation always obeyed for n?2 6 .

5.3.2.2 Computation of the Non-Gray Flux

[l

The values of §
~ o
E(x) = fE (s)ds

were obtained from the data for £ of Chapter 3 by integration using
the trapezoidal rule,and plotted, Values were subsequently picked off
the plots for use in the formula (5,97)., Consider now

sh

h
AF - TQR(-€e)3 %QFG#)-('-&)ECS(*'*“»*"' d& " (5,200)

o

By changing to coordinates of § s integrals of the type
=

I, = J(P"BQ&*CGQ)%V[’“(;‘*%— #J4T (a0

>

are evaluated and summed in

g

AF = TGO [Z

sh 5

(l ——e)" It —+ @Yl] (5.102)

The integrals I were found by evaluating the integrand at C=o0,
+ 0.25 , + 0.50 and sumed using the 7-32-12-32-7 rule, This was done
for values of n up to and ineluding 10 , Values of A Fn were found
for values of n < 10 with (5,102) and compared to verify convergence,
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5.3.2.3 Results of Calculations of Flux Changes
With A F calculated as some number times B , it is an easy

matter to write

A
- & -
Fe = 2-e "QMA

At p=0, AF=0, and

o) = =3 | 5o TaN ~ KJ (5.103)

At a pressure p ,

AF( = - Ea—“f&i)/? [Z 1+ Ty(e) + ®, (P):] (5.10)

and

AF (D) T ‘;Z'S("I ~¢) LLZ:(“ G)LI{,-(P) +®H<P)]

i-

(5.105)

The results of the calculations at h = 1,987 cm, for several
values of pressure are given in Fig, 5«7 and similar results for h = 5,048
cm, in Fig, 5-8, In both cases the results have been calculated at three
emissivities; the central one ( € = OA. 37) is the one calculated from
measurements in Chapter 2, The outer two illustrate the effect of alterered
emissivity, The effect is quite large, As noted in 5,2, this change of &
has very little effect on B/B , and it was found that the change of B
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with € produced no change in the integrals, The real effect of emissivity
is outside the integrals,

The lines in Figs, 5-7 and 5-8 are drawn smoothly through points
that have some scatter, This seems to be due to the nature of the approxi-
mations in the radiative data and the sensitivity of the slowly converging
sum to these data, By putting in one mean intensity per range, each
range has its maximum effect in a rather narrower distance interval than

it would with a smoother distribution of line intensities,

5.4 Measurement of the Temperature Distribution
5.4,1 Conditions

Because of the experimental complexity of the measurements of
temperature distribution and the slightly different conditions necessary
for their maximum accuracy from those of the best heat flux measurements,
the two were not made simultaneously, Also, because of limitations of
optics sizes, a profile across the whole fluid could be made only at a
separation of 1,987 cm,

In order to have a clearly measurable effect, it is desirable to
use longer optical paths, which here means higher pressures, Since any
effects which distort the temperature are linear in temperature difference,
Ae, it is desirable to use a large value of this also, However, large
pressures and temperature differences indicate a large Rayleigh rumber if
the heating is below, and dynamical instability.,v Since fhe radiative~
diffusive balance holds no matter ﬁhich way the heat flux is directed, it

is clearly better to heat the upper plate,
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As the profile cannot be measured at the onset of convection, what
is done is to show that in two well-explored cases, the observed profiles
can be calculated very exactly, With confidence in the techniques, the
profiles are then calculated for conditions at which the onset of convec=-
tive instability is measured.

Because of the labor of taking and reducing the data, only three
runs were taken, one on air as a check in a non-radiative situation, and
two in ammonia at different pressures, Each run consisted of taking six
photographic plates -- three of the system with gas in it, and three
with the system evacuated to give an instrument zero,

The experimental conditions are given in Table 5-2,

Table 5=2
EXPERIMENTAL CONDITIONS FOR TEMPERATURE
DISTRIBUTION MEASUREMENTS

Quantity | Run 1 Run 2 Run 3

Date Aug. 23, 1963 Sept. 6, 1963 Sept. 16, 1963
Gas Ammonia Air Ammonia

Nac su61 R Su61 A su61 &

P 53,00 cm,Hg, 76,05 em, Hg. 98,33 cm.Hg.

0.697 atm, 1,0007 atm, 1,294 atm,

IN:) 7.26° C 6.85° C 6.79° ¢

cs 3,842 x 107 2,932 x 107 3,802 x 107
Po/Pg 0.6273 0.9163 1,1825

L 3

G )o 1.03457/6, 1.00272/6, 1.06677/8,

0 300.60° K 298,07° K 298.06° X




The formula, as derived in Chapter 2, is (2,32)

- -2 Lo -0 '_§£_>
N No} Cs /,s( 3 o>(p Yy (5.106)

A

VAC

where the expression

Qe =21

(]

has been inserted to enable calculation of the effective length, Because
this is a Michelson interferometer, the space is traversed twice, leading
to the factor 2,

The bars indicating means of upper and lower halves have been
suppressed, but means will be understood in this chapter,

The expressions 610 - 9_10 and A& will be used interchangeably,

N, - N, is measured for j =0,1,3,5,7, and 93 A6 =0 (the

J

; = (L 3R -
equation is the trivial one 0 = 0 in this case), ( y: &e)a) P_: ) Aac

and c, are known, but Qo is uncertain because of the dead space
between the plates and the windows, disturbances of temperature within
the gas by the walls, and the fact that the edge of the plates may be
slightly different in temperature from the center, Thus an effective Qo
must be found, Taking means of the fringe measurements of the lower and

upper halves forces

N, =N = "(N-j - NO)

J

so that N 5 No is an odd function of j . Fitting

- 3
Ny =N =aj+bj
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gives
b= (1.72 + 37) x 107

i.e., b 1is not statistically significant, Refitting

gives
a = 0,27048 + 0,.00082
and
NlO - No = 2,7048 + 0,0082

Using the values from Table 5-2, after straightforward substitution
in (5,106), gives
fo =23.86 +0.07 em,

Note that this is five percent shorter than the physical length of the
aluminum plates,
Equation (5.106) can also be put in the form

% "% . l*———N" " e (5.107)
@m N 9-'lo ek N‘O—NO
or 1 fringe =1,27° C .
: (GJ" QO)I_
The normalized linear temperature would be ——————~ = j/20,
Q(elo—e.“))
Subtracting the measured temperature from the linear temperature,
normalizing, and using the fact that © = eo
- 3pe : .
Ao 2 \ lo N, —No, ’

The measured data and results of Run 2 are presented in Table 53,
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Table 5«3
DATA AND RESULTS OF RUN 2 (AIR)

. & —& (8 -9-Fhde) (§-8 -, 400)
J Ny - N, Ao Y= )
Q@) (2) (3) () (5)
10 2,7048 0, 5000 0.0000 0.0105
9 2.432 + 0,018 0,496 0.0004 + 0.0033 0.0096
7 1,908 + 0,015 0.3527 =0,0027 # 0.0027 0.0046
5 1,340 * 0,014 0.2l77 0.0023 ¥ 0,0025 0.0074
3 0,804 ¥ 0,010 0.1486 0.0014 ¥ 0,0018 0,00
1 0.274 * 0,009 0.0506 =0,0006 * 0,0016 0,000k

The second column in Table 5«3 gives the measured fringe displace-
ments with their standard deviations, The third column gives the fringe
displacement at each j relative to the total displacement from center
to boundary, The near~linearity is very clear, The fourth column contains
the difference between the measured temperature and the linear temperature
with its standard deviation, All of the measured points lie
within one standard deviation on the linear gradient,

This serves as a validation of the instrument
and procedure, The numbers in column (5) are those that would obtain if
{ = 24,36 were used,

0

The N can be well fit by a curve of the form

- No for NH

J 3

ijNozaj-i-bjB
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The extrapolation of these values to N N

10 - 70
that are larger than those for air, but these curves contain only j3

yields values of ﬂO

terms, while the theoretical curves contain [ (i,e., j5) terms,
To fit a curve which had a j5 term would almost certainly lead to a
coefficient of no statistical significance, Since the effect of these

terms would be felt most strongly in the boundary (0.05 h) , a value

of Nlo - N9 has been taken from the calculated curves and added to
Ng - Ny to give Ny, = N, . Substitution of these values in (5.107)

with the numerical values of Table 5-2 gives determinations of QO =
2431 £ 0,24 em, for Run 1, and Y = 24.38 £ 0.12 cm, for Run, 3 Using
the weighted mean value QO = 24,36 cm,, the data and results for ammonia
are given in Tables 5.4 and 55,

Straightforward substitution of the above values in (5.106) yields

&, -8, = I1.399 |N; — N,

or 1 fringe = 1,35° C in Run 1,
For ammonia at p = 98,33 em,Hg., putting the data of Table 52
into (5,106) yields

eJ -6, = O.(%8 ]NJ- ‘No)

or 1 fringe = 0,69° C in Run 3,
The explanation of the column contents in Tables 54 and 5-5 is
the same as that for Table 5-3,
Photographs of fringes in the different cases are shown in Fig, 5.9,
The interferometer temperature results are presented in Fig, 5-10,

where the deviations from the linear gradient as a fraction of total
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Table 5-4

DATA AND RESULTS OF RUN 1
Ammonia, p = 53,00 cm,Hg,

N; =N, —(e0-6-540)

J Nj - NO Q(N«o_ No) ae

Q) (2) (&)

10 2,682 0.4990 0,0010
9 2,330 + 0,026 0.4335 0.0165 + 0,0048
7 1,758 + 0,016 0.3271 0.0229 + 0,0030
5 1.215 + 0,009 0.2260 0,0240 + 0,0017
3 0,707 + 0,009 0.1315 0.0185 + 0,0017
1l 0.234 + 0,004 0.0435 0.0065 + 0,0007

Table 5«5
DATA AND RESULTS OF RUN 3
Ammonia, p = 98,33 cm, Hg,
J
e; -8, - (6-B-3349)

J Nj - X —4de Ao

(1) (2) - 3) (4)

10 4,933 0.5004 -0, 0004

9 L,240 + 0,023 0.4301 0,0199 + 0,0023
7 3,168 + 0,015 0.3214 0,0286 % 0,0015
5 2,175 + 0,013 0,2206 0.0294 + 0,0013
3 1.276 + 0,017 0.1294 0.0206 + 0,0017
1 0.417 + 0,020 0,0423 0,0077 + 0,0020
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Figure 5<9
(following page)

PHOTOGRAPHS OF INTERFEROMETER FRINGE

The experimental conditions are as follaw:

a, Air p = 76,05 em, Hg, A0 = 6,85° ¢
b, Ammonia p = 53,00 om, Hg, A6 =7,26° C
c. Ammonia p =98,33 cm, Hg. A© = 6,79° ¢
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PATR™ 76,05 cm,Hg,

Pyg, = 53.00 em. .

i ‘) ! pNH;' 98.33 om.Hg.

Broken line is
explained in text,

l | |
0 0.01 002 003  0.04

(e5m)

Fig, 5-10, MEASURED TEMPERATURE PROFILES IN AIR AND AMMONIA

Plate spacing 1,987 em,, A® = +7° C, The full lines are
computed, The points are measured and the horjzontal lines indi-
cate probable errors, lo(NHS) = 24,36 cm, [ (air) = 23,86 cm,
€ = 0.417,
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- 3
© +3; 06-0
temperature drop, Ao , is plotted as a function of § = j/20 ,

The results for air are presented for 'Q’O = 23,86 cm.,, and grouped around
the line of zero deviation, They would cluster around the broken line
if 9.0 = 24,36 cm,were used for the air results,

The ammonia results are presented using QO = 24,36 cm,, and can be
seen to agree strikingly with the theoretical curves calculated for these

particular cases by the methods of 5.2 , and using € = 0,417,

5.4.3 Precision of the Temperature Measurements

© 5.4.3.1 Relative Precision
The relative temperature distribution is given in this system by

8; —&, I Ny =N

e\o —elo N,a - /Vo

9 -8 N; =N,

8, -6, - Nio= N, (5.109)

|
The quantity @,, — ©, = 5 A© was measured to 0,01°C/7°C ,

about 0,15 percent, N, = N

3 0
fringe, from 0,28 « 0,37 percent of the total fringe change. The

was measured to between 0,015 = 0,020

accuracy with which © 5" 90 is known then clearly depends on how well
Nlo - NO is known,

For air, a straight line of the form

Ao
ijNO«-a,)



was fitted to obtain a = 0,27048 + 0,0082 , This of course makes

Ny = N

= 2,7048 + 0082
an uncertainty of 0,3 percent,
This scheme assumes that Q'O is independent of j , One way of

interpreting the uncertainty of N,. = N, is as an uncertainty of L. .

10

The results obtained here, that with the best fQO the deviations from

the linear gradient are random and of the order of 0.02° C, would

indicate that an { 3 independent of j is a very reasonable assumption,
The procedure for ammonia has been described above, It is more open

to question but essentially is the same procedure used with air, except that

— q -
© + 3, 48-6 .
the measured N9 - No was used with the theoretical A to give

Ng = N o

The reasons why N. . = NO cannot be measured directly are;

10

1. Reflection from the plates at the boundaries blurs the fringes,

2, Refraction in the boundary layers makes it unclear what mean
layer is being sampled,

3. Because the edge is asymmetric with respect to the line j = + 10,
the value measured there is actually an average through the region
that should be assigned to a position in that region, not on its
boundary,

i, The fringes are highly tilted, reducing the contrast between
peak and trough on the densitometer trace (due to the finite
size of the sampled area) and making any uncertainty of mean

height of the traversing light very important,
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5. Because of the finite height of the sean, it is impossible to

get a reading which corresponds to the edge in any case,

Thus, for relative precision, if there is a way of obtaining the
NlO - N0 with the 610 - 60 s Or indeed measuring both temperature and
fringes at any two points with accuracy, this procedure will measure devia-
tions to 0,25 percent as a limit, The limiting value when NlO - NO is
not known with unlimited accuracy will be of course lower, Equivalent to
measuring NlO - NO is measuring interferometrically or adequately guaranw
teeing [, . Then different states in the same fluid under similar con-

ditions can be compared and their difference will have this precision,

5.4,3,2 Absolute Precision

A measure of the absolute precision might be obtained from
the variations of P.o between different cases, Collecting the previous
resultss

20 (Run 1) = 24,31 em,
pO (Run 2) = 23,86 cm.
9‘0 (Run 3) = 24,38 em,

9’0 (mean ) = 24,18 cm,

The maximum deviation from this is 1,36 percent, For a

temperature difference of about 7° C s such as obtained here, this
&+lae-¢6
A

I = 0,5 ., This kind of change is equivalent to turning the gradient

would amount to 0,10° C s or 0,0068 in the plots of at

line, still a straight line, until the end is displaced by + 0,10° ¢
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e+Lase-o
% , or by 0,0068 on a plot of Y

on a plot of 6 vs,

vs, ;.

This is a reflection of the fact that QO cannot be controlled

I
completely with this apparatus,and that é%)(;g—gé; o? and c, are not
s

known with great enough absolute accuracy. Comparison of different states
of the same fluid is much more accurate than the same state in different
fluids,

Instrumental difficulties, such as turbulence in the portion of the
interferometer arm exterior to the tank, vibration, or drift in inter-
ferometer dimensions apparently were not serious for these measurements,
The three Nj - NO plates in a given situation were generally within 0,02

fringe of each other and showed no systematic trends relative to one another,

5.4, Commentary on the Temperature Profile Measurements
Interferometfic techniques have been used by Kennard [1941] and

Croft [1958] previously, but only to 0,1° C and 0,2° C respectively,
Both recognizqd the need to apply end corrections, Kennard guessed
several forms for his, Croft measured an end correction and read his
temperatures to 0,2° Cy but since he plotted on a very condensed scale,
no accurate numbers are presented,

Thus, in this experiment the techniques have been applied with a
precision five times that previously recorded, or 0,02o C. The apparent

difficulties of knowing .po s or what is equivalent, N are

10~ "0 °?
rather serious and indicate that special precautions must be taken; i,se,,
physical dimensions cannot be used without making certain that they are

applicable by calibrating the interferometer with a known profile, To
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this accuracy also, the refractive indices and equations of state are not
well enough known for different fluids, indicating that a separate
“"calibration" is necessary for each one,

The results presented in this section indicated that the temperature
profiles existing in the fluid can be calculated with the techniques of
Sec, 5.2, and thus these techniques can be applied to the cases of
interest in Chapter 6 at the onset of convection,

Of great interest is the fact that this is the first laboratory
demonstration of the validity of some of the techniques used in studies
of atmospheric radiation «- use of an emissivity or transmission function
for different bands to treat the non-grayness of the atmosphere, and the
use of the diffusivity factor to treat the angular integral of intensity.
These cannot be tested in the atmosphere because of non=static conditionms,
Here, if only in the case of small length scales, they have received
their first confirmation, |

5.5 Measurements of Static state Heat Flux
5,5,1 Heat Flux in Air

The process of converting the measured temperature differences Ae,z,
0£©,, , and AS to 5 has been detailed in Chapter 2, These, for
nonconvecting cases, were plotted again pressure in Fig, 2- 2 . Since
no pressure dependence is expected and no statistically significant
pressure dependence is observed, the mean is the simple mean, The

values are those used in Chapter 2 to solve for € and 1/f ,
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5,5,2 Heat Flux in Ammonia

The values of nonconvecting S are plotted against pressure for
ammonia in Fig, 5-]1, In this case it is quite apparent that a pressure
dependence exists, a fact which is also clear on the raw A® *s and was
noticed in the first ammonia runs, Also shown on the axis are the inter-
cepts, §é(0) = 0,3312 and 55(0) = 0,2284 3 which were obtained by
fitting the curves in Figs, 57 and 5«8 for € = 0,37 (adjusted to the
proper scale) to the data, Ideally, these should be calculable from
1/, e, #nd KNH3 o This proved to give results in slight disagree-
ment with the data, and instead the best values of the intercepts were
used to calculate a Kfit . The temperature corrections were first made

according to the data in Table 5-6 (assuming the same temperature

dependence for Kfit as for KNH3>'

Table 5<6
DATA FOR CALCULATION OF S(0) FOR AMMONIA

Plate K(e) o 3
Separation . No.of _erg x 100 K& 2 ( +223'-1§)-3
[om, ] K Cases cm,sec.deg, K(25°) ( 298,16)
5,048 + 0,006 296,99 34 2,411 0,9960 0.9883
297,99 37 2,420 0,9995 0,9983
0,9978 0,9935
1,987 + 0.002 301,21 118 2,448 1,0113 1.0309

298,81 48 2,428 1,0028 1,0066
1.0088 1,0239
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Fig., 5-11, MEASURED HEAT FLUX IN PURE AMMONIA AS A FUNCTION
OF PRESSURE ' ’
e h =1,987 cm, x h = 5,048 enm,

Ringed points are for upward fluxes, Lines
are theoretical curves from Figs, 5-7 and 5-8,



Using the constants of Chapter 2 and the relationship

§=¥(—E— + Oif) (5.110)
the Kfit are now calculated to be
Kpyq (2 cm.) = 2,400 x 107 SoE o (-0.867 pot. from 2,421 x 10°) [Ch.4]
= 3 ___erg 3
Kest (5 em,) = 2,232 x 10 om 560, dog. (=7.81 pct, from 2,421 x 10”) [Ch.4]

The value for h = 1,987 cm, is well within the uncertainty of measurement,
The discrepancy at h = 5,048 cm, merely means that at 5 cm, the apparatus
does not function well as a device to measure absolute conductivities, that
there are leakages and edge effects that now become important, (Even
here, since a detailed analysis shows that these intercepts depend on
KNH3/Kair and each of the conductivities may be off by 4 percent, 6
percent of the difference could be inaccurate data, )

Also on Fig, 5-11 the calculated fluxes are plotted as the solid
lines on the same scales, The agreement is reasonable, The integrals
of 5.3 have enabled the calculation of the change in heat transfer
caused by the changes wrought in the radiation field due to the inter-
action with the infra-red active material, This calculation certainly
gives changes of the right sign and magnitude, While not as striking as
the temperature profile measurements, the agreement must be regarded as
satisfactory and some corroboration of meteorological procedures for

obtaining fluxes,
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5.6.3 Commentary on Heat Flux Measurements and Calculations
With the agreement between the calculated heat flux and measurements,

justification is found for predicting the heat flux at the onset of con-
vection, Data was at hand from beyond the onset point, derived from
situations in which heating was applied above, but the nature of the
interpolation now has a theoretical guide, making possible a more confi-
dent location of the onset point,

This appears to be the first measurement of the pressure effect on
heat flux, It is surprising that it has not been observed before by those
making measurements of gas conductivity for infra-red active gases -
especially NH3 ’ 002 s CO, HZO , and HZS s Wwhich have rather large
emissivities, The answer is probably that due to the use of small dimensions,
low pressures, and thin tubes with concentric wires for modern gas-conductivity
measurements rather than this sort of Lee's disc apparatus, the effects
were quite small,

This effect could be of importance for heat transfer in industrial
apparatus, especially those with non<black boundaries, although dynamic
effects would certainly have to be taken into account,

The effect itself is perhaps worthy of some study to verify the
effect of h , € , and pressure, In particular, one would like to find
the transition region in which increasing the pressure causes an increase,
then a decrease of Keff o It also seems possible that a series of measure-
ments like this might be inverted to give direct information of 3 ( 14) for
gases and mixtures, This could be useful for gases whose spectral charac-

teristics are not as well explored as ammonia,
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As for the temperature profiles, there is interest in the fact that
this is the first verification of the approximations used in atmospheric
radiation calculations for fluxes, Again, this means the use of emissivities
and related functions to take care of the integrations over frequency and
the diffusivity factor for the integration over zenith angle, Experimental
underpinning, at least for small scales, has now appeared,

While it is true that temperature and flux calculations were based
on solid physical principles and empirical observations, it is nonetheless
comforting that they hold so well in a closely defined laboratory system,



CHAPTER 6
THE ONSET OF CONVECTION

6.1 Introduction

The difficulties of doing an exact non-gray treatment of convection
are shown, Since the physical principles are believed well understood,
the stabilization is divided into the part due to the non-constant
gradient, SB s and the part due to the radiative dissipation of
temperature perturbations, SH . A method of Chandrasekhar is used to

calculate S, . A dimensional argument shows how SH may be calculated

B
if the radiative dissipation time is known, This is expressed and cal-
culated for ammonia, The measurement of the critical Rayleigh number
and data reduction is then described, The results of the measurements
of critical Rayleigh number and radiative stabilizations are presented

and discussed,

6,2 The Problem of Convective Onset

In Goody's [1956] treatment of convective onset in a radiating
fluid, as noted in Chapter 1, there were two causes of stabilization:
the more rapid dissipation of temperature fluctuations by radiation and
diffusion than by diffusion alone, and the concentration of the gradient
into the boundary layers in the initial static state, The same features
were appearing in Spiegel's [1960] treatment, but by considering only
B = §', he eliminated the gradient stabilization, These two causes of

stabilization are expected for the non-gray case also,
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One might expect that the same type of use of emissivities as
in Chapter 5 could be used to express H' , the rate of perturbation
temperature change, What is actually needed is the perturbation rate of

temperature change as a function of wave number

for a temperature disturbance of the form

{(a,E +ay7)
& (%,4,2) = o(f)e ° (6.1)

For a gray medium and this form of temperature disturbance, Spiegel [1960]
showed that
= _ =1
_ur—rl

peett = ””‘QEQ(F)[& ;,,'"gm.--.:-/)};v@') (6.2)
F,

Y |F -+

Vo od _G_IE';,IS | | /
HI(E) - 4rRQ ), e e =G(5-T)FEGE S (4 5

/oc‘, 2 s* —-|
=Y Vl-\-Qﬂﬁz
52

He remarks that the integral over s 1is an incomplete special

Hankel function of zeroth order,

The ingenious process by which Spiegel went from (6.1) and (6.2)
to (6.3) unfortunately does not seem to be immediately convertible to
the non-gray case in forms like those seen previously, Much of his
analysis can be altered to a general non-gray form, but more work needs to

be done to allow a non-gray solution making use of perturbation emissivities,
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Another approach would seem to be through machine methods, which

make possible the calculation of numerical kernals

Ky (P» C"a'/ C ‘C’)

which could be used in the form

HIE;) = ZKN(‘” 7T ) oczm(m 31 LA [E ¢ )

to solve for the critical Rayleigh number, The KN would presumably be
calculated from the r '(r,p) and Z (r,p) of Chapter 3,

The complexity of Spiegel's calculations, even with a closed form
for the kernel in (6,3), and the consequent inability to do very much
mathematically with the results lead one to look for another approach,
Spiegel provides a valuable guggestion.with his dimensional argument,
which will be taken up later,

Consider the equations of the classic Rayleigh problem [see Pellew
and Southwell, 19407] after the assumptions of exchange of stabilities,

horizontal periodicities, and non-dimensionalization;

2 oL h* -
(D2-al)w = - %u 7S = F (6.1)

HE = fFw (6.5)
with boundary conditions w=Dw=F =0, [=+1/2, where H isa
linear operator, relating the temperature rate of change at any point to
the temperature throughout the fluid. Equation (6.5) may be written
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27 a
_ 2y - _ J4hpa
‘;H_ = ﬁ(Dz' 2) W y

M
g

(6.6)
_ Ru2K 2
hec e z
This is the form for the generalized heating in the eigenvalue
problem governing convective instability,
Bisshopp[1960] has shown the existence of several stationary principles
for a system of equations like (6,5) and (6,6), which may be written

@*-eDw = F

Ra. — w (6.7)
lna'/a Cp /3

1

WE

F

(Dz- a2)2 is self-adjoint [Ince, 1944], H 1is also self-adjoint for
diffusion, (D°- a®) [Ince, 1944], and for radiation [Spiegel, 19581,
Bisshopp has shown that a set of adjoint equations may be written imme-

diately, which here are

A -/

(o> -a?)*W = FF

AL Q.lK ~
fF = Reg o (-8

~/
with boundary conditions W=Dw=F =0 at 0 =+ 1/2 . One can then

prove that for

4
> fi’-_vlj('Dl-— ">3w dt
Ro- Wakd Vo '- (6.9)
/ o
K , 2,? f_:, wdf
o A
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s
. Wi (02-a¥) Far
R& _ \ﬂ/OCF -l 7 (6.10)
T T
> Ve
_./L

Ra 1is stationary when (6.,7) and (6,8) are satisfied, The forms
(6.9) and (6,10) are equivalent, Note that the perturbation smoothing
stabilization is in the numerator and the gradient stabilization in the
denominator,

A standard way [Chandrasekhar, 1961] of solving equations of

this sort is, because of the boundary conditions on F , to write

oo
F = Z 4n cos[(&nH)TC] i (6,11)
el

The first equation of (6,7) becomes

oo
oten Snelord]

ne= |

which can be solved, because of the linearity, to give

v

w =D Anwn(D) (6.19)

=\

where Wm is a solution of

(DL—OI)LWM = cos[(lm?‘)vC] (6.14)

satisfying W =DM =0, {=+1/2,
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Substituting (6.11) and (6,13) in the second of (6.7) gives

<
h/:cP

2 i A, coflam)n] = S22 5Ta v, (3) (6.15)

(24}

Chandrasekhar multiplies by cos (2n+l) m E , and integrates to get

Aalcos[(ane )T CJ ad cos[(&n\*')'"f]

(6.16)
= ———-——Ra D‘LK N :/—E‘ m
where hlﬂ ce AM( ‘ﬁ‘ )
Vo
fcus[:(.ln*-\)‘rrC]'é;': WM(Q“IC = ("‘ \%' M)
=

This gives a secular determinant in the Am's , Which can be
solved for Ra , Very often the calculation is extended to no more

than one term, however, This indicates

Vo
_!, o (\TC H cos (‘n'C d,t
Qo = "Z2ce a.(vf +(T8) ) (6.17)

= Jhewzamm e

which is just what (6,9) would give if the substitution

; - cos TFC (6‘18)

suggested by the boundary conditions is made, (A term of the form cos n{
exists in this formulation for diffusion, See Reid and Harris, [1958],)
To the accuracy of this computation, there is no difference between the

formulation for constant or non-constant gradients, aside from the factor
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in the denominator., This suggests that to the accuracy he finally used,
Spiegel could have retained non-constant gradients,

This also points out that Chandrasekhar's [1961] matrix formulation
is a systematic way of exploiting the stationary formulation embodied in

(6.9). This equation can now be written

Rer, ¢ <
RQC(A'\(‘F) - ad /3, (6.19)

where

(6.20)

contains the effects of the gradient stabilization and boundary conditions

but not the heat transfer mschanis?, while

e
2 (24
Ly,

=
R, (4 {\f)f o 4t

gives the stabilization due to the change in heat transfer mechanism for

wn
\}

(6.21)

a fluid with a constant gradient,

6.3 Calculation of sB

To evaluate SB (for rigid boundaries)

[Fest DT [enfwnmt] @)

= —h

7 j'vﬁ_- £t Z Z J’ :os[(;nfgvg]f_- ()wnl8) 3T

/-

(6.22)
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with, as before,

‘.',
= A +3[° + CT (6.23)

BN

gives

S S (el)

= (6.24)

Z 2 [A (o) + B(1T?I) +C(n(E"])

)

where
2
GIEDE fm[um,.)"c] C v (1) 48
!
Chandrasekhar gives

W (E) pm coah@f) + chs‘.m (at) + cos [(;m +|)n-f]

E(QW‘“)L‘ITL -Pa.”] =

>
P _ (_.\\)W\f\ (o?m-l'l\)'rr)/am*_\ S;n L\ &
" - oot sish o L
-2
~”m Q(lm H)Trylhn—l _G; (6'25)
Qm = (-\) ' COS\/\ a.
1 2 o ¥ sicho 2 c hl&
- - mrn 2 os 2
("‘"‘) - 2 ‘et Sm? - 8...(") (dnﬂ)(dmw)'rra’);‘ﬂ)‘z/mh =inh ot o
S+ B (Aw\H)L'nTL'\'az‘
One finds

-8 2
| ! ,—| * - 7 (A H) (1"“)“:-)2»“” >/.?HH
(“\Cl\w‘) = [3-“’ - “l(lvx*l)z-‘r‘-—f_} {w\ngwm_ ( ‘) ot Sinha X

_ g Ber- @)t Jy

A 12 -4 'n\'ia.f- Y 6 26
X 4 b.acosh Y o S Y + ( .2 )

L @ 2 min | |
4+ 92 au,[“z' -(an 'H)l'“—)—] cosh 3 )f\ }‘\' (' - S,.m) (' l) U(win)w? 4—‘-l (wen)mr*
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) | 3 2z
(NE* 1) =| 55 s Gmmyors Ty et

2
n(dmH ) aAntt TT S *
..("l)m* ( i X n ) anw )/lmﬂ — a.cosh —c} —-la_sin\'\z—c: -
ot sinha 2 *

...'1-[343‘— (3ntl) T J/ Sml« ey + “\Si’nﬂ a*—(2n+) "]x (6.27)

¥ 47y 3
4 2 2> 2 e
X[SCOSML§ —,‘zs(nﬁ }_H;LQ[SZ. —~10o (znﬂ) w2 ()T ,7:"” +

l.‘..
+ A60e [3«* —10a*@n ) rrt 3 (ant1) T ]/ cosh -}
| N ' AN+
'/7". BN y | . g
+ (l"‘ S >-g/ ws{(&mrl)'rrﬂ cos[(:l\'\H)‘n‘ Cjclg
/s
Teking n=0 , m=0 , which corresponds to using the trial function

F = cos nt ’ ,F\‘Jc cos ng s, and setting a = m yields
(nim) =o.55
(w1 T m) = 0.00579

(n 5% | ™) =-0.000381

or

|

= 6,28
S/3 A+ B0, 072 + C- (-O.oooSs‘l) ( )
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(The same values, for the constant gradient case, yield Rac= 1715 ,
as opposed to the accurate value of 1708 ,)

As an interesting sidelight, several other measures of a more
approximate nature have been suggested for the stabilization caused by
the non.constant gradient,

Spiegel [1962] made the suggestion that the stabilization would

be inversely proportional to the Potential Energy stored in the gravitational
field, i.e., since |

&
6(t) = & + ae(¥) (6.30)
Vs a |
sﬁ(?. E.) o= 9 |Pldl =g [6-a8(r)]b<T (6.31)
=Y =%
Because of the symmetry,
se(x) = — ae (-T) (6.32)

so the integral need only be done over half of the fluid and for A& f .
(The portion ecg@ is constant for dl distributions and does not effect
the relative stabilization of two gradients,) Then

3
A6 (T d (6.33)
s, (RE) oc:j (T)T 41
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From (6,23)
~ 8L C %
G(C)=/3(AE+§E+ 5 o) (6.34)
B 3
S0E) = A+ T TS (6.35)

For a linear gradient, A =1, B=C =0, and the stabilization of a

nonlinear over & linear gradient is

|

S (PE) = F & T (6.36)
Lo Y60

It was also thought that, since the dimensional argument is phrased
in terms of Buoyancy Forces, the relative buoyancy forces would provide a
measure of relative stabilization, In this argument an integral of the

form
S, (8.F.) <c jp/(t) 4T (6.37)

where an element of density p' 1is seen as being acted upon by the mean
density p 3 if p'< O, the element experiences a buoyancy force
upward, and vice~versa, The integral of this quantity gives a measure

of these forces, i.e.,

L e
S/s(a,F.)‘DC((AEJr 5 t = ) di (6.38)

Calculating as before

- (6.39)
,(BF) = Ay B . C
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To discover which of these corresponds best to the case of Free

Boundaries, consider the equaﬁion

jvﬂ-le (w') 4T
R = % A
J

, (6.40)
W' =T w'dl
Vo A
obtained by Goody [1956] as a variational statement for obtaining the

Rayleigh number, Here w' satisfies
=D =Dt =0 at ¥ =+ 1/2

and Q is one of the operators he obtained, (See Chapter 1,) Evaluating
this with functions which are solutions for w' when B/§ =1 will give
an expression for the amount of stabilization of the initial gradient,

Thus, using w'=cos m [ , it is desired to evaluate

2
2 4
I S R
—'/2.
With tables, paper, energy, and no subtlety this becomes

1 = (;) + B(_ - ‘* ) + C(lc,o - 'é—-'_'-?-"' %Trq) (6.42)

Again, comparing this with the linear gradient case yields

|

Sh(F9) " ATE(h - T 1C (g T )

(6.43)

Since this has no ats in it, it is not affected by the minimiza-
tion with respect to a , and thus the presence of B/B # 1 does not
influence cell size or cause a shift of the curve of Ra wvs, a , but

merely shifts its location upward or downward,
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Thus, the stabilization due to the distortion of the zero order

field in the following approximations may be compared:

S5(P.E.) = Ug ©dy T=> (A+8(0,05000 }4¢(0,005357)) ™
Sg(B.F.) = [ g C CLLT ' = (448(0.04167)4¢(0.004167)) ™
sper) <[ (& W] "> (a+B(0.03267)4c(0.002569)) ™
S(6.28) = (A+B(0,01272)4(-0,000837)) ™+

Thus the stabilization is least for rigid-rigid boundaries, pre-
sumably because they are already highly stabilized by the boundaries,
In the rigid Boundary case, because the minimization has not been carried
out, the results can only be regarded as good approximations,

In the calculations of Chapter 5, the coefficient B was always
less than 1 , and C is always of order 10 or less, Then, to a
first approximation good to one or two percent,

-1 (6.14)
s@(R.R,) = S5, = A

6.4 Calculation of S,
The chart oh the following page gives an idea of what problems have
been done and what will be done in this section,
As indicated on the chart, Spiegel's [1960] dimensional argument
will be extended to a mixed radiative~diffusive case and shown to corre-
spom very closely to an extension of Spiegel's exact caleulation, and

the limiting cases considered by Goody, A simplification is then intro-



w 178 =

CONVECTION
Medium Gray Non-Gray
Radiation Only
Theory
Exact Spiegel [1960] None, Shown diffieult in
Seco 6¢10
Dimensional Spiegel [1960] Could be done using tech-
Argument niques of this section,
Radiation and Difftision
Exact Goody [1956] limiting None, Same difficulties
cases, Easy extension as for radiation alone,
from Spiegel [1960] in
this section,
Dimensional Extension frem Spiegel Will be assumed to be same
Argument [1960] in this section, as for dimensional argument

for gray case,

Goody [1956] also allowed for noneconstant gradients; this has been
discussed in Sec, 6.3 and will not be mentioned here,

duced to avoid the minimization with respect to a . Since the dimensional

argument agrees closely with the expressions obtained by analytic calcu=

lations, it will be assumed valid for the non-gray medium,

6,4,1 A Dimensional Argument for Sy
This argument is an elaboration of one presented by Spiegel [1958].



The stability parameter in convective problems, the Rayleigh
number, may be regarded as a& ratio between buoyancy forces driving the
fluid and viscous forces damping the motion, The condition for instability

becomes
buoyaney forces Z C viscous forces ,

where C is some constant of order unity, or
3 2
M L dw
g S/J 2- > C 7 T (6.45)
for a perturbed cubical fluid element of dimension ,Q s Where 6p = the density dif=
- ference from the surroundings and the other symbols have their usual

meanings (see Chapter 1),

If 60 is due to temperature changes (as it is in thermal convection)
Se = - XSS (6.46)
to first order, Now

Se x~ AL = pAwt (6.47)
where

L_ A w'b‘ (60%)

is the distance the element has come from the point where it received its
buoyancy at a typical velocity w , in a typical time t .
Combining (6.45) and (6.48)

%o(ﬂ«Q w
» W vz ° (6.49)

——

x
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Letting
Sw o W
dx J (6.50)
and writing
h
L = 3 (6.51)
equation (6,49) becomes
LB h*
- __3 yﬁ t > CP; (6,52)

Because of (6,47), one might expect the time scale to be set by

the dominant temperature-dissipating mechanism,

6.,4,1,2 Diffusive Temperature Dissipation
In this case the time of decay of a temperature perturbation
/
of dimension is
()

.4 o
t, = T/o F (6.53)

!
Identifying { = £, and using (6.53) in (6.52) yields

Y
228 ey = Re 2 Cp” (6.5%)
v

This argument does not tell the size of C or p ., The solution of the
sixth order equation is very nearly [Chandrasekhar, 1961]

(oie v
R &) = — G (6.55)

O~
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where a is the characteristic number defined in 6.1 relating hori-

zontal size to vertical spacing, and where

G=1 (f;‘ee boundaries)
. 87‘—-20.- | +' Cos‘ﬂ% _' (6056)
) [‘ (a2 +2)* e +sihha (rigid boundaries)

to a good approximation, When Ra(a) is mipimized with respect to a ,
the minimum value is Ra o *
Comparing (6,54) and (6,55) gives
0] (ul +11"L)3

C’(’ = —— G (6.57)

o

6.4,1,2 Radiative Temperature Dissipation in a Gray Medium
Spiegel [1957] finds the time constant for the dissipation of a

temperature perturbation of three-dimensional wave number n in a gray

medium with zero conductivity to be

[}
7N
|

IR"
0
S
LN
l
~
i

N Cn) (6.58)

where

‘ . ok ©® _ 47k Q
t, (o0) PCp S ep

(6.59)

is an inverse time for an infinitely small perturbation to be dissipated.



- 182 =

Putting (6,58) in (6.52) results in

gxﬂ,\,,z.(:ﬂ(oo) > C‘,_.,a'(l— _'Ecaf_‘_t_>
N h

which by using the definitions

. AT
3[ - 3k K
<+ = ke h
2 - h,_hl — (az'."-n_l
c'/
may be written
g _I/L/
Ro CFL 3,C1<|_7{—c0‘t -5;) (6.60)

=<

The solution to the complete equations obtained by Spiegel [1960] is

@ /N
Ra () - (w"*Tfl)G'g,g" ]_-_:E.cdt T(l 211‘ o )
f et 9 6‘« % T+ ‘}
(6.61)
9. [ﬁ‘\/‘&”’-i- v )Q’W)} -l-‘ITl’-V u(%)A‘f)cot-l %
Rrrcy iy = w7 tr Q
or, neglecting all but the leading terms, in comparing (6.60) and (6.61)
2
Cot = &_{1’9 c (6.62)
o

Comparing (6,57) with (6,62) yields
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P = (o +‘n—;‘)‘/‘l =9 (6.63)

&l 2
C = (_f_)g (6.64)

6.4,1,3 Combined Gray Radiative and Diffusive Temperature Dissipation
If there are two parallel competitive processes occurring, a

reasonable combined dissipation time tc will be given by

I
= = <= v (6.65)
{—C tIJ to

which may be combined with (6,52), (6,63), and (6,64) to give

. ¢
Ro = 'SMK/” e 2 Cp (1 + £2)

v TR (6.66)

"

3 ~
(o2+Tr?) [ T T J
a_z___ Gl + Sf T (I 3 co 7y )

(6.67)

6.4,2 The Extension of Spiegel's Exact Solution

This should be compared with the extension of Spiegelt's [1960]
exact calculation for radiation alone to the case of both radiation and
diffusion,

Spiegel's equation (53) is equivalent to (6,9) (with of course
a4
F=F), with
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Ya
w o= oy = — |X(IT-t')dL (6.68)
= fﬂ(ﬂo>
%
To extend his formulation to mixed radiation and diffusion, put
' V'z'
K a2 ] [
= Dl—' ) + | - ; l C!
2 ‘"2/0%( D YK( v -t'l) dg (6.69)
- ‘/2

in (6.9), giving

P %
J RS 0e) + g [T 5D A
-2

Ro = h:/%'f’ oz T 7
. of‘f F(C)w(E) dF
Zy,
'/l ‘/z
f F)AT| (022 w (D) +30 ¢ f K35 -5 e2) () &g?""”
=V =Y,
a&j‘ F(E)w(B)al

To get results from this, one should put in trial functions con-
taining a variable parameter for F(L) , satisfying the boundary condi-
tions, into (6.70), evaluate, and minimize with respect to the parameter
and a , to give Rac(ﬁ,'r) when a = ae(f sT) o

This is rather difficult for rigid boundaries even for diffusion,
and was avoided by Spiegel for radiation alone, He chose two dissimilar

functions satisfying the boundary conditionss

F, = cos nl

F2==l+eos 2n T



and found that they gave similar results for T< 1, while the usual
diffusive solution Fl gave lower results for T>1 , Assuming Fl
as the form for the trial function will give results that are never far

off, then, Inserting this in (6.70) gives

_ (c.’-i—rr")3 ;[1' _ T AT T VT TVTEta”
RO. - /03_ G l -7-+-Tr7" \ C} C 1 + C‘,( ~2.. _’_7’

_ l_bLn[(‘lfV" ta” *T'°>(“V‘T')]+w__u(c\t)wf "6 (6.71)
U VT T2 -t N

where g 2ot +72 and

—o/sinb (1- x)
e - (st

gﬂwu A}+v} > kb= fcot

Clearly the leading terms agree with those of the dimensional argument,

T
Ton

The next task is to avoid minimizing with respect to a , and to

use the fact that Rac and a o 8re known when there is no radiation,

6.4.3 The Choice of Optimm Q.

Spiegelt's [1960] Table 2 gives BTZA which is equal to

erit ?
Ra c/ Qf , for radiation alone, In the dimensional argument for radiation

alone

Ra. . (a°‘+'rrz>3(5 3T (| -

:VL— Co{:_| (s )
i I 9* 9, 9- (6,72)

An excellent fit is obtained if one sets
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BS 3 2 1—3
e < [BIDE ] SR

Plotting Ra c/ % from Spiegel, and

RC\C. . Zv + T a9 T
= EQ.C A'H 3 —) l - ;:Cof -
P (dif) ( 2 ( st 3 ) (6.74)

against T leads to nearly identical results for a\ = 5,0 . The results
are compared in Table 6~1, (This form of comparison was suggested by
Goody [1963].)

Table 6wl
EXACT AND DIMENSIONAL ARGUMENT CALCULATIONS OF Rac/ f

q=5.0
o Ra /7C(Exact) Ra /£ (6.74)
0 0 0
0.1 2,01 1,99
0.5 I, 90 43,70
1 155 149
m 749 739
5 1081 1100
10 1440 1488
1000 1716 1708

The dimensional argument gives for the critical Rayleigh number in

the constant gradient case
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Reep = R&c_(di%){:\ + 3x(%>l(| - %‘J—Co‘t-l x )J (6.75)
with

q = 5.0 (6.76)

This proves of great benefit for application to the non-gray case,
First, since q is independent of T , the difficult specification of

v in a non-gray medium does not matter, Secondly, since
§ = m (A7) = b
then

is the wave number which governs the radiative dissipation, If _';—;3' (.'“)

can be calculated for a non-gray gas,by (6.75), (6.66), (6.67), and

(6.21), the radiative stabilization will be given by

< = 1+ &(So) (6.77)

6.4,4, The Radiative Time Constant

The argument to be used closely follows that given by Spiegel

[1957] for a gray gas, Consider the equation of transfer

fdp éfg = - g“vﬁu 3) - 8,,(3)] dv (6.78)

o
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in an infinite medium which is assumed to be in thermodynamic equilibrium,

From the definition of the heating rate,

°o oo

—H = - j‘lﬂyclv = ﬁv(tfu dw (6.79)

and by integrating over Uum steradians, one obtains (noting the isotropic

nature of B )

?:v fddi; do = _Fuku[ﬁy(g)gw—qvk&(z)]

2 " : Yor
(6.80)

- H

B o= 4T Szodvkvﬁu(?) - 6;;(5)]

where use has been made of the definition of average intensity [Chandra-

sekhar, 1960]
()= ::;;:(I (5) dw (6.81)
41T

If we write for the optical separation of the point of interest 8 , and

an arbitrary field point s + T |,

F \n
_ = I
T,(3,§+F,¢) ’S‘%@T +FI>=\F’=§\Q\)(§ FEF)d (e
]

0

ny

or, more briefly,

l

’Uv(ﬁ) = rfpv(? + o F)d (6.83)

(&)
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Spiegel writes for the mean intensity

e 5 ( ) -T, ()

- e, B, (S+7 _

16k) = §‘”§ = () (6.8%)
4 o

(The transit time of light has been neglected,) Then, if the heating rate

at s is H(s) ,

A6 (3)
"E) = S eoE
oo e _ _ —,‘:'VC‘:') (6085)
= “hr(dv kv[jk” By (6‘: r):, dV(7) -8, (3)
T

In a state of radiative equilibrium, H(S) =0 ,
We are interested in the lifetime of a temperature perturbation

0'(s",t) , and write for the temperature

O(,t) = ©,() + & (7,+) (6.86)

where ©'<<® 0 ° It is assume that any quantity, f , may be expanded

in a Taylor series about its steady state value fo s
Al (T
£G,¢) = £ rse Gy

It is also assumed that the medium is homogeneous, so kv () depends
only on o(s) ,

Now expanding (6.85) and neglecting terms of order 912



- 190 -

3’ _ ur (1- /” dvie U”‘vﬁvg’*”e d w&—)-—ep@}
Jt /’OC‘) PO me

farn (e e““’”’e" - i) gle @]
’ b -leyr (6.87)
e (an [{“ve‘”?)fve W@ -
“Te
° @
g“\ev F+3)e -* rf e 6 +°“_)°l°( dV(]
Yo

Savk 8 [gk B:Tijr)e—h r’czl\/( )’“ G)p( )?j

The first integral is identically zero, since

(=2}

jdukv[gk 5, (5 +7)e AvE) - B, (z)]zo (6.88)

b U
o

is the zeroth order solution of the equation of radiative equilibrium,
This shows why theleffects of fluctuations of density and heat capacity
_ vanish to first or&er.

The physiéal meaning of the remaining terms is quite clear, The
first two labeled @givefthe effect on the temperature perturbation of
the change in the source function -- the first in the local absorption
of distant emission, the second thé_change in local emission, These
have analogs in Spiegel's treatment. Thé'reﬁaining four terms contain
the effects of a perturbation in the absqution‘coefficient ~= the
first the effect o£ distant émissiﬁities, the second the effect on inter-
vening attenuation, while the third and fourth contain the effect of

change on the local coefficient on absorption and emission, The first two
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labeled @ appear in Spiegel's [1958] treatment, where they cancel each
other, The proof here is identical to his and will be omitted.

The quantity

Q,- ‘e e (s)[\l( ke, B, (s-l'-t')e- d\/(r) -8B (‘5)}“)(6 89)

4t e
O

vanishes identically in the gray case, since in that case the terms
within the brackets vanish for radiative equilibrium, Because of the
similarity of B, and B} , the terms in the brackets labeled ®
will be similar to those in the brackets labeled @ . A condition for

neglecting Q; relative to the terms labeled @ is

oo 7o

/ /
th 8, av >2 lev Bv dy
o o
/
The inference kv = 0 was drawn from the data in Chapter 3
and assumed in the calculations. The quantity Q, will then be set equal
to zero here,
For a material for which k' # 0 , this term would have to be
considered,

Now (6.87) becomes

Q©

dV(F) - o'(s) (6.90)

Hrre®

00
( o 3 k,C(T+T)e "
: /’°e Y 96
0

Define &0

(rmer _ 1
e 6 (F,+) dV(F
(aw)¥* ’ ) (6.91)

- Qo
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a Fourier transform, and apply it to (6,90), This produces

9

—kvl- :3.:
- 4 - B ke -
Da—tSIE (n %) = ﬁ:;’@(f‘)t)f% ELAVU q:rz AV(r)":) (6.92)

[~
The solution to this differential equation is

-NE)E

@ (Fyt) = é (7,0) e (6.93)

where
[o/-4

“kye LA.F
Yo 28 [ kve T e -
N(7) = /Jocrghv 5% d“[ { s 9V )J (6.94)

r

o

is an inverse time for dissipation of a temperature disturbance of wave
number h , Any temperature perturbation can be made up of such compo-

nents by (6,91), and the temperature disturbance at any later time is

given by
oo

| _iFeFT _
el(r_)t) = Ta—‘n_)—s/lfe ; (fl) f) d V(h) (6,95)

The integral in (6,94) may be evaluated by writing

eV = nrcos© = nr

(6.96)
dV(F) = amrdpudpdr
and thus
0o 00 ]
“leyr ¢
N (n) = Li: \gvas" du[l— arik,e Fabnrﬁdj

A% )7 J0 . (6.97)

o o -
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After performing the integral over p , the next integral may be per-

formed over r , giving

Hu ‘_Q_v_ ot ™! l“’]
N(n) = fce dy le,, ae [l - " (6.98)

Because of the sensitivity of this function to the exact values of
Ry, and the wide range of variation of l,, with Y  in the case
of molecular vibration-rotation bands (10 1 is not unusual), this

appears to be useful only in the case of gray absorption, when it becomes

36
_ AHwk 36_(| - = o{;_‘i =
Ng (n) = o cp ( w © n> te (6.59)

This is Spiegel's dissipation time for radiation,
However, in two limiting forms interesting results are obtained,

If kv:) = k,r < | [ (6.59) becomes
<0 —
° pce | ¥ 306 Lee (6.99)
o
where
e = 9By dy
o 3 ke, 36 (6.,100)

is nearly equal to the Planck mean, The Planck mean is defined with B,

Z%" , but the similarity of B, and —b as funo
tions of ) ensures that the two means will not be grossly different,
The condition ¥, << | implies the linear portion of the emissivity
vs, r curve, where no lines are comf:letely absorbed in the centers ==

the so-called weak-line region,
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If %v_= ky,r>> | (6.59) becomes
0o
Y Yll DBV‘ - Lhr QV"L
N(n) = o f‘zu 3*’-,," So V= 3.;-&/“? (6,101)
where
)
|
L. b 98y
. Qg k, 96 Y (6.102)

R o

is the Rosseland mean, ';‘his mean is important when the line center and
wingsare completely absorbed, The largest contributions to this mean
come from windows between spectral bands having only weak continuum
absorption, (For example, see Goody [1964],)

Returning to (6.9'}) and noting that

20 %@ _Rryr
| = f\eve'h"rar = (—“—”{;7;— dv () (6.103)
o o
means that after the integral over p
- o .
N (o) = ‘?Lf:%r g“ %gvgkvla_h”ndf(%’:‘ B ') (6.104)
o c

The integral over frequency may now be done by introducing the

perturbation emissivity of Chapter 3 [Townsend, 1958; Goody, 196'4],
)

0, -eyr
| — €
f,, 2% ¢ )

E(r)@) ) = . * 8, N (6.105)
o
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and differentiating succesively, One finds

f‘i 4, 28 T
06

DE ! 5
= - ¥ (ro,p)= Ty (6.106)
e
(]
e
R f“ L3
H
Y 2(n8p) f (6.107)
Putting (6,107) in (6,104),
Hr Q e
N(n) = - j‘i"(s - 1) dr (6.108)
“w Q (sm A Y I
= Tree B, @ e\ £ o ) T (6.109)
(o}
By analogy with (6,99), designate
~ 5\n ne _ e é_(:‘
e (n,0,0) = SE (v, e)e)< =os ) - (6.110)

(o]

Now if the time for radiative dissipation of a disturbance of wave number

n is tR’ then

\ = ATy
_— = NLV‘ - n
- O ) = T el 6.11)
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Applying the Fourier transformation process to the diffysion

equation '

—

96 K 2
e = e V o (6.112)

leads to the familiar result

Yokt s
6(0) = G (€1

Combining (6,111) and (6,113) gives the desired expression

t, 4rQq k(
R(n) = — ——n:) (6.114)
R

Limiting cases are

1, For —k;" 1, from (6,99)

_ L\'\TQ k‘o'
'(:R ‘\'{n"

For small enough disturbances for kp,, to be a valid representation of
the emissivity, n° is so large that there is no stsbilization,

2. For %y 3> 1, from (6.101)

\+—1’-=\+§&Q = 1+ Xy (6.116)
. ;

where f R is based on the Rosseland mean, Measurements of ’ER for
NH3 are not available; this would involve path lengths too long for this

sort of experiment at any rate,
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(n)

6.4.5 Calculation of (n) and_ tg

The nature of the integral
Qo
—~ E’( (s(m ne _d_r-
e (n,6,0) = Lo (T Tee )5 (6.110)
o

is most easily seen if it is written

~ 3 E(c,0,p) /5in ne e ) dne
k(n, 0, p) =§" Dr)i (m_ - cos r') 2

o

_ )y DE(QG@ Sin1 _ cos X dx (6 117)
- o x x? X :

o

) y(gz(e ) S (x) d

JE(r6 o
A graph of —cgr_’—"ﬁ)vs. r for several values of pressure at © = 300° X

has been given in Chapter 3, Since ¢, E' , and kX were all evaluated
at © = 300° K and are not strong functions of © , the © dependence
will not be noted explicitly henceforth, S(x) is graphed below in Fig,
6-1, The values of S(x) were obtained between x =0 and x =20 at
intervals of 0,01 , and for x = 20 - 100 at intervals of 0,1 , in
less than a minute of I,B.M, 7094 time,

Errors considerably below one percent for the area of S(x)
were obtained using Simpson's rule with spacing of 0,05 over the
excursions of the curve labeled 1 , 2 , and 3 , and approximating
excursions 4-11 by triangles with base equal to A x between zeros of
S(x.) and height equal to \ s(x)\m between t};e successive zeros, |
This calculational scheme agrees with tile :amlybical result that
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o <]
51,3 () dx = | (6.118)
which means
~ OE

in agreement with the limiting formula,

To caleulate A\,e (n,p) for a particular n , the x's for the
integral rule were written in a column, In the next column were placed
values of r = x/n , and in the next six columms the values of ¥ '(r,p)m/n
for the six pressures, Finally the multiplying factors, written on a
separate sheet, were aligned with the values of ¥ * for one pressure and
the multiplication was done cumulatively on a desk calculator,

Because E'(r,p) falls off rapidly at large r , fewer terms are
needed to get convergence to one percent as we take n small, The
smallest value of n for which we can compute is n = 0,1 , since
x 210 corresponds to r=100 , the largest value for which we can
accurately compute £ '(r,p) . To integrate over a smaller range of x
would introduce larger quadrature errors than the one percent aimed for,

One effect of the rapid fall-off of ¥t'(r,p) is to make necessary
more closely spaced values of x for Simpson's rule over the beginning of
the first excursion, The small values of S(x) are offset by large values
of ¥'(ryp) . At n=0,1, this had about a one percent effect,

Data at long enough path lengths does not exist to allpw calcu-

lation to the Rosseland mean region,



The values obtained by these calculations are tabulated in
Table 6-2 and graphed in Fig, 62,
Using these results and the data of Chapter 4, the quantity

t UrQ _k(n)
i;i- (r) = b —% (6.114)

was calculated at 25° C , It is presented in Fig. 6-3 and in Table
6<3, As a matter of interest, the radiative and the diffusive time
constants and the combined time constant

I \
1 (6.65)

+
(l

| |
-+ —
-\‘:D +’R

have been plotted against n = 1/  in Fig, 64 ,

In the last two graphs it is clear that at large wave numbers
(i.e., small disturbances) the radiative effects will be small, while
for small wave numbers the radiation will be much more effective
than diffusion, The effects are of the same order near n=1 , or

r=1cn,
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Table 6=2

A
k (p,n) FOR SEVERAL VALUES OF p AND n

Pressure [atmospheres]

n 0,1 0,2 0% 0,6 0.8 1,0
Lem=] Cem™']
1000 0550 1109 ,2217 J332¢ w32 5539
100 .0548  ,1097 2151 3207 176 L5254
10 L0481 ,0905 1659 2171 3007 3538
3.933  .03%7  .0672  .1168  .1493 1828 .2015
1,000 .0220 .0372 .0581 .0727 0843 .0934
0.333 .0l2%  .0200 0288 .0338  .0368  .0379
0.100 0058  .0087 0108 .0113 0118 .0110
Table 6-3
. _t )
: —_t—i’-(p)n) FOR SEVERAL VALUES OF p AND n
R
Pressure [atmospheres]
n 0,1 0,2 0,4 0,6 0.8 1,0
lem] ' '

1000 5.50x10~7 1.10x1078 2.19x10~% 3.27x10~¢ 4.33x10~0 5.42x10~0
100 5.43x10™ 1,09x10~% 2.12x10~% 3.15x10~% 4.09x10™% 5.14x10~%
10 4, 76x107> 8,95x10™ 1,64x10~2 2,13x10~2 2,95x10™2 3,46x10™2
3.333  3.28x107 5,99x107 1,08x107" 13307 61 178
1,000 2.18x10 3.68x10"% 5.72x10"1 714 .825 914
0.333 1.11 1.79 2,55 3.00 3.25 3.34
0.100  5.78 8,63 10,61 11,10  11.55  10.76
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6.5 Measurement of the Critical Rayleigh Number

6.5.1 The Method of Effective Conductivity
To date there have been three ways of measuring the onset of cone

vection, They are (1) observations of motions of tracers in the fluid
[Silveston, 1958; Bénard and Avsec, 1938; De Graaf and Van der Held, 1952],
(2) observations of changes in refractive index [Schmidt and Milverton,
1935; Schmidt and Saunders, 1958; De Graaf and Van der Held, 1952], and
(3) measurements of the change of heat transported across the layer when
motions begin or end within it [Schmidt and Milverton, 1935; De Graaf and
Van der Held, 1952; Malkus, 195k4a;Silveston, 1958].

A variant of the last metiiod has been used in this investigation,
in that the effective conductivity of the fluid layer as a function of
Rayleigh numﬁgr was measured, When convection begins, more heat is trans-
ported across the fluid, and the apparent conductivity increases,

In Chapter 2 the quantity

AS

was defined, where

Ao is the temperature drop across the lower insulating disc,

I

A6  .is the ‘temperature drop across the upper insulating disc,
II
A© is the temperature drop across the gas-filled gap.

As noted previously, this is not proportional to the Nusselt
number because an appreciable portion of the heat flux is direct radiation
between the two plates, The power of the method lies in the fact that we
do not need to know the exact division between conductive and radiative
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fluxes or the absolute conductivities., It is a mull-type experiment;' in
which the effective conductivity for a series of Rayleigh numbers is mea-
sured and the Rayleigh number found at which the effective conductivity

changes from its preconvective value,

6.5.2 Determination of the Rayleigh Number
The Ra.yleigh number is given by

QL = ?(‘:‘ P Y- (6.121)

‘where the symbols are (to recapitulate)

g = acceleration of gravity

Q= %7 g—g- = - %—%% = the coefficient of thermal expansion
p = density

cp = specific heat at constant pressure

K = thermal conductivity

V = kinematic viscosity

h = separation of plates between which convection ocecurs

A © = temperature difference applied across the fluid,

Equation (’6. 121) may be written

o+ W) e G

which illustrates the effect of the four distinet factors,

The quantity
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_ 34 2 P \*
A = < < (f’> (6.123)

does not depend on the particular experimental details, but only on the
mean temperature and the fluid used., It was calculated in Chapter 4 for
air and ammonia over a temperature range about room temperature,

The pressure ratio p/p° can be set independently of the other
factors by admitting air or ammonia to the containing vessel or evacuating
it with a vacuum pump, The value of p 1is read from a manometer,

The cube of the height, h3 , 1is one of the parameters specified
before an experiment is begun by inserting spacers of height h , These
were described in Chapter 2, This was the most difficult factor in the
Rayleigh number to change, since the pressure vessel had to be opened
and the convection cell mechanically manipulated,

The temperature difference A © is set by adjusting the tempera-
ture baths and allowing the whole apparatus to come to equilibrium,

In the work of previous authors on gases, the factors A and h
were set, the experiments run at atmospheric pressure putting p/po =1,
and the temperature altered to sweep a range of Rayleigh numbers, as is
done in the case of liquids,

The long time necessary for this apparatus to accommodate thermal
change and the inconvenience of changing bath regulators often led to the
procedure of setting A©® at convenient values and regulating p/po .
The possibility of changing Rayleigh numbers by changing densities does
not seem to have been previously noted or exploited,

Changing Rayleigh numbers by changing temperature would also have
changed the radiative flux, since the coefficient multiplying A © varies
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as 503 , A& 2°c change in 8 would only be a two percent change of
rediative flux, but at h = 5,048 em, , that would be an appreciable

part of the total change of heat transfer, necessitating another correction,

6.5.3 Taking of Data
When making a run, the temperature difference between the plates

and the plate separation were set, The Rayleigh mumber was then altered
by changing the pressure, A small quantity of gas was admitted, two

or three hours were allowed for equilibrium to be reachdlt.he temperatures
in the four thermocouples were read, and the pressure was noted, Two or
three more readings one-half hour apart were made at the same pressure;
then more gas was admitted and the same procedure followed, Measurements
were not taken above what was approximately twice the critical Rayleigh
number,

Table 6l indicates the situations under which runs were made and
the number of runs made, In this table, B refers to a convective situa-
tion in'which heating is applied below, A refers to a conductive situa-
tion in which heating was applied above, and H refers to runs in which
the Rayleigh number was lowered from about 2 Ra o to zero to look for
hysteresis effects in this type of measurement,

6,6  Reduction of Data to Get Critical Rayleigh Numbers
The data finally obtained consisted of 28 runs, each a group of
paired values S j,Ra i Subsequently one run was rejected because of

experimental difficulties when it was taken,
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Table 6k
EXPERIMENTAL CONDITIONS FOR HEAT FLUX MEASUREMENTS

Height[ecm, ] AB Air Ammonia
5,048 ~° 2B A 2B A
~2° 2B A 2B A
1,987 ~2° 2B A 3B A
~6° 2B A H 3B A H

It has been described in Chapters 2 and 5 how the eight conductive
runs (i,e,, heating above) and the preconvective portions of'the 19 con=-
vective (heating below) runs were combined to give the description of the
steady state in terms of §h vs, pressure for the four situations of two
fluids and two separations, From these calculations the values of the

standard deviations of a single point were also obtained,

6.6.1 Critical Rayleigh Number for Air
Denoting the standard deviation of gh as og all points with

§:j< §h + 2 og Were discarded to reduce the possibility of including a
nonconvecting point among the convecting ones,

'Since values of §j are being used to find Ra , a regression
should be performed of Ra on S [Wilkes, 19497, The data suggest
primarily a linear relationship, The experimental data of Silveston and

others and the theoretical work of Kuo indicate some curvature toward the



Ra axis, The data was fit to an ascending power series of the form

Ra = a + bS + ¢S

To reduce the amount of work necessary to get the Ra o' s use
is made of the fact that Ra =Ra  when 5 =35, , the value in the
static state, The equation

— — — -_ 2
Re = Ra, + 0 (5-8,) + «(F-5,) (6.124)

was fit on the Harvard I,B.M, 7094 for two cases:

1, ¢ =0, The program gave Rac, Ra ° b, Oy s G O and
the sums of the squares of the residuals,
2, ¢ varied for best fit, The same quantities were found as in 1

above,

The values of ¢ calculated from 2 varied considerably in simi-
lar circumstances, although most <;f them were less than Of » The standard
deviation of Rac , CRa c ® Was larger in 2, indicating sensitivity to
the value of ¢ ,

In addition, the restriction that the curve of S vs, BRa should
be concave to the Ra axis requires c¢>0 , Not all ec¢'s measured
individually fit this criterion, Therefore c's , the weighted means
of the c¢'s from the runs, were taken, with the number of remsining
degrees of freedom as the weighting factors, (The number of degrees of
freedom is the number of data points minus three, the number of coeffi-

cients,) The standard deviation of ¢ was also found,



The calculations were then made, fitting
- —\2

+ +

Ra

1
A
2
+
o
~
Wl

_ ‘§O> + (E+ Crc)(s“—g“o)a'

-

Re

- - S— ——— A— :—
Ra, T b(S-5,) + (& ._G-E)(s -3.)
and obteining ‘Ra_ , %Raj , and Raj .

The final figure for the standard deviation was then calculated as

the result of two parts:

1. “Ra, , due to the scatter of the data, denoted "Rac(‘.i) )
2. lRa: - Ra |, due to uncertainty in the value of S, which might

be denoted as ORacE . (This differs negligibly from \ Rae - Ra( )

The complete standard deviation was then given by

G';" T )+ T (6.125)

(3 R c Rkés

gl

In Fig, 6-5 the experimental points and fitted curve are shown for
Run 8, The results for all the air runs are given in Table 6~5, along with
the experimental conditions,

The weighted mean value for all the air determinations is 1786 + 16 ,
which is 4,5 percent higher than the theoretical value of 1708 , cal-
culated by Pellew and Southwell [1940] and Reid and Harris [1958], and

observed in liquids by Silveston [1958] and many others, Tﬁe deviations
could be due to two effectss
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Table 6=5
MEASURED CRITICAL RAYIEIGH NUMBERS IN AIR

h Ao Py oRa, oRa (&) Ra
Bun - rem] ° [°C] [emHg.] [data]
Q) 2 3) (%) (5) (6) (7)
1 5,048 5.7 11.9 83 140 1738 + 162
2 5,048 6.1 L 72 40 1755 ¥ 157
Mean 5.048 5.9 1, 1747 + 112
3 5.048 1,75 21,8 119 148 2042 + 189
b 5,088 175 2,3 58 122 1568 g 552
Mean 5,048 1,75 21,7 1991.‘:& 79
g 1,987 2,85 28.8 32 3 18;_15.0 + 32
) 1,987 2,80 8,5% 33 2 1761 £ 34
Mean 1,987 2,80 8. 1786 + 23
7 1,987 6.2 48,1 6(63 48 1828 + ZZ
8 1,987 47.8 16 18 1781 +
Mean 1,987 2.:% 7.8 1785 + 2
1, The constants are not as accurate as would be desirable, Slight
increases of K and 77 within the range of different
determinations, or a decrease in p could easily cover this
difference,
2, We do not have an infinite horizontal plane upon which our cells

can form, The walls exist and may force a periodicity on the
cells which is not optimum, Recent work in England [Hide, 1962]
indicates the importance of wall regions, Recent demonstrations
by Koschmieder [1963] indicate that the walls influence cell

development even with a diameter/height ratio of 20 ,
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Since it is expected that these wall effects operate on ammonia
in nearly the same way, they would have very little effect on the ratios
of eritical Rayleigh numbers,

Run 8 was made by decreasing the Rayleigh numbers from about
2 Ra o ? and if it is plotted with Run 7, the points mingle together
with no significant differences. These experiments give no indication of

hysteresis effects, None is predicted by theory,

6,6,2 Critical Rayleigh Numbers for Ammonia
In getting the critical Rayleigh numbers for ammonia, the same
sort of procedure was followed, with the exception that allowance had to
be made for the fact that the static state curve of S , which may be
denoted Sh(b) , is a function of p and not parallel to the Ra axis,
From the curves of §h(p) vs, p for the two h's (see Chapter 5),
and using the same Em and A © that pertained to the runs in question,
curves of §h(p) vs, Ra were constructed for the static state. On
these graphs the posteconvective points were plotted and an approximate
Rac found, At this point a tangent to the static state curve was drawn,
its slope measured, and its intercept with the S axis ) §h"
origin was then shifted analytically to §h' , and the coordinates rotated

found, The

until the Ra axis coincided with the tangent. The rotated Ra axis
was called the Ra' axis, The intersection of the curve passed through
the convecting points with the Rat* axis is Raé s which, when found,
was rotated back into the Ra frame to be Rac o

The fitting was done with gratifying rapidity on the I,B.M, 7094
for the form:
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(t

] _— -_ =\
Ra R, + (3 —=5) +c(5-5])
for the cases:
1, c =0
2., ¢ found by best fit,

As in the case of air, the values of c¢ calculated under 2 varied
considerably, with more values greater than T, than less, This is
probably due to greater complexity of the radiative flux phenomena, i.e,,
a contimuation of the curvature of the static portion of the §h(p) vs,Ra
curve, The occurrence of several negative values makes one chary of
asserting too strongly that these measurements show this curvature,
Intuitively one would expect that finite amplitude calculé.tions for
convective motions with radiation would have more cprvat.ure when, as here,
the optical depth and ngleigh number are changed simultaneously,

The points and fitted curve for Run 9 are shown in Fig, 6-6,

Since the c¢'s calculated for NH3 showed evidence of not being
from the same population, the values of Rac for the three=parameter
fit were used, In the data given in Table 66 , GRac includes both
the effects of data scatter and uncertainty of ¢ ., A run lowering Ra

found no evidence of hysteresis in ammonia either,

6,7  Radiative Stabilization

The measured stabilization is defined as the ratio of measured
ammonia Rayleigh numbers to the weighted mean of the measured air Rayleigh
numbers, 1786 , Recalling previous results
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MEASURED CRITICAL RAYLEIGH NUMBERS IN AMMONIA

Table 6=6

Run h H 0 Pe Rac
Cem,] e c] [om,He. ]

(1) £2) ) ) 5

1 5.048 5.8 11.9 2515 + 572

2 5,048 5,8 13,5 2999 % 206
Mean 5,048 5.8 13.0 2943 + 190

3 5,048 1.8 30,13 Lok _4_-1?04

b 5,048 1,8 29,73 7 12
Mean 5,048 ) 29,80 522790', + 651

5 1,987 2.8 59.9 1955 + 123

6 1,987 2.8 67,1 2454 ¥ 199

7 1,987 2,8 6l 2251 + 208
Mean 1,967 2.8 2. 2125 + 93

8 1,987 6.4 46,1 216l + 62

9 1,987 6.3 49,6 2793 £ 69
10 1,987 2.4 ﬁz& 25i:6 + lgg
11 1,987 8 2241 + 2
Mean 1.587 3:%5 7.7 2501 + b2

-1
= A (6,44)
ty/ 50)
D .
= ‘ + 60
g \P) W (6.77)

the values in Table 6«7 are gollected,

In Table 6-7 the errors of S

A,

calculation of the temperature gradient reported in Chapter 5 .

8 allow for a four percent change of
This was the change in A between the three~ and four-coefficient

The error



- 218 -

attributed to S, is the uncertainty in reading tD/tR from the graph,
It is about the same as the accuracy of the radiative data, The errors in
the observed stabilizations do not include uncertainties in the physical

properties; the probable error due to that cause is 6-1/2 percent,

Table 67
STABILIZATION IN AMMONIA

h Ap e S S S..S T
[em] [c] _ 1785 P . pH c
5,048 5,8 1,65+0,11 1,22+ 0,05 1,33 +0,03 1,63+0,09 ,065
5,048 1,8 2,68 +0,37 1,29 +0.05 1,59 +0,02 2,05+ 0,10 ,09%
1,987 2,8 1,19 +0,05 1,13 + 0,04 1,25+0,02 1,41 %0,08 ,104
1,987 6.4 1.,45%0.,03 1,12 + 0,04 1,21 +0,02 1,36 +0,07 ,09%

. ®

The quantity 1. in the last column is presented to give an idea
of the optical depth in these experiments., It is based on the somewhat
arbitrary definition

T o= wk(pe, )

[

This indieates that 1, #40,1 for all the experiments reported
here,

The fact that the values of Ra c/ 1786 differ considerably is an
indication that a different process is occurring than in the standard

problem, and not merely an error in the physical constants for NH3 .
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That would give a constant ratio # 1 (bwt hardly 2.7 ) . The fact that
they are larger at large plate spacings is an indication that we have the
right sort of mechanism, as is the pressure var:}ation at the larger spacing,
The agreement with theory is good in two cases, close to the limits
of error in a third, and very poor in the fourth, The mean of the ratios
of experimentally observed to theoretically calculated stabilizations is
1,04 + 0,18 , This is a rather strong indication that the theory does
account for the phenomenon,
The cause of the discrepancy at h =1,987 em., A0 =2,8°¢C ,
is not clear, The theoretical calculations of S

and S, indicate that

B H
Ra, should be higher and slightly above the results at A€ = 6.35° C.
(Since the results at h = 5,048 cm, tend to be higher than the theoretical
values, the values at h = 1,987 cm, may be expected to be not less than
the theoretical values,) The closeness of physical situation in geometry,
:, and p suggests that little difference should be expected, even from
a more refined theory based on this I;hysical mechanisn,

The air results taken just preceding this ammonia run are not
unusual, nor are the A © = 6,35° C ammonia results taken just afterward,
It does not seem then that we can introduce a systematic leakage of air
into the chamber diluting the NH3 in these measurements and not the
next series, Pressure is a straightforward measurement, though it is
possible that leakage to the manometer could make it read too low, Since
it was checked every few days, this need only have affected one series of

measurements, No evidence for or against this can be found in the lab

notebooks,
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6.8 Conclusions

All things considered, the effortless dimensional argument and the
gradient stabilization csleulation have provided answers that agree rather
well with the experimental rest:xl’cs in three of four cases, In the fourth
another effect is plausible, The mean ratio of observed to theoretical
results of 1,04 + 0,18 does not differ significantly from 1,00 ,
especially if the uncertainties in physical properties are considered,

The dimensional argument is never worse than saying no effect exists, and
usually it is much better,

The mean value of Ra  for air is 1786 + 16 , which is hal/2
percent above the accepted value, As mentioned above, the difference
could be due to uncertainties in the physical properties necessary to
calculate the Rayleigh number and also to the effects of the walls in
imposing a non-optimum cell spaqing on the convective motions,

A search for hysteresis effects has indicated that none are present,
in accord with physical theory,

In planning a convection experiment, one is broughtto the reali-
zation that there is a limited range of layer thicknesses for gases within
which one can work, At large plate separation, the temperature differ-
ences and pressures must be accurately maintained and measured, In
addition, leakage through the walls becomes more serious and radiative
flux becomes relatively larger than the conductive flux, The latter
makes it difficult to observe the onset of convection by change of heat

transport,
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If the study of convective onset is the object, at small separa-
tions one must use reasonable A€©'s to remain within the limits of the
use of constant coefficients in the dynsmic and temperature equations,
This forces one to high pressures and care in the design of a vessel and
manometer to keep gas at higher pressure in, Measurement by heat flux
change is rather sensitive in this region,

On the other hand, if one wishes to study radiative effects, he
is constrainted to layer thicknesses that are large enough to avoid the
nconductive limit" mentioned in Chapter 5 and large enough to lead to
m;tion scales in which radiative dissipation becomes important, The
heights h = 5,048 and h = 1,987 seem to be close to the limiting
values set by the present state of the art for air and ammonia, especially
under the restrietion of p not much greater than one atmosphere,

From this chapter, the following statements can be made;

1, A determination has been made of the absolute Rs.(3 in air
giving full consideration to the various problems, This has
yielded the result 1786 + 16 , within U4«1/2 percent of the
theoretical value of 1708 , indicating a possible effect of
the walls as well as the lack of accuracy of the quantities used
to compute 'Rayleigh numbers, This appears to be the most thorough
and accurate determination for air yet made,

2, Under the same conditions as above, the Rae in ammonia, a gas
very active in the infra-red, has been measured, Large and signi-
ficant deviations from the theoretical value of 1708 , and the

values for air, have been measured, The difference is not constant
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with change of parameters h and A8 , and varies in such a way
as to make clear that we have measured a radiative stabilization,
From the physical principles underlying the problem, and with the
insight of several accurate caleculations, a simple theory has been
constructed which predicts the results of these experiments, For
the first time a solution to a dynamical problem with radiation
has been verified,

More exactly and importantly for problems of planetary atmospheres®
dynamics (as well as laboratory problems), the gray solution has
been extended by the dimensional argument and time constant calcu-
lation to the realizable and occurring case of dynamic effects in
non-gray media, The verification of this extension opens the way
to its confidant application, not only in laboratory problems but
in large-scale atmospheric problems, where radiation certainly is
important [Goody, 1964],

The dependence of Rayleigh number in a gas on pressure through

the density dependence of &4°Ep and ,» has been noted here for
the first time and discovered.to have the same critical character-
istics as those observed previously by varying AS»GI or h,

This dependence has proved a most useful.aﬁd convenient technique

in these researches,



CHAPTER 7
CONCLUSIONS

7.1  Introduction
The results of this work are reviewed, The theoretical and experi-

mental problems that suggest themselves are briefly discussed,

7.2 Results of This Work
7.2,1 Calculation of Radiative Properties of Ammonia

Beginning with the spectral data, line width, and total band
intensities, it has been proven possible to calculate the integrated
emissivity as a function of distance for ammonia broadened by nitrogen.
The agreement of the calculated with the measured emissivity lends cre-
dence to a calculation of the perturbation emissivity &  and its dis-
tance derivative 8’ . The subsequent use of these quantities in several
ca;lculations that predict the results of measurements successfully is an
indication that they are probably accurate to a few percent,

These calculations were a time-consuming though necessary adjunct
to the problem of measuring and predicting radiative stabilization in
convection, Now available, they may prove to be some of the most
seminal results of this work, For the first time, the properties of a
rather st;ong radiating fluid are presented in a form convenient for use
over a range of laboratory pressures and distances, Since the fluid is
common and inexpensive, this may make possible experiments on radiative

effects that had been prevented previously by lack of such data,

- 223 -
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7.2.2 Accurate Interferometer Measurements

The previous semiquantitative ﬁse of the interferometer to measure
temperature has been remarked upon, In this work the interferometric
technique has been applied with an accuracy of 0.02° C, five times that
previously reported, It has been shown to be capable of measuring a one-
dimensional temperature distribution within a fluid with great precision
if the length over which the temperature distribution is applied is
accurately known, or equivalently, if the temperature and fringe inter-
ference number are accurately known at two places, This restriction puts
some limitation on the uses of this technique, but with more geometric
and temperature control over the end regions and the use of a known profile
(i.e.,, conductive) to calibrate the instrument, the restriction should not

be severe,

7.2,3 Extension of the Gray Solution to General Boundary Conditions
The closed form solution obtained by Goody [1956] for black

boundaries was extended by allowing boundaries of any emissivity, This
exercise is mainly illustrative, indicating that the two shiny boundaries
will distort the gradient more than two black ones, and that asymstric

boundaries will produce an asymmetric temperature profile,

7.2,4 Solution to the Problem of Temperature Distribution for a Mixed
Diffusive-Non-Gray-Radiative Medium with General Boundary Conditions
Temperature profiles have been calculated for the atmosphere, where

large differences of pressure and temperature exist between regions and the

geometry is semi-infinite,
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Although the problem of the temperature distribution between parallel
plates is complicated by thermal diffusivity and non-black boundaries that
allow multiple reflections, it must be regarded as simpler than the atmos-
pheric problem, As such, it is not surprising that a solution can be ob=
tained by careful application of existing prineciples and techniques.

7.2,5 Experimental Measurement of a State of Radiative-Diffusive Equilibrium

and Verification of the Cgloulations

The use of the interferometer to measure temperature accurately
within a fluld without introducing a material probe has allowed the first
experimental study of a radiative-diffusive equilibrium, This shows, as
expected, that diffusion wipes out the temperature discontimiity at the
boundary predicted by zradiative transfer alone, Instead, a boundary layer
of steep temperature gradient is observed,

The experimental determination goes beyond merely demonstrating the
general quality of the solution, however, in that it verifies the calcula-
tional procedures used to get temperature profiles within the fluid, It
is a distinet triumph for the computational method to predict profiles
that agree so strikingly with the measured results,

As remarked earlier, since apparently nowhere in the atmosphere is
there radiative equilibrium, this provides a first experimental verification

of the type of calculations often used in meteorology,

7.2,6 Calculation of Heat Flux Changes with Optical Depth
The curious effects of changes of optical depth on heat flux have

been shown for a full range of optical dépths with the gray model, Detailed
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calculations for a nonegray model have been presented over a limited
range, These predict an initial inecrease in gffective conductivity with
pressure, As with temperature profiles, the techniques are similar to
meteorological ones, while the boundary conditions are not,

7.2,7 Verification of Heat Flux Change
Because the calculated and observed heat flux changes do not agree

as well as the similar quantities for temperature distribution, this is not
as complete a verifigation of the calculational techniques as the other,
However, changes of the right size are obtained, In the thin-layer case,
both experimentally and computationally more accurate, the results could
be explained very well by a slight change of ammonia corductivity,
much less than its standard deviation, Inaccuracies in absolute heat flux
measurements in the thicker layer case could explain the discrepancy there,

This again constituteg some underpinning for the techniques used in
flux calculations in the atmosphere,

7.2,8 Establishment of a Dimensional Argument P ‘ cting Convective Instabilit
The technique of splitting the stabilization into the gradient portion
and the perturbation-damping portion has been demonstrated, The gradient
stabilization has been accuratelycalculated and the difference between
different formulations shown to be only a few percent for gradients typical
of this experiment., The perturbation stabilization is only a slight extension
of Spiegel's [1960] argument, with the discovery by Goody [1963] that a q
could be found that was independent of optical depth,
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7.2,9 Calculation of Effective Absorption Coefficients and Ratios of

Diffusive to Radiative Time Constants for a Non.Gray Gas

Like the results mentioned in 7,2,1, these data have uses beyond
those for which they are employed here, In this work they were substi-
tuted in the general formulation to predict dissipative stabilization,
In any formulation in which an effective absorption coefficient or

time constant is of interest, these should find use,

7.2,10 Variation of Rayleigh Number by Pressure Change
The possibility of varying the Rayleigh number in a gas by vary=-

ing the density through its pressuré dependence does not appear to have
been previously noted, This proved to give results like those obtained
by other investigators who varied h or ABO , and provides (hardly

needed) justification for the formulation of the Rayleigh problem, This

was a very convenient way of changing the Rayleigh number,

7.2.11 Measurement of the Rayleigh Number in Air

Although other rough checks on the validity of Rayleigh's theory
of convection in gases had been made, there had not been a systematic
attempt to make a precise measure of the Rayleigh rumber at convective
onset, The determination reported here is Ra, = 1786 + 16 , a value
4l/2 percent above the accepted theoretical value of 1708 , This
discrepancy can be explained by inaccuracies in the data used for the
physical properties and by the possibility that wall effects had a

stabilizing influence,
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7.2,12 Measurement of Radiative Stabilization in Ammonia

For four situations the stabilization in ammonia, defined as
Rac/l786 , has been measured, Since interferometer measurements have
verified the calculations of B/B and the gradient stabilization can
be calculated, it can be divided from the observed stabilization, The
variation of the residual stabilization with p and h strongly

suggests that it is due to radiative transfer,

7.2,13 Comparison of Observed and Calculated Stabilizations

As mentioned in 7.2,5, the interferometer measurements indicate
that the technique of caleculating gradients is highly accurate, The use
of Chandrasekhar's technique (in the first approximation) provides a way
of estimating the stabilization due to the gradients,

A dimensional argument that agrees very closely with the exact
solution for diffusion and gray radiation can be devised, The radiative
time constants can be inserted to give the heating rate stabilization,
When this is multiplied by the gradient stabilization, a total stabilie
zation is predicted,

The agreement between the measured (7.2,12) and calculated
stabilizations is good for three of four cases and differs rather a lot
for the fourth, A plausible explanation is that some systematic error
may have been present for this series of runs, or the measurement of

convection in our apparatus is not as accurate as other factors indicate.
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7.3 Suggestions for Future Research
7.3.1 Theoretical and Numerical Problems

7.3.1.1 More Detailed Calculations of Ammonia Radistive Properties

The many simplifications introduced in Chapter 3 have been
described, The excellent spectroscopic data make possible a more exact
treatment of the spectrum, line by line, with individual line intensities
and widths, by either integrating over narrow regions (e.g., 25 cm.'l) or
setting up a band for every 10 lines, and calculating a more realistic
emissivity, With a general computer program, it would also be possible
to make a systematic quantitative study of the effects of errors in the
values used for total band intensities., Mixing with other gases and
changes of conditions that might be useful in predicting laboratory
effects could be easily explored with such a program,

The changes necessary in the calculations of o and the effects
of possible line shifts at pressures greater than 1,6 atmospheres should
also be considered, The emissivity calculations might then be extended to
the moderately higher pressures that could be used advantageously in the

laboratory,

7.3.1.2 Calculations of Emissivities of Other Gases

From data of the sort used here and from transmission data taken
at long path lengths at various pressures and temperaturss, one could
calculate the emissivities of the gases believed to exist on planets of
the solar system = notably the oxides of nitrogen and methane., (Water

vapor and carbon dioxide seem to have a great deal of available data
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already,) Long path length data for NH3 would also be useful, These
could be valuable to the earthbound theoretician devising meteorologies
for much different physical systems and designers contemplating planetary

probe experiments,

7.3.1,3 Extension of Numerical Methods to Convection

As noted above, it was necessary to employ a dimensional argument
to enable the expression for the heating rate stabilization to be expressed
as a function of disgsipation times, The integration over frequency was
then done in quantities that appeared in the dissipation time, Although
the dimensional argument seems capable of explaining the results obtained
in this work, a more rigorous treatment is desirable,

These might take one of two formss analytical or numerical, In
the former, one could try to take Spiegel's gray heating rate as a func=-
tion of wave number, integrate over frequency, and express the result in
terms of known emissivities, Conceivably what would be necessary would
be the numerical construction of a new integral over frequency from the
spectral data,

The second approach would replace the integral over depth in
Spiegel's formulation witﬁ a sum over n layers in the fluid, The
weighting factors multiplying the perturbation temperatures would have
either an explicit az dependence or provision would have to be made to
evaluate them at a series of values of az .

Alternatively, the kermel of the integral could be expanded in
terms of known functions with numerically determined coefficients, This

must have an a2 dependence also, of course, These should all be in
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such a form that when &a-—30 (no horizontal variation), the heating
equation will be that for the static state,

If one had perturbation heating as a function of a2 , one could
solve for the static state (B/F) and find Ra vs., a> for families of X
and T using the complete expression, On minimization, this would yield

Ra, = Ra (X,7)
8, = a(f,1).

These complete solutions to the convective instability problem
with radiation and diffusion should be scrutinized to find any features

missed by the dimensional argument or worthy of experimental study.

7.3.1.4 Further Applications of the Dissipation Time Argument
Many of the dynamical and‘fransport properties of the atmosphere

are considered in terms of dimensional arguments, It would seem that for
any in which diffusion has entered, the radistive case might well be
included with this sort of dissipation time comparison,

Further, the importance of radiation in dynamicasl situations
might be assessed through the comparison of radiative dissipation times

and time scales of the motion,

7.3.2 Problems Involving Experiment
7.3.2,1 Improved and Extended Calculations of the Heat Flux and Temperature
Distribution and Their Verification

While the calculation of temperature distribution gave good results,
the computation of heat flux showed some scatter which was attributed to
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the calculated gas emissivities & and g . A more detailed calculation
of & (7.3.1.1) coupled with a more detailed integration to get %J
would be expected to remove at least part of this and would hopefully
agree better with the measurements, Another technique which might reduce
this scatter somewhat would be obtaining both 8 /E and FT from the same
equation (i.e., (5.103)).

To verify and extend the knowledge of this phenomenon, the numerical
techniques should be extended to predict profiles and fluxes in the
situation where the emissivities of the upper and lower plates are not
equal, and if possible, the theory should be extended to the case where
emission and absorption by the plates is not isotropic, The emissivities
and their angular dependences could then be measured by conventional
means for use in the caleculations,

The numerical calculations could then be performed and extended
to greater pressures to predict situations where an increase in pressure
will cause a decrease in heat flux and to follow the temperature profile
as it becomes linear with pressure,

The results of these calculations for B/f and Fp should then
be experimentally verified, There are four independent pﬁra.metors to vary:
h, €, > GL , and pressure, all of whose effects can be predicted, (Com-
parison with air and a vacuum high enough that K = 0 could serve as useful
checks, )

The possibility that extensive runs of this sort might be inverted

to give data on emissivities over a useful range should be explored,
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7.3.2.2 Temperature Measurements in Convection
A use that immediately comes to mind for the interferometriec

temperature-measuring apparatus is the measurement of temperature pro-
files after convection has begun, preferably from the laminar region all
the way to turbulent convection, These data would provide another solid
point of comparison (the first is heat flux) between theories of finite
amplitude convection and measurement, In fully turbulent convection,
several implementations of Malkus' [1954b] approach have been worked out
to predict profiles, Provided high enough Rayleigh numbers can be reached,
these should be capable of being tested,

These measurements could be done not only for air, but also for a
radiating fluid like ammonia., Pxfesumably until the air measurements are
explained, there is not much point in trying to explain the radiating-
convecting profiles, the two might be expected to become more similar as

Ra is increased and convective transports dominate,

7.3.2,3 Heat Fluxes in Finite Amplitude Convection and Convective Turbulence

for Radiating and Non-Radiating Fluid
The results of De Graaf and Van der Held [1953)] should be corro~

borated and more points taken, Theories to account for heat transports
have been proposed, but with little success to date, These non-radiating
transports should be compared with results in a radiating fluid when the
radiative transport has been removed to see if there is a common dependence
on R&/R&c . If not, a single rule might be sought to relate convective

heat transports in fluids having different modes of perturbation dissipation,
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7.3.2.4 Other Radiative Processes in Ammonia
The knowledge of the radistive properties of ammonia now may make

possible the demonstration of radiative processes which can occur in
laboratory fluid dynamics and modeling those which occur in the atmosphere,
0f the many that come to mind, the propogation and properties of tempera-

ture waves as a function of frequency might be investigated,
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