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Abstract

In this paper we study the behavior of the local solutions of perturbed variational inequalities,

governed by perturbations to both the variational inequality function and the feasible region.

Assuming appropriate second-order and regularity conditions, we show that the perturbed local

solution set is nonempty, Lipschitz continuous, and directionally differentiable. Even when the

directional differentiability is not guaranteed, we are still able to describe and characterize first-

order information concerning the perturbed local solution set. We also discuss relations to nonlinear

programming sensitivity analysis.
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1. Introduction

In this paper we consider sensitivity analysis for the variational inequality problem stated in

the following standard form:

VI: find x Q such that F (x )T(x' - x) 0 for any x' Q.

In this formulation, the ground set Q = { x E R I g ( x ) > 0, h ( x ) = 0 }, and F, g, and h are functions

from Rn to Rn, from Rn to R, and from Rn to RL respectively. As has long been recognized, a variational

inequality is an alternative formulation for a number of well-known problems, such as convex

programming problems, complementarity problems and fixed point problems. In practice, variational

inequalities are useful tools for modeling various equilibria in economics and transportation science.

Examples include spatial market equilibrium problems and traffic equilibrium problems. This paper

deals mainly with the behavior of the local solutions of such variational inequalities with respect to

smooth perturbations of the underlying problem data. Due to the nature of the variational inequality

problem, the sensitivity analysis we perform is closely related to that for optimization problems. The

main results of this paper are also applicable to perturbed optimization problems.

The first basic results of nonlinear programming sensitivity analysis assumed strict

complementary slackness, linear independence of the gradients of the binding constraints, and a

second order sufficient condition ( see Fiacco [ 1976 , or [ 1983 ] ). Assuming these conditions, Fiacco

[ 1976 showed that the perturbed local solution is a once continuously differentiable function of the

perturbation parameter. When the strict complementary slackness condition is relaxed, in general

the perturbed local solution is no longer differentiable with respect to the perturbation parameter.

However, if we strengthen the second order condition by imposing the so-called strong second order

sufficient condition, then the perturbed local solution is again a Lipschitz continuous function, and is

directionally differentiable at the point being considered ( see Jittorntrum [ 1984 and Robinson

[ 1980 1 ). Moreover, if we replace the linear independence condition with the Mangasarian and

Fromovitz constraint qualification, and assume the general strong second order sufficient condition,

then the perturbed local solution is merely a continuous function ( see Kojima [ 1980 ] ). If we further

weaken the strong second-order condition to a general second order sufficient condition, then the
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perturbed local solution still exists but may not be unique, and in this case, the perturbed local

solution set is Lipschitz continuous at the point being considered ( see Robinson [ 1982 ] ). For a more

detailed survey, see Fiacco and Kyparisis [ 1984 ].

A number of authors have considered sensitivity and stability issues of variational inequalities

with special linear structures. These variational inequalities arise as natural mathematical

formulations of certain equilibrium problems ( for example, traffic equilibrium and spatially

separated economic markets ). Recently, a couple of authors have also considered the sensitivity

analysis for the general form of the variational inequality problem VI. Assuming strict

complementary slackness, linear independence of the gradients of the binding constraints, and the

second order sufficient condition, Tobin [ 1986 applied nonlinear programming sensitivity analysis

results of Fiacco [ 1976 to variational inequalities. While assuming the linear independence

condition and the strong second order sufficient condition, Kyparisis [ 1985 extended Robinson

[ 1980 ] 's work on generalized equations - he showed that the perturbed stationary point in this case

is a Lipschitz continuous function and is directionally differentiable at the point being considered.

Although stated only for nonlinear optimization problems, most of the results obtained by Robinson

[ 1982 ] are also valid for variational inequalities. In fact, Robinson showed that the perturbed local

solutions to the variational inequality problem is Lipschitz continuous at the point being considered,

assuming a regularity condition and a general second order sufficient condition.

In this paper, we study differentiability properties of perturbed local solutions for situations in

which the perturbed local solution is a multifunction of the perturbation parameter. Thus we need to

introduce the notion of differentiability for a point-to-set mapping at a given point. Assuming

appropiate second-order and regularity conditions, we prove that the perturbed local solution set is

nonempty and is directionally differentiable at the point being considered.

In the next section, we study various second-order conditions and constraint qualifications

associated with variational inequalities, and explore some properties of local solutions. Then in

Section 3, we conduct sensitivity analysis for general variational inequalities with nonlinear

constraints. In this section, we also define directional differentiability for a point-to-set mapping at a
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given point. Finally, Section 4 discusses the application of this work to sensitivity analysis for

nonlinear programs.

2. First and second order conditions for variational inequalities

In this section, we first investigate some properties of the local solution to the variational

inequality problem VI. We then consider a perturbed version of VI and present some continuity

properties of the perturbed local solutions. For the moment we assume that F is once continuously

differentiable and that g and h are twice continuously differentiable.

Definition 2.1. We say x* is a local solution to variational inequality problem VI if for some

neighborhood M of x*, F ( x* )T ( x' - x* ) 2 for any x' E Q n M. Furthermore, if x* is the only local

solution in some neighborhood of x*, we say x* is an isolated local solution of VI.

Suppose x* is a local solution to problem VI. Then clearly x* is also a local minimum of the

following nonlinear program, and vice versa,

minimize F ( x* )T Z

subject to g(z) > O

h(z) 0.

Let ( u*, v* ) denote the corresponding Lagrange multipliers. Also let

Il(x*) = {ilgi(x*) = O,ui* > 0},

I2(x*)= {ilgi(x*) = O,ui* = o},

I3(x*) = {i gi(x*) > O,ui* = 0},

I(x*) =Ii(x*)nlI2(x*).

Now suppose the Mangasarian-Fromouitz constraint qualification ( MFCQ) holds at x*, i.e., Vhj ( x* )

forj = 1, , I are linearly independent and some vector z R- satisfies

Vgi( x*) z > 0 for i I ( x* ), and

Vhj(x*)z = 0forj = ,.-.,l.
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Then the generalized Karush-Kuhn-Tucker condition (GKKT) follows immediately, i.e., some

vectors u* and v* satisfy

F (x*) - Vg( x* )T U* - Vh(x* )T v* = 0

*Tg ( x*) = 0

g(x*) 2 0

h(x*) = 0

u* > 0.

For convenience, we let Ld ( x, u, v )-F ( x )-Vg ( x )T u - Vh( x )T v.

Definition 2.2. We say a point x is a stationary point of the variational inequality problem VI if for

some vectors u and v, ( x, u, v ) satisfies the GKKT condition.

In general, such Lagrange multipliers u and v may not be unique. However, it is easy to see that

the Linear Independence ( LI ) of the gradients of the binding constraints implies the uniqueness of

the Lagrange multipliers. A standard theorem of the alternative also shows that LI implies MFCQ.

Therefore, LI implies GKKT as well at any local solution point. The LI condition at a local solution

point x* also implies the following second order necessary condition ( SONC ):

- V g ( x* ) u* - V2h ( x* ) v* is positive semidefinite on T1 ( x* ),

where T1 ( x* ) = { z Vgi ( x* ) z = 0 for i I ( x* ), Vg i ( x* ) z > 0 for i 12 ( x* ), Vh ( x* ) z = 0 },

which, because of the GKKT condition, can be restated as T1 ( x* ) = { z F ( x* )T z = 0, Vgi ( x* ) z 0

for i E I ( x* ), Vh ( x* ) z = 0 }. Note T1 ( x* ) is well defined and does not depend upon the Lagrange

multipliers u*. Roughly speaking, the SONC states that the feasible region must satisfy a certain

convexity property at a local solution point.

Now suppose the GKKT condition holds at x* for some u* and v*. If gi ( ' ) for i = 1, .. , m are

quasi-concave at x*, i.e., gi ( x ) gi ( x*) implies Vgi ( x* ) x - x* ) - 0, and hj ( x ) forj = 1, *, I are

affine functions, then x* is a local solution to VI. However, for more general functions g and h, we

need the following second order sufficient condition ( SOSC ) to ensure that x* is a local solution:
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- V2g ( x* ) u* - V2h ( x* ) v* is positive definite on T1 ( x* ).

Loosely speaking, the SOSC is imposed only upon the feasible region about x*. So for any small

perturbation of the function F, we do not expect that such a condition will ensure the existence of a

local solution near x* to the perturbed problem.

If VLd ( x*, u, v ) is positive definite on T1 ( x* ) for each ( u, v ) for which ( x*, u, v ) satisfies

( GKKT ), then we say that the problem satisfies the general second order condition ( GSOC ) at x*. ( If

in particular, the Lagrange multipliers are unique at x*, then we say the second order condition

(SOC ) holds at x*. ) Robinson [ 10 has studied the behavior of perturbed solutions for the general

optimization problems under similar assumptions. Some of his results are also valid for variational

inequalities - the only necessary change is to replace Vf, the gradient of the objective function f, with

our general vector function F. In this section, we will paraphrase some of his results in terms of

variational inequalities.

Theorem 2.1. Suppose x* is a local solution of VI. Assume the problem satisfies MFCQ and GSOC at

x*. Then x* is an isolated local solution.

Proof. By Robinson [ 10, Theorem 2.4 , x* is an isolated stationary point. By the continuity of g, Vg, h

and Vh, NIFCQ is valid in a neighborhood of x* ( see Robinson [ 12, Theorem 3 ] ). Since MFCQ is a

sufficient condition for GKKT, any local solution near x* must also be a stationary point and,

therefore, x* must be an isolated local solution.

D

We now consider the following perturbed version of variational inequality problem VI:

VI(c): find x E (c) satisfying F (x, c )T( x' - x) > 0 for any x' ( ).

In this formulation, Q ( ) = { x g ( x, e ) > 0, h ( x, ) = 0 } and e E R is a perturbation parameter.

Throughout this paper, we assume x* is a local solution ( or a stationary point, as distinguished by

context ) to problem VI ( c* ). We now list some basic assumptions needed in this paper, which all
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concern the local properties of the functions F, g and h near (x*, 8* ). The variables ( x, e ) appearing in

the following assumptions are restricted to a neighborhood of ( x*, £* ).

Assumption-2.1. g ( , ) and h ( , ) are differentiable, and F ( , ), Vg ( , ), Vh ( , )

are continuous. Moreover, F ( -, e* ) is once continuously differentiable, g ( , e* ) and h ( , e* ) are

twice continuously differentiable.

Assumption 2.2. ( convergence condition ) For some L > 0,

IIF (x, c) - F (x, * )ll L i - £* II,

IIg(x, E) - g(x, E* ) < L e - E* 11,

h (x, E ) - h ( x, £* ) 1 S L - e* II,

IIg ( x, ) - Vxg( x, c* ) c L E - £* II,

II Vxh ( x, e) - Vh ( x, * ) I < L 11i - 8* I|.

Assumption 2.3. F (, ), Vg ( *, · ) and Vxh ( , ) are differentiable at ( x*, £* ).

Assumptions 2.1 and 2.2 are essential to ensure the Lipschitz continuity of the perturbed local

solution set. Assumption 2.3 is needed only in studying the differentiability property of the perturbed

local solution set. We also rely upon the following notation for carrying out the sensitivity analysis.

Let

S( ) = { x I x is a local solution to VI ( £ ) },

SP ( c ) = { x x is a stationary point of VI ( c ) },

K ( x, ) = { ( u, v ) ( , u, V ) satisfies the GKKT corresponding to £ }.

If the constraints g ( , ) are quasi-concave and the constraints h ( -, e ) are linear for each , then

SP ( c ) C S ( e ). On the other hand, if MFCQ is valid over the entire feasible region, then S ( e ) C

SP ( ). The next theorem presents a continuity property regarding the point-to-set mappings SP ( · )

and K ( , - ) near the point being considered. Although Robinson [ 10 ] has stated this result only

for optimization problems, it is also valid for variational inequalities.

6



Theorem 2.2. Suppose Assumption 2.1 is satisfied near ( x*, E* ). If GKKT and MFCQ hold at x* for e

= *, then for some neighborhoods M of x* and N of E*, K (, ) and SP ( · ) n M are upper

semicontinuous on MXN and N respectively. Furthermore, K (, ) is uniformly bounded on

MXN.

Proof. See Robinson [ 10, Theorem 2.3 ].

In general, with these assumptions the local perturbed stationary point set SP n M may be empty

for any small perturbation. Therefore, we need additional second order conditions to ensure the

existence of perturbed stationary points or perturbed local solutions.

In the following theorem, we assume a local convexity condition and that the MFCQ condition

holds at ( x*, e* ). Therefore in this case, the stationary points coincide with the local solutions in a

neighborhood of x*.

Theorem 2.3. Suppose Assumption 2.1 is satisfied at ( x*, £* ). Assume GKKT, MFCQ and GSOC

hold at ( x*, * ). Also assume that g ( , ) is locally quasi-concave at x* and h ( , ) is affine for £

near *. Then for some neighborhoods M of x* and N of £*, S ( c ) n M = SP ( ) n M se 0 for each E

N.

Proof. Since g ( , e ) is locally quasi-concave and h ( , ) is affine for £ near £*, and since MFCQ

holds at ( x*, * ), for some neighborhoods M1 of x* and N 1 of £*, Q ( ) n M1 is a convex set, and MFCQ

holds over Q ( ) n M 1 for each E N1 ( see Robinson [ 12, Theorem 3 ] ). Hence, S ( e ) n M1 = SP ( )

n M 1 for each E N 1.

We now proceed to prove that the perturbed local solution set is nonempty by contraposition. Let 8

be positive number and B be an n-dimentional unit ball, and consider the following locally restricted

variational inequality problem

VI(r, ): find xE Q(c)nf{x* + B} satisfying

F(x, )T( X- x) _ O for any x' E ( ) n {x* + B }.
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Note that Q ( ) n { x* + B } is compact for all E N1 and is convex for 8 sufficiently small. So in this

case, VI ( , 8 ) always has a solution. Furthermore, if this solution is in the interior of { x* + B },

then it is also a local solution to the original problem VI ( ).

Consequently, if the theorem is not valid, then for some sequence 8n | , there are sequences { ekn }k

and { Xkn }k with Xk' solving VI ( ckn, 8n ) and that satisfy Ek" - e* and I Xk - * I = 8n. Without loss of

generality we assume xk n xn. Letting k - + , we thus obtain a sequence { xn } satisfying II xn - X*

= 8n and xn solves VI ( *, 8n ). Notice that the restricted feasible region Q ( e* ) { x* + 8n B } = { x I

g( x, e* ) > 0, -n 11 x - x* 12 + 8n3 > 0, h ( x, * ) = 0 }. It is easy to see that MFCQ holds for the

enlarged system over Q ( c* ) n { x* + 8n B } as long as 8n is small enough. Thus, the GKKT condition

applies at any solution point of VI ( *, 8n ). In particular, for each xn, some vectors un, vn, and wn

satisfy

F ( xn, * ) - Vxg ( xn, £* )T un - Vxh ( xn, E* )T vn + 2S ( xn - X* )T wn = 0,

( un)T g( xn,£ * ) = 0,

( wn )T ( _ -8 | X - X* 112 + 8n' ) = 0,

g ( xn, £* ) O,

- 8n II x - x* I12 + >_ 0,

h (xn, £*) = 0,

un > 0, wn > 0.

We now view 8n as a perturbation parameter in the new system. When 8n = 0, the new system

reduces to the original GKKT condition corresponding to £*. By Theorem 2.2, K ( xn, 8n ) is upper

semicontinuous and uniformly bounded at ( x*, 0 ). Therefore, without loss of generality we assume

that un - u*, vn - v*, and wn - w*, and that ( x*, u*, v* ) satisfies the original GKKT condition

corresponding to *.

Now let ( xt, ut, vt, wt ) = ( 1-t) ( x*, u*, v*, w* ) + t ( xn, un, vn, wn), and consider the following

function

s (t) = ( xn - x* )T [ Ld ( xt, ut, vt, £* ) + 28 ( xt - x* ) wt ] + ( un - u* )T g ( xt, e* ) +

+ ( vn - v* )T h ( xt, £* ) + (wn - w* ) [ -n 11 xt - X* 112 + 8n3 i
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It is easy to verify that s ( 0) > ( wn - w* ) 8n3 and s ( 1 ) < 0. So by the mean-value theorem, for some

0 C tn - 1, s' ( tn ) = s ( 1 ) - s ( 0 ) ( w* - wn) 8n3. Some simple algebraic manipulation shows that

S' ( tn ) = ( xn - * )T [ VxLd ( Xt , ut~, Vt,* ) + 28n wtn ] (xn - x* ). Now notice that I xn - x* | = n.

If we let z be any limiting vector of the sequence ( xn - x* ) / n n, then 1I z 11 = 1 and z T1 ( x* ). Also,

the inequality s' ( tn ) ( w* - wn) 8n3 implies that lim s' ( tn )/ 8n2 0 and consequently that

zT V Ld ( X*, U*, V*, * ) 0,

which contradicts the GSOC assumption.

The next theorem indicates that the local perturbed stationary points ( and hence the perturbed

local solutions under the MFCQ assumption ) are actually Lipschitz continuous if in addition,

Assumption 2.2 is satisfied. We let d ( x, A ) denote the distance from point x to set A, i.e., d ( x, A ) =

inf(Ix - yI:yE ( A}.

Theorem 2.4. Suppose Assumptions 2.1 and 2.2 are satisfied at ( x*, e* ). Assume GKKT, MFCQ and

GSOC hold at ( x*, c* ). Then for some neighborhoods M of x* and N of c*, and for some constant p > 0,

d[ (x, u, v ), { x* } X K ( x*, c* )] < p l E - * 1

for each e E N, x E SP (e) n M, and( u, v) K (x, c).

Proof. By Robinson [ 10, Theorem 4.2 and Corollary 4.3 ].

D

3. Sensitivity analysis for variational inequalities

We begin this section with a few definitions. As we mentioned previously, the local perturbed

solution to VI ( ) may not be unique under the assumptions invoked in this paper. Therefore, for any

e in any neighborhood M of x*, -* S ( ) n M is generally a point-to-set mapping. For the purpose of

our analysis, we define Lipschitz continuity and directional differentiability for a point-to-set

mapping T ( ) at a given point ( x*, c* ) in the following sense.
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Definition 3.1. A point-to-set mapping T ( c ) from Rk to Rn is said to be Lipschitz continuous at

(x*, c* ) if for some neighborhood N of £* and some number L > 0,

Ix(E) - x* 11 < L - * II foranyx(c) E T(c)andE N.

Definition 3.2. A point-to-set mapping T ( ) from Rk to Rn is said to be differentiable in the direction

co at ( x*, £* ) if there is a vector d ( o ) E Rn satisfying the property that for any x ( * + t o ) E

T(c* + to),

lim - X(* +t) - * = d(£)

t-*O 

The mapping T ( ) is said to be directionally differentiable at ( x*, c£* ) if it is differentiable in every

direction co E RK.

These definitions are natural extensions of the same notions for point-to-point mappings and have

clear geometrical meanings - when the mapping is single valued, these definitions are exactly the

usual ones for functions. By our definition, differentiability is a strong property that requires all

points in T ( e ) converge to a common point along the same direction and with the same rate. For

example, T ( ) = { } is differentiable at ( 0, 0 ) while T ( ) = [ 0, ] is not. In general, when a point-

to-set mapping T ( ) is not differentiable along direction o at ( x*, £* ), we let

D ( co ) = { d I d is the limit of some convergent sequence of the form [ x ( £* + tk O ) - x* ] / tk }.

To be more precise, for t > 0 we first let

Td(t,) = { [x( * + tO) - x*/t I x (* + t o) T(£* + t o) } for t > 0.

Then we define

D( )- lim Td(t,)- {d 1 3 d(tk )E Td(tk,O) suchthat d(tk )-d as tk 4 0}.
t -- O

Clearly, D ( g0 ) also contains the first order information about the limiting behavior of T ( · ) at

( x*, * ). For example, T ( ) = { x R' I x12 + x22 = 2 } is not differentiable at ( 0, 0 ) but D (1) =

{x R x1
2 + x2

2 = 1 } ( we let e = 1 since is a scale parameter ), which means that the set T ( )
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converges to x* = 0 along all directions with the same rate. Notice that D ( o ) is a closed set and has

the following simple properties.

Lemma 3.1. If the mapping T ( · ) is Lipschitz continuous at ( x*, c* ) with Lipschitz constant L, then

D ( 0 ) c { x R I II x 11 ' L } is uniformly bounded in any direction co. Furthermore, T ( ) is

differentiable in direction co if and only if D ( co ) is a singleton.

A Polyhedral Version of the Problem

We first briefly summerize the results obtained by Qiu and Magnanti [ 8 for the case in which

the feasible region mapping is a constant polyhedron, i.e., £ ( ) - P = x R I A x 2 b, C x = d }.

We then try to generalize these results to the general case for which the feasible region mapping is

defined by a set of parameterized nonlinear constraints.

Suppose x* is a solution to the problem VI ( * ). Let

T1 = {x F(x*, *) T x = , Aix 0 foriE I(x*),Cx = 0},

where Ai is the ith row vector of matrix A. We now invoke the following basic assumptions concerning

the function F ( , ) near ( x*, £* ). We assume for some neighborhoods U of x* and V of C*,

(a ) F ( , ) is continuous on UXV,

(b) For some L> 0,

II F (x, E ) - F (x, E* ) < LII - * for any x { x* + T1 } n U, cE V,

(c ) F ( , ) is differentiable at ( x*, * ).

With additional second order assumptions, we are now able to obtain some properties of the local

perturbed solution set.

Proposition 3.1. Suppose V F ( x*, * ) is positive definite on T1, i.e., GSOC is satisfied. Then for

some neighborhood M of x*, S ( ) n M is nonempty and is Lipschitz continuous at ( x*, * ).

Furthermore, for any direction co ( R, the set D ( g ) is contained in the solution set S ( o ) of the

following linear variational inequality problem
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VI ( o ): find x T1 satisfying [ VF(x*, r*)x + VF(x*, *)o ]T(x '- x) 2 0 for any x' E T 1.

Here we try to characterize the set D ( Eo ) that contains first order information of the perturbed

solutions. The theorem shows only that D ( eo ) is contained in S ( o ). But we further conjecture that

D ( o ) = S ( co ) for any co. Notice that S ( co ) is also a compact set if we assume the hypotheses of

Proposition 3.1. To see this, suppose some sequence { xn } satisfies xn E S ( O )l and xn --) . Since x =

0 is in T1, we obtain

- [ VF( x*, £* ) xn + VcF( x*, * ) Co T xn 0 for all n.

Let z be a limiting vector of the sequence ( xn / xn 1 }. Then z E T 1 and [I z [[ = 1. But from the

inequality, we have zT VF ( x*, * ) z C 0, which is a contradiction to the GSOC assumption. So

S ( o ) is bounded. It is easy to see that S ( o ) is a closed set.

Example 3.1. Consider the following three-dimensional example

VI(£): find xE P satisfying F(x,e)T(x' - x) > 0 for anyx'( P

where P = {x E R3 Xl x 0, x2 0, x 3 = 0 },0 < c < , and F(x, ) = (X + x2 - , xl + X2 - , 1 )T.

Note that x* = ( 0, 0, 0 ) is the unique solution to VI ( 0 ) and that the hypotheses of Proposition 3.1 are

satisfied. In this case, the perturbed solution set is given by S ( £) = {x x + x2 = , x l > 0, x2 0,

x3 = 0 } for 0 c < , which is not differentiable at (x*, £* ). However, it is easy to verify that D ( o )

= S (o) = x xl + x 2 = , X1 >0, x2 >0, x3 = 0}forgo 0.

The next theorem shows that if the general second order condition is strengthened slightly, then

the local perturbed solution set is directionally differentiable. We let span ( T 1 ) denote the linear

subspace spanned by the set T1.

Proposition 3.2. Suppose VxF ( x*, * ) is positive definite on span (T 1 ). Then for some neighborhood

M of x*, S ( ) n M is nonempty and is directionally differentiable at (x*, £* ) for any direction £o.

Furthermore, the derivative d ( Eo ) uniquely solves VI ( co )

12



Example 3.2. Consider a one-dimensional example with P = { x R I x 2 0 }, 0 -< < 1, and let F be

given by

0 0 x < 2

F(x,e) = (x - 2)/(1 - ) E2 < E
x C < < °.

It is easy to verify that x* = 0 uniquely solves VI ( 0 ) and that this problem satisfies the hypotheses of

Proposition 3.2. The perturbed solution set in this case is S ( ) = [ 0, 2 , which is indeed

differentiable at ( 0, 0 ). However, we notice that the perturbed solutions are not unique in this case.

The next result shows that the local perturbed solution would be unique if we further impose some

first-order smoothness conditions on the function F.

Proposition 3.3. Assume the hypotheses of Proposition 3.2. Also assume that F ( , e ) is

differentiable in a neighborhood of x* for £ near £*, and that VxF ( , · ) is continuous at ( x*, * ).

Then for some neighborhoods M of x* and N of e*, S ( ) n M is single valued for each E N and is

directionally differentiable at ( x*, c* ).

The Nonlinear Problem

We now consider the problem VI ( ) with perturbed nonlinear constraints. From this point on, we

always assume that the problem satisfies Assumptions 2.1-2.3 at ( x*, c* ). By Theorem 2.4, MFCQ

and GSOC would imply that for some neighborhoods M of x* and N of e*, and for some 1p > 0,

IIx (e) - x* II p l£ - * || for any x ( ) SP (e) n M, N.

Furthermore, for each ( u ( ), v ( ) K (x ( ), ), some ( u*, v*) E K (x*, c* ) satisfies

I ( u (c )-(u*, v )( ) - * I.

Now suppose go is a vector in Rk. Let xL be a vector in the set D ( g ) associated with mapping SP ( E ) n

M and direction o. By definition, xL is the limit of some convergent sequence of the form

{[ x( * + tn £ ) - x* / tn }nE N, where x( * + tn o ) E SP ( * + tn o ) n M.
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We now want to derive some constraints that the vector xL must satisfy.

Lemma 3.2. Suppose [ xn - x* ] / tn - xL, [ ( un, V n) - ( U*, V* ) / tn - ( UL , vL ), where xn E SP (e* +

tn Ec ) n M and ( un, vn) K ( xn, * + tn cO ). Then ( xL, uL, vL) satisfies the following system

VxLd ( X*, u*, V*, E* ) XL + VLd ( X*, u*, V*, £* ) Co - Vxg ( x*, £* )T UL _ Vh ( x*, * )T vL = 0

Vxg i ( x*, * )xL + Vegi ( x*, * ) o = 0 if i E 11, or i I2 and ui L > O0

Vxgi ( x*, * ) xL + Vg i ( x*, * ) o 0 if i 12 and uiL = O ( 3.1 )

Vxh ( x*, * ) xL + Vch (x*, c* ) Co = 0

UiL UIS fori Il, ui- 0 foriE I2, uiL= for i I3.

Proof. For convenience, let en = c* + tn £o. Since GKKT holds for £* and each £* + tn co, we have the

following relations for n sufficiently large,

[Ld ( x, un, vn, n ) - Ld ( x*, u*, v*, * ) ] /t n = 0

[gi ( xn, n) - gi(X*, * ) / tn = O if i 11,or i 1I2 and uL > 0

[gi(xn, n) - gi ( x*, *)]/tn O0 if i I2 anduiL = 0

[h(xn, cn ) - h(x*, *)]/t n = 0

[uin - ui* / tn 0 ifi I2

[uin - ui* ]/t = 0 ifi E 13.

Letting n -x , n E N, we observe that ( xL, uL, vL ) satisfies the desired system ( 3.1 ).

O

For now, in order to ensure that there is always a convergent sequence of the form

{[ ( u n ,vn) - (u*, v* ) / tn),

we assume that K ( x*, * ) is a singleton. Notice that LI is a sufficient condition for such a

requirement. Recently, Kyparisis [ 7 showed that this uniqueness condition is equivalent to the

following strict Mangasarian-Fromovitz constraint qualification ( SMFCQ ):

Vxgi ( x*, * ), i I1, Vxhj ( x*, £* ),j = 1, 1--, I are linearly independent and for some z E RE,

Vxgi( x*, £* )z > 0, i 1I2
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Vxgi(x*, *)z = 0, i I1

Vxhj(X*, *)Z = 0, j = 1,- -,1.

Note that we do not need this condition for problems defined on polyhedral sets ( see Proposition 3.1 ).

Theorem 3.1. Suppose GKKT, SMFCQ and SOC hold at ( x*, £* ). Then for any direction co Rk,

D ( O ) is a compact set and is contained in S ( eo )', the solution set of the following linear variational

inequality problem

VI (eo ): find x Q' satisfying

[VxLd(x*,u*,v*, e *)x + VELd(x*,u*,v*,*)O ]T (x' - x) 2> 0 for anyx'E Q-

where 1 = {x I F (x*, * ) x + (u* )T Vg ( x*, E* ) o + (v* )T Vh ( x*, E ) co = 0, Vg i ( x * , C* ) x +

+ Vtgi( x*, *) o 0 for i I (x* ), Vxh ( x*, * ) x + Vch (x*, * ) o = 0 }.

Proof. The compactness of D ( o ) follows immediately from Theorem 2.4 and Lemma 3.1. Now

consider any convergent sequence [ xn - x* / tn -- xL with xn SP ( c* + tn co ) n M and n N. Since

K ( x*, * ) = { ( U*, V* ) } is a singleton, by Theorem 2.4,

( un, vn ) - (u*, v*) < p lII tn for some (un, vn ) K ( xn, * + tn o).

Thus, for some subsequence N' C N, [ ( un, v) - (u*, v* ) ] / t - ( uL, vL ), n N'. By Lemma 3.2, any

such ( xL, uL, VL ) satisfies the system ( 3.1 ), which can be restated as follows if we view ( uL, vL ) as a

dual solution,

[VxLd ( *, U*,v*, e )x + VoL d ( x*, U*, v*, *) g] T( X- XL) 2>0 for any x' E Q

whereQ° = { Vxg i ( x * ,* ) + Vg i (x*, * )co = 0 for i I1, Vxgi( x*, c* ) x + Vggi ( x*, * ) o 0 0

for i E 12, Vxh ( x*, e ) x + Vh ( x*, c* ) o = 0 }.

Now we need show only that Q' = Q°.

Q2 C Ql: Suppose x Q0. Then

F ( x*, £* )T x + ( U* )T Vg ( x*, * ) co + ( v* )T Veh ( x*, * ) o

= [Vxg ( X*, £* )T u* + Vxh ( x*, * )T v* T x + ( u* )T Vg ( x*, * ) o + ( V* )T Veh ( X*, ,* ) £o

= [ Vg ( x, * ) x + Vg ( x*, c* ) O 1T U* + [ Vxh ( x*, £* ) x + V~h ( x*, * ) co ]T v*

= 0.
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Thus, x E Q.

Q' C QO: Suppose x Ql. Then

0 = F ( x*, c* )T X + ( U* )T Vg ( X*, C* ) CO + ( V* )T Vh ( x*, c* ) cO

= [ Vg ( x*, c* ) x + Vcg ( x*, c* ) O ]T U + [ Vh ( X*, £* ) x + Vh ( X*, * ) go ]T V*

= [ Vg ( X*, £* ) X + Vcg ( X*, C* ) o T U*.

But this equality and the fact that Vxg ( x*, £* ) x + Vcg ( x*, £* ) co > 0 for any i I and

ui* > 0 imply Vxg i ( x*, * ) X + Vg i ( x*, £* ) o = for i E II. Thus, x E( Q.

The theorem shows that D ( o ) C S ( co )L, which is a partial characterization of the set D ( o ). We

suspect that D ( o ) = S ( o )' is always the case.

Conjecture 3.1. Assume the hypotheses of Theorem 3.1. Then D ( go ) = S ( o ) for any direction

co E R .

In the next theorem, we show that the conjecture is true if the LI condition is satisfied at ( x*, c* )

and VI ( o ) ( or system ( 3.1 ) ) satisfies the strict complementary slackness condition ( SCS ), that is,

for any xL E S ( £o )', there is some dual solution ( uL, vL) satisfying uiL > 0 if i E I2 and Vxgi ( x*, c* ) xL

+ Vg i ( x* , £* ) = 0.

Theorem 3.2. Assume the hypotheses of Theorem 3.1. Suppose that LI holds at ( x*, * ) and that SCS

holds at each solution point of VI ( co )'. Then D ( o ) = S ( o )-.

Proof. Suppose xL E S ( o ). Then for some dual solution ( uL, vL ), ( x L, vL ) satisfies system ( 3.1 )

and the SCS condition. We want to show that some functions x ( t) SP ( x* + t cg) n M and (u ( t ),

v ( t) K ( x ( t ), £* + t o ) satisfy ( x'( 0 ), u'( 0 ), v'( )) = ( XL, uL, vL ). And then, xL D ( o)

follows immediately.

Consider the following system of equations
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Ld (X, U, v,) = 0

gi (x, ) = 0 ifi E I1, or i I2 and UiL > 0

ui = 0 ifi I3 , ori I2 anduiL = 0

h(x,e) = 0.

For simplicity of notation, we let y = ( x, u, v ), and let H ( y, ) = 0 denote this system of equations.

We also assume { 1, ---, il } = I1 U { iI i 12 and uiL > 0 }. Now with this notation, the Jacobian

matrix of H with respect to y = ( x, u, v ) is given by

0 0*x~d ', -xgI O I

Vxgi i------------------ O

o I III

I O I 1 I

Vxh 1

Vh 

I I _

It is not hard to show that SOC and LI imply J is nonsingular at ( x*, u*, v* ).

We now consider equations of the form H ( y* + t yL + JT z, C* + t co ) = 0 with t and z as

variables. Notice ( t, z ) = ( 0, 0 ) satisfies the equations. The Jacobian matrix of this system at ( 0, 0 )

with respect to z is JJT, which is nonsingular. By the Implicit Function Theorem, for some

differentiable function z ( t ) in a neighborhood of t = 0, ( t, z ( t ) ) satisfies the equations and z ( 0 ) =

0. Furthermore, differentiating both sides of H ( y* + t yL + JT Z ( t ), C* + t cO ) = 0 and using the

chain rule shows that z' ( 0 ) is determined by the equations J yL + jjT z ' ( 0 ) + K co = 0, where

K [ VoLd ( x*, *, v*, * )T, Vgl ( *, e* )T, *-, VEgil ( X*, * )T, 0, -, 0, Vh ( *, * ) ].

17
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Note that each row of K is the gradient of an equation in the system H ( y, ) = 0 with respect to .

Since yL = ( L, uL, v L ) satisfies system ( 3.1 ), we have J yL + K o = 0, which in turn implies that

z'( 0 ) = 0. Therefore, if we let

y(t) (x(t), u(t), v(t)) =y* + t y + JT z(t),

then y' ( 0) = L = ( XL UL, VL ).

Finally, in order to show that x (t) E SP ( x* + t o) n M and ( u ( t), v ( t) ) K (x ( t), * + t o),

we need to prove only that gi(t) gi( x( t), * + t o) 0 (t > 0 ) for i E 12 and UiL = 0, and that

ui ( t) > 0 (t > 0 ) for i E I2 and uiL > 0. Since we assume SCS holds for VI ( o)' at ( xL, uL, vL ), by the

chain rule we have

gi' ( 0 ) = Vxgi ( x*, £* ) xL + Vg i ( x*, t* ) o > 0 for i I2 and uiL = 0, and

ui'( 0 ) = uiL >0 for i I2 and uiL > 0.

Therefore, for t positive and small enough, the desired property is guaranteed.

Thus we have shown that S ( 0o )' C D ( o ). On the other hand, by Theorem 3.1, D ( o ) C S ( o )

Hence, D ( o ) = S ( o ).

D

It is worth noting that the SCS condition for the linear problem VI- ( o ) does not imply the SCS

condition for the original problem VI ( E* ) at x*. The following example illustrates this fact.

Example 3.3. Consider a problem VI ( ) with feasible region fQ = { x R3 I xl > 0, x2 > 0, x3 = 0 }

for c 2 0 and function F ( x, ) = ( x + 2x2 - , 2x 1 + x2 - , 1 )T. Note that x* = ( 0, 0, 0 ) is the

unique solution to problem VI ( 0 ) and that the SCS condition is not satisfied at x*. However, it is not

hard to verify that in this case the linear problem VI ( o ) is specified by Q' = Q and F' = F ( x, o )

for any o > 0, which has a unique solution XL = (eo /3, /3, 0 ). It is obvious that the SCS condition

holds at xL.
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Lemma 3.1 shows that the local perturbed stationary point set is directionally differentiable if

and only if the set D ( o0 ) is single valued for any o Rk. Therefore, we will now strengthen the

conditions of Theorem 3.2 to make S ( eo ) a singleton.

Theorem 3.3. Assume the hypotheses of Theorem 3.1. If VxLd ( x*, u*, v*, e* ) is positive definite on

span ( T1 ), then for some neighborhood M of x*, SP ( ) n M is directionally differentiable at ( x*, e* )

for any direction o. Furthermore, the derivative d ( o ) uniquely solves the linear variational

inequality problem VI ( eo )-.

Proof. We first show VI ( ) has a unique solution. Suppose xl and x2 S ( o )-. Then xl - x2 E

span (T 1 )and

[ VLd (x*, u*, v*, * ) xl + VELd (x*, u*, v*, * ) o ]T ( x2 - xl) 0,

[ VL d (x*, u*, v*, g* ) x2 + VELd ( x*, u*, v*, * ) o ]T (xl - x2 ) > O.

Adding these two inequalities, we obtain ( xl - x2 )T VxLd ( x*, u*, v*, e* ) ( x - x2 ) _ 0. Since we

assume that VxLd ( x*, u*, v*, £* ) is positive definite on span ( T 1 ), xl = x2. By Theorem 3.1, D ( o ) C

S ( co )'. Therefore, D ( o ) is also a singleton.

D

The next corollary follows immediately if we notice that

span(T )T. = {xE R"Vxgi ( x*, *)x = 0 foriE I1, Vxh(x*,*)x = 0}

= x R I F ( x*, C* )T x = 0, Vxh (x*, e* ) x = 0 }.

Corollary 3.1. Assume the hypotheses of Theorem 3.1. Also assume that the strong second order

condition ( SSOC ) holds at ( x*, E* ), i.e., VxLd ( x*, u*, v*, * ) is positive definite on T2. Then for some

neighborhood M of x*, SP ( ) n M is directionally differentiable at ( x*, e* ).

Notice that the directional derivative d ( o ) uniquely solves the variational inequality problem

VI ( go ) . By applying Theorems 2.4 and 3.3 to VI ( 0o ), we know that d ( o ) is locally Lipschitz
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continuous and directionally differentiable at each point o Rk. For the case in which the feasible

region is unperturbed, we can further show that the directional derivative d ( co ) is globally Lipschitz

continuous with respect to co. Suppose ( el, , er ) is an orthonomal basis of the subspace span

(Ti). Let E = [ el, --, er be an nr matrix with el, '--,er as its columns, and let

G = ET VLd ( x*, u*, v*, * ) E,

the projected (on to span (T 1 ) ) matrix of VLd ( x*, u*, v*, £* ). Then, VXLd ( x*, u*, v*, * ) is positive

definite on span ( T1 ) if and only if G is positive definite. We let Xmin denote the minimum eigenvalue

of the symmetric matrix [ G + GT ] / 2. For any arbitrary matrix A, the norm of A is usually defined as

IIA AH = sup i{ = l{ I Ax I }.

The next corollary shows that the derivative d ( o ) of the local perturbed stationary point set is

Lipschitz continuous with respect to o if the feasible region is not perturbed.

Corollary 3.2. Assume the hypotheses of Theorem 3.3. Further assume that ( ) Q = { x I g ( x )

> 0, h(x) = 0 }. Then for any o', eo" Rk,

I d ( co') - d ( £co" ) 11 < [ 11 V F ( x*, £* ) / min ] I co' - co" II.

Proof. Since g and h are independent of , VI ( o ) becomes

find x Q- satisfying [ VXLd ( x*, u*, v*, * )x + VF( x*,£* )o T (x' - x) 0 for any x' E Q-

whereQ- = {xlF(x*,£*)x= 0, Vxgi( x* )x 0 foriE I, Vxh(x*)x = 0}.

Therefore, we have

[ VxLd ( x*, u*, v*, * ) d (co') + VF ( x*, * ) co' T [ d (o') - d ( o" ) I < 0 

< [ VL d ( x*, u*, v*, c* ) d (co") + VF ( x*, * ) o" T [d ( ') - d (co") ].

Since VLd ( x*, u*, v*, * ) is positive definite on span ( T1 ), this inequality implies

Amin 1 d (o') - d ( o") II [ d ( o') - d ( o" ) ]VLd ( x*, u*, v*, * ) [ d ( o' ) - d ( o" ) i

c [ ( VLd ( x*, u*, v*, * ) d ( o' ) + VF ( x*, * ) co' ) - ( VLd ( x*, u*, v*, * ) d (o") +

+ VF ( x*, £*) co') T[d(0') - d ( £o")]

< [ VEF ( x*, )(* - o,) (]T[d( ) - d ( o)]

< VF ( x*, £* ) 11 d ( o') - d ( £o") l I £co' - c" II.

20



Dividing both sides by 1 d ( co') - d ( co" ) 1, we obtain the desired inequality.

O1

In the previous theorems, the perturbed stationary point need not be unique ( see Example 3.1 or

3.2 ). The next theorem describes a condition that ensures the uniqueness of the perturbed stationary

point.

Theorem 3.4. Assume the hypotheses of Corollary 3.1. Suppose that F ( , ), Vxg ( , c ), Vh ( , e )

are differentiable in a neighborhood of x* for each near c* and that VxF ( , · ), Vx2g ( , ),

VX2h ( -, - ) are continuous at ( x*, c* ). Then for some neighborhood M of x* and N of c*, SP ( ) n M

is single valued for each £ E N.

Proof. We prove the theorem by showing the contraposition. Suppose some sequences { xn }, { yn },

and { en } satisfy xn ; yn, xn, yn E SP ( n ), and xn, yn -* x*, £n -- *. Let ( un, vn ) be a vector in K ( xn,

en ) and ( un, v n ) a vector in K ( yn, n ). By Theorem 2.4, both ( u n, vn ) and ( u n, v n ) approach ( u*,

v* ) as n approaches o. Without loss of generality we assume that ( xn - yn ) / I xn - yn [- Z. Notice

that z satisfies 1 z 11 = 1, Vxgi ( x*, £* ) z = 0 for i I ( x* ), and Vxh ( x*, * ) z = 0. Therefore, we have

z t0 and z T2. Now let (x ( t ), u ( t ), v ( t) ) = t( xn, un, v n) + (1 - t) (yn, ufn, v n ) and consider

the following function

s( t) = Ld ( x ( t), u ( t ), v( t ), n )T(xn - yn ) + g( ( t), £n ) ( u n - n ) +

+ h(x(t), e )T ( n - n).

Notice that s' ( t ) = ( xn - yn )T VgLd ( x ( t ), u ( t ), v ( t ), en ) ( xn - yn ). Since the GKKT condition

holds for both ( xn, un, v n) and( yn, uvn, vyn ), it is easy to verify that s () > 0 and s (1) s 0. By the

mean-value theorem, for some 0 < t, 1, we have

s'( tn) = - )T VLd( x(t), u(t), v(t),n ) ( xn - yLd tn),tn),tn), xn_ yn) 0.

Dividing both sides by xn - yn 11 2 and taking the limit as n -- oo, we find a contradiction to the

GSSOC assumption and thereby complete the proof.

D
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Theorems 3.3 and 3.4 extend a recent result by Kyparisis [ 6, Theorem 4.3 . Specifically, we

weakened his LI condition to the SMFCQ condition. We now discuss the possibility of further relaxing

the SMFCQ condition. In the prior analysis, we use the fact that for each sequence { ( xn, en ) n E N

satisfying xn E SP ( n ) and xn - x*, en - e*, there is a vector ( u*, v* ) K ( x*, * ) and a sequence

(un, vn ) K ( xn, en ), n N for which [ ( un, vn) - ( u*, v* ) ] / IIn- * Il is uniformly bounded. And,

this property is guaranteed by our assumption that K ( x*, e* ) is a singleton. We hope this assumption

can somehow be relaxed. Now let us consider some of the properties of the mapping K ( -, · ). We

notice that for each x ( ) SP ( ), x ( e ) solves the following linearized problem:

minimize F(x(E),e)z (3.2)

subjectto Vxg(x(e),e)z 2 Vxg(x(e), )x() - g(x(£), £)

Vh (x ( ), e) z = Vxh (x ( ), e) x ( ) - h (x ( ), e).

For purpose of convenience, let

a (x (e), e) = Vxg ( x ( ), £) x ( ) - g (x (e), E ), and

b (x ( ), ) = Vxh ( x ( £), e) x ( ) - h (x ( ), e).

Then the set of Lagrange multipliers K ( x ( e ), ) is specified by the solution set of the dual problem of

(3.2):

maximize a(x( ), )T U + b ( x( ), )v ( 3.3)

subject to Vxg(x ( e), e)T u Vh( ( e ),)T v = F(x( e),e)

u >0.

Therefore, if MFCQ and GSOC are satisfied at ( x*, e* ), then by Theorem 2.4, K ( x ( ), ) is a

bounded polyhedron for ( x ( ), e ) in a neighborhood of( x*, e* ) and for each ( u ( ), v ( ) ) E K ( x ( e ),

C), there is some ( us*, v,* ) K ( x*, e* ) for which

11 ( u ( ), V () ) - (Ue*, VE* ) 11 < p 1 - * II.

We observe from the proof of Theorem 3.1 that if for each sequence ( xn, En ) in N satisfying xn 

SP (en ) and xn - x* and en - E*, we can somehow select a subsequence N' C N, and a sequence

{( un, vn ) } E N' satisfying ( u, v ) E K ( x, n ) for n E N' and a vector ( u, v ) K ( x*, * ) so that

22



I ( un, vn) - ( U*, V* ) II p en - * II for some p > 0,

then all the results we obtained in this section are still valid. We also notice that this property is

satisfied in the following two cases:

( i ) some basic optimal solution ( u*, v* ) to the dual problem ( 3.3 ) corresponding to c* has

nondegenerate u variables,

or, more generally,

(ii ) for some subsequence N' C N and a basis B ( , ) of( 3.3 ), B ( xn, en ) for n E N' is a

equence of optimal bases and B ( x*, c* ) is invertible.

4. Relations to Sensitivity Analysis for Optimization Problems

As has long been recognized, a function F from Rn to R' can be written as the gradient of some

function ffrom R" to R ( i.e., F ( x ) = Vf( x ) ) if and only if the Jacobian matrix VF ( x ) is symmetric

for all x. And in this special case, the GKKT condition for problem VI becomes the ordinary Karush-

Kuhn-Tucker condition ( KKT ) for the following optimization problem:

MIN: minimize f( x)

subject to g( x ) 0

h(x) 0

Let L be the usual Lagrange function associated with problem MIN, i.e.,

L(x, u, v) = f( x) - g (x)T u - h( x)T v.

Then by definition, Ld ( x, u, v ) = VL ( x, u, v ) and VXLd ( x, u, v ) = VX2L ( x, u, v ). The optimization

problem MIN and the variational inequality problem VI ( with F = Vf ) are intimately related,

though results for one problem class need not translate directly into useful results for the other. For

example, as we have noticed, the stationary points for these two problems are identical. However, the

conditions for when a stationary point x* is a local solution for MIN or is a local solution to VI are

different. Typically, optimization theory imposes a second order condition ( V 2 L ( x*, u*, v* ) is

positive definite on T 1 ) to ensure that x* is a local solution to MIN. On the other hand, as we observed
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previously, a convexity condition ( local quasi-concavity of the constraints ) will ensure that x* is a

local solution to VI. In general, these second-order and convexity conditions do not imply each other.

Note, however, that whenever the MFCQ is valid, every local solution to MIN is a stationary

point. Consequently, when conducting sensitivity analysis for local minimum ( i.e., studying

properties such as Lipschitz continuity, directional differentiability, and uniqueness, but not

existence ), we can rely upon results developed for the broader class of stationary points. Since all of

our results apply to stationary points of MIN ( or, equivalently, of VI with F = Vf ), they provide

results concerning perturbed local minima to MIN. In particular, our results specify conditions under

which the set of perturbed local minima is directionally differentiable. In contrast, in the context of

optimization problems, using weaker conditions ( MFCQ instead of our SMFCQ ), Robinson [ 10 has

already established Lipschitz continuity, but not differentiability. Jittorntrum [ 3 , envoking a

stronger condition ( LI instead of SMFCQ ) has established the uniqueness and directional

differentiability of the perturbed solutions to MIN.

We also note that when applied to optimization problems MIN with linear constraints, our

companion paper ( Qiu and Magnanti [ 8 ) provides an alternative proof, with somewhat weaker

conditions, for the Lipschitz continuity and directional differentiability of the perturbed local solution

set. Moreover, the results in that paper will also apply to optimization problems with auxiliary

variables that appear only in the constraints.

To conclude this section, we give one example to illustrate the property stated in Theorem 3.1.

Example 4.1. Consider the following perturbed minimization problem MIN ( E ):

minimize ( xl + x2 )2 /2 - (X1 + x2)+ x3

subject to x1 O0, x2 O0, x3 = 0

where 0 e < ~. Since is a scale parameter, we let the perturbation direction o = 1. It is easy to

verify that x* = ( 0, 0, 0 ) solves MIN ( ) and that ( u1*, u2* ) = ( 0, ) and v* = 1 are the

corresponding Lagrange multipliers. Notice that the problem satisfies the hypotheses of Theorem 3.1

at ( x*, e* ). The perturbed solution set in this case is given by
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S(E) = (XI X1 + x2 = , x1 2 0, x2 2 0, x3 = 0 },

which is not differentiable at * = 0. However, just as proved by Theorem 3.1, it is possible to show

that the set D ( 1 ) = { x l x1 + x2 = 1, x1 2 0, x2 > 0, x3 = 0 } is the solution set of the following linear

variational inequality problem

VI ( co ): find x E Q satisfying

[ Vxx 2L ( x*, u*, v*, c* ) x + VXE2L ( x*, u*,v*, * ) ] T ( X - X ) > O for any x' Q,

where Q = Q in this special case.
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