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Abstract

The goal of this project is to enhance performance of virtual machines and sim-
plify the design of the virtual machine monitor by running 32-bit x86 operating
systems in x86-64 mode. In order to do so, 32-bit operating system binary code is
translated into x86-64 binary code via "widening binary translation"; x86-32 code
is "widened" into x86-64 code.

The main challenge of widening BT is emulating x86-32 legacy segmentation in
x86-64 mode. Widening BT's solution is to emulate segmentation in software. Most
of the overhead for software segmentation can be optimized away.

The main contribution of widening BT is simplification of the VMM, which re-
duces the human cost of maintaining a complicated VMM. Widening BT also im-
proves performance of 32-bit guest operating systems running in virtual machines
and demonstrates the independence of virtual machines from physical hardware.
With widening BT, legacy hardware mechanisms like segmentation can be dropped.
Therefore widening BT reduces hardware's burden of backwards-compatibility, en-
couraging software/hardware co-design.
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Chapter 1

Introduction

A virtual machine is a tightly isolated software container that can run its own oper-

ating system and applications as if it were a physical computer [11]. The operating

system that runs inside of a virtual machine is called a "guest". A virtual machine

monitor (VMM) has access to the physical hardware and exports an image of the

underlying hardware resources to the guest operating system; this image is called

the virtual machine. Virtual machines are widely used in industry for consolida-

tion, availability, load balancing, and compatability.

VMware focuses on virtualizing the x86 ISA. Many 32-bit operating systems

such as Windows and Linux have been developed for 32-bit x86 hardware (x86-32).

When the x86 ISA was extended to 64-bit address space and 64-bit registers (the

extended architecture is called x86-64), 64-bit operating systems were developed to

run on the new 64-bit CPus. 64-bit CPUs have a x86-32 hardware mode to support

legacy 32-bit code. Code that runs in x86-64 hardware mode is called "64-bit code"

and have a 64-bit codesize, while code that runs in x86-32 hardware mode is called

"32-bit code" and have a 32-bit codesize.

Before this work, in order to export an image of x86-32 hardware to a 32-bit

guest operating system, VMware's VMM ran in x86-32 hardware mode-even if

the underlying CPU was 64-bit and capable of running in x86-64 mode. The VMM

also needs to run in x86-64 mode in order to support 64-bit guest operating sys-

tems. Therefore, VMware's VMM can run in both x86-32 mode and x86-64 mode.



Maintaining a VMM that can run in both x86-32 mode and x86-64 mode is compli-

cated.

The goal of this thesis is to dynamically translate 32-bit guest operating system

binary code into x86-64 mode binary code that can run in x86-64 mode under a

64-bit VMM. This binary translation process is called "widening BT"; x86-32 mode

code is "widened" into x86-64 mode code. Widening BT allows the VMM to take

advantage of 64-bit CPUs; running both 32-bit and 64-bit guest operating systems

in x86-64 mode simplifies the VMM and enhances performance.

The main benefits of x86-64 mode are the large 64-bit address size and 16 gen-

eral purpose registers (GPR). The large 64-bit address space makes the VMM faster

by allowing allocation of more address space for VMM datastructures. The 64-bit

address space allows the VMM and 32-bit guest to reside at disjoint addresses.

There are 16 64-bit GPRs in x86-64 mode, twice as many as in x86-32 mode. The

8 extra registers in 64-bit mode can be used by the VMM for intermediate compu-

tation even when executing translations, when the guest register values are live.

Widening BT also greatly optimizes virtual system calls by using special 64-bit

structures such as the interrupt stack table (IsT).

While x86-64 architecture is an extension of x86-32 architecture, widening BT

must deal with some differences between them. The primary challenge is to em-

ulate x86-32 segmentation (a memory protection mechanism) efficiently in x86-64

mode, which does not support it. Widening BT's solution is to emulate segmenta-

tion in software. Most of the overhead for software segmentation can be optimized

away.

Most of the benefits of running in x86-64 mode are reaped by the VMM. Main-

taining the VMM is much simpler with widening BT because the VMM does not need

to run in both x86-32 mode and x86-64 mode. The human cost savings of main-

taining a VMM that only runs in one hardware mode (x86-64 mode) is far more

important than the small performance gains from running in x86-64 mode. On the

other hand, it is difficult for widening BT to dynamically optimize guest code to

take advantage of the 64-bit address space and extra GPRs; additional hardware



support may help the BT infrastructure to dynamically optimize guest code.

Widening BT demonstrates the degree of independence virtual machines have

from physical hardware by allowing 32-bit guest operating systems to run in x86-64

mode. With widening BT, legacy hardware mechanisms like segmentation can be

dropped, especially considering that modem operating systems use segmentation

infrequently. Therefore widening BT reduces hardware's burden of backwards-

compatibility.

1.1 Organization of paper

Chapter 1 explains the motivations behind implementing widening BT. Chapter

1 describes differences between x86-64 and x86-32 mode and explains the benefits

that can be gained from translating x86-32 code to x86-64 code (widening BT). At

the end of chapter 1 is an overview of the design decisions for widening BT.

Chapter 2 reviews everything you need to know about x86 in order to under-

stand this paper. Chapter 2 explains the difference between x86 hardware modes

x86-32 and x86-64 in detail. In x86 terminology, x86-32 corresponds to "legacy and

compatibility modes" and x86-64 corresponds to "long mode".

Chapter 3 provides background on x86 virtualization. Chapter 3 explains why

virtualizing x86 is difficult and how binary translation overcomes these difficulties.

This chapter introduces the VMware BT infrastructure before widening BT was

implemented.

Chapter 4 gives examples of actual widened (x86-64) translations of common

x86-32 instructions. Chapter 4 demonstrates how to generate x86-64 translations

that are almost identical to the x86-32 source while preserving operand size and ad-

dress size. Chapter 4 also demonstrates how to generate more complicated trans-

lations for stack operations and control flow.

Chapter 5 discusses the main challenge of widening BT: emulating x86-32 mode

segmentation in x86-64 mode, which has very limited segmentation. Widening

BT's solution is to use software segmentation checks. Chapter 5 explains why soft-



ware segmentation is used and how to eliminate most of the software segmenta-

tion checks.

Chapter 6 explains how guest system calls are implemented and why widening

BT leads to faster guest system calls.

Chapter 7 compares the performance of 32-bit guest operating systems running

in x86-64 mode under VMM64 (made possible with widening BT) with the perfor-

mance of 32-bit guest operating systems running in x86-32 mode under VMM32.

Chapter 8 evaluates widening BT's performance gains and simplification of the

VMM. Chapter 8 analyzes lessons learned from implementing widening BT.

1.2 Why widening binary translation

"Widening" binary translation from x86-32 to x86-64 mode greatly simplifies the

virtual machine monitor programming model. It lets VMware run x86 guests from

all modes in x86-64 mode under a x86-64 mode VMM. Furthermore, a x86-64 mode

VMM can take advantage of x86-64 performance benefits that a x86-32 mode VMM

cannot. Obvious benefits are the huge 64-bit address space and twice as many gen-

eral purpose registers. Section 6.2 even demonstrates how special x86-64 structures

such as the interrupt stack table (IsT) allow faster system calls.

1.2.1 Simpler virtual machine monitor

VMware's virtual machine monitor can run in both x86-32 and x86-64 modes and

switch between them. VMware's VMM's x86-32 mode is named VMM32 and the

VMM's x86-64 mode is named VMM64. VMM64 and VMM32 are modes of one VMM.

VMM64 and VMM32 are not two separate virtual machine monitors themselves.

VMM64 and VMM32 are not separate VMMs because they share almost all their state.

x86 is difficult to virtualize bcause certain privileged state is visible to user code

and some privileged instructions do not trap when run at user level. Therefore

VMware uses binary translation to separate the virtual state of the CPU from the



physical state of the CPU. VMware's VMM binary translated x86-64 mode code in

VMM64 and x86-32 mode code in VMM32. The resulting translations are run in the

same codesize as the source instructions (see Figure 1-1).

vmm64 vmm32 Just vmm64

Figure 1-1: BT64 emits x86-64 translations while BT32 emits x86-32 translations.

Shown on left: Before widening BT, translations were run in the same codesize as

the source instructions and the VMM ran in both x86-32 and x86-64 modes. Shown

on right: After widening BT, all translations are x86-64 code and the VMM runs

solely in x86-64 mode.

The dependencies and interactions between the VMM's x86-64 (VMM64) and

x86-32 (VMM32) modes and address spaces greatly complicate the programming

model of the VMM. Detangling the VMM's x86-64 and x86-32 mode will result in

cleaner code and performance gains. 32-bit guests currently run in x86-32 mode,

while 64-bit guests run in x86-64 mode. On a 64-bit cpu, switching between the

two modes of the VMM to run 32-bit and 64-bit guests is expensive and compli-

cated: each switch consumes about twenty thousand cycles to save and restore a

large amount of state.

Optimizations to avoid restoring some state in expensive VMM mode transitions

further complicate the VMM code. Immense amounts of careful reasoning and logic

are required in order to determine when state must be saved and restored. Remov-

ing VMM mode VMM32 greatly simplifies reasoning about the VMM. Simplifying

the VMM to save developers' time is the main benefit of widening BT.

Widening BT will allow VMware to get rid of the VMM32 monitor mode. In

less than 10 years, the majority of x86 CPus in use will be 64-bit CPUs that support

x86-64, allowing VMware to abandon VMM32 and always use widening binary

translation to run 32-bit guests under VMM64.



1.2.2 Large 64-bit address space

Widening BT allows the VMM to take advantage of x86-64's large 64-bit address

space. By allowing the VMM and guest operating system to have disjoint address

spaces, widening BT prevents performance cliffs caused by competition between

the VMM and guest for addresses in the same address space. With a large 64-bit

address space, the VMM also has more room to allocate large VMM data structures.

VMM and guest can have disjoint address spaces

In order to minimize the cost of transitioning between accessing guest data struc-

tures and VMM data structures, the VMM and the guest need to share an address

space. Widening BT will prevent performance cliffs caused by competition be-

tween 32-bit guests and the x86-32 VMM mode (VMM32) for addresses in the same

32-bit address space. When a 32-bit guest runs under x86-32 mode, it expects ac-

cess to all 32-bit addresses, but the VMM must reside in the same address space. To

protect the VMM, access by the guest to the addresses occupied by the VMM must

be intercepted by expensive page protection traps. When the VMM runs in x86-32

with 32-bit guest, the VMM allots itself a tiny budget of 4MB of address space to

hide in. In x86-64 mode, by contrast, the VMM can reside anywhere in the 64-bit

address space above the low 4GB. If 32-bit guests were translated to run in x86-64

mode, they could be allotted a full 32-bit subspace disjoint from the addresses used

by the VMM, rendering expensive traps unnecessary. By mapping the 32-bit guest

at the very bottom 4G of the 64-bit address space, translated guest instructions

can directly access guest memory without changing the guest's virtual address in

emitted code (see Figure 1-2).

By mapping the guest address space in the bottom 4G and the VMM at the top of

the 64-bit address space, widening BT can also take advantage of hardware features

to restrict the guest to the low 4G of address space, so the VMM can be protected

without traps, and in more contexts than before.



4GB 4GB

Figure 1-2: Comparison between VMM32 in 32-bit address space and VMM64 in 64-
bit address space. 32-bit address space is on the left while 64-bit address space is
on the right. 64-bit address space allows a larger VMM that does not overlap with
the guest address space.

More space to allocate large VMM datastructures

Because VMM32 and the guest share an address space, when using a 32-bit ad-

dress space VMM32 was forced to use as little of the address space as possible in

order to maximize the space available to the guest. VMM64 will have much more

space available in a large 64-bit address space and therefore run faster. For exam-

ple, modem 32-bit guests have a hard time fitting their working sets into the tiny

3MB of the 32-bit translation cache (TC). A translation cache is a cache of guest

code translations. Once guest code is translated, the translation is placed in the

cache and executed many times. With a 64-bit address space, the 32-bit transla-

tion cache can be much larger. More address space can be allotted to large VMM

datastructures which cannot fit in the 4MB VMM address space under x86-32 mode.

Without a large enough address space, the VMM has to temporarily map in what

it needs, which causes considerable overhead. Figure 1-2 depicts how the x86-64

VMM (VMM64) can be larger in the 64-bit address space.

64-bit-I



1.2.3 Sixteen 64-bit registers

Aside from having a large 64-bit address space, x86-64 mode has 16 64-bit registers

while x86-32 mode has 8 32-bit registers. The 8 extra registers in x86-64 mode are

extremely useful to the VMM.

For example, when executing translations of 32-bit guest code, most physical

registers are bound to guest register values. This makes binary translation easier;

the translations can be nearly identical to the original guest code. However, by

keeping 32-bit guest's registers "live" when executing translations, 8 registers are

used-if the guest is running under VMM32 in X86-32 mode, all 8 available GPRS

are used (Figure 1-3). If VMM32 wants to emit software checks into translations,

the software checks will have to save the live guest register contents to memory in

order to free some registers up for computation, and at the end of software checks,

the clobbered registers need to be restored from memory.

On the other hand, with widening BT VMM64 can emit software checks that just

use the 8 extra x86-64 mode registers %r8 through %r15 (Figure 1-3), avoiding many

memory accesses from saving and restoring registers for computation. The transla-

tions emitted by VMM64 rarely need 8 registers for computation, so a few registers

can be used to cache oft-used values such as segment base of DS (when non-flat)

or zero. One can also envision a binary translator that adaptively recompiles hot

paths through the code to take advantage of 16 registers, though this feature was

not implemented.

1.3 Challenge

Aside from solving challenges common to all implementations of virtualization

(such as de-privileging guest operating system code and maintaining a shadow

copy of guest state), widening BT needs to deal with the differences between x86-32

and x86-64.

Widening BT's primary challenge is emulating x86-32 segmentation in x86-64



0 32

Figure 1-3: Comparison between 8 GPRs in x86-32 mode (on left) and 16 GPRs in
x86-64 mode (on right). Red represents registers that hold live guest 32-bit values
when executing translations. Green represents extra registers that VMM64 can use.

mode. Intel x86-64 mode has no segment limits while under AMD x86-64 mode,

only some segments may have limits (cite manuals for details). Widening BT emits

code to perform software segmentation checks on data memory accesses. Most

of these software segmentation checks can be optimized. Widening BT eliminates

the dynamic cost of the software segmentation checks for modern operating sys-

tems with flat (base 0 and limit the maximum 4G) code, data, and stack segments.

Chapter 5 demonstrates how to emulate segmentation in detail.

1.4 The big picture

With widening BT, 32-bit guests are run in x86-64 mode with a x86-64 VMM (what

was known as VMM64); with widening BT, there is no need for separate x86-32

and x86-64 VMM modes. The 32-bit guest is mapped in the bottom 4G and the

VMM at the top of the 64-bit address space to avoid performance cliffs caused by

overlapping the VMM's and guest's address spaces (Figure 1-2). This mapping also

allows widening BT to take advantage of hardware features to restrict the guest

to the low 4G of address space, so the VMM can be protected in more contexts



than before. Protecting the VMM in turn allows more guest application code to be

run directly on hardware and translations to be run at all privilege levels, opening

optimization opportunities.

The VMM translates guest operating system code (privileged code) but executes

most guest application code (unprivileged code) directly on hardware in compat-

ibility mode (section 2.1.2 explains compatibility mode). Because guest operating

system code is privileged and may take control of hardware resources if allowed to

run directly on hardware, the VMM uses binary translation to emulate guest privi-

leged instructions; binary translation "de-privileges" guest operating system code.

Most guest registers are bound to their physical counterparts during the execution

of translations so the binary translator can generate translations that are as close to

the original guest instructions are possible. On the other hand, guest application

code is already unprivileged and is safe to run directly on hardware. Figure 3-1

shows how guest operating system code is binary translated while guest applica-

tion code is executed directly on hardware.

1.5 Evaluation

The result of balancing performance benefits of x86-64 mode and the cost of em-

ulating x86-32 segmentation is that most 32-bit guest operating systems perform

better under VMM64 in x86-64 mode than VMM32 in x86-32 mode. For VMware to

discard VMM32, VMM64 simply needs to show "good enough" performance; even

if VMM64 were slightly slower than VMM32, the human cost savings of simplifying

the VMM programming model would make cutting VMM32 worth it.

OS install benchmark and micro-benchmarks were used to compare perfor-

mance between running in x86-64 mode and x86-32 mode. The OS install bench-

mark times how long it takes to install a particular operating system followed

by booting and shutting down the operating system at least once. It contains a

mix of I/O and computation, is easy to run for different operating system, and is

fairly consistent run to run. Micro-benchmarks include forkwait, getpid, signal,



and switch. These micro-benchmarks make many system calls, which incur the

most overhead under BT; system calls are the workload BT is worst at.

While a few old guests such as OS/2, Windows 95 and 98 are slightly slower

when virtualized under x86-64 mode, the cost of maintaining VMM32 is greater

than these slight setbacks. With widening BT, VMware can discard VMM32 once

64-bit CPUs are ubiquitous and focus on only maintaining VMM64.

By translating x86-32 code to x86-64 code, the VMM is simplified and perfor-

mance of guest operating systems is improved. Translating x86-32 guest code to

x86-64 code is cheap, with performance in x86-64 mode slightly better than x86-32

mode. Widening BT's main contribution is showing how to emulate x86-32 seg-

mentation in x86-64 mode; segmentation hardware is used infrequently enough

in modem operating systems that should it be dropped, software segmentation

can replace it. By relaxing the amount of backwards-compatibility hardware must

support, designers are free to extend the hardware and architecture.
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Chapter 2

Introduction to x86

This chapter explains all you need to know about x86 in order to understand

widening BT. The two main vendors of x86-based processors are Intel and AMD.

The x86 architecture is a variable instruction length, primarily two-address CISC

design with emphasis on backward compatibility. Each time the x86 architecture is

extended, all previous operating modes are included for backward compatibility.

The x86 programming environment for the general-purpose instructions con-

sists of the set of registers and address space. The operating mode determines the

default operand size, address size, and register size of the programming environ-

ment. This chapter will describe each component of the programming environ-

ment in x86-32 mode and then describe how x86-64 mode extends it.

In order to run guests from all modes in 64-bit mode (x86-64), the VMM needs

to provide a x86-32 execution environment that meets the guest's expectations.

2.1 Operating modes

The two main operating modes of x86 are legacy mode and long mode. Legacy mode

supports legacy 16-bit and 32-bit operating systems and applications. Long mode

is a combination of a 64-bit processor's 64-bit mode (x86-64) and a compatibility

mode. Long mode's 64-bit mode has extended 64-bit registers and 64-bit address-

ing while long mode's compatibility mode provides backward compatibility with



16-bit and 32-bit code. x86-64 refers to long mode's 64-bit mode while x86-32 in-

cludes refers to legacy mode and long mode's compatibility mode.

Table 2.1 shows each operating mode's default operand size, address size, and

register size. The OS column shows what codesize (64-bit, 32-bit or 16-bit) the

operating system must support to handle trapping. For example, long mode needs

an operating system that supports 64-bit (x86-64) code because traps switch into

that code size.

Table 2.1: Operating modes
Operating mode OS Address Operand GPR

64-bit mode 64 32 64
Long mode Compatibility m64-bit 32 32 32

16 16 32
32 32 32Protected mode 32 32 32

32/16-bit 16 16 32
Virtual 8086 mode 16 16 32

Real mode 16-bit 16 16 32

2.1.1 Legacy mode

Real mode:

Real mode is the operating mode of 8086. Processors later than the 8086 support

real mode. Real mode is the initial operating mode at power on. Real mode is

still used for the BIOS, system management mode (e.g. power management). Real

mode has a 20-bit (1MB) segmented memory address space. In real mode, each

16-bit segment register contains a value that represents the 16 most significant bits

of the base of the 20-bit linear address. Adding the base to a 16-bit offset yields an

actual linear address.

Virtual 8086 mode:

Virtual 8086 mode is a hybrid mode that allows real mode code to run while being

supervised by a protected mode operating system. While real mode is implicitly



privileged, virtual 8086 only runs in user mode. Virtual 8086 mode runs with the

same segmentation and codesize as real mode. Virtual 8086 mode is only avail-

able under 32-bit protected mode. Virtual 8086 mode will not work under 16-bit

protected mode or 64-bit codesize.

Protected mode:

Protected mode provides user and kernal modes (hence the name). Protected

mode has a segmentation scheme that is very different from real mode's. In pro-

tected mode, segment registers store a segment selector which indexes into a seg-

ment descriptor table. The segment descriptor selected by the selector contains the

base and limit of the segment. Protected mode also introduced 2-level paging.

2.1.2 Long mode

Long mode consists of two submodes, 64-bit mode and compatibility mode.

64-bit mode:

64-bit mode (x86-64) enables a 64-bit operating system to run applications writ-

ten to access 64-bit linear address space. Default address size is 64-bit and default

operand size is 32-bit. 64-bit mode has 64-bit flat linear address, twice as many

GPRs as legacy mode, with each GPR twice as wide. The 64-bit mode instruction

pointer is also 64-bit wide, and a new instruction-pointer-relative addressing mode

(aka %rip-relative) is available. Furthermore, long mode introduces a new mecha-

nism for delivering interrupts that is faster and more flexible.

Compatibility mode:

Compatibility mode supports 32-bit applications. Like legacy mode, compatibil-

ity mode executes 16-bit/32-bit code. Applications running under compatibility

mode can only access the first 4G of linear address space.



Although long mode has compatibility mode to support 32-bit and 16-bit code,

because long mode exceptions always cause the hardware to switch into 64-bit

mode for exception handling, operating systems must contain 64-bit code to run

in long mode. Another difference is that long mode always has 4-level paging

enabled, while legacy mode has optional 2-level paging.

2.2 Programming environment

The programming environment for the general-purpose instructions consists of the

set of registers and address space. The set of registers that define the programming

environment are the general-purpose registers, the flags register, and the segment

registers.

At a high level, 64-bit (x86-64) mode extends the programming environment of

x86-32 mode by doubling the number and width of GPRs and doubling the number

of address bits.

2.2.1 General Purpose Registers

In x86-32 mode, there are 8 general-purpose registers (GPRs). Each GPR is 32 bits

wide. The GPRs available in x86-32 mode are %eax, Xebx, %ecx, %edx, %esi, %edi,

%esp, %ebp. While these registers are "general", certain instructions use them for

special purposes. Many instructions assign specific registers to hold operands. For

example, stack operations assume that the stack is loaded in %esp, while string

instructions use the contents of %ecx, %esi and %edi as operands.

In x86-64 mode, there are 16 general-purpose registers available. These include

the 8 GPRs present in x86-32 mode and 8 new GPRs (%r8 through %r15). 0r8 through

%r15 are available by using a REX instruction prefix. All 16 GPRs can be promoted

to 64-bit. All of these registers can be accessed at the byte (8-bit), word (16-bit),

double-word (32-bit) and quad-word (64-bit) level.

Operand size determines the number of valid bits in the destination GPR:



64-bit operand size generates 64-bit result in destination GPR.

32-bit operand size generates 32-bit result, zero-extended to a 64-bit result if the

destination GPR is 64-bit bit.

8-bit and 16-bit operand sizes generate a 8-bit or 16-bit result. The upper bits (e.g.

56 bits or 48 bits in x86-64 mode) of the destination GPR are not modified by

the operation.

2.2.2 Instruction pointer register

In x86-32 mode, the %eip register holds the 32-bit offset of the next instruction to

be executed. In x86-64 mode, the %rip contains holds the 64-bit offset of the next

instruction. x86-64 mode also allows instruction-pointer-relative addressing (aka

%rip-relative addressing), where the effective address is determined by adding a

displacement to the %rip of the next instruction.

2.2.3 Flags register

The flags register is a program status and control register. In x86-32 mode the flags

register is called %ef lags. In x86-64 the flags register (called %rf lags) is extended

to 64 bits; however, the upper 32 bits of the %rflags are reserved, and the lower 32

bits of %rf lags are the same as %ef lags.

There are a lot of flags stored in %rflags. However, for the purposes of this

paper, you only need to know these flags [6]:

ALU status flags: The status flags indicate the results of arithmetic instructions

such as CMP, ADD, SUB, MUL and DIV. ALU status flags include carry flag

(CF), zero flag (zF), sign flag (SF), overflow flag (OF), and more. ALU status

flags are set by arithmetic instructions and used for conditional instructions

(such as conditional moves and conditional branches).

Interrupt enabled flag (IF): Controls the response of the processor to interrupt re-

quests. Set to respond to interrupts; cleared to inhibit interrupts.



Direction flag (DF): Controls string instructions (MOVS, CMPS, SCAS, LODS and

STOS). Setting the direction flag causes the string instructions to auto-decrement

(to process strings from high address to low addresses). Clearing the di-

rection flag causes the string instructions to auto-increment (process strings

from low addresses to high addresses).

I/O privilege level field (IOPL): Indicates the I/O privilege level of the currently

running program or task. The current privilege level (CPL) of the currently

running program or task must be less than or equal to the I/O privilege level

to access the I/O address space. This field can only be modified by the POPF

and IRET instructions when operating at CPLo. When IOPL=3, user code has

access to the I/O address space.

2.3 Current Privilege Level (CPL)

The CPL is the privilege level of the currently executing program or task. There

are four possible privilege levels from 0 to 3, often written as CPLo, CPL1, CPL2

and CPL3. CPLo is the most privileged while CPL3 is the least privileged. The CPL

dictates when privileged instructions may be executed. Privileged instructions,

which control system functions such as the loading of system registers, may only

be executed when CPL is 0. If one of these instructions is executed when CPL is

not 0, a general-protection exception (#GP) is generated. The CPL can also be used

to restrict the addressable domain. When the processor is in CPL 0, 1, or 2, it can

access all pages; when it is in CPL3, it can only access user-level pages [7].

The CPL is stored in bits 0 and 1 of the %cs and %ss segment registers. Normally,

the CPL is equal to the privilege level of the code segment from which instructions

are being fetched. The processor changes the CPL when program control is trans-

ferred to a code segment with a different privilege level.
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2.4 Memory

There are two parts to x86 memory management: segmentation and paging [7].

Both segmentation and paging provide memory protection. Segmentation pro-

vides a mechanism for isolating code, data, and stack so that multiple programs

can run on the same processor without interfering with one another. Paging pro-

vides a mechanism for implementing a conventional demand-paged, virtual-memory

system where sections of a program's execution environment are mapped into

physical memory as needed. Paging can also be used to provide isolation between

multiple tasks.

The use of paging is optional; there is a mode bit to disable and enable pag-

ing. When operating in protected mode, some form of segmentation must be used.

There is no mode bit to disable segmentation, but many modem operating sys-

tems choose to just set up flat segmentation with a zero base and a maximal limit,

thereby effectively disabling it. This is called flat mode.

While legacy and compatibility modes have segmentation, x86-64 mode seg-

mentation is limited. In order to translate x86-32 mode to x86-64 mode, widening

BT must emulate legacy protected segmentation.

2.4.1 Paging

When using x86's paging mechanism, the linear address space is divided into

pages (4KB each). The operating system maintains a page directory and a set of

page tables to keep track of the page mappings. When a program attempts to

access an address location in the linear address space, the processor uses the page

directory and page tables to translate the linear address into a physical address and

then performs the requested operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor

interrupts execution of the program (by generating a page-fault exception). The

operating system may then read the page into physical memory from the disk and

continue executing the program. When paging is implemented properly in the



operating-system, the swapping of pages between physical memory and the disk

is transparent to the correct execution of a program. Even programs written for

16-bit processors can be paged (transparently) when they are run in virtual 8086

mode.

Page protection allows restricting access to pages based on two privilege levels:

supervisor and user. Supervisor mode is for the operating system, other system

software (e.g. device drivers), and protected system data (e.g. page tables). User

mode is for application code and data. If the processor is operating at a CPL 0, 1 or

2, it is in supervisor mode; if it is operating at CPL3, it is in user mode. When the

processor is in supervisor mode, it can access all pages; when it is in user mode, it

can access only user-level pages [7].

2.4.2 Segmentation

In x86 IA-32 there is another layer of memory indirection called "segmentation"

between virtual addresses and physical addresses.

segmentation pagingvirtual address segmentation linear address ---paging physical address

Figure 2-3 shows how segmentation and paging work in x86 when dereferenc-

ing a memory address.

x86 supports a segmented memory model, where memory appears to a pro-

gram as a group of independent address spaces called segments. Segments are

regions of the linear address space. Segmentation was introduced to the 286 in late

1980's, as memory got cheaper and the need grew for more address bits than the

286's 16-bit 64KB address limit.

Segments can be used to hold the code, data and stack for a program or to

hold system data structures. Each program can be assigned its own set of seg-

ments. The hardware enforces boundaries between segments to ensure that one

program does not interefere with another program by writing into the other pro-

gram's segments. The segmentation mechanism also allows typing of segments so



that the operations that may be performed on a particular type of segment can be

restricted [7].

Linear address space Linear address space

Limit

Bae----

Figure 2-1: The segment base describes where the segment begins. The segment

limit is the size of the segment. Each program can have up to 6 different segments

at a time.

There are six 16-bit segment registers, allowing code to use six segments at

a time. A segment register contains a 16-bit segment selector that points into a

descriptor table (such as the global descriptor table, GDT) to a data structure called

a segment descriptor. Each segment has a segment descriptor, which specifies

where the segment begins in the linear address space (the base field), the size of

the segment (the limit field), the access rights and a privilege level for the segment,

and the segment type (code or data). Each segment can be assigned a privilege

level from 0 to 3 (where 0 is most privileged and 3 is least privileged).

To address a byte in a segment, a program issues a virtual address, which con-

sists of a segment selector identifying the segment to be accessed and an offset into

the segment. If the offset of the memory access exceeds the limit of the segment

to be accessed, the hardware GPs (general protection fault) because the memory

access is outside the bounds of the segment.

If the memory access offset is within the limit, the hardware accesses the mem-

ory at the linear address, which is calculated as the sum of the base and offset



(Figure 2-2).
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Figure 2-2: Accesses within the segment succeed (left). Accesses outside the seg-
ment limit GP (right).

Each of the six segments may have special uses. Code, data, and stacks are re-
spectively contained in seperate segments CS, DS and SS, which are identified by 16-

bit selectors contained in %cs, %ds, and %ss segment registers. There are also extra

segments ES, FS, and GS, making a total number of 6 segments. A segment instruc-

tion prefix allows you to specify which segment to use for a memory-accessing

instruction. See table 2.2 for default segment selection rules.

While x86-32 mode has full segmentation, x86-64 mode segmentation has no
limits and only FS and GS have segment bases. AMD x86-64 mode has a special

mode bit that turns on segment limits for DS, ES, SS and GS, but Intel x86-64 mode

does not. In order to translate x86-32 mode to x86-64 mode, widening BT must

emulate legacy protected segmentation.



Figure 2-3: Segmentation and paging (Intel Section 3.1 Figure 3-1).

Table 2.2: Default segment selection rules.
Reference Register Segment Used Default Selection Rule

Type Used
Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops. Any
memory reference which uses the
ESP or EBP register as a base regis-
ter.

Local Data DS Data Segment All data references, except when
relative to stack or string destina-
tion.

Destination ES Data Segment Destination of string instructions.
Strings pointed to with

the ES register
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Chapter 3

Introduction to x86 Virtualization

This chapter introduces VMware's binary translation infrastructure before widen-

ing BT was implemented. A virtual machine monitor manages a guest operating

system, which runs inside of a virtual machine. VMware uses one VMM per guest

operating system. Each guest operating system lives in a separate address space.

The VMM is responsible for running the guest operating system. VMware's VMM

may have direct access to the hardware, but it is not responsible for scheduling.

The "host" operating system is responsible for managing hardware resources of

the physical machine and therefore responsible for scheduling the virtual machines

(the guest operating systems and their corresponding VMMs). The "host" operat-

ing system can be a general purpose operating system like Linux or Windows, or

VMware's VMkernel.

This chapter describes some common challenges of x86 virtualization and how

VMware's VMM uses binary translation to overcome them. Challenges include de-

privileging guest operating system code, protecting the VMM from guest memory

accesses, and updating guest shadow data structures.

3.1 De-privileging

The way a VMM manages a guest operating system is analogous to the way an op-

erating system manages an application. An operating system works by running at



the most privileged level while restricting applications to running at lower privi-

lege levels. Privilege levels are important for the containment and management of

programs. To maintain isolation, unprivileged applications are not allowed to ac-

cess privileged state; if an unprivileged application attempts to access privileged

state, the access is trapped by hardware and the operating system is notified of

the attempt. The difference between managing a user application and managing

a guest is that the guest operating system expects to have privileged access to all

hardware resources, while normal user applications do not; a VMM must go a step

farther to trick the guest operating system into thinking it is privileged without

allowing it to take over the machine.

The guest operating system code cannot be directly executed on the hardware

because it contains privileged instructions that can take control of hardware re-

sources. In order for a virtual machine monitor to manage guest operating system,

the virtual machine monitor must be more privileged than the guest code running

in the virtual machine. Therefore, the first step to virtualization is de-privileging

guest code running in the virtual machine. The privileged instructions must be

de-privileged before they are run.

One way to de-privilege guest operating systems is to run them at a user privi-

lege level (any CPL > 0, such as CPL3 in x86) such that the privileged instructions

trap. Once trapped, the privileged instructions can be emulated such that the guest

does not realize it has been de-privileged. This method of de-privileging is called

trap-and-emulate, and it assumes that all instructions reading or writing privi-

leged state will trap when executed in an unprivileged context. However, there

are a number of obstacles that prevent virtualizing x86 through trap-and-emulate.

First, certain privileged state is visible to user (unprivileged) code. The guest

can observe that it has been de-priviledged when it reads its code segment selec-

tor (%cs) since the current priviledge level (CPL) is stored in the low two bits of

%cs. The guest can also examine flags with PUSHF, which doesn't trap at user-level

(CPL > 0).

Second, some privileged instructions do not trap when run at user level. For



example, in priviledged code POPF ("pop flags") may change both ALU flags (e.g.,

ZF, the zero flag, which is non-privileged) and system flags (e.g., IF, the interrupt

flag, a privileged flag that controls interrupt delivery). For a de-privileged guest,

the VMM needs kernel mode POPF to trap so that the VMM can emulate it against

the virtual IF. Unfortunately, a de-priviledged POPF, like any user-mode POPF,

simply suppresses attempts to modify IF; no trap happens.

These obstacles to x86 virtualization can be overcome if the guest instructions

are interpreted instead of run directly on a physical CPU, seperating the virtual

state of the CPU from the physical state of the CPU. While interpreting guest in-

structions can prevent leakage of priviledged state and can correctly implement

non-trapping priviledged instructions, interpretation is by no means efficient. The

interpreter may burn hundreds of physical instructions per guest instruction in its

fetch-decode-execute cycle. An alternate way of separating the virtual state of the

CPU from the physical state is needed.

3.2 Binary translation

Binary translation effectively overcomes x86 virtualization obstacles while remain-

ing performant. Binary translation is the process for emulating a source instruction

architecture on a target instruction architecture by decoding the source machine

code, translating into the target machine code and executing on the target ma-

chine. Binary translation is often used when the source and target architectures

are very different; Java JIT compilers (e.g. LaTTe [10]), Rosetta [4] and QEMU [5]

are all examples of this. Most importantly, binary translation can be used to im-

plement system-level virtualization, which provides a complete simulation of a

host machine's underlying architecture. When used for system virtualization, the

source and target architectures for binary translation are very similar. For system

virtualization, the target architecture is most often a de-privileged subset of the

source architecture.

In general, Binary translation is performant because the overhead of translation



is amortized over the many times the translated target code is run; translate once,
run many times. For x86 virtualization, binary translation is particularly perfor-

mant, especially when the vast majority of x86 instructions can be translated iden-

tically to run at native speed on host hardware. Even for widening BT, most x86

instructinos can be translated nearly identically. Software virtual machine moni-

tors such as VMware Workstation and Virtual PC use binary translation to virtu-

alize x86, allowing x86 virtual machines to be used for server consolidation, fault

containment, security and resource management.

3.3 VMware's virtual machine monitor

There are many flavours of binary translation. VMware's VMM uses a binary trans-

lator with the following properties [1]:

Binary: VMM translates input guest x86 binary code into de-privileged target x86

code. The de-privileged target x86 ISA is a subset of the x86 ISA.

Dynamic: Translation happens at runtime, interleaved with execution of gener-

ated code. At runtime, a dynamic translator has access to complete linked

program, program state (Cpu and memory), and can adapt to changes in

program behavior.

On demand: Guest code is translated only when it is about to execute. This lazi-

ness side-steps the problem of telling code and data apart or decoding variable-

length instructions without knowing instruction offset.

System level: No assumptions are made about guest code behavior. The VMM

faithfully emulates executing every single instruction of guest x86 code. An

application-level translator may make assumptions about guest code based

on a higher-level application binary interface (ABI).

Adaptive: Translated code is adjusted in response to guest behavior changes to

improve overall efficiency. For example, VMware's binary translator can de-



tect which instructions would have page faulted (because of tracing) and gen-

erate translations to avoid faulting.

Before widening BT, VMware's virtual machine monitor performed same-codesize

binary translation. The VMM translates x86-32 code to x86-32 code and x86-64 code

to x86-64 code, but not x86-32 code to x86-64 code. In order to execute x86-64 and

x86-32 translations, VMware's virtual machine monitor can run in both x86-32 and

x86-64 modes and switch between them. Under same-codesize BT, the translations

are always run in the same codesize as the source instructions. The VMM's x86-32

mode is named VMM32 and the VMM's x86-64 mode is named VMM64 (Figure 1-1).

The VMM does not binary translate all guest code. The VMM uses binary trans-

lation to de-privilege guest kernel (CPLo) code, but for efficiency and simplicity, it

executes guest user (CPL3) code directly on hardware (with some exceptions). This

execution mode is called direct execution.

Figure 3-1: Guest OS privileged code is binary translated into unprivileged code
that is safe to run on the hardware. Guest application (user) code is already un-
privileged and safe to run on the hardware.

Before widening BT, VMware's binary translator translated 32-bit guest oper-

ating system code into x86-32 code running on x86-32 mode hardware under a

x86-32 virtual machine monitor (VMM32), not taking advantage of x86-64 CPUS at

all. Widening BT translates 32-bit guest operating systems into x86-64 code, where

they can run on x86-64 mode hardware under a x86-64 VMM (VMM64, see Figure

3-2).

guest OS
guest apps

BT

Hardware



New way: vmm64

Running on a x86 64-bit CPU

Figure 3-2: Widening BT changes the target codesize of the VMM's binary translator
to be always 64-bit.

3.3.1 Binary translation process

The main steps of VMware's binary translation process are decoding, translation,

and chaining.

The translator begins by reading the guest's memory at the address indicated

by the guest PC (program counter/instruction pointer), classifying the bytes as

prefixes, opcodes or operands as the bytes are read, effectively decoding guest

bytes into instructions.

The translator then accumulates decoded guest instructions into a translation

unit (TU), stopping at a terminating instruction (usually control flow) or a fixed-

size cap. The translation unit forms a single-entry multiple-exit basic block. Trans-

lating from x86 to x86 subset, most unprivileged code in a TU can be translated

identically (also known as IDENT). Most virtual registers are bound to their physi-

cal counterparts during execution of translations in order to facilitate IDENT trans-

lation. Control flow instructions cannot be translated identically because trans-

lation does not preserve layout. Instead, the translator turns each control flow in-

struction into two translator-invoking continuations, one for each of the successors

(fall-through and taken-branch, more in section 4.4).

Each translator invocation consumes one TU and produces one compiled code

fragment (CCF), also a single-entry multiple-exit basic block. Because VMware's
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binary translator is dynamic, translation of TUs is interleaved with execution of

corresponding CCFs. To speed up inter-CCF transfers, the translator employs a

chaining optimization, allowing one CCF to jump directly to another without call-

ing out of the translation cache (TC). These chaining jumps replace the translator-

invoking jumps, which therefore are "execute once." Moreover, it is often possible

to elide chaining jumps and fall through from one CCF into the next.

Interleaving of translation and execution continues for as long as the guest

runs, with a decreasing proportion of translation as the TC gradually captures the

guest's working set. A detailed explanation and examples of VMware's binary

translation process can be found at [1].

3.3.2 Shadowing

Not only does binary translation need to de-privilege guest operating system code,

BT needs to provide an execution environment that meets the guest's expectations,

despite the fact that the guest's privileged state differs from that of the underlying

hardware.

To provide an execution environment that meets the guest's expectations, the

VMM derives shadow structures from guest-level primary structures [1]. For on-

CPu privileged state, such as the page table pointer register (%cr3) or processor

status register, the VMM simply maintains an image of the guest register and refers

to that image in instruction emulation as guest operations trap. For off-cPu priv-

ileged state such as page tables, which may reside in memory, the VMM traces

(write-protects or read-protects) the guest's primary structure. With traces, modi-

fications to the primary structures will trap, allowing the VMM to update shadow

structures.

To make use of primary and shadow structures, translations must frequently

access both guest primary structures and the primary structures maintained by

the VMM. One of the challenges of virtualization is to switch between accessing

guest data structures and VMM data structures quickly. In order to do so, the VMM



and guest must share an address space.

3.3.3 Protecting the VMM with segmentation

Protecting the VMM from guest accesses is one of the challenges of virtualization.

This section explains how, before widening BT, VMware used segmentation to pro-

tect the VMM.

In order to quickly switch between accessing guest data structures and VMM

data structures, the VMM and the guest share the same address space. Before

widening BT, the guest and VMM address spaces always overlapped. VMM32 and

32-bit guest operating system overlapped while sharing 32-bit address space. VMM64
and 64-bit operating system overlapped while sharing 64-bit address space. The

guest expects access to all addresses, so the VMM must be protected from guest

memory accesses. An efficient way to protect the VMM is with hardware segmen-

tation. Segment protection of the VMM allows the VMM to maximize the number of

instructions translated identically; else the VMM must use software checks or page

protection, both of which are expensive.

By mapping the guest low in memory and the VMM high in memory, segmen-

tation can be used to segregate guest portions (low) and VMM portions (high) of

memory. The VMM then truncates guest segments so they don't include the re-

gion of address space the VMM is in. Figure 3-3 shows how VMM32 truncates guest

segments because VMM32 and 32-bit guest share the same 32-bit address space.

The guest's actual, un-truncated segment values are stored in the VCPU. VMM32

takes the guest segment values, truncates them, and loads these values onto hard-

ware when translations are executed. However, if all segments in hardware are

truncated to not include monitor address space, then there wouldn't be a way to

access the VMM data structures.

In order to have access VMM data structures, GS was selected to be special. GS is

the only segment that spans all of the linear address space and includes the VMM,

providing an escape into VMM data structures. Other segments (DS, SS, ES, and FS)
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Figure 3-3: Guests segments are truncated to not include the region of memory

where the VMM resides. Hardware segmentation mechanism protects the VMM

from guest accesses.

are still loaded with truncated guest segments.

To emit instructions that access VMM data structures, the binary translator emits

the instructions with GS segment prefixes. To prevent translations of guest instruc-

tions from accessing the VMM, the binary translator strips the GS prefix from trans-

lations of guest instructions and emits code to emulate GS memory access. The

emitted code uses FS as a temporary segment, temporarily loading FS with trun-

cated guest GS value, re-emits the guest instruction with the FS prefix (emulating

the GS memory access), and lastly restores Fs to contain truncated guest FS value.

When not using widening BT, segmentation is vital for protecting the VMM

when using binary translation for virtualization. However, 64-bit mode on Intel

has segment limits disabled. Therefore BT cannot be efficiently used to virtualize

64-bit guests on Intel machines. Hardware virtualization must be used to virtu-

alize 64-bit guests on Intel machines. With widening BT, which allow the VMM to

virtualize 32-bit guests in x86-64 mode, the VMM can be protected without segmen-

tation. The VMM takes advantage of the address-size override hardware feature to

protect the VMM.



50



Chapter 4

Widening binary translations

This chapter explains the widening binary translations of the most common in-

structions found in guest operating systems. All of these instructions are unpriv-

ileged and many of them can even be translated nearly identically. This chapter

examines simple unprivileged instructions, stack operations and control flow. In

doing so, it describes how BT preserves the appearance of instruction atomicity

and optimizes indirect control flow.

4.1 Nearly IDENT instructions

Most source instructions are unprivileged, even in kernel code. When performing

same-codesize binary translation, these unprivileged instructions can be translated

identically (aka IDENT). However, when binary translating from x86-32 to x86-64,

additional modifications need to be made to these otherwise IDENT instructions.

Examples of nearly IDENT instructions include non-memory accessing instructions

or simple mem-accessing instructions like Mov.

In order to translate nearly IDENT instructions, widening BT needs to preserve

the operand size and address size. In x86-32 mode, the D flag in the code segment

descriptor determines the default operand and address size (see Table 4.1).

Setting the D flag selects the 32-bit operand size and address size attributes.

Clearing the D flag selects the 16-bit operand size and address size attributes.



When the processor is executing in real mode, the default operand size and ad-

dress size attributes are always 16-bit (the D flag is clear). In x86-64 (64-bit mode),

the default operand size is 32-bit and the default address size is 64-bit. The REX.W

prefix in 64-bit mode forces a 64-bit operand size; when the REX.W prefix is present,

the operand size prefix is ignored (see Table 4.2).

By comparing the effective operand size and address size encodings of x86-32

mode and x86-64 mode in table 4.1 and table 4.2, widening BT can determine when

to add or strip operand size and address size prefixes.

First of all, widening BT must preserve operand size when translating to x86-64

mode. Widening BT preserves the operand size by adding or removing operand

size prefix (0x66) as necessary. Simply preserving the operand size allows widen-

ing BT to translate most unprivileged and non-memory-accessing instructions from

x86-32 to x86-64.

x86-64 translations of instructions with 32-bit operand size will not use an

operand size prefix, while translations of instructions with 16-bit operand size will

need an operand size prefix. If the D flag in the code segment descriptor is set,

widening BT needs to toggle the operand size prefix on the translation. If the D

flag is clear, widening BT doesn't need to alter the operand size prefix.

Next, widening BT needs to preserve address size for mem-accessing instruc-

tions. The address size prefix (0x67) allows widening BT to represent 32-bit ad-

dress size in 64-bit mode, but there is no way to represent 16-bit address size in

64-bit mode. In order to calculate a 16-bit address, widening BT uses a LEA instruc-

tion with 16-bit operand size to compute the effective 16-bit address. In general,

all 64-bit nearly-IDENT translations of memory-accessing instructions will have an

address size prefix to force address size to 32-bit, while 16-bit address size instruc-

tions will depend on a LEA instead.



Table 4.1: Effective Operand- and Address Size Attributes in x86-32 mode (Intel
Manual Volume 1 Section 3.6 Table 3-3)

D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1
Operand Size Prefix 0Ox66 op op op op
Address size Prefix 0x67 ad ad ad ad

Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16

Table 4.2: Effective Operand- and Address Size
Manual Volume 1 Section 3.6 Table 3-3)

Attributes in 64-bit mode (Intel

L Flag in Code Segment Descriptor 1 1 1 1 1 1 1 1
REX.W Prefix 0 0 0 0 1 1 1 1
Operand Size Prefix 0x66 op op op op

Address size Prefix 0x67 ad ad ad ad

Effective Operand Size 32 32 16 16 64 64 64 64
Effective Address Size 64 32 64 32 64 32 64 32

4.2 Stack operations

After the nearly IDENT instructions, stack operations PUSH and POP are the most

common instructions. Widening translation of stack operations is tricky because

the stack size is forced to 64-bit in 64-bit mode (x86-64), while 32-bit guests want

to use 32-bit or 16-bit stack size.

A guest 32-bit stack size PUSH or POP expects to use and modify %esp (which

corresponds to the low 32 bits of %rsp), but since there can't be a 32-bit stack size

in 64-bit mode, widening BT will have the wrong stack-wrapping behavior. The

guest stack pointer is live in %rsp when executing translations. A POP could incre-

ment guest stack pointer to be above 4GB and a PUSH could decrement guest stack

pointer such that it wraps around to the top of the address space. Widening BT has

to make sure the high 32 bits of the stack pointer are clear when emulating a 32-bit

stack size in 64-bit mode.

Furthermore, a guest 16-bit stack size PUSH or POP expects to modify only the



low 16 bits of the stack pointer while leaving the high bits the same. There is no

way to translate a 16-bit stack size PUSH or POP to a corresponding PUSH or POP in

64-bit mode such that only the low 16 bits of the stack pointer are modified.

Another perceived difficulty is that %rsp would not be 64-bit aligned under

widening BT. However, this "stack misalignment" will not cause any performance

degradation. Intel and AMD encourage data to be "naturally aligned"; 1-byte data

is always aligned, 2-byte data is naturally aligned when 2-byte aligned, 4-byte data

is naturally aligned when 4-byte aligned, etc. Therefore %rsp does not need to be

64-bit aligned for good performance; widening BT mostly works with 32-bit and

16-bit values, which will be naturally aligned to the 32-bit or 16-bit guest stack

pointer loaded in %rsp.

Due to the difficulty of representing a 32-bit or 16-bit stack size in 64-bit mode,

widening BT does not translate guest PUSHes and POPs to corresponding 64-bit

mode PUSHes and POPs. Widening BT translates PUSH or POP respectively into a

MOV to or from the stack and a LEA to decrement or increment the stack pointer.

A 32-bit operand size LEA adjusting the stack pointer will emulate a 32-bit

stack size while a 16-bit operand size LEA will emulate a 16-bit stack size, keep-

ing the upper 48 bits of the stack pointer %rsp register intact. Widening BT uses

a LEA instruction instead of an arithmetic instruction (e.g. ADD or SUB, INC or

DEC) because arithmetic instructions alter the flags register %rflags while LEA

does not. When executing translations, virtual registers (including %rf lags) are

bound to their physical counterparts as much as possible to facilitate IDENT (or

nearly IDENT) translation, so widening BT goes to great lengths to avoid altering

registers with live guest values.

Let D flag in code segment descriptor be set (default operand size and address

size are 32-bit). Let <ad> represent address size override prefix and <op> represent

operand size override prefix.

The translations of 32-bit PUSH and POP are:

Source: push .eax Source: pop Yeax

Translation: Translation:



lea -4(%esp) -> %esp <ad> mov (.esp) -> .eax

mov %eax -> (Yesp) lea 4(%esp) -> %esp

If widening BT knows that the high 32 bits of %rsp are clear, it doesn't need

to emit an address size prefix on the MOV for POP %eax. The LEA for PUSH %eax

always clears the high 32 bits of %rsp, so widening BT never needs an address size

prefix on the MOv following the LEA.

The translations of 16-bit PUSH and POP are:

Source: <op> push %ax Source: <op> pop %ax

Translation: Translation:

<op> lea -4(%sp) -> %r8w <op> movzx %sp -> %r8d

movzx %r8w -> %r8d <op> mov (%r8d) -> %ax

<op> mov %,ax -> (%r8d) <op> lea 2(%r8w) -> %sp

<op> mov %r8w -> %sp

16-bit PUSH and POP have more complicated translations. This is because 16-bit

stack operations ignore but do not clear the high 48 bits of %rsp. The MOVZX (move

with zero-extension) instructions are necessary, because 16-bit operand size opera-

tions do not clear the top bits of the registers and widening BT doesn't have a way

to directly represent 16-bit address size in x86-64 mode. Widening BT stores the

16-bit stack address in a temporary register %r8, dereference and update it, then

commit the updated address to %rsp.

For memory to memory operations like PUSH from memory and POP from

memory, widening BT uses an intermediate temporary register %r12 to store the

value. The memory to memory operation becomes memory to %rl2, %r12 to mem-

ory.

4.3 Sync regions

Widening BT's translations for PUSH and POP contain multiple instructions-MOV

and LEA. When widening BT translates a single source instruction into multiple



target instructions, widening BT must preserve the appearance of atomicity. In

order to preserve the appearance of atomicity, should widening BT take a fault,

interrupt, or trap in the middle of executing the translation, widening BT needs to

be able to roll forward or roll back the state of execution to the beginning or end

of the instruction. Therefore each multi-instruction translation of a single guest

instruction is associated with a sync region and sync callback, a function that is

called should the execution of the translation be interrupted.

The sync region stores the addresses of the beginning and end of the compiled

code fragment (CCF) in the translation cache, as well as what type of instruction it

is a translation of (memory-accessing, stack operation, control flow, etc). Each sync

region type is associated with a sync callback function, which figures out where in

the translation the fault, interrupt, or trap occurred and how to roll execution of the

translation forward or back. Widening BT rolls backwards on faults and forwards

on traps; in x86, traps happen after the instruction. On interrupts, widening BT can

choose whether to roll forward or back depending on whichever is convenient.

Translations are run much more frequently than their sync callbacks are in-

voked, so widening BT is motivated to optimize translations much more than sync

callbacks. However, each bit of complexity an optimization introduces into a trans-

lation corresponds to far more complexity introduced in the corresponding sync

callback. VMware wants the best performance for the lowest complexity, so while

there are optimizations with lower complexity cost to be made, VMware defers

complicating the VMM code. Let's take a look at how widening BT's PUSH transla-

tion influences the complexity of the PUSH sync callback.

There are two ways to translate PUSH. Widening BT could decrement the stack

pointer, then move the operand to the stack, where the decremented stack pointer

is pointing. This takes two instructions. Alternatively, widening BT could compute

the effective destination address of operand, move the operand to that address,

and then update the stack pointer. Here is assembly code for the the two methods:

Example: push Y/eax

Method 1: Method 2:



lea -4(%esp) -> %esp lea -4(%esp) -> %r0O

mov .eax -> (Xesp) mov %eax -> (%rl0)

mov %r10 -> %rsp

Method 1 is shorter than method 2. If widening BT decrements the stack pointer

last in the translation block (method 2), widening BT doesn't need to restore the

stack pointer if the translation faults on the memory access; the translation hasn't

clobbered the stack pointer yet when the fault is taken. However, committing the

decrement of stack pointer last takes an extra instruction. PUSH is such a popular

instruction that an extra instruction in its translation takes up considerable space

in the translation cache and an extra few cycles per PUSH during runtime. In this

case, making the sync callback function for PUSH smart (more complicated) to roll

back %rsp is worthwhile because trimming PUSH's translation to be one instruction

shorter results in great gains due to how much guest operating systems use the

PUSH instruction.

When the PUSH sync callback is called to handle a faulting PUSH, the sync call-

back needs to know the address size and operand size in order to restore %rsp. The

address size and operand size can be decoded from the LEA instruction at the be-

ginning of any PUSH translation. If the LEA instruction has an operand size prefix,

the sync callback knows that the stack size was 16-bit. The displacement of the LEA

instruction reveals the size of the operand pushed onto the stack.

Instead of having the sync callback figure out the operand size and address

size, widening BT could create different sync region types for each PUSH operand

size and address size combination, but that would take up room in the sync type

table, wasting memory.

4.4 Control Flow

Because translation does not preserve code layout, control flow instructions cannot

be translated identically. Instead, control flow instructions terminate translation



units and are translated into two translator-invoking continuations, one for the

taken-branch and one for the fall-through:

Example source:

cmp %bl, $Oxf00

jnz Ox5

Translation:

cmp %bl, $Oxf00

jnz [takenAddr] ; JCC

jmp [fallthrAddr]

Through the "chaining" optimization, the two translator-invoking continua-

tions can be replaced with jumps to other compiled code fragments. The CCFs can

also be laid out such that one CCF falls through to the next.

A direct control flow instruction is easy to chain. If one of the two translator-

invoking continuations is taken, the translator maps the guest address to the TC

address of the target CCF and replaces the continuation with the TC address.

Indirect control flow instructions cannot be chained in this way. The target of

an indirect control flow instruction is not fixed; it must be computed dynamically,

e.g. with a hash table lookup. To speed up indirect control flow target lookups,

widening BT uses a guest address to TC address cache. A CALL translation also

preemptively places the return address in a return target cache to speed up a cor-

responding RET'S target lookup [3]. The cache is flushed whenever the code seg-

ment (CS) changes. 32-bit guests change the code segment quite often; in 64-bit

mode, the code segment is defined to be flat with base zero and limit maximal and

changes a lot less. To speed up indirect calls even further, widening BT has inlined

calls; widening BT predicts the target of the indirect control flow instruction and

bind to the prediction.



Chapter 5

Emulating segmentation

While x86-32 mode has full segmentation, x86-64 mode segmentation has no limits

and only FS and GS have segment bases. AMD x86-64 mode has a special mode bit

that turns on segment limits for DS, ES, SS and GS, but Intel x86-64 mode does not.

Therefore emulating segmentation is the primary challenge in widening binary

translation. There are two types of memory accesses: instruction fetches and data

accesses. Instruction fetches come from code segments while data accesses come

from data segments. Widening BT needs to emulate segmentation for these two

types of memory accesses.

5.1 Code base and limit

All x86 instruction fetches come from code segment CS. Widening BT emulates seg-

mentation by checking code segment base and limit when entering the translation

cache to execute translations.

Widening BT tags each CCF (compiled code fragment, which is a basic block

of translated code) in the translation cache with the code base and code limit; the

code base and limit for each CCF is stored in a corresponding "sourcekey" (details

in section 5.1.1). When attempting to run a translation, widening BT makes sure

that the code base and limit of the translation matches the guest operating system's

current base and limit. When "chaining" one CCF to another, widening BT verifies



that the code base and limit of both CCFs match.

Because chained CCFs must have the same code base and limit, widening BT

only needs to check the code base and limit of the first CCF it executes when en-

tering the translation cache; all other CCFs that chain from the initial CCF have the

same code base and limit as the initial CCF. By doing so, widening BT ensures that

the appropriate code base and limit are respected without having to frequently pay

the cost of dynamic checks.

The big picture:

1. At translation time: perform segment limit and access rights check and store

the code segment base and limit (in a "sourcekey").

2. When entering translation cache (execution time): check whether the current

code segment base and limit match the translation time base and limit.

3. If base and limit are the same, execute translation. Widening BT has already

performed the segment checks at translation time.

4. If base or limit differ from translation time, retranslate.

CCFs translated under one set of code base and limit are not be run under a dif-

ferent code base and limit, even if the target code satisfies the conditions imposed

by the new code base and limit. This design decision makes enforcing code base

and limit when chaining blocks of translated code simpler. Otherwise chaining

becomes very complicated; even if widening BT knew one CCF (block of translated

target code) can be reused under a new code base and limit, widening BT wouldn't

be sure that everything it chains to can be reused.

5.1.1 Sourcekeys

Widening BT can take advantage of sourcekeys for checking code base and limit

each time before translations are run.

A sourcekey describes a block of translated code, including its position in mem-

ory, its privilege level, etc. Sourcekeys are identifiers for blocks of translated code.



Sourcekeys serve to uniquely identify the translation unit and also contains the

"context" under which the translation unit (TU) was generated. Code translations

generated under one context should not be executed under a different context;

code translated under privileged mode should not be executed in a user mode

context; code translated under one set of code base and limit should not be run

under a context with a different code base and limit. Before translated code is run,

the current execution context is checked against the sourcekey, which stores the

translation-time context.

In order to perform code base and limit checks for widening binary translation,

I extended the VMM64 source keys to hold code base and limit information. Having

the code base and limit stored in the sourcekey allows the monitor to check all

components of the context (segment bases and limits, code priviledge, etc.) before

translated code is run.

5.2 Data base and limit

While a program can only have one code segment at a time, a program can have

multiple data segments (SS, DS, ES, FS, GS) at the same time. Although code base

and limit were taken care of with sourcekeys, data base and limit still need to be

reckoned with.

5.2.1 Software segmentation

Widening BT emits software segment checks because it is the simplest way to em-

ulate segmentation. Here are the steps taken in assembly to perform a software

segment check:

1. Cache %rax in %rll. %ril will be used to restore %rax at the end of software

segment check. Widening BT needs %rax to save the contents of %rflags (the

status flags register) to memory.

2. Store status flags in %rax with LAHF ("load status flags into %ah").



3. The VMM keeps a reformatted copy of the guest descriptor tables (DT); be-

cause x86 segment descriptor formatting is inconvenient, reformatting the

guest segment descriptors makes them easier to read. Load index which

points to reformatted copy of guest segment descriptor DS into %r8.

4. Indexing off of %r8, load guest DS segment descriptor flags into r10.

5. Check whether expand-down flag is set in %r1O.

6. If segment is expand-down, bail to interpreter. Expand-down segments are

uncommon, so bailing to interpreter is more efficient than adding more code

to software segment check to deal with expand-down segments.

7. If segment is expand-up, load offset of logical address of memory access into

%r10.

8. Load the maximum target address into %r15.

%r15 = offset + accessSize - 1.

9. If maximum target address (%r15) wraps around 4G address space, bail to in-

terpreter. Wrapping around 4G address space implies that %r15d overflowed

32 bits, so the following limit check, which performs a comparison against

the segment limit, would be invalid.

10. Check whether access exceeds segment limit; if so, bail from translation and

deliver a general protection fault (GP).

This check performs comparison between target maximum target address

and segment limit. The comparison operation bashes the ALU flags, which is

why the status flags had to be saved in %rax earlier.

11. If the access passes the limit check, load guest segment base into %r8.

12. Before finally executing guest memory access, restore %rf lags and %rax.



13. Perform guest memory access. The target 32-bit linear address is the sum of

the guest segment base and logical offset.

linear address = %r10 + %r8 = offset + base.

Here is an example of Mv %eax <- 0x58 (esi) with emitted software segment

check, with corresponding lines of assembly numbered to reflect what step they

are.

<REXWB> MOV %ril <- %rax ; (1)

LAHF %ah ; (2)

SETO %al

<REXRB> XOR %r8d <- %r8d ; (3)

<OP><REXR> MOV %r8w <- OxfcO190d6

<REXB> SHR %r8d <- $0x2

<REXRX> MOVZX %rlOd <- OxfcO789bO(r8) ; (4)

<REXB> AND %r1Od <- $0x5 ; (5)

<REXB> CMP %rlOd <- $0x5

JZ Ox2 ;Oxfffffffffd8aa6dO ; (6)

FAULTDISP 9 FAULTDISPATCH_WIDENSEGCHKDS

<REXR> LEA %r1Od <- Ox58(rsi) ; (7)

<REXRB> MOV %rl5d <- %rlOd ; (8)

<REXB> ADD %ri5d <- $0x3

JC Oxfl ;Oxfffffffffd8aa6ce ; (9)

<REXRX> CMP Oxfc0589b4(8*r8) <- %r15d ; (10)

JC Oxe7 ;Oxfffffffffd8aa6ce

<REXRX> MOV %r8d <- Oxfc0589bO(8*r8) ; (11)

CMP Yal <- $0x81 ; (12)

SAHF %ah

<REXWR> MOV %rax <- %rll

<A><REXXB> MOV %eax <- (rlOd + r8d) ; (13)

Emitting code to do data segmentation limit checks takes considerable space in

the TC and CPU cycles at runtime. For each memory-accessing instruction, about



a dozen instructions are emitted for software limit checks. Many of the emitted

instructions are themselves memory accessing. Although software limit checks

are bulky, many software limit checks can be reduced.

5.2.2 Flat segments

Most software segment checks can be eliminated. Many modem 32-bit operating

systems choose to just set up flat segmentation with zero base and a maximal limit,

effectively disabling segmentation. This is called flat mode (see Figure 5-1 for a flat

segment).

Linear address space

Limit = 4G

Base = 0

Figure 5-1: A flat 32-bit segment.

In flat mode, widening BT doesn't need to emit software segment checks. Be-

cause a flat segment has base 0, the logical address offset into a flag segment is

the linear address. Because limit is maximal (4G), widening BT just needs to make

sure guest memory addresses are 32-bit. For example, a 32-bit guest can generate

large addresses with an a addressing mode involving two registers: MOV Yeax ->

(%ebx + 4 * %ecx). By using the address-size prefix (0x67) on memory-accessing

instructions, widening BT can make sure all guest memory addresses are 32-bit.

Widening BT also needs to watch out for memory accesses that straddle the end



of a flat segment. To check for accesses that straddle the 4G segment boundary,

widening BT protects the 4G + 1 page and deliver page faults (PFs) on the 4G + 1

page as general protection faults (GPs) instead (see Figure 5-2).

Linear address space

Str m cess
Limit = 4G Limit = 4G

Base = 0 Base = 0

Figure 5-2: Although a 32-bit flat segment spans all of 32-bit address space, ac-
cesses straddling the 4G limit must cause a general protection fault (GP). Widening
BT protect the 4G + 1 page and deliver page faults (PFs) there as general protection
faults (GPs) instead.

Finally, widening BT needs to ensure that the context flat mode translations

are executed under is also flat. Once again, widening BT can take advantage of

sourcekeys to check translation context against execution context. Not only can

sourcekeys keep track of the code base and limit, sourcekeys can also keep track

of vcPu modes. If the vcPu mode for a CCF at execution time differs from the

VCPU mode at translation time, widening BT retranslates. By creating a custom

"flat mode" VCPU mode, widening BT uses sourcekeys to make sure its flat mode

translations have flat execution contexts.

5.2.3 Fixed limits

Widening BT can further optimize segment checks by emitting a fast limit check

for segments that are guaranteed to have the same segment limit at execution time



as translation time.

Real mode cannot change its segment limits, so widening BT knows that the

limit at translation time is the same as the limit at execution time. Knowing this,

widening BT could avoid loading segment limit from memory and just compare

against an immediate, but that would still require saving guest flags to avoid bash-

ing them with the compare operation.

Widening BT can do better by effectively using the TLB to do the limit check

without touching flags: widening BT arranges to load a byte from a region in

memory such that if the address the guest is accessing is within the limit the load

suceeds.

For example, to perform a fast limit check for 64K limit real mode segments (a

common case in real mode) without bashing flags, the translation masks a pointer

to 16 bits, then dereferences the pointer into 64K of virtual address space that is

followed by a guard page. The 64K of virtual address space was chosen to be in

the TC (translation cache), which is always mapped. Saving and restoring flags

is an expensive little dance, so the fast real mode limit check saves a lot of time

by avoiding a limit comparison. The "fast limit check" works for limits that aren't

64K. A fast limit check can be done for any limit that is guaranteed to be unchanged

at execution time.

5.2.4 Sharing segment check code

Segment check code is bulky. Having translations share segment check code would

save space. Making segment check code shared would also let widening BT easily

choose between different types of segment checks dynamically; if widening BT

wants to switch from a code block optimized for checking expand-up segments to

a code block optimized for checking expand-down segments, widening BT merely

needs to change which block of code the translation jumps to. In order to share

code, widening BT needs to be able to jump to and return from the shared code

block efficiently.



Widening BT could use indirect jumps to return from shared code. Although

indirect jumps in general are relatively slow, CALLs and RETs are highly optimized

indirect jumps. Using RETs to return from shared code would be efficient, but in

order to use RETs, widening BT would have to push the return address onto a stack.

However, when executing translations the guest stack is always live. Pushing the

return value onto the guest's stack is a bad idea; the guest stack pointer might not

even be pointing into valid memory. Widening BT wants to use a stack controlled

by the monitor, in monitor memory. Widening BT could switch to using a mon-

itor stack when sharing code, but setting the stack pointer %rsp is costly. Using

an indirect jump would be cheaper than using RET with constant stack-switching

between monitor and guest stacks.

Because widening BT translates all guest stack operations, it is possible to keep

a live guest stack and a live monitor stack at the same time. Widening BT already

translates all guest stack operations such as PUSH and POP into LEA and Mov based

on %rsp. Widening BT could designate %r14 as the guest stack pointer register and

have stack operations manipulate memory based on %r14. Then widening BT could

point %rsp at the monitor stack and perform CALLS and RETs to shared code with

the monitor stack. Being able to stash the guest stack pointer in %r14 demonstrates

how useful it is to have those extra eight 64-bit registers at the VMM's disposal.

I didn't actually implement this code-sharing scheme because my focus was on

modem operating systems, which have flat segments. This code-sharing scheme

would make operating systems that use interesting segment features like expand-

down run faster. OS/2, Windows 95 and 98 would benefit most from sharing seg-

ment check code.
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Chapter 6

Guest system calls

Emulating guest system calls is the most overhead-intensive part of BT. A guest

system call causes the VMM to switch between executing guest operating system

code and guest user code. Because VMware's VMM binary translates guest oper-

ating system (privileged CPLo) code, but directly executes guest user (CPL3) code,

any guest system call requires the VMM to switch from one mode of virtualizing to

another.

The overhead of a guest system call is highly influenced by what CPL the hard-

ware is running at when the VMM is running guest operating system (CPLo) code.

With virtualization, the guest operating system may think it is running at CPLo,

while the underlying hardware is running at a different CPL, such as CPL1. Let run-

ning the guest operating system with BT on hardware at CPL1 be called BT/CPL1.

Let running the guest operating system with BT on hardware at CPLo be called

BT/CPLo.

Guest system calls under BT/CPLo are almost twice as fast as under BT/cpll.

Before widening BT, VMware's VMM ran guest operating system (CPLo) code with

BT/CPL1, running the translations on hardware at CPL1. After widening BT, the

VMM runs guest operating system code translations with BT/CPLo. BT/CPLO is

only possible when performing widening BT.

This chapter explains how guest system calls are implemented, why BT/CPLo

has faster guest system calls than BT/CPL1, why BT/CPLo is only possible with



widening BT, and how BT/CPLo is implemented in widening BT.

6.1 Guest system calls with BT/CPLO

A round-trip system call between guest operating system and guest user mode

consists of a guest "system call" from guest CPL3 to guest CPLo and a guest "system

call return" from guest CPLo to guest CPL3.

When running the guest under BT/CPLo, the hardware CPL is the same as the

guest CPL. When the guest operating system thinks it is running at CPLo, the VMM

is running in BT mode with CPLo on hardware. When the guest user code thinks it

is running at CPL3, the VMM is running in DE mode with CPL3 on hardware.

The VMM emulates guest system calls by transitioning between BT/CPLo and

DE at CPL3. When going from BT/CPLo to DE at CPL3, the VMM usesfast IRET to DE.

When going from DE at CPL3 to BT/CPLo, the VMM uses fast fault-forwarding or fast

syscalls.

6.1.1 Fast IRET to DE

Fast IRET to DE is the path from BT/CPLo to DE. When a guest attempts to change

from CPLo to CPL3 with an IRET the VMM checks whether conditions allow for the

guest CPL3 code at the IRET destination to be directly executed. The VMM only

IRETS to DE if segments are clean (the VMM's shadow segments match hardware

segment values), IF is set and IOPL/VIP/VIF are clear, etc.

If DE conditions are met, the VMM performs the guest IRET to CPL3. The VMM

executes a special block of assembly code that builds an IRET frame for transfering

control to directly execute guest CPL3 code. When the VMM executes IRET with the

frame, the processor begins to execute guest CPL3 code directly on hardware.

IRET isn't the only way to switch from CPLo to CPL3; LRET, SYSRET and SYSEXIT

are other ways, but their implementations are very similar to IRET's. I didn't bother

implementing a fast SYSRET path for 32-bit code because in practice no 32-bit guest



uses SYSRET.

6.1.2 Fast fault-forwarding

Older 32-bit operating systems such as Windows 2000 use INTns to perform system

calls. Newer 32-bit operating systems such as Windows XP use syscall instructions

instead (see section 6.1.3). An INTn is basically a fault. The VMM uses the "fast

fault-forwarding" path to handle both faults and INTn system calls from guest

user mode (CPL3) to guest operating system.

When guest user code takes a fault/INTn in DE, the VMM needs to forward

the fault to the guest by invoking the guest's fault handler. The VMM handles

faults/INTns from the guest with a special fault handler. The VMM's handler makes

sure that the BT system is ready to run at CPLo (BT/CPLo), that the guest CPLo vir-

tual CPU state is loaded, looks up the appropriate guest fault-handler, and invokes

the guest's handler directly in BT/CPLO.

6.1.3 Fast syscalls

The INTn instruction generates a call to the interrupt or exception handler specified

with the destination operand. Using INTn to perform system call is rather expen-

sive because it invokes the interrupt handling mechanism. To optimize system

calls, AMD developed SYSCALL and SYSRET and Intel developed SYSENTER and

SYSEXIT. SYSCALL and SYSRET are companion instructions. SYSENTER and SYSEXIT

are companion instructions. None of these instructions invoke the interrupt han-

dling mechanism. They use MSRs (model specific registers) to switch to and from

kernel CS, %rip and %rsp. Special handlers were made to handle guest syscalls.

6.2 BT/CPLO is faster than BT/CPL1

Before widening BT, VMware's VMM translated and executed guest operating sys-

tem code at CPL1, not CPLo. Before widening BT, guest system calls transitioned



between BT/CPL1 and DE at CPL3. This section explains why guest system calls

transitioning between BT/CPLo and DE are almost twice as speedy as guest system

calls transitioning between BT/CPL1 and DE.

6.2.1 Implementing virtual time is expensive with BT/CPL1

The first reason guest system calls with BT/CPL1 are slower than with BT/CPLO is

the way the VMM delivers virtual time to the guest. When running guest user code

(CPL3) directly on hardware, the VMM needs to give the guest virtual time instead

of real time. To give the guest virtual time, the VMM needs to intercept guest's

RDTSC ("read time stamp") instruction and emulate it. The VMM can cause RDTSC

instruction to fault for guest user code by setting a bit in the control register %cr4.

This bit is called the %cr4. tsc bit. Setting %cr4. tsc=1 causes fault on RDTSC when

CPL > 0, allowing the VMM to intercept guest RDTSCs.

Therefore, when entering DE from BT/CPL1, the VMM sets %cr4.tsc bit. Be-

cause the VMM directly executes guest code at CPL3 on hardware (DE at CPL3),

setting %cr4.tsc causes guest RDTSCs to trap out, allowing the VMM to give the

guest virtual time.

However, the VMM doesn't want to trap on BT's RDTSCs while using BT/CPL1,

so the VMM clears %cr4.tsc when exiting DE. Setting and clearing %cr4.tsc is an

expensive 25% of the system call cost. If the VMM BTs at CPLo, the VMM wouldn't

have to toggle the %cr4. tsc bit. By always using BT/CPLo, the VMM can just leave

%cr4. tsc set all the time because RDTSCS won't trap at CPLo.

6.2.2 VMM needs to perform privileged operations at CPLO

The second reason guest system calls with BT/CPL1 are slower is because some-

where between the BT to DE transition, the VMM must go to CPLo to perform some

privileged operations anyway; one such privileged operation is setting %cr4. tsc,

mentioned in section 6.2.1. The transition between BT/CPLo and DE involves only

one hardware CPL transition between hardware CPLO to CPL3. On the other hand,
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Figure 6-1: There are 4 vertical CPL transitions. If the VMM runs binary translations
at CPLo, only the 2 transitions between CPLo and CPL3 would be needed. The
transitions between CPL1 and CPLo probably account for 20% of guest system call
cost.

the transition between BT/CPL1 and DEmust detour into hardware CPLo, which

takes an extra CPL transition.

With BT/CPL1, entering and then exiting DE for a system call involves a total

of four CPL transitions (see Figure 6-1). On the guest system call return, the VMM

must leave BT/CPL1, drop to CPLo to perform privileged operations to prepare for

the fast IRET to DE. When the VMM receives the the guest system call from DE, the

VMM is at CPLo, but must transition to CPL1 to run guest handler with BT/CPL1.

For a round-trip guest system call, the VMM goes through 4 CPL transitions, 2 of

which are required because BT happens at CPL1. These 2 transitions between CPL1

and CPLo are about 20% of the system call cost. The 2 transitions between CPLo

and CPL1 could be avoided if BT occurred at CPLo (Figure 6-1).

With BT/CPLo, the VMM does not need to toggle %cr4. tsc bit (25% of system

call cost) or transition between CPL1 and CPLo (20% of system call cost). These esti-

mates show that BT/CPLo will save about 45% of system call costs, almost doubling

the speed of guest system calls.

6.3 BT/CPLO only possible with widening BT

Unfortunately, BT/CPLo is only possible for widening BT which translates x86-32

to x86-64 code. In order to use BT/CPLo, widening BT must be able to protect the

VMM and switch from the guest stack to the VMM stack on fault. Switching to



VMM stack on fault means the exception frame will be pushed onto the VMM stack.

Switching to VMM stack is necessary because the VMM needs to intercept all faults

and selectively forward faults to the guest; exception frames should not be pushed

directly to guest stack. VMM state must never be visible to the guest.

VMware's VMM has to use BT/CPL1 for VMM32 (x86-32 to x86-32 BT) and 64-bit

guest code in VMM64 (x86-64 to x86-64 BT) because in these situations, the VMM

cannot both protect the VMM address space and switch to VMM stack on fault. The

reasons the VMM currently uses BT/CPL1 for VMM32 and 64-bit guest operating

system code running under VMM64 are completely different.

VMM32 cannot use BT/CPLo because:

1. If an exception is taken during BT/CPLo, x86-32 (legacy/compatibility mode)

does not switch stacks. If an exception is taken during BT/CPL1, x86-32

changes privilege level to CPLo and switches stacks. Inter-CPL transitions

cause stack switches in x86-32 [2].

2. On the other hand, VMM32 can use segmentation to protect VMM address

space in x86-32 mode.

VMM64 cannot BT/CPLo because:

1. AMD 64-bit mode segmentation does not work at CPLo; segmentation does

work for CPLs 1 through 3. Without segmentation at CPLo, VMM64 cannot

efficiently protect the VMM address space from 64-bit guest code.

2. Unlike VMM32, VMM64 can use IST field (Interrupt Stack Table field) to switch

stacks even if it is running translations at CPLo. Gate descriptors have an IST

field, which if set, always causes a stack switch on exception.

The VMM needs to protect the VMM address space and switch to a VMM stack

on exception. Widening BT can use address-size prefixes to restrict the 32-bit guest

to low 4G of 64-bit address space, protecting the VMM address space. Widening

BT allows the VMM to set the IST field to switch stacks. Therefore only widening



BT running with x86-64 VMM can benefit from the BT/CPLo guest system call op-

timizations. However, if AMD simplifies their x86-64 segmentation specifications

to allow segment limits at CPLo, the VMM could use BT/CPLo when translating

64-bit guest code, allowing 64-bit guests to run under BT/CPLO to receive a similar

performance boost.

6.4 Implementing BT/CPLO

Under widening BT, the VMM can always protect the VMM address space with

address-size prefix, so protecting the VMM when running translated guest code

at CPLo is no problem. Stack-switching can be implemented with interrupt stack

table (IsT), available under 64-bit mode (x86-64). This section describes how to

emulate inter-CPL stack-switching with the gate descriptors' IsT field.

If the VMM sets the IST field for a gate descriptor, x86-64 will always switch

stacks on exception. The VMM has to be particularly careful about handling nested

exceptions. Setting the IsT field causes x86-64 to always reset the stack, so the

VMM must prevent new exception frames from clobbering the exception frame it

is currently handling.

To simulate nested exceptions, the VMM lets the IsT mechanism push the ex-

ception frame into a buffer above the VMM's CPLo stack (see Figure 6-2). Before the

VMM handles the exception, it copies the exception frame into the VMM's stack. If

the exception is not nested, the VMM copies the exception frame to the beginning

of VMM's stack. If the exception is nested, the VMM copies the exception frame to

the end of the VMM's stack. Because the hardware IsT mechanism only writes to

the buffer, exceptions will never clobber frames on the VMM's stack.

The buffer is named VMM_STACK_TOP_64_HW. The VMM stack is named VMM_STACK_TOP.

Between the buffer and the VMM stack is a region named "No Man's Land", which

is full of zeros. Checking that No Man's Land is always blank (completely zeroed)

allows the VMM to be sure that exception frames aren't accidentally overflowing

the buffer VMM_STACK_TOP_64_HW.
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Figure 6-2: Address space right after interrupt causes hardware to push an excep-

tion frame into buffer at VMM_STACK_TOP_64_IHW.

There are two cases, nested and unnested, when handling exceptions (see Fig-

ure 6-3):

1. The exception happened while running on a guest stack. The guest stack is

live in %rsp only if the VMM is in BT or DE mode. One way to distinguish

between guest stacks and VMM stacks is that 32-bit guest stacks are all un-

der 4GB, while VMM stacks are all above 4GB. However, there is no way to

IRET from 64-bit kernel mode (with 64-bit stack size) to 16-bit mode without

leaking the top 48 bits of the kernel stack pointer; in this case, the VMM may

be running on a 16-bit guest stack but actually have a 64-bit value greater

than 4GB in %rsp. To address this problem, the VMM uses %ss (stack segment

register) to tag whether it is running in BT or DE. If the VMM is running with

a guest stack, %ss will either contain 0x4028, the BT/CPLo SS, or select a CPL3



SS, which implies the VMM is running in DE. Once the VMM has determined

that it is running with the guest stack, it copies ExcFrame (exception frame)

to the beginning of the VMM CPLo stack (VMM_STACK_TOP_64). This emulates

a stack switch to the VMM CPLo stack.

2. The exception happened while the VMM is running on a VMM stack. The VMM

knows it is running on a VMM stack if SS is a VMM SS (either 0x4018 or 0). The

VMM copies ExcFrame to the end of the VMM stack it was running on; it copies

the ExcFrame to just below ExcFrame rsp value. Since the ExcFrame is copied

to the end of the stack the VMM was running on, to the exception handler,

it is as if the VMM didn't switch stacks. This means that any %ss other than

MONITOR_CPLO_64BIT_SS (0x4018) or null SS (0) will clobber the beginning of

VMM_STACK_TOP_64, so the VMM needs to be careful to track what possible Yss

values can exist in its code.
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Chapter 7

Performance results

While the main focus of widening BT is to simplify the virtual machine monitor,

widening BT should enhance performance overall. I ran OS install, system-call-

intensive micro-benchmarks, and PassMark benchmarks to determine whether the

performance of widening BT's x86-64 translations is good enough for VMware to

run all guest code in x86-64 mode (long mode) all the time.

I compare the performance of 32-bit guest operating systems running on an x86

64-bit CPu:

1. On x86-64 mode hardware with x86-64 monitor (VMM64).

2. On x86-32 mode hardware with x86-32 monitor (VMM32).



Old way: vmm32 New way: vmm64

Running on a x86 64-bit CPU

Figure 7-1: I compare the performance of BT to x86-32 target code under VMM32

with the performance of BT to x86-64 target code under VMM64.



7.1 OS installs

The OS install benchmark times how long it takes to install a particular OS fol-

lowed by booting and shutting down the OS at least once. It contains a mix of I/O

and computation, is easy to run for different OSes, and is fairly consistent run to

run. OS installs model real workloads more closely than purely CPU-intensive or

system-call-intensive benchmarks.

7.1.1 Understanding results

The OS install benchmark was run on an AMD Quad-core Opteron Processor 2356

at 2.3GHz. The OS install benchmark results are presented as bar charts:

* Y axis: different OSes

* X axis: the time ratio of VMM64/VMM32; bars shorter than 1 mean VMM64 is

faster, while bars longer than 1 mean VMM32 is faster.

* The OSes are sorted with those that run faster under VMM64 near the top and

those that run faster in VMM32 near the bottom.

* Modem OSes are expected to be near the top while the older OSes, which use

non-flat segmentation, are expected to be near the bottom.

7.1.2 Windows installs

Windows ME, 95 and 98 all use non-flat segmentation; the cost of emulating non-

flat segmentation for them is considerable. They appear to use non-flat segment

FS for thread local storage [9]. Other Windows operating systems, especially the

more modem ones such as XP, use flat segments and run faster when virtualized

under VMM64 than VMM32.
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7.1.3 Linux installs
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Figure 7-3: OS install benchmark for Linux operating systems. Shorter bar means
VMM64 runs faster than VMM32.

Linux guests don't use non-flat segmentation, so there is no overhead for vir-

tualizing 32-bit Linux guests under x86-64 mode.

7.1.4 Corner case: UnixWare

For most operating systems, the performance of VMM64 is close to that of VMM32

under OS install benchmark. However, by having disjoint guest and monitor ad-

dress spaces, VMM64 can avoid performance cliffs that trouble VMM32.

UnixWare, a Unix operating system maintained by The SCO Group [8], is an

operating system that suffers from frequent guest accesses to the monitor address

space. UnixWare keeps the stack high up in the address space. When UnixWare

is run as a guest operating system under BT with VMM32, its stack overlaps with

VMM32's address space, causing many faults and degrading performance. In fact,

UnixWare faults so many times under BT in VMM32 that it hangs while installing.

However, if run under VMM64 with widening BT, the UnixWare guest and mon-

itor address spaces don't overlap, avoiding address-space contention. UnixWare

-
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-
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installs normally under VMM64.

Other operating systems with a high stack that overlaps monitor address space

include OS/2 and Mac OS X.

7.2 Micro-benchmarks

While OS installs approximate real workloads, micro-benchmarks such as fork-

wait, getpid and switch test workloads that BT is particularly bad at. All of these

micro-benchmarks make system calls. In general, system calls are the most overhead-

intensive operations when virtualizing with BT(emulating non-flat segmentation

in x86-64 is also costly, but few operating systems use non-flat segmentation). Most

of software virtualization overhead comes from system calls. Most other instruc-

tions are non-privileged and can be executed directly on hardware or binary trans-

lated identically, incurring very little overhead.

Here are descriptions of each of the micro-benchmarks:

Forkwait: Executes a fork system call followed by a wait system call. The fork

system call copies the process state; the new process is called the "child"

process and the old process is called the "parent" process. The wait system

call blocks the parent process until the child dies. Unix shells often perform

forkwait; much of the time spent in shell scripts is in fork. Forkwait's perfor-

mance depends on the time it takes to set up the new process's page tables.

Getpid: Fetches the process ID. This benchmark makes one system call which im-

mediately returns to the application with the process ID. This benchmark

most closely measures the time it takes to perform a system call.

Switch: This benchmark measures Java thread switching overhead. Switching

Java threads causes the operating system to switch threads. The threads form

a ring of size 2. One thread signals the next thread to form a context switch.

Forkwait and getpid are the most important benchmarks because they matter

more in real workloads.



7.2.1 Understanding results

I measured and compared performance of micro-benchmarks between VMM64 and

VMM32 on Windows 2000 and Windows XP Pro. I compared the performance un-

der Windows 2000 with the performance under Windows XP Pro because they use

different instructions and mechanisms to perform system calls. Older operating

systems such as Windows 2000 tend to use INTn, while newer operating systems

such as Windows XP Pro use SYSENTER/SYSEXIT syscall instructions.

I also ran each set of micro-benchmarks on an Intel machine and an AMD ma-

chine. I did this because AMD and Intel have different implementations of syscall

instructions. The benchmarks are run on an AMD Quad-core Opteron Processor

2356 at 2.3GHz and an Intel iCore 7 at 3.2GHz.

New Windows (such as XP Pro) and Linuxes use SYSENTER/SYSEXIT syscall

instructions, which are available for both Intel and AMD CPUs in 32-bit mode.

SYSCALL/SYSRET syscall instructions only work in 32-bit mode on AMD CPUs.

Figure 7-4 shows the micro-benchmark results as bar charts:

* Y axis: different micro-benchmarks (forkwait, getpid, switch).

* X axis: the time ratio of VMM64/VMM32; bars shorter than 1 mean VMM64 is

faster, while bars longer than 1 mean VMM32 faster.

7.2.2 Windows XP Pro on AMD machine

The getpid and switch benchmarks under VMM64 are slower on the AMD ma-

chine because 64-bit AMD does not implement the SYSENTER and SYSEXIT syscall

instructions. Emulating SYSENTER and SYSEXIT with widening binary translation

results in some overhead; this affects getpid micro-benchmark the most.
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7.2.3 Windows XP Pro on Intel machine

The getpid and switch benchmarks under VMM64 are faster on the Intel machine

than the AMD machine because widening BT can use the SYSENTER and SYSEXIT

instructions in Intel 64-bit mode; widening BT doesn't incur overhead from having

to emulate SYSENTER and SYSEXIT as it does on AMD machine.

torkwalt
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Figure 7-5: Micro-benchmarks for Windows XP Pro on Intel machine. Shorter bar
means VMM64 runs faster than VMM32.



7.2.4 Windows 2000 on AMD machine

Windows 2000 uses INTn instructions to perform system calls. The disparity be-

tween benchmark performance on Intel machine and AMD machine should be less

pronounced for Windows 2000.

When running the getpid micro-benchmark under VMM64, there is higher over-

head. The overhead does not come from emulating SYSENTER and SYSEXIT (Win-

dows 2000 uses neither instruction), but rather from the fact that VMM64's fault/INTn

handling path is simple C while VMM32'S fault/INTn handling path is highly opti-

mized assembly.
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Figure 7-6: Micro-benchmarks for Windows 2000 on AMD machine. Shorter bar
means VMM64 runs faster than VMM32.



7.2.5 Windows 2000 on Intel machine

For Windows 2000 micro-benchmarks, VMM64's performance is worse on the Intel

machine than on the AMD machine.

0 0.2 0.4 0.86 0.8 1 1.2

Figure 7-7: Micro-benchmarks for Windows 2000 on Intel machine. Shorter bar
means VMM64 runs faster than VMM32.

7.3 PassMark

PassMark PerformanceTest is a hardware benchmark utility. I ran the PassMark

CPU benchmarks under Windows XP Pro on AMD Quad-core Opteron Processor

2356 at 2.3GHz. For the PassMark Cpu benchmarks, the performance of VMM64

and VMM32 are very similar (see Table 7.1). This is because for non-privileged

instructions, the performance is close to native and whether the code is run under

VMM64 or VMM32 doesn't matter.

While PassMark CPU benchmarks run non-privileged code, PassMark Graph-

ics 2D benchmarks execute system calls. There is greater disparity between the

performance of VMM64 and VMM32 on PassMark Graphics 2D benchmarks (see

Table 7.2).

forkwait

900pd



Table 7.1: PassMark CPU benchmark run under Windows XP Pro on AMD Quad-
core Opteron Processor 2356 at 2.3GHz.

CPU benchmark VMM64 VMM32 Unit
Integer Math 71.4 70.8 Millions of operations per second
Floating Point Math 408.3 400.2 Millions of operations per second
Find Prime Numbers 241.1 241.2 Operations per second
SSE/3DNow! 1838.7 1816.3 Million matrices per second
Compression 1965.2 1962.6 Kbytes processed per second
Encryption 17.1 17 Mbytes transferred per second
Image Rotation 311.9 312.2 Image rotations per second
String Sorting 1246.7 1256 Thousand Strings per second
Mark 535.8 532.1 Composite average of other results
PassMark Rating 144.7 143.7 Composite average of other results

Table 7.2: Graphics 2D PassMark run under Windows XP Pro on AMD Quad-core
Opteron Processor 2356 at 2.3GHz.
2D Benchmark VMM64 VMM32 Units
Lines 26.1 31.1 Thousands of lines drawn per second
Rectangles 4.19 1.3 Thousands of images drawn per second
Shapes 5.3 7.1 Thousands of shapes drawn per second
Fonts and Text 56.2 84.3 Operations per second
GUI 97.8 161.1 Operations per second
Graphics Mark 105.3 147.8 Composite average of other results
PassMark Rating 14.7 20.7 Composite average of other results



7.4 Evaluation of performance

The purpose of running the performance benchmarks is to make sure that widen-

ing BT performs well enough for VMware to run guest code from all modes under

x86-64 mode with VMM64 all the time. Based on OS install results, the verdict is

that widening BT performs well enough, even though widening BT incurs some

overhead for system calls and emulating segmentation. Widening BT will allow

VMware to save developing time by discarding the VMM32 monitor mode once

64-bit CPus are ubiquitous.
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Chapter 8

Conclusion

The goal of running 32-bit x86 guests in x86-64 mode is accomplished by extending

VMware's virtual machine monitor's binary translation infrastructure to translate

x86-32 code to x86-64 code via a process called "widening BT". Widening BT allows

the VMM to take advantage of 64-bit cPus for virtualizing x86-32 code. Obvious

x86-64 mode benefits include the large 64-bit address space and twice as many

general purpose registers. After this change, VMware's VMM runs 32-bit guest

operating systems in x86-64 mode under a x86-64 monitor VMM64 instead of a

x86-32 monitor VMM32.

Translating 32-bit guest operating systems to x86-64 mode simplifies the virtual

machine monitor and enhances overall performance. A performance gain can be

seen in the OS install benchmark (Section 7.1), although VMM64 performs worse

on system calls than VMM32 (Section 7.2). The OS install benchmark more closely

resembles real workloads than the system call micro-benchmarks; system calls take

up a relatively small fraction of real workloads. Widening BT also needs to emulate

x86-32 segmentation in x86-64 mode, which incurs some overhead, especially for

old operating systems like OS/2. The performance checks were important to make

sure that the performance of 32-bit guest operating systems in x86-64 mode under

VMM64 is good enough to switch over to running x86-32 code solely under VMM64.

The human cost savings of only having to maintain one virtual machine monitor

(just VMM64) instead of two (VMM64 and VMM32) is much more important than the



performance gains provided by VMM64. With widening BT, VMware can discard

VMM32 once 64-bit CPUs are ubiquitous.

Widening BT shows hardware support is unnecessary for running 32-bit guests.

Widening BT shows how to emulate 32-bit legacy segmentation in 64-bit mode;

segmentation hardware is used infrequently enough in modem operating systems

that should it be dropped, software segmentation can replace it. By translating

x86-32 code to x86-64 code, widening BT reduces hardware's burden of backwards-

compatibility. Future work can explore more consequences of using binary trans-

lation as an abstraction layer between software and hardware.
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