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ABSTRACT:

Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in
tropical and subtropical oceans, regimes frequently characterized by low iron (Fe).
Limited information exists about what levels of Fe limit Trichodesmium N fixation. I
developed a diagnostic for Fe limitation using quantitative reverse transcription PCR
(qRT-PCR) of the Fe stress response gene isiB, which encodes for flavodoxin a non-Fe
containing substitute for ferredoxin. I determined that high isiB gene expression
corresponded to cell-specific reductions in N fixation rates in both phylogenetic clades of
Trichodesmium grown on varying levels of Fe. Using these laboratory-determined
thresholds, I assessed Fe limitation of Trichodesmium from the Sargasso Sea, equatorial
Atlantic Ocean and Western Pacific Warm Pool in conjunction with other analytical
measurements (N, phosphorus (P) and dissolved Fe (<0.4gm filtered)). I found
widespread Fe limitation in Trichodesmium from the Pacific Ocean and minimal
expression in the North Atlantic Ocean. I also found an inverse correlation between isiB
expression and dissolved Fe:P ratios in seawater and data suggesting that most dissolved
Fe in seawater, including organic ligand-bound Fe, is available to Trichodesmium. These
data support and refine previous model predictions and demonstrate, in situ, the
importance of Fe to the marine N cycle.
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CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

Primary producers are important to the oceanic food chain and the overall

biogeochemistry of the ocean (Falkowski et al., 1998). Diazotrophic cyanobacteria

impact the carbon (C) cycle directly through primary production and indirectly through

their contribution of"new" nitrogen (N) to the euphotic zone via N2 fixation (Capone et

al., 2005). So far no eukaryotic phytoplankton have been found that are capable of fixing

N2 without a symbiont. Thus, the new N that diazotrophs provide to the surface ocean is

vital to the N and C cycles both regionally (Capone et al., 1997; Zehr et al., 2001) and

globally (Gruber and Sarmiento, 1997). Of the diazotrophs, Trichodesmium is of

particular importance to the global N cycle where some estimates associate its biological

N2 fixation with up to 50 % of global N sequestration (Karl et al., 1997). Although we

now know that there is a much greater diversity of diazotrophs actively fixing N in the

oceans than previously believed (Zehr et al., 2001; Montoya et al., 2004; Grabowski et

al., 2008), Trichodesmium is still considered to be one of the most important diazotrophs

globally (LaRoche and Breitbarth, 2005).

An important step in determining the impact of Trichodesmium on the N and C

cycles and how this might change in the future is elucidating the physical and chemical

factors that control its distribution and activity in situ. Trichodesmium is typically found

in oligotrophic tropical and subtropical environments in clear stable water columns with

deep light penetration and a mixed layer depth of around 100 m (Capone et al., 1997).

Recent work with Trichodesmium erythraeum cultures has determined that the

temperature range for growth and N 2 fixation in the species is 22 - 34 'C, with an optimal

temperature of about 28 'C (Breitbarth et al., 2007). Above this optimal temperature,

there is a precipitous drop in N2 fixation rates and a more gradual decline in growth rates

(Breitbarth et al., 2007). In addition to these physical constraints, both iron (Fe)

(Berman-Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003b; Kustka et al., 2003a;

Kustka et al., 2003b; Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008),

phosphorus (P) (Hynes, In Press; Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002;



Fu and Bell, 2003a; Fu et al., 2005; Moutin et al., 2005; Sohm and Capone, 2006; Webb

et al., 2007; Sohm et al., 2008) or a combination of the two (Mills et al., 2004) have been

implicated in controlling Trichodesmium abundance and productivity throughout the

world's oceans.

There are currently six described species of Trichodesmium: T. erythraeum,

Trichodesmium thiebautii, Trichodesmium tenue, Trichodesmium hildebrandtii,

Trichodesmium contortum and Trichodesmium spiralis (formerly known as Katagnymene

spiralis) (Orcutt et al., 2002; Lundgren et al., 2005). Early distinctions between the

species were made using morphological differences, but the potential for overlapping

morphological characteristics between species has led to the development of genetic tools

that can be used to complement morphological distinctions (Orcutt et al., 2002; Lundgren

et al., 2005). These genetic techniques have shown that there are two distinct clades of

Trichodesmium (Orcutt et al., 2002), which split into the T. erythraeum strains in one

group and T. tenue, T. thiebautii, T. spiralis and T. hildebrandtii in the other group.

Recent work has shown that T. contortum is part of the T. erythraeum group (Annette

Hynes personal communication). Though these two distinct clades of Trichodesmium are

known to exist, not much is known about the potential for niche differentiation between

the species and what impact this might have on estimates of N2 fixation in the ocean. For

example, all of the studies looking at Fe stress in Trichodesmium culture experiments

have focused on one species, T. erythraeum (Berman-Frank et al., 2001; Webb et al.,

2001; Fu and Bell, 2003b; Kustka et al., 2003b; Berman-Frank et al., 2007; Shi et al.,

2007). Prior to the work presented in this thesis, there were no physiological data from

laboratory cultures of the other clade at all, including the impact of Fe limitation on N2

fixation.

It appears that the two main morphologies of Trichodesmium, puffs and tufts, may

exist at different depths in the ocean (Post et al., 2002; Davis and McGillicuddy, 2006).

A study in the Red Sea determined not only that puff forming colonies were more

abundant deeper in the water column than tuft colonies, but that these deep water puff

colonies contained more chlorophyll a and had higher carbon fixation rates per colony at



ambient light than the tuft colonies from higher in the water column (Post et al., 2002).

Another study found consistent differences in nitrogen fixation rates, photosynthetic

compounds and distribution of two morphologies of Trichodesmium in the ocean

(Carpenter et al., 1993). It is important to note that these distinctions were made based

on morphology, not genetic differences, which makes attributing them to one particular

subset of Trichodesmium complicated. They do, however, support the theory that there

are differences between the members of the genus, which should be explored if we are

going to adequately model how N2 fixation rates might be affected by changing dust

deposition, temperature and carbon dioxide levels.

N2-fixing cyanobacteria are believed to have evolved in an anoxic ocean where Fe

was readily available, and they have Fe requirements 5 to 8 times higher than other

phytoplankton when they are growing without a fixed nitrogen source (Berman-Frank et

al., 2001; Kustka et al., 2003b). In the modem oxygenated ocean, dissolved Fe is not as

prevalent because of the low solubility of its thermodynamically stable form, Fe 3+ (Liu

and Millero, 2002). There are many forms of Fe found in the oceans (i.e., colloidal,

ligand bound, dissolved, free ion, etc), and it is uncertain which forms are bioavailable to

Trichodesmium. In most regions of the ocean, including the oligotrophic ocean gyres,

dissolved (< 0.4 tm filtered) Fe has been found to be almost completely (>99%)

complexed by organic molecules (Gledhill and van den Berg, 1994; Rue and Bruland,

1995; van den Berg, 1995; Wu and Luther, 1995). The role that these organic ligands

play in controlling the distribution of the dissolved pool of Fe complicates our

understanding of what is biologically available to organisms. It remains difficult to

identify which organic molecules are acting as ligands in ocean water, and there is

evidence that many marine phytoplankton, including Trichodesmium, are able to obtain

Fe from some but not all of these organic complexes (Hutchins et al., 1999; Achilles et

al., 2003).

While there have been many studies of organic complexation of Fe in the Atlantic

Ocean (Witter and Luther, 1998; Boye et al., 2003; Powell and Wilson-Finelli, 2003;

Cullen et al., 2006; Rijkenberg et al., 2008) and the Southern Ocean (Boye et al., 2001;



Croot et al., 2004; Boye et al., 2005; Gerringa et al., 2008), other areas of the ocean that

are important habitats for Trichodesmium have been sparsely investigated. In the Pacific

Ocean, for example, most Fe speciation studies have focused on the North Pacific (Rue

and Bruland, 1995; van den Berg, 1995; van den Berg, 2006; Buck and Bruland, 2007;

Kondo et al., 2007; Kondo et al., 2008) and Eastern Equatorial Pacific (Rue and Bruland,

1997), leaving vast portions of the ocean unstudied.

Prior to the work in this thesis, no studies had looked at Fe speciation in the South

Western Pacific or the Western Pacific Warm Pool, a region of the Pacific Ocean that is

defined by temperatures higher than 29 0 C, salinity below 35 and very low macro nutrient

concentrations (Blanchot et al., 1997). In fact, few studies with any Fe measurements

have been done in this part of the Pacific Ocean (Campbell et al., 2005; Obata et al.,

2008). This region is of particular interest to studies of Fe chemistry because it has very

low predicted dust deposition (Duce and Tindale, 1991; Jickells, 1999; Wagener et al.,

2008). It is also of interest biologically because based on flow-cytometric and pigment

analyses, cyanobacteria appear to be the dominant phytoplankton in this highly

oligotrophic region (Blanchot et al., 1997; Neveux et al., 2006; Matsumoto and Ando,

2009) and blooms of Trichodesmium can be quite prevalent in the region close to New

Caledonia (Dupouy et al., 1988).

In addition to there being regions of the oceans where there is a paucity of Fe

measurements and incomplete information regarding Fe bioavailability, a further

complication associated with connecting Fe levels in the ocean with Fe status of

Trichodesmium is that they are capable of luxury uptake and storage of Fe during periods

of high Fe abundance (Kustka et al., 2003b). This ability to store Fe is an important

adaptation in areas of episodic Fe deposition, which can lead to confusing results when

trying to assess Fe limitation in the field, as cells can be Fe replete when the Fe levels in

the waters around them would suggest limitation. Attempts to assess the relationship

between Fe and the global N cycle using analytical geochemical measurements, Fe

quotas of different organisms and dust deposition models have made great strides in

understanding the interconnectedness of these global cycles (Moore et al., 2004; Moore



and Doney, 2007). These studies have underscored the need for biological markers to

assess in situ Fe stress. An in situ biological marker for Fe could be used to directly

explore the linkages between Fe geochemistry, Fe status and N2-fixation in natural

populations of Trichodesmium, avoiding the difficulties associated with determining the

best measurement of bioavailable Fe and complications relating to Fe storage capabilities.

The goals of this thesis were to address questions raised in the preceding

paragraphs regarding distribution and speciation of Fe in the southwestern Pacific Ocean

as well as to assess Fe limitation of Trichodesmium in different ocean regimes using a

quantitative molecular method. Chapter 2 deals with measurements of dissolved Fe and

Fe speciation in a region of the ocean where there have been few measurements made,

the southwestern Pacific Ocean. Chapter 3 explores clade differentiation in

Trichodesmium spp., specifically focusing on temperature optima and the response to Fe

limitation. Chapter 3 also includes the development of clade-specific molecular markers

for Fe limitation, which are calibrated to reductions in N2 fixation rates in response to Fe

limitation. Chapter 4 looks at Fe stress in field populations of Trichodesmium from both

the Pacific and Atlantic Oceans using the molecular marker for Fe limitation developed

in Chapter 3. The results from Chapter 4 validate model predictions of where Fe

limitation of Trichodesmium is occurring with calibrated measurements of Fe limitation

of N2 fixation. The region where Fe limitation of Trichodesmium is most apparent is the

Pacific Ocean. The dissolved Fe values from the field associated with Fe limitation are

similar to those associated with Fe limitation in the lab, suggesting that much of the

organically bound Fe in the open ocean is available to Trichodesmium. In addition, the

correlation of expression of the Fe stress response gene, isiB, and the measured dissolved

Fe/P0 4 ratio of seawater samples enables calculation of the critical Fe/P0 4 value

associated with Fe limitation of Trichodesmium. The similarity between this calculated

critical Fe/P0 4 value with the one used in some models to predict Fe limitation of

Trichodesmium, serves as further validation of those models with empirical data.

Overall, this thesis provides insight into how Fe controls N2 fixation in Trichodesmium,



where in the ocean this control is important and what parameters are important to

measure to determine the likelihood that Trichodesmium is experiencing Fe limitation.
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2.1 ABSTRACT

Dissolved iron (Fe) and the concentration of organic Fe-binding ligands were

measured in the Western Pacific Ocean on a transect from Hawaii to Australia. Fe

complexation was measured using competitive ligand exchange adsorptive cathodic

stripping voltammetry (CLE-ACSV) with the competitive ligand 2,3-

dihydroxynaphthalene (DHN). Dissolved Fe in surface samples ranged from 0.09 - 1.4

nM. Ligand concentrations ranged from 0.44 - 2.2 nM with binding constants ranging

from 1011.6 - 1012.9. There appeared to be a linear relationship between Fe and ligand

concentrations when [Fe] > 0.2 nM and a wide range of ligand concentrations when [Fe]

< 0.2 nM. Our data supports the hypothesis that organic ligands are a ubiquitous part of

Fe speciation in the oceans, even in regions of low dust deposition where Fe inputs are

small.

2.2 INTRODUCTION

Iron (Fe) is an essential micronutrient for almost all organisms. Because of

solubility constraints in its oxidized state (Liu and Millero, 2002), Fe can be low enough

in surface waters to limit phytoplankton growth in the ocean (Martin et al., 1991; Morel

et al., 1991; Falkowski et al., 1998; Boyd et al., 2007) even though it is the fourth most

abundant element in the Earth's crust. The discovery of the role that Fe plays in

controlling productivity in High Nutrient Low Chlorophyll (HNLC) regimes (Martin and

Fitzwater, 1988; Martin et al., 1990) prompted significant research to determine what

controls the bioavailability of Fe in the Ocean.

A major development in understanding Fe chemistry in the ocean was the

discovery, using competitive ligand exchange adsorptive cathodic stripping voltammetry

(CLE-ACSV), that organic ligands are ubiquitous and bind >99% of the dissolved Fe in

the oceans (Gledhill and van den Berg, 1994; Rue and Bruland, 1995; Wu and Luther,
1995). Since those first studies determined that organic complexation is an important

component of Fe speciation in the ocean, evidence of Fe-binding ligands has been found

in every area of the ocean that has been studied (Hunter and Boyd, 2007), including the

recent discovery that they are associated with hydrothermal vent plumes (Bennett et al.,
2008).



While it remains unclear what the structures of these ligands are, there is evidence

that the stability constants that have been measured are in line with the stability constants

of known siderophores when analyzed in a seawater medium (Witter et al., 2000) as well

as with unknown compounds with siderophore-like functional groups that were extracted

from seawater (Macrellis et al., 2001). A recent study found evidence of two

characterized sideophores in samples throughout the Atlantic Ocean (Mawji et al., 2008).

It is known that marine bacteria and cyanobacteria are capable of making siderophore-

like complexes (Wilhelm and Trick, 1994; Lewis et al., 1995; Soria-Dengg et al., 2001;

Ito and Butler, 2005). It also appears that Fe bound to siderophores is available to at least

some subset of phytoplankton (Hutchins et al., 1999; Maldonado and Price, 2001; Soria-

Dengg et al., 2001; Achilles et al., 2003), although the type of chelator appears to be

important in determining the bioavailability to different phytoplankton (Hutchins et al.,

1999). Considering that this organically bound fraction may be bioavailable to some

phytoplankton groups in the surface ocean, it is important to determine if there are areas

where the amount of ligand is different in the ocean and potentially determine what

controls this distribution.

There have been many studies looking at dissolved Fe and Fe speciation in the

Atlantic Ocean (Witter and Luther, 1998; Powell and Donat, 2001; Boye et al., 2003;

Cullen et al., 2006; Rijkenberg et al., 2008) and Southern Ocean (Boye et al., 2001; Croot

et al., 2004; Boye et al., 2005; Gerringa et al., 2008). There have been fewer studies

looking at Fe speciation in the Pacific Ocean and those have focused on the Northern

Pacific Ocean (Rue and Bruland, 1995; van den Berg, 1995; van den Berg, 2006; Buck

and Bruland, 2007; Kondo et al., 2007; Kondo et al., 2008) and the Eastern Equatorial

Pacific Ocean (Rue and Bruland, 1997). Only two studies so far have looked at Fe in the

open ocean of the South Western Pacific (Campbell et al., 2005; Obata et al., 2008). One

was focused on the most western part of the basin and only looked at the total dissolvable

fraction of Fe, which is measured on unfiltered seawater that has been acidified to pH 3.2

immediately following collection (Obata et al., 2008). The other study focused on total

dissolved Fe (<0.22 tm filtered Fe) and looked at the region around New Caledonia and

between New Caledonia and New Zealand (Campbell et al., 2005).



The data set presented in this work, which includes dissolved Fe and ligand

concentrations, provides data on Fe geochemistry in the understudied region of the South

Western Pacific Ocean, a region of very low dust inputs (Duce and Tindale, 1991;

Jickells, 1999; Wagener et al., 2008). The transect includes the first measurements of Fe

and Fe speciation through the hydrologic feature known as the Western Pacific Warm

Pool (WPWP). The WPWP is a region defined by very warm surface temperatures (>

29C), low surface salinity (<35) and low macronutrients (Blanchot et al., 1997). It is an

oligotrophic region where the predominant phytoplankton are cyanobacteria (Blanchot et

al., 1997; Neveux et al., 2006; Matsumoto and Ando, 2009). The cruise track also

included a region of the ocean where there are reports of periodic blooms of the

cyanobacterium Trichodesmium (Dupouy et al., 1988; Campbell et al., 2005; Rodier and

Le Borgne, 2008). As cyanobacteria appear to be able to access Fe bound to some

organic ligands (Hutchins et al., 1999; Achilles et al., 2003), it is important to determine

the role of organic ligands in the Fe chemistry of the surface oceans in the region to

understand Fe bioavailability to the predominant phytoplankton. In comparing the

amount of organic ligand ([L]) present in each sample with various auxiliary chemical

and biological parameters, the most striking relationship appeared to be between the

amounts of dissolved Fe ([Fe]) verses [L] in a given sample, which is consistent with data

from other regions of the ocean. The data we present is an addition to global datasets of

dissolved Fe and Fe speciation in surface waters, covering an area where few values have

been reported.

2.3 METHODS

2.3.1 Sample Collection. Samples were collected aboard the R/V Kilo Moana as

part of the Western Pacific Warm Pool (WPWP) cruise between January 12, 2007 and

February 9, 2007 (Figure 1). Samples were collected using acid cleaned 5L Teflon-

coated exterior spring niskin bottles (Ocean Test Equipment) mounted on a powder-

coated rosette deployed on a Kevlar line. After recovery, the bottles were transferred into

a trace metal clean "bubble" in the laboratory of the ship with positive pressure

maintained by HEPA filtered air units. The headspace of each bottle was pressurized

with 0.2 tm filtered ultra high purity (UHP) nitrogen pushing the water through a 142



mm 0.4 tm acid-cleaned polycarbonate filter held in a polycarbonate filter sandwich

(Geotech Environmental Equipment, Inc.). Water for dissolved Fe analysis was collected

in acid-cleaned 250 ml low density polyethylene (LDPE) bottles and acidified to pH 1.7

with concentrated HC1 (Seastar). Water for speciation analysis was collected in 1 L

acid-cleaned Teflon bottles and stored at 40C until analysis.

2.3.2 Dissolved Fe Analysis. Fe in the seawater samples was determined using

isotope dilution and magnesium hydroxide preconcentration followed by analysis using

inductively coupled mass spectrometry (Wu and Boyle, 1998; Saito and Schneider,

2006). Roughly 13.5 ml of sample (exact volume determined gravimetrically) was

poured into a 15 ml polypropylene centrifuge tube (Globe Scientific Inc.) and

equilibrated with a 57Fe spike (-0.4 nM) overnight. The following day, the Mg(OH) 2 and

metals were precipitated out of the sample by the addition of a small amount (- 100 [il) of

high-purity ammonium hydroxide (Seastar Chemicals Inc.). Following ammonium

hydroxide addition, the tubes were left undisturbed for 90 s and then they were inverted

multiple times to fully mix them. After an additional 90 s, the tubes were centrifuged at

3000 x g for 3 minutes and the sample was decanted off. The tubes were then spun at

3000 x g for an additional 3 minutes forming a compact pellet, following which the

remaining liquid was shaken off. The sample pellets were kept dry until the day of

analysis (from a day to a week). On the morning of analysis, pellets were resuspended

and dissolved in 1-2 ml 0.8 N Nitric Acid (Seastar). Samples were analyzed on a

Thermo-Finnigan Element 2 (E2) inductively coupled mass spectrometer (ICP-MS) in

medium resolution mode. A procedural blank was determined by processing 1 ml of low

Fe seawater (which provides a negligible amount of Fe) and calculating its Fe value as

though it were a 13.5 ml sample.

2.3.3 Organic Ligand Analysis. The titration of organic Fe complexing ligands

was carried out in a manner closely following that described by van den Berg (van den

Berg, 2006). Briefly, 20 ml of sample was added to a series of 30 ml preconditioned

Teflon vials (Savillex Corporation). 10 tl of ImM 2,3-dihydroxynaphthalene (DHN)

(final concentration 0.5 pM) and Fe in a series of concentrations of 0, 0.25, 0.5, 0.75, 1,

1.5, 2, 3, 5 and 8 nM was added to each vial from an acidified Fe stock solution of 0.5

M Fe. Samples were allowed to equilibrate overnight (17-24 hrs). After equilibration,



10 ml of each sample in order of increasing Fe was transferred to a

polytetrafluoroethylene (PTFE) voltametric cell, 0.5 ml EPPS (3-(4-(2-hydroxyethyl)-1-

piperazinyl)propanesulfonic acid)/bromate solution (final concentration 5 mM EPPS/20

mM bromate) was added, purging was initiated and reactive Fe was determined by

cathodic stripping voltammetry (CSV). This was repeated with the second 10 ml of

sample, and calculations were based on the results from the second scan. The scan

conditions included a 5 minute purge of the sample with 0.2 pm filtered ultra high purity

nitrogen gas, 90 s adsorption at -0.1 V, 10 s equilibration and a scan using sampled direct

current (DC), step size 4 mV, frequency 10 s .

Cathodic stripping voltammetry (CSV) was carried out using a Metrohm VA 663

Stand with a Hanging Mercury Drop Electrode (HMDE), glassy carbon working

electrode, a double junction Ag/AgC1 and a 3 M KC1 reference electrode (Metrohm AG,

Switzerland), which was connected to a iAutolab II potentiostat (Eco Chemie BV, The

Netherlands). The tAutolab was connected to a laptop PC and was controlled using

GPES software (Eco Chemie BV, The Netherlands).

Peak currents were plotted against [Fe]total for each sample (natural Fe in sample

and added Fe) to get a titration curve. Linear regression of the final 3-5 points of a

titration was used to obtain the sensitivity of the titration (the slope of that line, S). This

calculated sensitivity and the c coeffecient for DHN complexation with Fe' of 0.5 tM

DHN (166) previously determined (van den Berg, 2006) were then used to calculate [Fe']

and [FeL] for each sample in the titration.

Briefly, [FeDHN] is related to the current measured at individual point in the

titration (ip) and the sensitivity of the titration (S) and can be calculated using the

equation: ip = S x [FeDHN]. [Fe'] is related to [FeDHN] by the a coeffecient for DHN

complexation with Fe' and can be calculated using the equation: [Fe'] = [FeDHN]/a.

[FeL] is related to [Fe]total, [Fe'] and [FeDHN] and can be calculated using the equation:

[Fe]total = [Fe'] + [FeL] + [FeDHN].

[Fe'], [FeL] and [L] are in equilibrium in natural waters: Fe' + L *- FeL. The

conditional stability constant for this equilibrium reaction, K'FeL,Fe', is defined by the

equation: K'FeL,Fe' = ([FeL]/[Fe']) x [L]. To obtain values for [L] and K'FeL,Fe', we used

our calculated values for [Fe'] and [FeL] and analyzed them using a non-linear fitting



program to fit the equation: [FeL] = ([L] x [Fe'] x Fe'FeL,Fe')/(I + K'FeL,Fe' x [Fe']). This

method has been described by Wilkinson (1961) (Wilkinson, 1961) and Gerringa et. al

(Gerringa et al., 1995). [FeL] was also plotted against [FeL]/[Fe'] to evaluate whether or

not there was a two-ligand system at any station, which is indicated by two lines with

different slopes when [FeL] is plotted against [FeL]/[Fe']. Station 16a was the only

station where a two-ligand analysis seemed necessary based on plotting [FeL] verses

[FeL]/[Fe']. Calculations at this station were done using the Scatchard linearization

(Ruzic, 1982; van den Berg, 1982), where the linear regression of each of the lines from

the [FeL] vs [FeL]/[Fe'] plot has a x-intercept equal to [L] and a y-intercept equal to [L]

X K'FeL,Fe',

Once [L] and K'FeL,Fe' are determined either using the Scatchard linearization or

the non-linear Wilkinson-Gerringa method, ambient [Fe'] and [FeL] from the initial

sample can be calculated using the following two equations: [Fe]natral = [Fe'] + [FeL] and

K'FeL,Fe' = ([FeL]/[Fe']) x [L].

2.4 RESULTS

A map of the stations from the Western Pacific Warm Pool (WPWP) cruise is

show in Figure 1. In order to be able to compare data from different groups that publish

data from this cruise, we have left the station numbers the same even though we do not

have ligand data from all stations along the cruise.

The values for dissolved [Fe] (0.4 Km filtered Fe concentration), [L] (calculated

ligand concentration), Loglo KFeL,Fe' (binding constant of the ligand with respect to the

inorganically bound fraction of Fe) and [Fe'] (calculated inorganically bound Fe

concentration) for the surface samples (15 m unless otherwise noted) are listed in Table

1. [Fe] values ranged from 0.09 - 1.4 nM at the surface. Despite scrupulous cleaning of

Niskin bottles prior to the beginning of the cruise, there is a possibility that the total Fe

samples from the first four stations are erroneously high as a result of residual Fe

leaching from the insides of the bottles. We believe this high Fe was washed out after the

first few stations of the cruise. Because we suspect contamination of these samples, they

have been left out of later analysis of the relationship between [Fe] and [L]. Station 17,

which also had a high [Fe] of 0.95 nM at 15 m, was very close to one of the Vanuatu



islands and we believe that the high [Fe] value recorded there was a result of Fe input

from the islands and not contamination. [L] values ranged from 0.4 - 2.02 nM. Loglo

KFeL,Fe' values ranged from 11.6 - 12.9. At station 16a, there was evidence of two ligand

classes with [Ll] = 0.86 nM with a Loglo KFeL,Fe' = 12.6 and [L2] = 2.02 nM with a Loglo

KFeL,Fe' =11.6.

Depth profiles of [Fe] down to 500 m shown in Figure 2 for Station 14 (2A),

Station 15 (2B) and Station 20 (2C) correspond to the values listed in Table 2. At all three

stations, [Fe] is lowest in the surface waters above 100 m and then begins to rise around

the 300 m sample. Figure 3 shows [Fe], [L] and [Fe'] (inorganically bound Fe) for station

14 to a depth of 100m. While [L] varies with depth more than [Fe], it is clear that it

always exceeds [Fe].

Figure 4 shows the relationship between [L] and [Fe] for samples where [Fe] >

0.2 nM and [Fe] < 0.2 nM. The dashed line shows [Fe] = [L]. The solid line is the linear

regression of [L] vs. [Fe] for the samples where [Fe] > 0.2 nM. The equation for the line

including error associated with each parameter is [Fe] = (0.54 +/- 0.09) x [L] + (0.01 +/-

0.08). The R2 value for the relationship is 0.75.

2.5 DISCUSSION

Given the importance of Fe to phytoplankton productivity, knowing the

distribution of Fe in the surface oceans is imperative to understanding global primary

production. While their source and composition remains unclear, organic ligands appear

to play a key role in stabilizing Fe in the ocean as it is apparent that organic ligands

complex >99% of dissolved Fe in most of the ocean (Gledhill and van den Berg, 1994;

Rue and Bruland, 1995; Wu and Luther, 1995). Because of the uncertainty regarding

bioavailability of the Fe bound to these organic ligands (Hutchins et al., 1999;

Maldonado and Price, 2001; Soria-Dengg et al., 2001; Achilles et al., 2003), it is

important that we increase our understanding of ligand concentrations in the ocean. With

this work, we have added to the growing dataset of oceanic ligand concentrations and

dissolved Fe values, providing values for a region of the ocean that has been understudied

with respect to trace metal geochemistry, the Western Pacific Warm Pool (WPWP).



Excluding potentially contaminated Fe samples, our measured WPWP surface

[Fe] (dissolved < 0.4 [tm Fe concentration) values ranging from 0.09 - 0.95 nM (Table 1)

are within range of what has been seen in other regions of the ocean (Johnson et al.,

1997). With a few notable exceptions, our surface values were low, between 0.1 - 0.4

nM (Table 1), and comparable with other recent measurements of dissolved Fe in surface

samples from the South Pacific Ocean (R.F. Zhang and E. Boyle, personal

communication). The exceptions to these low surface values are the first few stations of

the transect after we left Hawaii (Stations 3-6), a station where we were in the midst of a

surface slick of the N2-fixing cyanobacterium Trichodesmium (Station 16a) and two

stations in the islands close to New Caledonia (Stations 17 and 19). The higher surface

values at the start of the transect, 0.6 - 1.4 nM for stations 3 - 6, could be the result of

deep winter mixing and a recent rain event in this region close to Hawaii. Alternatively,

and potentially more likely given that these are higher than values we would expect as a

result of deep mixing and recent time-series data suggesting that January is a time of

particularly low Fe deposition to this area (Boyle et al., 2005), these values might be high

as a result of residual Fe contamination leaching from the inside of the Niskin bottles at

the beginning of the cruise despite rigorous acid-cleaning of the bottles on land in

between cruises. The high values in the midst of the surface slick of Trichodesmium

could indicate that the slick was the result of a bloom caused by an input of Fe to an Fe-

starved region. Alternatively, the surface slick could have been the result of a

convergence of water masses bringing areas of moderate Trichodesmium biomass

together, resulting in some accumulation of biomass near the surface where high light

intensity bleached and killed the Trichodesmium. If the latter were the case, high Fe

values could result from releases of cellular Fe as Trichodesmium cells burst. Another

potential source of Fe could be the result of Trichodesmium biomass from a bloom,

which may or may not have been caused by high Fe, being broken down by grazers and

releasing cellular Fe. Both hypotheses involving cellular Fe release would also explain

the ligand results from that station, which will be discussed later. The high Fe values

close to the islands are in line with what others have found for the region (Campbell et

al., 2005) and are potentially the result of river run-off and other coastal sources of Fe.

Station 17, which had the higher Fe value, 0.95 nM, was also closer to an island than



Station 19. Station 17 was less than 4 km away from land and had a bottom depth of only

350 m. It is not as simple to attribute the slightly elevated value of 0.5 nM at Station 19

to coastal influences as the bottom depth was -1400 m and the closest island was roughly

50 km away, though this is not of great concern as others have seen high values of Fe in

oceanic surface samples from this region (Campbell et al., 2005). It appears surprising

that Fe values in the surface waters of the southwestern Pacific Ocean are not that much

lower than those observed in regions of the Atlantic Ocean given that the dust deposition

to the Pacific Ocean is predicted to be so low (Duce and Tindale, 1991; Jickells, 1999;

Wagener et al., 2008). Recent work looking at the annual cycle of Fe in surface waters

near Hawaii indicates that Fe values in the surface of the Pacific might be high as result

of a higher solubility of the dust deposited in the Pacific Ocean (Boyle et al., 2005),

though at least during the period of peak dust deposition, this did not appear to be the

case (Wu et al., 2007). Further study looking at the solubility of Fe in the South Pacific

Ocean and the role that organic ligands play in controlling that solubility may help clarify

questions about why Fe remains detectable in the surface waters despite low dust

deposition.

Our profiles of [Fe] (Figure 2, Table 2) are typical of what is expected in the open

ocean (Johnson et al., 1997). We found surface values around 0.2 nM with a small near-

surface maximum in Fe that is potentially the result of atmospheric deposition of Fe that

has not been completely been drawn down by scavenging and biological uptake (Bruland

et al., 1994; Wu et al., 2001; Boyle et al., 2005). Below this near-surface Fe maximum,

we find otherwise low Fe values in the upper 100 m. When we look at the region of our

profiles below 100 m, we see that [Fe] rises in a typical "nutrient-type" distribution that

has been observed in profiles from other areas of the Ocean (Bruland et al., 1994;

Johnson et al., 1997). While it is apparent that Fe rises below the euphotic zone, it is no

longer believed that there is one particular deep ocean value for Fe as was once

hypothesized (Johnson et al., 1997). Our limited deep ocean data set has values that vary

between 0.4 nM and 0.7 nM (Table 2), while other data from the North Pacific shows

deep ocean dissolved Fe values around 0.4 nM (Bruland et al., 1994; Wu et al., 2001;

Boyle et al., 2005). Profiles from a number of different ocean regions have shown that

there is not just one deep ocean value for Fe, but rather the value can vary from 0.4 nM to



1 nM (Bruland et al., 1994; Wu et al., 2001; Boyle et al., 2005; Johnson et al., 2007) and

is more likely influenced by the source of Fe to a given water mass.

Our results for ligand concentrations ([L]) ranging from 0.44 nM - 2.2 nM and

binding constants of ligands with respect to the inorganically complexed Fe (KFeL,Fe')

ranging from 1011.6 _ 1012.9 are in line with the oceanic values that have been presented

elsewhere in the literature, with [L] reported from 0.33 - 2.5 nM and KFe',L from 1010.6 -

1013.9 (Rue and Bruland, 1995; van den Berg, 1995; Rue and Bruland, 1997; Boye et al.,

2001; Powell and Donat, 2001; Boye et al., 2003; Croot et al., 2004; Boye et al., 2005;

Cullen et al., 2006; van den Berg, 2006; Buck and Bruland, 2007; Kondo et al., 2007;

Kondo et al., 2008; Rijkenberg et al., 2008). There was only one station where it

appeared that we observed at a two-ligand system, 16a, which was in the middle of a

surface slick of the N2-fixing cyanobacterium Trichodesmium. There is considerable

debate over the causes and status of Trichodesmium when they appear as these surface

slicks, some of which were described above. Regardless of the cause, an accumulation of

a large amount of biomass is likely to lead to a significant amount of grazing by copepods

and viral or bacterial degradation of organic matter. It could be that a large amount of

cell lysis in the patch resulted in the release of lower KFe',L "L2-type" ligands, which have

been surmised to be porphyrins based on their lower conditional stability constants

(Witter et al., 2000) and their predominance in deeper waters where the majority of

organic matter degradation takes place (Hunter and Boyd, 2007). Further studies of

ligand composition during and after phytoplankton blooms or in senescent cultures of

phytoplankton in the laboratory could help determine if cell lysis is a significant potential

source of L2 ligands.

Some studies have found a linear relationship between [Fe] and [Ll] (Boye et al.,

2003; Buck and Bruland, 2007; Buck et al., 2007). These relationships seem to work best

on samples with higher Fe values and appear to break down completely at [Fe] values

below 0.2 nM (Buck and Bruland, 2007). When we exclude data from samples where Fe

was below 0.2 nM and the L2 ligand contribution to [L] from station 16a, we also get a

linear relationship between [L] and [Fe] in our samples (Figure 4). The slope of the

relationship for our data, 0.54, is lower than that determined by Buck and Bruland (2007),

0.69, but the difference may have something to do with both our small data set and that



the range of [Fe] for our samples is not as large. Another dataset from three marginal

seas on the western boundary of the Pacific Ocean, exhibits a relationship closer to and

sometimes above the [Fe]:[L] = 1:1 relationship (Kondo et al., 2007). Kondo et al (2007)

hypothesize that one of the main reasons that different studies end up with varying

relationships for [Fe]:[L] could be the result of many diverse methods for determining

[L], including the use of a variety of competitive ligands and quantitative analyses.

Certainly, a comparison of different methodology would help determine if the varying

linear relationships between [L] and [Fe] are the result of experimental differences or if

they might be site specific. If these differences are site specific it could be indicative of

varying ligand sources and should be studied further.

Recent reports demonstrate that there seems to be a significant amount of L 1-type

ligands (i.e., ligands with high binding constants) associated with the colloidal fraction of

Fe (Wu et al., 2001; Boye et al., 2003; Cullen et al., 2006), but siderophores are generally

low molecular weight molecules and as such would be expected to be associated with the

0.02 tm fraction of Fe. Hunter and Boyd (2007) in their review of oceanic speciation

data conclude that if L consists mainly of siderophores, those siderophores must become

closely associated with colloidal Fe to explain their distribution. This conclusion could

be supported by the close relationship between [L1] and [Fe] when [Fe] > 0.2 nM (Buck

and Bruland, 2007) (Figure 4) when viewed in light of recent work showing that most of

the variation in dissolved Fe concentrations in the upper ocean is associated with the

colloidal fraction of Fe and that while the < 0.02 [tm fraction of Fe shows some

variability, it is almost never above 0.4 nM (Bergquist et al., 2007). If the dissolved [Fe]

> 0.2 nM is predominantly colloidal, as that work suggests, then the linear relationship

between [L] and [Fe] at higher Fe values indicates that L1 is associated with colloids. It

could be that the association with colloidal Fe is what keeps L1 ligands, whether they are

siderophores or not, at such high values throughout the oceans, despite the fact that they

might not be produced everywhere.

While our results are within the range of [L] values that have been observed in the

open ocean, with most of our values below 1 nM they appear low when compared with

the [L] values in the Atlantic Ocean (Witter and Luther, 1998; Powell and Donat, 2001;

Boye et al., 2003; Cullen et al., 2006; Rijkenberg et al., 2008) or Northeastern Pacific



(van den Berg, 1995; van den Berg, 2006; Buck and Bruland, 2007). The lower values

for [L] that we observed in the Pacific gyre could be a result of the low dust deposition,

which is predicted for this area (Duce and Tindale, 1991; Jickells, 1999; Wagener et al.,

2008). In fact, they are comparable to the values in other low dust deposition regions like

the Southern Ocean (Boye et al., 2001; Boye et al., 2005; Gerringa et al., 2008) and other

regions of the Pacific Ocean (Rue and Bruland, 1995; Rue and Bruland, 1997; Kondo et

al., 2007; Kondo et al., 2008). The hypothesis that ligands are produced in response to Fe

inputs is based on the number of studies that have shown an increase in ligands following

mesoscale addition of Fe to surface waters (Rue and Bruland, 1997; Boye et al., 2005;

Kondo et al., 2008). If ligands are produced in response to Fe inputs, then one of the

lower dust input regions of the ocean would be expected to have low ligand production

values. In addition to potentially low production values, another facet to consider is the

destruction of ligands by UV light. While the photodestruction of many siderophores is

generally accepted (Barbeau et al., 2003), there is some debate about the photoreactivity

of all oceanic ligands (Barbeau, 2006). Two studies on ligands from natural waters show

conflicting results, with one group seeing a reduction in ligands in response to UV light

(Powell and Wilson-Finelli, 2003) and another seeing no reduction (Rijkenberg et al.,

2006). A study looking at the speciation of Fe in samples of surface waters (< 2 m) saw a

reduction in ligands in those waters that receive the most UV irradiation (Powell and

Donat, 2001). A recent review of ligand photochemistry suggests that the reduction in

siderophore-like ligands in the Rijkenberg study could have been masked by a large

amount of colloidal Fe (Barbeau, 2006). Considering the dominance of colloidal Fe in

the ocean and its association with L, it could be this protection from UV degradation that

keeps L that is associated with colloidal Fe at high levels in the surface ocean. This also

might explain why the fraction of L that is associated with lower Fe waters (<0.2 nM) is

not related to Fe levels, because ligands that are not associated with colloidal Fe may be

more susceptible to UV degradation. Future studies, looking at the effects of UV on the

ligand composition of ultrafiltered (< 0.02 tm) seawater samples could help answer these

questions. Alternatively, it could be that the siderophores that persist in areas of high UV

penetration are those that are not susceptible to UV degredation, such as the ferrioxamine



siderophores (Barbeau et al., 2003), which appear to be dominant in the Atlantic Ocean

(Mawji et al., 2008).

While questions remain regarding the source and composition of ligands in the

open ocean, it is clear that organic ligands are ubiquitous and play a key role in

stabilizing dissolved Fe in the ocean. In this study, we have shown that ligands are

prevalent even in the low Fe waters of the Western Pacific ocean and have found that the

relationship between [L] and [Fe] is similar to that of other regions of the open ocean.

The data presented here is an addition to the growing datasets of dissolved Fe and Fe

speciation in the ocean, covering a region where few measurements have been made.

2.6 ACKNOWLEDGEMENTS

The authors would like to thank chief scientists Zachary Johnson and Erik Zinser

and the captain and crew of the R/V Kilo Moana cruise KM0701. We also wish to thank

Tyler Goepfert, Dan Ohnemus and Andrew Rose for assistance with sample collection

and Dave Schneider of the WHOI Plasma Mass Spectrometry Facility for assistance with

sample processing. This work was funded by the NSF Chemical Oceanography Program

grant OCE-0623499 to J.W.M. Funding for P.D.C was supplied by the Woods Hole

Oceanographic Institution Academic Programs Office and a National Defense Science

and Engineering Graduate Fellowship.



Table 1. Dissolved Fe, organic Fe-binding ligand concentrations, conditional stability

constants and calculated free inorganic Fe for <0.4 [tm filtered samples

Depth Ligand [Fe']
Station Latitude Longitude [Fe] (nM) Ligand [L] (nM) logo K[Fe']

(m) Class (pM)

15

15

15

15

15

15

15

15

15

15

15

15

25

50

100

15

15

7

15

15

15

15

15

15

15

15

15

15

15

15

1.06 +/-0.02 12.5 2.64

1.40 +/-0.06 12.9 12.09

19.53

17.38

14.96

12.43

7.88

5.65

3.24

0.37

-2.30

-4.72

-7.07

-9.25

-12.58

-15.89

-15.98

-19.22

-21.62

-25.67

-29.04

-31.92

-34.16

-36.17

-34.23

-32.42

-30.26

-29.76

-28.76

-159.90

-162.44

-165.05

-167.73

-172.34

-174.53

-176.88

-179.64

177.44

174.73

172.31

170.00

0.70 +/- 0.05 *

0.95 +/- 0.04 *

1.40 +/- 0.05 *

0.63 +/- 0.03*

0.16 +/- 0.02

0.41 +/- 0.03

0.21 +/- 0.02

0.11 +/-0.04

0.11 +/-0.04

0.28 +/- 0.11

0.31 +/- 0.11

0.20 +/- 0.04

0.24 +/- 0.02

0.18 +/- 0.01

0.16 +/- 0.01

0.11 +/-0.03

0.29 +/- 0.03

0.63 +/- 0.02

0.95 +/- 0.02

0.50 +/- 0.08

0.09 +/- 0.02

0.24 +/- 0.02

0.21 +/- 0.08

0.29 +/- 0.02

0.19 +/- 0.02

0.21 +/- 0.03

0.20 +/- 0.02

0.51 +/- 0.12

0.41 +/- 0.00

0.32 +/- 0.11

0.53 +/- 0.03

0.38 +/- 0.09

0.79 +/- 0.06

0.52 +/- 0.06

0.44 +/- 0.08

1.57 +/- 0.10

0.59 +/- 0.06

0.88 +/- 0.14

0.57 +/- 0.10

1.07 +/- 0.10

0.85 +/- 0.00

2.02 +/- 0.59

1.52 +/- 0.06

1.06 +/- 0.09

0.38 +/- 0.04

0.62 +/- 0.03

0.93 +/- 0.04

0.86 +/- 0.03

0.81 +/- 0.04

L1 0.49 +/- 0.03 12.8 0.33
*possible Fe contamination

12.3 0.31

12.6 0.07

12.2 0.96

12.3

12.0

11.8

12.0

11.9

11.8

12.1

11.9

11.6

11.7

12.6

11.6

12.5

12.5

11.7

12.8

0.33

0.26

0.26

1.00

2.80

0.22

0.56

0.24

1.04

0.20

0.41

0.55

0.28

0.69

0.10

169.86

169.72

169.77

169.57

168.66

165.42

164.34

163.36

162.55

161.79

160.35

159.09

157.30

156.62

155.37



Table 2. Dissolved (<0.4 tm
filtered) Fe with depth

Depth (m)

15
25
50

100
150
300
500
15
25
50
75

100
150
300
500
15
25
50
75

100
150
300
500

Standard

[Fe] (nM) Deviation
0.20 0.04
0.24 0.02
0.18 0.01
0.16 0.01
0.07 0.00
0.11 0.03
0.71 0.00
0.09 0.00
0.26 0.05
0.09 0.00
0.11 0.00
0.06 0.01
0.07 0.01
0.35 0.04
0.52 0.01
0.09 0.02
0.37 0.00
0.04 0.00
0.07 0.01
0.05 0.00
0.08 0.01
0.19 0.01
0.40 0.03

Station

14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
20
20
20
20
20
20
20
20
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Figure 1. Map of sampling stations from the Western Pacific Warm Pool cruise

(KM0701) on the R/V Kilo Moana.
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Figure 2. Dissolved Fe (< 0.4 tm filtered) depth profiles from three stations along the

cruise track. (A) Station 14. (B) Station 15. (C) Station 20. Error bars are standard

deviations of triplicate analyses.
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pM scale.
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Figure 4. The concentration of dissolved Fe as it
relates to ligand concentrations. The solid
triangles are for samples where [Fe] > 0.2 nM
and the open triangles are samples where [Fe] <
0.2 nM. The dashed line represents 1:1 =
[Fe]:[L]. The solid line is the linear regression of
[Fe] vs [L] when [Fe] > 0.2 nM (solid triangles).
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3.1 ABSTRACT

Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus

understanding what controls their activity is important for understanding climate change.

While iron (Fe) availability has been shown to be an important chemical factor for

controlling both growth and nitrogen fixation rates in Trichodesmium, all culture

experiments to date have focused solely on representatives from one clade of

Trichodesmium. Genomic sequence analysis determined that the T. erythraeum

(IMS 101) genome contains many of the archetypical genes involved in the prokaryotic

iron stress response. Focusing on three of these genes, isiB, idiA, andfeoB, we found that

all three showed an Fe stress response in axenic T. erythraeum (IMS101), and their

sequences were well-conserved across four species in our Trichodesmium culture

collection (consisting of two T. erythraeum strains (IMS101 and GBRTRLI 101), two

Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and

Trichodesmium spiralis). With clade-specific quantitative PCR (QPCR) primers for one

of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to

specific reductions in N2 fixation rates in both major phylogenetic clades of

Trichodesmium (the T. erythraeum clade and T. tenue clade). With regard to the two

clades, the most significant difference determined was temperature optima, while more

subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress

were also observed. However the apparent conservation of the Fe stress response in the

Trichodesmium genus suggests that it is an important adaptation for success in the

oligotrophic ocean.

3.2 INTRODUCTION

Primary producers play important roles in controlling both the oceanic food chain

and the overall biogeochemistry of the ocean. Open-ocean diazotrophic cyanobacteria,

such as Trichodesmium spp. and Crocosphaera watsonii, are of particular interest to

researchers studying global biogeochemical cycles, due to their contribution to both the



carbon (C) cycle via primary production and to the nitrogen (N) cycle because of their

ability to fix N2 (Capone, 2001; Montoya et al., 2004). The "new" N, N that has not been

regenerated from degradation of organic matter in the mixed layer, produced by these

cyanobacteria is vital to the N and C cycles on regional (Zehr et al., 2001), and global

scales (Capone et al., 1997; Gruber and Sarmiento, 1997), as well as potentially

influencing CO 2 sequestration over geologic time-scales (Capone et al., 1997; Falkowski,

1997; Gruber and Sarmiento, 1997). N2-fixing cyanobacteria are thought to have evolved

in an anoxic ocean where iron (Fe) was readily available as Fe2+, and despite changes in

the availability of Fe in the modem ocean, these organisms still maintain high cellular Fe

requirements, potentially because of the ancient evolution of N2 fixation biochemistry

(Berman-Frank et al., 2001; Kustka et al., 2003). This increased Fe requirement has been

argued to be an important constraint on N2 fixation in the modem ocean (Moore et al.,

2004; Moore and Doney, 2007). Therefore, increased understanding of how diazotrophic

cyanobacteria acquire Fe, what forms of Fe are bioavailable and how they respond to Fe

deprivation is important for predicting potential feedbacks on climate change.

Genetic analyses of laboratory cultures have shown there are two distinct clades

within the genus Trichodesmium, one consisting of strains of Trichodesmium erythraeum

and Trichodesmium contortum, which we will refer to as the Tery clade, and the other

consisting of Trichodesmium tenue, Trichodesmium thiebautii, Trichodesmium spiralis

and Trichodesmium hildebrandtii, which we will refer to as the Ten clade (Hynes and

Waterbury unpublished results; Orcutt et al., 2002). Multiple experiments have shown

that Fe is an important micronutrient for the Tery clade (Berman-Frank et al., 2001; Fu

and Bell, 2003; Kustka et al., 2003), providing valuable information about the role that Fe

plays in controlling growth and N2 fixation in Trichodesmium. Comparable data is not

available for the Ten clade. Morphological data from the field suggests that

representatives from the Ten clade might be more prevalent deeper in the water column

(Carpenter et al., 1993; Post et al., 2002; Davis and McGillicuddy, 2006) and may even

have different N2 fixation rates than the Tery clade (Carpenter et al., 1993), though this

has not been proven using genetic techniques that distinguish between the clades. Thus



understanding the impact that Fe has on N2 fixation in the Ten clade of Trichodesmium is

important to improve our understanding of the genus' role in global carbon and nitrogen

cycling.

To constrain the relationship between Fe and N2 fixation in Trichodesmium, we

evaluated multiple indicators of Fe limitation including growth and N2 fixation rates with

cultures from both clades of Trichodesmium grown on varying levels of Fe. In addition,

we designed a molecular gene expression-based assay to look at the cellular Fe stress

response of genes believed to be part of the Fe-uptake machinery or shown to be Fe

stress-induced in other organisms (Bibby et al., 2001; Katoh et al., 2001; Webb et al.,

2001; Michel et al., 2003; Shi et al., 2007). We found that the Ten clade had a lower

optimum temperature for growth and slightly reduced N2 fixation rates at higher Fe

values. The Ten clade also showed a lower basal expression of our molecular marker

gene, isiB, but a more pronounced increase in gene expression as Fe became limiting.

While there were slight differences in the individual Fe stress responses in the two clades,

overall we observed similar trends in the Fe level associated with a significant increase in

gene expression and concomitant reductions in N2 fixation.

3.3 RESULTS

3.3.1 Genomic Database Analysis. We screened the genome of T. erythraeum

(IMS 101) to evaluate the potential Fe stress response in the genus. A list of IMS 101

genes predicted to be involved in Fe transport and homeostasis, their closest orthologs

and their closest experimentally-characterized orthologs (genes that have been

characterized using genetic and proteomic techniques) as determined by BLAST analysis

are presented in Table 1. A schematic of both the predicted Fe uptake system and the fate

of Fe within the cell with labels corresponding to the genes described in Table 1 is shown

in Figure 1.

Sensing and responding to Fe availability has been shown to have a

transcriptional component (Escolar et al., 1999). Fitting with these data, Trichodesmium

is predicted to have three homologs encoding the ferric uptake regulator (Fur) protein. In



many microbes this protein has been shown to modulate the organism's response to Fe

starvation (Andrews et al., 2003). Two of these Trichodesmium genes, YP_721684 and

YP_722978, are highly similar to thefurA gene of Anabaena PCC 7120, while the third

gene, YP_721679, is most similar to thefurB gene of Anabaena PCC 7120 and appears

to be specific to cyanobacteria (Hernandez et al., 2004).

The IMS101 genome also contains genes with the potential to modulate Fe use

and storage in response to changing environmental conditions. One such adaptation

includes replacing the Fe-rich electron carrier ferredoxin with the flavin-containing

electron carrier flavodoxin (IsiB) (Leonhardt and Straus, 1992; LaRoche et al., 1996).

The IMS101 genome has two predicted IsiB homologs, encoded by genes YP_721410

and YP 722232. In addition to the ferredoxin/flavodoxin substitution, some gram-

negative bacteria synthesize the IsiA protein in times of Fe deprivation, which forms a

protective ring around photosystem I (Leonhardt and Straus, 1992; Bibby et al., 2001;

Michel and Pistorius, 2004). The IMS 101 genome has one predicted homolog for the

IsiA protein encoded by gene YP_721411. Finally, the genome also shows evidence of

Fe storage capabilities including a cytochrome b 1 type bacterioferritin protein (Andrews

et al., 1993; Keren et al., 2004) and a ferritin-like DPS protein (Michel et al., 2003;

Castruita et al., 2006), predicted to be encoded by YP_722441 and YP_723752,

respectively.

Although there are no clear siderophore biosynthetic genes in the IMS 101

genome, it is predicted to encode for the uptake of a variety of Fe forms. These include

genes that may facilitate the uptake of siderophore-bound Fe, such as a cluster of two

genes predicted to encode the intermembrane proteins ExbB and ExbD, genes

YP 723908 and YP_723909, respectively, and a possible quite divergent TonB protein,

encoded by gene YP_721313. TonB-ExbB-ExbD complexes have been shown to

translocate the energy stored in the proton gradient across the inner bacterial membrane

to the outer membrane to allow the transport of large molecules like siderophores into the

periplasm of gram-negative bacteria (Braun, 1995). Genes YP_722814, YP_722813,

YP 722952 and YP_723445 are all predicted to encode proteins involved in an ABC-



type Fe3+ transporter (Koster, 2001). YP_722814 is homologous to an inner membrane

component of a binding protein dependent transport system and is clustered with a gene,

YP_722813, which is homologous to an ATPase component of an ABC-type Fe 3+

transporter (Katoh et al., 2001). The close proximity of the two genes and their related

function, suggests that they may be part of the same operon. The IMS101 genome

contains two potential periplasmic Fe3+ binding protein components of an ABC transport

system (Koster, 2001), idiA, YP_722952, and a predicted hydroxamate-Fe-binding

protein, YP_723445. The confirmed presence of a signal peptide region in the transcript

of the idiA gene, which was not found for YP_723445, suggests that the IdiA protein is

being processed through a membrane to outside of the cytoplasm and possibly moved

into the periplasm, a step that is necessary in the maturation of a periplasmic protein

(Fulda et al., 2000). However, it is important to note that our inability to discern a signal

peptide region in the transcript of YP_723445 using SignalP 3.0 is not a definitive

indication that the protein will not be found in the periplasm, as slight modification of the

translational start codon has been shown to mask potential signal peptide regions (Fulda

et al., 2000). Additionally Trichodesmium has the predicted ability to transport Fe 2+

using the proteins FeoA and FeoB, encoded by genes YP_722525 and YP_722524,

respectively (Kammler et al., 1993).

3.3.2 Sequence Analysis. Others have shown that there can be differences in

nutrient scavenging strategies employed by closely related cyanobacteria (Martiny et al.,

2006; Palenik et al., 2006; Rivers et al., 2009), therefore in order to determine how well

conserved the Fe stress regulon was within the genus Trichodesmium, we sequenced

genes predicted to be involved in Fe(III) uptake, Fe(II) uptake, and Fe quota reduction

(idiA (YP_722952),feoB (YP_722524) and isiB (YP_721410), respectively) from

isolates covering the range of Trichodesmium species in our culture collection. These

results showed that all three genes are well conserved across the four species of

Trichodesmium at the DNA level (Table 2), with the largest dissimilarity detected

between the Tery clade (IMS 101 and GBRTRLI101) and the three species of the Ten

clade (93%-96% similarity between T. erythraeum and the other species, compared with



98%-100% similarity within the Ten clade). No obvious shared promoter regions could

be defined for the three genes using alignments of the intergenic spacer regions preceding

each gene in the T. erythraeum IMS101 genome.

3.3.3 Axenic IMS101 Nutrient Stress Experiment. To verify the annotation and

test the hypothesis that the idiA,feoB and isiB genes were induced under Fe limitation,

we monitored their expression using RT-PCR in Fe growth limitation experiments with

axenic cultures of IMS101. At the onset of growth limitation (TI, Figure 2 A+B), RT-

PCR showed that all three genes were expressed only in the Fe-omitted culture. At the

point when the Fe-omitted culture was beginning to senesce and the replete treatment was

late in the exponential growth phase (T2, Figure 2 A), all three genes were expressed in

both the replete and Fe-omitted treatments, but not in the P-omitted culture (T2, Figure 2

B).

3.3.4 Physiological Growth Response of the Ten and Tery Clades. Optimal

growth temperatures were determined for representatives from both phylogenetic clades.

In replicated experiments performed at the same light level (140 pEin/m 2/s), the Ten

clade consistently had a lower optimal temperature (26°C) than the two Tery

representatives tested (28 0C) (Figure 3). The maximum growth rates were lower for the

Ten clade representative (0.33 +/- 0.01 t d-') than GBRTRLI101 (0.60 +/- 0.01 t d-1) and

IMS101 (0.78 +/- 0.01 [t d-1). The error reported for growth rates is standard error

calculated from triplicate biological replicates.

As Fe had been shown to be important for the growth of Trichodesmium, but its

effect had only been studied in the Tery clade, we did growth limitation experiments

using a range of Fe' (inorganically bound Fe) values ranging from 0.15 nM to 4.5 nM

with representatives from both phylogenetic clades of Trichodesmium at their optimal

growth temperature (the values of Fe' were calculated using VisualMintEQ as described

in the Experimental Procedures). In both clades, growth rates increased as the

concentration of inorganically bound Fe ([Fe']) in the medium increased (Figs. 4A+B).

In the Ten clade, growth rates increased from 0.13 +/- 0.01 t d-1 to 0.19 +/- 0.01 pt d-1

with the maximal growth rate achieved at [Fe'] of 0.54 nM. In the Tery clade, growth



rates increased from 0.12 +/- 0.00 p d-1 to 0.21 +/- 0.00 p d-' with the maximal growth

rate achieved at [Fe'] of 0.94 nM. N2 fixation rates also increased concomitantly with

[Fe'] in the medium, and continued to do so even after the growth rates had plateaued

(Figs. 4A+B). In the Ten clade, N2 fixation rates increased from 3.2 +/- 0.2 nmol

N/hr/pg Chl to 10.1 +/- 0.3 nmol N/hr/pg Chl, with the maximal N2 fixation rates

achieved at [Fe'] of 4.5 nM. In the Tery clade, N2 fixation rates increased from 3.6 +/-

0.3 nmol N/hr/ pg Chl to 13 +/- 0.7 nmol N/hr/pg Chl with the maximal N2 fixation rates

achieved at [Fe'] of 4.5 nM. Despite these differences, when the N2 fixation rates were

normalized to growth rates a similar relationship was revealed for both phylogenetic

clades (Figure 4C). To ensure that N2 fixation rate differences were not the result of

changes in Chl/DNA ratios in the different treatments, we evaluated the Chl/DNA ratio

for samples from low and high Fe treatments in both clades and found no significant Fe-

associated difference and a value of 1.6 x 10-8 +/- 3.0 x 10-9 ptg chl/copy isiB (Figure 4D).

Error reported for Tery clade growth and nitrogen fixation rates is standard error

calculated from biological replicates (5-6 replicates at each Fe treatment). Error reported

for Ten clade growth and nitrogen fixation rates is standard error calculated from

triplicate biological replicates at each Fe treatment. Error reported for chl/copy DNA is

standard error based on triplicate low and high Fe replicates from the Tery clade and

duplicate low and high Fe replicates from the Ten clade (10 replicates total).

3.3.5 Quantified Fe stress response. Both clades of Trichodesmium show an

inverse relationship between isiB expression and N2 fixation rates in response to changing

[Fe'] in the medium, with isiB expression increasing and N2 fixation rates decreasing as

the [Fe'] was reduced (Figure 5 A+B). In the Tery clade, the threshold associated with a

50% decrease in N2 fixation rates occurs at an isiB/rnpB ratio of 1.4 +/- 0.5 and an [Fe']

of 0.54 nM (Figure 5A), while in the Ten clade, the same threshold occurs at an isiB/rnpB

ratio of 0.063 +/- 0.02 at the same [Fe'] (Figure 5B). While the Ten clade shows a lower

basal expression level than the Tery clade (Figure 5 A+B), it also shows a greater

increase in expression at lower Fe conditions than the Tery clade (Figure 5C). The

thresholds listed above are based on the actual values from these experiments, without



curve fitting. The error reported for each measurement is standard error of biological

replicates (3 for the Ten clade and 6 for the Tery clade at each Fe treatment). We fit the

expression data with an exponential decay model and found that for the Tery clade

isiB/rnpB= 2.2 x 10(1. 9 [Fe'])+0.44 with an R2 = 0.61 and for the Ten clade isiB/rnpB=

0.14 x 10(1.5 x [Fe'])+0.011 with an R2 = 0.49. We fit the % maximum N2 fixation data

using a 2nd order polynomial model and found that for the Tery clade % Maximum N2

Fixation = 24.9+ 50 x [Fe'] - 7.4 x [Fe'] 2 with an R2 = 0.75 and for the Ten clade %

Maximum N2 Fixation = 29.4 + 32.2 x [Fe'] - 7.41 x [Fe'] 2 with an R2 = 0.93. Using

these equations, N2 fixation is at 50% maximum in the Tery clade at [Fe'] = 0.56 +/- 0.14

nM and in the Ten clade at [Fe'] = 0.70 +/- 0.10 nM with corresponding isiB/rnpB

expression values of 1.2 +/- 0.3 and 0.062 +/- 0.017, respectively. The error reported was

calculated using error propagation analysis and the standard error of each regression.

In an experiment where we transferred Fe limited T. erythraeum (GBRTRLI 101)

into Fe replete medium, we found that the expression of isiB dropped to basal levels

within 24 hours, while cultures that were transferred back into Fe-omitted medium

retained expression above the threshold levels indicative of Fe limitation of N2 fixation

(Figure 6).

3.4 DIscUSSION

Field studies indicate that Trichodesmium spp. are widely distributed and a

significant source of new nitrogen in the tropical and subtropical Atlantic and Pacific

Oceans (Capone, 2001). The high Fe requirement of N 2 fixing cyanobacteria like

Trichodesmium spp. creates a biological linkage between the geochemistries of N and Fe

(Kustka et al., 2003). Despite the defined important relationship between Trichodesmium

and Fe availability, prior physiological data has been limited to laboratory studies using

strains representative of only the Tery clade of Trichodesmium (Berman-Frank et al.,

2001; Fu and Bell, 2003; Kustka et al., 2003; Berman-Frank et al., 2007). As others have

seen large difference in the genomic capability of marine cyanobacteria to compensate



for Fe deprivation (Palenik et al., 2006; Rivers et al., 2009), the work described herein is

both important and timely and represents the first physiological data comparing the

response of the Tery and Ten clades of Trichodesmium to Fe deprivation.

3.4.1 Genomic Capabilities and Conservation Within the Genus.

Trichodesmium spp. inhabit environments typified by episodic inputs of Fe through dust

deposition or mesoscale eddies, followed by long periods of deprivation. Thus it is not

surprising that the IMS 101 genome contains many genes predicted to encode for the

uptake of different forms of Fe, Fe quota compensation, and Fe storage mechanisms

(Table 1, Figure 1). To assess the importance of these adaptations throughout the genus

as a whole, we evaluated the conservation of some of the genes involved in Fe uptake and

quota compensation within the genus Trichodesmium.

The Trichodesmium IMS101 genome is predicted to encode the genetic capacity

to transport both ferric (Fell) and ferrous (Fell) Fe into the cell. However, since the

oceans are oxidizing, Fe(III) is likely one of the main sources of Fe to open-ocean

cyanobacteria. This is supported by the presence of a complete periplasmic binding

protein-dependent ABC transport system for Fe (encoded by idiA (YP_722952), inner

membrane channel (YP_722814), and ATPase (YP_722813)) and the knowledge that

these types of systems have been shown to be critical for moving Fe through the

periplasm into cytoplasm in bacteria and cyanobacteria (Koster, 2001). Although

oceanic bulk water is oxidized, there are many redox microniches, including chemical

environments that can become reducing (Shanks and Reeder, 1993; Azam, 1998; Moran

et al., 2004). Consistent with these microniches, the IMS101 genome is also predicted to

encode for genes of Fe(II) transport (feoA andfeoB: YP_722525 and YP_722524,

respectively). WhilefeoB has been found in some freshwater cyanobacterial genomes

(Katoh et al., 2001) and three strains of coastal marine Synechococcus (Palenik et al.,

2006; Rivers et al., 2009), in open-ocean cyanobacteria it has only been identified in the

genomes of the diazotrophs T. erythraeum (IMS101) and C. watsonii (WH8501).

Trichodesmium's apparent genetic capacity for acquiring Fe2+ may indicate that there is

an indirect or direct Fe (III) reduction scheme involved in Fe uptake, either



extracellularly or within the periplasm. Others have shown that photolysis of Fe (III)-

siderophore complexes could be a source of Fe2+ for the oceans (Barbeau et al., 2003),

and this could be a passive Fe (II) resource to Trichodesmium. This reduction might also

occur in the microcosms associated with colony formation. Since bacteria are known to

commonly dispense with genes not required for success in their natural habitat (Teuber

M., 1992), the presence of thefeoA andfeoB genes in the IMS101 genome indicates that

Trichodesmium may be actively pursuing Fe2+ as a cellular Fe source.

In addition to genes associated with Fe uptake, the IMS101 genome also contains

a gene involved in Fe quota reduction, isiB (YP_721410). During times of Fe

deprivation, organisms that have the isiB gene are able to synthesize the flavin-containing

protein flavodoxin, and use it to replace the Fe-rich electron carrier ferredoxin in the Z-

scheme of photosynthesis (Leonhardt and Straus, 1992). The isiB gene that we

sequenced, YP_721410, shows a greater similarity to flavodoxin genes that have been

fully characterized and shown to be Fe stress induced in other organisms (Fillat et al.,

1991) than the other putative flavodoxin-encoding gene, YP_722232.

Sequencing of isiB, idiA, andfeoB from various Trichodesmium species revealed

high similarity across the genus (Table 2), with the largest differences consistently

occurring between species from the two different clades. This separation is consistent

with previous work looking at the genetic characteristics of different species of

Trichodesmium, where the groups that comprise the Ten and Tery clades were first

defined with cultured isolates (Orcutt et al., 2002). The conservation of the components

of the Trichodesmium Fe stress regulon studied herein stand in contrast to the variation in

gene content that has been seen in genomes of the unicellular cyanobacteria (Palenik et

al., 2006; Rivers et al., 2009). While our analyses do prove that all of these genes are

used in Trichodesmium, the conservation of all three genes across the genus suggests that

these Fe limitation compensation mechanisms are important for success in the

oligotrophic ocean.

3.4.2 Axenic IMS101 Expression Analyses. Initial gene expression analysis

with axenic batch cultures of T. erythraeum IMS 101 grown under replete, Fe-omitted and



P-omitted conditions showed that all three genes (idiA, feoB and isiB) were expressed

only under Fe limitation (Figure 2). Importantly, if the expression of any of the genes

had been part of a generalized stress response of the organism, we would have expected

to see expression in the P-omitted treatment as well. The expression that appears at the

later time point, "T2," in the replete experiment was expected, based on chemical

modeling of the medium that suggests the cells will experience Fe limitation before P

limitation. In order for this to occur in an EDTA-buffered medium, the culture would

have had to grow to a "blown buffer" cell density (Saito et al., 2008), where the demand

for Fe from the accumulated biomass exceeds the amount supplied by the dissociation of

Fe from the EDTA buffer, which results in the inorganically bound Fe ([Fe']) being

lower than calculated based on equilibrium dynamics. As the expression occurs before

growth limitation, it suggests that upregulation of the Fe stress regulon begins as soon as

the organism begins to experience a decrease in cellular Fe availability. This hypothesis

is corroborated by results from our Fe titration experiments with representatives from the

two Trichodesmium clades, which show that increases in expression of the isiB gene and

decreases in N2 fixation rates occur throughout the range of Fe values we tested, while

growth rates only decrease at the lowest Fe values.

3.4.3 Clade Differentiation. Our results show that the optimal temperature for

growth for the Tery clade is 28 0 C, which is consistent with the results of Breitbarth and

colleagues (Breitbarth et al., 2007), while the optimal temperature for growth for the Ten

clade is 2°C lower (Figure 3). Similar to what Breitbarth and colleagues found with T.

erythraeum (Breitbarth et al., 2007), we also saw a significantly reduced N2 fixation rate

when we grew T. tenue above its optimal temperature (data not shown). These data

imply that there is a niche differentiation in the genus based on temperature, which could

result in a differential depth distribution of the species, data that are consistent with the

morphological distributions of Trichodesmium that have been described from the field

(Post et al., 2002; Davis and McGillicuddy, 2006). Furthermore, our data suggest that

temperature-based niche differentiation could lead to a species composition shift in the



oceans if anthropogenic climate change leads to a significant increase in sea surface

temperature.

Tery and Ten clade representatives grown in varying levels of Fe showed a direct

correlation between Fe and growth rates (Figure 4A) and Fe and N2 fixation rates (Figure

4B). Both clades showed an eventual plateau in growth rates at high Fe values, which

occurred at a slightly lower Fe value for the Ten clade than the Tery clade, [Fe'] of 0.54

nM and 0.94 nM, respectively. While this could suggest a lower Fe quota for the Ten

clade, it could also be a by-product of imperfect culturing conditions, indicating that

some other element or factor becomes limiting for the organism above this Fe value. In

both clades of Trichodesmium, N2 fixation rates continue to increase even after growth

rates have reached their plateau. These data suggest that Trichodesmium fixes more N2

than is strictly needed when growing in the presence of excess Fe. Alternatively, the

reduction of N2 fixation rates prior to a reduction in growth rates could be evidence of the

organism's sacrificing the high Fe-requiring N2 fixation in favor of carbon fixation at the

onset of Fe stress (Kupper et al., 2008). If the former hypothesis is true, it could

potentially explain the dissolved organic nitrogen (DON) excretions observed in many

replete Fe culture experiments done with Trichodesmium (Capone et al., 1994;

Mulholland and Capone, 2001). IfFe plays a role in excess N2 fixation and DON

excretion, it could indicate an increased importance for Fe in modulating the N cycle in

the oligotrophic gyres and should be explored further.

At the highest values of Fe in the medium, the Ten clade had reduced chl-

normalized N2 fixation rates compared to the Tery clade. To ensure that this difference in

N2 fixation rates was not a byproduct of our normalization of the rates to chl, we tested

the chl/DNA ratio of the cultures across the different Fe treatments and found that they

were constant in the species and experimental Fe conditions (Figure 4D). Thus, there

was a real difference in the N2 fixation rates between the two clades. This could indicate

that while the Ten clade does fix excess N2 when abundant Fe is available, it does not do

so to the extent that the Tery clade does. However, when the lower maximal growth rates

in the Ten clade are taken into account, the difference in N2 fixation rates appear to be a



factor of growth rate (Figure 4C). While the absolute amount of N2 fixed by the two

clades was different, the amount of [Fe'] associated with a 50% reduction in N2 fixation

rates was very similar for both clades (0.54 nM Fe without curve fitting and with curve-

fitting: 0.56 +/- 0.14 nM for Tery and 0.70 +/- 0.10 nM for Ten), indicating a similar

impact of Fe on N2 fixation rates throughout the genus. These values are in line with

what others have found for the critical [Fe'] value associated with a decrease in N2

fixation with the T. erythraeum clade (Berman-Frank et al., 2001; Berman-Frank et al.,

2007).

To determine whether the cellular response to Fe limitation was the same in the

two Trichodesmium clades, we designed a qRT-PCR method to look at the expression of

one of the Fe stress response genes. This approach allows for the comparison of data on

the onset of Fe limitation of growth, N2 fixation rates, and the cellular level Fe stress

response. While all three genes showed the expected expression response with the axenic

Trichodesmium cultures, we developed the qRT-PCR method with isiB because the role

of isiB in the cell is well understood (Leonhardt and Straus, 1992) and it has been used as

a marker for Fe stress in other phytoplankton (LaRoche et al., 1996; Bibby et al., 2001).

Also, its role in photosynthesis suggests that it has the potential to be in high copy

number when it is expressed, which will make it easier to detect using RT-PCR. In order

to assess relative expression rates in non-axenic cultures, we normalized the number of

isiB copies in a given sample to the number of copies of a constitutively expressed gene,

rnpB, which we have chosen based on experiments comparing its stability in cDNA from

cultures grown under different physical and chemical treatments (see experimental

procedures). We designed primer sets for isiB and rnpB that able to distinguish between

both clades of Trichodesmium (see experimental procedures) that can be used to generate

isiB expression data that is normalized to Trichodesmium RNA (rnpB).

Both Tery and Ten cultures show an inverse relationship between isiB expression

and N2 fixation rates in response to changing [Fe'] with isiB expression highest at the

lowest N2 fixation and [Fe'] values (Figure 5A+B). The results from these experiments

have provided us with valuable information on the threshold of expression that



corresponds to a meaningful decrease in N2 fixation rates, which is 0.063 isiB/rnpB for

the Ten clade and 1.2 isiB/rnpB for the Tery clade. Above these threshold isiB

expression levels, N2 fixation rates had decreased by at least 50% from the maximal

levels measured in both clades of Trichodesmium (Figure 5). Interestingly, the [Fe']

value where this reduction in N2 fixation rates and increase in isiB expression occurs is

approximately the same [Fe'] in both clades of Trichodesmium (0.56 +/- 0.14 nM for

Tery and 0.70 +/- 0.10 nM for Ten), suggesting that there is not significant niche

differentiation between the clades based on Fe availability. These data differ from

genomic and physiological work in other cyanobacterial groups, which has found that the

Fe stress response is an area of significant deviation between clades represented in a

genus (Brand, 1991; Palenik et al., 2006; Rivers et al., 2009). Furthermore, these results

suggest that other factors (possibly temperature, etc) are more important than Fe for niche

differentiation in the Trichodesmium genus. The conservation of the Fe stress response

across the two clades further implies that Fe is a common and important stressor for the

genus.

Using the information on threshold isiB expression of the Tery clade, we were

also able to evaluate how quickly Trichodesmium is able to respond to an alleviation of

Fe stress. We found that isiB expression dropped within 24-hours of cultures being

returned to Fe replete medium (Figure 6). These results are similar to what has been seen

with idiA gene expression (Shi et al., 2007) and much faster than what has been detected

using IdiA protein analysis in another cyanobacteria, Synechococcus WH7803, where the

protein remained detectable even three days after cultures were transferred to Fe replete

medium (Webb et al., 2001). These results highlight one of the advantages and

challenges of looking at RNA verses proteins; RNA is degraded much more rapidly than

protein and thus reflects the immediate cellular status of the organism. Meanwhile,

proteins can persist for some time after they have actively been translated, thus their

presence does not always reflect the current status of the organism.

This study is the first demonstration of Fe limitation using representatives of the

two major clades of Trichodesmium. In addition to traditional measurements quantifying



the impact that Fe has on productivity, namely growth rates and N2 fixation rates, we

have added a molecular assessment of Fe limitation for both clades of Trichodesmium.

This calibrated clade-specific assay allows us to quantify the impact that Fe is having on

N2 fixation, which should be quite relevant for the development of a field assay for Fe

limitation in Trichodesmium and thereby improve oceanographic models.

3.5 EXPERIMENTAL PROCEDURES

3.5.1 Genomic Database Searching. Genes associated with the Fe scavenging

and control of Fe homeostasis systems in T. erythraeum IMS 101 were identified using

the Oak Ridge National Laboratory (ORNL) annotation of the genome accessed through

the Joint Genome Institute (JGI) Internet portal (http://genome.jgi-

psf.org/finished_microbes/trier/trier.home.html). The closest experimentally-

characterized homolog was determined using Basic Local Alignment Search Tool

(BLAST) analysis against the GenBank NR database using the Integrated Microbial

Genomes system of JGI (http://img.jgi.doe.gov/v1.0/main.cgi) (Altschul et al., 1990).

When appropriate, the presence of a signal peptide region was determined using SignalP

3.0 (Bendtsen et al., 2004).

3.5.2 Bacterial Strains. The four Trichodesmium spp. used in this study were T.

erythraeum (IMS101 and GBRTRLI101), T. thiebautii (11-3), T. tenue (Z-1 and H94) and

T. spiralis (KAT) (all but GBRTRLI101 and H94 have been described in Orcutt, 2002).

All species are currently maintained in both the University of Southern California and the

Woods Hole Oceanographic Institution culture collections. All but GBRTRLI101 and

IMS 101 were isolated by Dr. John Waterbury (Paerl et al., 1994; Fu and Bell, 2003).

GBRTRLI101 was generously provided by Dr. F.X. Fu. Cultures of IMS 101 used in the

initial nutrient stress experiment were verified to be axenic by direct microscopic

observations and lack of heterotrophic growth in marine purity medium as described

(Waterbury et al., 1986). The five other species and the IMS 101 culture used in the Fe

titration experiment were maintained as bacterized enrichment cultures.



3.5.3 Culture Conditions. With the exception of GBRTRLI101, stock

Trichodesmium spp. used for sequencing were cultured in a 75% Sargasso seawater

medium prepared in a similar manner to that described previously (Webb et al., 2001).

Sargasso seawater, stored in the dark in acid-washed polycarbonate carboys, was filtered

successively through 1.0 and 0.2 gm Millipore membrane filters and "Tyndalized" by

heating to boiling in a microwave oven in Teflon containers. The "Tyndalized" Sargasso

seawater was then diluted to 75% with steam-sterilized MilliQ-water (Millipore, Bedford,

MA). The medium (PMP) was then prepared by addition of filter- or steam-sterilized

nutrients and trace metals made from tissue-grade chemicals purchased from Sigma

Chemical to the following concentrations: 5 x 10-7 M EDTA, 8 x 10-6 M phosphoric acid,

1 x 10-7 M Fe (ferric citrate), 1 x 10-5 M Citric Acid, 1 x 10-7 M MnSO 4, 1 x 10- M

ZnCl2, 1 x 10-8 M NaMoO 4, 1 x 10-10 M CoC12, 1 x 10-10 M NiCl2, 1 x 10-10 M NaSeO 3,

and 1.5 jg of vitamin B12/liter. GBRTRLI101 stocks were grown in an artificial

seawater medium YBCII (Chen et al., 1996) with Fe added as ferric citrate. All

Trichodesmium stock cultures were grown in Nalgene® polycarbonate flasks or culture

bottles (Nalge Nunc International Corporation, Rochester, NY) that had previously been

cleaned with a 2% solution of Citranox® (Alconox, Inc. White Plains, NY), followed by

rinses in hot tap water, MilliQ water and at least a 24-hour soak in 0.5 N trace metal

grade HCl before finally being rinsed in MilliQ water and microwave sterilized with pH 2

trace metal grade HC1. Growth conditions typically consisted of a 14 hr: 10 hr light:dark

cycle using cool white fluorescent lamps at -50 jiEin/m 2/s and a temperature of 25 0 C

unless stated otherwise. The cultures were kept gently shaking by placement on a model

3520 LabLine® Orbital Benchtop shaker (Barnstead International, Dubuque, IA) within a

model 1-36 Percival incubator (Percival Scientific Inc., Perry, IA).

3.5.4 Gene Sequencing. DNA for sequencing was extracted using a modified

version of the xanthogenate DNA extraction protocol of Tillet and Neilan (Tillett and

Neilan, 2000). Cultures were filtered onto 5-jim polycarbonate filters and then

resuspended in 100 jtl of TE buffer with 50jg/ml RNaseA (Qiagen, Valencia, CA). The

only other departures from the Tillet and Neilan protocol were mixing the supernatant



following the ice incubation with 700 pl phenol:CHC13:isoamyl alcohol (25:24:1),

retaining the top layer of that mixture following centrifugation, and two additional 70%

ethanol wash steps at the end of the procedure before resuspending the final pellet in 100

tl sterile MilliQ water. The genes isiB (234 bp out of a 516 bp gene),feoB (995 bp out

of a 1821 bp gene), idiA (520 bp out of a 1050 bp gene) and rnpB were amplified from

the extracted DNA via PCR using iProofTM High-Fidelity DNA polymerase (Bio-Rad

Laboratories, Hercules, CA) at a final concentration of 1.25 units/PCR reaction. The

external primers used to amplify each of the genes from the different species of

Trichodesmium were designed from the sequenced genome of T. erythraeum IMS 101 and

are listed in Table 3. The primers used to amplify the rnpB gene were the degenerate

primers defined in Vioque (Vioque, 1997). Temperature gradient PCR was used to

determine optimal annealing temperatures for amplifyingfeoB, isiB, idiA and rnpB from

the Trichodesmium species: 55.70 C, 56.10 C, 56.1 0C and 55 0 C, respectively. PCR

reactions were carried out on a Mastercycler© thermal cycler (Eppendorf AG, Hamburg,

Germany) with the following holds and cycles: 980 C for 1 min; followed by 35 cycles of

98 0 C for 15 seconds, annealing temperature (as listed above) for 30 seconds, 720 C for 45

seconds; and one dwell at 720 C for 10 min. Amplified products were purified using the

QIAquick gel extraction kit (Qiagen, Valencia, CA) and sequenced directly using the

facilities and protocols of the Josephine Bay Paul Center of the Marine Biological

Laboratory (Woods Hole, MA). Sequences were analyzed and assembled using

Sequencher 4.1 (Gene Codes Corporation, Ann Arbor, MI). Alignments were generated

with ClustalX (Thompson et al., 1997). Gene sequences determined in this study were

submitted to GenBank with the following accession numbers (EF110575-EF110583).

3.5.5 Nutrient Stress Experiments with Axenic IMS101. Fe-limited, P-limited,

and replete cultures were prepared using PMP medium as described above and omitting

ferric citrate and phosphoric acid where appropriate. To generate the inocula, cells from

a PMP-grown culture of IMS 101 were filtered gently onto a 5-tm polycarbonate filter.

The filter was then washed with 50 to 100 ml "Tyndalized" Sargasso seawater before the

cells were resuspended in a small amount of Sargasso seawater and distributed evenly



among the various treatment media. For nutrient limitation experiments, cultures were

grown in 250 ml of medium in 500 ml Nalgene® baffled polycarbonate flasks that were

cleaned using the procedure described above. At least two replicate treatments were

performed per limitation experiment, and the limitation experiments were repeated three

times. The growth of the cultures was monitored throughout the experiment by

removing aliquots and measuring in vivo fluorescence using an AquaFluorTM hand-held

fluorometer (Turner Designs, Sunnyvale, CA). Cells from the culture experiments were

collected via filtration onto 5- tm polycarbonate filters and frozen in liquid nitrogen for

later RNA extraction.

3.5.6 Temperature Optimization. Non-axenic cultures of two T. erythraeum

strains (IMS 101 and GBRTRLI101) and one T. tenue strain (H9-4) were grown in

triplicate on the modified YBCII medium (Chen et al., 1996) with Fe added as ferric

citrate. Cultures were grown in 50 ml polycarbonate tubes with light levels -140

gEin/m2/s at 24'C, 26°C, 28 0 C and 31 C. Growth was monitored daily using a TD-700

fluorometer with an in vivo Chla filter set (Turner Designs, Sunnyvale, CA).

3.5.7 Culture experiment with different Fe levels. Cultures of two T.

erythraeum strains (IMS 101 and GBRTRLI101) and one T. tenue strain (H9-4) were

grown on modified YBCII medium (Chen et al., 1996) with EDTA held constant and

varying amounts of ferric citrate added (Berman-Frank et al., 2001). Media preparation

and culture handling was carried out using trace-metal clean techniques under HEPA

filtration and class 100 conditions. The ferric citrate additions were '0 nM, 10nM, 25nM,

50nM, 100nM and 250nM, which correspond to concentrations of inorganically

complexed Fe ([Fe']) values of 0.15 nM, 0.31 nM, 0.54 nM, 0.94 nM, 1.8 nM and 4.5

nM. The Visual MintEQ program (available for free download at

http://www.lwr.kth.se/English/OurSoftware/vminteq/) was used to complete calculations

of Fe speciation in the media based on known chemical additions and careful adjustment

of pH to 8.15 +/- 0.02. The experiments were done in triplicate for each treatment at the

optimal temperature for each clade (26 0C for Ten and 28oC for Tery). Culture growth

was monitored daily between 2 and 3 hours after the lights turned on in the incubator by



pouring an aliquot of each well mixed culture into an acid cleaned 50 ml polycarbonate

tube and monitoring fluorescence on a TD-700 fluorometer with an in vivo Chla filter set

(Turner Designs, Sunnyvale, CA). Before the growth experiment started, cultures were

acclimated in Fe adjusted media through at least one doubling of cells and then

transferred into fresh media when growth was balanced. In some cases, multiple

transfers were required before growth rates separated between the different treatments.

Samples were filtered down and frozen in liquid nitrogen for later RNA analysis on the

morning when all treatments were growing exponentially and growth rates had separated

between the low and high Fe treatments. This filtering was done using 25 mm 5-tm

polycarbonate filters -3-4 hours after the lights turned on in the incubator. On that same

day, 30 ml aliquots of the cultures were placed in 60 ml Nalgene® polycarbonate bottles

(Nalge Nunc International Corporation, Rochester, NY) and N2 fixation rates were

measured using the acetylene reduction assay (Capone, 1993). N2 fixation rate

measurements were based on a linear regression of ethylene concentrations measured

over three hours after acetylene addition. Results were normalized to Chl a (Herbland et

al., 1985).

3.5.8 Chl a/DNA Normalization. To ensure that Fe limitation did not affect the

Chl a/DNA ratio of the cultures, we filtered 15 mls in triplicate from three low Fe and

three high Fe cultures of GBRTRLI 101 (18 filters total) and two low Fe and two high Fe

cultures of H9-4 (12 filters total). Two of the 15 ml filters were used to determine the

average Chl a/ml of each samples/condition. DNA was extracted from the remaining

duplicate filters from each biological replicate using the DNeasy Plant Kit (QIAGEN

Inc., Valencia, CA) and the number of copies of isiB/extraction was determined using the

standard curve qPCR protocol described below with the DNA extractions added at a 1:10

dilution. The number of copies of isiB/ml culture was determined after taking into

account all dilution steps involved in the extraction procedure. This value was then

compared with the Chl a/ml value to determine Chl a/copy of DNA.

3.5.9 RNA Extraction and cDNA Synthesis. RNA was extracted using the

Ribo-PureTM-Bacteria kit (Ambion Inc., Austin, TX) including the optional DNase-I



treatment. Total RNA extracts were quantified using a NanoDrop® ND-1000 Full

Spectrum UV/Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Normalized quantities of total RNA extracts were then converted into cDNA using the

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). As a negative control

for later RT-PCR reactions, normalized total RNA was also put through the iScript cDNA

synthesis without the addition of the reverse transcriptase enzyme (later referred to as

noRT).

3.5.10 RT Analysis of Gene Expression Axenic IMS101 Nutrient Experiment.

PCR reactions were performed on cDNA extracts using internal primers for each gene

designed from the sequenced genome of T. erythraeum (IMS101) (Table 3). The 15 gl

reactions were run on a Mastercycler© thermal cycler (Eppendorf AG, Hamburg,

Germany) with MasterTaq© Taq DNA polymerase (Eppendorf AG, Hamburg, Germany)

at a final concentration of 1.25 units/PCR reaction per manufacturer's instructions

without additional Mg +2 (lx). Template cDNA was added to a final concentration of 0.32

ng/p and primers were added at a final concentration of 1 [tmol/L. The PCR reactions

had the following conditions for each gene: idiA (95 0 C for 5 min; 30 cycles of 95 0C for

1 min, 56.1 0C for 1 min, 720 C for 30 sec; and 72 0 C for 10 min), isiB (95 0C for 5 min; 35

cycles of 950 C for 1 min, 57.8 0 C for 1 min, 72 0C for 30 sec; and 72 0 C for 10 min), and

feoB (95 0C for 5 min; 40 cycles of 95 0 C for 1 min, 56.1 0 C for 1 min, 72 0 C for 30 sec;

and 72 0 C for 10 min).

3.5.11 Quantitative PCR Analysis of Gene Expression from Fe Titration

Experiment. Separate qPCR primer sets for the T. erythraeum clade and the T. tenue

clade were designed using AlleleID® (PREMIER Biosoft International, Palo Alto, CA)

based on alignments made from our sequencing efforts (Table 3). The primers were

tested and found to be specific for only the targeted clade, equally efficient across

multiple representatives from each targeted clade and mixtures of DNA from target and

non-target clades did not result in inhibition (data not shown). rnpB was determined to

be the most stable housekeeping gene with T. erythraeum grown under different Fe, light

and temperature conditions using geometric averaging of multiple candidate control



genes using the GeNorm method (Vandesompele et al., 2002). The GeNorm method

calculates the most stable gene pair for a given set of data, and comparisons of our

various conditions determined that the ranking of the normalization genes from best to

worst was: rnpB, 16s, glyA and recF. Relative expression of isiB verses rnpB was

determined using absolute quantification of each gene and dividing the number of copies

of the isiB gene determined per sample by the number of copies of the rnpB gene

determined per sample (Applied Biosystems User Bulletin #2: http://dna-9.int-

med.uiowa.edu/RealtimePCRdocs/Compar_Anal_Bulletin2.pdf) (Larionov et al., 2005).

The standards used for absolute quantification were cloned PCR products prepared as

described (Zinser et al., 2006) using the TOPO TA Cloning® Kit for Sequencing

(Invitrogen Corporation, Carlsbad, CA). Once cloned, the plasmids were extracted with

QIAGEN Mini Prep kit (QIAGEN Inc., Valencia, CA), linearized using PstI (New

England Biolabs® Inc., Ipswich, MA) and quantifed with Quant-iTTM PicoGreen®

(Invitrogen Corporation, Carlsbad, CA). qPCR reactions were done on a 7500 Fast Real-

Time PCR System (Applied Biosystems Inc., Foster City, CA) using PowerSYBR®

Green PCR Master Mix (Applied Biosystems Inc., Foster City, CA) at lx concentration

in a 20 tl reaction with a final cDNA concentration of 1-2 nM and a final primer

concentration of 200nM. Cycler conditions were 500 C for 2 min, 950C for 10 min; 40

cycles of 950 C for 15 sec, 55 0 C for 1 min with fluorescence being read at 550C followed

by dissociation curve analysis from 60'C to 95 0C.

3.5.12 Alleviation of Fe Limitation Experiment. Following sampling for N2

fixation and isiB expression, the remaining -100 ml of two Fe limited cultures of

GBRTRLI101 were each split into three aliquots and used to inoculate two culture flasks

containing replete ([Fe'] = 4.5 nM) YBCII medium and one culture flask containing Fe

omitted ([Fe'] = 0.15 nM) YBCII medium. This generated four +Fe treatments and two -

Fe treatments. Samples for isiB expression analysis were taken immediately following

inoculation and 24 hours later and processed as described in sections 3.5.9 and 3.5.11.
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Table 1. Trichodesmium Fe Acquisition, Storage, Regulation and Quota Reduction Genes
Trichodesmium Gene Nearest Ortholog Nearest Described Ortholog'

Number in Figure - ProteinGeNumber in Figure - Protein Accession # Source Accession # Identities Source Accession # Identities
G1 - ABC-Type e TransportLength

1 - ABC-Type Fe3+ Transporter 555 YP_722814 68031 BAA10029 328/528 N/Apermease component
2 -ABC-Type Fe3+ TransporterATP-ase Fcom Transporter 378 YP_722813 8501"' ZP_00516660 212/362 6803 BAA18213 201/345

ATP-ase component
3 -ABC-Type Fe3+ Transporter3 - periplasmic component (idiA) 349 YP_722952 BP-1'" BAC08065 210/352 6803 BAA16842 206/356
periplasmic component (idiA)

4 -ABC-Type Fe3+-hydroxamate4-pABC-Type Fe -hydroxamate 309 YP_723445 29413v ABA22556 188/306 N/Atransport periplasmic component
5 -Ferrous iron transport proteinF errous iron transport protein 606 YP_722524 6803 BAA17208 331/604 N/A

B (feoB)
6 -Ferrous iron transport protein- F errous iron transport protein 89 YP_722525 6803 BAA 17207 39/75 N/A

A (feoA)
7 -ExbB Proton Channel 261 YP_723908 8501 ZP 00515768 139/205 6803 BAA16958 135/201

8 - ExbD 207 YP_723909 6803 BAA16959 93/205 N/A
9 -TonB family protein 537 YP_721313 8106"' ZP 01624500 63/235 N/D

10 -Bacterioferritin-like protein 159 YP_722441 29413 ABA21384 112/143 7120x BAB75639 111/143
11 - Ferritin-like DPS protein 180 YP_723752 8501 ZP_00514985 115/169 7120 BAB75507 120/173

Flavodoxin 182 YP_722232 8501 ZP_00515759 130/174 6803 BAA17947 70/170
Flavodoxin (isiB) 171 YP_721410 7120 BAB74104 103/143 N/A

isiA 344 YP_721411 7120 BAB75700 261/341 N/A
12 -Ferric uptake regulator (fur) 170 YP_721684 7806" AAT44865 125/172 7120 BAB78057 115/150
13 - Ferric uptake regulator (fur) 131 YP_721679 7601I"" AAT41916 78/124 7120 BAB74172 78/126
14 -Ferric uptake regulator (fir) 174 YP 722978 101 'X YP 721684 105/161 7120 BAB78057 89/150

Abreviations: N/A not applicable; N/D none determined; ' if different than nearest ortholog; "6803=Synechocystis PCC6803; "'8501 =
Crocosphaera watsonii WH8501;'; BP-1 = Thermosynechococcus elongatus BP-1; v29413= Anabaena variabilis ATCC29413; "'8106 =
Lyngbya sp. PCC 8106; v'7806 = Microcystis aeruginosa PCC7806; v""7601 = Calothrix PCC7601;"101 = Trichodesmium erythraeum
IMS101; "7120 = Anabaena PCC7120



Taxa
T. erythraeum
T. thiebautii
T. spiralis
T. tenue

Taxa
T. erythraeum
T. thiebautii
T. spiralis
T. tenue

Table 2 % Identity for Sequences
idiA (520 bp out of a 1050 bp gene)

T. erythraeum* T.thiebautii T. spiralis
100
93 100
94
94

T. erythraeum
100
95
95
96

98
99
feoB (995 bp
T. thiebautii

100
99 100

out of a 1821 bp gene)
T. spiralis T. tenue

100
98 100
98 98
isiB (234 bp out of a 516

100
bp gene)

Taxa T. erythraeum T.thiebautii T. spiralis
T. erythraeum 100
T. thiebautii 93 100
T. spiralis 94 99 100
T. tenue 94 99 100
* T. erythraeum includes IMS 101 and GBRTRLI 101 strains
** T. tenue includes Z-1 and H9-4 strains

T. tenue

100

T. tenue**



Table 3. Primers used in Sequencing (External) and Gene Expression Experiments
(Internal and QPCR)

Primer Target
5' Primer 3' Primer Size

(BP)

idiA
AATCTCTATTCTTCCCGTCAC GCTTCTGGACTAACTAAATGTTC 770External

idiA
TCCAGCTAACCTCCGC AATGCCAGCCGCAAC 312

Internal
isiB CAAGTCCCGAAGATTTTGATGG CATAACCCTCTGTAGACCAAGACCC 264

isiB QPCR AAGTGACTGGGCTGGTTTC CAATAGTAGTACCTCCTTTCTCAG 167
(Ten)

isiB QPCR AAAGTGACTGGAGTGGTTTC GTAGTACCTCCAAGCCCA 163
(Tery)

feoBfeoB ATTTCTCTGAAGGTTCTTAAATG TTATCAACTTAAAGCCAAAGCTC 1983
External

feoB TGGAATTATTAGATGAGCTTTTCA GCTCCTTGGTAAAAAATGAAAC 1917Alternate

feoB TCCCAACCTACTAATGCCACA CTTCGGAAAAACCATTGAAA 217Internal
rnpB
QPCR GAATCTATGAACGCAACGGAAC ACCAGCAGTGTCGTGAGG 102
(Ten)
rnpB

QPCR ACCAACCATTGTTCCTTCG CAAGCCTGCTGGATAACG 199
(Tery)
rnpB

degenerate GRTYGAGGAAAGTCCGGRCT RTAAGCCGGRTTCTGT -324
(Vioque,

1997)
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Fig. 2. Representative growth curve of nutrient limitation culture experiment with
T erythraeum IMS 101 (A). RFU stands for relative fluorescence units and mea-
sures the orange fluorescence of the cultures. Arrows Ti and T2 indicate where
on the growth curve samples were removed for gene expression analysis. (B)
Agarose gel images showing expression of idiA,feoB and isiB as determined by
RT-PCR at T1 and T2 in replete culture (Re), Fe limited culture (-Fe), P limited
culture (-P). Genomic IMS 101 DNA was used as a positive control (DNA).
Absence of genomic DNA contamination in RNA preparation was confirmed by
completing the reverse transcription reaction without reverse transcriptase (noRT)
followed by RT-PCR.
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Fig. 3. Growth rate response of different Trichodesmium species grown at varying
temperatures.
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to tg chl of culture from representatives of both clades of Trichodesmium grown in the
same media. (C) The relationship of nitrogen fixation rates defined above with culture
growth rates. (D) The ratio of chl/DNA in samples from low and high Fe treatments in
both clades of Trichodesmium. In all graphs error bars represent standard error of
biological replicates.
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CHAPTER 4: A MOLECULAR DEMONSTRATION OF TRICHODESMIUM-

SPECIFIC FE LIMITATION OF N 2 FIXATION IN THE PACIFIC AND ATLANTIC

OCEANS

4.1 ABSTRACT

Diazotrophic cyanobacteria (i.e., Trichodesmium) are important contributors to

global carbon and nitrogen cycles. Understanding the environmental factors that control

their growth and ability to fix N2 is key to developing accurate global ecosystem models

to predict the effects of climate change. Iron (Fe) has been shown to be an important

element for limiting the growth and N2 fixation of Trichodesmium in the laboratory, but

there has been limited work assessing where this factor limits Trichodesmium in situ. We

surveyed Trichodesmium populations in both the Atlantic and Pacific Oceans for Fe

limitation using a recently developed molecular method involving quantitative reverse

transcriptase polymerase chain reaction (qRT-PCR) of the isiB gene, encoding

flavodoxin, in conjunction with measurements of dissolved Fe and P0 4. Fe limitation of

Trichodesmium was widespread in the Pacific Ocean and minimal to nonexistent in the

Atlantic Ocean. We found an inverse correlation between expression of the isiB gene and

Fe/PO4 that allowed for the calculation of a critical Fe/PO4 value associated with Fe

limitation of N2 fixation by Trichodesmium, which closely resembled values used in

predictive global ecosystem models (where Fe speciation was ignored). In addition to

validating previous models with quantitative evidence of Fe limitation of N2 fixation in

the field, the data presented suggests that the majority of dissolved Fe in the open ocean

is available to Trichodesmium regardless of speciation.

4.2 INTRODUCTION

Diazotrophic cyanobacteria (e.g. Trichodesmium) are not only important

contributors to primary production in the upper ocean, but they are also important in the

nitrogen (N) cycle by providing "new" N to the system through N2 fixation (Capone et

al., 1997; Montoya et al., 2004). In certain regions of the ocean, it is believed that



diazotrophy accounts for up to 50% of the new N that enters the system (Karl et al.,

2002). The N from N2 fixation is understood to be critical to the carbon (C) and N cycles

both regionally (Zehr et al., 2001) and globally (Capone et al., 1997; Gruber and

Sarmiento, 1997). It is also thought that changes in N2 fixation rates can potentially

influence CO 2 sequestration over geologic time-scales (Capone et al., 1997; Falkowski,

1997; Gruber and Sarmiento, 1997).

For many decades, Trichodesmium was believed to be the only free-living

cyanobacterial N2 fixer in the open ocean (Mulholland, 2007). While recent work has

revealed that unicellular cyanobacteria capable of fixing N can be quite prevalent in the

ocean (Zehr et al., 2001; Montoya et al., 2004; Grabowski et al., 2008), Trichodesmium is

still believed to be a major contributor to marine N2 fixation (LaRoche and Breitbarth,

2005). Despite the importance of Trichodesmium, we still have very limited information

about the factors that control its N2 fixation rate and distribution, and how N fixed by

Trichodesmium transfers through the food web (Mulholland, 2007). Culture work has

shown that physical factors such as light (Breitbarth et al., 2008) and temperature

(Breitbarth et al., 2007) are important for Trichodesmium growth and N2 fixation rates.

In addition to these physical factors, culture work, field correlations and qualitative

molecular assays have shown that Trichodesmium N2 fixation can be Fe-limited

(Berman-Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003; Kustka et al., 2003b;

Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008), phosphorus (P) limited

(Hynes, In Press; Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Fu et al., 2005;

Sohm et al., 2008) or Fe-P co-limited (Mills et al., 2004). What we lack is a quantitative

assessment of how these factors might be limiting Trichodesmium N2 fixation and a

better understanding of where in the ocean these chemical factors are important.

In the modern ocean, Fe is not as biologically accessible as it was when

cyanobacteria evolved because the thermodynamically stable redox state, Fe(III), has

both a low solubility (Liu and Millero, 2002) and is strongly complexed by organic

ligands that may render it unavailable to phytoplankton (Rue and Bruland, 1995; Rue and

Bruland, 1997). Consequently, Fe is thought to limit primary production in large areas of



the oceans, leading to the development of high nutrient low chlorophyll (HNLC) regions

(Martin and Fitzwater, 1988; Martin et al., 1991; Coale et al., 1996). Diazotrophic

cyanobacteria have a high cellular Fe-requirement associated with the biochemistry of N2

fixation that is hypothesized to be the result of their originating in an Fe-rich anoxic

ocean (Kustka et al., 2003a; Kustka et al., 2003b). Biogeochemical models that

incorporate measurements of global ocean circulation, dust transport and empirically

determined physiological data for Fe limitation of phytoplankton have predicted that Fe

limits diazotrophs, like Trichodesmium, in large areas of the ocean (Moore et al., 2004;

Moore and Doney, 2007). Using the information that Fe and P0 4 can both limit N2

fixation, a new plan to mitigate rising CO 2 proposes using inputs of Fe and PO 4 from the

deep ocean to stimulate N2 fixation (Karl and Letelier, 2008). Even as these CO 2

mitigation strategies are proposed, we still lack an understanding of how Trichodesmium

acquires Fe, what forms of Fe are bioavailable, how they respond to Fe deprivation and

validation of where they are experiencing Fe limitation, findings that are important steps

to predicting potential feedbacks on climate change.

Bottle enrichments, fluorescent staining, and chemical quota correlations have

been used to make predictions of the factors limiting diazotrophic activity in the oceans

(Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Kustka et al., 2003b; Mills et al.,

2004). These studies suggest that the two primary elements limiting Trichodesmium N2

fixation in the oceans are Fe and P. For example, in the Sargasso Sea Trichodesmium is

thought to be predominantly P0 4 stressed (Sanudo-Wilhelmy et al., 2001; Dyhrman et al.,

2002; Sohm and Capone, 2006), findings that agree well with models of the region

(Moore et al., 2004; Coles and Hood, 2007). In the equatorial North Atlantic Ocean,

models disagree whether P0 4 alone (Moore et al., 2004) or Fe-P0 4 co-limitation (Coles

and Hood, 2007) are controlling Trichodesmium N2 fixation. Field assessments of

Trichodesmium through this region also report a mixture of PO4 limitation (Sanudo-

Wilhelmy et al., 2001; Sohm and Capone, 2006; Sohm et al., 2008) or Fe-PO 4 co-

limitation of N2 fixation (Mills et al., 2004). Similar uncertainty exists in the Western

Pacific Ocean (including the Western Pacific Warm Pool) as this region of the ocean has



been understudied with respect to diazotroph assemblages and productivity (Campbell et

al., 2005; LaRoche and Breitbarth, 2005). Pigment and flow-cytometric data suggests

that cyanobacteria are important phytoplankton throughout the region (Blanchot et al.,

1997; Neveux et al., 2006; Matsumoto and Ando, 2009) and there are reports of periodic

blooms of Trichodesmium that can be seen via satellite (Dupouy et al., 1988). Model

data suggests that Fe is likely to be the most important limiting nutrient for diazotrophs in

the region (Moore et al., 2004), though local to New Caledonia it appears that P0 4

limitation may be an important factor to consider as well (Van Den Broeck et al., 2004;

Moutin et al., 2005; Rodier and Le Borgne, 2008). Clearly we need more empirical

quantitative data to determine which of these factors is controlling N2 fixation by

Trichodesmium in the field.

To get a better understanding of in situ Fe limitation of Trichodesmium N2

fixation, we used a recently developed calibrated molecular method looking at expression

of the gene encoding flavodoxin, isiB, (Chappell and Webb, submitted) to assess Fe

limitation in field samples from around the globe in conjunction with measurements of

P0 4 and Fe. In addition to looking at locations where we expected to find Fe limitation,

we also explored areas presumed to be PO4 limited and Fe-P0 4 co-limited. In general,

we found a much higher prevalence of Fe limitation of Trichodesmium in the Pacific

Ocean verses the Atlantic Ocean, with only one sample from the equatorial Atlantic

showing evidence of isiB expression above the threshold expression level determined in

the laboratory. When we compared the expression data from all the samples with the

dissolved [Fe] and [P0 4] values from those stations, we found a threshold value of [Fe]

above which there is no evidence of Trichodesmium Fe limitation similar to the value of

[Fe'] associated with Fe limitation in laboratory cultures, indicating that most of the

dissolved Fe in the open ocean is available to Trichodesmium regardless of ligand

speciation. The relationship we determined between isiB expression and the [Fe]/[PO4]

ratio, enabled us to calculate an in situ critical [Fe]/[PO 4] ratio for Fe limitation,

providing vetted values that will be useful for improved models.



4.3 METHODS

4.3.1 Dissolved Fe Sampling Procedure. Sampling took place on three cruises,

one aboard the R/V Oceanus (cruise OC399-4) between March 22, 2004 and March 30,

2004 (Figure lA, Stations 4-12), one aboard the R/V Seward Johnson (cruise SJ0609)

between July 12, 2006 and July 24, 2006 (Figure 1A, Stations 13-21) and one aboard the

R/V Kilo Moana (cruise KM0701) as part of the Western Pacific Warm Pool cruise

between January 12, 2007 and February 9, 2007 (Figure IB). Samples for dissolved Fe

and nutrients were collected either using acid cleaned 10-L Teflon-coated Go-Flo bottles

(General Oceanics) deployed directly on a Kevlar line (OC399-4) or acid cleaned 5L

Teflon-coated exterior spring Niskin bottles (Ocean Test Equipment) deployed either

directly on a Kevlar line (SJ0609) or mounted on a powder-coated rosette that was

deployed on a Kevlar line (KM0701). After recovery, the bottles were transferred to a

trace metal clean "bubble" kept at positive pressure using HEPA filtered air flow in the

laboratory of the ship (KM0701) or to a trace metal clean van also supplied with HEPA

filtered air on the deck of the ship (OC399-4 and SJ0609). The headspace of each bottle

was pressurized with 0.2 tm filtered ultra high purity (UHP) nitrogen pushing the water

through a 142 mm 0.4 [tm acid-cleaned polycarbonate filter held in a polycarbonate filter

sandwich (Geotech Environmental Equipment, Inc.). Water for dissolved Fe analysis

was collected in acid-cleaned 250 ml low-density polyethylene (LDPE) bottles and

acidified to pH 1.7 with concentrated high purity HCl (Seastar). Water for nutrient

analysis was collected in 10% HCI cleaned high-density polyethylene (HDPE) bottles

(OC399-4) or 10% HCl cleaned polypropylene 50 ml tubes (SJ0609 and KM0701) and

immediately frozen at -20 0 C for later analysis. Analysis of the P0 4 concentrations from

the Sargasso Sea cruise was reported in (Jakuba et al., 2008). Samples from SJ0609 and

KM0701 were sent to the College of Oceanic and Atmospheric Sciences, Oregon State

University and dissolved inorganic phosphorus (DIP) was analyzed using a Technicon

AutoAnalyzer II by J. Jennings with a detection level of 6 nmol L-1.

4.3.2 Dissolved Fe Analysis. Fe in the seawater samples was determined using

isotope dilution and magnesium hydroxide preconcentration followed by analysis using



inductively coupled mass spectrometry (Wu and Boyle, 1998; Saito and Schneider,

2006). Roughly 13.5 ml of sample (exact volume determined gravimetrically) was

poured into a 15 ml polypropylene centrifuge tube (Globe Scientific Inc.) and

equilibrated with a 57Fe spike (-0.4 nM) overnight. The following day, the Mg(OH) 2 and

metals were precipitated out of the sample by the addition of a small amount (-100 dtl) of

high-purity ammonium hydroxide (Seastar Chemicals Inc.). Following ammonium

hydroxide addition, the tubes were left undisturbed for 90 s and inverted multiple times to

fully mix them. After an additional 90 s, the tubes were centrifuged at 3000 x g for 3

minutes and the sample was decanted off. The tubes were then spun at 3000 x g for an

additional 3 minutes forming a compact pellet, following which the remaining liquid was

shaken off. The sample pellets were kept dry until the day of analysis (from a day to a

week). On the morning of analysis, pellets were resuspended in 1-2 ml 0.8 N Nitric Acid

(Seastar). Samples were analyzed on a Thermo-Finnigan Element 2 (E2) inductively

coupled mass spectrometer (ICP-MS) in medium resolution mode. A procedural blank

was determined by processing 1 ml of low Fe seawater (which provides a negligible

amount of Fe) and calculating its Fe value as though it were a 13.5 ml sample.

4.3.3 Collection of Trichodesmium Samples. A 130 [pm-phytoplankton net (Sea-

Gear Corporation, Florida) was towed using a 30 m line at the surface for 10-20 minutes.

Immediately following the return to the surface, the contents of the tow were taken into

the air-conditioned laboratory aboard the ship so that the Trichodesmium colonies could

be separated from the other plankton using polypropylene bulb transfer pipettes.

Colonies were transferred from the bulk solution into clean 0.4 [tm filtered microwave-

sterilized seawater, then they were filtered onto 5 tm polycarbonate filters and stored in

liquid N2 until RNA processing and analysis. On OC399-4, 200 ml of the bulk net tow

was filtered onto 5 [tm polycarbonate filters and preserved in liquid N2 without separation

and rinsing.

4.3.4 Nitrogen Fixation Measurements. We measured N2 fixation rates on

samples from two stations on cruise OC399-4 and five stations on KM0701. Net tows to

collect samples were performed immediately before time zero of each N2 fixation



incubation experiment, which were targeted for 1100, 1200 and 1300 hrs local time. 10-

20 colonies were placed in 30 ml of filtered seawater in 75 ml Nalgene® polycarbonate

bottles (Nalge Nunc International Corporation, Rochester, NY). N2 fixation rates were

measured using the acetylene reduction assay (Capone, 1993) using a Shimadzu GC-8A

gas chromatograph with ethylene peaks integrated by a Shimadzu CR8A Chromatopac.

N2 fixation rate measurements were based on a linear regression of ethylene

concentrations immediately following acetylene addition and measurements made at one

and two hours after addition. Two to three replicate bottles were used for each incubation

experiment and two replicate samplings of the headspace of each bottle was used for each

time point. Results were normalized to Chl a measured using standard techniques

(Herbland et al., 1985).

4.3.5 RNA Extraction and cDNA Synthesis. RNA was extracted using the

Ribo-PureTM-Bacteria kit (Ambion Inc., Austin, TX) including the optional DNase-I

treatment. Total RNA extracts were quantified using a NanoDrop® ND-1000 Full

Spectrum UV/Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Normalized quantities of total RNA extracts were then converted into cDNA using the

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). As a negative control

for later RT-PCR reactions, normalized total RNA was also put through the iScript cDNA

synthesis without the addition of the reverse transcriptase enzyme (later referred to as

noRT).

4.3.6 Quantitative PCR Analysis of Gene Expression. Separate qPCR primer

sets for the Trichodesmium erythraeum clade (Tery) and the Trichodesmium tenue clade

(Ten) designed and tested previously (Chappell and Webb, submitted) are relisted here

(Table 1). qPCR primers were designed for our target Fe stress response gene, isiB, and a

RNA normalization control gene, rnpB. Because the majority of samples did not have a

significant amount of T. erythraeum clade RNA according to rnpB analysis of the cDNA

(Table 2), we only report expression results for the T. tenue clade. % Tery = [(# copies of

Tery clade rnpB)/(# copies of Tery + Ten clade rnpB)] x 100. Relative expression of isiB

verses rnpB was determined using absolute quantification of each gene and dividing the



isiB gene copy number by the rnpB gene copy number determined for each cDNA sample

(Applied Biosystems User Bulletin #2: http://dna-9.int-

med.uiowa.edu/RealtimePCRdocs/Compar Anal Bulletin2.pdf) (Larionov et al., 2005).

The standards used for absolute quantification were cloned PCR products prepared as

described in chapter two of this thesis and (Zinser et al., 2006) using the TOPO TA

Cloning® Kit for Sequencing (Invitrogen Corporation, Carlsbad, CA). qPCR reactions

were done on a 7500 Fast Real-Time PCR System (Applied Biosystems Inc., Foster City,

CA) using PowerSYBR® Green PCR Master Mix (Applied Biosystems Inc., Foster City,

CA) at lx concentration in a 20 tl reaction with a final cDNA concentration of 1-2 nM

and a final primer concentration of 200nM. Cycler conditions were 500 C for 2 min, 95'C

for 10 min; 40 cycles of 950C for 15 sec, 55' C for 1 min with fluorescence being read at

55'C followed by dissociation curve analysis from 600 C to 95'C.

4.3.7 DNA qPCR Test for Specificity of Primers. Where the biomass on the

sample was high enough that the entire filter was not used for RNA extraction, DNA was

extracted from a portion of the filter used for RNA extraction (OC399-4). Otherwise,

DNA was extracted from an alternate bulk filter collected at the same station (SJ0609 and

KM0701). DNA was extracted using the Mo Bio PowerPlantTM DNA extraction kit (Mo

Bio Laboratories, Inc. Carlsbad, CA) following manufacturers guidelines including the

optional DNA Clean-Up protocol. Following dilution of the DNA samples to -0.5 ng/dl,

2 ld of DNA was run in triplicate 20 ld qPCR reactions with both sets of primers (six

reactions total) to ensure that the ratio of isiB to rnpB in the DNA was the same as that

found for cultured representatives (i.e., 1:1). This control was used to ensure that our

primers were equally efficient with field populations of Trichodesmium as they had been

with laboratory cultures.

4.4 RESULTS

4.4.1 Sampling Locations. Figure 1A shows the cruise track and station

locations where Trichodesmium colonies were present for the two Atlantic Ocean cruises,

OC399-4 (stations 4-12) and SJ0609 (stations 13-21). The station numbers for OC399-4



are a subset of the stations referred to in Jakuba et al (2008) and retain the same

numbering scheme. SJ0609 was the second half of a two-leg transit across the equatorial

Atlantic Ocean and retains the numbering scheme of the entire cruise. The cruise track

for the Western Pacific Warm Pool cruise is shown in Figure lB. The station numbering

is the same as that of Hynes et al (in press) and Chapter 2 of this thesis. In all cases, the

only numbered stations are the ones where expression data is reported. With the

exception of OC399-4, where there was a large portion of the cruise that was out of the

temperature range for Trichodesmium that has been completely left off the map, all

stations from each cruise are marked along the cruise-track by a point even if they are not

numbered.

4.4.2 Fe, P0 4 and Expression Data. The station location, total dissolved [Fe],

[PO 4], [Fe]/[P0 4], the expression ratio isiB/rnpB and percent T. erythraeum for all

stations where detectable levels of Trichodesmium were found are listed in Table 2. [Fe]

and [PO4] values are reported for the surface sample from each station, which was taken

at a depth of 10 m for OC399-4 and 15 m for the other two cruises. The [PO4] values

from OC399-4 are reprinted from Jakuba et al (Jakuba et al., 2008). A subset of these

PO4 values were also reported in Dyhrman et al (Dyhrman et al., 2006). The [PO4]

values from KM0701 are the same as those graphed in Hynes et al (in press). OC399-4

stations are abbreviated with S for Sargasso Sea, SJ0609 stations are abbreviated with E

for the Equatorial Atlantic Ocean and KM0701 stations are abbreviated with WP for the

Western Pacific Ocean. The [Fe] and [PO4] values are also shown in two bar graphs, one

for the two Atlantic cruises, OC399-4 (S) and SJ0609 (E), (Figure 2A), and one for the

Pacific cruise, KM0701, (Figure 2B). The cruise where [Fe] was most variable was in

the Equatorial Atlantic Ocean. SJ0609 had the station with the highest [Fe] value of 1.89

nM on the western side of the basin at Station E21 where surface salinity measurements

indicate that we were sampling in the Amazon River plume. At E21, the surface salinity

measured by the CTD was 32.5, which rose to 36 by a depth of 50 m. With the exception

of Station E20, which also had a small lens of low salinity water rising from 33.0 to 35.8

by a depth of 17 m, surface salinities for the remainder of the transect were between 35.5



and 36.1. SJ0609 also had one of the two stations with the lowest [Fe] of 0.09 nM, which

was by the equator. The Western Pacific Ocean also had a range of [Fe], with a high

value of 0.95 nM close to the islands approaching New Caledonia, but otherwise low [Fe]

- 0.2 nM. The Sargasso Sea had consistently high [Fe] values ranging from 0.82 nM to

1.17 nM. The [PO 4] values from the three cruises spanned a very large range, from

below 1.4 nM in the Sargasso Sea to 324 nM in the Western Pacific, which resulted in a

range of loglo [Fe]/[P0 4] from -3.5 in the Western Pacific to -0.13 in the Sargasso Sea.

Analysis of the copy numbers of rnpB from the two clades in each cDNA sample

(clade specific rnpB/total Trichodesmium rnpB), showed that the Ten clade dominated

the cDNA in our samples (Table 2). As Tery cDNA was rarely detectable, we only report

isiB expression data for the Ten clade. The Ten clade isiB expression, which is listed as

logio (isiB/rnpB), also showed a large range from -3.4 in the Sargasso Sea to 0.33 in the

Western Pacific. Many of the stations from the Western Pacific and one station from the

Equatorial Atlantic had expression values above the value associated with a 50%

reduction in N2 fixation in cultured T. tenue of isiB/rnpB = 0.062 +/- 0.017 or loglo

(isiB/rnpB) = -1.24 +/- 0.1 (Chappell and Webb, submitted).

We plotted total dissolved [Fe] verses logio (isiB/rnpB) (Figure 3A) and loglo

([Fe]/[P0 4]) verses logio (isiB/rnpB) (Figure 3B). In each plot, the dashed line at loglo

(isiB/rnpB) = -1.2 shows the critical value for loglo (isiB/rnpB) associated with a 50 %

reduction in N2 fixation rates for the Ten clade (Chappell and Webb, submitted). As

shown in Figure 3A, the highest [Fe] value associated with expression above this

threshold is 0.63 nM +/- 0.02 nM. A linear relationship was defined by plotting loglo

([Fe]/[P0 4]) verses loglo (isiB/rnpB) (Figure 3B). The equation for this line is logio

(isiB/rnpB) = (-0.67 +/- 0.13) x loglo ([Fe]/[P0 4]) + (-2.7 +/- 0.27), which has an R2 value

of 0.57. According to this equation, the critical [Fe]/[P0 4] value associated with a 50 %

reduction in N2 fixation by Trichodesmium in the field is 0.005 +/- 0.007 mol/mol or <

0.012 mol/mol.

We observed a linear relationship between loglo (isiB/rnpB) and N2 fixation rates

from the subset of stations on KM0701 and OC399-4 where both parameters were



measured (Figure 4). There was only one station from the cruise in the Sargasso Sea

where we had measurable isiB expression and measured N2 fixation rates. There was a

second station with isiB expression that was below detection, which we gave the value

for logio (isiB/rnpB) = -3.42, which appears to be the basal expression of isiB in the field.

Excluding the data from the Sargasso Sea (SS) does not considerably alter the slope of

the line associated with this relationship and only the line inclusive of the SS data is

plotted (Figure 4). The linear relationship with the SS stations included is: nmol N

fixed/hr/[tg chl = (-1.73 +/- 0.41) x ( logio (isiB/rnpB)) + (1.41 +/- 0.77), which has an R2

value of 0.77. The linear relationship with just the samples from KM0701 is: nmol N

fixed/hr/pg chl = (-2.00 +/- 0.79) x ( loglo (isiB/rnpB)) + (1.35 +/- 0.95), which has an R2

value of 0.68.

4.5 DIscUssIoN

A number of studies have established the importance of Fe limitation to

Trichodesmium N2 fixation in the laboratory (Chappell and Webb, submitted; Berman-

Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003; Kustka et al., 2003a; Kustka et

al., 2003b; Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008). Recently

these efforts have focused on developing molecular methods that can be used to evaluate

Fe limitation at the cellular level (Chappell and Webb, submitted; Webb et al., 2001; Shi

et al., 2007). The information available on the factors (i.e., Fe) controlling

Trichodesmium N2 fixation and growth has proved invaluable for modeling regions of the

ocean (Moore et al., 2004; Coles and Hood, 2007; Moore and Doney, 2007). Though

models can be useful tools, empirical verification is required to prove where Fe is

important in controlling Trichodesmium N2 fixation and determine what parameter of Fe

(i.e., total, free, inorganically-bound Fe) is important to measure for predicting where Fe

limitation might be occurring. The development of a calibrated molecular method to

evaluate Fe limitation of N2 fixation in Trichodesmium spp. (Chappell and Webb,

submitted) provided a technique capable of achieving this goal. This study represents the



first quantitative assessment of Fe limitation in field populations of Trichodesmium

through areas predicted to be Fe limited, PO 4 limited and Fe-P0 4 co-limited.

4.5.1 Ten clade predominance in open ocean populations of Trichodesmium.

Representatives from the Ten clade were the principal component of Trichodesmium

cDNA at most stations (Table 2). These results are consistent with reports based on

morphology from previous field studies that Trichodesmium thiebautii, which is a

representative from the Ten clade, is the dominant Trichodesmium in the open ocean

(Carpenter and Price, 1977; Sohm et al., 2008). While our results indicate that cDNA

was mostly from the Ten clade, this does not necessarily mean that representatives from

the Tery clade were not present at some or even many of the stations. We looked at

cDNA, so there is the possibility that there was Tery clade DNA present. If the Tery

cells were dormant or growing slower for some reason, it would result in a much smaller

amount of Tery clade cDNA, which might have been below the detection limit of our

assay. Also, we were focusing on picked colonies not free trichomes. There is the

possibility that we might have missed some Tery clade cDNA if the organisms were

living as free trichomes and not colonies. While we may have missed some of the

diversity of the Trichodesmium in the field, the net tow allowed us to get a concentrated

sample of Trichodesmium to ensure that we had enough biomass for our downstream

analyses. Given the dominance of the Ten clade and that Tery clade cDNA was not

detected in most of our samples, the remainder of the paper deals only with Ten clade.

4.5.2 Basin-wide differences in Fe limitation of Trichodesmium. Most of the

stations exhibiting Fe limitation were in the Pacific Ocean (Table 2, Figure 3). Low isiB

expression in samples from the Sargasso Sea cruise is understandable, given the very low

values of [P0 4] combined with the very high values of [Fe] measured (Table 2, Figure

2A). These results agree with previous work suggesting that Trichodesmium in this

region are P0 4 stressed (Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Sohm and

Capone, 2006). The only station in the North Atlantic where we found Trichodesmium

isiB expression levels indicative of Fe limitation of N 2 fixation was EA18, which was a

station close to the equator where [Fe] was low compared to other parts of the cruise



(Table 2, Figure 2A). The high [P0 4] and low [Fe] at this station could have been the

result of equatorial upwelling having brought nutrient rich water to the surface ocean,

which resulted in a draw down of surface [Fe] by biological activity. If upwelling is what

caused high [P0 4] and low [Fe] at stations 16, 17 and 18 (Figure 2A), it may not have

been recent, as the surface temperatures were not low (all three stations had near surface

temperatures between 27 0 C and 28.5 o C), which is consistent with the rest of the cruise

and does not suggest active upwelling of colder deep water. The data from this cruise is

in good agreement with previous work suggesting that the equatorial North Atlantic is

predominantly PO4 stressed (Sanudo-Wilhelmy et al., 2001; Sanudo-Wilhelmy et al.,

2001; Dyhrman et al., 2002; Dyhrman et al., 2002; Sohm and Capone, 2006; Sohm and

Capone, 2006; Webb et al., 2007; Sohm et al., 2008; Sohm et al., 2008). The evidence

we have showing Fe limitation near the equator supports the hypothesis that parts of the

North Atlantic have the potential to shift between PO4 and Fe limitation (Mills et al.,

2004; Coles and Hood, 2007). Further study in this region using a combination of the

technique used in this study and a complimentary one for PO 4 stress of Trichodesmium

could prove to be a useful way to help determine what drives this shift. Even without

such a metric, the data we have at hand shows that Fe limitation of N2 fixation by

Trichodesmium can occur in the North Atlantic Ocean.

The level of isiB expression we measured in the Pacific Ocean was generally

higher than that of the Atlantic and above the Fe limitation threshold value for the Ten

clade (Figure 3), indicating that the Ten clade of Trichodesmium was experiencing Fe

limitation over much of that cruise. This is in agreement with model data looking at what

controls diazotroph growth in the oceans (Moore et al., 2004). There is some data

suggesting that parts of the southwestern Pacific Ocean are PO4 stressed (Moutin et al.,

2005). This hypothesis is based on P0 4 turnover rates, low seasonal P0 4 concentrations

and a study of bloom dynamics in the coastal region of New Caledonia (Van Den Broeck

et al., 2004; Moutin et al., 2005; Rodier and Le Borgne, 2008). Our data do not

completely rule out the possibility that PO4 may be playing a role in this region, but

suggest that this effect might be more local to the region immediately surrounding New



Caledonia and that in the region between New Caledonia and Australia Fe limitation or

Fe-P0 4 co-limitation is occurring. The especially high Fe/P ratio of the terrigenous

inputs to the coastal area immediately off of New Caledonia as a result of the lateritic

soils would be a very good explanation of this phenomenon (Tenorio et al., 2005).

During the WP cruise, there was some evidence of P stress using enzyme-labelled

fluorescence (ELF), which targets alkaline phosphatase activity of Trichodesmium

colonies though the labeling was minimal in comparison to other regions (Hynes, In

Press). There is the possibility of Fe-P0 4 co-limitation of Trichodesmium at two of these

stations, WP21 and WP26, where there was some evidence of ELF labeling and isiB

expression was above the threshold indicative of Fe limitation of N 2 fixation. While at

station WP17, close to the islands of Vanuatu, there was no evidence of Fe limitation, but

there was ELF labeling of Trichodesmium. Taken together these data suggest that Fe and

P both have the potential to be stressors of Trichodesmium in the Pacific Ocean.

However, one problem in comparing results from the ELF assay with our isiB expression

data is that the ELF assay is not quantitative. Thus, while it indicates that some portion

of the Trichodesmium population in a given sample is P stressed, it cannot be used as a

metric for P limitation in the same way as our isiB expression assay can be used as a

metric for Fe limitation of N2 fixation. While the non-quantitative nature of the ELF

assay limits our ability to say anything conclusive about Fe-P0 4 co-limitation in the area,

our isiB expression data for Trichodesmium clearly points to the importance of Fe in the

region.

4.5.3 Relationship between isiB expression and dissolved Fe. Looking at the

relationship between isiB expression and total dissolved Fe (Figure 3A), we see that there

is no evidence of isiB expression above the Fe limitation threshold when [Fe] (total

dissolved < 0.4 tm filtered Fe) is greater than 0.63 nM +/- 0.02 nM. This value is within

error of the value of [Fe'] (total inorganically bound Fe) that was associated with Fe

limitation in cultured populations of Trichodesmium, 0.7 nM +/- 0.1 nM (Chappell and

Webb, submitted), without adjusting for ligand-specific Fe speciation effects. When Fe

speciation effects are taken into account, estimates of [Fe'] are - 3 orders of magnitude
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below [Fe] in the western Pacific transect (Chapter 2, this thesis). This implies that most

if not all of the dissolved Fe in the surface oceans is available to Trichodesmium, even

that bound to organic ligands. We do acknowledge certain concerns associated with

extrapolating data from laboratory culture studies to the behavior of an organism in the

field. For example, laboratory cultures are grown at nutrient and biomass levels much

higher than those found in the open ocean. However, we took care to avoid a "blown

buffer" scenario, which happens when culture biomass is high enough that the Fe needed

is higher than that released by dissociation with EDTA and results in [Fe'] being lower

than what would be calculated based on equilibrium dynamics (Saito et al., 2008). Thus,

we believe that the EDTA buffer system we used kept the [Fe'] in the steady state at

biologically relevant levels and as such it is reasonable to extrapolate to the field.

Furthermore, these data are not completely unexpected as there is genomic evidence to

support that Trichodesmium has the ability to take up siderophore-bound Fe using a

TonB-ExbBD protein complex (Chappell and Webb, submitted) as well as field data

showing that certain types of Fe:ligand complexes (i.e., siderophores) are available to

Trichodesmium colonies (Achilles et al., 2003). Our results cannot ascertain the

mechanism by which this Fe is available to Trichodesmium. For example, we cannot rule

out the possibility that the availability of this ligand-bound Fe is controlled by

photochemical release of Fe from ligands (Barbeau et al., 2003; Barbeau, 2006) instead

of cellular uptake of the ligand bound Fe. Additionally it is also possible that cell-surface

reduction of ligand-bound Fe is involved (Maldonado and Price, 2001), though this

mechanism has yet to be confirmed in Trichodesmium. Finally, it is also possible that

interactions between Trichodesmium and the microbial consortium associated with its

colonies could be facilitating the uptake of organically bound Fe. Regardless of the

uncertainty associated with the cellular mechanism, our data show that total dissolved Fe

measurements provide useful information on where Trichodesmium is Fe limited in the

field.

4.5.4 Relationship between isiB expression and Fe/P. Even more striking than

the relationship between isiB expression and [Fe], which is not as robust at both high Fe
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and low Fe values, is the relationship between isiB expression and the [Fe]/[P0 4] ratio.

The relationship between these two parameters is linear on a log-log plot throughout the

entire range of samples (Figure 3B). Given the importance of both Fe and P0 4 as

potential limiting nutrients for Trichodesmium (Berman-Frank et al., 2001; Fu and Bell,

2003; Kustka et al., 2003b; Fu et al., 2005), it is not surprising that the ratio of [Fe]/[P0 4]

would play a role in determining whether or not Trichodesmium was Fe limited, P0 4

limited, or potentially co-limited. While we acknowledge that an R2 value of 0.57 is not

the strongest correlation, there are a variety of reasons to explain why cellular level Fe

limitation of N2 fixation could be offset from measured [Fe]/[P0 4] values. These

discrepancies are part of the reason that a molecular diagnostic for Fe limitation in

Trichodesmium is so important. We know that Trichodesmium has the capacity to store

Fe (Castruita et al., 2006), thus a low Fe value or low Fe/PO4 value may not be associated

with a high expression value if the Trichodesmium has stored Fe and the extracellular Fe

levels just dropped. A higher expression level than would be predicted based on Fe/PO4

could be a result of a recent Fe deposition event that the organism has not had the ability

to respond to by turning off the expression of the Fe stress genes. With those caveats

aside, when we use the linear regression to determine the [Fe]/[P0 4] that is associated

with Fe limitation in field populations of Trichodesmium, we determine that Fe limitation

is likely to occur below a dissolved [Fe]/[P0 4] ratio of 0.005 +/- 0.007 mol/mol. We

acknowledge that there is a large amount of error associated with this value, which

propagates from our extrapolation of three different regressions: [Fe'] verses % maximal

N2 fixation rates (culture data), [Fe'] verses isiB expression (culture data) and isiB

expression verses [Fe]/[P0 4] (field data). However, we feel that we can at least place an

upper limit for the critical dissolved [Fe]/[P0 4] value of 0.012 mol/mol, a value that is

only slightly lower than the critical Fe/PO4 value associated with a transition between Fe

and PO 4 limitation in diazotrophs in the Moore et al model of 2004. In the model, the

limiting nutrient is determined by comparing the predicted concentration of various

nutrients with the half-saturation constants for uptake of each nutrient. Whichever

nutrient is in lowest concentration with respect to the half saturation constant is
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determined to be the limiting nutrient at that point. The critical value for Fe/P0 4 is, in

essence, the ratio of the half-saturation constants for Fe and P0 4 , 0.0133 mol/mol (Moore

et al., 2004), which is close enough to our calculated upper bound of the critical Fe/P0 4

ratio of 0.012 mol/mol that our data can be interpreted as an empirical validation of the

model parameters.

4.5.5 Relationship between isiB expression and N2 fixation rates. We found an

inverse relationship between isiB expression and N2 fixation rates in the field (Figure 4).

This shows that isiB expression is a good marker for Fe limitation of in situ

Trichodesmium N2 fixation. We are unable to comment on the validity of using isiB as

an in situ marker for growth limitation of Trichodesmium as we did not measure C

fixation on the cruise and our culture data shows that increases in isiB expression and

decreases in N2 fixation occur before Trichodesmium growth rates are significantly

impacted (Chappell and Webb, submitted). However, the correlation between isiB

expression and N2 fixation rates in the field enables us to translate isiB expression values

into N2 fixation rates and is supported by previous data linking isiB expression and N2

fixation rates in laboratory culture experiments (Chappell and Webb, submitted).

4.6 CONCLUSION

The data presented in this chapter validates model predictions and demonstrates

that Fe is an important limiting nutrient for N2 fixation of Trichodesmium in the Pacific

Ocean while Fe limitation is minimal in the North Atlantic Ocean. The relationship

between isiB expression and [Fe]/[P0 4] we observed allows us to determine a critical

[Fe]/[P0 4] value that is associated with a shift to Fe limitation, which additionally

validates the parameters used in model predictions. The close relationship between both

the [Fe] value in the field and the [Fe'] value from the laboratory experiments associated

with the onset of Fe limitation suggests that most if not all of the dissolved Fe in the open

ocean is available to Trichodesmium regardless of whether or not it is bound to organic

ligands. These results mark an improvement of our understanding of what form of Fe is
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controlling Trichodesmium N2 fixation in the open ocean as well as provide the first

empirical data for where Fe limitation of Trichodesmium N 2 fixation is occurring.
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Table 1. Primers used in Gene Expression Experiments
Target
Size

Primer Name 5' Primer 3' Primer (BP)

isiB QPCR
(Ten)

AAGTGACTGGGCTGGTTTC CAATAGTAGTACCTCCTTTCTCAG 167

isiB QPCR AAAGTGACTGGAGTGGTTTC
(Tery)

rnpB QPCR GAATCTATGAACGCAACGGAAC
(Ten)

rnpB QPCR ACCAACCATTGTTCCTTCG
(Tery)

GTAGTACCTCCAAGCCCA

ACCAGCAGTGTCGTGAGG

CAAGCCTGCTGGATAACG
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Table 2. Near surface (10-15m) data from stations on all three cruises where isiB
expression of Trichodesmium was measured. Standard deviation of triplicate technical

replicates are given for [Fe] and and the isiB/rnpB ratio and [P0 4] from OC399-4 (S)

and duplicate technical replicates for [P0 4] from SJ0609 (E) and KM0701 (WP). BDL

= isiB expression was below detection level in the sample.
Lat

25.40

22.80

20.00

20.00

20.00

20.00

20.97

23.52

12.40

6.60

3.30

0.01

1.80

5.60

7.50

0.37

-9.25

-12.58

-15.89

-15.98

-19.23

-21.62

-25.67

-29.04

Long

-61.15

-58.93

-57.00

-52.97

-49.73

-45.90

-46.90

-49.68

-27.20

-30.80

-32.90

-34.90

-38.50

-45.60

-49.20

-179.64

170.00

169.86

169.72

169.77

169.58

168.66

165.42

164.34

Fe (nM) P04 (tM) Log (Fe/P)

1.17 +/- 0.04

1.04 +/- 0.08

1.15 +/-0.09

1.00 +/- 0.12

1.11 +/- 0.04

1.01 +/- 0.04

0.94 +/- 0.06

0.82 +/- 0.05

0.74 +/- 0.12

0.61 +/- 0.02

0.09 +/- 0.00

0.14 +/- 0.01

0.10 +/- 0.00

0.67 +/- 0.03

1.89 +/- 0.03

0.11 +/- 0.04

0.20 +/- 0.04

0.11 +/- 0.03

0.29 +/- 0.03

0.63 +/- 0.02

0.95 +/- 0.02

0.50 +/- 0.08

0.09 +/- 0.02

0.24 +/- 0.02

WP26 -32.42 159.09 0.20 +/- 0.02

0.0037 +/- 0.0049"

<0.014'

0.0136 +/- 0.0049"

0.0017 +/- 0.0001'

0.002 +/- 0.0004'

0.0058 +/- 0.0049"

0.0016 +/- 0.0004'

0.0033 +/- 0.0004'

0.045 +/- 0.000

0.016 +/- 0.002

0.037 +/- 0.002

0.076 +/- 0.004

0.031 +/-0.009

0.035 +/- 0.010

0.068 +/- 0.009

0.324 +/- 0.000"'

0.168 +/- 0.000"'

0.133 +/- 0.002"'

0.169 +/- 0.000"'
0.148 +/- 0.003"'

0.137 +/- 0.004"'

0.073 +/- 0.000"

0.102 +/- 0.002"'

0.050 +/- 0.002"'

0.084 +/- 0.002"'

-0.50 +/- 0.57

-0.13 +/- 0.43

-1.07 +/- 0.16

-0.23 +/- 0.06

-0.26 +/- 0.09

-0.76 +/- 0.37

-0.23 +/- 0.11

-0.61 +/- 0.06

-1.79 +/- 0.07

-1.41 +/- 0.06

-2.63 +/- 0.03

-2.74 +/- 0.02

-2.49 +/- 0.13

-1.71 +/- 0.13

-1.56 +/- 0.06

-3.48 +/- 0.16

-2.93 +/- 0.09

-3.08 +/- 0.12

-2.76 +/- 0.05

-2.37 +/- 0.02

-2.16 +/- 0.02

-2.17 +/- 0.07

-3.04 +/- 0.10

-2.32 +/- 0.04

-2.623 +/- 0.05

Log (isiB/rnpB)

-1.96 +/- 0.02

-2.30 +/- 0.02

-2.34 +/- 0.04

BDL

-3.42 +/- 0.09

BDL

-2.21 +/- 0.02

-2.58 +/- 0.09

-1.62 +/- 0.02

-1.99 +/- 0.02

-1.40 +/- 0.04

-1.31 +/- 0.02

-1.01 +/- 0.02

-1.80 +/- 0.04

-1.54 +/- 0.04

0.33 +/- 0.05

-1.98 +/- 0.02

-1.72 +/- 0.01

-0.14 +/- 0.04

-0.70 +/- 0.05

-1.66 +/- 0.03

-1.29 +/- 0.02

-0.56 +/- 0.05

0.13 +/- 0.04

-0.63 +/- 0.03
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Station

S4

S6

S7

S8

S9

S10

Sli

S12

E13

E15

E16

E17

E18

E20

E21

WP 10

WP14

WP15

WP16

WP16a

WP 17

WP 19

WP20

WP21

% Tery

0.05

0.03

0.01

0.00

0.00

0.00

0.24

0.00

0.00

0.00

0.00

0.00

0.00

0.52

0.14

58.81

0.00

0.05

0.39

16.94

0.14

1.13

0.41

0.00

0.02

'PO4 values from Jakuba et al 2008, PO4 values in Dyhrman et al 2006 and Jakuba et al 2008, "'PO4
values from Hynes et al, in press.
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Figure 1. Map of cruise tracks. A. OC399-4 (stations 4-12) in the Sargasso Sea in
March 2004. SJ0609 (stations 13-21) east-to-west transect across the equatorial
Atlantic Ocean in July 2006. B. KM0701 north-to-south transect through the
Western Pacific Warm Pool during January and February 2007.
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Figure 2. Dissolved (< 0.4 mrn filtered) Fe and PO 4 measured in surface
seawater samples from the Atlantic Ocean (A) and Pacific Ocean (B). Station
numbers correspond to stations locations listed in Table 2 and plotted in Figure

1. Error bars represent the standard deviation of duplicate (PO4) and triplicate
(Fe) samples.
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Figure 3. Relationships between log(isiB/rnpB) and both dissolved [Fe] (A) and

log([Fe]/[PO 4]) (B). A dashed line is placed on each plot at the value

log(isiB/rnpB) = -1.2, which is the value associated with a 50% reduction in N2

fixation in Trichodesmium from previous work (Chappell and Webb submitted).

The solid line in (B) represents the linear regression of log([Fe]/[PO 4]) verses

log(isiB/rnpB) with the dashed curves on either side representing the 95% confi-

dence intervals. In both plots, error bars represent the standard deviation of

triplicate analyses.
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Figure 4. Relationship between log (isiB/rnpB) and N2 fixation rates measured at
two stations from the Sargasso Sea (SS7, SS10) and five stations from the West-
ern Pacific (14, 15, 16, 20, 21). The linear relationship between log(isiB/rnpB)
and nmol N/hr/jig Chl for just the Western Pacific Ocean samples is plotted as a
solid line. The same relationship including the data from Sargasso Sea is plotted
as a dashed line.
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CHAPTER 5. SUMMARY

5.1 SUMMARY

This thesis sheds light on the role that iron (Fe) plays in controlling nitrogen (N)

fixation in Trichodesmium as well as providing data to increase our understanding of Fe

chemistry in the understudied region of the southwestern Pacific Ocean. It is the first

demonstration using a calibrated molecular method to show Fe limitation of

Trichodesmium in the field. As is generally the case with a study of this kind, in addition

to answering questions, the data points to new questions that need to be answered.

The data presented in Chapter 2 is a contribution to the growing dataset of

dissolved Fe and Fe speciation in the surface ocean. It covers a region where there is

limited data on trace metal concentrations, which receives very low dust deposition

(Duce and Tindale, 1991; Jickells, 1999; Wagener et al., 2008). The profiles of dissolved

Fe ([Fe]) are well in line with previous work showing low Fe (-0.2 nM) in the surface

ocean, a small subsurface maximum in Fe (-0.4 nM) (Bruland et al., 1994; Wu et al.,

2001; Boyle et al., 2005) and an increase in Fe below the euphotic zone to values that can

range between 0.4 nM and 1 nM (Bruland et al., 1994; Johnson et al., 1997; Wu et al.,

2001; Boyle et al., 2005; Johnson et al., 2007). Values for both the total amount of ligand

present ([L] = 0.44 - 2.2) and the conditional binding constant (KFe',L = 1011.7 - 1012.9) are

within the range of reported values from other open ocean studies of [L] ranging from

0.33 - 2.5 nM and KFe',L ranging from 1010.6 - 1013.9 (Rue and Bruland, 1995; van den

Berg, 1995; Rue and Bruland, 1997; Boye et al., 2001; Powell and Donat, 2001; Boye et

al., 2003; Croot et al., 2004; Boye et al., 2005; Cullen et al., 2006; van den Berg, 2006;

Buck and Bruland, 2007; Kondo et al., 2007; Kondo et al., 2008; Rijkenberg et al., 2008).

While calculations of [L] appear to be associated with a small range of values,

calculations of KFe',L appear to be much more variable as is evident from the wide range

of values reported in the literature. It is unclear whether these differences are a result of

true variability of the stability constants of ligands present in given samples or have to do

with analytical or mathematical differences in how this value is determined. Given the

importance of this parameter to determining the value for Fe', the inorganically bound
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fraction of dissolved Fe that is though to be an important variable in determining Fe

bioavailability, accurate measurements of KFe',L are critical. A complicating factor in

comparing Fe speciation data from different studies is that there are many competitive

ligands used to generate the data and forms of mathematical analysis that people use to

interpret their data and there has not been significant effort made to standardize these

measurements. The intercalibration of Fe speciation methods, which is proposed as part

of GEOTRACES, should help alleviate any concerns about the ability to compare results

between groups.

That caveat aside, by comparing the multitude of Fe speciation studies that have

been done throughout the world's oceans, it is becoming apparent that there are specific

relationships governing ligand concentration in the surface ocean, which appear to be

related to the amount of total dissolved Fe ([Fe]) present in a given sample and unrelated

to biological parameters (Buck and Bruland, 2007; Chapter 2). This relationship suggests

that at higher values of [Fe], biological factors are less involved in controlling [L] than

their role as siderophores might imply. This does not mean that Fe binding ligands are

not siderophores; it could have to do with different factors such as association with

colloidal Fe and/or the type of organic ligand present resulting in a protection from UV

degradation of ligands. More data on the composition of ligands in the field such as the

recent study in the North Atlantic looking at ferrioxiamines (Mawji et al., 2008) in

addition to other ligand classes could help answer if ligand composition is the

predominant factor governing this relationship. In addition, studies looking at UV

degradation of ligands in the field focusing on the colloidal verses soluble fraction of the

Fe-ligand pool could also help answer the question of what is driving the relationship

between [Fe] and [L] in samples with higher Fe.

Another factor that is apparent from the data presented in Chapter 2, is that the

inorganically bound fraction of Fe ([Fe']) predicted based on these data is vanishingly

small (<1 pM). It is much lower than the value of [Fe'] associated with Fe limitation in

many species of phytoplankton (Brand, 1991; Chapter 3). In light of recent work

suggesting that many organisms are capable of taking up Fe from organic ligands
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(Hutchins et al., 1999; Maldonado and Price, 2001; Soria-Dengg et al., 2001; Achilles et

al., 2003; Shaked et al., 2005), the usefulness of determining bulk Fe speciation in field

samples to approximate bioavailable Fe is called into question. It may be more useful to

improve methods to identify and measure the concentration of specific ligands, similarly

to what has recently been done with ferrioxiamines (Mawji et al., 2008) and test the

bioavailability of Fe bound to them to various phytoplankton groups, although that is a

very labor-intensive proposition.

Limited information regarding the bioavailability of different forms of Fe was one

of the driving reasons behind the goal of developing a molecular method to assess Fe

limitation of Trichodesmium in the field. Because of research suggesting that there were

differences in N2 fixation rates between different species (Carpenter et al., 1993) and a

growing body of work separating the cultured representatives of the Trichodesmium

genus into two distinct clades (Orcutt et al., 2002; Annette Hynes, personal

communication), merely looking at Fe limitation in Trichodesmium erythraeum seemed

unlikely to ensure that the method would prove useful in the field. The work presented in

Chapter 3 of this thesis shows clade-specific responses to growth under different Fe and

temperature conditions. In light of results from Chapter 4 that indicate that

representatives of the Trichodesmium tenue (Ten) clade are the most abundant or at least

the most active in the open ocean, it is important that future work to evaluate how

different physical and chemical factors affect Trichodesmium focus on representatives of

the Ten clade in addition to the T. erythraeum (Tery) clade.

In addition to evaluating the differential responses to Fe and temperature between

the two phylogenetic clades of Trichodesmium, Chapter 3 included the development of a

calibrated molecular method to assess clade-specific Fe limitation of N2 fixation. This is

the first calibrated molecular method for Fe limitation and the first method to evaluate Fe

limitation that enables for the distinction between the two clades. In addition to the gene

predicted to encode for flavodoxin, isiB (Leonhardt and Straus, 1992), which is the gene

used in the molecular assay, two other genes that could potentially be of interest in future

molecular assays were identified. One, idiA, is predicted to encode for a protein involved
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in a high-affinity ATP-driven Fe (III) uptake system (Michel et al., 1996), and the other,

feoB, is predicted to encode for a protein involved in Fe (II) uptake (Kammler et al.,

1993). The data in Chapter 3 showed that these two genes were also expressed during Fe

limitation of axenic T. erythraeum (IMS 101) and well conserved across the

Trichodesmium genus. Developing a similar qPCR method for one or both of these genes

could provide additional information about the timing and control of transcription of the

Fe stress response. For example, one gene might be turned on earlier than the others with

the onset of Fe limitation or turned off with a different response time following the

alleviation of Fe limitation. An experiment looking at how the expression of one or all of

the genes responds to long-term Fe deprivation, beyond what is necessary to draw down

Fe that has been stored within the cell, could provide useful information about how

Trichodesmium adapts to growth in low Fe environments. While these additional

experiments could provide useful information, they were unnecessary to accomplish the

goal of this work, which was to design a clade-specific RNA normalized assay for Fe

limitation of Trichodesmium N2 fixation and use it to assess Fe limitation of

Trichodesmium in the field.

The ability to distinguish between the two clades, enabled not only the

quantification of the levels of Fe limitation associated with N2 fixation in the field, but

also the determination of the relative contribution of the two clades to the active

population of Trichodesmium. The field data indicates that the Ten clade is the dominant

active form of Trichodesmium in the field. One important caveat to this conclusion is

that the samples focused on Trichodesmium colonies, which were collected in a manner

that selected against the collection of individual trichomes. It may be that looking at the

cDNA extracted from a specific volume of water and collected using a filter that would

catch free trichomes in addition to colonies would indicate that the Tery clade is

quantitatively important. If nothing else, the data suggests that the colonial forms of

Trichodesmium in the open ocean areas sampled in this study are from the Ten clade. In

the future, it might also prove useful to compare the relative messenger RNA (mRNA)

data that the assay provides with a quantitative measurement of DNA from these stations.
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This could be used to determine if Tery clade representatives are present in a dormant

form or at very low levels compared to the Ten clade in most of the open ocean, which

may enable the Tery clade to become a more significant component of the

Trichodesmium population when conditions change. Comparing that information with

auxiliary data such as nutrient and Fe concentrations could help determine which factors

are controlling niche differentiation between the clades.

The data in Chapter 4 represents the first survey quantifying Fe limitation of N2

fixation of Trichodesmium in open ocean gyres. The data supports model predictions that

there is widespread Fe limitation of Trichodesmium N2 fixation in the Pacific Ocean

(Moore et al., 2004). In comparing results of the [Fe] value associated with Fe limitation

in the field with the [Fe'] value that found to be limiting in the lab, it appears that all the

dissolved [Fe] may be available to Trichodesmium, including the Fe that is bound to

organic ligands. In addition, by evaluating isiB expression in regions of varying Fe and

phosphorus (P) concentrations and not just focusing on areas believed to be Fe stressed, it

appears that there is a relationship between isiB expression and Fe:P. This relationship

allowed for the determination of a critical Fe:P value that defines where Fe limitation of

Trichodesmium commences. This value is in good agreement with the value that was

used to predict that Fe was the controlling factor in the Pacific Ocean (Moore et al.,

2004). In light of this data suggesting that Fe/P is what drives the transition to Fe

limitation, a corresponding method looking at P limitation would help determine if there

are areas where co-limitation of Trichodesmium populations is occurring and what the

boundaries of Fe/P are that are associated with Fe-P co-limitation.

In conclusion, this thesis has provided data on Fe chemistry for a region where

there are few measurements. It has confirmed that Fe ligands are prevalent even in low

dust regions, though the data in Chapter 4 suggests that these measurements may prove

unnecessary to attempts to predict Fe limitation of Trichodesmium. Determining that

there are differences in the way that representatives from the two phylogenetic clades

respond to chemical and physical factors and that representatives of the Ten clade are the

predominant active Trichodesmium spp. in the open ocean are discoveries that will need
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to be taken into account in future studies. The development of a method that can be used

to assess Fe limitation of Trichodesmium in the field in a quantitative manner has

provided empirical data that support model predictions of Fe limitation of

Trichodesmium. Combining this method with a similar method designed to look at P

limitation would be the best way to evaluate where these two chemical factors are

controlling Trichodesmium N2 fixation and to answer questions regarding Fe-P co-

limitation. Developing similar methods for other important groups of phytoplankton

could help answer questions about where Fe limitation is truly important in the ocean

without having to deal with complications associated with what form of Fe is

bioavailable to a given species.
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APPENDIX A: TABLE OF FE SPECIATION RAW DATA

Table Al. Selected raw data from Chapter 2 titrations

Station 11 15m

Feto,, (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL

0.11 0.7 0.0004 0.05 125.5 0.0080
0.61 2.0 0.0011 0.43 409.4 0.0024
0.86 5.1 0.0027 0.41 152.0 0.0066
1.61 11.0 0.0058 0.64 110.1 0.0091
3.11 27.0 0.0142 0.73 51.2 0.0195
5.11 49.0 0.0258 0.79 30.6 0.0326
8.11 84.0 0.0443 0.71 16.0 0.0625

Station 13 15m

Fe,,total (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL

0.32 1.5 0.0013 0.09 66.8 0.0150
0.57 1.5 0.0013 0.34 252.3 0.0040
0.82 3.5 0.0031 0.29 92.2 0.0108
1.07 4.2 0.0038 0.43 115.3 0.0087
1.82 9.8 0.0088 0.34 39.2 0.0255
3.32 19.0 0.0171 0.46 27.2 0.0367
5.32 33.0 0.0296 0.36 12.3 0.0814

Station 14 15 m

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL

0.20 0.4 0.0002 0.16 696.1 0.0014
0.45 1.1 0.0006 0.34 547.2 0.0018
0.70 1.6 0.0009 0.54 599.2 0.0017
0.95 2.4 0.0014 0.72 527.3 0.0019
1.20 3.4 0.0019 0.87 452.6 0.0022
2.20 8.3 0.0047 1.41 299.0 0.0033
3.20 19.0 0.0108 1.39 129.3 0.0077
8.20 72.0 0.0409 1.37 33.5 0.0298
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Table Al. Continued

Fetotal (nM)

0.61
0.86
1.11
1.36
1.61
2.61
3.61
5.61
8.61

Current (nA)

0.6
1.5
3.1
3.6
6.0
8.9

17.0
35.0
63.0

Station
Fe'

0.0004
0.0010
0.0021
0.0024
0.0040
0.0059
0.0113
0.0233
0.0419

16a 7m
FeL

0.54
0.69
0.77
0.96
0.94
1.62
1.72
1.72
1.62

FeL/Fe'

1364.5
696.2
372.0
401.6
236.8
274.2
152.4
74.1
38.6

Fe'/FeL

0.0007
0.0014
0.0027
0.0025
0.0042
0.0036
0.0066
0.0135
0.0259

Station 19 15m

Fetota, (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL

0.50 0.8 0.0004 0.43 1122.0 0.0009
0.75 1.5 0.0007 0.63 864.9 0.0012
1.00 1.0 0.0005 0.92 1897.4 0.0005
1.25 4.4 0.0021 0.89 419.6 0.0024
2.00 12.0 0.0058 1.03 177.2 0.0056
5.50 54.0 0.0261 1.14 43.4 0.0230

8.50 93.0 0.0450 0.98 21.9 0.0458

Station 26 15m

Fetota,,,,(nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL

0.26 0.2 0.0001 0.24 2324.2 0.0004
0.51 0.5 0.0003 0.47 1784.0 0.0006
0.76 1.5 0.0008 0.63 801.5 0.0012
1.01 2.9 0.0015 0.76 498.5 0.0020
1.26 5.5 0.0029 0.78 270.7 0.0037
1.76 10.0 0.0052 0.89 169.2 0.0059
2.26 17.0 0.0089 0.77 86.9 0.0115
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APPENDIX B: DEPTH PROFILES FROM SJ0609 (CHAPTER 4)

Table 1. Dissolved (<0.4 tm filtered) Fe for Station

16 (Latitude: 3.30 Longitude: -32.90), Station 17

(Latitude:0.01 Longitude: -34.90) and Station 18

(Latitude: 1.80 Longitude: -38.50).
Station Depth (m) Fe (nM) Stdev

16 15 0.09 0.00
16 30 0.16 0.00
16 60 0.17 0.00
16 90 0.22 0.01
16 120 0.72 0.00
16 150 0.86 0.00
16 220 0.70 0.00
16 250 0.77 0.02

17 12 0.14 0.00
17 30 0.08 0.01
17 60 0.18 0.09
17 90 0.49 0.02
17 150 0.56 0.01
17 290 0.99 0.01

18 15 0.10 0.00
18 30 0.24 0.00
18 60 0.23 0.01
18 90 0.32 0.02
18 120 0.67 0.00
18 150 0.55 0.02
18 220 0.54 0.01
18 290 0.49 0.00
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Figure 1. Dissolved Fe (< 0.4 gm filtered) depth profiles from three stations from
cruise SJ0609. (A) Station 16. (B) Station 17. (C) Station 18. Error bars are
standard deviations of triplicate analyses.
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