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Abstract

In this thesis, we describe various experiments on the ranking function of the Google
Search Appliance to improve search quality. An evolutionary computation framework
is implemented and applied to optimize various parameter settings of the ranking func-
tion. We evaluate the importance of IDF in the ranking function and achieve small
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Chapter 1

Introduction

1.1 Ranking in web and enterprise search

In the past few decades, there has been an explosion in the amount of content available

on the World Wide Web (WWW). Navigating on the web and finding necessary

information have become extremely important tasks as the web grows and the number

of web pages a person needs to use quickly grows out of the manageable range of a

person's memory. Starting from directory services provided by companies such as

Yahoo, the task was handed over to automated search engines by Google, Yahoo,

Microsoft, etc. As people get used to search tools available on the web, they also

look for similar ways to find information in private repositories such as companies'

private documents. In some sense, these repositories are similar to the public web

as companies put their documents on internal websites with a link structure among

documents just like on the web. In some other ways, however, private repositories are

much more heterogeneous than the web with a lot of documents stored in databases

and in local files without any link between them.

The link structure of private corpora is different from that of the web in many

respects. Unlike in the web, there is no artificial effort to boost the ranking of certain

documents so there are much fewer spammy links in these corpora. On the other

hand, in web search, links from a different website usually give a better indication

of popularity than links from the same website. In private corpora, such distinction



usually does not exist as documents are spread out on many different machines in

some arbitrary manner and sometimes on-site links are actually equally important as

off-site links. These and other structural differences make searching in an enterprise

setting an interesting problem, which requires re-evaluation of the contributions and

relative importance of link-based signals and document-based signals and the ways

to combine them into a final score for the ranking function. Most importantly the

way the signals are combined should work well across many different types of corpora

with different link structure characteristics and sizes.

As companies put more and more documents into searchable formats, an interest-

ing challenge arises. The private corpora have grown quickly beyond the scope one

single machine can handle and require being divided into multiple parts to be handled

by multiple machines. This is known as the federated search problem, where mul-

tiple machines serve multiple parts of the same corpus with the ability to combine

the search results quickly and accurately. To reduce communication cost, improve

latency and ease maintenance and extensibility, it is desirable for each machine to

be able to answer queries while not knowing about the rest of the corpus. There-

fore, signals based on the whole corpus becomes less preferable to alternatives with

similar performance but easier to maintain. One such signal is the inverse document

frequency (IDF), which is based on the number of document in the corpus containing

each search term. When documents are spread out on many machines, IDF can be

skewed toward certain parts of the corpus, so the system incorrectly favors results

from those particular parts of the corpus.

Generally, a search ranking function computes the scores based on the web struc-

ture of the whole corpus and the matches between the content of the documents

and the query terms. For the matches between the content of the documents and

the query terms, existing systems overwhelmingly use the "bag-of-words" model with

the frequency of occurrences as the sole measure of relevancy. Recently, Troy and

Zhang [37] came up with a new signal called Chronological Term Rank (CTR) based

on the position of the occurrences in the document and achieved some improvements

on a simple system tested on several TREC tasks. This is a promising approach as it



is based on information orthogonal to the traditional term frequencies and it is worth

investigating further on more sophisticated systems on many different query types.

1.2 Our contribution

In this thesis, we attempt to address the three problems described in the previous

section for the ranking function of the Google Search Appliance by re-evaluating the

contributions of various signals and the ways to combine them in the ranking function.

Intuitively almost all signals by themselves have some discriminatory information on

the relevancy of a document against a query. However, it is non-trivial to combine

them fairly with respect to their contributions and prevent noisy signals from ham-

pering the accurate ones. For this purpose, we have implemented an evolutionary

strategies framework that can evaluate many parameter settings in parallel and given

a particular ranking function, optimize the parameter settings for that function.

Effect of IDF on the ranking function We evaluate the impact of the IDF on

the ranking function by comparing the performance of the system with and without

IDF on various TREC corpora and also several side-by-side experiments. While the

IDF is a good way to compare the relative importance of the query terms, it can be

noisy, especially when the corpus is split into multiple separate parts e.g. in federated

search. Additionally, the contribution from the IDF is reduced for the AND queries

where all query terms must be present for a document to be considered: the system

does not have to choose between documents with only occurrences of the one query

term and documents with only occurrences of another query term. The contribution

from the IDF can also be achieved partially with a list of stop words i.e. words

providing little discriminatory information such as "an", "and", "in", etc. It turns

out that the contribution from IDF is marginal at best on medium size corpora of

a million documents and somewhat harmful on small corpora. We achieve a modest

improvement on a small task while maintaining the same level of performance on

bigger corpora.



Methods for combining different signals We look at the relative importance of

the web-based score and the content-based score and the ways to combine these scores

into a final score. We explore the use of impact transformation [2] in combining them

as well as various variations with cutoffs and varying behavior on different parameter

ranges. Interestingly, simple linear combination functions work almost as well as more

complicated quadratic ones with varying behavior on different parameter ranges even

though there are a small number of queries where quadratic functions work slightly

better.

Impact of position-based signals We study the impact of position-based signals

including the CTR and the length of the shortest snippet containing all the search

terms. Previously, the impacts of these signals were studied on a simple system where

the way the occurrences are formatted is not taken into account i.e an occurrence in

a big font is considered the same as an occurrence in a small font. In this thesis, we

explore the contributions of these signals in the context of AND queries on the Google

Search Appliance, which has a sophisticated weighting scheme taking into account

the formatting of the occurrences. Our experiment results are mixed with improved

performance on some tasks but worse performance on other tasks. We also compute

upper bounds on the contributions of these signals. These bounds indicate that while

they might not help in general, it is possible that they can provide some indication

of relevance for home page queries.

1.3 Structure of the thesis

In chapter 2, we review the structure of a web search system and provide a broad

overview of the major approaches to the web search problem. Our discussion is mostly

around the ranking component as it is arguably the heart of the system and also the

focus of our research. We then describe the various signals going into the ranking

function and the three major approaches of combining those signals into a final score.

Finally, we discuss our corpora, the evaluation metrics, and the relative importance



of the metrics on different corpora.

Chapter 3 presents our system for running experiments and selecting weights using

evolutionary strategies. We describe our setup for parallelized evaluation and our use

of evolutionary strategies to optimize the parameter settings.

Chapter 4 investigates the impact of IDF in the topicality score. In this chapter,

we compare the performance of two settings: one optimized for combining with IDF,

and one optimized for not using IDF, on our evaluation corpora. Besides the overall

metrics, we also look at individual queries where one setting performs better than the

other and vice versa and the reason why it happens.

Chapter 5 looks at the use of impact transformation and various combining func-

tions for combining link structure measures and content-based scores. We start by

describing our experiment and evaluation setup. We then describe our findings by

comparing the behavior of the scores and the optimal combining function in different

parameter ranges.

Chapter 6 studies the effect of position-based signals including the first hit position

and the length of the shortest snippet containing all the query terms. We present

our experiment results using these signals with and without using IDF. Then we

discuss the optimal reranking using these signals, which is an upper bound for the

improvement gain of any method combining the existing score and the position-based

signals.

In chapter 7, we discuss the main ideas and contributions of the thesis and direc-

tions for future research.
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Chapter 2

Related Work

In this chapter, we describe the organization of a generic web search system and the

related works in search ranking. Section 2.1 describes the components of a search

system: the crawler, the indexer, and the query processor. Then we give an overview

of search ranking, and the various signals for ranking in section 2.2. In section 2.3,

we go over several ranking signals based on the content of the documents. In section

2.4, we describe the signals based on the links between documents. Then in section

2.5, we go over three main models in search ranking: the vector space model, the

probabilistic ranking model, and the language mixture model. Section 2.6 describes

the ways to combine different signals into a single final score. Finally in section 2.7,

we describe our evaluation metrics, and our evaluation corpora and query sets.

2.1 A web search system

A web search system is a system for organizing and retrieving information using text

based queries. The user provides the system with a query consisting of several words,

and the system has to return a list of documents ordered by how relevant they are

with respect to the query. In big corpora of documents, there could be thousands (or

even hundred thousands) of documents matching a particular query. Therefore, the

order in which the documents are presented to the user is crucial to the usefulness of

the system. The part producing the ordering is the main focus of this thesis.



Firstly, we look at the general organization of a web search system, and in partic-

ular, the Google Search Appliance. Generally, a search system is a complex system

with many components divided into three parts: a crawler, an indexer, and a query

processor. The crawler is used to retrieve all documents in the corpora and prepare

them to be indexed. Usually the crawler is given several starting points and then

follows the links on the web pages to find the rest of the documents. In an enterprise

setting, the crawler also needs to be able to extract documents from databases and

files on hard drives. In the Google Search Appliance, there is a connector framework

allowing the crawler to read documents from databases and files. The indexer reor-

ganizes information extracted from the documents to produce search indices, which

allows finding relevant documents quickly. The query processor takes queries from

users and finds matching documents using the indices produced by the indexer. It

also computes the relevancy of the matching documents and presents to the users the

documents sorted in decreasing relevancy order. In the subsequent sections, we will

explore these components in more details.

2.1.1 The crawler

The crawler explores the documents on the web through web links. It is given a set

of seed pages and gather the rest of the documents by following the hyperlinks in the

web graph. It usually maintains a priority queue of pages, which determines the order

they are to be downloaded [8]. Page priorities are determined by some function based

on the importance of the document in the web graph and also parameters provided

by the user. For example, on the Google Search Appliance, the user can set how often

they want particular documents to be re-crawled. Once a page is downloaded, the

crawler has to send its content to the indexer to extract the links and insert the links

into the priority queue if needed. To maintain the cached content of the documents

up to date, downloaded document are periodically reinserted into the priority queue

to be re-downloaded. The rate at which a document changes in the past can also

be factored into its priority. In an enterprise setting, a crawler also need special

connectors to extract documents from databases and files.



2.1.2 The indexer

The indexer parses the information contained in each web page and reorganizes it in

a format amenable to searching. Typically, the page is broken down to individual

tokens. Each token can be a term and sometimes a phrase. The indexer creates

an index for each token, called a posting list, containing all the IDs (postings) of

documents with that token. The IDs are stored in increasing order. In the record

of a document in the posting list, all occurrences of the token are also listed in

increasing order. There are two ways to organize the posting lists. The first way is to

store information about each document all in the same place. This organization has

an advantage of allowing scoring a document after reading the posting list exactly

once. The second way is to store all the IDs together and the secondary fields later.

This organization allows reading the IDs quickly, which makes several operations on

posting lists faster.

Beside retrieving all documents containing a particular query term, posting lists

must also support more sophisticated operations. In many cases, the user looks for

documents not containing only one query term but many of them. These queries

require computing the intersection of many posting lists, which can be computed

quickly when the lists are sorted. Storing the IDs of the documents separately from

the secondary fields also makes this operation faster because the list reader only has

to read the IDs instead of everything. In the case of phrase queries (e.g. a user

looks for the phrase "computer science" but not individual words "computer" and

"science"), we also need to compute the "intersection" of posting lists at the single

document level.

Beside the posting lists, there is a dictionary of all the distinct tokens pointing

to the corresponding posting lists. Statistics about each term (e.g. number of oc-

currences, inverse document frequency, etc) are also maintained to facilitate scoring.

Additionally, the indexer also takes the links it extracted from the pages and feeds

back to the crawler so that new pages can be explored.



2.1.3 The query processor

The query processor parses the users' queries and matches them against the docu-

ments. In this thesis, we are only concerned with the non-iterative model, where there

is no additional feedback or refinement from the user after the query is answered. This

is the situation with web search system without cookies or mechanisms to remember

user's past actions.

A query is usually parsed as follows. In languages with no apparent word boundary

like Chinese, the query needs to be broken down to terms. Then, typically, the query

is expanded by replacing each term with a disjunction of several synonyms. Any

web page matching the query (or the expanded query) is then scored and the list of

relevant documents are returned to the user in the order from most relevant to least

relevant.

There are many possible ways to answer a particular query, each with different

advantages and disadvantages. Typically in the literature (e.g. see [2]), all documents

containing at least one query term are considered. This approach has an advantage

of getting high recall rate because even if all but one of the query term does not

occur in the relevant document, the system can still find that document. On the

other hand, since it considers a lot of candidate documents, the precision is clearly

affected. The other way is to only consider documents containing all the query terms

(or their synnonyms). In this setting, the trade-off between recall and precision is

controlled by the aggressiveness of the query expansion component. If the queries

are expanded a lot with many synonyms, the system might still find the relevant

documents in many cases but it might run into a problem with precision just like in

the other approach. If the queries are expanded cautiously, sometimes the system

might miss out on the relevant documents but the precision is much improved in

many other queries. In this thesis, we are only concerned with the second strategy

i.e. only documents containing all the query terms are retrieved and ranked. This is

the default setting on the Google Search Appliance and many web search engines e.g.

Google, Yahoo, Live, etc but they all support the other setting as well.



2.2 Document ranking

A ranking function determining the relevancy of a document to a query is the heart of

the query processor. As explained in the previous section, it determines the usefulness

of the whole system in big corpora where there are many documents matching the

given query. Typically a ranking function computes the score of a document based

on both signals computed from the document's content (page-dependent signals) and

signals computed from the content of other documents or the structure of the web

graph (page-independent signals). Examples of page-dependent signals are how often

a query term occurs in the document, where the first occurrence of a query term is

in the document, etc. Examples of page-independent signals are the pagerank of a

page, the number of hyperlinks to a page, etc. We will describe these signals in more

details in the subsequent sections.

2.3 Page-dependent signals

In this section, we describe the signals computed from the content of the document in

consideration. The score of a document is usually computed based on the occurrences

of the query terms in the document as well as in the whole corpus. An occurrence of

a query term is not strictly the exact same word as appeared in the query but it can

possibly be synnonyms or other related words. For example, the word "computers"

can be counted as an occurrence for "computer". One way for expanding a query

term to related words is to reduce words to their linguistic stems using e.g. the

Porter stemmer [28] and compare the stems of the words in the document with the

stems of the words in the query. For example, the words "cut" and "cutting" share

the same stem of "cut" and can be treated as the same word from the point of view

of the ranking function.

A popular way for the ranking functions to handle documents is to model them as

"bags of words" i.e. the order of the words in a document is ignored and every word

occurs independently in the document according to some hidden distribution. For



example, there is no distinction between the documents "test system" and "system

test". The advantage of the "bag of words" model is the simplicity of the model,

allowing the system to build compact indices and answer queries quickly. In this

section, we describe the traditional "bag of words" model with improvements taking

into account short phrases, document formatting, and term positions.

2.3.1 Weighted hit counts

A hit is an occurrence of a word in a document. Intuitively, the way the word

is formatted (e.g. bold, big font, etc) provides hints about how relevant it is to

the content of the page. Therefore, hits are generally weighted depending on their

formatting. There are several types of text in a typical web page with different levels

of importance.

* Title/Heading text: Hits in the title of the document are generally the most

important ones since they are supposed to capture the meaning of the whole

document. The heading text are also important as they usually capture the

meaning of a significant part of the document.

* Alternative text for visual objects: This text is supposed to convey the same

information as the visual objects on machine without the required graphics

capabilities.

* Formatted text: Hits in bigger fonts are also more important than hits in smaller

fonts. There are many ways to determine what constitute bigger fonts and what

constitute smaller fonts. They could be constants set throughout the corpora

or they could be normalized for each document individually (e.g. only 10% of

the largest text in a document can be considered big). Bold or italic text also

deserves higher weights as it usually contains important information.

* URL: URL is an important source of information. Intuitively, if a word occurs

in the URL, it usually contains important information about the content of the

whole page. In addition to hits, the URL also contains information about the



importance of the document. Top level documents (and hence, most important)

usually have short URL so the length of the URL is also a signal about the

importance of the page regardless of the query.

* Link text: In some sense, link text is not quite the content of the document

containing it because it is supposed to describe the document it links to instead.

Therefore, link text usually gets a lower weight than the rest of the text.

2.3.2 Phrases

One weakness of the "bag of words" model is that it does not take into account the

relative location of the occurrences of the search terms in the documents. Counting

occurrences of phrases is a way to partially rectify this problem. There are many

different types of phrases with possibly different scoring scheme. The most common

type is bi-grams of words occurring in both the document and the query. Another

kind of phrases is the bi-gram of two query terms swapped in the document. More

generally, phrases can also consist of pairs of query terms occurring near each other

but not immediately next to each other.

There is another advantage of counting phrases, especially when the inverse docu-

ment frequency (IDF) is not available. Sometimes in the query, there are terms that

are not as discriminative as other terms because they appear in a lot of documents.

However, phrases are weighted much more than single word, so documents containing

the non-discriminating terms in the proximity of discriminating terms will get higher

scores than documents with these terms in separate places.

Like single word occurrences, a phrase gets higher weights if it appears in more

important text such as the title, the section headings, etc.

2.3.3 Term position signals

There has been a lot of work on incorporating term positions, especially the proximity

information of the terms, into the "bag of words" model to improve the retrieval

effectiveness [13, 20, 29, 6]. Recently, Troy and Zhang [37] propose a signal called



chronological term rank (CTR). The CTR of a term is defined as the earliest position

the term occurs in the document. In the rest of the thesis, we will use the phrases

chronological term rank and the first hit position interchangeably.

In addition to the CTR, we also look at another signal based on the relative

position of the query terms in the document. Define the shortest snippet length to be

the shortest contiguous sub-sequence of the document containing all the query terms.

Intuitively, when the query terms occur in proximity of each other, it is more likely

that the document containing them is relevant.

These signals both provide evidents on the relevancy of a document with respect

to a query. However, it is not clear if they can provide enough orthogonal information

compared to existing signals without adding much noise to the ranking function. In

this thesis, we attempt to shed some light on this issue.

2.4 Page-independent signals

The relevancy of a document can be determined not only by information within that

page but also by information in other pages. This source of information is extremely

important as it is orthogonal to the information presented on the document. It is

controlled by a different entity from the owner of the document and therefore, is less

susceptible to spamming.

There are two major sources of information. One of them is the hits in the anchor

text. If a document is pointed to from another document using the query term as the

anchor text, it can be considered as a recommendation of that other document for

the document we are considering. The other source of information is the structure of

the web graph independent of the query. In this section, we briefly describe some of

the measurements based on the link structure.

2.4.1 In-degree

The number of in-links to a page gives some indication about the page's importance.

This measure has the advantage of being simple and easy to compute and update.



On the Internet, there are a lot of spammy links, which might reduce the usefulness

of this measure. However, in an enterprise setting, it could be helpful as the number

of spammy links is much smaller.

2.4.2 HITS

HITS is a link analysis algorithm by Jon Kleinberg [21] for finding authoritative

sources of a given topic. The algorithm is designed to be built on top of a crude

retrieval system. It relies on the retrieval system to find a small subset of documents

containing most of the relevant pages for the given topic. Then all the web pages

linked from the subset and some web pages linking to the subset are added to the

subset to form a collection of web pages directly or indirectly related to the topic.

The algorithm then uses the links between these web pages to determine the most

relevant pages.

A web page can be relevant to a topic in two ways: either it contains a lot of

information about the topic or it links to a lot of informative pages. The first kind of

page is called an authoritative page. The second kind of page is called a hub page.

Intuitively, an authoritative page is linked to from many hub pages, and each hub page

links to many authoritative pages. The HITS algorithm exploits these self-enforcing

relationships to determine two measures for each web page: a hub score determining

whether the page is a good hub, and a authority score determining whether the page is

a good authoritative page. These two measures have a mutual recursion relationship

and can be computed using an iterative algorithm. Let xP be the authority score of

the page p and yp be the hub score of the page p. Let G = (V, E) be the web graph of

the pages in consideration. The relationship between the two scores can be expressed

by the following equations.

Xp Yq

q:(q,p) EE

YV- E Xq

q:(p,q)EE
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Approximations for x, and yp can be computed in an iterative way: firstly x and y

are initialized to arbitrary vectors, and then new approximations are computed based

on previous approximations repeatedly until no significant change occurs. The details

are shown in algorithm 1.

n +-number of linked pages
xo +-- (1,..., 1)
yo <-- (1,..., 1)
k +-- 0
repeat

k +- k + 1
for p {1,...,n} do

Xk,p 4- Eq:(q,p)EE Yk-1,q

Yk,p +- Zq:(p,q)EE Xk,q

end
Normalize xk and Yk so that I Ik 2 Yk = 1

until jjXk - Xk-1111 < c and IYk - Yk-111 < C
return xi, yi

Algorithm 1: Algorithm for approximating authority and hub scores

HITS is, unfortunately, too expensive to be computed at query time, and hence,

cannot be used directly in answering queries.

Bharat and Henzinger [3] pointed out several problems with the original HITS

algorithm and suggested several improvements. Lempel and Moran [22] proposed a

stochastic algorithm using similar ideas to HITS but is less vulnerable to the Tightly

Knit Community (TKC) Effect.

2.4.3 Pagerank

Perhaps the most well-known link-based signal, pagerank is a measure of page im-

portance by Brin and Page [4, 26] based on the global structure of the web graph. It

models the behavior of a random web surfer, who starts from a random web page and

keeps following links randomly on the web graph. At any point in time, the random

web surfer can choose to restart from a random web page with probability p and

follow links randomly again from there. Brin and Page found out that p = 0.85 gives

the optimal performance on their system. The sum of Pagerank over all web pages is



normalized to 1 so Pagerank models a probability distribution. In fact, Pagerank of

a page is the probability of the random surfer visiting it at a given time.

Let PRi be the Pagerank of page i, E be the adjacency matrix of the web

graph, and b be the bookmark vector where bi represents the probability of start-

ing/restarting at page i in the surfing process. If all web page are equally likely to

be the starting place, bi = Vi where n is the number of web pages. In a web search

system, there is usually a list of starting pages for crawling, from which the rest of

the web pages are discovered by following links. These pages can also be used as

the set of starting pages for the random surfer. In this case, if there are k starting

pages, bi = 1/k if page i is one of those, and 0 if it is not. Pagerank is the stationary

distribution of the Markov chain modeling a random walk on the web graph with

random jump and it satisfies the following equation.

PRi = (1 - p)bi + pPR E3

There are common cases where Pagerank does not converge, however. For exam-

ple, when some document does not have any link, there is no stationary distribution.

Intuitively, the Pageranks of the documents with no links are not circulated to any

other page and therefore, are lost. This problem can be fixed by forcing a jump to a

random bookmark after visiting a document with no links.

When Pagerank exists, it can be approximated using an iterative algorithm.

Initialize Po

repeat

for i E {1,...,n} do
Pk,i - (1 - p)b + j PPk,jEji

end
Update Pk with jumps from pages with no links

until IIPk - Pk-_ll < c

Algorithm 2: Algorithm for approximating Pagerank

Intuitively, the above algorithm iteratively computes approximations of Pagerank



based on previous approximations and stops when the approximations does not change

by a significant amount.

There are also variants of Pagerank with different bookmark vectors. Haveli-

wala [12] proposes a version of Pagerank biased towards a given topic (personalized

Pagerank) using a pre-computed bookmark vector tailored to the topic (which can

be obtained from directory services e.g. DMOZ). Kamvar et al. [19], and Jeh and

Widom [15] propose several algorithms for computing personalized Pagerank quickly.

There is also a lot of work on improving the computation of Pagerank [1, 11] and

generalizing Pagerank [7, 36].

In this thesis, we use a variant of Pagerank to compute the importance of a page

regardless of the query.

2.5 Ranking models

In this section, we describe the three major models for combining various signals to

produce a similarity score between a query and a document. On the Google Search

Appliance, we only work in the vector space model but for completeness, we will

briefly describe the other models as well.

2.5.1 Vector space model

In this model, a document d and a query q are viewed as high dimension vectors

where each coordinate corresponds to a term t in the document and the query. The

assumption here is that the relevance of a document to a query is correlated with

the dot product, or the angle, of these two vectors. More precisely, each coordinate

of d or q usually consists of three components: term frequency TFd,t based on the

number of occurrences of the term t (or a weighted sum of the occurrences from

various parts of the document), inverted document frequency IDFt [18] based on

the number of documents containing the term t, and document length normalization

DLNd based on the length of the document d. Intuitively, TFd,t represents the fact

that the relevance score is higher if t occurs many times in the document d. IDFt



measures how important a term is compared to the other query term. For example,

a common word like "the" occurs in most (if not all) documents in the corpus and

therefore, provides less discriminative information than the words occurring in only a

handful of them. DLNd is used to normalize the relevant score based on the length of

the document. Intuitively, longer documents tend to contain the query terms many

more times than shorter documents. Originally, DLNd is set to be the length Ildll2

of the vector d. However, Singhal et al. [35] observe that this formulation unfairly

discriminates against long documents. They introduce the pivoted DLNd to account

for this fact and significantly improve the retrieval accuracy. Specifically, let Wd be

the length of the vector d and W(a) be the average length of all document vectors.

The pivoted DLNd is computed as follows.

DLNd =1
1 - s + s. Wd/W(a)

s is a constant with typical value of 0.7 [35].

The relevancy of a document to a query can be viewed as a dot product of the

two vectors d and q.

Score = TFd,t - IDFt - DLNd
tEdnq

There are many different formulas for the TFd,t and IDFt components in the above

formula. The simplest formula for TFd,t is the number of times the term t occurs in

the document d. The problem with this version of TFd,t is that the discriminatory

information decreases as the number of occurrences gets larger. For example, if a

query term occurs 5 times in the first document and once in the second document,

the first document is obviously much more likely to be relevant. However, if a query

term occurs 100 times in the first document and 96 times in the second document,

it is not clear which document is more relevant. Therefore, a desirable feature of the

formula for TFd,t is that it varies a lot when the frequency is small and changes very

little when the frequency is large. For example, one popular formula for the TF is

1 + In fd,t [2] where fd,t is the number of occurrences of the term t in the document d.



Let ft be the number of documents containing t and fr be the greatest ft over all t.

A formula for IDFt is ln(1 + f m /ft) [2]. Combining all these components, a possible

formula for the vector space score is as follows.

Score - z (1 + In fd,t) Iln(1 + fm/ft)
1 - s + s -Wd/W()

tEdnq

Even though this model is the simplest of all three, it performs extremely well in

practice and achieves good query time. In this thesis, we will only work in the vector

space model.

2.5.2 Probabilistic ranking model

This model attempts to solve the retrieval problem based on theoretical framework

from information theory and probability theory. This model was proposed by Maron

and Kuhns [23], and improved by Robertson and Sparck Jones [32]. The retrieval

systems following this model determine whether a document is relevant or not based

on estimating the probability it is relevant given the content of the document and the

query. Let P[rel = 1 d, q] be the probability that document d is relevant for query q

given their content and P[rel = Old, q] be the probability that d is not relevant for q

given their content. A document is considered relevant if P[rel = 1 d, q] > P[rel =

Old, q]. When a ranking is needed, the system can just sort the documents in the

decreasing order of their probabilities of being relevant.

In the early work in this model, the following Binary Independence Model is

assumed.

* The relevance of a document is independent of the relevance of other documents.

This assumption is, unfortunately, sometimes incorrect e.g. when there are

nearly identical documents in the corpus.

* The terms occur independently in a document. Whether a term occurs in a

document or not does not affect the probability of another occurring in the

same document.



* The order the terms occurring in the document does not matter. In other words,

a document can be viewed as a vector where each coordinate is the number of

times a term occurs in it.

With these assumptions, the relevant probabilities can be estimated easily.

The state of the art retrieval systems using this model are mostly based on Okapi

BM25 by Robertson et al. [33]. Robertson and Walker [30] use approximations for the

2-Poisson model to come up with formulas for TFd,t, IDFt, and TFq,t. Jones et al. [16,

17] suggest several ranking functions for different query lengths. For short queries,

which is our primary concern in this thesis, the score of a document is computed as

follows.

Score - ln(N/ft) (k, + 1)TFd,tS.n k((1 - b) + b dld/avdl) + TFd,t
tEq

where N is the number of documents in the corpus, did is the length of the

document d and avdl is the average length of documents in the corpus.

When the query is extremely long, they suggest the following formula.

Score - ln(N/ft) (k, + 1)TFd,t (k3 + 1)TFq,t
E k((1- b) + b dld/avdl) + TFd,t k3 + TFq,ttEq

where TFq,t is the term frequency of the term t in the query q.

When multiple sources of information are available (e.g. anchor text, document

text, and Pagerank), Robertson et al. [31] proposed a simple extension to BM25 to

make it field-weighted.

2.5.3 Language mixture model

In this model, the similarity between the query and the document is computed by the

probability P(dlq) of generating the document d given the query q. By Bayes law,

this probability can be computed as follows.



P(dlq) = P(qld)P(d)/P(q)

For the same query, P(q) is the same for all documents. If we assume that the

prior probability of generating each document is the same, the only component de-

termining the ranking is, therefore, P(qld) = P(qlMd), the probability of generating

the query q given the language model Md of the document d. Thus, a ranking of the

documents can be determined by sorting the documents in the decreasing order of

P(qld). There are many possible choices for the language model of a given document

d. Hiemstra [14], and Miller et al. [24] use the mixture model of two multinomial dis-

tributions: one for the document and one for the whole corpus. Ponte and Croft [27]

instead use the multivariate Bernoulli model.

To simplify the task, it is usually assumed that the terms are generated indepen-

dently. The maximum likelihood estimate of the probability of generating t given

document d is

Pml(t Md) f
dld

Using this as an estimation for p(t Md) is not robust as terms appear very sparsely

in the documents. For example, if a query term does not appear in a document, that

effectively rules out the document as P(qjMd) would be 0. The estimate, however,

can be smoothed in various way to give some weight to unseen words. One possible

smoothing rule is to compute the estimate based on not only the occurrences of the

term in the document but also the occurrences in all other documents in the corpus.

Pl(tlMC) = (- fd,t)/(E dld)
d d

p(tlMa) = (1 - A)pml(tlMa) + Apmi(tMc)

where M, is the language model of the whole corpus, and A is a constant between

0 and 1.

Once these estimates are obtained, Ponte and Croft [27] use the following for-



mula for estimating the probability of generating the query q given the model of the

document d.

p(q|Md) = IIt~ q(tiMd)Itcq(1 - 3(tlMd))

The above formula comes directly from the assumption that the terms are gener-

ated independently.

2.6 Combination of different signals

In the previous sections, we have described various signals based on the content of

the documents as well as the links between them. These signals need to be combined

to produce a single final score. To prevent the domination of a single signal over all

other signals, each signals is usually soft-limited i.e. the contribution is linear when

the value is small but when the value gets large, the signal's contribution gets cut

off slowly. One example is the formula for TFd,t = 1 + In fd,t [2]. The contributions

of different signals can then be combined in many ways. The simplest combining

function is the linear function. Let wi be the weight of the ith signal, and fj(d) be

the score of the document d with respect to the ith signal. The linear combining

function is as follows.

Score = wifi(d)

Soft-limiting and weighting help bring the contributions of different signals to the

same scale and similar distributions. When different signals are not on the same

scale or exhibiting similar distributions, there are also other methods for combining

them. One such method is re-ranking: first the documents are sorted according to

one signal. Then the top documents are re-ranked based on the second signal.

In this thesis, we will explore many different combining functions, including many

piecewise linear and quadratic functions.



2.7 Evaluation

There are many metrics over which the performance of a search system can be mea-

sured. In this thesis, we are only concerned with the relevancy of the search results.

In order to measure relevancy, a search system is usually tested against a set of queries

on some standard corpora. For each of these queries, human evaluators evaluate the

relevancy of all documents in the corpora and rate them as irrelevant or relevant

(there might be a finer grain evaluation of how relevant a document is). The perfor-

mance of a search system is then evaluated by several metrics based on the position

of the relevant documents in the search results and how many there are among the

top results.

Broder [5] classifies web queries into three categories: navigational, informational,

and transactional. We will only consider the following two types:

* Navigational queries are queries looking for a specific document given its

name, title, or a keyword. For example, the query "CNN" is looking for the

homepage of CNN.

* Informational queries are queries looking for information about a general

topic, which can be found in many web pages. For example, the query "latex

format table" looks for information about how to format a table in Latex.

2.7.1 Navigational queries

Among navigational queries, there are two sub-categories: home page finding, and

named page finding. Home page finding queries look for specific home page of an

organization given its name. For example, the query "USDA" looks for the home

page of the United States Department of Agriculture. Named page finding queries

can be considered as a more general version of home page finding queries. The

objective here is to find a document given its name, or its topic. For example, the

query "FBI's most wanted list" looks for the document listing FBI's most wanted

list.



2.7.2 Informational queries

Informational queries look for information about a general topic. There are multiple

levels of difficulty to these queries. In the ad-hoc tasks, the goal is to find as many

relevant documents as possible. In the topic distillation tasks, the goal is to find all

the home pages of the important resources for a given topic. For example, the topic

distillation query "HIV/AIDS" on the .GOV corpus asks for all the home pages of the

government websites about "HIV/AIDS". Note that these pages are not necessarily

the home pages of the government organization but are possibly home pages of specific

parts of the websites devoted to the topic "HIV/AIDS". In this thesis, we will only

consider the ad-hoc tasks, which is the easier category of the two.

2.7.3 Evaluation metrics

A search system can be evaluated in many different ways: the cost of performing each

search query, the number of queries handled per second, etc. In this thesis, we are

primarily concerned with the retrieval accuracy.

To evaluate a search system, standard test sets are usually used. Each test set

consists of a document corpus, a set of queries, and the relevance judgment of the

document in the corpus against each of the queries. Heavily trained system might

become over-fitted to the test sets so it is important to verify the system on test sets

it is not trained on.

There are many metrics for evaluating the accuracy of a search system. Sometimes

comparing the metric values is not the best way to compare the performance of

two different system as one could outperform the other in one metric but not the

other. In this case, a better method for comparing is to put the two search rankings

side-by-side and let human evaluators decide which one is better. A drawback of

these side-by-side experiments is that they involve human evaluators and cannot

be automated. In contrast, performance metrics on standard test corpora can be

computed automatically without human intervention. In this thesis, we are concerned

with two metrics, each suitable for a different class of queries.



The Precision@N of a query is computed by the number of relevant documents

among the first N documents returned by the system. In this thesis, we use a posi-

tionally weighted variant of this metric as follows. The document at position i gets

the weight of i-0 s.Weighting different positions differently make the metric taking

the positions of the relevant documents into account while still keeping track of the

number of relevant documents. The value of the metric is

n -0.8
i=1 i-0 lith document is relevant

n> i- 0 .8

The Precision@N and its variants are suitable for the informational queries where

there are a lot of relevant documents.

The Reciprocal Rank of a query is computed as one over the rank of the first

relevant document in the search result. Intuitively, it measures how many irrelevant

results the user has to skip to get to the relevant one. The Mean Reciprocal Rank

(MRR) of a set of queries is the mean of the Reciprocal Rank of all queries in the

set. This metric is suitable for the navigational queries where there is usually only

one relevant document. Even when there are a few relevant documents, this metric is

still an important measure of user satisfaction because the users usually look at only

the top few results.

2.7.4 TREC corpora and web track evaluation

In this thesis, we consider retrieval tasks involving corpora with query sets from the

web track and the ad-hoc track of the Text REtrieval Conference (TREC). TREC is

a conference sponsored by DARPA allowing information retrieval research groups to

compare the effectiveness and accuracy of their system on common test corpora.

We use three different corpora with very different link structures and size: the

TREC/TIPSTER corpus disk 4 and 5, the WT2g corpus, and the .GOV corpus.

* TREC/TIPSTER disk 4 and 5 is a 2GB corpus consisting of approximately

555, 000 documents from the Financial Times Limited, the Congressional Record,

and the Federal Register (disk 4), and the Foreign Broadcast Information Ser-



vice, and the Los Angeles Times (disk 5). This is an ad-hoc corpus with no

links between documents. Searching on this corpus resembles the problem of

searching for a company storing its documents in a database or in hard drives.

* TREC WT2g is a 2GB corpus consisting of approximately 250, 000 documents,

which is a subset of the VLC2 corpus. The average number of links per page is

4.7. This corpus is a relatively small collection of web pages with an interesting

quantity of links.

* TREC .GOV is a 18.1GB corpus consisting of approximately 1.25 million doc-

uments from a web crawl of the .GOV domain in 2001 [10].

We consider four different retrieval tasks on different corpora and with different

query types. The same parameter setting is used for all different tasks with no

information about the query types available to the system.

* The ad-hoc track of TREC 8 [39]: this task consist of 50 queries (topic 401 to

450) on the TREC/TIPSTER corpus disk 4 and 5.

* The small web track of TREC 8 [39]: the queries for this task are also topics

401 to 450 but on the WT2g corpus.

* The named page queries of the web track at TREC 12 [10]: This task consists

of 150 named page queries on the .GOV corpus.

* The named page and home page queries of the web track at TREC 13 [9]: This

task consists of 75 named page queries and 75 home page queries also on the

.GOV corpus.

With these different tasks, we try to cover many different scenarios with different

query types and different link structures. The queries for the first two tasks are

informational queries whereas the queries the the last two tasks are navigational

queries. The first task resembles the problem of searching in a database without any

link structure. The second task represents the problem of searching in a web graph



with small number of links. The last two tasks represent the problem of searching

in a web graph with a reasonable number of links. Because of the different query

types, we pay attention to different metrics for different tasks. For the first two tasks,

the metric Precision@5 is the more important one whereas for the last two tasks, the

metric MRR is the more important one.



Chapter 3

Methodology

In this chapter, we present a system for finding good sets of parameter values for the

ranking function using evolutionary strategies. The ranking function is a complex

function combining many signals in a highly non-linear (and sometimes discontinuous)

way so we opted for black-box optimization techniques, which are generally applicable

to most functions. This also facilitate our experimentation with various forms of the

function without recalculating the approximation function (as needed for approaches

tailored to specific functions).

At a high level, the system consists of the following parts: a feature extraction

program for extracting information from raw documents, a system for evaluating

many parameter settings on the extracted features in parallel, and an implementation

of an evolution algorithm to generate new sets of parameters based on the performance

of the existing settings.

We start by describing how we extract features from documents and distribute to

many machines. Then we describe our implementation of two algorithms for selecting

new parameter settings based on the existing ones: the Nelder-Mead algorithm, and

the evolutionary strategies algorithm.



3.1 Document feature extraction

Documents are crawled and indexed on a GSA. Then the documents are matched

against the queries to compute the necessary features for scoring. All features of the

documents (pagerank, word counts, number of anchor text hits, etc) are extracted to

a log file. This file is then compressed and distributed to many computers to evaluate

many settings in parallel.

3.2 Nelder-Mead algorithm

The Nelder-Mead algorithm [25] is a classical algorithm for function maximization.

The algorithm is very general and easy to implement as it only requires evaluating the

function and no information about the derivatives is needed. Consider a function f of

n variables. The algorithm works as follows. At every step, the algorithm keeps track

of the function value at n + 1 vertices x 1,... , xl of a simplex in the n dimensional

space. Assume that f(xi) f(x 2) > ... > f(x,+l). The algorithm attempts to

replace x,+ 1 with a better point by performing the following steps.

1. Reflection step Compute x0 +- xi. Set x, = 2x 0 - xn+1 . If f(xi) 2

f (X,) > f(xn) then set x,+l -- Xr. Otherwise, continue to the next step.

2. Expansion step Only perform this step if f(x,) > f(xl). Otherwise, continue

to the next step. First, compute xe = 3xo - 2x,+1. If f(xe) > f(x), set

Xn+l '- Xe. Otherwise, set Xn+l Xr.

3. Contraction step If f(xr) > f(x,+l), compute x1 = (xo+x~)/2. Otherwise, com-

pute x, - (x,,+ + x0)/2. If f(x,) > max(fr, f+ 1), set x2+1 '- x,. Otherwise,

continue to the next step.

4. Shrink step For i = 2, 3,..., n + 1, set xi -- (xi + x1)/2.

The above routine is repeated until the simplex converges to a point.



3.3 Evolutionary strategies

Evolutionary strategies [34] is a highly parallelizable optimization method for maxi-

mizing a general multivariate function. It uses probabilistic transition rules to simu-

late a natural evolutionary process. The algorithm repeatedly transits from a popula-

tion to the next population until the whole population converges on a single point or a

sufficient number of iterations has been passed. There are many variants of this gen-

eral framework. In the rest of this section, we will describe our simple implementation

of (pfA) evolutionary strategies.

Consider a function f over n variables. At every time step, the algorithm maintains

a population of A(+p) individuals, each corresponds to a point in the n dimensional

search space. The algorithm works as follows.

Initialize the initial population to xl,... ,
repeat

Evaluate the fitness of the population
Select the best p parents from the population
Add random noise to these parents to create A offspring
Change the noise variances based on the performance of the offspring
if (p, A) evolutionary strategy then

Use the A offspring as the new population
else

Use the A offspring and the p selected parents as the new population
end

until enough iterations are done
return the best individual in the last population

Algorithm 3: Evolutionary Strategies

The offspring are generated by adding random Gaussian noise to the parents.

Because each parameter varies over a different range, the amount of noise added to

each is controlled by its range. The noise variances are adjusted in every iteration to

balance exploration and exploitation as we do not want the algorithm to get stuck in

a local maximum or jump far away from the optimum while being near it. We use a

heuristic so-called the "one-fifth" rule to control the noise variance. If at least 20% of

the new population are better than their parents, we are exploiting too much and the

noise variance is increased. On the other hand, if at most 20% of the new population



are better than their parents, we are exploring too much and the noise variance is

decreased.

3.4 Implementation

We implemented the parallel evaluation system in C++ using the map-reduce frame-

work. Parameter settings are distributed and evaluated on many machines in parallel.

At the end of each round, the evaluation results are gathered and an algorithm is run

to compute the next set of parameters to be evaluated on. We designed the system so

that it is easy to switch from one algorithm to another and with variable number of

parameters. In all of our experiments, we use evolutionary strategies for computing

the new sets of parameter settings based on the performance of the existing ones. For

testing purposes, we have also implemented the Nelder-Mead algorithm for compar-

ison. Our experiment results suggests that evolutionary strategies is better with a

reasonable population size.

To avoid over-fitting, after obtaining a setting from the system, we perform a

sensitivity test by varying each parameter by 10% and verify if the performance

varies too much. We also perform side-by-side experiments to compare the search

results of the new setting and the original setting on a set of queries on a proprietary

corpus.

3.5 Summary

In this chapter, we have described our method of computing parameter settings for the

ranking function of the Google Search Appliance using evolutionary strategies. The

flexibility and high parallelizability of this approach allow us to explore the parameter

space efficiently.



Chapter 4

Importance of IDF

In this section, we investigate the importance of the inverse document frequency(IDF)

in the ranking function. In the previous work, IDF has been established as a very

helpful source of information in determining the relative importance of query words

and hence, improves ranking accuracy a lot. However, IDF requires information about

the whole corpus of documents, which is difficult to maintain in many contexts. In

federation search, where search results are combined from many computers, the IDF

on different machines managing different parts of the corpus can be vastly different,

resulting in incongruous scores. IDF also make it difficult to combine search results

from heterogeneous corpora such as binary files and web pages. In this thesis, we

look at the effect of IDF on search results, comparing its usefulness and the noise it

introduce to the ranking function. We hope that in light of our work, the impact of

IDF on the ranking function can be reevaluated and there is a hope to avoid its costly

computation and maintenance.

We compare two variants of the otherwise exactly identical ranking function, one

with the IDF component and one without. The variant with IDF is hand-tuned

by human and the variant without IDF is optimized by our evolutionary strategies

framework. We then compare these two optimized settings on four retrieval tasks,

with and without query expansion.

It is evident from the comparisons in figure 4-1 and 4-2 that without IDF, the

system performs generally equally well and sometimes better than with IDF.



Figure 4-1: Change in performance of system using query expansion

Figure 4-2: Change in performance of system not using query expansion

Task change by removing IDF
TREC 8 ad-hoc

P@5 +0.01
MRR -0.01

WT2g
P©5 +0.04
MRR +0.07

TREC 12 named page
MRR 0.00

TREC 13 home page
MRR -0.01

TREC 13 named page
MRR -0.01

Task change by removing IDF
TREC 8 ad-hoc

P@5 -0.02
MRR -0.02

WT2g
P@5 +0.04
MRR +0.05

TREC 12 named page
MRR -0.01

TREC 13 home page
MRR +0.01

TREC 13 named page
MRR +0.01



On navigational queries, the performance of the two variants are basically identi-

cal. On some queries such as the query "map, mapping, cartography" in TREC 13,

IDF overly emphasizes the importance of "cartography" over the other two terms and

pushes the relevant document from the top position to the second. However, on the

query "HEV program homepage", the use of IDF helps pulling the relevant document

from the second position to the top position.

Interestingly, on informational queries on the WT2g corpus, the variant without

IDF has a significant improvement over the variant with IDF. This phenomenon

actually makes sense because the WT2g is the smallest corpus (half the size of the

ad-hoc corpus and one-fifth the size of the GOV corpus) among the four tasks and it

is reasonable to expect the IDF measures are more noisy than the other much larger

corpora.

Beside these corpora, we also perform side by side experiments comparing these

two variants on a much larger proprietary corpus. In the side by side experiment,

the search results returned by the two systems are displayed side by side. Human

evaluators compare them and determine which one is better. The results of our

experiments also give indication that the two variants are very competitive and the

one without IDF performs slightly better.

There are reasons that could explain this phenomenon. The first reason is the use

of the stop words. Extremely common words such as "and", "a", "the" are not used in

scoring, thus eliminating the need for IDF in these extreme cases. The second reason

is the AND semantics of the queries, where we only consider documents containing all

the query terms. This avoids the need to compare documents containing only some

of the query terms.

4.1 Summary

In this chapter, we investigated the impact of IDF on the ranking performance. Ex-

periment results suggest that even though IDF can be helpful in many situations, it

can be noisy and detrimental in other cases. It's impact is limited given the filtering



of stop words such as and, a, the, etc and the AND semantics of the search queries.



Chapter 5

Combination of query-independent

and query-dependent measures

As described in chapter 2, the score of a document is determined by many measures:

a page-dependent score, a score from hits in anchor texts, and a query independent

score based on the link graph. Since these scores are computed in vastly different ways

with very different theoretical motivations, it is conceivable that they follow different

distributions and contribute differently to the final relevance score. In this chapter,

we investigate their relative importance and find a good way to combine them.

5.1 Method

We implemented the evaluation function so that it can dynamically take any com-

bination functions with constants and cutoffs and evaluate document using these

functions. The evaluation system is then tested against many piece-wise linear and

quadratic functions with variable cutoffs. The main criterion these functions have to

satisfy is monotonicity. The values for the cutoffs are optimized using our evolutionary

strategies framework.

Impact transformation [2] is a technique for transforming the contributions from

different query terms to make the score not overly skewed by a single term. Even

though this technique is invented for the OR semantic of queries, where any document



containing at least one query term is considered, we find this technique also helpful in

this context. Here we use impact transformation as a way to balance the contribution

from the query-dependent score (combination of the page-dependent score and the

contribution from the anchor text) and the query-independent score based on the

number of query terms. Intuitively, as the number of query terms increases, the

query-dependent score becomes more reliable and thus, should get a higher weight.

Impact transformation boosts the low scores of every query term, thus increasing the

whole score proportionally to the number of query terms, which is exactly what we

want.

5.2 Results

From our experiments, there are several interesting results. These results can be

explained when looking at the scatter plots of the documents matching the given

queries. Firstly, the functions with varying behaviors for different parameter ranges

perform no better than the simpler one behaving the same over all parameter ranges

as long as each score is soft-limited individually. Consider the scatter plots for the

queries "Art white house" and "Children's butterfly site life cycle page" in figure 5-1.

Even though the relevant documents are in very different parameter ranges in these

two queries, it is evident that the slope of the combining function should be the same

in both of the ranges.

Secondly, in most queries, the linear function works nearly as well as more com-

plicated quadratic functions or even piecewise quadratic functions. In figure 5-2, it

is clear that the linear function given for the range of parameters containing the rel-

evant documents of two queries "Club drugs" and "MedWatch" is basically optimal

and any piecewise quadratic functions cannot do much better.

However, for a small number of queries in a particular parameter range, quadratic

function might perform better as it can vary the relative contribution from the two

scores. For the two queries "national fire plan usda" and "Florida Keys Marine

sanctuary" in figure 5-3, it is conceivable that a quadratic function would perform
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Figure 5-1: Two queries whose relevant documents are in different parameter ranges.
Blue dots are irrelevant documents, red dots are relevant documents, the vertical axis
is the query-independent score, the horizontal axis is the query-dependent score, the
blue curve is the optimal function combining the two scores.
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Figure 5-2: Two queries whose relevant documents are in the same parameter range

better than the current near-linear function. These particular queries suggest that

the query-independent score is most important when it is large and its importance

drops quickly as it gets closer to the average value.

The evaluation results also suggest that for small corpora, query-dependent scores

are much more important than query-independent scores. For example, for the query

"Food illness reporting" in figure 5-4, it is clear that the page-independent score is

largely noisy and does not give much information about the relevancy of the document.

In general, the query-independent score is only helpful in finding home pages. The

home page query "Grand Canyon monitoring research center" in figure 5-5 shows that

Children's butterfly site life cycle pageArt white house
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the query-independent score is a much better indication of relevancy than the query-

dependent score.

Figure 5-3:
score.

Two queries whose relevant documents have high query-independent
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Figure 5-4: A typical query.
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Figure 5-5: A home page finding query where the query-independent score is much
more important than the query-dependent score.
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Chapter 6

Signals based on term positions

In this chapter, we explore the impacts of two signals based on the positions of the

query terms in the document: the position of the first hit in the document (also

called Chronological Term Rank (CTR) [37]), and the length of the shortest snippet

containing all the query words. Intuitively, these signals provide some information

about the relevancy of the document. If a word occurs near the beginning of a

document, there is a good chance that the word is relevant to the main content of

the document. Similarly, if all queried words occur close to each other, there is a

better chance of them being used together as opposed to scattering randomly in the

document. However, it is also conceivable that these signals are prone to noise. In

the subsequent sections, we attempt to study the use of these signals and evaluate

whether they are worth pursuing further.

6.1 Chronological term rank

The chronological term rank (CTR) of a term is the first position it appears in the

body text of a document. Because it is part of the content of the body text, it is

sensible to apply the document length normalization to it. We investigate 6 ways of

combining the first hit position with the other signals, taking different combinations

of linear and logarithmic functions, and normalized and unnormalized by document

length. Let tr be the CTR of a term. The contribution of CTR to the score is



Function Description
l inverse rank

log(tr+2) inverse log rank
S(1 - tr+1) linear, normalized

c. (1 - o 2) logarithmic, normalized
cDLN

ctr+ inverse rank, normalized

log (tr+2) inverse log rank, normalized

Figure 6-1: Formulas for computing the contribution of CTR to the relevance score

Function Description

snippet+2 inverse
og Ct+2) inverse log

c. (1 snippet+) linear, normalized
c(1- ~log(nipt+2)c - log DLN) logarithmic, normalized

cDL g ivr
c.L+1 inverse rank, normalized

c.log(ie+2) inverse log rank, normalized

Figure 6-2: Formulas for computing
relevance score

the contribution of the snippet length to the

computed as described in figure 6-1. For each of the functions, we optimize the

parameters using our evolutionary strategies framework.

Unfortunately, for all the functions we considered, the results are mixed. There

is some small improvement for some tasks and there is some small decline in some

other tasks. In figure 6-3, we show the performance of the system on all the tasks we

consider. While it is possible to get a small improvement in the TREC 8 ad-hoc task

and the home page queries of TREC 13, the performance in the WT2g task and the

named page queries of TREC 12 decline. The performance of the rest of the functions

are shown in the appendix.



6.2 Length of the shortest snippet

A snippet is a sub-sequence of the body text of the document containing all the query

terms. In this section, we are only concerned with the length of the shortest snippet.

There are many possible ways to incorporate this information into the relevance score.

In figure 6-2, we describe 6 possible ways to compute the contribution of the snippet

length to the relevance score. For each of the functions, we optimize the parameters

using our evolutionary strategies framework.

Similar to the case of CTR, for all the functions we considered, the results are

mixed. There is some small improvement for some tasks and there is some small

decline in some other tasks. In figure 6-4, we show the performance of the system

using one of the formula we described on all the tasks. While it is possible to get a

small improvement in the TREC 8 ad-hoc task and the home page queries of TREC

13, the performance in the WT2g task and the named page queries of TREC 12

decline. The performance of the rest of the functions are shown in the appendix.

6.3 Optimal re-ranking

While the performance of the various functions tested in the previous section was

not particularly attractive, it is possible that there are other ways to incorporate

the positional based signals to the relevant score we have not considered. Thus,

we cannot conclude that these signals do not provide any improvement. In this

section, we consider the optimal re-rankings [38] based on the CTR and the length

of the shortest snippet, which provide strict upper bound of the contribution of these

signals.

A re-ranking scheme works as follows. After all the documents are scored and

sorted in decreasing order, the top n documents are re-ranked using some additional

information available. These top n documents are sorted based solely on the addi-

tional information, completely ignoring the original relevance scores. The optimal re-

ranking of a signal is the re-ranking scheme that for each query, dynamically chooses n



equal to the position of the first relevant document in the list ranked by the relevance

score. It is easy to see that this re-ranking scheme works better than any ranking

function combining the original relevance score and the additional information. In

some sense, it maximally improves the queries where the additional information is

helpful and ignores the queries where the additional information is harmful.

In figures 6-5 and 6-6, we present the gap between the performance of the current

system and the optimal re-ranking scheme using CTR. In figures 6-7 and 6-8, we

present the gap between the performance of the current system and the optimal re-

ranking scheme using the shortest snippet length. The wide gap between current

performance and the optimal re-ranker's suggests that even though these signals may

not be universally useful, there could be a class of queries where they could provide

good information. CTR seems to be particularly helpful for home page queries, as

the optimal re-ranking using CTR gets a 0.1 improvement in MRR over the current

system.

6.4 Summary

In this section, we considered two positional based signals. Even though the experi-

ment results is not promising, it is worth revisiting these signals again given the big

difference between the optimal re-ranking and the experimental results. It could be

the case that they are only helpful in a specific class of queries like home page queries.
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Figure 6-3: Performance of the system with contribution from CTR using the function
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Figure 6-4: Performance of the system with contribution from the snippet length



Task advantage of optimal re-ranking with CTR

TREC 8 ad-hoc
P@5 +0.03
MRR +0.10

WT2g
P(5 +0.04
MRR +0.11

TREC 12 named page
MRR +0.06

TREC 13 home page
MRR +0.11

TREC 13 named page
MRR +0.06

Figure 6-5: Re-ranking with CTR on system without IDF

Task advantage of optimal re-ranking with CTR

TREC 8 ad-hoc
PG5 +0.02
MRR +0.07

WT2g
P@5 +0.04
MRR +0.10

TREC 12 named page
MRR +0.06

TREC 13 home page
MRR +0.10

TREC 13 named page
MRR +0.05

Figure 6-6: Re-ranking with CTR on system with IDF



Task advantage of optimal re-ranking with snippet length
TREC 8 ad-hoc

P@5 +0.03
MRR +0.08

WT2g
P@5 +0.05
MRR +0.14

TREC 12 named page
MRR +0.07

TREC 13 home page
MRR +0.05

TREC 13 named page
MRR +0.05

Figure 6-7: Re-ranking with snippet length on system without IDF

Task advantage of optimal re-ranking with snippet length
TREC 8 ad-hoc

P@5 +0.02
MRR +0.06

WT2g
P@5 +0.05
MRR +0.13

TREC 12 named page
MRR +0.08

TREC 13 home page
MRR +0.06

TREC 13 named page
MRR +0.07

Figure 6-8: Re-ranking with snippet length on system with IDF



Chapter 7

Conclusion and future work

In this thesis, we studied the contributions of various signals to the ranking function

of the Google Search Appliance. We looked at both well-established signals such

as the inverse document frequency (IDF), and newly suggested signals such as the

chronological term rank (CTR) and the length of the shortest snippet containing all

the search terms. While helpful in many cases, IDF can be noisy when the size of the

corpora is small. For the bigger corpora, the contribution of IDF is also marginal.

We were able to improve the performance of the ranking function on the Google

Search Appliance on small corpora such as the WT2g while keeping the relevancy

relatively stable on bigger corpora such as the GOV corpus. Our experiment results

on CTR and the snippet length are mixed with both improvement and degradation.

It is worth noting, however, that these two signals might be helpful for home page

queries and are worth investigating further. Additionally, we also looked at various

ways for combining signals, in particular, the query-independent score and the query-

dependent score. In most queries, a simple linear combination function works almost

as well as more sophisticated functions.

There are many future directions from this work. While our initial investigation

on the CTR and the length of the shortest snippet seems to indicate these signals are

too noisy to use, it is possible that they are helpful in some specific classes of queries.

For example, the optimal re-rankings using these signals improve significantly over

the performance of the current system without them on homepage finding queries. It



is also interesting to explore the classes of queries where the query-independent score

is important. Even though in our experiments, the query-dependent score is much

more important, there are specific queries (especially some home page finding queries)

where the query-independent score is much more helpful. Another interesting issue

is that we did not have enough queries to evaluate the system on specific classes of

queries and different query lengths. It would be interesting to study the contribution

of various signals for different query lengths.

A shortcoming of our method is that the evolutionary strategies framework lacks

the understanding of the implicit constraints imposed by other parts of the search

system and the meanings of various parameters being used. Therefore it is more

prone to over-fitting to training data than the parameter settings hand-tuned by

human engineers. It is possible to extend our framework with additional constraints

to restrict the solution space and reduce the risk of over-fitting.



Appendix A

Results of chronological term rank

and snippet length experiments

In this section, we describe the results of the experiments involving the CTR and the

snippet length.



MRR task I

MRR task 2

-5 0 5 10 15 20

MRR task 3

0 5 10 1: 2z0

MRR task 4 nanumed page

5 0 5 io 15 20

P05 task 1

1 5

POS task 2

-5 5 10 15 20

MRR task 4 home page

S 0 5 10 15 20
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Figure A-3: Performance of the system with contribution from CTR using the func-
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