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Abstract

This thesis studies a game theoretic model for scheduling transmissions among multi-
ple self-interested users in a wireless network with fading. Our model involves a finite
number of mobile users transmitting to a common base station under time-varying
channel conditions. A distinguishing feature of our model is the assumption that the
channel quality of each user is affected by global and time-varying conditions at the
base station, resulting in each user observing a common channel state. Each user
chooses a transmission policy that maximizes its utility function, which captures a
natural trade-off between throughput and power. The transmission policy specifies
how transmissions should be scheduled as a function of the time-varying common
channel state observed by each user.

We make three main contributions. First, we establish the existence of a Nash
equilibrium of this game and characterize the set of equilibria. We investigate the
efficiency properties of these equilibria, and study a related aggregate utility max-
imization problem, to serve as a benchmark for the performance of the equilibria.
We quantify the efficiency loss in the game comparing the optimal solution of the
aggregate utility maximization problem, to the best and worst equilibria in terms of
the aggregate utility. We show that the performance of the worst equilibrium can be
arbitrarily bad (in terms of the aggregate utility), but the efficiency loss of the best
equilibrium can be bounded as a function of a technology-related parameter.

Our second contribution is to study various distributed mechanisms to reach an
equilibrium of this game. We use the theory of potential games to establish con-
vergence of such mechanisms to an equilibrium. To this end, we study conditions
under which the scheduling game is a potential game. This necessitates extending
the known necessary conditions for the existence of ordinal potential in games. In
this thesis, we show that the scheduling game has a twice continuously differentiable
ordinal potential if and only if a rate alignment condition holds.

In our third contribution, we investigate the related question of characterizing
the "distance" of an arbitrary game to an exact potential game. We provide a new
framework based on combinatorial Hodge theory for projecting an arbitrary game
to the set of exact potential games. We prove that the equilibria of a game are e-



equilibria of its projection, where E is bounded by the projection error. Moreover,
we show that the projection of a game to the set of exact potential games can be
calculated using distributed consensus algorithms.
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Chapter 1

Introduction

In this chapter we briefly discuss the role of game theory in control of wireless net-

works. We also present an outline and a summary of the contributions of this thesis.

1.1 Context

Traditional network optimization approach assumes a single network administrator

which has full access to all information in the network and designs algorithms that

optimize a single network-wide objective among obedient users. Modern networks,

on the other hand, have emerged from the interconnections of autonomous entities

and heterogeneous users with diverse set of application requirements. This naturally

has led to a distributed control paradigm in which network control functions are

delegated to end users who make their decisions independently according to their

own performance objective (e.g., [36, 35, 24, 25, 371).

In scheduling and resource allocation problems in wireless networks, agents com-

pete for the available resources, such as bandwidth. Noncooperative game theory is

a natural theoretical framework for analysis and management of the competition in

wireless networks and it provides a robust and distributed control paradigm. Such

control paradigms allow having network domains, in which situation-aware users take

autonomous decisions with regard to their network usage, based on the current net-

work conditions and their individual preferences. In the recent literature, it is possible



to see many applications of game theory to analysis and design of resource allocation

mechanisms in wireless networks (see, e.g., [3, 1, 25, 24, 34, 35, 26, 49], and [37] for

a survey).

A strategic form game consists of a set of players, a utility function and a set

of strategies defined for each player. In applications of game theory to the study of

wireless networks, users in the network are treated as players, objectives of players

are modeled by utility functions and the interactions between the users are analyzed.

Frequently, Nash equilibrium is used to study the outcome of the interactions of

players in a game. This solution concept defines an outcome of a game from which

no user has incentive to deviate unilaterally.

It is well-known that noncooperative behavior in networks results in inefficiency

in terms of the aggregate system utility. Aggregate utility maximization problem is

often studied as a benchmark problem to quantify the inefficiency of equilibria. In

games efficiency is commonly defined in terms of the ratio of the aggregate utility in

equilibria to the optimal solution of the this problem. In particular, two quantities

that are used to study the efficiency loss are the price of stability and price of anarchy

in the system, [5, 46, 48, 47]. These quantities represent the ratio of the aggregate

utility in the best and the worst equilibria to that of the optimal solution of the

benchmark problem. Price of stability and price of anarchy are frequently analyzed

in the literature for determining the quality of the equilibrium solution in network

problems (see e.g. [14, 22, 34, 35]).

An important challenge in game-theoretic models for networks is the development

of dynamics that converge to a Nash equilibrium. Much of the literature on this

topic focuses on dynamics that involve simple update rules by the players. However,

in general, simple dynamics do not converge to an equilibrium of a game. Potential

games are an important class of games in which simple dynamics converge (see e.g.

[41, 56, 28]). There are also extensions of potential games, such as ordinal potential

games, which have similar properties in terms of dynamics. The common feature of

these games is the existence of a potential function which represents the quality of

the different strategy profiles jointly for all users.



The general framework which we consider in this thesis is that of users who obtain

some information about the network (e.g. channel quality) and accordingly control

their transmission parameters. More specifically, we study the scenario in which

finitely many users schedule their transmissions to a common base station, while the

channel quality between the users and the base station is time varying. In this work,

we model the interactions between the users in the network as a game and provide a

detailed analysis of this scheduling game. In particular, we study the Nash equilibria,

efficiency properties of the described game and provide dynamics that converge to an

equilibrium of the game.

1.2 Related Literature

In recent years game theory has found applications in various problems in the com-

munications literature, [38, 23, 26, 49, 55, 57, 33]. In this section we present a brief

overview of game-theoretic approaches to resource allocation in networks.

Today's communication systems rely on transmission protocols in order to utilize

the scarce resources available, such as bandwidth and energy. Centralized control

protocols for these systems are not feasible due to the large size and complicated

interconnection structures of communication networks. This leads to distributed con-

trol protocols for the control of communication networks. An example is the TCP/IP

standard on which Internet is based. Such protocols rely heavily on cooperation of

users in the network with the assigned control rule but in many cases, users have

incentive to not to obey the control rule. This makes game theory a useful tool in

the analysis of networks [38, 23, 26].

Game theory has found applications to the power allocation problem in wireless

networks. A frequently studied channel model in these problems is the code division

multiple access (CDMA) channel [49, 1, 26, 51]. In [51] the authors consider a power

control game for a CDMA system with single base station where utility of each user

is a function of its transmit power and signal-to-interference ratio. They show that

the achieved equilibrium is inefficient and by supplementary pricing mechanism the



quality of the equilibrium can be improved. In [49], the results of [51] are extended

to systems with multiple base stations and different pricing schemes are studied.

In [23], the authors consider resource allocation in time varying multiple access

channels with users limited by average power constraints. They show that the optimal

operating point (in terms of aggregate throughput) coincides with the unique Nash

equilibrium of the proposed game. Another work related to multiple access channels

is [38]. This paper considers games in multiple access channels where users have

quality of service constraints. The authors discuss various utility functions and their

implications on the communication systems. The strategy spaces of users consist of

a selection of different parameters including choice of transmit powers, transmission

rates, modulation scheme, and utilities in the game are defined as a function of these

parameters. The authors discuss the properties of the Nash equilibria of the resulting

games and quantify the effect of different network parameters on energy efficiency

and network capacity.

There is also work related to resource allocation games in collision channels. This

channel model differs from the CDMA channels as in collision channels, transmissions

at a given time slot are successful only if a single user attempts transmission during

this time slot. In [35], the authors consider a model for an uplink collision channel.

The channel quality process is assumed to be time varying and independent across the

users. Each user aims at minimizing its power investment while satisfying a minimum

throughput demand. The authors study the conditions under which equilibrium in

the game exists. They show that there are at most two equilibria in the game and

if multiple equilibria exist one equilibrium is strictly better than the other for all

users in terms of the power investment. The authors also suggest a fully distributed

mechanism that converges to the good quality equilibrium. Using a similar model in

[36] the authors show that when additional power levels are made available to users in

the system, a paradoxical behavior is observed, i.e. the equilibrium quality decreases

when more power levels are present in the system.

The wireless network game that is considered in this thesis is related to the games

considered in [35, 36], however it significantly differs in the assumptions on the channel



quality processes and utilities of users.

1.3 Contributions and Thesis Outline

In this thesis we study a game theoretic model for distributed scheduling in wireless

collision channels. We consider a wireless network, where finitely many users interact

over a shared collision channel. Channel quality of each user is affected by global and

time varying conditions. Each user independently adjusts its transmission parameters

in order to maximize its payoff which is a function of the trade-off between throughput

and power.

Our main results related to the scheduling game can be summarized as follows,

* We study the existence of Nash equilibrium and its properties. We show that

equilibrium always exists but it is not unique. In fact there can be uncountably

many equilibria in the game.

* We then consider the efficiency loss in the system to determine the quality of the

game solution. To this end, we first study the social welfare (aggregate utility)

maximization problem in the network to serve as a benchmark to determine the

quality of the game solution. We show that the social welfare maximization pro-

plem is a nonconvex optimization problem. We prove that under self-interested

user behavior, the equilibrium performance can be arbitrarily bad. Neverthe-

less, the efficiency loss at the best equilibrium can be bounded as a function of

a technology parameter, which accounts both for the mobiles' power limitations

and the underlying channel quality.

* We present various dynamics that ensure convergence to a Nash equilibrium

in the game. In particular, we show that best-response dynamics converge

to an equilibrium in finite time under certain update rules. To do this, we

exploit the structure of the strategy spaces of users and utilize the properties

of potential games. We also empirically verify the convergence of the dynamics

to an equilibrium.



This thesis not only studies the results for the specific wireless network game, but

also contributes to the theory of potential games. In the analysis of the scheduling

game we use the properties of potential and ordinal potential games to obtain results

about the game dynamics. However, in the literature there are no easy to check

conditions for studying the existence of ordinal potential in games. This necessitates

the study of the conditions on existence of ordinal potential in games.

Although there has been much work in the literature on the necessary and suffi-

cient conditions for the existence of exact potential, the conditions for the existence

of ordinal potential are not well understood [41]. In [54, 43], the authors present

conditions for the existence of an ordinal potential, however these conditions are not

easily checkable. In particular for continuous games, different tools are necessary to

study the existence of an ordinal potential.

Exact potential games have many desirable properties, however the class of exact

potential games is a "small" subset of the space of games. This motivates the study

of the class of games that are "approximately" potential games. To this end, in this

thesis we suggest an approach for finding a potential game that is close in some sense

to a given game. For this we apply ideas previously used in the context of ranking

problems to the theory of potential games.

Combinatorial Hodge theory is a tool that is used in ranking problems to determine

the inconsistency in the pairwise rankings [21]. Pairwise comparisons (or rankings)

of different alternatives contain inconsistencies if there is no order representing the

preferences. For example, if three alternatives a, b, c are considered and pairwise

rankings indicating a > b, b > c, c > a are present (where > represents the preference

relation between alternatives) the pairwise rankings are inconsistent.

In a game utility of a user represents rankings of different strategy profiles by this

particular user. The game is a potential game if the rankings given by different users

are consistent, i.e. if user interests are aligned with a global performance goal. We use

the ideas from combinatorial Hodge theory to study the inconsistency in the pairwise

rankings of the strategy profiles when the game is not a potential game. This leads

to a framework for projecting an arbitrary game to the set of exact potential games.



Our results related to the conditions on existence of ordinal potential in games

and projections to the set of exact potential games are summarized below.

* We consider a strategic form game, with finitely many users and study the

sets of exact potential games and its extensions. We show that the set of

exact potential games is convex, whereas the set of ordinal potential games is

nonconvex. We also show that the set of exact potential games is a "small"

subspace of the space of games.

* Secondly, we consider continuous games, where the strategy space of each player

is a nonempty closed bounded subset of an Euclidean space. Assuming that

players have differentiable utility functions we obtain necessary conditions for

existence of a continuously differentiable ordinal potential function. Some of

the results obtained here are in the same spirit as [16, 32], which provide easy

to check conditions for existence of utilities representing preferences of agents

in an economy.

* We apply our results on ordinal potential games to the scheduling game studied

in this thesis. We show that the game has a continuously differentiable ordinal

potential if and only if a symmetry condition holds in the game.

* We study the problem of projection of finite games to the set of exact potential

games. The projection framework enables us to find a potential game that is

closest to a given game in a well defined norm.

* We show that the projections can be obtained with a distributed procedure

requiring some information exchange between the players of a game. Addition-

ally we prove that each equilibrium of the initial game is an e-equilibrium of the

projected game and each equilibrium of the projected game is an E-equilibrium

of the initial game.



1.3.1 Outline

The rest of this thesis is organized as follows. In Chapter 2 we provide definitions and

some known results about games with emphasis on potential games. We also state the

known results in the literature about the existence of potential in games. Additionally,

we introduce the combinatorial Hodge Theory which is related to the projection

framework considered in this thesis. In Chapter 3, we introduce the scheduling game

and we provide the results obtained for this game. In Chapter 4 we focus on the

existence of potential in games and the projections of games to the set of exact

potential games. In Chapter 5 we present a summary of our results as well as future

directions for research.



Chapter 2

Background

In this chapter we give an overview of basic notions of game theory with emphasis on

the potential games. In Section 2.1 we discuss concepts of equilibrium, efficiency loss

and dynamics in games. In this section, we also introduce potential games and discuss

various generalization of potential games. Moreover, the results in the literature

related to the existence of potential in games are presented.

In Section 2.2, we introduce combinatorial Hodge theory and discuss its relation to

the problem of projecting an arbitrary game to the set of exact potential games. We

provide an application of Hodge theory to ranking problems, as a similar approach is

used in Chapter 4 for projections of games. Additionally, we provide the notations

and basic results, related to our projection framework.

2.1 Game Theory and Potential Games

In this section we provide a basic introduction to game theory. We formally define

games and discuss different solution concepts in games. We focus on properties of

potential games and give a summary of results on efficiency loss and dynamics in

games.



2.1.1 Basic Definitions and Notations

Game theory is the study of multi-person decision problems. A mathematical model

of a game considers interactions of a number of decision makers, often referred to

as agents or players. Agents are assumed to have their individual objectives and

act according to their objectives. The aim of game theory is to analyze strategic

interactions between different agents in a system.

In this thesis we restrict ourselves to strategic form games. A strategic form

game consists of:

* Set of players, which is usually assumed to be finite. We denote the set of

players by M = {1,... M}.

* Strategy space E for each player m E M, which is the set of actions a player

can take. We denote the joint strategy space of all players by E = mEM Em.

* Utility function u" : E -4 IR for each player m E 4M.

We use xm E Em to denote a strategy of player m. A collection x = (xl,..., xM)

of strategies of all players is referred to as a strategy profile. The utility function of

a player assigns a payoff to a given strategy profile, and payoff of a player is affected

by strategies of other players. Usually the set of all players but m is denoted by -m

and these players are referred to as opponents of player m. The set of actions for

opponents of player m is denoted by E - ' . We denote a strategic game with given set

of players, strategy spaces and utility functions as g = (M4, {E m }m,,M, {u'} eM).

As a short hand notation we use Uall = {ul,... uM} for the collection of all utilities

in the game.

The set of actions available in a game are often referred to as pure strategies. An

extension of pure strategies is mixed strategies where mixed strategy of a player can

be defined as a probability distribution over the set of its pure strategies. In this

thesis we are concerned only with pure strategies and term strategy refers to pure

strategies.



In strategic form games the underlying assumption is that preferences of players

are captured through the utility functions, i.e. a strategy profile x is preferred over

strategy profile y by player m if and only if Um(x) > um (y). Players are assumed

to be non-cooperative, each player acts independently to improve its payoff. They

are also rational in the sense that they utilize strategies with better payoffs. This

assumption leads to an equilibrium concept for games, namely the Nash Equilibrium.

Definition 2.1.1 (Nash Equilibrium). A Nash equilibrium is a strategy profile from

which no player can unilaterally deviate and improve its payoff. Formally, a strategy

profile x (xl,..., xM) is a Nash equilibrium point if

xm E argmax umn(m, x-m), for every m E M (2.1)
ernEEm

Note that Nash equilibrium of a game represents a stable outcome of a strategic

form game as when a Nash equilibrium is reached rational players do not deviate from

this strategy profile. This makes Nash equilibrium one of the most frequently used

solution concepts for games, and in this thesis for the most part we restrict ourselves

to this solution concept. By the definition above a Nash equilibrium is a pure strategy

profile if it exists. Such an equilibrium is also known as pure Nash equilibrium, we

simply refer to it as Nash equilibrium.

The notion of best response is closely related to Nash equilibrium. The set of

best responses of a player to its opponents strategies x-m is given by,

BR m (x-m) = argmax um (x m , x - m ) (2.2)
*

m
EE

m

and it stands for the set of strategies which maximize the payoff of player m given

strategies of other players. This implies that, a Nash equilibrium is a strategy profile

in which all players utilize their best responses.

Note that given the definition of Nash equilibrium it is not clear whether it always

exists. In Table 2.1 we present the matching pennies game, which has no Nash Equi-

librium. In this game players 1 and 2 announce heads (H) or tails (T) simultaneously



H T
H 1, -1 -1, 1

T -1, 1 1,-1

Table 2.1: Matching Pennies Game

H T
H 1, 1 -1, -1
T -1, -1 1, 1

Table 2.2: Modified Matching Pennies Game

and if their announcements match player 1 and 2 receive payoffs 1 and -1 respec-

tively, and if they do not match payoffs become -1 and 1. In Table 2.1, the left most

column stands for actions of first player and top most row stands for actions of second

player. Given strategies of both players in the corresponding box first number stands

for the payoff of player 1 and the second number stands for the payoff of player 2. It

can be seen from this table that none of the strategy profiles do satisfy the definition

of Nash equilibrium.

If the strategy space of each player in a strategic form game with finitely many

players is finite then the game is referred to as a finite game. On the other hand,

if the strategy spaces of players are nonempty compact metric spaces and the utility

functions are continuous then the game is said to be a continuous game.

The matching pennies game suggests that Nash equilibrium may not exist in finite

games. An interesting result on existence of Nash equilibrium in continuous games is

given in Section 2.1.2.

We note that if Nash equilibrium exists it need not be unique, an example can

be obtained by modifying the payoffs in the matching pennies game. Assume that

in the new matching pennies game both players receive 1 if they announce the same

outcome and both receive -1 otherwise. The payoffs of the modified game are as

given in Table 2.2. In this game strategy profiles (H, H) and (T, T) both satisfy the

definition of Nash equilibrium.

We conclude this section with a related solution concept, namely the E-equilibrium.

Definition 2.1.2 (c-Equilibrium). E-equilibrium is a strategy profile from which no



player can unilaterally deviate and improve its payoff more than c. Formally, a strat-

egy profile x A (xl,... ,z) is an 6-equilibrium if

um(xm, x -m) > um(m, x - m) - c, for every Jm E E m and m E M (2.3)

Note that every Nash equilibrium is an -equilibrium with e = 0. This equilibrium

concept refers to strategy profiles that are approximately an equilibrium.

2.1.2 Existence of Nash Equilibrium

In this section we discuss existence of a Nash equilibrium in continuous games. The

theorems that show existence of a Nash equilibrium in continuous games are usually

derived utilizing Kakutani's fixed point theorem, [20, 44, 15, 19]. Below we state a

well known existence result without proving it (see [19]).

Theorem 2.1.1. Consider a strategic form game with strategy spaces E m being

nonempty compact convex subsets of an Euclidean space. If the payoff function of

each player is continuous in joint strategies and quasi-concave in its strategy, there

exists a pure-strategy Nash Equilibrium.

We make use of this theorem in Chapter 3 to conclude existence of a Nash equi-

librium. Note that the above theorem also implies existence of equilibria for finite

games when mixed strategies are utilized.

2.1.3 Potential Games

Potential games is a class of games in which preferences of all players are aligned with

a global objective [41, 31]. This feature is desirable as it makes potential games easier

to analyze and it also ensures that simple dynamics such as best response dynamics

and fictitious play converge to an equilibrium in potential games [28, 56, 31, 50].

Another reason for potential games to receive attention is its relation to congestion

games. Congestion games, which was defined in [45], is an important class of games for

economics. As shown in [41] every finite potential game is isomorphic to a congestion



game. In this section we focus on the basic properties of potential games and state

the conditions under which a game is a potential game, and we defer the results about

dynamics in potential games to Section 2.1.5.

We start by giving definitions of exact and ordinal potential games.

Definition 2.1.3 (Exact Potential Game). A game is called an exact potential game

if a function '1 : E -- R such that

(xm, x-') - (y", x-m) = um(Xm, x-m) - um(y1 , x-m), (2.4)

for all m EM, m, ym Em, x - m E E-m exists.

Definition 2.1.4 (Ordinal Potential Game). A game is called an ordinal potential

game if a function 1 : E -* R such that

1(xm , x-m ) _ m(yt , x-m) > 0 # um (xm , x-m ) - Um (y m , -m) > 0, (2.5)

for all m E M, x , ym, E Em , x - m E - exists.

The functions 0, satisfying the conditions in Definitions 2.1.3 and 2.1.4 are called

exact potential function and ordinal potential function respectively. We refer to exact

potential functions and ordinal potential functions as potential functions in short.

Observe that ordinal potential games is an extension of exact potential games as can

be seen from the definitions. Hence, every exact potential game is an ordinal potential

game. Another extension of exact potential games is weighted potential games.

In weighted potential games potential function ( satisfies,

N(xm, X-) _ (ym, x-m = W (u (x, x-m) _ um(ym, x-m)) ), (2.6)

instead of (2.4), where wm E R is a positive weight corresponding to player m. Clearly

weighted potential games are also ordinal potential games.

Definitions 2.1.3 and 2.1.4 imply that the potential function is an aggregate rep-

resentation of utility functions of the players. This enables a more tractable analysis



of equilibria in exact and ordinal potential games as shown in the following lemma

[41].

Lemma 2.1.1. Let 4 be an (ordinal) potential function for G = (M, {E m}meM,

{um'}mEM). The equilibrium set of g coincides with the equilibrium set of =

(M, {E m }mEM, { 4 meM).

This lemma has two implications. First given a potential function 4, a strategy

profile x is a Nash Equilibrium if and only if for all m E M

S(x, x -m ) > ((ym , x - m ) for all ym E E m  (2.7)

Second, Lemma 2.1.1 also suggests a way of finding Nash equilibria. It can be seen

from (2.7) that maxima of the potential function correspond to equilibria for both

continuous and finite games. This implies that for finite potential games a pure Nash

equilibrium always exists as the maximum of the potential function always exists.

However, a strategy profile which is not even a local maximum of the potential

may be a Nash equilibrium of a potential game as can be seen from the next example.

Example 2.1.1. Consider a game with utilities ul(x,y) = 2 (x,y) = (x,y) -

e-(X-1)2-(y-1) 2 + e-(z+1)2-(y+t) 2 _ e-( x - 1)2- (y + 1)2 
- e - (x + 1)2- (y-1)2 where x E El E 1 = R

represents strategies of player 1 and y E E 2 = IR represents strategies of player 2.

Note that for this potential function d4(x, 0) = 4(0, y) = 0 for all x,y E R, hence

none of the players have incentive to deviate from (x, y) = (0, 0) and this strategy

profile is a Nash equilibrium. On the other hand, as Figure 2-1 shows this point is

not a local maximum of the potential.

It should also be noted that not all local maxima of the potential correspond to

equilibria of the game, this is illustrated in the next example.

Example 2.1.2. Consider a game with utilities ul (x, y) = u 2(x, y) = (1-x 2 )cos(7y)e- y 2

where x E [-1, 1] represents strategies of player 1 and y E [-4, 4] represents actions

of player 2. It can be seen that this is a potential game with potential 1I(x, y) =
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Figure 2-1: Nash equilibrium need not be a local maximum of the potential

(1 - 2)Cos(7ry)e-Y 2 . On the other hand as Figure 2-2 indicates the potential has

multiple local maxima for which x = 0 but the potential is maximized for y = 0 and

from all other local maxima player 2 has incentive to modify its strategy and move to

y = 0 implying that the only equilibrium of the game is (x, y) = (0, 0).

In view of the desirable properties of potential games, an important question is

to provide conditions under which a game has a potential function. In the following

we provide a brief overview of known conditions from the literature [41, 54, 53].

Definition 2.1.5 (Path- Improvement Path - Closed Path). A path is a collection of

strategy profiles y = (zo,. .. x) such that xi and x+ 1 differ in the strategy of exactly

one player where xi G E for i E {0, 1,... N}. A path is an improvement path if

umi(xi) > umi(xil) where mi is the player strategy of which differs between xi and

xi- 1. If for a path y = (xo,... xN), we have x0o = XN, then the path is referred as a

closed path (or cycle).

The length of a path -y = (xo,... xN) is N. The transition from strategy profile

xi-1 to xi is called as step i of the path. We say a closed path is simple if no strategy

profile other than the first and the last strategy profiles is repeated along the path.
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Figure 2-2: Local maximum of the potential need not be an equilibrium

In [41], authors present conditions on the existence of an exact potential in finite

games that involve paths. For any path y = (Xo,.... N) let I(y, ual) represent the

"cost improvement" along path y, i.e.,

N

I(y, Ua11) = um (xi) - Umi (x i-1), (2.8)

where mi denotes the player changing its strategy in the ith step of the path. The

following theorem from [41] presents a characterization of exact potential games using

conditions on cost improvement along closed paths (or cycles).

Theorem 2.1.2. A game g is an exact potential game if and only if for all simple

closed paths, y, I(y, uwi) = 0. Moreover, it is sufficient to check closed paths of length

4.

The claim that I(y, uul) = 0 for every simple closed path y can be seen rewriting

(2.8) with the exact potential function and observing that the the canonical sum

along -y should be equal to 0. Having I(y, Ua) = 0 for all simple closed paths implies

that the game is an exact potential game as in this case a potential function can be

constructed by setting the potential equal to zero at an arbitrary strategy profile,



say x and setting I(-y, Uall) equal to the potential of strategy profile y if y is a path

connecting x to y. In proving that this is a valid potential functino the property that

I(y, Uall) = 0 for all closed paths is used. This also gives a procedure for constructing

the potential function in a potential game. Note that this function is unique up to

an additive constant. On the other hand, enumerating and checking all 4 step closed

paths may be computationally infeasible for checking the existence of exact potential.

In [54], authors present necessary and sufficient conditions for the existence of an

ordinal potential in games. Similar to [41], they present conditions on the existence of

a potential by constructing paths of different strategy profiles. Authors define weak

improvement cycle as a closed path at every step of which player whose strategy

is modified has a nonnegative change in its utility and at least at one step the change

in payoffs is strictly positive. An obvious necessary condition for the existence of an

ordinal potential is that no weak improvement cycle exists in the game. It can be

seen that if this condition does not hold, the value of the potential cannot remain

constant along a cycle.

The main result of [54] is summarized in the following theorem:

Theorem 2.1.3. A countable game is an ordinal potential game if and only if the set

of strategies does not contain any weak improvement cycles.

By definition, a game is a potential game if and only if there exists a potential

function which represents the preferences of each player among the strategy profiles

for which only its strategy is changing. Existence of a weak improvement cycle implies

that there is no potential function or ranking of strategy profiles that is consistent

with these preferences of players. If a weak improvement cycle exists in a game we

say that there are inconsistent preference relations in the game.

In [54] the paths over which utility of the players modifying their strategy does not

decrease are referred to as nondeteriorating path, and equivalence classes are defined

on E by stating two strategy profiles x and y belong to the same equivalence class

if there are nondeteriorating paths from x to y and from y to x. An order relation

>- on equivalence classes is defined as follows: two difference equivalence classes [x]



and [y] satisfy [x] >- [y] if there is a nondeteriorating path from y to x. The set of

equivalence classes is said to be properly ordered if there exists a function defined on

the set of equivalence classes that is order preserving. The set of equivalence classes

A is said to be order dense if there exists a countable subset of equivalence classes B

such that for any x, z E A - B there exists y E B such that z >- y, y >- x.

An extension of Theorem 2.1.3 states that for an uncountable game if set of

equivalence classes a contains countable order dense set then the game is an ordinal

potential game if and only if no weak improvement cycles exist.

Similar to the result related to exact potential games, it is not clear how one can

determine the existence of weak improvement cycles in a systematic and computation-

ally feasible way, possibly by avoiding enumeration of all the cycles. For uncountable

games, although finding a cycle that a weak improvement cycle implies that the game

is not an ordinal potential game, concluding that the game is an ordinal potential

game is difficult if not impossible. Note that unlike the result in [41] for ordinal

potential games it is not sufficient to study cycles of length 4, hence the number of

cycles one has to check increases significantly for ordinal potential games.

There are also results on the existence of an exact potential in games with differ-

entiable utility functions. One such result due to [41] is stated below.

Theorem 2.1.4. Let g be a game in which the strategy spaces are intervals of real

numbers, i.e. xm E E m C IR for all m E M. Suppose the utilities are twice continu-

ously differentiable. Then g is a potential game if and only if,

&2um 2 uk(
k = k for all m, k E M. (2.9)

This statement can be extended to games where the strategy spaces are compact

subsets of n-dimensional Euclidean spaces. However, to our knowledge in the litera-

ture there are no easy to check conditions for ordinal potential games that is similar

to Theorem 2.1.4.



2.1.4 Efficiency Loss in Games

In games we are frequently interested in comparing the quality of the equilibria to a

centralized, system-optimal solution. Recently, there has been much work in quan-

tifying the efficiency loss incurred by the selfish behavior of players in networked

systems (see [46, 47, 12, 22]). The two concepts which are most commonly used in

this context are the price of anarchy (PoA), and price of stability (PoS). These

concepts stand for the quality of the best and worst equilibria when compared to a

globally optimal solution in terms of some well defined quality measure.

A frequently used quality measure is the aggregate utility in the system given

by,

u(x) = um(x). (2.10)
mEM

We define the set of globally optimal solutions by argmaxx6 E u(x). Note that defin-

ing such metrics for efficiency loss is usually not very meaningful for specific game

instances, as we are interested in obtaining efficiency loss characterization for a class

of games. The usual practice is to characterize PoA and PoS for a class of games.

We use the notation Zi for the set of game instances of interest and I E Ig for a

game instance in this set.

Below we give a formal definition of PoA and PoS.

Definition 2.1.6 (Price of Stability - Price of Anarchy). For every I E Zg, denote

by NT the set of Nash equilibria, and let x4 be an optimal strategy profile in terms of

the aggregate utility. PoS and PoA are defined as follows:

PoS = sup inf u() (2.11)
IE xCN uX)(2.1)

PoA = sup sup . (2.12)
IEIgxCNi U()

These quantities are well studied for game classes such as congestion games, [14,

17, 5]. Also properties of potential games are used in the literature to bound the

efficiency loss, for details see [5, 42, 31].



2.1.5 Dynamics in Games

We already introduced Nash equilibrium as a solution concept in games. An im-

portant question is how a game reaches to an equilibrium. This question is usually

answered by theoretical models of dynamics in games. In this section we mention two

important classes of dynamics in games: best-response dynamics and fictitious play.

Detailed surveys of dynamics in games can be found in [56, 18].

Perhaps the most natural mechanism for (distributed) convergence to an equilib-

rium relies on a player's best response, which in general is a player's strategy that

maximizes its own utility, given the strategies of other players. An informal descrip-

tion of a general best-response mechanism is simple: Each player updates its strategy

from time to time through a best response (2.2).

This model assumes that players are not aware of the utilities of other players

and given a strategy profile players independently update their strategies to greedily

maximize their payoffs. Variations of these dynamics can be obtained depending on

the update schedules of players. Updates may take place simultaneously or sequen-

tially at a prescribed order or randomly decided at each time slot. Another variation

of these dynamics is better response dynamics in which given a strategy profile

x, player m updates its strategy not necessarily to a strategy in BR m (x - m ) but to

an arbitrary strategy ym which satisfies u'(y', z-m) > um(xm, x-m).

Best or better response dynamics do not converge to an equilibrium in general,

however for finite potential games, it is possible to show convergence of such dynamics

to an equilibrium. This is due to the finite improvement property, which is defined

next.

Definition 2.1.7 (Finite Improvement Property (FIP)). A game is said to have the

finite improvement property if every improvement path is finite.

The following lemma from [41] can be used to show convergence of the best re-

sponse dynamics to an equilibrium in finite potential games.

Lemma 2.1.2. Every finite potential game has the finite improvement property.



This lemma follows since along an improvement path, the potential has to increase

at each step but due to the fact that the game is a finite game the improvement

path has to terminate in finitely many steps. This implies that best and better

response dynamics should terminate in finite games in finitely many steps provided

that potential increases at every step. We leave the precise descriptions of the update

rules that are used in these dynamics to Chapter 3 where we discuss convergent

dynamics for a wireless scheduling game.

Another widely used dynamic is the fictitious play [56, 18, 40, 28]. In fictitious

play, agents act as if their opponents are utilizing stationary strategies. It is assumed

that players update their strategies at times t E Z+. Another assumption is that

at time t + 1 players have observed the actions of all players up to time t and they

have access to the empirical average of the number of times their opponents utilize

each strategy profile xz-  G E - . Player m assumes that this empirical average is a

realization of a randomized stationary strategy its opponents are utilizing and chooses

a strategy to maximize its expected payoff. It is known that fictitious play converges

to a Nash equilibrium in potential games [56].

Note that both of the dynamics described here are myopic in the sense that players

are trying to maximize the payoff at the time of their updates. There are more

complicated dynamics in which players have memory and take strategic actions as a

function of their past observations, [56]. For simplicity, in this thesis, we just consider

the best response dynamics described in this section.

2.2 Projections of Games to the Set of Exact Po-

tential Games

Despite their desirable properties, the set of exact potential games is a "small" subset

of the space of games. This motivates us to study the class of games that are "close"

to a potential game. Our approach relies on projecting an arbitrary game to the set

of exact potential games and using the projection error to quantify the distance of



this game from the set of exact potential games. The projection also shows us how

to modify the utility functions in a minimal way to obtain a game with desirable

properties of a potential game.

The task of designing games to achieve a specific outcome is studied in game

theory under mechanism design [19, 42]. The projection approach allows modifying

payoffs of players to obtain a potential game with desirable properties. Therefore,

this approach is similar to mechanism design in spirit. However it should be noted

that in mechanism design problems the focus is mainly on designing a game with

small efficiency loss, whereas in the projection approach the goal is to obtain a game

with the desirable properties of potential games.

The problem of obtaining a projection of a game to the set of exact potential

games may be important from the perspective of cooperative control problems. The

control of several autonomous agents working towards a common global objective is

usually addressed by cooperative control problems. Recently game-theoretic models

have attracted attention in the context of distributed cooperative control problems.

The general framework utilized in this approach is to endow agents with utility func-

tions designed to ensure that collective behavior of users drives the system to operate

at a Nash equilibrium which is the same as or close to a global optimum [7, 29, 27, 30].

However, if the resulting game is not a potential game, then there exists inconsistent

preference relations in the joint strategy space, and simple dynamics may not con-

verge to an equilibrium due to the inconsistencies. On the other hand, the projection

approach can be used to eliminate the inconsistencies and obtain a potential game.

Moreover, provided that the projection error is small, a Nash equilibrium of the pro-

jected game will be close to the globally optimal solution in terms of the performance.

Therefore, the projection methods may help in designing game-theoretic models for

cooperative control systems in which simple dynamics converge to a good quality

equilibrium of the game.

There is an interesting connection between potential games and the ranking prob-

lems. In ranking problems, it is assumed that a set of alternatives and the data (or

rankings) which corresponds to cardinal scores assigned to these alternatives is given.



The input data can be incomplete or inconsistent, and the main objective is to find

a score function defined on the set of alternatives, representing the input data. This

score function is frequently referred to as the global ranking.

In certain settings the input data represents the amount an alternative is pre-

ferred over another. This data may be obtained by pairwise comparisons of the given

cardinal scores and often referred to as pairwise rankings or pairwise comparisons. If

three alternatives a, b, c are considered and pairwise rankings indicating a > b, b > c,

c > a are present (where > represents the preference relation between alternatives)

the provided pairwise ranking among these three alternatives is locally inconsistent.

A global ranking which represents the input data cannot contain such inconsistencies,

and is globally consistent.

In a game utility of each player represents the ranking of strategy profiles by this

player. For each player m, consider the pairwise comparison of strategy profiles which

differ by the strategy of player m. A game is an exact potential game if and only

if for each player the pairwise comparisons obtained from its utility function match

with the pairwise comparisons obtained from a potential function. Hence, potential

games are games in which rankings given by different players can be represented by a

potential function. Therefore, the question of finding a global ranking that represents

a set of possibly inconsistent rankings is related to finding a potential function that

represents a collection of utilities in the best possible way.

In recent works, tools from combinatorial Hodge Theory has been used in ranking

problems. In particular, the recent paper [21] represents a given collection of pairwise

rankings as a vector field and uses the Helmholtz decomposition of a vector field to

determine a global ranking representing the pairwise rankings in the best possible

way.

The Helmholtz Decomposition allows decomposition of a vector field into three

vector fields:

* Gradient flow (globally consistent component)

* Harmonic flow (locally consistent but globally inconsistent component)



* Curl flow (locally inconsistent component).

The gradient flow is the consistent part in the given pairwise rankings that actually

creates the global ranking. The curl flow represents the local inconsistency in the

pairwise rankings. Note that the local inconsistencies by definition involve three

alternatives. If there is an inconsistency in the pairwise rankings that can only be

observed by checking more than 3 pairwise comparisons, the consistency is not local

and is a part of the Harmonic flow. The approach in [21] enables us to construct a

global ranking if the given pairwise rankings are globally consistent. For the case,

when there is no global ranking representing a given collection of pairwise rankings,

this approach also characterizes the nature of inconsistencies in the pairwise rankings.

In the rest of this section we give a brief overview of the Combinatorial Hodge

Theory and its application to ranking problems.

2.2.1 Combinatorial Hodge Theory

The objective of this section is to provide the results from combinatorial Hodge Theory

that will be used for the projection of games to the set of exact potential games (see

Chapter 4). We introduce basic definitions, notation and discuss preliminary results

related to combinatorial Hodge Theory.

Let E denote a set of alternatives1 , we define by Co = {fl f : E - ]R} the

set of functions defined on E. We study the comparisons of different alternatives

but we assume that not all alternatives are comparable. We denote the set of pairs

of comparable alternatives by A C E x E, and we say that alternatives p, q are

comparable if (p, q) E A. Furthermore we assume that (p, q) E A if and only

if (q, p) E A. Similarly we define the set of 3 cliques of comparable alternatives,

T = {(p, q, r) (p, q), (q, r), (p, r) E A}.

1We use the same notation for the set of alternatives and the set of strategy profiles, given the
connection between the ranking problems and the problem of finding an exact potential function
which represents an arbitrary game



We define an indicator function of comparable alternatives W : E x E --+ R as

I if (p, q) EA
W(p, q) = if(pq)e A (2.13)

0 otherwise

It will be convenient to represent the comparable alternatives using the graph

G = (E, A), where E is the set of nodes (or alternatives) and A is the set of edges in

the graph. An edge is present between the alternatives that are comparable.

Pairwise comparisons represent how much an alternative is valued over another.

A pairwise comparison on the set of alternatives is defined as X : E x E - IR such

that

X(p, q)= -X(q, p) if (p, q) EA (2.14)
0 otherwise.

We denote the set of pairwise comparisons from E x E to R by C1. By (2.14) it

follows that X(p, p) = 0 for all X E C1. The pairwise comparisons correspond to

edge flows on G.

Similar to the edge flows, we define triangular flow of the alternatives I : E x

E x E -+ R such that

T (p, q, r) = (q,r, p)= (r, p, q) = - I (q, p, r) = -(p, r, q)= -(r, q, p),

(2.15)

and T (p, q, r) = 0 if (p,q,r) ( T. We denote the set of triangular flows from

E x E x E to R by C2.

Next we define operators that will be used in the analysis of the projection prob-

lem. In the following, assume that 4 E Co is an arbitrary function. We first define

the combinatorial gradient operator 60 : Co -+ C 1 , given by

(60 ) (p, q) = W(p, q) ((q) - 0(p)), (2.16)

for all p, q E E, 0 E Co.

An operator which is used in the characterization of the inconsistencies is the curl



operator : C 1i -+ C2, which is defined for all X C C1 and (p, q, r) c T as,

(61X) (p, q, r) = X(p, q) + X(q, r) + X(r, p).

We denote the adjoints of operators 6o and 61 by 6* and 6* respectively.

(2.17)

For

k C {0, 1}, given an inner product (., ")k on Ck adjoint of 6k, : Ck+ 1 -+ Ck is the

operator which satisfies,

(6kfk, gk+1)k+1l = (fk, jkgk+1)k, (2.18)

for all fk C Ck, 9k+l E Ck+1. We drop the subscript in the inner product notation if

the space in which it is defined is clear from the context. We next present particular

inner products in spaces Co, C1 and C2 that are used in our projection framework.

We assume that for 0 1, 02 E Co,

(1, 2) - (P)2 (P).
pEE

(2.19)

For X, Y c C1, we define the inner product on C1 as

(X, Y) =
(p,q)EExE

W(p, q)X(p, q)Y(p, q)

(2.20)

= 1 X(p, q)Y(p, q)
(p,q)EA

For I/, X92 E C2 the inner product on C2 satisfies

(' 1 ,) 2 )= I SI(p, q, r)P 2 (p, q, r).

(p,q,r)ET

Using these definitions and the definition of the adjoint, the operators 6 satisfies

(63X)(p) = -
ql(p,q)EA

W(p, q)X(p, q).

(2.21)

(2.22)



Equivalently, since W(p, q) = 0 for (p, q) A

(3*X)(p) = - W(p, q)X(p, q). (2.23)
qEE

Note that 6* operates like the divergence operator of calculus, for this reason we

sometimes refer to the operator -6 as the divergence operator.

The domains and codomains of mappings 3o, 61, 6*, 6~ are summarized in (2.24)

and (2.25):

Co ) C 1 1 C2 (2.24)

and

Co - C, 6C2. (2.25)

We sometimes use the notations grad, div, curl instead of o60, -60, 61 respectively.

The functions in Co can be represented by vectors of length IEl = h. This simply

requires indexing all alternatives and constructing a vector with the ith entry equal

to the value of the function evaluated at the ith alternative. Using this alternative

description, we have Co = R h . Similarly C1 can be expressed as a vector of length

h x h however as elements of C1 is a subset of the set of functions from E x E to

R, it follows that C1 C IRhxh . Note that the operators defined so far are linear and

this makes the alternative descriptions as the operators can be expressed in terms of

matrices.

Another operator which is used in the study of the projections is the analogue of

the graph Laplacian, A0 : Co - Co, which is given by,

A0 = 60 o 6o, (2.26)

where o represents the composition of the operators. To simplify the notation we

sometimes drop o and use Ao = 6*60. The reason this operator is named as the graph

Laplacian becomes apparent once it is expressed in the matrix representation. Using

the matrix representation for the Laplacian and substituting the definitions of 6o and



6;, the Laplacian can be expressed as

S W(p, r) if p= q
rEE

[Aop,q -1 if p q and (p, q) EA (2.27)

0 otherwise,

where [Aolp,q denotes the entry of the matrix with row index equal to the index of

p and column index equal to index of q. This is precisely the definition of Laplacian

matrix of a graph with node set E and arc set A.

A related operator is denoted by A1,

A = 61 o +1 + 6 0 o6 , (2.28)

and it is the discrete analogue of the Helmholtz operator [21].

The operators 60 and 61 are closed, i.e., 61 o o = 0. This implies the well known

identities in vector calculus such as curl o grad = 0, div o curl* = 0. Moreover this

property is used in the proof of the decomposition theorem discussed below.

Let X E C, be a pairwise ranking. If X is derived from a global ranking on E, then

X is said to be globally consistent. Equivalently X is globally consistent if X = 60¢ for

some E Co. Here q is the potential function or global ranking corresponding to X.

This suggests that the set of globally consistent pairwise rankings can be represented

by im(grad), the image of the grad operator. By closedness of 60 and 61, 61X = 0

for a globally consistent pairwise ranking X. We define locally inconsistent pairwise

rankings as the pairwise rankings for which (61X)(p, q, r) = X(p, q) + X(q, r) +

X(r, p) 5 0 for some (p, q, r) G T. Note that ker(61) is the set of pairwise rankings

which have no local inconsistencies (as curl is zero), but it turns out that this set

is not equal to im(grad), and the pairwise rankings belonging to difference of these

sets are the harmonic rankings, which are locally consistent but globally inconsistent.

These observations are formalized with the following decomposition theorem from

[21].



Theorem 2.2.1 (Helmholtz Decomposition Theorem2 ). C1 admits an orthogonal

decomposition

C = im(60 ) e ker(Ai) @ im(6*) (2.29)

where ker(A) = ker(a6) n ker(6 ).

The statement of the above theorem can alternatively be written as

C1 = im(grad) E ker(ZAl) e im(curl*) (2.30)

for ker(Az) = ker(l) n ker(6*) = ker(curl) n ker(div).

ker(curl) ker(div)

Figure 2-3: Helmholtz Decomposition in C1

This decomposition theorem implies that the space of flows admits three different

orthogonal components. First component is the image of the gradient, which stands

for the globally consistent flows. Locally inconsistent component can be found as the

image of adjoint of curl operator or alternatively as the orthogonal complement of

the kernel of the curl operator. Globally inconsistent but locally consistent flows are

defined by the kernel of the A1, which is essentially the intersection of the kernels of

the curl and the divergence operators. This also implies that kernel of the curl oper-

ator consists of locally consistent flows (that may or may not be globally consistent)

2Hodge Decomposition theorem gives a generalization of Helmholtz Decomposition theorem for
higher dimensions (for details see [21]).



and kernel of the divergence consists of inconsistent components which are locally or

globally inconsistent. These relations are summarized in Figure 2-3.

2.2.2 Application of Hodge Theory to Ranking Problems

In this section, we briefly summarize an application of the Helmholtz decomposition

to ranking problem as presented in [21]. We use similar ideas in the analysis of

projections on the set of exact potential games in Chapter 4.

The decomposition theorem can be used to determine if there is inconsistency in a

given set of pairwise comparisons and it allows to determine whether the inconsistency

is local or global. In this section we assume that the pairwise comparisons denoted

by Y are given and a global ranking, s, representing these comparisons is of interest.

This problem can be formulated as the following optimization problem:

min 51os - Y , (2.31)
sECo

where IIXII = (X, X) for the inner product defined in (2.20).

This problem is essentially projection of a given flow on the space of globally

consistent flows. It is proved in [21] that the solution for this problem is given by,

s* = Ao Y, (2.32)

where t stands for the pseudo inverse. The result is immediately obtained by noting

that the projection error is orthogonal to the image space of 60 thus optimal s satisfies

660s = os = 6Y.

It is possible to analyze the residual component after projection on the space

of consistent flows. The residual component, R* = 6os* - Y, can further be pro-

jected on the local and global inconsistency components giving more insight about

the source of inconsistency. The Helmholtz decomposition theorem implies that

R* = projim(curl.)Y + projker(Al)Y. It can be shown that local inconsistency compo-



nent can be found using

projim(cur*)Y = curl*(curl curl*)tcurlY (2.33)

which is obtained by projecting Y to im(curl*) and mapping it back to C1 ensuring

that component with zero curl disappears.

2.2.3 Notation Used in the Projection Problem

In this thesis we consider using the Helmholtz decomposition framework for projecting

games to the set of exact potential games. This necessitates some additional notation

which we introduce next.

In the problem of projection on the set of exact potential games, our objective is

to obtain a potential function (global ranking) representing a given game, defined on

the set of strategy profiles. Therefore, the set of alternatives is equal to the set of

strategy profiles E, for the projection problem.

In the following, Co denotes the set of real valued functions defined on E =

E' x .. x EM (such as utilities and potentials) and C 1 denotes the set of pairwise

comparisons. We assume the game is finite, and as discussed earlier we equivalently

use Co =- IRh , and Ci C R hxh where JEm = h, for all m E M and El = ,meM h, =

h.

In potential games, we are interested in pairwise comparisons between strategy

profiles that differ in the strategy of a single player. Therefore, we say that the

strategy profiles that differ in the strategy of a single player are comparable and

redefine W : E x E --+ R as

W1 if p, q differ in the strategy of a single player

W(p,q) otherwise (2.34)



We define a similar function, Wm : E x E --+ R as

S1 if p, q differ in the strategy of player m only
Wm (p, q) = (2.35)

0 otherwise.

Wm is an indicator function which is equal to 1 if p and q differ in the strategy of

player m. We say that such strategy profiles are comparable by player m. Note that

W(p, q) = Wm(p, q), (2.36)
mEM

and W m (p, q)Wk(p, q) = 0 for all p, q E E and k, m E M such that k Z m.

Given ¢ E Co, define Dm, : Co -- C1 such that

(Dm ¢) (p, q) = W m (p, q) ((q) - (p)) . (2.37)

Similar to the gradient operator, Dm quantifies the difference between the strategy

profiles, on the other hand it can be nonzero only for strategy profiles comparable

by player m. Note that this is a linear operator and when we consider Co and C1 as

subsets of Euclidean spaces. Dm can be treated as a h2 x h matrix. The motivation for

introducing this operator, as can be seen in next section, stems from the fact that the

pairwise comparisons we deal with have a special structure that can be represented

in terms of the operator Dm. We denote the adjoint of the Dm by Dm for all m E M.

We define D : CoM -+ C1, where CoM = Co x ... x Co, such that

(Du)(p, q) = E W m (p, q) (um (q) - um (p)), (2.38)
mEM

for u = {um }ImeM. It can be seen that Du = ECEM Dmum. Given a collection of

utilities this operator constructs the pairwise comparisons which are comparable.

The operator Dm and its adjoint D, m E M, are closely related to 6o and 36.

Note that by definition, Wm (p, q)(6 00)(p, q) = (Dm )(p, q). Summing this over m



and using (2.36), for any 0 E Co, p, q E E it follows that

so0 = Dm 5.
mEM

(2.39)

We define operators Am : C - C1 for m E M such that

(AmX)(p, q) = Wm (p, q)X(p, q) (2.40)

for all X E C1, p, q E E. By definition Am, is a self adjoint scaling operator. It can

be seen that

D, = Am,60, (2.41)

from the definitions of Dm and Am. Hence,

D* = Ji*Am.m 0m (2.42)

This enables expressing the operator D* explicitly. Given some X E C1, we have

(Dm X)(p)= - W'(p, q)X(p, q)
qEE

(2.43)

which follows from (2.23) and the fact that Wm (p, q)W(p, q)= Wm (p, q).

From (2.43), (2.23) and (2.36) it follows that

a6= D *, (2.44)
mEM

Another implication of (2.42) is that DDm = 0 if k Z m, i.e. the image spaces

of D, m E M are orthogonal. To see this note that

DDm = 6AkAm0o (2.45)

and (AkA,X)(p, q) = 0 for all p, q EE and X E C1.

The orthogonality enables us to exploit the properties of the previously defined



Laplacian operator. Observe that

A0 60 o0 = S 1 D m D Y Dm
mEM kEM MEM (246)

= DmDm.
mCM

Here the second equality follows from the fact that Jo = mEM Dmin. Noting that

(Jo)(p, q) = (Dm )(p, q) if Wm(p, q) = 1 it also follows that

DmDm = D~ 0. (2.47)

Observe that Dm acts as the divergence operator, when Wm instead of W is utilized

for the definition of the gradient operator and the inner product on C1. Together

with (2.47) this suggests that D Dm = Dmjo is a Laplacian with respect to the new

weights. This leads us to define a new Laplacian operator A0,m = DmDm and from

(2.46) it follows that

A 5 =: A,m. (2.48)
mEM

We illustrate the graphs used for defining Laplacians A0 and Ao,m in Figure 2-4.

In this figure, each player has three strategies and node (i, j) represents the strategy

profile in which players 1 and 2 use strategies i and j respectively. A0,1, A0, 2 corre-

spond to the Laplacians of the graphs of strategy profiles comparable by player 1 and

player 2. Hence, according to Figure 2-4, A0,1, A0,2 are defined on the graphs where

edges are shown with dashed and solid lines respectively. On the other hand A 0o is

defined on the graph for which all edges (dashed and solid) are present.

In our analysis kernel and orthogonal complement of the kernel of Dm plays a

key role. It is known that for a linear operator L, LtL (where t denotes the pseudo

inverse) is the operator for projection on the orthogonal complement of the kernel of

L. We define a projection operator for projection on the orthogonal complement of

kernel of Dm as follows,

proj = D t Dm. (2.49)
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Figure 2-4: Graphs used for defining different Laplacians in a game with 2 players.

Note that this operator is very similar to Ao,m.

For a given game with collection of utilities {um}mM c CoM, we refer to projmum

and (I - projm)u are respectively the strategic and nonstrategic components of the

utility of player m. The motivation behind this is that (I - projm)utm denotes the

projection of the utility utm to the kernel of Dm and hence Dm(I- projjm)u m = 0. On

the other hand, entries of Dmu " = Dmprojmu" indicates the pairwise rankings of

different strategy profiles by player m. Therefore, projmu"m contains all the strategic

information of player m whereas I - projmu"m stands for the nonstrategic component

of Urn.

Due to the special structure of the underlying graph there is a relationship between

the projection operator projm =D Dr and Laplacian operator A0 ,m = DDm. Next

theorem establishes this relationship between DtDm and DmDm.

Theorem 2.2.2. Let E m = hm for all m M. Then, for all m C M, D ,Dm

cmDtDm where c, hm > 1.

Proof. The proof relies on the fact that D*Dm = Ao,m is a Laplacian operator. As

weights W m (p, q) = 1, if and only if p, q E E differ in the strategy of player m the

underlying graph has edges between strategy profiles which differ only in the strategy

I \
I \
I \



of player m. For a fixed m, it can be seen that strategy profile p = (pm, p- m )

has edges to strategy profiles (qm , p-m) for all qm E E m , qm - pm but to none of

the strategy profiles (qm , q- m ) for q-m _ p-m. This implies that the graph over

which Ao,m is defined has E-ml = lk hk components (each p-m E E - m creates a

different component), each of which has IEml = hm elements. Note that all strategy

profiles in a component are connected, thus the underlying graph consists of IE-ml

components, each of which is a complete graph with IEm l nodes.

The Laplacian of an unweighted complete graph with n nodes has eigenvalues 0

and -- , where the multiplicity of nonzero eigenvalues is n - 1 [13]. Each component

of A0,m has eigenvalues 0 and h- with multiplicities 1 and hm - 1 respectively.hm-1

Therefore, Ao,m has eigenvalues 0 and h- where the multiplicity of nonzero eigen-hm-1

values is (hm - 1) k#m hk = h - ok#m hk. This suggests that the dimension of the

kernel of Ao,m is HIk$ hk.

Observe that the kernel of Ao,m = DDm contains the kernel of Dm. For every

q-m E E - m define vq-m E Co such that

1 if q- = p
q-m (p) if q = (2.50)

0 otherwise

It is easy to see that v,-m I vq-m for p-m $ q-m and Dvp-m = 0 for all p-m E E - m.

Thus, for all q-m, Vq-m belongs to the kernel of Dm and by mutual orthogonality of

these functions Dm has dimension at least I E - m I = mkm hk. As the dimension of

the kernel of A0,m is k#M hk and it contains kernel of D, this implies that the

kernels of Dm and Ao,m coincide.

Thus A0,m maps any v C Co in the kernel of Dm to zero and scales the v in

the orthogonal complement of the kernel by h-. On the other hand Dt Dm is a

projection operator and it has eigenvalue 0 for all functions in the kernel of Dm and

1 for the functions in the orthogonal complement of kernel of Din. This implies that

A0,m = m DXDm, (2.51)
m - 1

49



as the claim suggests.

In the proof of the previous theorem we also established that the kernels of Dm

and Ao,m are equal and have dimension Ik#,m hk. We make use of this fact in Chapter

4 and for future reference we state the following lemma.

Lemma 2.2.1. Kernels of D, and Ao,, are equal and have dimension k, m hk.

In the projection problem the distance of the initial game from the set of exact

potential games will be important. To quantify the deviation of a game from a

potential game we next introduce some useful norms. For ¢ E Co, let

1 2 2(p) (2.52)

For the collection of utilities u = {u' )mEM E Co' define the following norm,

1 1

| =H2 =E m 2 (2.53)
\mE.M mE.M

For a game g assume that {um}me and {vm}m e are the two different collections

of utilities denote by u and v respectively. We use the notation u-v = {u -m v }mM

to denote the collection of utilities where utility function of player m is um - vm . The

norm of u - v is expressed as

u-v12= ( U v 2 . (2.54)

Finally we define a weighted norm for X E C1 as follows

IXI12 = (X,X = Q w (p, q)x2(p,q) (2.55)
p,qEE

The notations that are used in this thesis regarding the projection on the set of

potential games is summarized in the Table 2.3.



g The game instance (M, {Em}meM, {um}'EM).
M The set of players, {1,.. .M}.
E "  The set of actions player m has, E m = {1... h,}.
E The joint action space lme~ Em.
u The utility function of player m, urm : E -- IR; in the sequel utilities are treated

as vectors of length JEl.
u The collection of utilities of all players, u = {mmEM E COM-

Wm Function indicating whether strategy profiles are comparable by player m or
not, W m :E x E -- {0, 1}.

W Function indicating whether strategy profiles are comparable or not, W : E x
E - {0,1}.

Co Space of utilities, Co = {umlur : E -+ IR}, if um is represented as a vector
then Co = RLEI.

C1  Space of pairwise comparison functions from E x E to IR, C1 functions can be
represented as vectors of length IE2

60 The gradient operator. 60 : Co - C1, for q E Co satisfies (So )(p, q)
W(p, q) (q(q) - (p)).

Dm Dn : Co -- C1, for 0 E Co satisfies (Dm )(p, q) = Wm (p, q) (O(q) - O(p)).
D D : Co - C1  , for u E CoM  satisfies (Du)(p,q) =

mA M W m (p, q) (umrn(q) - u m (p)).

_ ;_ : C1 -+ Co is the adjoint of the operator 60.
Ao Laplacian operator for the graph of all comparable strategy profiles. o :

Co -+ Co satisfies Ao = 6060o

Ao,m Laplacian operator for the graph of comparable strategies by player m. Ao,m :
Co -+ Co satisfies Ao,,n = DmDn = Do60.

projm Projection operator used for projection on the orthogonal complement of kernel
of Dn. projm: CO -- Co satisfies projm = DtDm.

Table 2.3: Summary of Notations

Note that by the definitions of the operators in Table 2.3 it can be seen that a

game is an exact potential game if and only if there exists a ( E Co such that

Dmum = Dm n for all m E M. (2.56)

This alternative definition for exact potential games is used in Chapter 4.
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Chapter 3

Competitive Scheduling in

Wireless Collision Channels

In this chapter, we consider a wireless collision channel, shared by a finite number of

users who wish to optimally schedule their transmissions based on a natural trade-off

between throughput and power. The channel quality between each user and the base

station is randomly time-varying and observed by the user prior to each transmission

decision. The bulk of the research in the area has been carried under a simplified

assumption that the channel state processes of different users are independent (see

e.g.,[4, 35]). In practice, however, there are global system effects, which simultane-

ously affect the quality of all transmissions (e.g., thermal noise at the base station,

or common weather conditions). Consequently, a distinctive feature of our model is

that the state processes of different users are correlated. As an approximating model,

we consider in this chapter the case of full correlation, meaning that all users observe

the same state prior to transmission. A fully correlated state can have a positive role

of a coordinating signal, in the sense that different states can be "divided" between

different users. On the other hand, such state correlation increases the potential de-

terioration in system performance due to noncooperation, as users might transmit

simultaneously when good channel conditions are available.

The rest of this chapter is organized as follows. In Section 3.1 we describe the

network and game models studied in this chapter. In Section 3.2 we define a related



optimization problem to determine a system optimal solution of the scheduling prob-

lem. In Section 3.3 we quantify the efficiency loss in the scheduling game. We discuss

the best response dynamics and their convergence properties in Section 3.4.

3.1 The Model and Preliminaries

We consider a wireless network, shared by a finite set of mobile users M = {1,..., M}

who transmit at a fixed power level to a common base station over a shared collision

channel. Time is slotted, so that each transmission attempt takes place within slot

boundaries that are common to all. Transmission of a user is successful only if no

other user attempts transmission simultaneously. Thus, at each time slot, at most

one user can successfully transmit to the base station. To further specify our model,

we start with a description of the channel between each user and the base station

(Section 3.1.1), ignoring the possibility of collisions. In Section 3.1.2, we formalize

the user objective and formulate the noncooperative game which arises in a multi-user

shared network.

3.1.1 The Physical Network Model

Our model for the channel between each mobile (or user) and the base station is

characterized by two basic elements.

a. Channel state process. We assume that the channel state between mobile m

and the base station evolves as a stationary process Hm(t), t E Z+ (e.g., Markovian)

taking values in a set m = (1, 2,... , hm) of h, states. The stationary probability

that mobile m observes state i E Nt at any time t is given by r~.

b. Expected data rate. We denote by R' > 0 the expected data rate (or simply,

the rate) 1 that user m can sustain at any given slot as a function of the current state

i E m . We further denote by R' = {R, R. .. , R ' } the set of all data rates for

user m, and define R = x R2 ... X , M. For convenience, we assume that for every

m E M the expected data rate R' strictly decreases in the state index i, so that

1Say, in bits per second.
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Figure 3-1: State Quantization Example

Rm > R ... > R - , i.e., state 1 represents the "best state" in which the highest rate

can be achieved.

Note that the actual channel quality may still take continuous values, which each

user reasonably quantifies into a finite number of information states. Using the cu-

mulative density function of the underlying channel quality, the expected data rates

and their associated steady state probabilities can be obtained. The motivation be-

hind considering a discrete state process rather than the actual channel quality is the

technical inability of mobiles to sense and process a continuum of channel quality

information.

Figure 3-1 exemplifies the quantization in the channel quality. In the figure rates

are assumed to be normalized to 1 and rates between 0.4 and 0.5 are represented

by a single discrete state i, steady state occurrence probability of which is i7r. i

and corresponding expected rate can be calculated from the underlying cumulative

density function (CDF) of the rate distribution.

A central assumption in this chapter is that the state processes of different users

are fully correlated, as we formalize below.



Assumption 3.1.1 (Full Correlation). All users observe the same channel state H(t)

in any given time t. That is, for every mobile m e M: (i) N "m = = {1, 2...,h},

(ii) = 7i for every i E N and (iii) Hm (t) = H(t) (where N is the common state

space, and 7 = (71,..., 7Th) is its stationary distribution).

We emphasize that although all mobiles observe the same state, the corresponding

rates R' need not be equal across mobiles, i.e., in our general model we do not assume

that Rm = R , m, k E M, i E N. The case where the latter condition does hold will

be considered as a special case in Section 3.4.

The above model can be used to capture the following network scenario. The

channel state corresponds to global conditions that affect all user transmissions. Ex-

amples may include thermal noise at the base station and weather conditions (that

play a central role, e.g., in satellite networks), which affect all mobiles in a similar

manner. The state information can be communicated from the base-station to all mo-

biles via a feedback channel. After obtaining the state information at the beginning

of each slot, a user may respond by adjusting its coding scheme in order to maximize

its data rate on that slot. The rate R7 thus takes into account the quality of the

current state i, the coding scheme adapted by the user, and "local" characteristics,

such as the user's transmission power, the location relative to the base station and

(local) fast-fading effects. We emphasize that R' is an average quantity, which aver-

ages possible fluctuations in local channel conditions, which usually occur at a faster

time-scale relative to the change in the global channel state (see, e.g., [39]). This

assumption is commensurate with practical considerations, as mobiles usually cannot

react to fast local changes.

3.1.2 User Objective and Game Formulation

In this subsection we describe the user objective and the noncooperative game which

arises as a consequence of the user interaction over the collision channel. In addi-

tion, we provide some basic properties and examples for the Nash equilibrium of the

underlying game.



Basic Definitions

The basic assumption of our model is that users always have packets to send, yet

they are free to determine their own transmission schedule in order to fulfill their

objectives. Furthermore, users are unable to coordinate their transmission decisions.

Our focus in this chapter is on stationary transmission strategies, in which the

decision of whether to transmit or not can depend (only) on the current state. A

formal definition is provided below.

Definition 3.1.1 (Stationary Strategies). A stationary strategy for user m is a map-

ping m' : Ti -- [0, I]h. Equivalently, a" is represented by an h-dimensional vector

pm = (p7,. .. ,p m) E [0, I]h, where the i-th entry corresponds to user m 's transmission

probability when the observed state is i.

We denote the the strategy profiles for the wireless scheduling game by p =

(p ,... pM).

For a given strategy profile p, we define below the Quality of Service (QoS) mea-

sures that determine user performance. Let B m be the (fixed) transmission power of

user m per transmission attempt, and denote by Pm(pm) its average power invest-

ment, as determined by its strategy pm . Then clearly, Pm (pm ) = B m Ei=1 'iim7 for

every user m. We normalize the latter measure by dividing it by Bm, and consider

henceforth the normalized power investment, given by

h

P (pm)= 7rip. (3.1)
i=1

For simplicity, we shall refer to Pm(pm) as the power investment of user m. We

assume that each user m is subject to an individual power constraint 0 < Pm < 1, so

that any user strategy p m should obey

P m (p m ) < pm. (3.2)

The vector of power constraints is denoted by P = (l,..., pM).



The second measure of interest is the mobile's average throughput, denoted by

.T'(p, p -). The average throughput of every user m depends on the transmission

success probability at any given state i, k#m( 1 - p'). Hence,

h

T m (p m P-m) : RiRnm (1 - p). (3.3)
i= 1 k#m

Each user wishes to optimize a natural trade-off between throughput and power,

which is captured by maximizing the following utility function

um (pm , p- ) = T m (pm , p m ) - APm (pm ), (3.4)

subject to the power constraint (3.2), where A' > 0 is a user dependent trade-off

coefficient. We use the notation A = (A',..., AM) for the vector of all users' trade-off

coefficients; note that each game instance can now be formally described by the tuple

Z = M, R , xA, P}.

The term APPm (pm , p-m) in (3.4) can be viewed as the power cost of the mobile.

The user utility thus incorporates both a "hard" constraint on power consumption

(in the form of (3.2)), but also accounts for mobile devices that do not consume their

power abilities to the maximum extent, as energy might be a scarce resource, the

usage of which needs to be evaluated against the throughput benefit. We note that

the utility (3.4) accommodates the following special cases:

* Fully "elastic" users. By setting Pm(pm) = 1, a user practically does not have

a hard constraint on power usage. Accordingly, the optimal operating point of

the user is determined solely by the tradeoff between power and throughput, as

manifested by the factor A" . The fully elastic user case has been considered in

the wireless games literature in different contexts (see, e.g., [1]).

* Power-cost neutral users. Consider a user with Am = 0. Such a user is interested

only in maximizing its throughput subject to a power constraint. This form of

utility has been examined, e.g., in [4] and [25].



Nash Equilibrium

The strategy spaces of users are affected by the power constraints and the strategy

space of user m can be expressed as:

E m  pm  m (pm ) pm, 0 pm < 1}. (3.5)

As previously stated in Chapter 2 the joint strategy space is denoted by E = HmEM Em .

In the described game the Nash equilibrium always exists as we summarize below.

Theorem 3.1.1. There always exists a pure Nash equilibrium for the game.

Proof. Em is a compact, nonempty, convex subset of an Euclidean space for all m E

M by (3.5). The payoff function of each user is a continuous function. Moreover, the

payoff of user m is linear in its strategy. Using Theorem 2.1.1 a pure Nash equilibrium

of this game exists. O

We conclude this section by examples which point to some interesting features of

the underlying game. The first example shows that there are possibly infinitely many

Nash equilibria.

Example 3.1.1. Consider a game with two users, m, k, and two states 1, 2. Let

i 1 = 7 2 _ Rm= R1  = 10, Rm = - = 5, Am k = 2 ,and pm = 0.8, pk = 0.3.

It can be easily shown that the strategy profile (pm, pm , p ) = (1, 0.6, 0, x) is

an equilibrium of the game, for every x E [0, 0.6]

The next example demonstrates that the behavior of the system in an equilibrium

can sometimes be counterintuitive. For example, states which lead to lower expected

rates can be utilized (in terms of the total power investment) more than higher quality

states.

Example 3.1.2. Consider a game with two users, m, k, and two states 1, 2. Let

7=1 = = 1 R R = 8, R = R = 3, m = Ak = 1 and pm = 0.8,

pk = 0.3. The unique equilibrium of this game instance is given by (p', pm, pk ) =



(1, 0.6, 0, 0.6). Observe that the total power investment at state 1 (0.5) is lower than

the total power investment at state 2 (0.6).

Both examples demonstrate some negative indications as to the predictability of

the Nash equilibrium. Not only the number of equilibria is unbounded, but also

we cannot rely on monotonicity results (such as total power investment increasing

with the quality of the state) in order to provide a rough characterization of an

equilibrium. At the same time, these observations motivate the study of performance-

loss bounds at any equilibrium point, and also of network dynamics that can converge

to a predictable equilibrium point. Both directions would be examined in the sequel.

3.1.3 Existence of Nash Equilibrium for General Strategy

Spaces

In this section we assume that users are not necessarily constrained to stationary

strategies and they can utilize nonstationary strategies as well. We show the existence

of the Nash equilibrium by showing that equilibria among stationary strategies are

actually equilibria among general set of strategies. In other words assuming the

system operates at an equilibrium of the stationary strategies then none of the users

have incentive to utilize a nonstationary strategy.

The model for nonstationary strategies is slightly different than that of stationary

strategies. At each time slot, regardless of the state of the channel and actions of

other users, each user has two possible actions. We denote the set of possible actions

for user m by A" = {0, 1}, where 1 corresponds to transmitting and 0 corresponds

to idling. A = {Am} ,1 is the joint action space. It is assumed that users may

randomize their actions over possible actions at each time slot; we accordingly denote

the set of probability distributions over A m at time slot t by Em (t).

We define a general strategy of user m by st = {sm( 1), s( 2 ) ... } C E" where

ssm(t) E Em(t) is a probability distribution through which the user rn chooses its

action at time slot t, and Em = Em (1) x Em (2) ... is the collection of probability

distributions at all time slots. We denote the strategies of all users, or strategy profile,



by s = {s,s2 ... s M } and strategies of users other than m by s-m

Strategies of users may depend on the past history of the system. The history

of user m may include, states observed in the past, actions of user m in the past,

collision history, and perhaps some additional information. We denote the history of

user m at time t by ym (t) C Y m (t), where Y m (t) is the set of all possible realizations

of history of user m up to time t. sm (t) is a mapping from the history up to time t to

the set of probability distributions over the action space, or sm (t) : Y m (t) - EmZ(t).

Metrics presented in equations (3.1), (3.3) are related to expected average power

and throughput and determined under the assumption of stationarity in user actions.

We next introduce the utility and constraints used in the nonstationary counterpart

of the previously defined problem. To that end, we define the expected average power

and expected average utility as,

T

Pa(s m ) = limsup -E[- I m (t)] (3.6)
T-+0oo t=1

and
T

Um(s m , S- m ) = lim sup }E[Z R m (t)I m (t)( (1 - Ikt)) - )] (3.7)
t=1 k=rm

respectively. Here Im(t) is an indicator variable that is equal to 1 if user m transmits

a packet at time slot t and equal to 0 otherwise. R m (t) is a random variable which is

equal to the rate of a successful transmission for user m in time slot t, this quantity

is random as it depends on the realization of the channel state. (3.6) is simply

the expected average number of transmissions and (3.7) follows by noting that the

first term is the expected average rate of successful transmissions and the second

term is the expected average cost of transmissions. Note that although in equations

(3.6),(3.7), sm and s- m do not appear explicitly, the statistics of indicator variables

are determined by these quantities and hence expected average power and utility are

functions of s" and s- m

In the new game formulation the strategy space of user m will be denoted as



follows,

E, = {sm'lP (sm) < Pm, sm E }. (3.8)

Note that each stationary strategy profile, p corresponds to a strategy profile

among general strategies that is denoted by s(p) and satisfies,

Pr(Im (t) = I ym (t), state i is observed at tine t) = pm. (3.9)

It is easy to see that (using (3.6) and (3.7))

Pm(s(p)) = P(pm) (3.10)

and

av (sm (p), s-m (p)) = Um (pm, p-), (3.11)

if the channel state process is stationary. Hence for a game instance if p E E then

the corresponding stationary general strategy s(p) E Ei = -me.M Em and moreover

players get same payoffs. Next we state the main theorem of this section. Note that

the theorem assumes that the underlying channel state process is Markovian.

Theorem 3.1.2. For a game instance I = {M, , 7, , A P}, assume that p is a Nash

equilibrium among stationary strategies. If the channel state process is Markovian

then s(p) is a Nash equilibrium among general strategies.

Proof. We prove the statement by showing that, at s(p) no user has an incentive

to adopt a nonstationary strategy. In order to simplify the notation we denote the

general strategy corresponding to the stationary strategy p by s'" = s't(p) for any

user m.

Assume that the claim is wrong and user m has a strictly better payoff by utilizing

an optimal strategy m' which is not necessarily stationary. Since all users other than

m are utilizing stationary strategies and since the channel state process is Markovian

it follows that finding 9', maximizing (3.7) subject to (3.8) is a constrained Markov

decision problem [2, 6]. Moreover the resulting Markov decision problem has finitely



many states (state space is simply HI) and it is known that there exists an optimal

stationary solution for this problem [10]. Let qm be the described optimal stationary

solution, then it follows that

um(qm, p - m ) = Um(s m , S- m ) > u(s m , s -m ) = um (pm , p- m ). (3.12)

and hence p cannot be an equilibrium as user m has incentive to switch from pm to

qm. Thus we obtain a contradiction and s(p) is a Nash equilibrium among general

strategies as claimed.

Therefore, a pure Nash equilibrium among stationary strategies is a Nash equilib-

rium among general strategies. []

As stationary strategies are also Markovian the previous theorem implies that for

the problem formulation studied in this chapter a Nash equilibrium of the game in

which all users play stationary strategies remains to be a Nash equilibrium if users

are allowed to utilize nonstationary strategies.

In the rest of this chapter we restrict ourselves to the stationary game formulation

which was previously described.

3.2 Social Welfare and Threshold Strategies

In this section we characterize the optimal operating point of the network. This

characterization allows us to study the efficiency loss due to self-interested behavior

(Section 3.3).

An optimal strategy profile in our system is a strategy profile that maximizes the

aggregate user utility. Formally, p* is an optimal strategy profile if it is a solution to

the Social Welfare Problem (SWP), given by

(SWP) max u(p), (3.13)
pEE
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where

u(p) = T(p) - p m (p). (3.14)

We note that (SWP) is a non-convex optimization problem. To see this we make use

of the Hessian matrix of u(p), denoted by V2u(p). The entries of the Hessian for a

function f(x) can be given as V2f(x)ij = 'f (x). We use the fact that Hessian

of a concave function is negative semidefinite at every point in its domain and the

objective function in convex maximization problems is concave [8, 11].

Lemma 3.2.1. (SWP) is a nonconvex optimization problem.

Proof. The definition of u(p) in (3.14) reveals that the diagonal of the V2u(p) is al-

ways equal to zero. Hence, trace of the Hessian, or equivalently the sum of eigenvalues

of the Hessian is equal to zero for any p. But for p c E such that p' E (0, 1) for all

m, i, the Hessian is not identically equal to zero, or equivalently all eigenvalues of it

can not be equal to zero. Thus, the Hessian is neither negative nor positive semidefi-

nite. Since Hessian is not negative semidefinite, u(p) is not a concave function of its

argument and hence the (SWP) is not a convex optimization problem. O

For a further characterization of (SWP), we require the definitions stated below.

Definition 3.2.1 (Partially and Fully Utilized States). Let p' be some strategy of

user m. Under that strategy, state i is partially utilized by user m if pm E (0, 1);

state i is fully utilized by the user if p' = 1.

Definition 3.2.2 (Threshold Strategies). A strategy pm of user m is a threshold

strategy, if the following conditions hold: (i) User m partially utilizes at most one

state, and (ii) If user m partially utilizes exactly one state, then the power constraint

(3.2) is active (i.e., met with equality). A strategy profile p = (p',... ,p M) is a

threshold strategy profile if pm is a threshold strategy for every m E M.

We next provide a per-state utilization bound for any optimal solution of (SWP).

Proposition 3.2.1. Let p be an optimal solution of (SWP). Then Zmp < 1 for

every i C I.



The significance of the above result is that in case that all mobiles use the same

power level B for transmission, then the total energy investment at any optimal

solution is bounded above by Bh, where h is the number of states. Note that this

bound does not depend on the number of mobiles. The per-state utilization bound

will play a key role in Section 3.3, while bounding the overall efficiency loss in the

system.

Proof. For the proof, we shall make use of the partial derivatives of the aggregate

utility, given by

Ou(p) (R (1 A E (1 )), (3.15)
d n (3.15)

k=m 1m kAm, l

for any m E M. Let pi = k(1 - pk). For any p such that p < 1 for all k E M,

(3.15) can be rewritten as

(pand the) Pi mclaim immediately follows.
apT - P Ri Pi ( I -

m argmini ( - 1i Pi )Let p be an optimal solution of (SWP) and consider some state i. If this state isused by a user with probability 1 then obviously no other user transmits at this stateand the claim immediately follows.
The claim obviously holds if no user utilizes the state. Hence, assume that in the

optimal solution state i is partially used by some users. Let Ki C M be the subset

of users that partially utilize state i. Let

m E argmin Z (3.17)

Since p is optimal it follows that

u(p) > 0 (3.18)
Zr -



as otherwise the aggregate utility can be improved by decreasing p'. Substituting

(3.16) in (3.18) and recalling that 1 - p' > 0 for every k E Ki, we obtain that

Rm  AT
S(1 - p) - 1- P R > 0 (3.19)

1-p A 1 -pi

hence
>m P' R

R1 p > 1 pP (3.20)
I p 1

where the last inequality follows from (3.17). (3.20) immediately implies that Li Pi

1. O

We next introduce some ideas from linear programming which are used in the

study of threshold strategies. A linear program is an optimization problem with linear

objective function and linear equality or inequality constraints. Linear constraints

lead to a polyhedral feasible region. For a linear program on n variables, points of

the feasible region where n linearly independent constraints are active (i.e. satisfied

with equality) are called as extreme points of the feasible region. In linear programs

with bounded feasible regions there always exists an optimal solution which is an

extreme point of the feasible region [9]. Note that the threshold strategies of a user

correspond to the extreme points of its strategy space.

The main result of this section is stated below.

Theorem 3.2.1. There exists an optimal solution of (SWP) where all users employ

threshold strategies.

Proof. Let p be an optimal solution of (SWP) and, define the function gp : Em - IR

as follows:

g (pm ) a u(pm , p - m) - u(pm , p-m). (3.21)

The function gp(-) quantifies the change in the aggregate utility, if user m utilizes a



strategy p m instead of pm . Consider the following optimization problem,

max g (pm ) (3.22)(3.22)
s.t. p m E E m.

If an optimal solution of this maximization problem is pm it follows from the definition

of gT that (pm, 1 - m) is an optimal solution of (SWP).

Observe that g (p m ) is linear in pm. Since Em is by definition a polyhedron

(see (3.5)), (3.22) is a linear optimization problem. Therefore, an optimal solution of

(3.22) exists at an extreme point of Em, and it follows that there exists an optimal

solution of (SWP) in which user m utilizes a threshold strategy.

Note that in the above argument starting from an arbitrary optimal solution of

(SWP), we achieve an optimal solution of (SWP), in which all users but m utilize the

same strategy and user m utilizes a threshold strategy. Repeating the same argument

for all users it follows that there exists an optimal solution of (SWP) where all users

utilize threshold strategies. E

Due to the non-convexity of (SWP), we cannot rely on first order optimality

conditions for the characterization of the optimal solution. Nonetheless, Theorem

3.2.1 indicates that there always exist an optimal solution with some well-defined

structure, which is used in the next section for comparing the performance of the

optimal solution, to performance of equilibria.

3.3 Efficiency Loss

We proceed to examine the extent to which selfish behavior affects system perfor-

mance. That is, we are interested in comparing the quality of the obtained equilibrium

points to the centralized, system-optimal solution (3.13). Recently, there has been

much work in quantifying the efficiency loss incurred by the selfish behavior of users

in networked systems (see [46] for a comprehensive review). As discussed in Chapter

2 price of anarchy (PoA) and price of stability (PoS) are commonly used concepts



to quantify the efficiency loss. The performance measure that we consider here in

order to evaluate the quality of a network working point is naturally the aggregate

user utility (3.14).

The standard definitions of PoA and PoS consider all possible instances of the

associated game. Recall that in our specific framework, a game instance is given by

the tuple I = {M, , iF, A, P}. The next example shows that the performance at

the best Nash equilibrium can be arbitrarily bad compared to the socially optimal

working point.

Example 3.3.1. Consider a network with two users m and k and two channel states.

Let r = 2 pm 1 pk 1 Assume that R' = R = , Rm = 4, R1 = 4e,

Am = k The socially optimal working point is given by p = (P, pm, ) =

(1, 0, 0, 1) and the unique equilibrium is p = (P 2 m ,5 ,f) = (0, , 1, 0). Note that

u(f) = 1 + , while u(p) = 3. Hence, U(P > 2, which goes to infinity as e -+ 0.

The above example suggests that if we consider all possible game instances {M, K, 7, A, P},

then equilibrium performance can be arbitrarily bad. However, we note that for a

given mobile technology, some elements within any game instance cannot obtain all

possible values. Specifically, - is determined by the technological ability of the mobiles

to quantize the actual channel quality into a finite number of "information states" as

described in Section 3.1. Naturally, one may think of several measures for quantify-

ing the quality of a given quantization. We represent the quantization quality by a

single parameter Wmax maxie 7i, under the understanding that smaller 7max, the

better is the quantization procedure. In addition, a specific wireless technology is

obviously characterized by the power constraint Pm. Again, we represent the power-

capability of a given technology by a single parameter Pmin = minme4 P m . Finally,

we determine the technological quality of a set of mobiles through the scalar Q = mx.

We consider next the efficiency loss for a given technological quality Q. Denote by

TQo the subset of all game instances such that Q = Qo. We provide below modified

definitions of price of stability (PoS) and price of anarchy (PoA) which take the

quality parameter into account.



Definition 3.3.1 (Price of Stability - Price of Anarchy). For every game instance

I, denote by Nz the set of Nash equilibria, and let p* be an optimal strategy profile.

Then for any fixed Q, the PoS and PoA are defined as

PoS(Q) = sup inf (p) (3.23)
zEzQ pENz u(p)u(p) (3.23)

PoA(Q) = sup sup . (3.24)
zEzQ pENI u(p)

We next provide upper and lower bounds for PoS(Q) under the assumption that

Q < 1 (note that an the unbounded price of stability in Example 3.3.1 was obtained for

Q > 1). The upper bound on the price of stability follows from the next proposition.

Proposition 3.3.1. Fix Q < 1. Let j5 be some threshold strategy profile, and let

u(p) be the respective aggregate utility (3.14). Then there exists an equilibrium point

p whose aggregate utility is not worse than u(p)(1 - Q)2. That is, (f ) < (1- Q)-2

Proof. The key idea behind the proof is to start from a threshold strategy profile

P and to reach an equilibrium point by some iterative process. In each step of the

process we obtain the worst-case performance loss, which leads to the overall loss in

the entire procedure.

1. Let 'H be the set of states such that each state i E R satisfies p n > 0 for some

m E M. For each i E 'H, define

mi E argmax Ri - Ak. (3.25)
{keM0O<p'<l}

If the set argmaxjkEMjM<p<l} R k - Ak is not a singleton, mi is chosen arbitrarily

from the elements of the set. Consider a modified strategy profile q of the

original strategy profile 5, given by

k 1 if i E , k = m(3.26)

0 otherwise.

Let N = {miIi E R}. Note that from the definition of a threshold strategy and



(3.25) it follows that the transmission probability of any user in q is strictly

larger than the transmission probability in p at most for a single state (namely

the partially used state, if such exists).

2. The strategy profile q can be infeasible, as the power constraint of every m E N

can be violated by investing extra power in partially used states. Note that if

k N, strategy qk < pk is feasible. Also q E {0, 1} for all k E AM, i E H, and

no two users utilize the same state.

Let APm, m E N, denote the maximum additional power investment required

for user m to utilize strategy qm instead of p m (recall that each user partially

uses at most a single state). This quantity is obviously bounded by Umax, since

fully utilizing any state requires at most Wmax amount of additional power. Set

AP = 0 if the strategy of m is already feasible. We next obtain a feasible

strategy by modifying q.

3. Consider the following optimization problem,

BRk (kp -k) = argmax uk(pk P-k)

81. -i k< iPz k (3.27)
iCI iER-t

0< p, <1.

BRk(pk, p -k) denotes the threshold best response of user k to p-k assuming

that the power investment in the optimization problem is less than or equal

to the power investment under pk. Due to the linearity of uk(pk, p-k) in pk

the problem becomes a linear optimization problem and a threshold strategy

solving (3.27) always exists. Define

h

7k = max {j c nU {h + 1} q > Ak}.
i=j

By convention, assume that i=h+l ai = 0 for any ai, thus Yk = h + 1 for any



feasible strategy qk

Consider the following iterative algorithm

(a) Set M2= O, p =q.

(b) Choose k E argminlEM_M T (if the set is not a singleton choose an arbi-

trary k in the set).

(c) If Yk < h + 1 modify qk to

qi if i < yk

SW~= yk _ if i = _Yk (3.28)

0 if i > Yk

else set qk k. Let wk k k-k

(d) For any i E if 0 < w< 1 set wk = 0.

(e) Set p = (wk, p-k), M = M U {k}. If = MA4 terminate, else go to step

3b.

Let w denote the strategy profile that is achieved upon termination of the above

algorithm. It can be readily seen that w is feasible and all states up to some

threshold i are used with probability 1 (each state i < i, i e N is used by a

single user with probability 1), while the remaining states are not used at all.

The 0 - 1 property follows from step 3d. The threshold state phenomenon can

be easily proved, as otherwise one obtains a contradiction with the optimality

of wk in step 3c for some k.

4. Let p be a Nash equilibrium such that w has the same transmission probability

assignment as p for states i < i. Such p is guaranteed to exist by considering

a reduced game where only states i > i are considered and the power budgets

are given by p m - E _ 7ri w, for all m E M.

We next show that the efficiency loss between p and any p is bounded by some

fraction of u(p), where 5 is the initial optimal threshold solution. To that end, we



consider the efficiency loss incurred in the transition from p to p through the path

p -+ q -- w -- p.

p -* q: Note that u(q) > u(p), since

iE-I 1 k#l

< i I S (R J I(1 -) - A')
{~1 kI l

R - A') (3.29)

5 irF(Rrni - Ami) 51

iEPi

57(Rn'i - Am ) u(q

where < M 1~ 1 and j5T < jp for all m E M, i E N. The existence of

Ipi for all m E M, i E N satisfying the first inequality follows by considering

the aggregate utility maximization problem for each state i E N separately and

using the fact that at any optimal strategy p, - pl < 1, as Proposition 3.2.1

suggests.

q - w : For any user m E M if pk = 0 for k -4 m whenever pm > 0, then u'm(p"  p-m ) =

3~i 7ipm (R1 - A'm ). Hence the payoff is a weighted linear combination of

the power invested in different states. Now due to linearity, by assuming: (i)
iE rTim > 3 and (ii)EZ>h= 1 i < a it follows that if user m modifies its

strategy p m to a strategy pm such that transmission probabilities in states i > j

for a fixed j are set to zero, then um(pm, p-m) -u'm(m, p- ) < 2um(pm, p-m).

This follows since ao amount of power which is utilized in lower weights con-

tribute at most 2u m (p m , p-m) to the user's payoff.

In step 3 of the algorithm, observe that modifying actions of a user does not

affect the payoffs of other users. Let um be the initial payoff of user m in this

step, then EmEM U m = u(q). Denote the payoff of user m after step 3c by



fim, it follows that ~lm > umr(1 - ) since for users satisfying AP m = 0 the

payoff actually increases when playing the best response. Also, for users with

APm, > 0, at least Pmin is invested in the system and these users stop investing

rmax amount of power in their worst states in step 3c (as in (3.28)). Then

playing best response, the aggregate utility can only increase and it is larger

than um(1 - 7rx)
Pmin

"

Similarly, in step 3d of algorithm, every user m using a state partially invests at

least Pmin amount of power and it stops investing at most 7rmax amount of power

in its worst states. Denote its final payoff by itm . Then, u t > fir(1 _ a ) >
Pm in -

um (1 _- 7m)2. Since users who do not utilize any state partially do not modifyPmnin ] "

their strategies, it follows that u(q) 1 - Pmn Pmn - <

mE = U W)

w -+ 1: Finally, it can be seen that u(w) < u(p). Since pi' = w for i < , k E M

and the contribution of remaining states to the aggregate utility can not be

negative as in this case, at least one user can improve his payoff by setting the

transmission probabilities in states i > i equal to zero and this contradicts with

the fact that p is a Nash equilibrium. To summarize,

u((1 - max)2 < u(q) ma)2 < u(p) (3.30)

Hence, U()< 1 )2 as the claim suggests.
Pmin

Recalling that there always exists an optimal threshold strategy profile (Theorem

3.2.1), immediately establishes the following.

Corollary 3.3.1. Let Q < 1. Then PoS(Q) < (1 - Q)-2

The above result implies that for Pmi, fixed, a finer quantization of the channel

quality results in a better upper bound for the PoS, which approaches 1 as rrmax -+ 0.

It is also possible to obtain a lower bound on the PoS for any given Q as the next

proposition suggests.



/ \-1

Proposition 3.3.2. Let Q < 1. Then PoS(Q) 1 - 1

Proof. We present a parameterized example achieving the PoS lower bound for a

given Q. Consider a game with two players m and k. Let Q be fixed and define j =

[L + 1]. Choose Pm,in such that Pmin < and 7,,, = Pi,,Q. Let = {1, 2,... h}

and h > j. Consider the system with 7ri = r = n + c < r,,a for sufficiently small

e at states i E {1,2, ... j} (i.e., the best j states). Also assume that 7h = max and

the remaining 7i are chosen so that Ei. 7i = 1. Let pm = pk = Pi,, A" = Ak =

A, where A will be specified along the sequel. Choose rates as (Rm, Rr... Rm) =

(10+ rl, 10 -+ r-2 +.10 + Tj,rjl ... rh), (R, Rk ... R) = (r1, r 2 . .. j,j+1 ... h), for

rh < ... < rj+l < A <rj < ... < rl < 6andfh < ... < j+l < A < rj < .. < fl < r

for some 3. In this setting, the optimal solution is pk = 0, pm = (1,... , 1, l-, 0 ... 0)

where state j is the partially used state, and is a function of c that satisfies e -> 0

as e 0. On the other hand, the best Nash equilibrium satisfies p = 1 for i < j

and pm = 0 for j > i whereas p = 1 and pk = 0 for i j (where we choose A such

that A < rfj). Now choosing c and 6 sufficiently small (so that the contribution of

the terms such as ri and ri to the aggregate utility is negligible) the aggregate utility

is approximately 107j in the central optimum, whereas it is 107(j - 1) in the best

Nash equilibrium, hence

PoS(Q) >- L 1)

1

Observe that, for Q < 1 or for Q = + e for some integer n and 0 < E < 1,

[L + 1 1 and hence PoS 1 Q for such Q. Note that PoS(Q) < (1- Q)-2 by

Corollary 3.3.1, the gap between the upper and lower bound remains a subject for

on-going work.

We conclude this section by showing that the PoA is unbounded for any Q.

Proposition 3.3.3. For any given Q, PoA(Q) = oc



Proof. The proof is constructive and follows from an example. Fix Q, M and consider

a game instance with - = {1,2... h} for h > Q-1. Let Rm = R, 7ri = 7rax =

Am = pm = for every mEM and i E . Assume that EiE R

h - Q- 1 , and Ri > A for every i E 'H (it is always possible to construct such a

problem instance for a given Q by choosing h and {Ri}iEu) properly. It can be seen

that there exists an equilibrium p for every such game instance which satisfies

p= 1- for every m E AM, i E H, (3.31)

which yields u(p) = >e M um (p) = 0 at this equilibrium. Note that the given

strategy profile is feasible since for any m E AM,

iEM iE A (3.32)
= 1 - Q-1_ 7rax pm

h Q

The aggregate utility at an optimal solution is obviously greater than 0, as Ri > A

for every i E I, leading to an unbounded PoA.

The above result indicates that despite technological enhancements (which result

in a low Q), the network can still arrive at bad-quality equilibria with unbounded

performance loss. This negative result emphasizes the significance of mechanisms or

distributed algorithms, which preclude such equilibria. We address this important

design issues in the next section.

3.4 Best-Response Dynamics

A Nash equilibrium point for our game represents a strategically stable working point,

from which no user has incentive to deviate unilaterally. In this section we address

the question of if and how the system arrives at an equilibrium, which is of great

importance from the system point of view. As discussed in Section 3.3, the set of



equilibria can vary with respect to performance. Hence, we conclude this section by

briefly discussing how to lead the system to good quality equilibria.

3.4.1 Convergence Properties

In Chapter 2 best response dynamics was defined. In this chapter we discuss the use

of best response dynamics to ensure convergence to an equilibrium of the scheduling

game.

The best-response mechanism, is not guaranteed to converge to an equilibrium in

our game without imposing additional assumptions. We specify below the required

assumptions. Our convergence analysis relies on establishing the existence of a po-

tential function under a certain condition, which we refer to as the rate alignment

condition. The rate alignment condition is defined as follows.

Assumption 3.4.1 (Rate Alignment Condition). The set of user rates {R}ie-,,mE

is said to be aligned if there exist per-user positive coefficients {cm }mEM and per-state

positive constants {(RiEE such that

Rm = cmRi (3.33)

for every m c M and i EG . The rate alignment condition is satisfied if user rates

are aligned.

The coefficient cm above reflects user mrn's relative quality of transmissions, which

is affected mainly by its transmission power and location relative to the base station.

While the rate alignment condition might not hold for general and heterogeneous

mobile systems, a special case of interest which satisfies (3.33) is the symmetric-rate

case, i.e., cm = c for every mn M. Rate-symmetry is expected in systems where

mobiles use the same technology (transmission power and coding scheme), and where

"local" conditions, such as distance from the base station, are similar.

Theorem 3.4.1. Under Assumption 3.4.1, our game is an ordinal potential game



with a potential function given by

0 - Z JJii (1 -pk) 7 rcpk (3.34)
i=1 kEcM i=1 kEM

Proof. Consider two different strategy profiles p, q such that

P= (p"m , p-,) ( )

q = (qm  p-m)

Observe that

(p)- (q) = - cm 7r(( - m)) (1 - pk)_ - 7i i (p - qm )

=T z fj (I Pk) - An ) - E qim (R H- (I _ pk) - An))
ki m i ky-m

1
= (um (p) - um (q))

Cm
(3.36)

Since cm > 0, the above equality implies that the game is an ordinal potential

game. []

Theorem 3.4.1 also indicates that the game is also a weighted potential game

where weight of each player is equal to - hence if cm = 1 for every m E M, then

the game is, an exact potential game.

In the following, we assume that users restrict themselves to threshold strategies

(see Definition 3.2.2). Since our focus is on best response dynamics this assumption

is natural as whenever a user updates its strategy there always exists a threshold

strategy that maximizes the performance of that user. Moreover, it turns out that

despite the fact that the game we are interested in is a continuous game, convergence

takes place in finitely many update periods if users only utilize threshold strategies.

Throughout this section, we assume that users may update their strategy at a

slower time-scale compared to their transmission rates. For simplicity, we assume

that user updates may take place only every TE time slots and refer to TE as the



update period.

For our convergence result, we require the following set of assumptions.

Assumption 3.4.2.

(i) The user population is fixed.

(ii) Rates are aligned (see Assumption 3.4.1).

(iii) The transmission-success probabilities k#m(1-P ) , i E R are perfectly estimated

by each user before each update.

Consider the following mechanism.

Definition 3.4.1 (Round-Robin BR Dynamics). Strategy updates take place in a

round-robin manner and at each update period only a single user may modify its

strategy. The user who is chosen for update modifies its strategy to a threshold strategy

from the set BR m (p-m ), if the modification strictly improves its utility.

As the utility of each user is linear in its actions and the strategy space is a poly-

hedron best responses of users can be found by solving a linear program. Hence,

BR'm(p - ' ) always contains an extreme point of Em. As extreme points correspond

to threshold strategies in the system there always exists a threshold strategy in

BR m (p-m).

The next lemma suggests that our game is a finite game if users are restricted to

playing threshold strategies, and further provides a bound on the number of threshold

strategy profiles for any given game instance.

Lemma 3.4.1. For a given game instance with M users and h states the number of

threshold strategy profile is bounded by (2e)M(h+l).

Proof. Observe that for any user m E MA, its threshold strategies are the extreme

points of the feasible region E m . Similarly each threshold strategy profile p cor-

responds to an extreme point of the joint feasible region E. The idea behind the

proof is to upper bound the number of extreme points of the joint feasible region or

equivalently the number of threshold strategies in the system.



In general, a polyhedral region that is a subset of R and is defined by k constraints

is represented by the polyhedron {xI Ax < b}, where A is a k x n matrix and b E IRk

is a constant vector. Now, at any extreme point of this polyhedron, at least n linearly

independent constraints are active, and such constraints define extreme points, hence

there are at most (k) threshold strategies.

In our problem, each user has h decision variables and a total of 2h+ 1 constraints.

Hence, in total we have M(2h + 1) constraints and Mh variables. Thus, the number

of threshold strategies is bounded by

M(2h + 1) _ M(2h + 1)) (3.37)
Mh M(h + 1)

(eM(2h + 1)) (h+1) (2e)
- M(h + 1) <

where the first inequality follows from the inequality (m)< (em)n

Relying on the above lemma, we have the following convergence result.

Theorem 3.4.2. Let Assumption 3.4.2 hold. Then Round-Robin best response dy-

namics converge in finitely many update periods to an equilibrium point. In ad-

dition, the number of update periods required for convergence is upper bounded by

M(2e)M(h+l)

Proof. Utilizing Round-Robin best response dynamics players are restricted to playing

threshold strategies after first M updates. By restricting users to threshold strategies,

the underlying game becomes a finite game (i.e., the game has a finite action space

as Lemma 3.4.1 suggests), with a potential function given by (3.34). As such, the

finite improvement property (FIP) in potential games (see Chapter 2), holds: Any

sequence of updates, which results in strict improvement in the utility of the user

who is modifying its strategy, terminates after finitely many updates. Moreover, each

finite improvement path terminates at a Nash equilibrium.

By Lemma 3.4.1 the number of threshold strategies is bounded by (2e)M(h+1).

Observing that no strategy profile can occur more than once during the updates (as

the potential strictly increases with each update), this implies that number of updates



required for convergence is bounded by (2 e)M(h+ l) . By Definition 3.4.1, a user who

can strictly improve its utility can be found in every M update periods. Hence, the

number of update periods required for convergence is bounded by M(2e) M(h+l). O

We emphasize that the restriction to threshold strategies is commensurate with

the users' best interest. Not only there always exists such best-response strategy, but

also it is reasonably easier to implement.

We discuss next some important considerations regarding the presented mecha-

nism and the assumptions required for its convergence. The best response dynamics

as described in Definition 3.4.1, requires synchronization between the mobiles, which

can be done centrally by the base station or by a supplementary distributed procedure.

We emphasize that the schedule of updates is the only item that needs to be centrally

determined. Users are free to choose their strategies according to their own prefer-

ences, which are usually private information. Assumption 3.4.2(iii) entails the notion

of a quasi-static system, in which each user responds to the steady state reached after

preceding user update. This approximates a natural scenario where users update their

transmission probabilities at much slower time-scales than their respective transmis-

sion rates. An implicit assumption here is that the update-period TE is chosen large

enough to allow for accurate estimation of the transmission-success probabilities. We

leave the exact determination of TE for future work. We emphasize that users need

not be aware of the specific transmission probabilities p' of other users. Indeed, in

view of (3.4), only the transmission-success probabilities HIkm(l 1- p), E - are

required. These can be estimated by sensing the channel and keeping track of idle

slots.

A last comment relates to the rate-alignment condition. The convergence results

in this section rely on establishing a potential function for the underlying game, which

is shown to exist when rates are aligned. In next chapter, we show that in a system of

three states or more, the alignment condition is not only sufficient, but also necessary

for the existence of a continously differentiable potential function. This suggests that

novel methods would have to be employed for establishing convergence of dynamics

under more general assumptions.



Next we relax the deterministic update schedule (round-robin updates) of the

previous theorem. Consider the following set of dynamics,

Definition 3.4.2 (Randomized Best Response Dynamics). Let fM : M [0, 1] be

a probability mass function defined on set M such that fM(k) > 0 for all k E M.

Start from a strategy profile p. At each update period,

1. Randomly choose one user in M using distribution fM.

2. Let m be the user chosen in the previous step, if m has an estimation of p-m

set pm to a threshold best response of user m in BR'm(p-m), else set pm = pm.

3. If user m has better payoff utilizing pm then let p = (1m, p-m), otherwise do

not modify p.

Theorem 3.4.3. Let Assumption 3.4.2 hold. Then the randomized best response

dynamics converge to a Nash equilibrium of the game in finitely many update periods

with probability 1.

Proof. As in Theorem 3.4.2 game is a finite ordinal potential game, and has the finite

improvement property.

Let K be the length of the longest improvement path, since the game is a finite

game there are finitely many improvement paths and K is well defined. Using the

randomized best response dynamics at each step assuming that a Nash equilibrium is

not reached, with probability at least minkEM fM (k) > 0 a user who has incentive to

modify his strategy is chosen for update. The expected number of updates to reach to

a Nash equilibrium (NNE) is smaller than the expected time to observe K successes

in a Bernoulli process (TK) with success probability minkcE fM(k). The latter is

simply K f hence

K
E[NNE] < E[TK] = mink f(k (3.38)

Thus, with probability 1 a Nash equilibrium is achieved in finitely many updates.

By assumption 3.4.2 it follows that convergence to a Nash equilibrium happens in



finitely many time slots with probability 1. Now the result follows since when a Nash

equilibrium is achieved, none of the users have any incentive to deviate from the Nash

equilibrium. []

Theorems 3.4.2 and 3.4.3 imply that using best response update rules and thresh-

old strategies convergence to an equilibrium takes place. Also observe that the equi-

librium reached as a result of this update rule is a threshold strategy profile. This

leads us to the following corollary.

Corollary 3.4.1. Let rate alignment condition hold. Then, there exists a threshold

strategy profile that is also a Nash equilibrium of the game.

3.4.2 Simulations

The objective in this section is to study through simulations the convergence proper-

ties of sequential best-response dynamics. More specifically, we wish to examine the

dependence of convergence time on several factors, such as the number of users in the

system, the number of states, and the technology factor Q. In all our experiments, we

consider a relaxed version of Assumption 3.4.2, where the rate-alignment condition

(Assumption 3.4.2(ii)) is not enforced.

The specific setup for our simulations is as follows. We assume that 7ri = for

every i G N. For given Q, M and h, we construct a significant number of game

instances (10000) by randomly choosing in each instance the power constraints pm,

the tradeoff coefficient A" and the associated rates R' for every m E M, i E N. We

simulate each game instance, and examine the average convergence speed, measured

in the number of round-robin iterations (recall that in a round-robin iteration, each

user updates its strategy at most once). Figure 3-2 presents the convergence speed

results for Q = 0.5 and Q = 0.95, as a function of the number of users in the system.

For the given value of Q, we consider three cases for which number of states, h, is

different.

As seen in Figure 3-2, the average number of Round-Robin cycles required for

convergence is less than three on average. We emphasize that all game instances
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point gradually decrease until reaching a fixed number of iterations. This interesting

phenomenon can be intuitively justified as follows: When the number of users is

relatively small, there is less competition on each state, and convergence is fast. At

the other extreme, when the number of users is larger than some threshold, then

there are more users who can fully utilize states at the first iteration (see Definition

3.2.1), thereby decreasing the competition at subsequent iterations and leading to

faster convergence.

3.4.3 Obtaining Desirable Equilibria

We conclude this section by briefly discussing possible means for obtaining high-

quality equilibria in terms of the aggregate utility (3.14). Theorem 3.4.2 introduces

a scheme (or mechanism) which assures converge to an equilibrium point in a finite

number of steps. However, the resulting equilibrium can be of low quality. Proposition

3.3.1 suggests that if the system is initiated at some threshold strategy profile, then

there exists an equilibrium, performance of which cannot deviate by much, compared

to the performance at the initial working point. Consequently, one may consider an

iterative hybrid algorithm, in which a network-management entity forces some initial

working-point (a good quality threshold strategy profile), waits enough time until

convergence, and if the equilibrium performance is unsatisfactory, enforces a different

working point, until reaching a satisfactory equilibrium. The algorithm would rely on

the fast convergence to an equilibrium, which is demonstrated in all our simulations,

and allows to consider numerous initial working points in plausible time-intervals. The

precise requirements and properties of such an algorithm, as well as the means for

choosing and enforcing initial working-points, remain as a challenging future direction.



Chapter 4

Potential Games and Projections

to the Set of Potential Games

In this chapter we focus on the properties of the set of exact potential games. The

main objective of this chapter is to characterize the properties of this set and quantify

the "distance" of an arbitrary game to the set of exact potential games. We also pro-

vide a condition for checking existence of an ordinal potential function in continuous

games, and relate it to the scheduling game described in the previous chapter.

The rest of this chapter is organized as follows. In Section 4.1 we consider the

sets of exact, weighted and ordinal potential games and present properties of these

sets. In particular, we study some topological properties of these sets. In Section 4.2

we present a necessary condition for the existence of an ordinal potential function in

continuous games. Using this condition we prove that the scheduling game presented

in Chapter 3 does not have a twice continuously differentiable ordinal potential func-

tion unless the rate alignment condition (Assumption 3.4.1) holds. In Section 4.3 we

discuss different approaches for projecting a game to the set of exact potential games.

We also discuss the distributed implementation of projections and present simulation

results.



4.1 Sets of Potential Games

In this section we restrict ourselves to the study of finite games, with set of players

M = {1,...,M} and strategy spaces E m = {1,...,h,-} for all m E M. In our

discussion of topological properties of sets of potential games we assume that a fixed

joint strategy space E = m,,EM E' is given, and the set of games defined on this

joint strategy space is of interest.

We denote the set of games with player set M and joint strategy space E as

GM,E = {(AM, {E'm }mCM, {u m }meM) um E Co for all m E M}. (4.1)

It is clear that there is a bijective correspondence between GM,E and the set CoM as

Ua1l = {U'}mM E CoM and each uall E Coi uniquely defines a different game instance

in gM,E. In the following we use the product space of utilities, CoM, to study the

space of games. We define the dimension and convexity of the set of games using the

properties of Com . We use the terms space of games and the product space of utilities

interchangeably.

In Chapter 2 it was discussed that each function in Co has a vector representation,

hence an alternative representation for Co is RIEI. Using this, it can be seen that the

dimension of Co is equal to IE = mEM hm.

We define the dimension of space of games with joint strategy space E, and set

of players M as the dimension of the product space of utility functions of all players,

CoM. Dimension of this product space is the sum of the dimension of all spaces in the

product. The following lemma characterizes the dimension of the space of games as

a function of E and M.

Lemma 4.1.1. The dimension of the space of games with set of players M, and joint

strategy space E is Al HmcM h,.

Proof. The dimension of Co is |El = -, M h,. Therefore, the dimension of CoM ,

or the dimension of space of games with joint strategy space E, can be given by

IM E = M mE hm. O



Using the vector representations of utilities we can define the dimension of a a

subspace in Co or COM as the dimension of the corresponding vector space. Let payoff

function of player m be represented by the column vector um. Then the column vector

U1

U 
2

Uall= (4.2)

UM

belongs to CoM . This suggests that each subspace of CoM can be studied as a subspace

of RMIEI, and dimension of a subspace of games can be calculated from the dimension

of the corresponding subspace of IRMIE I. In this section, we use this approach to find

the dimension of the set of exact potential games.

We next define the notion of convexity that is relevant to our projection framework.

We define the convexity of the set of games by making use of the underlying set of

utility functions.

Definition 4.1.1. Let B C 9 M,E. The set B is said to be convex if and only if

for any two game instances !1, g 2 G B with collections of utilities u = um}mM,

v = {vm }mE respectively

(M, {E m }mEM, {aum + (1 - a)v m }mEM) c B, (4.3)

for all a E [0, 1].

Note that with this definition the convexity of 9M,{Em}m, follows trivially.

We next obtain results on the dimension of the sets of potential games and the

convexity properties of these sets.

In Theorem 2.1.2, a condition for a game to be an exact potential game is stated.

This theorem implies that a game is an exact potential game if and only if for any

simple closed cycle, y, I(y, Uall) = 0, where I(Q, Uall) denotes the aggregate change in

the payoff over all steps of y (see Chapter 2).



Enumerating all the simple closed cycles of the game, a necessary and sufficient

condition for existence of an exact potential function can be written as a linear equa-

tion

Luall = 0 (4.4)

for some matrix L. Here Luall is a vector, ith row of which gives the condition

I(-i, ull) = 0 for the ith simple closed cycle -y. Note that this is possible since

I(7i, Uall) = 0 is a linear function of the payoffs in the game for any yi. It follows

from (4.4) that the set of exact potential games is a subspace in COM.

The dimension of the set of exact potential games is given by the dimension of

the null space of L. For IMI = 3 and hm = ho for all m E M, Figure 4.1 shows the

dimension of exact potential games and dimension of all games for different ho0.

Dimension vs. Cardinality of Strategy Spaces
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potential games for the presented example is given by h' + mh ' - 1 - 1. The following

theorem formalizes this result by providing an exact expression for the dimension of

the set of exact potential games.

Theorem 4.1.1. The dimension of the set of exact potential games is given by,

1J h,m ~ 1+ hk-1. (4.5)
mEM mEM kEM,kTm

Proof. Note that potential function for a game is unique up to a constant. Fix po E E

and consider the set B = { 0(po) = 0, 0 E Co}. Each potential game has a unique

potential function in B. For all p # po define p : E - IR such that

Op(q) = if q =e (4.6)
0 otherwise

Clearly { ,Ip E E, p # po0 is a set of orthogonal basis vectors of B.

The dimension of the set of exact potential games is equivalent to the dimension

of,

U = {u u = {um)}mM, there exists 0 E B such that D num = D, , for all m E M }.

Consider the system of equations for a fixed p,.

Dmu " = Dmp for all m C M. (4.7)

The kernel of Dm has dimension k#m hk as it can be seen from Lemma 2.2.1. There-

fore, the kernel of the linear system in (4.7) has a dimension Em-M HIk# hk = K.

Consider collection of utilities vp = {Vm}mEM = {Op}h EM. Note that v, is a solu-

tion of (4.7), hence the set of solutions of the system in (4.7) is nonempty and has

dimension equal to K.

Let {b}IK, be a basis for the kernel of the linear system in (4.7), where bi =

Z{bm}mE E CoM . Note that Dmbm = 0 for all m E M as bi belongs to the kernel of



the linear system. We claim that {vp}v,, U {bi}'1 is a basis for U. First we prove

linear independence of this collection. Assume the linear independence fails, then for

some c , 3p not identically equal to 0,

K

eaib + pM = 0 (4.8)
i=1 P#Po

for all m E M. Note that as {bi}fK1 constitute a basis for some subspace it follows

that there exists a 3p, # 0 for (4.8) to hold.

Multiplying (4.8) by Dm and substituting vm = op,

Dm E /p3p = 0, (4.9)

P#Po

for all m c M as bm is in the kernel of D by definition. Since this is true for all m

it follows that

5 pp = c (4.10)
P#Po

for some constant c. On the other hand

E Opp(Po) = 0 (4.11)
P Po

by definition of 4, and hence c = 0. Thus, (4.10) implies that

E 3p,, = 0 (4.12)
P Po

but this contradicts with the fact that { p}ppo is a basis for B. Thus {vp}ppo U

{bi} i, is a linearly independent collection.

Next we show that any element of U can be obtained as a linear combination of

elements in the collection {vp}ppo U {bi}K 1 . Let u E U be a collection of utilities

with the corresponding potential 4) E B. Consider the vector u - EpcE (p)vp in



Co". Note that for all m E M,

Dm(ur - E D(p)vp) = Dm(u m - S 4(P)OP)
pEE pEE (4.13)

= Dm(um - D) = 0,

where we used the fact that EpEE I(p)p = 4. Thus u - EpEE I(p)Vp lies in

the kernel of the system given in (4.7). Therefore, u can be obtained as a linear

combination of elements in the collection {vp}ppo U {b}=1.

It follows that the dimension of the set of exact potential games is the cardinality

of the collection {vp}ppo U {bi}K1. Noting that I{vp}p#po = lmEM hm - 1 and

K = ECmM k# hk the dimension of the set of exact potential games is obtained

as

J h.+ Y 1 hk-1. (4.14)
mEM mEM kom,kEM

We proceed by studying the convexity properties of the sets of potential games.

Theorem 4.1.2. The set of weighted potential games and the set of ordinal potential

games are not convex.

Proof. We prove the claim by showing the convex combination of two weighted po-

tential games is not an ordinal potential game. This implies that the sets of both

weighted and ordinal potential games are nonconvex since every weighted potential

game is an ordinal potential game.

In Table 4.1 we present the payoffs and the potential in a two player game, 91,

where each player has two strategies. Given strategies of both players the first table

shows payoffs of players (the first number denotes the payoff of the first player), the

second table shows the corresponding potential function. In both tables the first

column stands for actions of first player and top row stands for actions of second

player. Note that this game is a weighted potential game with weights w' = 1,

W2 = 3.



A B
A 0,0 0,4
B 2,0 8,6

Table 4.1: Payoffs

A B
A 0 12
B 2 20

and potential in g 1

Now with the same notations we define another game g2 as in Table 4.2. Note

that this game is also a weighted potential game with weights w' = 3, w 2

A B A B
A 4,2 6,0 A 20 18

B 0,8 0,0 B 8 0

Table 4.2: Payoffs and potential in 92

We consider a game g3 in which the payoffs are averages (hence convex combina-

tions) of payoffs of ! 1 and g2.

A B
A 2,1 3,2

B 1,4 4,3

Table 4.3: Payoffs in !3

Note that in this game strategy profiles satisfy the preference relations

(A, A) > (B, A) > (B, B) > (A, B) > (A, A), (4.15)

and the preference relations are strict. Thus this game has a weak improvement cycle

and hence it is not an ordinal potential game.

The above example shows that the sets of weighted and ordinal potential games

with two players each of which has two strategies is nonconvex. For games in which

the joint strategy space is larger the result immediately follows by noting that any

game derived from the games in Tables 4.1 and 4.2 by setting the potential functions

on the newly introduced strategy profiles equal to 0 and deriving utilities accordingly,

is a weighted potential game. However, the convex combinations of these games are

not ordinal potential games as the weak improvement cycle in Table 4.3 is preserved

in the convex combination. O



The next theorem shows that the set of exact potential games is convex.

Theorem 4.1.3. The set of exact potential games is convex.

Proof. Let 91 and 92 be exact potential games with set of players M, and joint

strategy spaces E. Denote the collection of utilities in 91 and 92 by u = {um}mEM

and v = {vmJ}mM respectively. Since these games are exact potential games it follows

that for all m E A/,

Dmu m =Dml (4.16)

and

Dmv m = Dm0 2  (4.17)

for some ¢1, 0 2 G Co. Consider the convex combination of the utilities v = {vm}mEM =

{aum + (1 - a)vm}mEM for a E [0, 1]. It follows that for all m E M,

Dmum = Dm(a i + (1 - a)0 2) (4.18)

by the linearity of the operator Dm. Thus, the game with strategy space E, set of

players M, collection of utilities v is an exact potential game, and as a is arbitrary

the set of exact potential games is convex. O

4.2 Conditions on the Existence of Differentiable

Ordinal Potential in Continuous Games

In this section we obtain a necessary condition for the existence of a continuously

differentiable potential function for continuous games. We also use this result to show

that the scheduling game introduced in Chapter 3 does not have a twice continuously

differentiable ordinal potential.

In this section we assume that for all m c M, Em C ]R" for some h E Z+ is a

compact and nonempty set and um(.) is twice continuously differentiable in p. We

denote the space of twice continuously differentiable functions by C2 .



In the following proposition, we study the relationship between the partial deriva-

tives of ordinal potential function and the utilities of players. We are interested in the

set A m  {p um(pm p ) 0, for some i E N and p E int(E)} (int(-) denotes inte-

rior of a set) for all m E AM . The proposition states that in ordinal potential games

for any user m E M, at any strategy profile p E A m , the vector of partial derivatives

of the ordinal potential function and that of the utility of user m with respect to the

actions of user m are aligned with some alignment function dm(pm, p-m) : E -+ R.

Proposition 4.2.1. Consider the game Q = (A, {Em}, {Um(. )}),

(i) If there exists a continuously differentiable ordinal potential function ((. ) : E

R then for every mn E M, i E N, p E Am it satisfies,

00(pmP-m) m -m Ou(pm p- m ) (19)
(pm, p- dm (pm , p ) (4.19)m am(

and dm (p) > 0.

(ii) If for all m E M, utility functions um(.) are linear in pm , and if there

exists a continuously differentiable function (.) : E -+ IR such that for every

m E M, i E N, p E E,

(p -) = dm(p m , p-m) O (p m) (4.20)

and dm (p) > 0 then (. ) is an ordinal potential function for G.

Proof. (i) (4.19) implies that for user m the vector of partial derivatives of its utility

and the ordinal potential function with respect to p m are aligned. Assume that a

potential function b(-) : E I R exists, and assume by contradiction that (4.19)

does not hold for some m. Then there exists p = (p m, p-m) and q = (qm, p-m),

p E A m , q E E such that

Vu m (p m, p-m)T(q - p) > 0 and VO(p m p-m) T(q - p) < 0. (4.21)

This implies that the directional derivatives of um (-) and 0(-) in (q - p) direction



have opposite signs at p, and hence there exists some E > 0 small such that

(4.22)um (p m + (qm _ p m ), p-m) _ um (p m , p-m) > 0,

¢(p m + e(q m _ p m ), p- m ) -_ (p m , p-m) < 0,

whereas

(4.23)

which is a contradiction to the assumption that 0(.) is an ordinal potential function.

(ii) Assume that (4.20) holds for some function 0(-). Then, for every p =

(pm , p-m) E E and q = (qm , p- m) E E

Vu m (p m , p-m)T(q - p) > 0 4 Vo(pm, p-) T(q - p) > 0.

Observe that since utility of user m is linear in its actions,

um (qm, p-m) _ um (p m p- m ) = Vu m (p p-m)T(q - p).

Moreover, for all m E AM linearity implies that

Oum (pm , p- m )

opm

um(ym' P-M) for all -Ym E Em , i E 7. (4.26)

Hence, substituting (4.26) in (4.25) yields,

um(qm, p-m ) - um (pm, p-) = Vu m (ym, p-m)T(q - p), (4.27)

for any ym E E m .

First we show that um (qm, p-m)-u m(p m, p-m) > 0 => 0(q m , p- m)

0. If um (qm , p-m) - um(pm, p-m) > 0 then by (4.27) Vum (y m , p-m)T(q - p) > 0.

For ym = cq m + (1 - c)pm, c E (0, 1) this is equivalent to Vum (ym , p-m)T(q -

(ym, p-m)) > 0, and using (4.24), the last inequality implies that Vo(ym, p-m)T(q -

(4.24)

(4.25)

_(pm, p-m)>



(my, p-m)) > 0. Now using the fundamental theorem of calculus,

(qm , p-) (p p-m) VO (s)Tds > 0, (4.28)

where m = {(aq m + (1 - a)pm, p-m) I C E [0, 1]}. In (4.28) we made use of the fact

that in Pn, s is in the form of (y, p-n), hence vectors q - (-ym, p-) and ds are

always aligned and V(. ) is a continuous function.

Next we show that O(qm  p- m ) -(p, p-m ) > 0 => um'(q m p-) -um (p , p-m) >

0. If 0(qm p- m ) _(p m , p-m) > 0 then there exists a ym = aq= m+(1-a)pm for some

a E [0, 1] so that V(-y m , p-m)T(q - p) > 0 since otherwise we obtain a contradiction

with o(qm p-m) - m(p
m , p-m) > 0 using the integral in (4.28). Combining this with

(4.24) it can be obtained that Vutm(_ym , p-M)T(q - p) > 0. Hence, (4.25) and (4.26)

imply that um (q m  p-) - urm(pm, p-m) > 0.

Therefore, if (4.20) is satisfied with some continuously differentiable 0(.), the game

g is an ordinal potential game with potential function (.-). O

Using Proposition 4.2.1 we can obtain results on the existence of differentiable

ordinal potential in the scheduling game. To this end we first state a preliminary

result.

Lemma 4.2.1. In the scheduling game, the set B o = (p mp' ' 0, for mn E

M, i E N, p E int(E)} contains a nonempty open subset of the joint feasible action

space, E.

Proof. For every nonempty open subset U of E, there exists an open set V, contained

in U such that for every strategy profile q in V, a (q) 0 for a user k E M and a

state j E N, since -T(q) is a continuous function of its argument and the set R - {0}

is open. The fact that V is not empty immediately follows from the definition of

the utility function uk(.). Since the above statement is true for an arbitrary open

set U and since there are finitely many users and states in the system, there exists a

nonempty subset of E which is contained in B 0. O

In the following we denote a nonempty open set of E contained in B 0 by Vo.



The next lemma characterizes the partial derivatives of the utilities for the schedul-

ing game assuming that a C2 ordinal potential function exists.

Lemma 4.2.2. Consider the scheduling game with IMI > 1, II > 2 and C2 ordinal

potential function. Let 4, and alignment functions, dm (.), dk(.) be as in (i) of Propo-

sition 4.2.1. For any m, k E M, there exists amk : E - I+R such that for every p E Vo

and for any i E I,

d(p, p ) = mk(p) k(pkk) for all i E 7, (4.29)

and
dk(pk pk) = Omk(P) aum (p ) for all i E 'H. (4.30)

p m

Proof. Consider two different users m, k c M and two different states i, j E 7-I. Then

by Proposition 4.2.1 and by the symmetry of the second derivatives of the potential

function it follows that

a2 a aum (pm , p- m )i(p)= (dn(pm, p-m)
(4.31)

a u k (pp-k) 2

ap= (d (pk - a )= ap )

for p E V0.

The previous equation is equivalent to,

adm (pm, p-m) aum (p m p-m) dk(pk, pk) uk(p k, p-k)
Sa (4.32)

using chain rule and observing that partial derivative of a utility of a user with respect

to actions in some state j, is a function of actions of users in state j. (4.32) implies

that
adm 

(p
m

,p
- m ) dk (pk,p

-
k)

Ouk(pk,p-k) um(pm,p-m)

As i and j are arbitrary and 7-1 > 2, (4.33) implies that there exists a function



acmk : E -- R such that

dm (p m
,p - m

) dk (pk,p-k)

p uk(pkp-k) oun(pmp m) . (4.34)

for all i E 7. EO

The reason for (4.29) and (4.30) to hold is that for fixed p the system of equations

in (4.32) with unknowns equal to partial derivatives of dm and dk is a linear system

of equations with null space of rank one, and null space vector satisfies (4.29) and

(4.30). However, if there are two or less states in the system, this system of equations

has a null space with a higher dimension and hence (4.29) and (4.30) does not follow.

The next theorem shows that a C2 ordinal potential function, does not exist in

the game unless the rate alignment condition holds.

Theorem 4.2.1. Consider a scheduling game with more than a single player and

three or more states. The game has a C2 ordinal potential function if and only if the

rate alignment condition (assumption 3.4.1) holds.

Proof. If assumption 3.4.1 holds, the result follows directly from Theorem 3.4.1.

For the other part of the claim, assume that there exists a C2 potential function

¢ for the scheduling game.

Observe that there exists p E Vo such that dk(pk, p-k) # 0 or d'(pm , p-m) # 0

since otherwise there exists a neighborhood in which although utility of a user is

changing by modifying the policy the potential of the game remains constant. Fix a

p e Vo such that dk(pk, p-k) Z 0.

Now using symmetry of partial derivatives of the potential function with respect

to p7 and pk it is obtained that

Odm(p m, p-m) aum (pm , p-m) +d' (p m , p ) 2 um (P m, p-m)

z2k(pk, p-k) (4.35)
Odk(pk, p-k) uk (pk, p-k) dk(k, k) k p-k

OpTk apk

Using (4.29) and (4.30) one can see that terms including partial derivatives of



dm and dk cancel, and substituting the second partial derivatives of utilities one can

achieve,

Rmd m (p m, p- m ) = dk(pk, p-k)Rk (4.36)

Note that (4.36) holds for any i and since dk(pk, p-k) : 0 it follows that dm (p m, p-m) #
0. Therefore, (4.36) implies that rate alignment condition holds, hence the scheduling

game has a C2 potential function if and only if assumption 3.4.1 holds. E

4.3 Projections to the Set of Exact Potential Games

Given an arbitrary game our goal is to project it to the set of exact potential games.

This enables us to quantify how "close" a game is to a potential game and provides

insights on how to modify the game (or equivalently the utilities of players) to in-

herit the desirable properties of potential games. Note that generalizations of exact

potential games such as weighted potential games and ordinal potential games have

similar desirable properties to those of exact potential games. However, we focus on

projections to the set of exact potential games as the sets of weighted and ordinal

potential games are nonconvex.

In the next subsections we discuss different approaches for projection to the set of

exact potential games. The approach in Section 4.3.1 utilizes the idea of projection of

the utility differences of strategy profiles in a game. Similar to the ranking problems,

a global function (potential function) that represents the pairwise comparisons (utility

differences) in the best possible way is found and then utilities of the projected game

are obtained by constructing utilities that agree with the potential and are closest to

the initial utilities in 2-norm sense. In Section 4.3.2 for an arbitrary game, we find

the potential game with the smallest change in the utilities. In this approach, we do

not construct the pairwise comparisons and operate in Co space. In Section 4.3.3 we

repeat these projections utilizing infinity norm instead of 2 norm. In Section 4.3.4

we relate the equilibria of a game and c-equilibria of its projection. In Section 4.3.5

we discuss a distributed framework for implementing the projections and we present

simulation results in section 4.3.6.



4.3.1 Projection in C1

A potential game by definition satisfies Dmi = Dmu m for all m E M where q is

some potential function (cf. (2.56) from Chapter 2). Our goal is to find a potential

game that is "closest" to an arbitrary given game. In this subsection we discuss a

particular projection method in which we first obtain pairwise comparisons in a game,

Du E C1, and then project the pairwise comparisons to the set of consistent pairwise

comparisons in C1, i.e. {XX X E C1, ~0o = X for some 4 c Co}. For such a projection

in C1, one can construct a potential function representing the projected pairwise com-

parison. We then construct the new utility functions utilizing the obtained potential

function and the initial utility functions.

More precisely, we are interested in the following projection problem,

err (g) = minm X - Du 2

s.t. o60 = X, (4.37)

X E C 1 , 0E Co

where X represents a globally consistent pairwise comparison that corresponds to a

potential function and the optimal solution of this problem is the projection of Du

to the space of globally consistent pairwise rankings. An equivalent formulation of

(4.37) can be obtained as

err(g) = minm Io - Du 1. (4.38)

E Co

Solution of this problem can be found by making use of the Hodge theory as discussed

in Section 2.2.2 and the solution is:

A0= t*Du (4.39)

where Ao is the pseudo-inverse of the previously defined Laplacian operator. In

projection of g, errl(9) denotes the norm of the projection error in C1. The obtained
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is the potential function for the projected game.

The utilities that represent the potential and that are close to initial utilities can

be constructed by solving an additional optimization problem (for a fixed 4, and for

all m M ):

i m = arg min um_ m 2

s.t. DmUrm= Dmo (4.40)

um E Co0 .

We refer to solutions of (4.38) and (4.40) as C1 projection of the game since in C,

the pairwise rankings are projected to the set of globally consistent pairwise rankings

and then utilities and potential are constructed from this projection.

The solution of this projection problem is given by the following theorem.

Theorem 4.3.1. Solutions of (4.38) and (4.40) are given by:

= A,m Ao,mU m , (4.41)
( )t

and

m prjm) m  prjm A,kUk (4.42)
kEM kEM

Proof. The solution of (4.38) is q = Ao&dDu as mentioned before in (4.39). Using

(2.46) and (2.44) and Du = meM Dmu m it follows that

¢= m ( DDm, D Dmu m . (4.43)
mM kEM mEM

Due to the orthogonality of image spaces of Dm and Dk for any k Z m the previous

equation becomes,

=i* D Dm DDmum. (4.44)
Given a potential we next focus on thEM

Given a potential , we next focus on the solution for the utilities. Note that
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(4.40) can be reformulated as

itm = + argmin | (u' t - ) - Y-i2

s.t. Dm,- = 0 (4.45)

7m G Co,

by setting -ym = m - . Observe that (4.45) is the projection problem to the kernel of

Dm. (I -projm)(um - 0) gives a projection of (um - b) to the kernel of D, therefore

the optimal solution of the optimization problem in (4.45) can be obtained as

i~ = (I - projm)(um - ¢), (4.46)

and thus i" is obtained as a function of the potential,

S= + = (I - proj)(um - ) +
(4.47)

= (I - proj,)um + proj.

Now substituting the potential from (4.44), itm becomes

tm = (I - projm) m + projl D*Dk D*Dkuk (4.48)

The result follows from (4.44) and (4.48) noting that DDk = Ao,k by definition.

As discussed earlier (see (2.48) and the discussion following it) Ao,m is a Laplacian

for the graph constructed on strategy profiles where edges exists between any two

strategy profile that are comparable by player m. (4.41) suggests that potential

function is a solution of,

( E o0m 'A0
mum. (4.49)

mEM, 
1m MEa

Intuitively, the graph Laplacian gives a measure of how much a node is valued over its

neighbors. Then for each strategy profile, p, A0o,,um indicates the value of p among
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all strategy profiles that are comparable with p by m. Hence, (4.49) implies that the

potential function represents the aggregate value of each strategy profile according to

different players.

In Chapter 2, it was explained that for player m the strategic component of a

function f E Co is given by projmf. It can be seen from (4.47) that for player m, the

projected utility fLm , is the sum of the nonstrategic part of the initial utility, um , and

the strategic part of the potential, 0.

Next we relate the projection error err (g) to Ilu - lf l2. Observe that given an

optimal potential function q,

err (g) = 1016 - Du12 I Dm(um o) -u (um - ), D Dm(um -
mM mEM

(4.50)

by the orthogonality of the image spaces of D, m E M.

On the other hand,

mEM mEM mEM

= (projm(um - ), proj (um - 0)) (4.51)
mEM

= ((um - 0), projm(u - 0))
mEM

where the first line follows from (4.47) and the last line follows from the fact that

image of projm is orthogonal to image of I-projm. From (4.50) and (4.51) it follows

that err (9) and I u - ~I 2 are not necessarily equal. The next theorem provides an

inequality between err (9) and U - .

Theorem 4.3.2. Let a game 9 and its projection 0 have utilities u = {um}mM and

if = {Um}mEM respectively. Then,

I ju - 'f 12 < err (9). (4.52)
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Proof. Using (4.50), (4.51) and Theorem 2.2.2,

err(Q) = ((um -( ), D D(u' -( ))
mEM

mcm (4.53)

-> h 1(um - -), D D(um - ()
mnEM

I 1u--_
.ll1

Thus, u - ill 2 errl (g). O

If h, = ho for all m E M. The above proof also implies that err1 () = ho u-

4.3.2 Projection in Co

A related optimization problem for finding a projection of a game to the set of exact

potential games is studied in this section. Consider,

err (g) = mm 5 um - mr m

s.t. DmZm= Dm , (4.54)

q, um E Co for all m E /M.

Observe that in this optimization formulation the norm of change in the utilities is

minimized. As the utilities are in Co, and the pairwise comparisons of utilities are not

utilized for projection, the projection approach in this section is different from the

approach taken in the previous section. We refer to the projection problem in (4.54)

as Co projection. The next theorem states the potential function and the utilities

obtained from the above optimization formulation.
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Theorem 4.3.3. Optimal 0 and {iLm }mEM solving (4.54) are given by:

(= p)jmt

and

Lm = (I - projm)um + projm

7 projru'
mEM

kEM )

Proof. The optimization problem in (4.54) can be reformulated as

min min
CCo {r}m"EM

I I|Um _ 2fm

mE4

s.t. Dmttm = Dm, (4.57)

u m E Co for all m E 4M,

or equivalently

min E min
ECCo U

m

mEM

um _ mI

(4.58)
s.t. Dmrnu = Dmo,

tm E Co,

since the objective function and the constraints are decoupled for different m.

First consider for a fixed 0 the following optimization problem

mmin IIUm _ uim
iim 2

s.t. Dmnd m = Dmrn, (4.59)

7im E Co.

Defining -ym = Um - 0 an equivalent optimization problem is:

min
Yrm

s.t. Dm Oy, = O, (4.60)

m E Co,
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(4.56)Z projkuk.
kEM

m(um ) _ _Mm1 2



where the optimal solutions of (4.59) and (4.60) are related by I m = iim - 0. The

optimal solution of (4.60) is the projection of (um - 0) to the kernel of Dm, hence

optimal solution can be obtained as km = (I - proj,)(um - 0). Therefore,

um = (I - projm)um + projmo. (4.61)

Using this (4.58) can be reformulated as,

min E
OECo

I|projm(um -_ ) l 2 (4.62)

Let,

f(7) S Iprojm (um - )I ((Um - ), projm (um -))
mEM mEM

(4.63)

Where the second equality follows from the fact that the images of projm and I-projm

are orthogonal.

Note that the optimal solution of (4.62) satisfies Vf( () = 0. Thus, it follows that

Vf() = E 2proj*(u m - ) = 0,
mEM

(4.64)

or equivalently

(4.65)S PrOjm
u m

mEM

which gives an optimal solution of

= projm projmum.

Hence optimal solution ium for user m can be rewritten as

(4.66)

i"m = (I - projm)u m + projm projk projkUk.
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Observe that similar to (4.42), (4.56) obtains itm as the sum of the nonstrategic

component of um and the strategic component of the potential 0. On the other hand,

since 0 is a solution of (4.65), we conclude that in Co projection the potential is

a function which represents the sum of strategic components of utilities of different

users.

The next theorem presents conditions under which Co and Ci projections coincide.

Theorem 4.3.4. Optimal solutions of Co projection and C1 projection coincide when

all players have same number of strategies, i.e. h, = ho for all m C M.

Proof. If for all m E M, h, = ho, Theorem 2.2.2 suggests that

DDm = hoD D. (4.68)m ho - 1

Thus, (4.55) can be rewritten as

= h0 - D*Dm t h - D um
ho m . ho M

mEM t M (4.69)

= DmDm) 7 DmDmum

which is equivalent to (4.41), hence potential functions in Co and C1 projections

coincide. On the other hand as can be seen from Theorems 4.3.1 and 4.3.3 both

projections satisfy

i"m = (I - DtDm)um + D Dmb. (4.70)

Hence, the projected utilities are the same and the solutions of Co and C1 projections

coincide. O

4.3.3 Projections Using Infinity Norm

In the previous section projections using 2 norm are studied. The 2 norm has the

benefit of giving closed form solutions for the studied projection problems. However,
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the projection problem can still be generalized to other norms. In this section we

explore projections using infinity norm.

First we define the infinity norm for functions in Co and C1. Let 0 E Co, X E C 1

and u = {um},eM E Co" then

= =max 1(p)
pEE

u Ju = max um lo,
mCM

X loo = max W(p, q)X(p, q)|.
p,qEE

(4.71)

(4.72)

(4.73)

Let u = {u- m}meM and v= {Vm}mM be two different collections of utility func-

tions. We define the norm of difference of these collections as

Iu - v max lum - mmEM
(4.74)

In a similar fashion to (4.38) the projection problem can be formulated as,

err1 () = min Ios - Du oo
(4.75)

s.t. 0 Co

and given 0, the optimal solution of (4.75), utilities can be constructed as

i m E arg min

s.t. Dmum = Dmo (4.76)

E Co0 .

This projection is similar to the C1 projection discussed in the previous section and

we refer to this projection as C 1 projection using infinity norm.

As before we study the projection error and the norm of the difference between

the utilities of the initial game and utilities of its projection.

Theorem 4.3.5. Let a game g and its C1 projection using infinity norm have utilities
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u = {um},EM and = {Um}mEM respectively. Then,

II - l, 00 ! err1(). (4.77)

Proof. Let 0 denote the potential of the projection, for all m E M fix a strategy

p E Em. For all m E M, define m : Co -- IR such that

f m (p m , -m) = u m (p , p-m) + 0(p m , p- m ) _ 0(pm, p- m ), (4.78)

for all p E E. Observe that these utilities satisfy D, im  = Dnm. Considering equation

(4.76) it follows that

(4.79)

Also observe that

m (p, p-m) _ um(p m p-m) = ((pM, p--) -m(pm, p- )) - (um (pm, p-m) - um (p, p-m))

Hence for all p = (pm, p-m) E E,

m(p) um(p) = I (m(pm, p-m) _ q(p, p-m)) - (u (p" p- ) - um (pm, p-t))

max W (p, q)(So - Du)(p, q) = errl(),
p,qEE

(4.80)

as W((pm, p- m), (pm, p- m)) = 1 (i.e., (pm, p-m) and (pm, p- m) differ in the strategy

of a single player).

Taking the maximum over p E E, m E M and utilizing (4.79), it follows that

I u-i , 1 er-r-(g). (4.81)

ZO

Similar to Co projection that is discussed before one can introduce the following
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projection using infinity norm,

erro) = min max u  - f m
O,Jm}rE mEM

s.t. DnUm m= Dm , (4.82)

0, u m E Co for all m E M.

We refer this projection as Co projection using infinity norm.

Note that the Co and C 1 projections using infinity norm do not admit closed

form solutions. For this reason in the rest of this chapter our main focus will be on

projections using 2 norm.

4.3.4 E-equilibria of a Game and its Projection

In the previous subsections, we studied the closest potential game to an arbitrary

game. In this section we relate the c-equilibria of these games.

Lemma 4.3.1. Let g and 0 be games with set of players M4, strategy space E and

with collections of utilities u and fi respectively.

1. Assume, |u - i l 2 < a. Then each equilibrium of 9 is an c-equilibrium of 9
and similarly each equilibrium of 0 is an E-equilibrium of g where c < V/' a.

2. Assume, u - t< < a. Then each equilibrium of 9 is an c-equilibrium of 9
and similarly each equilibrium of 0 is an E-equilibrium of 9 where e < 2a.

Proof. Note that it is sufficient to prove that each equilibrium of 9 is an E-equilibrium

of 9, by symmetry it also follows that each equilibrium of 0 is an c-equilibrium of G.

Let p be a Nash equilibrium of 9, and q be a strategy profile that is different than

p in exactly a single strategy (i.e. W(p, q) = 1). Assume that p and q differ in the

strategy of player m only.

1. As Ilu - il| 2 <a it follows that

a2> l - > (fi (q) - um(q)) 2 + (, i (p) - Um(p)) 2 (4.83)
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Note that for any a, b E IR; a2 + b2 < a 2 implies that a - b < x2a. Thus (4.83)

implies that

v/2a 2 (fi' (q) - um (q)) - (ftm (p) - u (p)) > fi'm (q) - fi(p). (4.84)

where the last inequality follows as p is a Nash equilibrium of 9 and p, q differ

in the strategy of player m only. Since this is true for an arbitrary q which

is different than p in exactly a single strategy, p is an c-equilibrium of the

projected game where c < V/a.

2. ju - i < a implies that

2a> ('i2m (q) - um (q))I + I (i tm (p)- u(p)) I(485)
(4.85)

> (t m (q) _ um (q)) - (fim (p) _ um (p)).

As p is a Nash equilibrium of 9 and p, q differ in the strategy of player m only

(4.85) implies that

2a > i m (q) - i(p). (4.86)

Since this is true for an arbitrary q which is different than p in exactly a single

strategy, p is an E-equilibrium of the projected game where < _ 2a.

Corollary 4.3.1. Let 9 be a game and 9 be its projection.

1. If 2 norm is used in the projection (Co or C1) and err denotes the projection

error then any equilibrium of 0 is an c-equilibrium of 9 and any equilibrium of

g is an e-equilibrium of 0 for c < v'err.

2. If infinity norm is used in the projection (Co or C1) and err denotes the projec-

tion error then any equilibrium of 9 is an e-equilibrium of 9 and any equilibrium

of 9 is an e-equilibrium of 0 for c < 2err.

Proof. Claim immediately follows from definitions of the projections, Theorem 4.3.2,

Theorem 4.3.5 and Lemma 4.3.1. 1O
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4.3.5 Distributed Implementation

In this section we discuss the distributed implementation of the projections using

2-norm. As Theorems 4.3.1 and 4.3.3 suggest the projected utilities contain a non-

strategic component, (I - proj,)um, and a strategic component obtained from the

potential function. Note that each player can calculate the nonstrategic part of its

projected utility on its own. On the other hand, the strategic components for C1 and

Co projections are

projmut m = projn Ao,k 20,kUk (4.87)
kEM kE.M

and

proj m = proj, projk pjk. (4.88)
kEcM keM

respectively. However, this implies that in order to calculate the projections, all users

require the knowledge of ZkEM A0,kUk or k EM projkUk depending on the projection

being utilized. On the other hand these quantities can be calculated using distributed

averaging or consensus algorithms.

Averaging algorithms are a special case of consensus algorithms with the goal

of computing average of the initial values of nodes (or agents) on a graph. The

objective of averaging algorithms is to design simple distributed update schemes,

which do not require the knowledge of the underlying graph, in order to calculate

the average of the initial values of the agents. A widely studied averaging algorithm

due to [52] necessitates having agents which update their values by taking a weighted

average of their own values and the information received from their neighbors. Given

a communication graph, this algorithm can be ensured to converge to the average of

the initial values if the weights are properly chosen. For example, it can be shown

that convergence to the average of the initial values of agents ({Xm(O)}mEM), takes

place in a n node network if at each step each node with d neighbor updates its value
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n-d 1
xm (t + 1) = dm (t + - Z k (t) (4.89)

n n
kEN(m)

where N(m) is the set of neighbors of user m, xm(t) is the value of node m at time

t. The convergence of this particular algorithm to the average of the initial values of

agents follows as the update matrix with the given weights is doubly stochastic (i.e.,

if the updates in (4.89) are written as x(t + 1) = Ux(t) where x is the vector of xm

matrix U is doubly stochastic) .

Note that as averaging can be done in a distributed manner utilizing the con-

sensus algorithms, the distributed computation of the strategic components in (4.87)

and (4.88) is possible. In the simple scheme we suggest for C1 projection, each

player k E M calculates Ao,kuk and then, using the update rule described in equa-

tion (4.89) players obtain -! EkEM Ao,kuk in the limit. Similarly for Co projection

players first calculate projku k and the update rule converges to - ZkEM prOjkuk

Given -EkEM A0,kUk or - EkEM prTOjkUk each player can calculate its new utility

in the projected game. Hence, the described approach allows distributed implemen-

tation of the projections introduced in Section 4.3. Distributed projection approach

is illustrated via simulations in the next section.

4.3.6 Simulations

In this section we present a simulation for projection to the set of exact potential

games utilizing a distributed algorithm. We assume that the updates follow the

update equation (4.89) and projection is found in a distributed manner described in

the previous section.

The game we simulate is related to average opinion game of [41]. In average

opinion games each player picks a number from a finite set (we assume that E =

{1, 2, 3} for all m E M) and the payoff of each user is assumed decrease with the

deviation of its number from the median of the numbers all players pick. A candidate
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utility for user m at p E E satisfies

um (p) = 2M - (fl - pm) 2 , (4.90)

where Al is the median of pk, k E AM. It is known that average opinion games are

not weighted potential games. By simulations it can be verified that such games are

ordinal potential games.

We consider a related graphical game in which each node corresponds to a player

and the payoff function of player m is given by

um (p) = 2M - (M m _ pm) 2 , (4.91)

where f1 m is the median of pk, k E N(m) (N(m) is the set of neighbors of player m).

Hence the game is an average opinion game on a graph where each player is trying

to reach the median opinion of its immediate neighbors.

We run our simulations for the communication graph given in Figure 4.3.6. For

5 2

4 3

Figure 4-2: The communication graph of players.

the given graph the game is not an ordinal potential game, hence weak improvement

cycles exist in the set of strategy profiles. Since all players have same number of

strategies, Co and Ci projections coincide for this game.

We assume that players can only communicate with their neighbors in the graph

given in Figure 4.3.6. Thus, update equation also relies on this graph.

In Figure 4-3 we plot the utility functions of all players in the initial and the

114



projected games. It can be seen that the projected utilities are very similar to the

initial utilities in terms of the payoffs.

Onriginal and Projected Payoffs for Different Players

10- 150 200 250

0 50 100 150 200 250

10 I

50 100 150 200 20
10lo-

0 50 100 150 200 250
10

0100 150 2.0 

Strategy Profile -- Original payo
ff

I -- - Payoff after projecton

Figure 4-3: Original and projected payoff functions

In Figure 4-4 we plot the projection error at each step of the consensus algorithm.

It can be seen from this figure that convergence to the projected game takes place in

a small number of steps.

Projection Error vs. Time
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Figure 4-4: Projection Error vs. Time

Next we assume that players utilize their best responses and do projection simul-

taneously. We also assume that the game is initialized at a randomly chosen strategy
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profile and at each update each player independently plays its best response with

probability 0.5. We assume that the best responses are played according to players

payoff function at the time of the update. In Figure 4-5 we plot the aggregate payoffs

of players at each step of the consensus algorithm. It can be seen that aggregate

payoffs also converge in small number of steps, hence an equilibrium is reached, after

a small number of steps. On the other hand, in the initial game it may not be possible

to reach an equilibrium with best responses due to weak improvement cycles in the

joint strategy space.

Aggregate Payoffs vs. Time

5 10
Time Step

Figure 4-5: Aggregate Payoff vs. Time
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Chapter 5

Conclusions

5.1 Summary

In this thesis we have considered a wireless network game, where mobiles interact over

a shared collision channel. The novelty in our model is the state correlation assump-

tion, which incorporates the effect of global time-varying conditions on performance.

In general, the correlated state can be exploited by the users for time-division of

their transmission, which would obviously increase the system capacity. However,

we have shown that under self-interested user behavior, the equilibrium performance

can be arbitrarily bad. Nevertheless, the efficiency loss at the best equilibrium can

be bounded by a function of a technology parameter, which accounts both for the

mobiles power limitations and the level of discretization of the underlying channel

quality. Importantly, we have shown that under certain assumptions best-response

dynamics converge to an equilibrium in finite time, and empirically verified that such

dynamics converge fairly fast.

In the study of dynamics of the scheduling game we used the properties of poten-

tial games. In order to have a better understanding of potential games we studied

the convexity properties and dimensions of the spaces of potential games. We also

extended the known results in the literature on the existence of ordinal potential in

games and used these new results to show that the scheduling game introduced in

this thesis does not have a twice continuously differentiable potential function unless
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a rate alignment condition holds.

In this thesis, we have also studied the problem of finding a potential game that is

close in some sense to a given game. To this end, we have defined different methods

for projecting a game to the set of exact potential games. We have obtained closed

form solutions for projections using 2-norm, and showed that if 2-norm is used the

projection can be obtained with a distributed scheme by making use of the consensus

algorithms. Our simulations indicate that a distributed algorithm converges to a

potential game in a small number of steps.

Additionally, we obtained a relationship between the equilibria of a game and

its projection. Particularly, we showed that the equilibria of a game remain to be

-equilibria of its projection, where e is bounded by the projection error.

5.2 Future Work

We briefly note several extensions and open directions of the presented work.

For the scheduling game the convergence analysis of best-response dynamics un-

der more general conditions is important. It is demonstrated with simulations that

convergence to an equilibrium with best responses takes place even when the game

is not a potential game. This suggests that new tools rather than the theory of

potential games are necessary in order to prove convergence of dynamics when the

rate alignment condition does not hold. Another challenging direction is to obtain a

tight bound on the price of stability, and examine how the price of anarchy can be

bounded while fixing other game parameters besides the technological quality. The

fading model we used in this thesis assumed that all users in the network receive

the same channel state at all time instants. An extension of the current model is to

consider the partial correlation case, in which a user reacts to a channel state that

incorporates both global and local temporal conditions.

In this thesis we provide a condition for existence of twice continuously differen-

tiable ordinal potential in continuous games. However, it is not true that a potential

game with differentiable utility functions always has a differentiable potential func-
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tion. Therefore, it is necessary to relax this differentiability assumption in order to be

able to test existence of ordinal potential in games. Tools from differential calculus

and vector calculus may be used in order to relax the differentiability condition on

the potential. We leave this as a challenging future problem.

It is interesting to identify other convex sets of games with desirable properties.

Given a convex set of games it is possible to extend the current projection framework

to obtain projections of games to this set. This approach provides insights on how

to modify the game (or equivalently the utilities of players) to obtain a game with

desirable properties. One particular example is projecting a game to the set of exact

potential games, with convex potential functions. This set is convex and projection

of an arbitrary game to this set has a unique equilibrium. Therefore, projection of

an arbitrary game on this set may be important, and is a topic for future study.

The distributed projection method presented in this thesis requires each player

to exchange its entire payoff matrix with its neighbors. However, it is not clear if

a distributed scheme, which obtains projection of a game to the set of exact poten-

tial games, exists under communication constraints. Study of distributed projection

schemes which work under communication constrains may be important for practical

applications of the projections and is left as a future problem.
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