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Abstract

Process variation threatens to negate a whole generation of scaling in advanced pro-
cess technologies due to performance and power spreads of greater than 30-50%.
Mitigating this impact requires a thorough understanding of the variation sources,
magnitudes and spatial components at the device, circuit and architectural levels.
This thesis explores the impacts of variation at each of these levels and evaluates
techniques to alleviate them in the context of digital circuits and systems.

At the device level, we propose isolation and measurement of variation in the
intrinsic threshold voltage of a MOSFET using sub-threshold leakage currents. Anal-
ysis of the measured data, from a test-chip implemented on a 0. 18pm CMOS process,
indicates that variation in MOSFET threshold voltage is a truly random process de-
pendent only on device dimensions. Further decomposition of the observed variation
reveals no systematic within-die variation components nor any spatial correlation.

A second test-chip capable of characterizing spatial variation in digital circuits is
developed and implemented in a 90nm triple-well CMOS process. Measured variation
results show that the within-die component of variation is small at high voltages but is
an increasing fraction of the total variation as power-supply voltage decreases. Once
again, the data shows no evidence of within-die spatial correlation and only weak
systematic components. Evaluation of adaptive body-biasing and voltage scaling as
variation mitigation techniques proves voltage scaling is more effective in performance
modification with reduced impact to idle power compared to body-biasing.

Finally, the addition of power-supply voltages in a massively parallel multicore
processor is explored to reduce the energy required to cope with process variation.
An analytic optimization framework is developed and analyzed; using a custom sim-
ulation methodology, total energy of a hypothetical 1K-core processor based on the
RAW core is reduced by 6-16% with the addition of only a single voltage. Analysis
of yield versus required energy demonstrates that a combination of disabling poor-
performing cores and additional power-supply voltages results in an optimal trade-off
between performance and energy.
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Chapter 1

Introduction

The continued integration and compression of the modern electronics we often take

for granted has been the result of continuous transistor scaling. A device like the

iPhone, that combines communication, entertainment, navigation and personal infor-

mation management, is simply impossible to construct in its given form factor without

integrating hundreds of millions, if not billions, of transistors, each with dimensions

of 90nm or smaller. Modern microprocessors are comprised of transistors with elec-

trical properties that can be described by numbers of atoms present or thicknesses

counted by the number of atomic layers stacked. Perhaps more astonishing is that

this steadfast increase in transistor density, known as Moore's Law [14], has provided

faster and more powerful electronics with constant or even decreasing cost.

In 1965, Gordon Moore observed that the density of transistors on a die increased

by a factor of two every 18 months - an observation that was quickly dubbed "Moore's

Law" [14]. The decreased cost and increased performance associated with increased

density makes an electronics consumer believe that a particular device purchased

today will either be cheaper or have more features for the same cost in the future

(i.e., the consumer implicitly takes Moore's Law to be a law rather than an observa-

tion). Upon closer inspection however, there have been and continue to be many a

technological hurdle to overcome in advancing Moore's observation. One of the most

worrisome challenges in the current decananometer era of semiconductors is varia-

tion: two nominally identical transistors, when fabricated, will vary in many respects



(Figure 1-1).

Gate
--- Roughness

Profile

C Oxide
Thickness

Figure 1-1: Two "nominally" identical transistors that are physically different due to
a variety of causes.

This process variation is not new to manufacturing lines: typically known as

process tolerance1 , it is an established concept in a wide range of manufacturing

processes, from biological to mechanical and agricultural to electrical, and including

semiconductor manufacturing. However, in most cases the magnitude of the varia-

tion is small relative to the nominal design parameters - with appropriate process

control, these variations do not significantly impact the design nor the operation of

the manufactured product. Until recently, this was the case in semiconductors as

well: product-impacting variations were primarily due to and dominated by yield-

loss defects and were mitigated or eliminated predominately with improved process

control. Lately, however, this situation has deteriorated rapidly due to increasingly

limited controllability of individual process modules operating at the limits, and in

some cases beyond the originally intended limits.

To illustrate the impact of variation on actual products, Figure 1-2 plots the nor-

malized distributions of frequency and standby leakage of Intel microprocessors on a

single wafer. Parameter variations result in greater than 30% frequency spread and

20X variation in chip leakage. The large frequency spread necessitates expensive fre-

quency binning in which each chip is tested to determine its maximum frequency and

power before it can be sold - an often expensive, time-consuming process. Moreover,

IProcess tolerance is the allowable variation in the parameters of a manufactured item that does
not adversely affect the stated performance of that item.



as the standby leakage component of power increases as a fraction of the total power,

20X variation in leakage currents can mean that even if leakage is nominally only 1%

of the total power, with variation it can be as much as 20%. In reality, variation in

leakage power can result in variation of total power by as much as 50% [15].

1.4.
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leakage variations of Intel microprocessors on a single

As a result, yield is affected by parameter variations: chips that operate too slowly

with high standby leakage power, or those that have high performance but are above

the power envelope, must be discarded. Though microprocessors often represent

extreme examples of semiconductor engineering, the problem is more generally valid:

performance and power are significantly impacted by unmitigated parameter variation

resulting in parametric yield loss. This poses a challenge that requires careful analysis

and a paradigm shift as device engineers, circuit designers and system architects all

must now consider process variation during the course of technology and product

design and development.
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1.1 Thesis Organization

Effective mitigation of process variation requires both understanding and characteri-

zation of its effects at all levels of design. As will be seen in Section 2.5, considerable

work has been carried out in many areas of the variation spectrum. Work in one im-

portant area, the characterization of spatial variation and its implications on digital

circuits and systems, has been trailing, with only piecemeal contributions in very spe-

cific contexts. This thesis provides a comprehensive, bottom-up analysis of within-die

spatial process variation in the context of digital circuits and systems.

We begin in Chapter 2 by putting variation in context. A summary of variation

sources in key process steps provides the basis for evaluating the impact of variation

on individual transistor parameters. To better characterize and model variation, we

explain how to decompose variation, particularly at the within-die level, drawing a

distinction between systematic and spatially (un)correlated components. This allows

evaluation of the impact this decomposition has to the modeling and design of digital

circuits and systems. Background and related work are also provided to conclude the

chapter.

Characterization and analysis of variation at the device level is undertaken in

Chapter 3, by specifically focusing on the intrinsic threshold voltage, VTo, of a tran-

sistor. Circuit designers are most often concerned about variation in channel length

and VT. With comprehensive spatial analysis of channel length variation provided by

Friedberg et al. in [16], similar analysis of VT variation became crucial. A test-chip

capable of characterizing spatial variation of VTo by measuring the sub-threshold cur-

rents of thousands of transistors is implemented and measured. Analysis of the data is

performed to characterize both within-die spatial variation as well as any systematic

spatial patterns repeatable from die-to-die. In combination with knowledge of spatial

variation in channel length, Monte Carlo simulations are performed to understand

the implications at the circuit level.

Chapter 4 focuses on abstracting away device parameter variation and under-

standing spatial variation of common digital circuits. Here we detail a test-chip



architecture consisting of replicated blocks of digital circuits and high-precision mea-

surement circuitry, implemented in a 90nm CMOS technology, that facilitates such

understanding. The measured data from the test-chips are analyzed and compared

to the Monte Carlo simulation results in Chapter 3. The results of Adaptive Body

Biasing (ABB) as a potential mitigation scheme are also discussed and show that in

advanced technologies Adaptive Voltage Scaling (AVS) is more effective.

Using the results and insights from the test-chips in Chapters 3 and 4, mitigation

techniques at the architecture level are explored in Chapter 5. Specifically, we focus

on future multi-core processors where the potential impact of within-die variation

on both performance and power is significant. An analytic, mathematical approach

is taken to choosing optimal power-supply voltage values in order to reduce energy.

Using such an approach enables substantial energy savings, compared to a "worst-

case" approach of using a single high-valued voltage, while meeting both yield and

performance constraints, including core performance homogeneity, that are crucial to

system designers and operating system architects.

Finally, Chapter 6 concludes with a high-level summary of this thesis, as well as

suggestions for future research as informed by the findings outlined in the previous

chapters.

1.2 Thesis Contributions

The major findings and contributions of this thesis are:

* Proposal of a measurement technique utilizing sub-threshold currents to effec-

tively isolate and extract variation in the intrinsic threshold voltage of MOSFET

transistors.

* Design and implementation of a test-chip using the proposed measurement tech-

nique to characterize variation in an array of - 140K transistors.

* Design and implementation of an architecture to quantify spatial variation in

digital circuits, including a high-speed, arbitrarily fine-resolution delay mea-



surement technique based on random-sampling and using only common digital

components.

* Measurement analysis and decomposition of within-die variation for both MOS-

FET threshold voltage and digital circuit performance into systematic (position-

dependent), spatially correlated (distance-dependent) and spatially uncorre-

lated components. In both cases, within-die variation is primarily random and

spatially un-correlated (i.e., no spatially correlated component). In the case of

digital circuit performance, a systematic component is identifiable but is small

in magnitude relative to other components.

* Analysis (both through simulation and measured data) showing that variation

sensing techniques included in mitigation schemes are highly dependent on the

performance mode of a circuit, posing unique challenges for systems that scale

between high-performance and low-power operating modes.

* Proposal, implementation and analysis of an analytic framework and algorithm

for robust optimization and minimization of "variation-induced energy over-

head" in massively parallel multi-core processors.

* A custom simulation methodology enabling the above framework and algorithm

to be employed on a real core. These simulations demonstrated that a single ad-

ditional power-supply voltage can reduce total energy consumption considerably

in the face of variation.



Chapter 2

Process Variation In Context

Process variation is increasingly becoming a limiting factor in both IC design and

manufacturing [17], as nearly every step in the IC manufacturing process introduces

variation in the end device. This chapter explores the sources of semiconductor pro-

cess variation, their impact, and related work in the field. We begin in Section 2.1 by

enumerating the most significant of these variation sources, and discuss their impact

on individual transistor parameters in Section 2.2. This is followed in Section 2.3

by a discussion of their spatial dependencies, and by analysis of impact to modeling

and design of circuits and systems in Section 2.4. Finally, Section 2.5 summarizes

previous research on variation in semiconductor manufacturing.

2.1 Sources of Variation

Surc Oxide ) Gate n
Lburce rain

O L P

SBody

Figure 2-1: Cross-section of a MOSFET



Figure 2-1 depicts the lateral cross-section of a MOSFET in its most simple, ideal

form and Figure 2-2 shows a cross-sectional view of an entire integrated circuit and the

major steps involved in the fabrication of such a circuit. In Deep-Sub-Micron (DSM)

CMOS, each of these requires one or more unit process steps. For example, formation

of one of the two twin-well implants involves depositing or thermally growing an

oxide layer, spinning on photoresist, lithographically patterning the photoresist to

define the well area, developing away the exposed photoresist over the defined well

areas, implanting the appropriate dopant species and then removing the resist and

oxide layer. This entire procedure is then repeated for the other well. Variations

of this procedure are used for each of the first thirteen steps listed in Figure 2-2.

When forming the Shallow Trench Isolation (STI) and interconnect layers, additional

polishing steps are required to ensure a smooth, uniform surface on which subsequent

layers can be fabricated. Modern product designs require 100+ individual process

steps to fully fabricate the entire CMOS stack.

1. Twin-well Implants

2. Shallow Trench Isolation Passivation layermetal

3. Gate Structure

4. Lightly Doped Drain Implants ILD-5

5. Sidewall Spacer ILD-4

6. Source/Drain Implants

7. Contact Formation

8. Local Interconnect ILD-2

9. Interlayer Dielectric to Via-i 

10. First Metal Layer

11. Second ILD to Via-2

12. Second Metal Layer to Via-3 4 6
7 n-well p-well

13. Metal-3 to Pad Etch
p- Epitaxial layer

14. Parametric Testing
p+ Silicon substrate

Figure 2-2: Cross-sectional view of a CMOS integrated circuit with major steps
needed for fabrication [2].



A number of these process steps can be highlighted as major sources of varia-

tion [18]: 1) sub-wavelength lithography, 2) plasma etch, 3) ion implantation and

annealing, and 4) chemical-mechanical polishing (CMP). Depending on the feature

being fabricated, each process step affects subsequent transistor and interconnect pa-

rameters in differing manners: variations in lithography, etch and CMP affect the

physical dimensions of transistors and the wires and vias that constitute the inter-

connect between transistors. However, ion implantation and annealing directly affect

the molecular make-up of transistors. Furthermore, the significance and impact of

variation in a particular process step is highly dependent on not only the feature

being fabricated, but also the application in which the fabricated transistor is used.

For example, variation in the size of the source/drain area of a transistor may impact

the overall performance far greater when that transistor is used in an analog versus

digital application.

As critical dimensions continue to decrease, process variations become increasingly

worrisome due to decreasing depth-of-focus of sub-wavelength lithography, line-edge

roughness, random discrete dopant fluctuation, stress effects, and oxide thickness (to)

fluctuation. In the following sub-sections, we identify some of the more significant

sources of variation in each of the four process steps outlined above.

2.1.1 Lithography

Lithography is the process of exposing a light-sensitive material (photoresist, or just

"resist") to define the critical physical dimensions of a semiconductor structure. Un-

til the 180nm node, the wavelength of light used to pattern these critical dimen-

sions scaled with the smallest of the dimensions to be patterned. In this regime

lithography-induced variations were a result of lens imperfections, mask errors, illu-

mination non-uniformity, and contributions arising from resist non-uniformities [19].

At the 180nm node, scaling of the wavelength of light used for patterning ceased at

193nm due to increased cost of lithography technology, materials, and equipment de-

velopment and deployment. The resulting lithographic defocus causes both systematic

and random line-width variations [20], mitigated to some degree by so-called Resolu-



tion Enhancement Techniques (RETs) such as Optimal Proximity Correction (OPC),

Sub-Resolution Assist Features (SRAF) and phase-shifted mask lithography [21].

Perhaps more alarming are random variations in line edges, known as Line-Edge

Roughness (LER) and depicted in Figure 2-3, resulting in local variations in line-

width [22]. The sources of this variation are still under discussion, but conjectures

include shot noise of the energy of the light illuminating the resist, solubility and

size of resist polymer particles, and local variations in the chemistries that make up

chemically amplified resists [23].

(a) Nominal transis- (b) Transistor with (c) High-resolution (d) LER affecting in-

tor LER and RDF microscopy of LER terconnect

Figure 2-3: Line-edge Roughness (LER) [3]

Immersion lithography, extreme ultra-violet (EUV).lithography and improved re-

sist materials may aid in improved control of physical gate and line dimensions.

However, to date, only immersion lithography is commercially viable despite years

of research related to EUV and improved resists.

2.1.2 Plasma Etch

After lithographic patterning, plasma etching is used to etch away unneeded areas

of polysilicon, in the case of transistor gates, or an insulator, such as silicon dioxide

or a low-k dielectric, in the case of interconnect. Variations in process conditions

such as chamber temperature and pressure, RF power, electrode spacing, and gas

flows often result in variations if not properly controlled using statistical process

control [24]. Product layout, local chemistry non-uniformities and process conditions,



and lithography-induced variations also result in etch non-uniformities, giving rise to

variation in side-wall profiles (varying slope of side-walls), line-widths, and thicknesses

(due to variation in etch depth). More detailed characterization and analysis of

variations due to plasma etch can be found in the work of Abrokwah [25].

2.1.3 Ion Implantation & Annealing

Creation of transistors involves doping them with ions to define the type of transistor

(PMOS or NMOS). The substrate, as well as other components of the transistor

such as the highly-doped source/drain regions, are doped with different ion species

(e.g. B, As, P). These ions are accelerated at high energy into the wafer during the

ion implantation step and are then "activated" by heating the wafer (annealing) in

order to ensure the implanted ions are properly substituted within the existing crystal

structure of the underlying silicon substrate.

Once again, local and global process conditions such as implant energy and dose,

tilt angle and temperature profiles all result in variations of the implanted ions. Lay-

out features and proximity effects, such as distance to well edge, can also affect

uniformity of ion implantation [18]. In the most advanced process technologies (e.g.

45/65nm technology nodes), device volumes are so small that only several tens to low

hundreds of dopant atoms are needed within the channel area, directly underneath

the gate, for the required doping concentrations. Due to the small numbers, variation

in the dopant counts and even the placement of the atoms within the transistor body

is of significant concern, as regions of a single transistor will experience different local

doping concentrations. This variation mechanism is known as Random Dopant Fluc-

tuation (RDF) and was brought to light as early as 1975 by Keyes [26]. The right

of Figure 2-4 depicts RDF where the black dots in the channel are countable dopant

atoms [4]. It is easy to see that by changing the number or even the placement of

the atoms the electrical performance of the transistor can be greatly impacted. As

transistor volumes continue to shrink, without individual placement of dopant atoms,

RDF is unavoidable due to the decreasing absolute number of dopants required.

As RDF and other variation mechanisms arising from ion implantation and an-



Figure 2-4: Intel simulation of Random Dopant Fluctuation (RDF) [4].

nealing become increasingly significant in modern processes, many have suggested

moving to significantly different transistor structures, such as fully depleted devices

(e.g., ultra-thin body or FinFET devices) [10]. However, acceptance of and transition

to radically different device structures is both technologically and economically dif-

ficult given the dominance and proven abilities of lateral MOSFETs. Consequently,

the most common approach to mitigating this type of variation is to increase device

size which reduces relative variation as the number of dopant atoms necessarily in-

creases with device size. Such a solution is fundamentally incompatible with further

transistor scaling, making it unsustainable in the long term and requiring solutions

either at the process or design levels (i.e., improved process modules for the doping

step, new device structures not requiring doping and/or circuit design that is robust

to device variation).

2.1.4 Chemical-Mechanical Polishing (CMP)

CMP is used to achieve smooth and planar surfaces from which subsequent layers

are able to be fabricated. Decreasing depth-of-focus in modern lithography systems

underscores the need for exquisite planarity and without such planarity, features to

be patterned may be out of focus due to surface height fluctuations (nanotopogra-

phy) [27]. This results in subsequent lithographic variations as described in Sec-

tion 2.1.1. However, CMP is not a variation-free process itself: it is a significant



source of systematic variation resulting from both process conditions, including vari-

ations in down force, rotational speed, pad conditioning, and temperature as well as

designed feature sizes and pattern dependencies [28]. The primary effects of CMP

variation are shown in Figure 2-5, where copper lines can be "dished" and inter-layer

dielectrics eroded, causing variation in copper line thicknesses.

Dishing Erosion

Figure 2-5: Dishing of copper and erosion of inter-layer dielectrics in CMP.

Mitigation strategies for variation resulting from the CMP process module began

with improved process control by using feedback from the process itself to guide when

the polishing should end [29]. More recently, mitigation strategies have focused on

improved modeling and design modification: since variations arising from the CMP

process tend to be limited to pattern dependencies and features sizes, appropriate

modeling of the process and product design can reveal areas of particular susceptibility

to the types of variation depicted in Figure 2-5. With this information, automated

mitigation strategies have been devised to enforce or adjust pattern densities (e.g., by

using design rule constraints or automated "dummy fill" insertion) to dramatically

reduce a design's susceptibility to CMP-caused variation [30].

2.1.5 Other Variation Sources

The four process modules described above contribute significantly to overall process

variation, but variation is by no means limited to these four modules. Other process

steps that are sources of variation include gate oxidation, polysilicon and nitride

deposition, and metallization, all of which can result in variation in film thicknesses,



with varying degrees of impact to the fabricated transistor. Film thickness variation

in polysilicon and interconnect metal are typically mitigated using CMP. However,

as the previous section described, this can be a source of variation as well.

Variations in the gate oxidation step are primarily wafer-to-wafer due to differences

in chamber temperature and length of time in the chamber. Within-wafer variations,

due to temperature-induced stresses, lamp configuration and convective cooling, are

corrected with better tool design as well as improved process control [31]. As a result,

gate oxide and nitride layers are generally well controlled at the process module level

but as dimensions continue to reduce, even small variations are amplified.

While we have described effective solutions for many of the variation sources

described above, solutions for improved control of random discrete dopant fluctuation

or oxide thickness at the manufacturing level do not exist, meaning these are issues

circuit designers and system architects must increasingly be aware of and learn to

deal with. Dealing with variation requires understanding how such fluctuations affect

device properties, circuit performance and their architectural implications.

2.2 Impact on Transistor Parameters

Each of the variation sources highlighted above (and others) impacts the electrical

properties of transistors and interconnect in unique and often subtle ways. These

effects are best understood in the context of transistor performance. In a typical

digital integrated circuit, a transistor either charges or discharges a capacitive load,

and the time required to do so determines the performance of the transistor. This

time is a function of the capacitance being driven, the voltage to which it must be

driven and the current used to drive it, as shown in Eq. 2.1. For simplicity, we use

the ideal I-V equation for a MOSFET in the saturation regime as shown in Eq. 2.2,

where p is the mobility of a charge carrier through the device, Cox is the gate oxide

capacitance, W and L are respectively the width and length of the transistor, VT is

the device threshold voltage and VGS is the bias between gate and source. Though

this equation is idealized and neglects important details in modern transistors, it is



sufficient to illustrate the impacts that the variation sources mentioned above have

on a transistor.
CloadVDD

td = (2.1)

1 W
ID uCoX (VGS - VT)' (2.2)

2 L

CloadVDD
td = Pc (VGS - VT)(2.3)

Table 2.1 shows the MOSFET parameters and relevant process modules that di-

rectly affect each of those parameters. It is clear that a single process module can

affect multiple transistor parameters, and thus decoupling the effects of one variation

source from another are difficult. Nevertheless, we now explore variation from the

perspective of the device, in particular each of the parameters listed in the table.

MOSFET Parameter Relevant Process Module(s)

p Ion implantation, annealing, diffusion, nitride deposition
Cox Gate oxidation

W, L Lithography, etch
VT Ion implantation, annealing, gate oxidation, (lithography, etch)

Table 2.1: Process modules affecting various transistor parameters.

2.2.1 Mobility (p )

Mobility refers to the ease which charge carriers (electrons or holes) can travel through

the channel of a MOSFET in response to an applied electric field. It is mathematically

defined as in Eq. 2.4, where q is the electronic charge, T is the mean free time between

carrier collisions, and m,,p is the effective mass of either an electron (n) or hole (p).

However, in practice, mobility is given as a function of the doping concentration as

shown in Figure 2-6, since the doping concentration determines the mean free time

between collisions, and to a lesser degree, the effective mass. In modern processes,

stress engineering in the form of nitride liners and silicon germanium source/drains,

also affects mobility by either stretching or compressing the silicon lattice to decrease



the effective mass of a particular charge carrier [32].

np - q (2.4)
n 2mn,p

Any process step which affects doping concentration or stress will necessarily affect

transistor mobility. Therefore, ion implantation and annealing directly affect mobility

as these process steps primarily determine doping concentrations. However, as seen in

Figure 2-6, since doping concentration is on a log scale and typically does not vary by

orders of magnitude from one transistor to another, the impact that ion implantation,

annealing and other process modules that determine doping concentration have on

mobility is relatively small.

1600

1400

1200

1000

800

600

400

200

'I

1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21

Doping (cm)

Figure 2-6: Mobility as function of doping in Si [5].

Intentional and unintentional stresses, whether by stress engineering or proximity

to STI, can have large impacts on transistor mobility. Mobility improvements greater

than 10% over unstrained silicon have been reported as strain engineering has ma-

tured [33]. Even unintentional stresses due to STI proximity can cause within-die

mobility variations on the order of a few percent depending on transistor distance to

the STI edge [34]. Recent characterization of mobility in advanced processes indicates

relatively large variation, 21% Z, and may be due to fluctuations in the intentional

stresses introduced in these processes [35].
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2.2.2 Oxide Capacitance (Cox)

Gate oxide capacitance is the capacitance between the gate stack (polysilicon and

silicon dioxide) and the inverted channel of the MOSFET. Eq. 2.5 shows that the

oxide capacitance is a function only of the oxide thickness (t,,) and the dielectric

constant of silicon dioxide or other gate insulator.

Cox = (2.5)
tox

As mentioned in Section 2.1.5, gate oxidation (thermal growth of silicon dioxide or

silicon nitride) is a relatively well controlled process step. However, with gate oxide

thicknesses on the order of five atomic layers ( Inm), even small variations of

one atomic layer have the potential to greatly impact not only oxide capacitance,

but also threshold voltage and mobility [13]. With SiO2 gate oxide, variations of a

single monolayer (approximately 0.2nm) are typical and result in 20% shifts in oxide

thickness. Furthermore, though not shown in Eq. 2.2, oxide thickness exponentially

impacts gate currents due to Fowler-Nordheim tunneling [36]. As a result, variation

in oxide thickness can have significant and pernicious effects on idle leakage power in

modern devices. To improve this situation, Intel has recently begun using a "high-

K" gate dielectric, hafnium dioxide (H f02), to allow for thicker gate oxides while

maintaining oxide capacitance and gate control over the channel, but reducing gate

leakage by three orders of magnitude [37, 38]. Moving to a new gate oxide material

not only reduces gate leakage currents but reduces the impact of variability on Cox due

to the much larger physical oxide thickness. Nevertheless, variations in the interfacial

oxide of "high-K" stacks do still occur and can affect performance [39].

2.2.3 Transistor Dimensions (W, L)

The previous section highlighted the importance of one of the smallest dimensions of

a transistor, the gate oxide thickness. Eq. 2.2 shows that the width (W) and length



(L) of a transistor are critical in determining the current through that transistor.'

W must be increased or L decreased to increase current and thus performance. Since

decreasing L also reduces load capacitances and increases transistor density, scaling

has continually reduced L in the pursuit of increased performance, making it the most

critical dimension in a transistor today.

Lithographic patterning and etching define both of these dimensions. However,

since W is always larger than L, only variation in channel length is typically of

concern (with the exception of the smallest width devices). Eq. 2.3 shows that the

delay of a transistor is directly proportional to the channel length, so any variation in

channel length will be directly reflected in transistor delay. As transistor lengths have

decreased well below the wavelength of light patterning them, relative variation in

channel length has increased. This is evident in International Technology Roadmap

for Semiconductors (ITRS) projections shown in Figure 2-7, where the 2001 and

2003 projections were 10% into the forseeable future, but in 2005 and 2007 the 3

projections increased to 12% which, without mitigation, portends a corresponding

increase in performance variability. It would not be surprising to see another increase

in the 2009 edition of the roadmap. Although not mentioned above, variation in
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Figure 2-7: ITRS projections for channel length variation [6, 7, 8, 9].

1Not shown by Eq. 2.2 are second-order dependencies on channel length that affect threshold

voltage (VT) and device leakage currents but which will be discussed to some degree in Section 2.2.4

and Chapter 3.



channel length also results in threshold voltage variations due to the Drain-Induced

Barrier Lowering (DIBL) phenomenon, which has been known for over 25 years but

has had a more dramatic effect as channel lengths scaled below 100nm [40]. Modern

processes typically show measured channel length variation of 3-4% %, consistent with

the ITRS projections [35, 1].

2.2.4 Threshold Voltage (VT)

The threshold voltage of a MOSFET is the gate-to-source bias (VGs) that results in

a channel forming just under the gate, allowing current conduction from source to

drain of the transistor. In an ideal long-channel MOSFET, the threshold voltage is

determined by only the doping concentration (Nh) and the oxide capacitance (Co)

as shown in Eq. 2.6, where VFB, the flatband voltage, and OF,, the Fermi Potential of

the substrate, are dependent only on the doping concentration, and 7 is dependent

on both the doping concentration and oxide capacitance. In short-channel devices,

effects such as DIBL result in VT being additionally dependent on the channel length

(L), source/drain junction depths (xj), and stresses [5], meaning that a large fraction

of process steps can potentially affect the value of VT.

VT = VFB + 2 2F + 7\ 2 F + VSB (2.6)

Owing to this "susceptibility" and the intrinsic random variability of RDF, VT is

one of the least controlled transistor parameters, with 3a variations on the order of

30% or more of mean [13]. However, it is also one of the most studied. Pelgrom et al.

showed that variation in VT is a function of the area of the device as in Eq. 2.7 [41].

As scaling has led to smaller and smaller device dimensions, control of VT has gotten

progressively worse, as evidenced in Figure 2-8. Since the mean value of VT has been

reduced over those technology generations, relative variation ( ) increases even more

rapidly. For a minimum size device in a high-performance 45nm process where the



VT = 0.25V, we find a large Z of approximately 20%.

A2
aT = TLe + S2TD 2  (2.7)

More recently, Asenov et al. refined Pelgrom's model and formulated the empirical
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Figure 2-8: uVT has increased with continued technology scaling [10].

expression shown in Eq. 2.8 which describes the standard deviation of VT in relation to

the fundamental parameters of doping concentration, oxide thickness and transistor

dimensions [42].

av, = 3.19 x 10- 8  toXN (2.8)
VLe fWe ff

Looking at Eq. 2.3, the impact that variation in VT has on performance can be

substantial due to the quadratic dependence on VT. In many cases the gate-overdrive,

VGS - VT, is large enough that VT variation can be mitigated, but in low-power

designs where VDD, and thus VGs, are not much greater than VT, the impact is large.

Moreover, as will be shown in Chapter 3, device leakage currents are exponentially

dependent on VT, so VT variation has considerable impact on idle power.

2.2.5 Device Impact Summary

The impact of variation in each of the above transistor parameters differs depending

on a variety of factors, including circuit implementation, logic style and region of



operation. Furthermore, the impact "signature" of variation in a particular param-

eter is different for different metrics. For the reader's ease, tables summarizing the

impact of variation in the above transistor parameters are provided based on data

found in [13] from Monte Carlo simulations of common digital blocks, such as adders,

implemented in a 90nm process. Table 2.2 shows the variability in delay and power

as a function of different circuit styles, while Table 2.3 breaks down the overall vari-

ation into contributions from individual parameters. Variation in VT and channel

length contribute most heavily to overall variation; this will be a recurring message

throughout this thesis, especially in Chapters 3 and 4. However, it should also be

noted that temporal sources of variation, especially VDD fluctuations, which are not

included in this summary also significantly contribute to the overall variation.

Circuit style Delay Variability ( )(%) Power Variability ()(%)
Static CMOS 6.1% 4.1%

Pulsed-Static CMOS 6.5% 5%
Domino 6.6% 4.3%

Table 2.2: Variability in delay and power based on circuit-style [13].

Parameter Delay ) (%) Power ) (%)

tox 1-2% 1-2%
W < 1% 0.5-1%
L ~ 3% < 2%

VT 2.5-6% 1.75-4.75%

Table 2.3: Contributions of variation from individual parameters over various circuits
and circuit styles, summarized from data in [13].

2.3 Decomposing Variation

The physics of each variation source results in both temporal and spatial dependen-

cies of the resulting variation: the statistics of the variation are dependent on time

of fabrication (e.g., fabs continuously tweak process parameters to improve yield) as

well as distance and length scales (within-die variation versus die-to-die or wafer-to-

wafer). Temporal dependencies can also include environmental variation sources such
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Figure 2-9: Decomposition of process variation into different length scales.

as power-supply variations and noise, or longer-term degradation/reliability mecha-

nisms like Negative-Bias Temperature Instability (NBTI) which causes device thresh-

old voltages to shift over the lifetime of a product [43]. However, this thesis will

intentionally omit discussion of temporal decomposition of variation and instead fo-

cus on spatial decomposition.

Spatial decomposition of variation is natural in the context of products smaller

than the wafers they are fabricated on; process engineers and circuit designers often

want to know how variation statistics change at different length scales. For example,

process engineers are often concerned with wafer and die yields (number of sellable

die on good wafers) and may thus be interested in wafer-to-wafer variations or even

within-wafer trends. On the other hand, circuit designers may be more concerned

with how two transistors (or circuits) close to each other on a die vary with respect to

each other (within-die variation), versus how two transistors (or circuits) vary from

one die to another (die-to-die variation). Given the varying interests and concerns,

spatial decomposition is necessary for and critical to a complete understanding of

variation.

Variation of a parameter, P, is typically decomposed into lot-to-lot (L2L), wafer-



to-wafer (W2W), die-to-die (D2D), within-die (WID), and random (RND) compo-

nents as depicted in Figure 2-9. Mathematically, this can be stated as in Eq. 2.9

where the final value of P is the sum of the components above. Px,Y represents any

variation that results from a circuit being placed at a particular location on the die,

typically referred to as within-die systematic components of variation, while E repre-

sents the residue, or "left-over" variation, that is unexplainable by any of the other

components. Assuming independence between each component, the variance of the

value of P can be decomposed according to Eq. 2.10.

P = PILOT + PWAFER + PDIE + X,Y + E (2.9)

a2 (P) = 22L(P) + 2WP ) + 2D(P) + D() + a (P) (2.10)

Technically, the left side of Figure 2-9 can be extended to include fab-to-fab (in the

case of multiple fabs manufacturing the same product) and tool-to-tool components

as well. However, without loss of generality, these components can be lumped into

the lot-to-lot component. For the purposes of this thesis, we will distinguish primarily

between die-to-die, within-die and random variation for the following reasons:

1. The chips fabricated in this work all belong to the same wafer (or two wafers

at most) so there is no statistical significance in wafer-to-wafer or lot-to-lot

decomposition.

2. Circuit designers and architects are mainly concerned with ensuring that the

power and performance of sellable products, typically single die, fall within

defined constraints. In this context, other variation components can be included

as additional mean shifts in the die-to-die component.

To include the effects of the other variation components, when we refer to die-to-die

variation, we will, unless otherwise stated, also include the lot-to-lot and wafer-to-

wafer components, if they exist and can be extracted.

As the significance of process variation increases, growing effort has been made

to decompose spatial variation at smaller and smaller length scales. Indeed, at the



extreme, LER and RDF provide examples of within-transistor variation length scales.

The within-die component of variation includes both systematic (repeatable within-

die variation pattern from one die to another) and random components (e.g., gx,y and

E), with the random component being further decomposed into spatially correlated

(where the distance between two devices or circuits determines how correlated those

devices or circuits are, as shown in Figure 2-10(a) and Eq. 2.11) and uncorrelated

components. This manner of distinction and classification is critical for the following

reasons. Firstly, understanding whether systematic, repeatable variation patterns

exist allows designers to tailor solutions that are specific to the existing variation

pattern (perhaps easier and requiring less overhead), or must instead be broad enough

in scope to allow for any possible pattern. Secondly, knowledge of spatial distance-

dependent correlation directly impacts the cumulative amount of variation expected

in large circuits. To mathematically illustrate this, consider the variance of the sum

of identical, normally distributed random variables: when uncorrelated, the variance

of the sum is 2TOT However, when perfectly correlated (p = 1), the variance

is orT ojND2 for large n, which is a potentially large difference as n increases.

In this context, we can formulate a two-axis system to decompose within-die varia-

tion as shown in Figure 2-10(b). As examples, the axes are pre-populated with two of

the process steps discussed in Section 2.1, CMP and Lithography. Variation in CMP

is largely a result of feature sizes, neighboring features, and pattern-dependencies [27],

leading to both highly repeatable (systematic) within-die variation patterns from one

die to another, as well as high spatial correlation between devices on a single die.

Lithography variation is similar in that it is highly systematic due to mask errors,

lens aberrations and other such effects that influence each die in the same manner, but

different from CMP variation as the spatial influence of sub-wavelength lithographic

systems with OPC is on the order of 1 - 2pm [44].

P,Cov(xx(d) = d) (2.11)

Throughout this thesis, we will update the axes in Figure 2-10 with the results of
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Figure 2-10: Decomposition of within-die spatial variation

measured data from fabricated test-chips.

2.4 Impact to Modeling and Design of Circuits

and Systems

Given the increasing challenge that variation poses to further CMOS scaling, there

has been a greater drive to characterize, analyze and better understand the sources

of variation as well as their circuit implications.

Complete understanding of the physical processes resulting in certain types of

variation is theoretically possible. For example, CMP of interconnect metals is close

to a point where it can be modeled accurately enough to substantially reduce layout-

induced variations resulting from this unit process [45, 28]. Optical Proximity Correc-

tion (OPC) and Sub-Resolution Assists Features (SRAF) are used in the lithographic

portions of the manufacturing process to reduce uncertainty in the patterned silicon

features. These tools are a result of fairly well understood and modeled optical phe-

nomena that occur when patterning features smaller than the wavelength of light used

in the lithographic system. However, the decreasing physical dimensions necessary to

satiate the industry's desire to further Moore's Law continue to outpace even these



"assists."

More often it is computationally or otherwise practically prohibitive to physically

understand and model individual variation sources. In such cases, statistical mod-

eling is employed to infer device or circuit behavior in the face of hypothesized or

measured process variation. The simplest form of statistical modeling involves large

numbers of Monte Carlo simulations to characterize performance to an acceptable

confidence interval. More recently, faster statistical techniques have been formulated

due to the increasing attention being paid to variability. However, many of these

techniques remain primarily in the academic context because of their relative im-

maturity and inability to robustly handle certain phenomena such as parameter and

device correlation.

To cope with such uncertainty and lack of appropriate modeling, designers of-

ten use feedback mechanisms to correct circuit behavior dynamically regardless of

the underlying variation mechanisms. A simple example is the Phase-Locked Loop

(PLL) used in countless analog and digital designs. This circuit utilizes a closed-loop

feedback structure to create a stable clock of known frequency that is phase-locked

(and often orders of magnitude faster in frequency) with an input clock, regardless

of the underlying variations in the circuit generating the faster clock. Such mecha-

nisms require an appropriate variation sensor and the ability to dynamically modify

the behavior of the underlying circuit. The PLL uses a phase detector as the sensor,

the output of which drives a charge pump which generates a voltage to control the

Voltage-Controlled Oscillator (VCO).

However, in many feedback loops, replica circuits, or copies of the actual circuit,

are the variation sensors. The behavior of these replica circuits is assumed to be the

same as that of the actual circuit whose behavior will be modified by the feedback

loop, even if the distance between the circuits is significant. Newer technology nodes

and even the region of circuit operation (e.g., sub-threshold operation) make this

assumption less valid. As a result, it is critical to understand and quantify the

correlation between the behavior of the actual circuit and that of the replica circuit.

More generally, understanding the spatial correlation of arbitrary variation sensors



and the circuits they monitor, even if their circuit structures lack any commonality,

is desirable. This understanding then allows designers to appropriately design and

place sensors such that they provide the most impact in representing and mitigating

the effects of process variation with the least overhead.

As the computing and technology industries move to the "multi-core" regime,

where many small to medium size cores work in parallel to achieve computational

throughput, understanding spatial correlation in device and circuit behavior becomes

critical. Developing circuit and architectural techniques that take this understanding

into consideration to mitigate the effects of process variation are equally important in

allowing computational ability to scale further. Thus, the primary objective of this

thesis is to develop test structures to quantify spatial variation at both the device

and circuit level, and to subsequently identify circuit and architectural mechanisms

of compensating or coping with the impact of process variation.

2.5 Background & Related Work

The body of literature relating to variation in the manufacturing process is extensive

and ranges from completely process related, to circuit and system design in the face

of device and interconnect uncertainty. The pace of research in the field has accel-

erated in recent years due to its increasing significance [17]. However, this field is

hardly new: as early as 1969, researchers were exploring correlations between non-

uniformity in diffusion processes and the resultant electrical characteristics of bipolar

transistors [46]. A few years later, studies on threshold voltage variation as a result

of process variation began to appear [47, 48].

Nevertheless, most early work in the field relates to manufacturing process control

to ensure acceptable process windows and yields. This work remained primarily the

focus of and limited to manufacturing lines with designers rarely affected, owing to

small relative variances in design parameters. In the early 1990's exploration of the

impact of process variation on sensitive circuits such as high-speed analog circuits,

SRAMs and clock distribution networks, and circuit techniques to mitigate this im-



pact began to appear [49]. To this day, these circuits remain some of the most critical

and sensitive to variation of any type. However, variation remained largely out of

the consciousness of most designers and researchers until approximately the 180nm

CMOS technology node. At this node, the patterns lithographically "printed" on sil-

icon were for the first time smaller than the wavelength of light (193nm) patterning

them, resulting in sub-wavelength optical phenomena introducing undesirable effects.

Clever process tricks, as well as good modeling of these effects, were able to stave

off large parameter uncertainties for another couple of technology nodes, at which

point variation was no longer simply wafer-to-wafer or die-to-die shifts. Instead, the

variation problem began to significantly affect circuits within-die, meaning two iden-

tical circuits on the same die behaved differently [50]. This resulted in a flurry of

research on the underlying causes of variation, efficient modeling methods to enable

designers to study the effects during design, changes or additions to the manufac-

turing process to reduce absolute uncertainties, and circuit techniques to moderate

the impact to sensitive circuits. As scaling continues, researchers now look for dif-

ferent transistor structures which not only improve electrical performance relative to

typical bulk CMOS, but also improve the structure's inherent sensitivity to process

variations [51]. Furthermore, statistical analysis and optimization techniques in the

context of process variation are now at the forefront of research in this area [52].

The remainder of this section discusses specific work at the device, circuit and

architecture levels focused on both characterization and mitigation of variation at

those levels, while emphasizing spatial decomposition of the variation.

2.5.1 Characterization

Table 2.4 shows the most significant characterization methodologies in use at each of

the levels of the hierarchy, with details in the sections below.



Hierarchy Level Methodology
Devices Direct probing, pad multiplexing [53], large array device

test-structures [54, 55, 56, 57, 58, 59]
Circuits Ring oscillators [60, 61, 62, 63], SRAMs [58, 64]
Architecture & Systems Simulation (FPGA [65], Microprocessor [66, 67, 68])

Table 2.4: Characterization methodologies for each level of the design hierarchy.

Devices

A large body of work exists in studying transistor characteristics by measuring the

current versus voltage curves of isolated transistors. These test setups involve probing

individual transistors using four probe pads, one for each terminal of the transistor.

More recent designs enable many individual transistor characteristics to be studied

more efficiently without the use of dedicated per-device probe pads [53]. In ma-

ture technology nodes such studies not only provided I-V data for use in creating

pseudo-physical transistor models for simulation, they also provided sufficient data

to characterize the variation in that technology node. However, as dimensions shrink

beyond the wavelength of light patterning them, non-intuitive physical phenomena

result in new types of variations including interactions between the designed layout

and unit process modules, and even interactions between devices laid out in close

physical proximity. Accordingly, it is no longer sufficient to only study individual

devices in isolation.

While the field is large and broad in scope, there has been little published relating

to the spatial decomposition of process variations at the die level. This is not entirely

surprising as companies often claim that such information is proprietary and critical

to their success. The first published work relating variation to spacing information

was that of the local mismatch model proposed by Pelgrom et al., which related device

variation to the area of the device and space between the devices being studied [41].

Characterization of spatial variation requires large numbers of replicated test

structures to capture variation statistics as a function of separation distance. Re-

alizing this, Kibarian et al. attempted to create models for correlating test-structure

data from a 1.2pm process with spatial information as early as 1990 [69], but no
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Figure 2-11: IBM's efforts in spatial variation characterization.

subsequent analysis with advanced technology nodes was published for several years.

Within the past four years there has been substantial progress in developing arrayed

test structures capable of such characterization. Perhaps the most significant work

in this area concerns channel length variation [70, 16], which showed that after sub-

tracting layout-dependent systematic variation, the remaining within-die variation is

very weakly or not at all spatially correlated. Increasing attention is being paid to

VT, primarily in the context of SRAM cells which are particularly sensitive to VT vari-

ation. Agarwal et al., Rao et al., and Mukhopadhyay et al. at IBM [54, 55, 56, 57],

Fischer et al. [58], and Wang et al. [59] all have developed efficient measurement

and characterization of arrayed structures, but only a subset of these present data

regarding spatial correlation analysis of the measured results. Agarwal et al. present

spatial correlation analysis of SRAM-sized devices in a 65nm SOI process, concluding

that little spatial correlation in VT within each die exists at 65nm. Fischer et al. also

provide VT variation data and autocorrelation analysis of 1-M SRAM cells at both the

90nm and 65nm nodes, with the results again showing no spatial correlation. Fur-

thermore, both the aforementioned works make little to no effort to isolate threshold

voltage variation from variation in channel length or other variation sources.



Circuits

Test-structures that are ideally able to study individual device parameters as well

as the behavior of the device within its circuit context have become necessary, as

isolated transistors no longer truly represent "dense" transistors or those that are

near each other in a circuit context. Making this difficult is the fact that many device

parameters are coupled with other device parameters in a manner that does not allow

them to be decoupled easily. Furthermore, multiple devices and device parameters

often couple to a single circuit metric, impeding the decoupling of circuit behavior

from that of multiple parameters within a device or even multiple devices.

Nevertheless, a number of groups, including our own, have studied small, simple

circuits to gain understanding of both device and circuit behavior in the face of

variation. Often, ring-oscillator frequency is used to characterize variation at both

within-die and die-to-die levels [60, 61, 62, 63], due to the simplicity of the circuit and

ease of frequency measurement. While ring-oscillator based techniques enable fast,

easy test setups, this comes at a price: isolation of individual parameters for variability

study is challenging due to amalgamation of the variation of many transistors into a

single parameter (i.e., the frequency of ring operation). In some cases, it is possible

to isolate the effects of critical device and process parameters. The authors of [63]

are able to isolate a single, individual device parameter, VT, in a small number of

transistors within the ring, by including these transistors in pass-gate configurations

between each inverter stage of the ring. By using short rings, they are also able to limit

the averaging occurring due to parameter lumping. As this example illustrates, careful

design is necessitated to decouple device variation from overall circuit variation.

Another small circuit commonly investigated is the six transistor SRAM cell due

to its small size and aforementioned susceptibility to variation. Rather than look

at the individual devices within these cells, Guo et al. develop a methodology to

investigate variability in the read/write margin of the entire SRAM cell in large

arrays [64]. Analysis of the measured data, other than observation of systematic

processing effects and expected mismatch, is not provided.



Architecture & Systems

Not surprisingly, most characterization of variation at the architecture or system level

has occurred in the simulation domain, as characterizing and comparing architectures

is impossible after a particular architecture has been chosen and implemented. As this

is an emerging area of research, to date, most work has concentrated on individual

metrics such as full-chip timing or leakage.

In the past, analog circuits and systems have been more susceptible to varia-

tion and have received more attention even at the system level. Conroy et al. use

a statistical modeling framework to investigate various segmentation architectures

for high-resolution digital-to-analog converters (DACs) [71]. Realizing that spatial

correlation can drastically affect the linearity of DACs, they implement an interac-

tive Monte-Carlo based statistical modeling framework capable of handling spatially

correlated variations.

In the digital realm, FPGA architecture evaluations were among the first to con-

sider process variations at this level [65]. Timing and leakage variation models are

developed with the aid of Monte-Carlo simulations. However, all parameter distri-

butions are assumed to be Gaussian, with no consideration of spatially correlated

parameter variation. The assumption of Gaussian parameter distributions is math-

ematically and practically easier to work with and, in some cases, such as SRAMs,

this is often an accurate assumption. But, in many circuits this type of analysis often

leads to over-engineered solutions, as consideration of spatial correlation often leads

to reduced bounds on circuit variability.

More recently, Intel has published work that details the impact of systematic

variation on full-chip timing, indicating that such variation makes critical paths even

worse than purely random variation would [66]. The authors of the study provide

several near- and long-term solutions proposed in the literature, but make no mention

if any of these techniques were used in their own products. Work has also been

done characterizing power variability in multicore processor architectures, but only

random variability is taken into account [68]. The authors of [67] show that correlated



variation, in particular correlated channel length variation, impacts the frequency of

cores within a multicore processor.

2.5.2 Mitigation

Mitigation of process variation is best divided into process-oriented versus design-

oriented approaches. Targeting the process itself involves altering process modules

and/or flows or device design, directly impacting variation at or close to the source.

Design-oriented strategies - through design rules, layout modifications, or robust

circuit and system design - offer an indirect route to variation mitigation. The

following table summarizes the more significant mitigation strategies and related work

in those areas for each level of the hierarchy. Once again, details of each are provided

in the following sections.

Hierarchy Level Methodology
Devices Statistical process control [72, 73, 74, 29], Resolution en-

hancement [75], materials improvement [10]
Circuits Feedback, Circuit redesign for robustness [76, 77], Adap-

tive scaling [78, 79, 80, 81]
Architecture & Systems Redundancy [82, 83], Voltage/Frequency scaling and is-

lands [84, 78, 80, 67]

Table 2.5: Mitigation strategies for each level of the design hierarchy.

Devices

At the device level, it is more relevant to discuss process-oriented variation reduction

approaches. Statistical process control made its debut roughly 20 years ago as a means

to reduce "back-end" testing and assembly costs in IC fabrication lines by increasing

yields in the "front-end" steps described above [85]. In-situ measurements coupled

with inferential signals from individual process modules are utilized to dynamically

change process conditions and recipes to ultimately benefit yield. In the ensuing

years, statistical process control has pervaded nearly every process module, including

oxidation [72], photoresist application [73], etch [74], and CMP processes [29].



In addition to feed-back/forward process control, continuous improvements have

been made to process steps and in the use of materials to improve both device per-

formance and variability. The resolution enhancement techniques described in Sec-

tion 2.1.1, immersion lithography [75], other patterning improvements and introduc-

tion of high-k/metal-gates to high-volume CMOS manufacturing [10] (as shown in

Figure 2-12) all provide examples of techniques meant to improve manufacturability

of high-performance transistors. Whole process steps, such as CMP, have been added

for this sole purpose.
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Figure 2-12: Improvement in av, in Intel's process due to oxide scaling and new

materials, though there is no mention of how 2rt scales. C2 is analogous to AvTI'VT

found in Eq. 2.7. Reproduced from [11].

Common to modern semiconductor manufacturing are combination "process-design"

mitigation techniques, where process and design teams actively engage each other to

trade-off ease-of-design, manufacturability and performance. This process is best

implemented where design and manufacturing occur in the same organization as ev-

idenced by Intel [10], but Design For Manufacturability (DFM) kits are increasingly

made available by foundries as well.

Circuits

Digital circuits and systems, due to both their bi-stable nature and high gain in

the switching region which results in relatively large noise margins, are inherently

more robust to variation. Analog circuits, however, are considerably more sensitive



to process variation and have employed both layout and design-oriented mitigation

strategies - including common-centroid layout, use of larger than minimum-size de-

vices and feedback - for many years to cope with process variation. Among the

first circuits to employ design-oriented mitigation was the PLL, which made use of

feedback to decrease sensitivity to component values [86].

PLLs are not limited to analog systems though; they are critical components of

high-performance digital systems, providing the clock(s) necessary for timing of digital

circuits. Being among the most sensitive and critical signals in digital systems, clocks

and clocking networks were subject to variation mitigation strategies long before

other portions of digital systems. Attempts to reduce clock skew and jitter have

produced a myriad number of mitigation schemes such as H-Tree, X-Tree and grid

clock distribution, active deskewing [87, 83], and even some proposed exotic solutions

such as use of optical clock networks [88, 89]. Also a subject of much research in

variation mitigation are SRAM circuits in cache memories, which are particularly

susceptible to variation due to their small physical size, leading to SRAM cell [90]

and sense amplifier [76, 77] redesign as well as other so-called "peripheral assists" to

mitigate the impacts of variation.

With relative process tolerances continuing to degrade, digital paths have become

the focus of multiple variation mitigation techniques. Some of these include replica

critical path monitor circuits around which adaptive feedback schemes can be built,

such as Adaptive Body Biasing (ABB) [78], Adaptive Voltage Scaling [79, 80, 81], and

detection and correction of timing errors within microprocessor pipeline stages [91, 12]

(Figure 2-13). Portable electronics and sensors have motivated the need for low

energy operation in the sub-threshold operating regime, in which transistor leakage

currents are exponentially affected by variations in VT and which poses unique, but

surmountable challenges to circuit design. With appropriate gate library modeling

and design and variation-aware timing methodologies, sub-threshold circuits can be

designed to be as robust as their above-threshold counterparts [92].

Understanding of spatial components of variation have also guided some mitigation

work. In particular, Friedberg et al. claim such understanding can provide up to
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a 4x improvement in digital circuit delay variability if appropriate process control

mechanisms are put in place to take advantage of spatial correlation data [70]. Lastly,

statistical static timing, in which timing of digital paths is described by statistical

distributions, has garnered attention in aiding designers assess the susceptibility of

critical paths to variation and make appropriate changes to ensure high yield.

Architectures & Systems

Architectures and systems are often too large and complicated to apply global tech-

niques to mitigate variation. Often the most susceptible building blocks are the ones

to which mitigation techniques are applied. For example, the susceptibility of SRAM

caches to variation, noted in Section 2.5.2, has led to the development of "variation-

aware" caches which dynamically resize as faulty bitcells are detected [82] or where

whole cache lines are replaced with redundant lines [83]. Variation-aware synthesis

techniques have also enabled mitigation in on-chip bus architectures for systems-on-

a-chip, resulting in decreased power consumption as well [93].

Process variation has, however, reached the point at which system architects can

no longer avoid considering its impact. Marculescu et al. include process variability

in the context of heterogeneous blocks in an embedded application that together

must meet some latency constraint [84]. Each block is a voltage/frequency island

and the optimal voltages and frequencies for islands are solved for. Humenay et



al. evaluate Adaptive-Voltage Supply (AVS) and Adaptive Body-Biasing (ABB) as

potential circuit-level solutions in the context of core-to-core frequency variations

in multi-core processors, but conclude that both of these techniques involve tradeoffs

between static and dynamic power, making them less desirable potential solutions [67].

Similarly, an adaptive FPGA architecture utilizing ABB is proposed in [94] leading to

3.45X reduction in timing variability and 3X reduction in leakage power. Donald et al.

also explore core-to-core variation in frequency, and propose allowing the system to

turn off cores if the additional power consumed by the core is higher than a proposed

metric [95]. Most recently, Liang et al. use voltage interpolation at the gate or

pipeline level of microprocessors to mitigate process variability [96] and potentially

reduce energy consumption considerably.

2.5.3 Modeling & Simulation

One community that has put forth a large body of work involving spatial variations is

the CAD/modeling community. Statistical modeling of power as well as sophisticated

statistical timing analysis including the effects of spatial correlation have been of great

interest in recent years [70, 97, 98, 99, 100, 101, 102, 103, 104, 105]. In particular,

many of these attempt to formulate mathematically efficient methods, in the context

of spatially correlated variation, to predict the probability density function (PDF)

and associated cumulative density function (CDF) of various metrics (most often

timing or leakage power) for a given design.

Either due to the relative immaturity of these analysis and modeling techniques

or lack of sufficient data, there has been no published work utilizing these tools to

gain insight into techniques for mitigation of spatially correlated process variation.
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Chapter 3

Device Parameter Variation:

Threshold Voltage

The previous chapter described the many sources of variation in semiconductors and

highlighted the need to characterize the spatial aspect of this variation. We begin

by studying variation at the device level, as devices are the fundamental building

blocks of circuits and systems and most modeling and simulation begins at this level.

This chapter first motivates the need to study variation in two important transistor

parameters, channel length (AL) and threshold voltage (VT) in Section 3.1, followed

by theory and implementation details of a test-chip fabricated to characterize VT

variation in Section 3.2. Comprehensive analysis, focused on characterizing the spa-

tial components of the observed variation data and which shows little to no spatial

component of VT variation, is presented in Section 3.3. Lastly, Section 3.4 explores

the resulting implications for both the modeling and simulation as well as the circuit

design communities.

3.1 Motivation

Section 2.2 showed that the performance of digital circuits is determined, to first order,

by five parameters: mobility (pt), oxide capacitance (Co,), transistor dimensions (W,

L), and threshold voltage (VT). Modeling variation in these parameters requires



relating each to the more fundamental parameters Nch, tfo, W, and L. However,

practically measuring variability in many fundamental parameters (e.g., Nch) is often

extremely difficult. Furthermore, both oxide thickness (capacitance) and mobility are

relatively well controlled, with variation typically much smaller than the 10% channel

length variation and 30% threshold voltage variation. As such, variation in channel

length and threshold voltage is more critical and relevant to circuit designers. Many

modeling and simulation programs, such as Hspice, facilitate modeling variability

of these critical parameters through the use of parameters like delvto and direct

manipulation of L in the netlist [106].

Friedberg et al. have undertaken extensive work in characterizing and decompos-

ing variation, including spatial decomposition and characterization, in lithographically

critical dimensions, particularly channel length [16]. Careful analysis revealed that

within-die "spatial correlation is virtually entirely an artifact of systematic varia-

tion." Note here the identical distinction being made between separation-distance

dependent correlation and systematic versus random variation as that shown in Fig-

ure 2-10. These results provide further justification for our placement of lithography

as systematic but uncorrelated on that figure.

The aforementioned criticality of VT to circuit designers requires analogous analy-

sis and decomposition of threshold voltage variation for more complete understanding

of process variation at the circuit level. Since VT is not a fundamental parameter but

is instead dependent on several fundamental parameters, careful attention must be

paid in its extraction to be of value in modeling and simulation. In particular, the

following section describes how measurement of sub-threshold currents of transistors

allows for isolation and extraction of the intrinsic threshold voltage, VTo. When cou-

pled with variation in channel length, a complete picture of both channel length and

threshold voltage variation begins to emerge.



3.2 Theory & Enabling Circuits

In this section, we describe the device operation fundamentals and analytic basis used

to extract VT variation from leakage current measurements, as well as the overall test

chip architecture and circuits.

3.2.1 Extraction of AVTo

The intrinsic or ideal threshold voltage, VTo, of a MOSFET is defined by Eq. 3.1,

where VFB is the flat-band voltage, 4F, is the Fermi potential of the substrate, y

is the body-factor and VSB is the source to body bias. Thus, VTo is fundamentally

dependent only on substrate doping, Nsub, and the oxide thickness, to, through y.

VT = VFB + 2¢F + V 2 OF + VSB (3.1)

However, due to short-channel effects, notably Drain-Induced Barrier Lowering (DIBL),

in the deep sub-micron regime, the actual threshold voltage, VT, becomes a function

of not only Nsub and to, but also channel length, L, and source/drain junction depth,

x, [5]. To quantify this dependence, VT is now defined as a summation of the ideal

threshold voltage (VTo) and a shift (AVT) due to short channel effects, as in [107].

Since AVT formulated in [107] is primarily impacted by channel length (expo-

nential dependence), we instead seek to characterize the variation and, in particular,

spatial variation of VTo to enable complete modeling and simulation of VT variation.

This requires isolation of VTo from other common sources of variation such as AL, and

can be achieved to a large degree in the sub-threshold regime of transistor operation. 1

In this regime, the current through the transistor is given by Eq. 3.2, where Io

is the drain current at VGs = VTo, /' is the body-effect coefficient, r is the DIBL

coefficient, n is the sub-threshold slope ideality parameter defined by Eq. 3.3, and

IFrom this point forward we will use VT and VTo interchangeably indicative of characterization
of the ideal MOSFET threshold voltage.



VTH iS the thermal voltage.

VGs-VT-(Y.SB)+7VDS( -

ID Io e nVTH 1 - e VTH (3.2)

n AVG (3.3)
VTH Alog(ID) . In(10)

The 1 - e VTH term in Eq. 3.2 is easily eliminated with VDS > 3 VTH, and 7-y'.

VSB can be eliminated by shorting the body and source of each device. Minimization

of the DIBL component is achieved by reducing VDS to a few hundred millivolts -

large enough to eliminate the (1 - e) term, but still small enough to minimize the

effect of DIBL. Assuming that VGs, VDS, rl, and n are identical for two arbitrary

devices, taking the natural logarithm of the ratio of the currents of those two devices

will result in a simple analytic equation for the AVT of those devices2 , as shown in

the following derivation:

In (ID2 ,= In -e(3.4)
DVGS- VTl +T VDS

e nVTH

In (ID, = In (e VT,r (3.5)

AVT, 2 = nVTH 1 (ID 2  (3.6)

It is known that the subthreshold slope between devices can vary, and thus the

assumption that n is identical for the devices being compared is not valid in general.

Taking this into account, the above equations can be reworked and shown to provide

the relationship in Eq. 3.7 between the drain currents, threshold voltages and n.

nVth - in (- VGs - VT2 - VT1  (3.7)
ID2 n 2 n 2

Since Eq. 3.7 provides no simple, closed-form solution for AVT, the values of nm,
2This AVT denotes the difference in ideal threshold voltage between two devices and is distinct

from AVT in [107] which describes the shift in a single device's threshold voltage due to short channel
effects.



n2 , VGS and at least one device VT must be known to compute the other and thus

a delta between the two. Eq. 3.3 shows that n can easily be computed using two

measurements of ID at differing values of VGS. We also note that by using a small

value for VGS we can minimize the contribution of the second term in Eq. 3.7 in

two ways: a smaller VGS results in 1) a smaller multiplicand, and 2) as can be seen

in Figure 3-1, the instantaneous value of n tends to converge at extremely low VGS

despite variation in VT, allowing use of Eq. 3.6 rather than Eq. 3.7.

Ascertaining the value of one of the device threshold voltages is more difficult, but

possible by finding the value of VGS where the sub-threshold current deviates from

the ideal log-linear form. This known VT can then be used to compute the VT for

every other DUT. By using Eq. 3.7, along with two additional measurements for each

DUT (to compute n), a complete VT map of all test devices across the chip can be

ascertained.
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Figure 3-1: Convergence of n at low VGs despite VT variation.

A more practical method is to compute an average value, navg = 0.5 (nl + n 2 ),

where each n can be computed from sub-threshold leakage current measurements, and

then use navg in Eq. 3.6. This has the added benefit that post-processing of the current

measurements to extract AVT remains computationally efficient. Furthermore, the

error associated with using this average value is small if nl e n 2 .



3.2.2 Test-Structure Architecture & Circuits

Figure 3-2: Simplified VT variation architecture and circuits

Figure 3-2 is a simplified schematic showing the architecture and circuit blocks to

measure VT variation. A dual-slope, integrating Analog-to-Digital Converter (ADC)

is used to measure sub-threshold leakage currents, due to its suitability to accurately

measure small currents despite long conversion times. The resolution of the ADC in

this design is configurable up to 13 bits, allowing a trade off between accuracy and

measurement time. By externally setting VDSre,, the operational amplifier enforces a

virtual ground at the input nodes, ensuring that each device connected is biased at

the same VDS. Amplifier gain and mismatch errors will introduce error into the value

of VDS seen by the DUTs, but each DUT is affected in the same manner. Large input

devices and a high-gain (> 60dB) ensure that this error is small nevertheless.

To measure currents of many devices efficiently, we use a single ADC that is

multiplexed among all devices. Apart from the area efficiency achieved by using a

single ADC, this ensures that any non-idealities in the ADC are common to all DUTs

and therefore do not affect the results. We have chosen to use a hierarchical access

scheme analagous to a memory, with rows, columns and sections. Each bank contains

128 PMOS and 128 NMOS DUTs organized in columns, as shown in Figure 3-3, and

each section contains 90 rows of banks. Bank enable pass gates steer only the current

of the selected device to the measurement circuitry. The test-chip contains 540 banks

organized into 6 sections for a total of 540 banks x 128 columns = 69,120 DUTs of



each type in a 2mm x 2mm array. All device lengths are minimum length for this

technology (0.18pm). The lower portion of this array contains banks with random

designed device width ranging from 0.28pm, the minimum allowable, to 3pm, while

in the upper half of the array, each row contains the same device width.
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Figure 3-3: Simplified schematic of individual bank

While the row and column access transistors introduce resistance and variation,

Hspice simulations show that a. ±10% variation in either L or VT of the access tran-

sistors has < 0.5% effect (Section 3.2.3) on IDS of the DUT being accessed. Despite

column access transistors being turned completely off for all other DUTs, a finite

leakage current, Ileak, through the row and column access transistors and the "off"

DUTs adds to the IDS of the DUT being accessed. When IDS of the accessed DUT

is large, corresponding to a larger VGS, Ileak is a negligible component and can safely

be ignored. However, as described in Section 3.2.1, it is desirable to set VGS as low as

possible to benefit from the convergence of n at low VGS. At gate biases below 0.25V,

IDS reduces to nanoamps or smaller, so that even small drain-source leakage currents

and drain/source-body junction currents accumulate over the "off" DUTs and their

access transistors.

Each of the bank enable pass gates are high-VT devices to minimize these parasitic

leakage currents emanating from unaccessed devices. However, even with very small

parasitic leakage currents from each of these pass gates, the large number of gates

result in these parasitic currents summing to a current large enough to interfere with

the current being measured, degrading the signal-to-noise ratio. An active current



subtraction scheme was devised and implemented on-chip as shown in Figure 3-2.

Two (source and sink) 8-bit thermometer-code DACs [108] with digital control logic

are used to actively add or subtract current equivalent to -Ieak. The digital logic

implements a binary search algorithm that uses the output of the ADC to converge

upon the correct DAC input value, acting as an auto-zeroing mechanism. For exam-

ple, when trying to measure the first NMOS DUT in a bank, the auto-zeroing is first

run when all DUTs in the bank are off. If the ADC Output is anything but 0 after

the first auto-zeroing measurement, the digital logic will completely turn on one of

the two DACs shown in Figure 3-2 in response to the direction of hleak If leak is

being drawn from the measurement circuitry to ground, the algorithm turns on the

source DAC (top of Figure 3-2) in order to "source" Ileak and remove its effect from

the measurement. Analogously, the algorithm will turn on the sink DAC (bottom of

Figure 3-2) to "sink" an Ileak flowing from VDD to the measurement circuitry. Subse-

quent measurements are used to refine the DAC control word in a logarithmic fashion.

Auto-zeroing is performed once for each bank being tested at a specific gate bias. Due

to the discrete nature of a DAC as well as limited resolution, the auto-zeroing will

not be perfect, and residual leak is treated as an offset and subtracted from DUT

current measurements.

The test-chip was implemented on a National Semiconductor 0.18pm bulk CMOS

process. Figure 3-4 is a die photo showing the 3.2mm x 2.7mm test-chip, of which

2mm x 2mm is the dense DUT array.

Figure 3-4: Test-chip die photo. The DUT array is shown at left, with the ADC and

digital control and calibtration blocks at right.



3.2.3 Simulation Results of AVT Isolation

We next present simulation results showing that the above theory and circuits are

effective in isolating and extracting AVT even in the presence of other types of vari-

ation, particularly channel length variation. Furthermore, simulations show that the

multiplexing circuitry contributes a negligible error in the measured current.

VT Isolation

Simulations were performed in which a single DUT, with row and column access

transistors, charges an integrating capacitor. Since the operational amplifier forces a

virtual ground at the inputs, VDS remains constant as the capacitor is being charged,

and IDS can then be found using IDS = C. AV/At. Simulations were performed with

DUT VT and channel length being varied by +/-10% and VDS being varied across the

allowable range, determined by the output stage of the operational amplifier. The

range in this design is 0.3V - 1.5V.

The plots in Figure 3-5(a) show the simulation results. The top plot in the figure

varies DUT VT and VDS, while the bottom plot varies DUT channel length and VDs.

Both plots show the relative change in current from the nominal VT or L at a given

value of VDS. The plots clearly show that the arrangement detailed above is more sen-

sitive to changes in IDS as a result of VT variation rather than L variation, especially

at low VDS. These results are consistent with the theory outlined in Section 3.2.1.

To quantify these results further, the sensitivity of IDS to either AVT or AL can

be computed by taking the derivative with respect to AVT and AL, respectively.

Taking the ratio of these derivatives gives the relative sensitivity of the circuit to

AVT and AL. Since it is clear from Figure 3-5(a) that the circuit is least sensitive

to AL at low values of VDS, these derivatives are only calculated for the lowest VDS
value allowable, 0.3V. Figure 3-5(b) plots the ratio of to for VGS ranging

L a for VGS ranging

from 0.35V to 0.5V. Lower values of VGS are not plotted, as a trend in decreasing

sensitivity to AL with larger values of VGS is evident from the figure. However,

Section 3.2.1 discussed employing lower values of VGS, where the value of n converges
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Figure 3-5: Current sensitivity to variation in VT, L

despite variation. The results of sensitivity analysis imply that simply measuring the

value of n, as discussed in Section 3.2.1, and using a VGs near the nominal VT for the

process provide more benefit in extracting AVT than attempting measurements at

extremely low gate biases. Furthermore, low gate bias values increase the resolution

and dynamic range requirements of the ADC, and even more attention must be paid

to preventing Ileak currents from unselected DUTs.

For all values of VGS plotted, the sensitivity ratio through the majority of the

variation range is below 0.1, meaning the circuit is at least 10X more sensitive to VT

variation than to L variation. This is particularly true for IVsl = 0.35V where all

but the endpoints remain < 0.1. Furthermore, sensitivity to VT variation peaks in

the vicinity of the nominal values of VT and L. Since variation in these parameters

are typically normally distributed about the nominal value, the majority of variation

measured will be in the high-VT-selectivity region of operation, giving high confidence

that the measured IDS variation is primarily a result of threshold voltage variation.

Simulations were performed where a transistor was subjected to variation (VT or L

or both) and the ADC outputs used to determine the amount of variation with both

Eq. 3.6 and Eq. 3.7. All simulations were done with IVcs = 0.35V and IVDsI = 0.3V

and the ADC resolution set to 10 bits. Simulations were also done at IVGsI = 0.345V,

the results of which are used in conjunction with Eq. 3.3 to calculate n. Table 3.2.3



contains the results of these simulations showing the ability of the circuit to measure

the known variations. It should be noted that the simulations where only VT is

varied result in approximately a 10% error in the extracted deltas, primarily a result

of the inherent inaccuracy in using Eq. 3.6 which does not account for n varying

simultaneously. This alone would indicate that this test-structure can resolve deltas

of approximately 1% of the nominal VT. However, since the sensitivity of the circuit

to VT variation is not infinite, resolution is reduced to approximately 2% of nominal

VT.

Variation Type Extracted AVT
+10%VT +10.9%
-10%VT -11.0%

+10%VT, +10%L +11.9%

+10%VT, -10%L +9.3%
-10%VT, -10%L -12.0%

-10%VT, +10%L -11.3%

+3%VT, +3%L +3.6%
-3%VT, -3%L -3.1%

Table 3.1: Extracted VT variation vs. subjected variation

Access Transistor and Resistance Effects

In order to hierarchically access a large number of DUTs within an array, each DUT

requires row and column access transistors, and each bank of DUTs requires a pass-

gate. These devices introduce additional resistance, potentially lowering the VDS and

corresponding ID of the DUT due to the finite Rot of the devices. However, oper-

ation in the sub-threshold regime produces small currents which are not perturbed

substantially by even fairly large resistances. Simulations were carried out to evaluate

this impact. The test circuit was used in these simulations with and without row,

column and bank access transistors. Table 3.2.3 shows that the impact of these tran-

sistors and variation within them is less than 0.5% of the simulated current without

any access transistors.

Another possible source of inaccuracy in implementing a large array is variation



Test Scheme Relative Difference
DUT w/o access transistors 0.00%
DUT w/access transistors -0.43%

DUT with -10%AL in access transistors 0.26%
DUT with -10%AVT in access transistors 0.23%

Table 3.2: Simulated current differences due to inclusion and variation within access
transistors (IVGcs = 0.35V and IVDsl = 0.3V).

in the distance current must travel to the measurement circuitry, resulting in dif-

ferent resistances seen by each DUT to the ADC. However, simulations show that

even with a lkQ difference in resistance, the relative current difference is only 0.1%.

Furthermore, the path from each DUT bank to the ADC is implemented as a dense

metal grid spanning multiple metal layers to provide the lowest possible resistance.

Process data and simulations indicate that a minimum width wire spanning 2mm has

a resistance of approximately 500Q. However, the grid is implemented with many 3X

minimum-width wires spanning four metal layers, decreasing the overall resistance

substantially. Since the resistance difference between any two DUTs cannot be more

than the resistance of a single minimum-width wire spanning the entire array, we

conclude that resistance variations in the grid will have negligible effect on measured

currents.

3.3 Data Analysis

Next, we examine the measured currents from more than 50K devices on each of

36 chips. We first consider the ADC performance in measuring currents, followed

by extraction of AVT from our data. We then analyze device size and separation

distance dependencies, and other within- and between-die spatial dependencies.

3.3.1 ADC Performance

Static performance of the ADC is first characterized, as this component is critical to

our current measurements. Since the input to the ADC is a DC current, dynamic ADC
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Figure 3-6: INL plot for a single ADC

performance is intentionally omitted as it has no effect on the measured currents. To

alleviate noise concerns, measurements are repeated ten times and the average over

the ten runs is used, as we assume white noise. In light of the limited input to the

ADC, the primary metric we characterize is the Integral Non-Linearity (INL), as this

gives the effective resolution of the ADC. Figure 3-6 is a plot of the INL versus ADC

code for a single chip, when the ADC is configured for 10-bit resolution and 600nA

full-scale current. At the high-end of the ADC range, the INL begins to degrade due

to limited bandwidth of the operational amplifier. This limits the maximum full-scale

current to P 600nA. However, a redesign of the operational amplifier could remove

this limitation in future designs. The INL for the ADC shown in Figure 3-6 leads to an

effective linearity of 10-log2 (MAX(INL) - MIN(INL)) = 7.81 bits. Out of the 36

chips measured, the worst case effective linearity is r 6 bits, resulting in an effective

resolution of 600A = 9.375nA. The minimum resolvable AVT is then computed

according to Eq. 3.6, where 12 is the maximum current measurable by the ADC, I,

is the current one ADC step below the maximum current and n is conservatively

estimated to be 1.5 for this process. This gives AVTMIN = 0.6mV, or 0.14% of the

nominal VT for this process - below the 2% limit detailed in Section 3.2.3 - giving

high confidence that ADC non-linearity contributes negligible error to the extraction

of AVT.



Implementation limitations resulted in disabling of the auto-zeroing DACs in-

tended to cancel the off-DUT leakage currents. However, each bank is still calibrated

by first doing a current measurement with that bank's pass gate enabled but with

no device enabled. Subtracting this measurement from the measured device current

gives the true sub-threshold current of the enabled device, but limits the dynamic

range of the ADC.

3.3.2 Current Measurements and Extracted AVT

Using the analysis in Section 3.2.1 and measured currents from DUTs within the array,

we compute AVT for each device with respect to a reference device in the corner of

the array. The values of n needed for the computation are extracted by measuring

currents at different VGS biases (0.275V < |VGS < 0.3V in 5mV increments) and

computing a best-line fit on a semilog scale. The slope of this line relative to the

ideal 60mV/decade gives n. A spatial plot of n for one die is shown in Figure 3-7(a).

From this plot, it is evident that n does vary, although the magnitude is small, so

using the average value of n between two devices in computing the AVT introduces

only small errors.3 Furthermore, due to the limits placed on the full-scale current by

the degraded linearity at high current levels (Section 3.3.1), extracting an absolute

VT to use in Eq. 3.7 is impossible, limiting calculation of AVT to the formulation

given by Eq. 3.6. This limitation can also be overcome in future designs.

Once n has been computed from the measured currents for each device, we com-

pute AVT. Figure 3-7(b) illustrates the AVT from each device to the reference device

in the bottom right corner of the array for an example chip. While it appears that

there may be some correlation in the upper half of the array, this is only due to the

systematic designed device width pattern from row to row in this section of the array,

resulting in a shift in standard deviation but not correlation as will be shown in the

following spatial analyses.

3The error is < 10%, as this is the error when no attempt is made to account for n varying as
discussed in Section 3.2.3.
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Figure 3-7: Spatial distributions of n and VT for a single die

3.3.3 Pelgrom Modeling

To understand the effect of device size on standard deviation, we first show a Pelgrom

plot of standard deviation of VT versus 1 [41]. We note that J(VT) = (A VT),

where AVT is with respect to our specified reference device. Based on Pelgrom's

theory, we expect to see a linear relationship between u (VT) and . Figure 3-8(a)

shows this linear relationship for a single chip, where a has been normalized relative to

that for a device having W/L of 0.92m Ideally, the best-fit line should pass through

0, indicating that devices of infinite area should have a standard deviation of 0.

Deviation from this ideal in our data may be a result of ADC measurement resolution.

Specifically, the data for many of the smallest devices in the array (W < 0.8[tm) is

excluded as their extremely small currents are smaller than the resolution of the

implemented ADC. In such cases, data is either non-existent (measured values being

0 as the currents were below the resolution of the ADC), or when data was present,

gives unrealistic values of n >> 2 due to the large ratio of ADC step size versus

absolute current being measured at the bottom of the ADC range. Data is excluded

by examining the computed values of n and excluding any devices with a computed

n < 1.0 or n > 1.8. The majority of the excluded data is for small device sizes in the

tails of the distribution, artificially lowering the standard deviation for these device

sizes. As a result, the data points on the far right of Figure 3-8(a) tend to be slightly
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Figure 3-8: Pelgrom fits of a (VT)

below the linear fit, and may also cause the fit line to no longer pass through 0. In
all further plots and data analysis, the data for devices with W < 0.8pm is excluded
to ensure data integrity. We believe that all trends in the data remain applicable to
the small device sizes in this technology.

The Pelgrom model includes two terms: 1) an area dependent term with propor-

tionality A2VTo, and 2) a distance dependent term with proportionality STo, as shown

in Eq. 3.8. Figure 3-8(a) shows a clear dependence on device area, but Figure 3-8(b)
shows no significant distance dependency. In Figure 3-8(b), all pairs of devices within
a specific chip having the indicated separation distance D are considered, and the
standard deviation, normalized to a m device, across all those pairs is plotted.o0.181Lm

Results show that placing devices nearer to each other does not decrease the variance
between them. This will be discussed further in Section 3.4.

A2

o 2 (VTo) = +o S2o D 2  (3.8)WL + 0

3.3.4 Intra-Die Spatial Correlation

Since a(VT) depends on device size, separate spatial correlation analysis by individual
device size is necessary. Intra-die spatial correlation analysis is performed by com-
puting the correlation coefficient for all devices separated by some distance, D, where
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0 < D < 0.5 - VArray2 + Array2 as shown in Eq. 3.9, where DVT is the AVT

between a given device and the reference device. These correlation coefficients are

then plotted versus separation distance in Figure 3-9(a) for a device size of .920.18Am"

The +3a bounds to determine statistical significance (as a function of the number of

available pairs having separation D) are also shown on the plot. No spatial correla-

tion is seen, as all data points fall within the significance bounds. Though this plot

shows the data from only one device size on one chip, similar plots for other device

sizes and chips reveal the same conclusion.

PDVT,DVT-D(D) = Cov(DVT, DVT + D) (3.9)
'DVT

The lack of spatial correlation indicates that VT variation is random, and we find

that it is normally distributed. Figure 3-10 indicates that over 99% of the data points

in this data set are indeed normally distributed. As supported by the measurement

results at more scaled nodes, such as in [54, 55, 58], this leads to the conclusion

that VT variation must be dominated by Random Dopant Fluctuation (RDF), even

at the 0.18pm technology node. Although Line-Edge Roughness (LER) should be

considered as a possible cause of random variation, the 0.18pm technology node is

likely not affected by sub-resolution patterning effects to the same degree as a 90 or
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Figure 3-10: VT distribution and normal probability plot for a single die

65nm process. Furthermore, by measuring sub-threshold currents and reducing VDS,
we reduce the DIBL effect and minimize any current variations due to channel length

variation. Additionally, oxide thickness is relatively well controlled and variation in

this parameter is likely to be more spatially smooth. We note that smaller device

sizes, including any excluded by our ADC resolution screening procedure, would be

expected to be even more susceptible to RDF; an interesting result here is that RDF

is discernable and dominates even for larger device sizes.

3.3.5 Die-to-Die Correlation

Given the lack of any significant intra-die spatial correlation, inter-die correlation is
only expected if the standard deviation of the mean shift between each die is con-

siderably larger than the within-die standard deviation (i.e., udie-to-die > Uintra-die).

Computing this requires the absolute VT for the reference device on each chip, which
necessitates current measurements to determine where the ID vs VGS curve breaks
from a straight line on a semilog plot. However, due to the limited dynamic range
of the on-chip ADC, we were unable to measure currents significantly larger than
600nA, making it impossible to determine an absolute VT for each reference device.
Nevertheless, we are still able to compute correlations in the spatial variation patterns
between arbitrary pairs of die. Once again, we choose a single device size to analyze



and compute the correlation coefficient, p(i, j), between pairs of die using Eq. 3.10,

where DVTi(,) and DVTj(,,) are the AVT of identical devices located at (x, y) on die

i and die j, respectively, and pi, pj, ui, uj are the means and standard deviations of

AVT of all devices of the given size on dies i and j, respectively. Figure 3-9(b) shows

the correlation coefficient as a function of all (36) = 630 pairwise combinations. All

data points fall within the 3a significance bounds indicating no significant variation

pattern similarity between pairs of dies. Larger device sizes show the same results.

p(i,j) Cov(i, j) - k E E (DVTi(,,,) - p)(DVTj - ) (3.10)
pO(i, i io ( )j

The previous two subsections have shown that within-die VT variation is both spatially

uncorrelated and random (no repeatable within-die pattern) from die-to-die, implying

that knowing the variation between two devices gives no further information about

two similarly spaced devices on the same chip or even the same two devices on a

different chip. We can now also update Figure 2-10 to include VT variation at or near

the origin of the axes, as shown in Figure 3-11.
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Random Systematic

Figure 3-11: Decomposition of within-die spatial variation, including VT variation.



3.4 Design and Modeling Implications

These results have powerful implications for both circuit designers and the modeling

community. In order to determine the importance of the lack of correlation in VT

variation, we must determine the sensitivity of a given circuit or design to VT variation.

For example, it is well known that sub-threshold circuit designs are highly susceptible

to VT variation, while channel length variation has minor impact in comparison. In

general, computing circuit sensitivity to individual process parameters is not easily

done analytically. However, we can consider a simple inverter where the power-supply

to the inverter is scaled from sub-threshold to well above VT to illustrate the differing

circuit sensitivities.

3.4.1 Circuit Modeling

For a simple inverter operating above-threshold, the propagation delay for a falling

transition can be modeled as in Eq. 3.11. However, when the inverter is operating

sub-threshold, Eq. 3.11 is modified to Eq. 3.12.

CL VDD
TPHL - (3.11)

KN wL (VDD - VT) (3.11)

CLVDD
TPHL =-T (3.12)

Ioe nVTH

where 1 < a < 2 for modern processes and KN is a constant determined by the

process technology. Given the correlation coefficients for channel lengths (PL1,L2) and

threshold voltages (PvT1,vT2) between the NMOS transistors in two arbitrary inverters,

it should be possible to compute the correlation coefficient for their propagation

delays. In general, this is a difficult problem to solve analytically, but Monte Carlo

simulations provide insight. To setup these simulations, we use the delvto parameter

in Hspice to apply completely random variation in VTo and we modify gate lengths

in the spice deck using correlated random variation of PL1,L2 = 0.9. This was done

in accordance with our results showing lack of correlation in VTo and the spatial



0.8 PI, L = 0.9 5

pv 'v = 0.0 0.8
E0.6 n' ij o

S0.4 1 5 a_2 0.6
o. 10.6

0.2

0

0 0.4
1 2 3 4 0.2 0.4 0.6 0.8 1 1.2

VDDNT VDD (V)

(a) Correlation in inverter propagation delay (b) Correlation in delay between RO and critical
path of 64-bit KS adder

Figure 3-12: Circuit performance correlation as a function of VDD

correlation results in L from [70]4 to highlight the differing impacts of correlated

versus uncorrelated variation in different circuit operating regimes.

We see in Figure 3-12(a) that the overall correlation contains some interesting

characteristics. When VDD > 2VT, the correlation asymptotically grows toward PL1,L2*

However, around VDD = 2VT, the correlation falls precipitously, indicating that the

gate overdrive is no longer sufficient to mask out RDF-dominated VT variation. Since

Eq. 3.11 becomes less applicable when VDD , VT, the computed PTPHL1,rPHL2 = 0 ,

but below VT it settles to an extremely weak correlation, indicative of the dominant

role of VT in determining sub-threshold current.

For simple logic gates, assuming channel length and VT variation are independent,

one can safely assume that PTPHL1,TPHL2 ; PL1,L2 when VDD >> VT. In contrast, in the

sub-threshold region it is safe to assume pPHL1,PHL2 0 due to the lack of correlation

in VT variation.

This result demonstrates the importance of modeling correlations in each device

parameter individually: the correlation of the particular circuit output metric is,

in general, a non-linear function of the correlations in each device parameter. Fur-

4At the beginning of this chapter, we noted that within-die spatial correlation in channel length

was an artifact of systematic variation. However, this decomposition, which yielded the aforemen-

tioned insight, had not yet been performed and only subsequently done in [16]. Nevertheless, the

insights gained from this choice of PL1,L2 can be applicable where systematic variation happens to

be highly spatially correlated.



thermore, the overall circuit performance correlation is highly dependent on circuit

operating region and the circuit's sensitivity to individual device parameters within

the operating region. For regions of operation where correlation is low or insignificant,

methods for modeling variation as uncorrelated IID statistics are appropriate, using

Monte Carlo or distribution propagation approaches.

3.4.2 Circuit Design

Designers face many decisions in today's complex circuits. Increased variation means

that designers must now consider how best to ensure robust circuit operation. One

approach is to design the circuit to operate correctly given the range and charac-

teristics of known or estimated device variations. A more aggressive approach is to

consider active variation sensing and compensation strategies. The results of the pre-

vious section imply that the designer must carefully consider the operating region of

the circuit when evaluating either robust design or active compensation strategies to

counteract variation.

In the above-threshold region where channel length variation dominates circuit

performance variation, assuming that channel length variation is spatially correlated,

variation sensors can be used to detect variation. Active compensation, such as back-

biasing circuits, can then be used to counteract the detected variation. Given high

spatial correlation (p > 0.8) within a given radius, only one such variation sensor and

compensation circuit is required within this radius.

In contrast, sub-threshold operation results in no significant spatial correlation

due to VT or L variations. Additionally, Section 3.3.3 showed that the variance was

not significantly related to distance. Consequently, a designer can only make use

of the fact that the variance decreases with increasing device area, as increasing the

size of a device effectively averages out variation due to Random Dopant Fluctuation.

However, doing so results in negative power scaling due to increased total capacitance,

and so there exists a trade-off between yield and power. In [109], the authors analyze

the effect of increasing device width on the minimum energy point of sub-threshold

operation, showing that up-sizing for a constant yield has a negative effect on the



minimum energy point. Another method of averaging out variation is to increase

logic depth as in [110]. By increasing the number of devices in a logic path, the rela-

tive standard deviation of the propagation delay of the entire path decreases.5 This

technique can prove useful in designs where operating frequency is not the primary

metric.

In Ultra-Dynamic Voltage Frequency Scaling (UDVFS) systems, such as those in

low-power systems like mobile devices or sensor networks, both sub-threshold and

above-threshold operation are used [111, 112]. Such systems often utilize replica

critical paths or variation sensors to determine the appropriate frequency to operate

at for a given power-supply voltage. To determine how correlated these replicas are

to the actual path they are monitoring while scaling VDD, we performed Monte Carlo

simulations with correlated channel length variation of a 7-stage ring-oscillator (RO)

and a critical path of a 64-bit Kogge-Stone (KS) adder. Figure 3-12(b) shows the

results of a 1000-point Monte Carlo simulation with 65nm Predictive Technology

Models [113], where PLi,Lj = 0.9, PVTi,VTj = 0, AvT = 5mV - pm, and aL = 5%.

The overall correlation in delay between the two paths is e 0.95 for 0.7V < VDD 

1.2V. The reason this is greater than PLi,Lj is that the speed of one stage is directly

dependent on the load provided by the following stage, which, in addition to the

correlated variation in channel length, increases the overall correlation. In the region

of 0.3V < VDD 0.7V, the overall correlation between monitor and circuit decreases

quickly, indicating that performance of the monitor/replica is no longer indicative

of the performance of the critical path and should not be used to determine correct

operating frequency unless a large guard-band is applied. Such a guard-band would

undoubtedly subtract from increased energy efficiencies achieved by moving to lower

supply voltages. A more robust method of controlling operating frequency in such

systems is to detect logic errors in potential critical paths and slow down the frequency

until timing errors are no longer detected [91, 114].

5The absolute standard deviation increases by Vni as described in Section 2.3 but the mean

increases by a factor of n, so the standard deviation relative to the mean ( ) decreases by a factor

of \ .



3.5 Summary

This chapter motivated the need to characterize variation at the device level to af-

ford circuit designers a means of modeling and simulating the effects of variation in

transistor parameters. The need to characterize threshold voltage variation became

apparent as it is, along with channel length, a parameter capable of significant impact

to circuit performance, especially in low-power applications. Analysis of the signifi-

cance of threshold voltage in the sub-threshold region of MOSFET operation led to

the design of a test-chip capable of isolating intrinsic threshold voltage variation by

measuring these leakage currents.

With a designed capability to measure thousands of transistors in a dense array,

the test-chip allowed characterization and spatial decomposition of threshold voltage

variation. The measured data shows that intrinsic threshold voltage variation is, with

high-likelihood, a truly random process that can be described accurately by using a

Gaussian distribution with parameters based on transistor size. Furthermore, spatial

decomposition and analysis of the data showed no within-die spatial correlation and

no systematic, repeatable within-die variation pattern.

These results, in combination with channel length variation, were used to deter-

mine the effect on common digital circuits. The resultant Monte Carlo simulations

showed that the effect on circuit performance, and appropriate variation mitigation

schemes, is highly dependent on the application (e.g., high-performance versus low-

power). This motivates correlating these simulation results with actual circuit per-

formance variation and is the subject of the next chapter.



Chapter 4

Digital Circuit Performance

Variation

Digital circuit design employs abstraction to a great deal. It is fitting then to begin

to abstract away the variation in individual transistors and their parameters and

think about variation in the context of digital logic gates or even entire circuits. This

chapter begins by motivating the need for such abstraction (Section 4.1) and then,

in Section 4.2, explores a test-chip architecture and relevant circuits capable of high-

resolution (both temporal and spatial) variation characterization at the digital circuit

level. The data analysis found in Section 4.3 provides key insights into the spatial

decomposition of variation at the circuit level. In particular, the data again show

no within-die spatial correlation, but at this level of abstraction we find systematic

components of variation.1 We also compare these results to the results predicted

in the last section of the last chapter when combining both VT and AL variation to

predict correlation in digital circuit perforance variation. Lastly, Section 4.4 discusses

how the measured data necessitate unique variation mitigation strategies based on

the operating mode of the digital circuits.

'Recall in the last chapter that there was no correlation in the VT variation pattern from one die

to another, indicating no systematic component of variation.



4.1 Motivation

In the ideal design flow, digital designers can code desired circuit behavior using a

high-level hardware descriptor language and then achieve implementation of the entire

physical design using completely automated synthesis, placing and routing tools. The

timing models used in these tools utilize abstraction as well; rather than modeling

the behavior of individual transistors in each simulation, simpler gate-level models

are utilized. Although not as accurate as simulating individual transistors, modern

gate-level models can yield results within 5% of more detailed transistor-level models,

while providing great enhancements in speed and productivity.

Enabling modeling of variation in digital circuit perfomance means providing vari-

ation models at the same level of abstraction. Variation models that can accurately

capture variation at the gate-level can be directly plugged into the relevant tools. Go-

ing a step further, characterization of common digital circuits provides designers the

intuition necessary to guide robust design as well as concrete physical data capable

of verifying the results of automated tools.

As decomposition of the spatial components of variation increases in significance,

understanding circuit performance correlation enables first, more accurate model-

ing, as evidenced by the emergence of statistical timing models which incorporate

spatial correlation [98, 105, 99] despite not having manufacturing data to validate

such models, and second, design of appropriate mitigation techniques. Specifically, if

nearby circuits are strongly correlated (Ipl 1), techniques involving "replica" cir-

cuits can be employed as both monitor circuits ("canaries") as well as within feedback

loops capable of active compensation. However, when circuits are weakly or not at

all correlated (Ipl r 0), "in-situ" techniques are likely necessary, as replica circuits

may not accurately mimic the performance of the actual circuits under consideration.

Furthermore, correlation data, and in particular any spatial dependencies, enable de-

termination of spacing criteria between monitor circuits and potential critical paths

in the design to ensure high correlation.

The next section describes the architecture of an all-digital test-chip capable of



providing spatial variation data at the circuit level.

4.2 Test Circuits & Chip Architecture

The variation test-chip is composed of a large number of replicated blocks containing

various digital circuits and all-digital measurement circuitry. The following subsec-

tions further detail the architecture of each component.

4.2.1 High Frequency Test Circuits

To extract spatial correlation of high-frequency circuits, we array 80 nominally identi-

cal "adder-blocks" arranged in a 9x9 matrix as shown in the die photo of Figure 4-1(a)

and occupying a 4mm 2 area. Each of these blocks contains common circuits found

in modern product designs, namely a 64-bit adder, canary ring oscillators of various

types and frequency measurement circuits as shown in Figure 4-1(b). Details of each

of these components are provided below.

KS Adder
Bits 1-16

Muxes

KS Adder
Bits 17-48

KS Adder
Bits 49-64

RO Block

32-bit
Freq. Counter

RO Block

32-bit
Freq. Counter

PFD & Bus Drivers

32-bit
Freq. Counter

32-bit
Freq. Counter

RO Block

(a) Die photo of test-chip imple-
mented on IBM's 90nm CMOS pro-
cess.

(b) Adder-block floorplan showing all circuits
within the replicated block.

Figure 4-1: Arrayed Kogge-Stone adders instrumented for internal delay measure-

ment.



Oscillating 64-bit Kogge-Stone Adder

The first circuit included in each "adder-block" is a 64-bit Kogge-Stone adder. Kogge-

Stone adders belong to a class of adders known as parallel-prefix architectures which

enable fast, efficient addition by pre-calculating carry signals. The critical path in such

adder structures is logarithmically related to the number of bits being added rather

than linear in the worst-case, thus making wide adders feasible. Such adder structures

are common building blocks in the datapaths of modern ASICs and microprocessors,

making them good candidates for spatial variation analysis.

To enable simple and efficient measurement of maximum operating speed, the

adder inputs are configured such that the outputs oscillate, requiring only a very

simple frequency counter for adequate characterization of performance. This is ac-

complished by setting one of the inputs to all ones (A(63 : 0) = 1), the other input to

all zeros (B(63 : 0) = 0), and connecting an inverted version of the carry-out signal

to the carry-in input (Cin = Cout), as shown in Figure 4-2.

ENABLE

Vdd .

A<63:0> __ -

S<63:0> To PFD

Figure 4-2: Oscillating 64-bit Kogge-Stone adder

All gates in the design are a custom standard cell implementation, each sized

(using the Hspice optimizer) such that they meet an output rise/fall time constraint

(50ps in this implementation) for a given multiple of the minimum size load (i.e., a

1X cell must have a 50ps output rise/fall time for a load of 5fF, for a 2X cell the load

is increased to 10fF, etc.). Carry-propagate cells (AND gates) and carry-generate

cells (AND-OR gates) constitute the largest part of the adder, with the remainder



of the gates being primarily XOR gates to perform the addition. The standard cell

implementation allows for ease of layout due to the fixed pitch and the ability to abut

cells without design rule violations. Although layout and routing were both manu-

ally done, this is representative of modern design flows for high performance blocks

as custom layout and routing often results in higher performance than completely

automated flows.

Canary Ring Oscillators

To capture correlation between different circuit structures, we include 16 ring oscil-

lators (ROs) around each adder, since they are often used as monitor circuits due

to their simplicity and small area overhead. The ROs used are: INV{9,11,13,15},

NAND{9,11,13,15} and NOR{9,11,13,15}, denoting the type of gate and number of

gate delays. The INV9, NAND11, NOR13 and INV15 are duplicated for a total of 16

ROs per adder. The NAND and NOR gates are two-input gates with inputs shorted

to produce an inverting gate. These differ from the AND-OR gate used in the KS

adder, which allows for quantification of correlation between disparate gate types and

transistor stacks. The 16 ROs are divided into four blocks and interspersed between

other digital logic, as shown in Figure 4-1(b), to ensure that these "canary" circuits

are within the context of circuits normally found in modern digital designs.

Frequency Measurement Circuits

Two 32-bit asynchronous frequency counters, made up of simple toggle flip-flops (Fig-

ure 4-3), measure the oscillation frequency of the adder and ROs. An additional two

frequency counters are also included for use in measuring the delay of each individual

adder bit relative to the first bit in the adder, detailed in the following section. These

frequency counters provide a simple solution to high-resolution digital measurement,

allowing completely digital read-out of all relevant frequencies and delays. The out-

puts of the frequency counters are multiplexed onto a single bus spanning each row

of the chip, and these row buses are multiplexed onto the chip outputs.
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Figure 4-3: 32-bit asynchronous frequency counter comprised of toggle flip-flops.

4.2.2 High-Resolution Digital Delay Measurement

Capturing variation data with higher spatial and temporal resolution than possi-

ble with simple ROs requires alternative techniques. Specifically, we seek a highly-

scalable, all-digital measurement technique capable of sub-picosecond delay resolution

occupying small area. In the following sections we describe the theory and operation

of a random-sampling technique, in the context of measuring delays between bits of

the adder, meeting these criteria.

Random Sampling

The critical path in the adder is from Cin to Co,,t, resulting in all bits oscillating at

an identical frequency but with delays determined by the logarithmic structure of

the KS adder, giving 64 out-of-phase oscillator taps. Quantifying this phase-delay

is equivalent to quantifying the difference in delay between each bit, and allows for

variation analysis with improved spatial resolution. Delay measurement is done by

randomly sampling the signals and counting the number of occurrences when one of

the signals is logic high and the other simultaneously low, or vice-versa, dividing by

the total number of samples taken and multiplying by the signal period as shown in

Eq. 4.1.

D = 7period (4.1)
Ntot

Uses of random-sampling techniques for this purpose are not new [115, 116, 117].

However, in each of those implementations, an XOR gate is used to determine when

one of the signals is logic high and the other logic low. XOR gates can limit the

minimum detectable delay since some minimum delay is necessary to register a clear



logic level at the output. In our implementation, we transform the measurement to be

that of the difference in two pulse widths using a Phase-Frequency Detector (PFD),

discussed in the following section, which eliminates this constraint.

For this technique to be accurate, the random samples must be uniformly dis-

tributed across all points in the sampled signal cycle as non-uniformity in this distri-

bution results in non-linearities in the measured delays. Mathematically, the opera-

tion shown in Figure 4-4(a) can be modeled as:

N

SN+1 = SN+ XN = X (4.2)
i=1

where SN is the timing of the Nth sample, Xi is the time between samples and

is a random variable, and tper is the sampled signal period. We also define PN =

mod(SN, tper) as the position of the Nth sample in the sampled signal cycle. If the

average sampling period (px) and the sampled signal period (tper) are co-prime, it is

clear that the distribution of PN will be uniform even without random edges. However,

if they are not co-prime, Eq. 4.2 describes a random walk, which we simulated in

Matlab using a distribution of random periods taken from Hspice simulations of the

LFSR-controlled RO. The results of this simulation, in Figure 4-4(b), empirically

show convergence to a uniform distribution as N --+ oc. With N > 108 samples

the non-uniformity of the distribution, and thus non-linearity in the measured delay

values, is sufficiently small.

The framework in [117] can be used to find standard errors and confidence intervals

on the time resolution of this technique given some number of samples. Conversely, it

can also be used to compute the number of samples required for a desired resolution

given desired confidence intervals. Assuming equal probability of a sampling instant

falling anywhere in a clock cycle, Eq. 4.3 shows how the number of samples required,

N, depends on zc = V/2erf-1 (CI) which gives the area underneath an appropriate

Gaussian curve for a certain confidence interval, CI, and p and P, which are the
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Figure 4-4: Graphical depiction of random sampling

actual and observed duty cycles, respectively.

N = P-P P(1 - P) (4.3)

As shown in Figure 4-4(b), N > 10s samples will satisfy the uniform distribution

condition that satisfies the assumption of this analysis. Section 4.3.3 will show that

the number of samples taken in our random sampling implementation is ; 1.7 x 10s,

satisfying the constraint. It should also be noted that the time resolution of this

technique can be arbitrarily increased with large enough N, which would result in

smaller errors between actual and observed duty cycle (p - P).

Measurement Circuits

Most high-resolution, sub-picosecond measurement techniques require complicated

circuitry capable of exquisite timing. The nature of random sampling techniques,

in making use of a large number of samples spread over many cycles, relaxes the

measurement circuit constraints substantially. In this implementation there are two

major circuits: a Phase-Frequency Detector (PFD) which converts a delay difference

into a pulse-width difference and a random sampling clock generating circuit.

Removing the constraint on minimum measurable delay is achieved by transform-



ing the measurement to that of the difference in two pulse widths. Since we are

attempting to measure the delay difference between bits of the KS adders and the

adders are in an oscillating configuration, the oscillating frequency and pulse widths

remain constant for the duration of operation. This situation lends itself nicely to

sampling over a large number of cycles as the inherent properties of the sampled

signal remain constant, or stationary, over time.

A phase-frequency detector as shown in Figure 4-5(a), normally used in phase-

locked loops, is used here to convert between a delay difference and a pulse-width

difference. The circuit is comprised of two modified True Single-Phase Clock (TSPC)

flip-flops and a self-resetting circuit. For simplicity in explanation, we assume that the

signal that arrives first, or the early signal, is Sum <x>, the input to the top TSPC

flop; however, the following explanation, graphically depicted in Figure 4-5(b), can be

completely reversed with no loss in circuit functionality. When the early signal arrives

it triggers a rising edge on the UP signal. Similarly, when the late signal arrives at

some point later, a rising edge is triggered on the DN signal. The arrival of the late

signal simultaneously triggers the self-resetting circuitry connected to the outputs of

both flops, resulting in simultaneous falling edges on both the UP and DN signals.2

As the timing diagram shows in Figure 4-5(b) by virtue of the simultaneous falling

edge, the circuit has transformed a delay measurement into a pulse-width difference

measurement. Moreover, the difference of these two pulse widths can be arbitrarily

close to zero, eliminating any bound on minimum measurable delay.

Since the UP and DN pulses have differing pulse-widths, it is these signals that are

randomly sampled using a simple D Flip-Flop, clocked by a random clock. Generating

this random clock is done by attaching the outputs of a Linear Feedback Shift Register

(LFSR) to the tri-state controls of inverters in a 5-stage ring-oscillator as shown in

Figure 4-6. Each stage of the ring-oscillator is variable drive-strength; since the LFSR

produces pseudo-random bit sequences, the tri-state controls of the ring-oscillator are

enabled in a pseudo-random fashion, in effect generating the random clock we require.

2Variation and mismatch between the flops result in a non-simultaneous reset and a corresponding
static offset. However, with the measurement technique discussed in Section 4.3.3, this offset can be
accounted for and eliminated.
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Figure 4-5: PFD and associated timing diagram

Since LFSRs can repeat the pseudo-random pattern if not designed with enough bits,

this implementation is comprised of 63 bits, which theoretically is sufficient to avoid

repetition over many years of operation at the designed operating frequencies.

D SET Q D SET Q D SET Q D SET Q

CLR 17q CR CUR CLRL~

ENABLE ND.

LK

Figure 4-6: Random clock generation using a LFSR and variable drive-strength ring-
oscillator.

Hspice simulations show the distribution of clock periods generated by this circuit

(Figure 4-7). The generated clock periods are indeed randomized with a distribution

that can be closely approximated by a Gaussian distribution except in the tails.

Nevertheless, we are more interested in the distribution of sampling instants within a

clock cycle, which the previous section showed to be uniform. Despite the relatively



simple circuitry and the fact that the clock periods form an approximate Gaussian

distribution, with enough samples, the "drifting" nature of these periods results in a

uniform distribution of the sampling instants within a clock cycle.
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Figure 4-7: Distribution of clock periods of random sampling clock

A single PFD is included within each replicated "adder-block" and shared between

all bits of the adder. The first sum bit of the adder is directly connected to one of

the inputs of the PFD and all 64 bits of the adder are mux-able into the other input

of the PFD. This setup allows subtraction of any offsets (e.g., due to multiplexing

or variation in the two halves of the PFD) or other non-idealities by measuring the

first sum bit versus the directly connected version of itself and subtracting that result

from all other measurements.

4.2.3 Body-Biasing Circuits

The last set of circuits included as part of this test-chip are intended for testing

adaptive body-biasing as a variation mitigation technique. Although such a study

was performed in [78], it is well known that the efficacy of adaptive body-biasing

should decrease in scaled technologies. This is a result of the y coefficient of the

last term in Eq. 3.1 being directly proportional to the oxide thickness as shown in

Eq 4.4 (recall that Cox is inversely proportional to the oxide thickness from Eq. 2.5 in

Section 2.2.2), whereas there is a square root dependence of - on doping concentration.

To maintain gate control of the channel as doping concentrations increase, the oxide



thickness is simultaneously decreased, typically resulting in a smaller y.

7 = Co h (4.4)
cox

The ability to adaptively body-bias both PMOS and NMOS transistors of the KS

adders is added by using IBM's triple-well process which allows NMOS transistors

to be isolated from the substrate. Large pass-gate transistors, shown on the left

edge of Figure 4-1(b), are used as body-bias multiplexers, allowing selection of one of

eight body-bias voltages generated external to the chip. Simple flip-flops control the

multiplexers and are set using software-controlled signals.

4.3 Data Analysis

The test-chip described above was fabricated in IBM's 90nm triple-well process tech-

nology, as pictured in Figure 4-1(a), and frequency measurements were carried out

on 41 chips from two wafers. This section describes the measurements and quantifies

their spatial decomposition.

4.3.1 Variation Measurements

Variation measurements show that the effect of variation is larger at lower power-

supply voltages (Figure 4-8). As VDD is decreased below 0.7V, variation increases

dramatically. Moreover, the within-die component becomes a larger and larger com-

ponent of the overall variation. While noise is typically a concern at low voltages, all

of the measurements are taken by allowing the circuits to run freely for > 108 cycles,

averaging out any (assumed white) noise.

As expected, ROs with smaller gates (e.g., INV) and fewer number of delay stages

show greater within-die variation (due to less averaging, see below) than ROs with

either larger gates (e.g., NOR) or more delay stages. At the extremes, the INV9 RO

is most variable (UWID = 4.9% at 0.5V and cWID = 1.13% at 1.2V) and the adder,

being the largest circuit, is least variable (UWID = 2.8% at 0.5V and 9WID = 0.82%



at 1.2V). Die-to-die and total variance show the same general trends except that the

NAND ROs are more variable than the INV ROs - we believe this may be due

to larger NMOS than PMOS global variability as NAND gate delays are typically

dominated by the series NMOS stack.
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Figure 4-8: Variation as a function of VDD

Decomposing the variation into die-to-die and within-die components reveals that

not only does the fraction of variation attributable to within-die variation increase

with decreasing voltage, but perhaps more importantly, for some circuits, namely

the INV ROs, the within-die and die-to-die components are roughly equal at those

low voltages. Even in the "best" cases, the within-die component increases from

25% of the die-to-die component when VDD > 1V to 50% at low voltages (VDD

0.5V). The asymmetric increase in variation components significantly impacts the

design of variation mitigation schemes, especially those operating in low-power and

low operating voltage regimes or dynamically scaling systems, as will be detailed in

Section 4.4.1.

4.3.2 Spatial Variation & Correlation

The large number of replicated circuits within each die allows extraction of spatial

correlation. Within-die spatial correlation is computed in the same manner as in

Chapter 3.3.4, except that in this case the mean of each die is subtracted and all



circuits separated by a distance, d, over all die are included in the computation. This

increases the number of data points per distance, thereby increasing the statistical

significance of the computed results. At the closest separation distance of 170pm

between adjacent adders, there are nearly 1476 (41 chips x 36 adjacent adders) inde-

pendent pairs of adders that contribute to the correlation computation, while at the

farthest separation distance of 2mm there are only 82 (41 chips x 2 pairs) independent

pairs of adders.
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Figure 4-9: Adder spatial correlation as a function of VDD

We find that even at high VDD, there is no discernible within-die spatial correlation

(Figure 4-9). The dip at the VDD = 1.2V and 2mm separation distance corner is likely

due to limited data, as there are only 82 pairs of adders at this separation distance over

41 die. Furthermore, all points are within a 95% confidence interval, giving additional

credence to this argument. Lack of within-die spatial correlation does not imply a

lack of systematic within-die variation: rather, it simply means such variation is not

a function of separation distance. Instead, this implies that the statistics of adder

frequency (e.g., mean and standard deviation relative to chip-mean) is dependent on

position within the die, as evidenced in Figure 4-10. Indeed, a systematic within-die

pattern in adder frequency is noticed in Figure 4-10(a). To elucidate this further,

consider equidistant pairs of adders {(6,6), (6,7)} and { (7,6), (7,7) that exhibit

both unequal and directionally opposite frequency differences, AF({6, 6}, {6, 7}) and



AF({7, 6}, {7, 7}), which implys lack of correlation.
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Figure 4-10: Systematic within-die variation

Since this systematic pattern introduces position-dependent variation statistics,

the pattern should be removed prior to any spatial correlation computation to ensure

that the residue is stationary. This is necessary, as computing correlation implicitly

assumes that all samples are from the same probability distribution.3 When the

systematic pattern shown in Figure 4-10(a) is subtracted (after subtracting out die

means), the newly computed spatial correlation is shown in Figure 4-11. Comparing

the two figures, there is little difference owing to the mostly random nature of the

systematic pattern. The small peaks that were present due to the slow bottom row

of adders have now been flattened out, showing conclusively that there is no spatial

correlation in within-die circuit variation.

The distinction between position-dependent systematic variation and separation

distance-dependent variation or spatial correlation again allows us to update the

axes we introduced in Section 2.3. As mentioned above, digital circuit performance

variation has a systematic component but no spatial correlation component and thus

belongs somewhere directly on the x-axis as shown on Figure 4-12.

Nevertheless, Figure 4-9 also shows strong die-to-die correlation at high VDD but

3This was not necessary for the spatial correlation computations in Chapter 3 as there was no
correlation in the variation patterns between die reflecting no, or very weak, systematic variation.
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Figure 4-11: Adder spatial correlation as a function of VDD with systematic compo-
nents removed.

decreasing with lower VDD, indicating that the effect of random variation increases

at lower power-supply voltages. This is consistent with UD2D >> UWID at higher

voltages, but the relative fraction decreasing at lower voltages as seen in Figure 4-8.

Since the within-die variation is random (spatially uncorrelated and even the sys-

tematic component not containing any apparent order), die-to-die correlation should

decrease as the within-die component increases in relative strength. These results are

also consistent with the effect of threshold voltage (VT) variation, which is dominated

by Random Dopant Fluctuation (RDF), increasing as gate overdrive decreases [119].

Furthermore, die-to-die correlation shows only weak dependence on separation dis-

tance. Qualitatively, this means that when die-to-die correlation is strong, knowledge

of how two identical circuits differ from one die to another enables strong inference

when comparing any other circuits (of the same type) between those die, regardless of

how far those circuits may be separated from the original circuit. However, if voltages

(and thus correlation) are decreased, such inferences become increasingly weak.

While Figure 4-9 only shows adder correlations, the spatial correlation results for

all ring oscillators are similar, with the notable exception that die-to-die correlation

decreases with decreasing VDD more quickly with smaller circuit size. As an example,

the INV9 based RO has a correlation coefficient, p, of 0.55 at VDD = 0.5V compared
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with p = 0.65 for the INV15 (shown in Figure 4-13) and p = 0.75 for the adder,

consistent with smaller circuits being more susceptible to random variation sources

as less averaging occurs. On a die-to-die scale, these results closely match the results

of the simulations from the end of the last chapter (Section 3.4.1) which showed that

correlated channel length variation could result in strong correlation at high VDD but

degrades rapidly as VDD is scaled downward to save power.
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Since ring oscillators are commonly used "canary" devices, thought to predict the

performance of circuits situated nearby, analyzing the cross-circuit correlation is im-
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portant as well. Extrapolating from the earlier results showing weak or no within-die

spatial correlation, a lack of cross-circuit correlation is expected. Figure 4-14 contains

scatter matrices for each pair-wise combination of circuit types. Perfect cross-circuit

correlation (p = 1) would be manifested by a tight distribution, along a positive di-

agonal line (y = x), of all the scattered points within that individual axes. Similarly,

perfect anti-correlation would be manifested in the opposite manner, i.e., a distri-

bution along a negative diagonal line (y = -x). Lastly, circular scatterings reflect

no correlation at all, which is the case in all of the pair-wise circuit combinations.

Scatterings that form tighter distributions along either the horizontal or vertical axes

indicate only that there is less frequency variation in one of the circuits in the pairing

(as evidenced by the accompanying histograms), not any correlation. These results

are for high voltage (VDD = 1V) and the closest separation distance possible for each

circuit pairing; each circuit is compared to the circuits in the same "adder-block."

Repeating this calculation for larger separation distances or other voltages reveals

identical results, as is expected from the earlier "same-circuit" spatial correlation

results.

4.3.3 Adder Bit Delays

Using the all-digital delay measurement circuits described in Section 4.2.2, we measure

the delay of each bit within each KS adder, relative to Sum(O) of the same adder.

All 64 bits, including Sum(O), are muxed into a single PFD. By using the same PFD

for all bits, offsets and other non-idealities due to mismatch in the PFD structure can

be measured (by measuring the delay between the muxed and non-muxed versions of

Sum(O)) and subtracted from subsequent measurements.

Measurements over all 80 adders on 40 chips are shown in Figure 4-15 with a post-

layout extracted simulation for comparison. There is good agreement between mea-

sured delays and simulation: the upward shift between measured data and simulation

indicates a slower process than nominal simulation, and is consistent with 20% slower

frequency measurements than nominal post-layout simulations. The measured delay

pattern is consistent with simulation for all but three of the bits, Sum(16, 32, 48),
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which are typically the fastest due to the logarithmic structure of a KS adder. How-

ever, in this layout, these three bits contain longer wires than the other bits, corre-

sponding to the peaks in the post-layout simulation. While these three bits do have

larger measured delays than nearly all of the other bits, the difference is not as large

as in simulation, possibly due to slower transistors but "faster" wires, which would

decrease the delay peaks formed by these three bits.
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Figure 4-15: Bit delay measurements relative to Sum(0)

Each data point in Figure 4-15 consists of no less than 1.7 x 108 random sam-

ples. Using the theoretical analysis in [117], we compute a possible observed error of

approximately 200fs, with a confidence level of 99.9999%. Combined with the gen-

eral agreement between measured data and simulation, this computation gives high

confidence in sub-picosecond accuracy of the measured data.

Due to the correlated structure of the adder, care must be taken when doing

spatial correlation analysis using the measured bitslice delays. Since the critical path

of the KS adder involves all bits, intuitively all bits will be correlated with each other

to some degree. The logarithmic nature (in particular, radix 2, or log-base-2) of the

adder implies that bits two away, four away, eight away, etc. from each other will

be more correlated than other combinations of bits. Figure 4-16 shows the cross-

correlation of bit-slices within the same adder and indeed reveals this logarithmic
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Figure 4-16: Within-adder bit-slice cross-correlations revealing the logarithmic struc-

ture of the adder.

structure. The prominent, darker diagonals starting on the x-axis at bits 9, 17, 25,

33, 41 and 49 show stronger correlations between bit-slices 32, 16 and to a lesser

degree 8 and 4 away from each other. The 32 bit-slice separation is most strongly

correlated, as it is an input nearer the end of the higher bit-slice's path and arrives

later than outputs of bits nearby, therefore more strongly influencing the delay of that

bit-slice. Also noticeable, and expected, are strong cross-correlations in bit-slices 1-16

and 33-48 by virtue of the carry signal connections to logarithmically pre-compute

the overall carry-out signal.

Since the adder circuit structure largely determines the correlation of bit-slices,

within-adder correlation does not reveal much about spatial correlation due to process

variation. Nevertheless, looking at bit-slices relatively close to each other but not as

strongly connected, for example bit-slices 16 and 20, reveals much weaker correlation:

p = 0.4 compared to p > 0.8 for bit-slices separated by 32. Such results show that the



relative significance of circuit structure and connectivity is far greater than process

variation, and is likely the only significant source of spatial correlation.

Knowing that circuit structure and connectivity significantly impact the appar-

ent correlation, the correlation between each bit-slice and its own adder performance

should be strong. However, Figure 4-17 shows that each bit-slice is only moder-

ately anti-correlated with the performance of the adder it partly constitutes. The

anti-correlation is simply due to comparing delays with frequencies and the inverse

relationship between the two. The moderate, rather than the expected strong, cor-

relation is likely an artifact of the comparison being made: the phase delays are all

relative to Sum(O) while the adder frequencies are absolute. Unfortunately, since

we are not able to measure the absolute delay of the Sum(O) bit-slice, we can only

speculate that with absolute delays a stronger correlation would be extracted.
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o
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Figure 4-17: Correlation between bit-slice delays and frequencies of the adder they
are a part of. Anti-correlation is due to comparing delays versus frequencies - an
inverse relationship.

Further spatial correlation analysis of bit-slices across different adders is also possi-

ble and, as expected from all previous results, shows no significant spatial correlation.

Figure 4-18 shows the within-die correlation between two bit-slices picked at random,
revealing strong correlation only at the distance corresponding to the two bits being

part of the same adder.4 At larger separation distances, there appears to be slight
4 Although there are smaller distances on the plot, these smaller distances correspond to these

bit-slices being part of different adders due to the layout of the adder.
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anti-correlation. However, as we noted previously with respect to the adder frequen-

cies, there are far fewer independent pairs separated by these distances; the stronger

anti-correlation here is likely due to random chance with smaller numbers of samples,

as evidenced by the much larger confidence intervals. Despite showing the cross cor-

relation for only two bit-slices here, any arbitrary combination of bits reveals similar

results.
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Figure 4-18: Spatial correlation between bit-slices 19 and 49 (blue dots) and associated

confidence intervals (triangles). Strong correlation is only noticed for bit-slices within

the same adder.

4.4 Variation Mitigation

Lack of spatial correlation indicates that the magnitude of the absolute within-die

variance and any systematic variation components should guide design of within-die

mitigation schemes. At the die level, only the magnitude of the die-to-die variation

component is of significance. Furthermore, the data suggests that variation mitiga-

tion strategies must be a function of the voltage/power domain in which circuits are

operated. This dependence is explored in the next subsection, prior to comparing

the efficacy of adaptive body biasing and adaptive power-supply voltage scaling for

within-die, circuit-level variation mitigation.
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4.4.1 Dependence on Performance Domain

In high-performance domains where gate over-drive is sufficiently large (> 2VT), al-

though within-die variation is random and uncorrelated spatially, the absolute vari-

ation is also small: the standard deviation is less than 2% of the mean. Mitigation

schemes involving small "monitor" circuits, such as ring oscillators or replica critical

paths, require little margin to be effective. In the case of larger circuits, such as

adders, a 2% margin is sufficient to have a 95% confidence level (corresponding to

2a) that the critical path will track the monitor or replica circuit sufficiently well.

In low-performance, low-power domains in which VDD _ VT, variation as a per-

centage of the mean is significantly increased, by as much as 5 x relative to variation in

high-performance voltage domains. Furthermore, within-die variation is a significant

component of the overall variation seen. In combination, these two factors necessitate

in-situ circuits capable of accurate measurement of timing data as the basis of a ro-

bust mitigation strategy. Without in-situ measurement capability, large margins are

required for sufficient confidence intervals. For example, a replica of the adder critical

path would require 6-10% margin for 95-99% confidence. Shorter paths or smaller

circuits require that the margins increase to as much as 15-20%, making monitor or

replica circuits infeasible.

Two common mitigation strategies adaptively change circuit voltages (the sub-

strate or body voltage, or the power-supply voltage) to tune performance. Either,

or both, of these techniques can be used in both high-performance and low-power

domains as long as a domain appropriate measurement/sensing scheme is used. How-

ever, both have advantages and drawbacks that can be specific to the domain.

4.4.2 Adaptive Body-Biasing

Body-biasing modifies the threshold voltage of a device by adjusting the voltage on

the substrate, or body, terminal of the transistor based on Eq. 2.6, where VSB is the

source-to-body bias voltage. If the frequency of circuit operation is the inverse of

the delay in Eq. 3.11 in the above threshold regime, then the sensitivity of circuit
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frequency to body-biasing can be computed by taking the derivative of the inverse

with respect to VSB. Eq. 4.5 shows that the frequency sensitivity is only weakly

dependent on VSB, as a < 1.5 for modern processes and will likely result in a close to

linear frequency scaling with VSB. However, as VDD scales lower toward VT, Eq. 3.12

must be used instead and will show an exponential frequency sensitivity.

dF -a KNIW (VDD - VFB - 2 ¢Fp - \ 2Fp + VSB) a - 1

_ .- - - (4.5)dVss 2 2 ¢Fp + VSB CLVDD

This test-chip includes the capability to adjust the body bias of both the PMOS

and NMOS transistors of the KS adders due to IBM's triple-well process which al-

lows for NMOS transistors to reside in separate wells. 5 Figure 4-19 shows how the

performance (frequency) of the adder can be tuned by adjusting both PMOS and

NMOS body-biases. In particular, there is a large difference in tunability based on

performance domain: at VDD = 0.5V, the frequency can be tuned by as much as

-65/ + 137%, but at VDD = 1.OV the tuning range is reduced to -19/ + 27%. This

is largely a result of increased gate-overdrive (e.g., the value of VDD - VT is larger) in

high-performance domains reducing the impact of changes to VT, just as noted in the

variation results presented in Section 4.3.1 and expected from the analysis above.

While body-biasing likely provides sufficient tunability to mitigate the impact of

even large variation at either performance domain, the impact on leakage current

and power may be the determining factor. As noted in Chapter 3, leakage currents

are an exponential function of VT (Eq. 3.2) so adjusting VT using body-biasing can

severely impact leakage power. Although there is no capability to measure individual

adder leakage currents in our test chip, Figure 4-20 shows results of simulations of

the adder: just as predicted, there is an exponential impact on leakage currents.

Improving adder performance by 25% at VDD = 1.OV, corresponding to VSBP = 0.5V

and VSBN = -0.5V, comes with the penalty of 200% additional leakage current as

both PMOS and NMOS threshold voltages are lowered by the non-zero body-bias,

5More commonly, twin-well processes result in all NMOS transistors sharing the same substrate.
Consequently, changing the substrate bias affects all NMOS transistors whereas a triple-well process
allows for selective body-biasing of NMOS transistors.
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Figure 4-19: KS adder frequency deviation from nominal (no body-bias) versus body-

bias magnitude

increasing sub-threshold leakage. Similarly, in the low-power domain of VDD = 0.5V,

a 137% performance boost results in a 600% increase in leakage currents, again when

VSBP = 0.5V and VSBN = -0.5V.
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Figure 4-20: Simulations of adder leakage current deviation from nominal (no body-

bias) versus body-bias magnitude

4.4.3 Adaptive Power-Supply Voltage Scaling

Rather than attempting to adjust VT to tune performance, adjusting the power-supply

voltage can potentially be more impactful with reduced leakage current overhead. To

see why this is, we again differentiate the inverse of Eq. 2.3, but with respect to
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VDD this time to get the result in Eq. 4.6. Again, the derivative seems to be weakly

dependent on VDD, which should result in a roughly linear scaling of frequency with

VDD. Since the leakage current is exponentially dependent on VDS and thus VDD, the

leakage current should scale exponentially, but with a smaller constant as the DIBL

coefficient, r, is much smaller than 1 in Eq. 3.2.

dF KN (E) [(a - 1) VDD - VT] (VDD - VT)-1 (4.6)

dVDD CLV D
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Figure 4-21: Adder performance as a function of power-supply voltage, VDD

Indeed when the mean measured frequencies of the KS adders are plotted versus

VDD, there is a roughly linear relationship, as shown in Figure 4-21(a). Also seen

in Figure 4-21(b) is the exponential scaling in leakage current as a function of VDD

due to DIBL, as expected.6 When comparing these plots to Figure 4-19 where the

body-bias is scaled, we find that scaling VDD is more impactful than a similar scaling

of body-bias to tune frequency. However, it is hard to ascertain which is more efficient

in terms of leakage current/power. For an accurate comparison of the two methods,

plots of relative change in leakage current versus relative change in frequency are

used, as shown in Figure 4-22.

6The simulated data points are fit to a simple DIBL model (I oc e nVth ) and the fitted parameters

are consistent with those given by the process.
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Figure 4-22: Relative change in leakage as a function of relative change in frequency
when body-biasing or VDD scaling are used for variation mitigation.

In Figure 4-22(a), adaptive body-biasing is used for performance tuning. Since

both PMOS and NMOS transistors are biased, there are multiple leakage currents for

each frequency setting, but only one combination results in a minimum leakage for

each frequency. Nevertheless, when compared to power-supply scaling in Figure 4-

22(b), it is evident that power-supply scaling can achieve larger frequency tuning

range with less negative leakage current impact. When increasing performance using

VDD scaling, a 40% frequency boost can be achieved with only - 110% increase in

leakage current, whereas a r 25% performance increase using body-biasing results

in 200% increase in leakage. The converse is true when reducing frequency, giving

advantage to VDD scaling.

Nevertheless, leakage power can often be a negligible fraction of total power (in

the case of the adder operating at VDD = 1.OV, simulations show it is 1% of total

power) and adjusting VDD impacts active power in a quadratic fashion (P oc CV2D).
Thus, the impact of increased leakage currents is dependent on the ratio of leakage

power to the total power. Eq. 4.7 gives the total power of a system, where the first

term constitutes the active power of the circuit, the second term is the contribution

of idle leakage currents, and a denotes the effective duty-cycle or percentage of time
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(activity factor) that the circuit is actively operated.

PTOT = aCeffV2Df + IleakVDD (4.7)

As a result, the required application throughput versus percent of time spent in

idle modes will determine which of the two techniques, or even some combination of

the two, is best used to mitigate variation. In high-performance domains where the

activity factors are close to 1 and leakage power is insignificant relative to total power,

body-biasing may be used effectively until the leakage power becomes a significant

fraction of the total power, and body-biasing is advantageous as it does not, to first

order, impact active power. Idle-mode dominated systems will likely benefit from

increasing VT (by either changing the nominal VT offered by the technology or by

appropriate body-biasing) and decreasing VDD to reduce idle power. Power-supply

voltage scaling can be utilized to mitigate variation, as the increase in active power is

not significant relative to the total power, and the increase in leakage energy is offset

by the increase in nominal VT which decreases leakage energy.

Both techniques have associated overheads in terms of area, routing and design

complexity when used in a within-die context, and typically have not been used in

such a context. However, the use of body-biasing as a die-to-die variation mitigation

technique, to lower idle power of "fast" die without severely impacting performance

by biasing the entire substrate of a normal twin-well product, has been studied and

commercially adopted [78, 120].

4.5 Summary

The beginning of this chapter advocated abstraction as a useful tool not only in digital

circuit design but also in characterization and modeling of digital circuit variation.

Specifically, variation models that can accurately model variation in digital gates

or circuits and "plug" into static timing analysis tools frequently used by digital

designers are of significant value. Many of these timing tools have also been advanced
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to include spatial correlation within the analysis, but with little manufacturing data

to validate this need. Moreover, mitigation techniques can be highly dependent on

the amount of spatial correlation present.

Motivated by these needs, a test-chip was designed and implemented to character-

ize variation in common digital circuits, including the explicit ability to decompose

the various spatial components of observed variation. Variation measurements high-

lighted the fact that averaging of random variation mitigates the impact of variation

on larger gates and circuits. However, at lower voltages this becomes less true: the

magnitude of variation increases as does the relative contribution from within-die

components. Further analysis revealed that spatial correlation can often be con-

founded with systematic variation or even correlation arising from circuit structure.

When these confounding components are properly accounted for, there appears to

be no spatial correlation present in within-die variation. These results suggest that

incorporation of spatial correlation in statistical static timing models is not neces-

sary. Rather, incorporating positional dependencies (systematic components) may be

more valuable, although quantifying these dependencies is likely difficult due to the

apparent randomness of the systematic components.

Body-biasing and power-supply tuning were also evaluated as variation mitigation

techniques. While both techniques are capable of mitigating even large amounts of

variation, each requires different overhead in terms of die area, circuitry and impact to

both active and idle power. Tuning power-supply to achieve variation mitigation has

less impact on idle leakage currents than equivalent tuning using body-biasing but can

also impact active power (both positively and negatively). Depending on the relative

contribution of idle versus active power to the total power, either technique or a

combination of these techniques might be appropriate. As a result of this analysis, the

following chapter evaluates the efficacy of power-supply tuning to reduce the energy

required to mitigate variation at an even higher level of abstraction, in multicore

processor architectures.
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Chapter 5

Variation Mitigation at the

Architectural Level

Up to this point, our primary effort has been in characterizing, decomposing and

quantifying the impact of variation on circuit performance. Understanding how to

mitigate or cope with performance uncertainty is a necessary component in the for-

mation of an integrated view of the variation picture. At the end of the last chapter,

relatively simple mitigation schemes at the circuit level were evaluated; however, tech-

nology and process scaling have resulted in increasingly integrated modern designs

which are effectively systems-on-a-chip. Large designs now incorporate multiple func-

tional blocks and pack hundreds of millions to billions of transistors on a single chip.

At these scales, it is no longer sufficient to focus on process variation from the device

or even circuit perspective. Instead, the entire system is the appropriate context,

as analyzing and optimizing individual circuits or blocks may result in sub-optimal

solutions in the context of the system.

Narrowing down the scope of digital systems to analyze, this chapter focuses on

massively multicore microprocessors, or Chip Multi-Processors (CMPs), which have

hundreds or thousands of small, homogenous processing cores. Section 5.1 begins

by analyzing the potential impact that variation can pose to these systems from a

joint performance, energy and yield perspective. A mitigation scheme involving the

addition of power-supply voltages is proposed in Section 5.2, and is followed by an ex-
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planation of the simulation methodology utilized in evaluating the proposed scheme.

The results of minimizing energy by adding power-supply voltages are presented and

discussed in Section 5.3, along with details that must be considered when implement-

ing such a scheme.

5.1 Impact of Variation on Multi-Core Processors

The trade-offs between mitigating performance variability and other key product

metrics began to emerge in Section 4.4 of the last chapter: mitigating the impact of

process variation by tuning either body-bias or power-supply voltage impacted idle

and/or active power. In general, most proposed and implemented variation mitiga-

tion techniques involve trade-offs between die area, design complexity, power, cost

and yield, making evaluation of any technique a difficult, multi-dimensional prob-

lem. The magnitude of these relationships is hard to appreciate at the level of an

individual circuit due to its relatively small size and power consumption, and in the

context of multi-core processors mitigating variation becomes non-trivial in scope and

complexity.

Effectively managing variation at these levels is critical, as high-performance

multi-core processors, in which power and variation are intricately linked, are ex-

pected to scale to many tens if not hundreds or thousands of cores per die. In such

systems, core-to-core frequency variations will arise due to underlying process varia-

tion. Discussions with computer architects reveal that both architects and operating

system designers value operating frequency homogeneity at the system level unless

the cost of ensuring it is too high. If this is the case, solutions such as Factored

Operating Systems, where each core runs an OS servlet and shields software from

underlying core differences [121], and self-aware software capable of detecting a core's

power and performance state through a variety of hardware sensors, have been pro-

posed. However, the value of homogeneity is believed to be greater than software

solutions, if core-to-core performance variation lies in the range of 20-50%.

To ensure homogenous core frequencies, a number of techniques might be em-
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ployed, but all have trade-offs that must be considered:

1. Increase device sizes. While increasing device areas can reduce susceptibility to

intrinsic variation sources such as RDF and LER, systematic variation sources

(e.g., mask errors, CMP) can still result in variation. Furthermore, increased

power is necessary to charge and discharge the larger capacitances, as they

scale with device area. Larger total die areas also result in fewer die per wafer,

increasing costs.

2. Detect and correct. This is a catch-all term for circuit or architectural tech-

niques (e.g., Error-Correcting Codes used in SRAMs, Razor flip-flops [114])

that are able to detect logic or timing errors and either correct them or restart

computation with adjusted conditions guaranteed to ensure correct completion.

Many of these techniques are heavily used, requiring area and power overhead

and increased design complexity, but potentially allowing for homogenous core

frequencies.

3. Asynchronous architectures. Such architectures have long been proposed (e.g., [122])

but never commercially implemented. Additionally, they are still susceptible

to variation, making guarantees of identical throughput between asynchronous

cores difficult.

4. Lower the clock frequency. Slowing the clock frequency of each core to that of

the worst-performing core guarantees homogoneity and is attractive due to its

simplicity, but unnecessarily leaves considerable performance on the table.

5. Increase the voltage. Increasing the voltage of the entire system to that re-

quired by the worst-performing core, as in Figure 5-1(b), ensures maximum

performance but incurs substantial power penalties.

6. Individual core voltages. Providing unique power-supply voltages, as pictured

in Figure 5-1(d), can be close to an optimal solution from a power/energy

perspective, but requires significant design and area overhead for inclusion of

the necessary voltage regulators or DC-DC converters.
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Figure 5-1: Block diagram of a CMP with each core able to select from N voltages and

example core voltages, with normalized energies, to meet a performance constraint.

The above list is by no means exhaustive, but it is evident that any "solution"

includes significant undesirable components, most often in the form of increased power

dissipation. Bowman et al. showed that 31-53% additional power/energy is necessary

to overcome the impact of process variation at the 50nm technology node, if voltage

scaling is used to maintain performance over the nominal case of no variation [123].

In justifying the push to thousand-core processors, Borkar acknowledges that fine-

grain power management is necessary to fit these processors within the desired power

envelopes [124]. For design and power delivery simplicity, Borkar suggests using two

voltage supplies such that a core operates at either a frequency, f, or f/2 and uses

the lower voltage when operating at f/2.

Given the near certainty with which we can expect variation to impact a design of

this magnitude, we will define the "variation-induced energy overhead" as the energy

required over and above that when an ideal mitigation solution, such as individual core

voltages, is used (Eideal). Mathematically, this can be defined as E-EId.e. Simulations
Eideal

on a RAW processor core [125] ported to the 45nm technology node show this can

be 20% or more, depending on the amount of variation, if a single system voltage

is simply scaled upward to account for the worst performing core. Though not as

pessimistic as predicted by Bowman, this magnitude of power/energy overhead is

large enough to warrant more efficient solutions.

112



5.2 Mitigation Strategy: Multiple Power-Supply

Voltages

We tackle the combined power and variability problem in generic multi-core proces-

sors with the introduction of one or more additional power-supply voltages to the

system (Figure 5-1(c)). Specifically, we go beyond Borkar's suggestion of two sys-

tem voltages, as we focus on efficient selection of the optimal value of a vector of

power-supply voltages whereby each core of a chip multi-processor (CMP) is assigned

a single voltage from within the vector in order to minimize total chip energy while

meeting performance (frequency) and yield constraints. In this section, we formulate

an analytic approach and provide an efficient iterative algorithm to find good power-

supply vector values. When the vector is composed of only two voltages (N = 2), we

prove there is only a single optimum, and we provide an efficient mathematical for-

mulation for finding the optimum. When the vector contains more than two voltages

(N > 2), the algorithm utilizes the N = 2 case to find local optima. Quantitative

bounds on the performance are also formulated, and we qualitatively show that our

algorithm behaves according to the derived bounds.

5.2.1 Problem Formulation

Energy in a multicore processor is computed as the sum of the individual core energies

plus any shared resources, as shown in Eq. 5.1, where Nore is the total number of

cores on chip. The individual energy/operation of each core is shown in Eq. 5.2, where

Ci is the effective switched capacitance in the core and T is the cycle time required

to complete an operation.
NCore

E = Ei +Eshared (5.1)
i=1

Ei = Edyn + Eleaki = CiVDD + IlekaVDDT (5.2)

The minimum cycle-time achievable by a core is a function of power-supply voltage

and can be expressed as in Eq. 5.3, where K and VT are parameters determined by the
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critical path in the design and are subject to variation. a is a technology-dependent

parameter.

T KV (5.3)
(VDD - VT)"

Before continuing with further formulation of the problem, we list some assump-

tions. Specifically, we assume a high-performance CMP, leading to the following

assumptions:

1. Die area and leakage energy are dominated by SRAM-based caches [76]. Since

SRAM caches are typically on separate power-supplies and there exists a consid-

erable body of work on leakage energy reduction in SRAMs, we exclude leakage

energy, Eleak, from the analysis for the time being - it will be revisted in

Section 5.3.4.

2. Eshared is the energy of shared caches, I/O and other peripheral circuit blocks

surrounding the processor cores. Many, if not all, of these blocks have their own

power-supplies separate from the processor cores. As a result, modifications in

how the cores are powered do not, to first order, affect this component and will

be omitted in the following analysis.

3. Ci has small enough variance over all cores that we can treat it as a constant. In

general, on applications capable of massively parallel computation, the activity

factor is likely similar over all cores. Furthermore, the total capacitance in a

core is the sum of millions or more individual capacitances. When accounting

for aggregate variation, summation typically reduces variation in Ci due to

averaging of random variation.

Our goal is to minimize E subject to both yield and performance constraints. In

particular, we wish to minimize E such that some percentage of the cores, 0 < yo < 1,
in a CMP achieve a certain minimum frequency (maximum delay) of operation, fmin.

Mathematically, this can be stated using the following definitions. A core is labeled
"acceptable" if its frequency of operation for a given voltage is greater than or equal
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to the constraint. Otherwise, it is unacceptable:

def 1, if fi(VDD) fmin; (
Ai = (5.4)

0, otherwise.

The summation of Ai over all cores gives the number of acceptable cores:

NCore

NACC= Ai (5.5)
i=1

And finally, the number of acceptable cores divided by the total number of cores must

be greater than or equal to the yield constraint:

NAcc> Yo (5.6)
Ncore -

These constraints can be achieved by allowing each core to select its own min-

imum power-supply voltage, denoted by Vi,min, so that fi(Vi,min) = fmin, as shown

in Figure 5-1(d). 1 This is the case where we have as many supply voltages as we

have cores, N = Ncoe. However, as discussed above, this solution introduces sub-

stantial overhead. Instead, we can use a smaller number of power-supply voltages

(N << Neore), as shown in Figure 5-1(c), and attempt to minimize the energy in

such a case.

As defined above, Vi,min is the minimum voltage required for each core such that

all cores operate at the desired frequency and provide a homogeneous view at the

system level. Core-to-core frequency variation will result in a distribution of Vi,min's,

represented by f(Vmin) as illustrated in Figure 5-2, which describes the probability

that a core requires Vmin to operate at the desired frequency. The Cumulative Distri-

bution Function (CDF), F(Vmin), is the percentage of cores that can successfully use

Vmin. As such, using only N voltages and combined with the assumptions mentioned

1While VT can be adjusted using body-biasing, this is generally less efficient than modifying

VDD as seen in the last chapter (Section 4.4.3) K is a technology-dependent parameter that is

unmodifiable.
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Figure 5-2: Example Vmin distribution and discretization for 1K-core RAW processor
based CMP

above, the total energy we wish to minimize is:

EN = CNcore ( VF(Vl) + V2 [F(V)- F(VI)] (5.7)
( Ni=2

The equation above amounts to a discretization of the second moment of the

distribution, because as N -+ oo it reduces to Eideal = CN ore f V 2f(V)dV. As we

do not have an infinite number of voltages, we depict this in Figure 5-2 with the solid

black curve representing Eideal for N = No,e, the cumulative energy2 that would be

required if every core were assigned its associated V,min. By using fewer than Ncoe

voltages, the energy curve is discretized, with voltage placements (computed using

the algorithm presented in the following section) at the positions indicated by the

dashed lines. This is similar to approximating a continuous integral by partitioning

the interval and using Reimann sums of finite subintervals (distance between dashed

lines of the same color). However, in this case the Eideal curve is a lower bound, as

each core must be provided a voltage greater than or equal to its minimum required

voltage. Performing this discretization, we see that using only one voltage (red upper-

pointing triangle) results in the greatest overhead (nearly 17% in this example), or

worst approximation of the Eideal curve. Increasing the number of voltages results

2C and Ncore are normalized out due to normalizing all energies to the case of Eideal-
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in successively better approximations, and with ten voltages (light blue squares), the

energy overhead is tiny.

Using both Eq. 5.7 and Figure 5-2, we see that to meet a yield constraint, y = yo,

we should pick VN such that it satisfies VN = F-l(yo), where F-l(y) is the inverse cu-

mulative distribution function. In this work, we use a Gaussian distribution function

and its associated CDF due to relative ease of analysis compared to other distribution

functions. Furthermore, despite Noe < c, we use a continuous rather than discrete

distribution, as the ensuing math is made more tractable. Both approximations in-

troduce only small error, as will be shown in Section 5.3.3.

5.2.2 Energy Minimization

Although Figure 5-2 included voltage placements that minimized total energy for the

given number of voltages being used, we did not discuss how a particular vector of

voltages is chosen. To choose a vector of voltages that minimizes energy, we use a

very simple, but highly efficient iterative algorithm. We first present the algorithm

and then qualitatively discuss the performance of the algorithm.

Minimum-Energy Voltage Selection Algorithm

When choosing a vector, V*, of N voltages (V1 < V2 < ... < VN-1 < VN), VN is

chosen to meet a yield constraint as discussed above, so we need only choose the

other N - 1 voltages. We propose the Minimum-Energy Voltage Selection (MEVS)

algorithm shown in Algorithm 1. The algorithm begins with all N voltages spaced

uniformly, and iteratively solves for the optimal V given that all other V,j h i are

equal to their previous values, until none of the Vi's change by more than e from

one iteration to the next. Solving for a single V1 while keeping all others constant is

equivalent to solving the simpler case of two voltages (N = 2), detailed next.

With only two voltages in the system, Eq. 5.7 reduces to:

E2= CNcore (V 2F(Vi) + V22 [F(V2) - F(V)]) (5.8)
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V* = distribute V's uniformly;
Initialize Vod to 0;
while (Vi - Vi,old > e) Vi do

Vod = V*;
foreach Voltage Vi do

/* Solve for local optimal V holding all Vji constant */

Vi = FindOptimal(V*, i);
end

end
Algorithm 1: MEVS algorithm

V2 is picked apriori to meet the yield constraint as discussed in the previous section,

so the problem is reduced to optimally choosing V1, which may only take values

0 < V1 < V2.There is only one optimal choice for 1/ and the proof of this is shown

in Appendix A.1. This single optimum is also seen in Figure 5-3(a) where the total

energy is plotted versus V1. When V1 is smaller than min(V,min) all cores must use

V2 to meet the performance constraint and hence the energy is maximum. However,

as V1 increases, more cores utilize V1 rather than V2 and the energy decreases. As V1

continues increasing, the cumulative energy of the cores utilizing V1 grows faster than

the decrease in energy resulting from switching from V2 to V1, resulting in a minimum

energy point.

SingSingle
Single > Optimum

l Optimum. L 1.15

1.15 1.05

0.95 1 1.05 1.1 1.05 V (V)
V1 () V2 (V) 0.95 0.95

(a) Two system voltages (b) Three system voltages

Figure 5-3: Single optimum for both N - 2 and N > 2

Since there is no closed-form for the Normal CDF, it is written in terms of the
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error function, expressed as a Maclaurin series:

F(x) = [ 1 + erf (av) (5.9)

erf(z) = ( )n2n+l (5.10)
7 n=0 n! (2n + 1)

1 2 (-1)n o'25
F(x) = 1 + 5 (5.11)

2 V = n!(2n + 1)

We substitute Eq. 5.11 into Eq. 5.8 using a finite number of terms from the Maclaurin

series (in practice, three or four terms achieves good accuracy). The derivative of the

resulting polynomial is taken, resulting in another polynomial. The roots of the latter

are determined using the roots function in MATLAB. All but one root are invalid,

lying outside the range of interest or being complex.

In the multiple voltage case, Eq. 5.7 is used but only a single voltage is solved

for at a time, and the derivative with respect to that voltage is used; all other terms

are constant. While Eq. 5.7 is non-convex in general, we have empirically observed

that there is only a single global optimum, as seen in Figure 5-3(b) for N = 3. We

have also observed that though the proposed algorithm finds local optima, they are

exactly (or very close to) the global optimum (see Figure 5-8).

Algorithm Performance

Since we are unable to prove global optimality in the general case, we attempt to

bound the energy overhead. This overhead is the difference between the "ideal"

energy when each core has its own voltage (Eq. 5.12) and the energy when we have

discretized Eq. 5.12 using N < Ncore voltages (Eq. 5.13).

Eideal = V 2 f (V)dV (5.12)
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N V

Ediscrete =Z VIf(V)dV (5.13)
i= -1

The bounds on the overhead, and thus algorithm performance, are determined by

how the N voltages are distributed. In the simple case of uniform intervals between

the voltages, the overhead can be bounded by O( V/p2 + a-2 ) (not shown here due

to space constraints). However, with more intelligent spacings, the bounds can be

tightened to O(Nj) as shown in Appendix A.2. Intuitively, the spacings chosen are

such that the size of each interval balances out the voltage cost (V 2 in Eq. 5.12)

across all intervals. One could also attempt to balance the entire energy over all of

the intervals (i.e., balance V 2 f(V)dV). However, since the ratio f ( ) is constant

(or the area underneath f(V) remains constant despite changes in o), this will only

change the value of the constants in the bound.

As seen in Figure 5-4, the actual performance of the algorithm closely fits the

derived bounds. In the case of Figure 5-4(c), the fit is quadratic rather than linear

as was derived. Conceptually, this makes sense as we did not handle mean shifts in

the derivation in Appendix A.2. If the mean shifts, both Eideal and Ediscrete increase

in a quadratic fashion due to the V 2 term, and so the bound should also include a p2

term as the actual performance indicates.

5.3 Mitigation Results

The power of the MEVS algorithm is in both the analytic formulation and the com-

putational efficiency it offers. These characteristics allow for a fully analytic charac-

terization of the energy overhead and the potential energy reduction based only on

variation statistics (p and o). This section first focuses on such analysis to explore

the possibilities of using additional voltages to both mitigate variation and reduce

energy. It then details a custom simulation methodology employed to demonstrate

energy reduction in a one-thousand core CMP. Since a one-thousand core CMP does

not yet exist, we ported a RAW microprocessor core design to a 45nm technology

and characterized the variation that might be observed in such a system.
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Figure 5-4: Actual algorithm performance (stars = simulation data points, dashed

line = fit line)

5.3.1 Analytic Energy Reduction

With an analytic framework in place, the "variability-induced energy overhead" can

be characterized. In Figure 5-5(a), the energy overhead for +3U yield is plotted versus

the magnitude of variation present in the Vmin distribution (Z) and the number of

voltages in the system (N).3 The linear dependence on a is again noticed, but focusing

on N = 1, it is apparent that even for a modest amount of variation (- 5%) the energy

overhead is significant, approaching 30%. Given the measured results from the last

chapter and the rougly linear dependence between delay and power-supply voltage

observed in those measurements (see Figure 4-21(a)), at the 90nm node within-die

3For this analysis p = 1.OV as this is the nominal voltage found in most state-of-the-art systems.
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variation results in I, 1% and consequently a 5% energy overhead. While fairly

manageable at the 90nm node, the magnitude of variation typically increases and as

the number of cores increases, the yield constraint will increase to perhaps 4a or 5a,
resulting in much larger energy overheads; the effects of changing the yield constraints

are discussed and quantified below.
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Figure 5-5: Analytic computation of Eoverhead and reduction of Eoverhead when using
additional voltages selected by the MEVS algorithm.

Looking at Figure 5-5(b), we notice that the amount of reduction in energy over-

head is constant with the magnitude of variation. However, since the magnitude of the

overhead is linearly increasing with the magnitude of variation, the energy reduction

relative to the total energy will also increase linearly with variation. Furthermore,

the addition of only a single new power-supply voltage (N = 2) provides the largest

incremental energy savings no matter the magnitude of variation, with asymptotic

energy reduction afterward.

5.3.2 Simulation Methodology

To test the MEVS algorithm and demonstrate the energy savings of using multiple

system voltages in a real design, we used the RAW core, developed at MIT, as it was

specifically developed for multicore applications [125]. However, the 64-core RAW

processor was implemented in a mature 0.18pm technology node, requiring that the

core be ported to a more leading-edge process before simulations could be carried
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Delay vs Voltage Curves

Figure 5-6: Simulation methodology to efficiently evaluate MEVS algorithm and re-

sultant energy savings.
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out. This involved re-synthesis in Synopsys Design Compiler with a non-optimized

predictive 45nm technology (PTM [113]) using FreePDK45, in combination with Nan-

gate's OpenCell standard cell library [126]. As neither the FreePDK45 nor Nangate's

standard cell library included a memory compiler, SRAMs were not implemented

or included in any of the subsequent simulations; however, this is consistent with

all of the above analysis where SRAMs were also excluded. Although not optimal,

processor register files were synthesized using available standard cell flip-flops.

Static timing analysis using Synopsys PrimeTime was then performed to choose

20 critical paths for detailed further analysis, as depicted in Figure 5.3.2. A 1K-point

Monte Carlo voltage-sweep analysis was done in HSPICE for each critical path, in

order to analyze the effects of within-die random variation on each path. Sweeps

for a single critical path are shown in Figure 5-7(a) with the associated probability

distribution in Figure 5-7(b), showing increased delay variability as VDD decreases,

consistent with the results from the last chapter. Within-die systematic variation

was not modeled, as Section 4.3.2 of the last chapter indicated that random variation

dominates in regular, arrayed structures.

Each of the 1K voltage-sweeps for each path was fit to the delay model in Eq. 5.3,

and variation in the delay model parameters (K and VT) was characterized. In par-

ticular, for each voltage sweep of each path, the appropriate values of K and VT were

determined by achieving the best fit 4 to Eq. 5.3. Doing this for all 1000 sweeps re-

sulted in a distribution of K and VT for each path. The statistics of each distribution

as well as any cross-correlation between K and VT (generally low) were subsequently

computed and saved for further simulation. For this process, the fit values of K and

VT had between 2 - 4% variation for each path.

Once this characterization was complete, the statistics of the K and VT distri-

butions were used to model 10K one-thousand core CMPs using Eq. 5.3. Analytic

modeling allowed efficient simulation of many more paths, ten million in this case,

than would otherwise be achievable using time-domain simulation. For each core,

4The common Minimum Mean Square Error (MMSE) methodology is used for fitting non-linear
data.
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Figure 5-7: 1K-point Monte-Carlo voltage sweeps for a single critical path

random values for K and VT were generated and used to generate the delay versus

VDD curves for each critical path. Each CMP was also subjected to a zero-mean, nor-

mally distributed mean (,p) shift to simulate die-to-die variation. These curves were

then combined to determine the minimum supply voltage, Vi,min, required to meet a

user-defined delay constraint. This allowed generation of the f(Vmin) distribution for

each CMP to which the MEVS algorithm was applied.

5.3.3 Results & Analysis

The above simulation methodology, applied on 10K samples of a one-thousand core

multicore processor based on the RAW core, allowed efficient evaluation of the energy

savings as a result of adding voltages to the system.

Effect of Approximations

To understand how the approximations mentioned above affect optimal voltage se-

lection and the resultant energy reduction, we compared a subset of the 10K voltage

vectors selected by the MEVS algorithm to the actual optimal vector in each case.

Since finding the actual optimal vector requires exhaustive search over a large multi-

dimensional space, time and computational constraints limited this comparison to no
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more than six voltages.

Firstly, Figure 5-2 shows an example Vmin distribution in a single CMP. Despite

not matching any common distribution, the bulk (80%) of the distribution can be

approximated with the Gaussian distribution, resulting in only small error. More

importantly, Figure 5-8 shows that the MEVS-selected vector is very close to the

globally optimal vector despite using: 1) a Gaussian distribution as an approximation

to the actual distribution, 2) the truncated Maclaurin series approximation for the

Gaussian CDF, 3) continuous rather than discrete math, and 4) slightly larger E as

N increases to aid in convergence time.5
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N (Num. of Voltages) N (Num. of Voltages)

Figure 5-8: Vector distance and energy difference between MEVS-selected and glob-
ally optimal vectors.

Even with six voltages in the system, the average vector distance from optimal is

10mV, within the ripple of any power-supply voltage (typically no less than 10mV).

As the number of voltages increase, an increase in the distance from optimal is ex-

pected simply due to adding the error of each voltage. However, even in the worst-case

of a 25mV distance, this implies that the five additional voltages are on average no

more than 5mV away from their optimal values. More importantly, these small dis-

tances from the optimal values result in energy differences between the MEVS-selected

vectors and the globally optimal vector of much less than 1%.
5Using many voltages in a system would likely not be practical, and for N < 5 keeping E small

( lmV) has no effect on convergence time.
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Energy Reduction

With the effect of approximations shown to be small, we next analyze energy reduc-

tion in the RAW core as a result of using multiple voltages. Figure 5-9 plots both

the total energy reduction (energy difference between using a single voltage and mul-

tiple voltages), as well as the reduction in the amount of variability-induced energy

overhead (energy over and above each core having its own voltage Vi,min). By adding

just a single additional voltage (N = 2), anywhere between 59-75% of the variability-

induced energy overhead is eliminated, resulting in a total energy savings of 6-16%,

with an average savings of 9%. These results are in-line with the analytic results

above, and are expected from observed variability in the delay and Vmin distributions

of - 3%. The large range of energy savings noticed is due primarily to die-to-die

variation, which results in mean shifts of the Vmin distribution as opposed to greater

magnitudes of within-die variation.

80 V % Reduction in
Variability-Induced

60 , Energy Overhead
C

0
2 3 4 5 6 7 8 9 10

N (Num. of Voltages)

Figure 5-9: Energy reduction

The addition of more voltages does increase the energy savings but at diminish-

ing returns: with five voltages, roughly 90% of the energy overhead is eliminated,

and it would take 995 additional voltages to reach Eid ,l. Since the absolute energy

savings are dependent on the magnitude of variation, as CMPs are scaled to smaller

processes where variation is expected to increase, the energy overhead of using only

a single voltage for all cores will also increase, as seen in Figure 5-5(a). Use of our
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voltage selection algorithm will result in larger absolute energy savings as the relative

magnitude of variation (Z) increases.

Effect of Yield-Constraint Choice

In the above analysis, the yield constraint was such that the last voltage in the

system, VN, had to accommodate the worst-performing core, or stated differently,

all cores had to function at the required frequency. However, in such a massively

parallel system, having a 100% yield may not always be necessary, nor may it be

efficient from a performance-energy perspective. To quantitatively analyze this, an

appropriate metric is required. Since performance and energy are both individually

important, a metric that includes both is used: for this analysis, our metric is the

ratio of the total performance of the system to the total energy in the system.

The total performance in the system is proportional to the product of clock fre-

quency (f), number of instructions completed per clock (IPC), and number of op-

erational (or yielding) cores (yo x Ncore). The total energy in the system is given by

Eq. 5.7 multiplied by the yield, Yo, and the frequency, f. Since two system voltages

provide the most incremental benefit, this analysis is only performed for N = 2, and

so Eq. 5.8 is used in place of Eq. 5.7 resulting in:

Tot. Perf. yoNcoPCf (5.14)
(5.14)Tot. Energy yoE 2f

Tot. Perf. IPC
(5.15)Tot. Energy C (V1

2F(V) + V22 [F(V2) - F(V)])

Although it would seem that Eq. 5.15 has no dependence on number of yielding

cores, recall that there is an implicit dependence, as V2 is selected a priori such that

it meets the yield constraint (V2 = F-1 (yo)), and so there is still a dependence on

yield. Furthermore, for the purposes of this analysis we assume that both IPC and C

are constant (or do not change significantly per core), and are simply scaling factors

that can be removed from the analysis.

When this analysis is performed, the combined performance/energy metric is
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roughly constant, as seen in Figure 5-10(a). This is expected, as both performance

and energy scale linearly with the number of operating cores (yoNcore). However,

there is a slight decreasing trend as the energy does not strictly scale linearly with

yield, reflecting the necessary increase in both V1 and V2 to support additional poor-

performing cores. As the yield constraint increases to roughly 85-90%, the increase

in V2 accelerates due to the exponential nature of the tails of the distribution as seen

in Figure 5-10(b), resulting in faster decreases in the performance/energy metric as

shown in the inset of Figure 5-10(a).
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(a) Performance/Energy metric (b) Required V1, V2

Figure 5-10: Joint performance/energy metric versus yield

Looking at the incremental change in performance relative to the incremental

change in energy with increasing yield constraint, the right axis (green plot) of Fig-

ure 5-10(a) shows that the change is relatively constant until yo > 85%, where it

sharply decreases. Intuitively, this means that for a constant increase in energy, a

constant increase in performance is achieved until yo > 85%, at which point the in-

cremental increase in energy required for the same incremental gain in performance

becomes increasingly large. This result suggests that there may be an upper-bound

on practical yield constraints unless total computational throughput is of the essence;

a similar conclusion was reached in [95] where energy reduction is achieved solely by

turning off power-hungry cores.

Another way to arrive at the same conclusion is to explore the energy overhead

as a function of the desired core yield. Figure 5-11(a) shows an analytic computation
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of Eoverhead as a function of the yield for a fixed amount of variation in the Vmin

distribution 6 (z = 3% in this case, according to the observed variation in the RAW

core). The energy overhead increases exponentially with the desired yield constraint,

and so reducing the yield constraint by a few percent can have a large impact on

energy. Nevertheless, even if the yield constraint is reduced to 90%, Eoverhead "

8 - 10%, which is still significant enough to warrant adding voltages to the system.

Figure 5-11(b) shows that a single additional voltage (N = 2) still provides the most

incremental reduction in Eoverhead; however, the benefit is somewhat reduced as the

yield constraint is decreased.
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Figure 5-11: Analytic computation of Eoverhead and reduction of Eoverhead versus core
yield constraint.

5.3.4 Practical Considerations

Modern microprocessors have many power/performance modes as well as other design

constraints that must be considered when attempting to implement a multiple voltage

system. The following are some of the more salient aspects of physical systems, with

a brief analysis of how each affects the framework and results above.

6The number of voltages is intentionally limited to N < 3 for both plots in Figure 5-11, as the
MEVS algorithm has difficulty assigning voltages due to the limited distance between minimum
and maximum Vmin, especially as the yield constraint is reduced. In this regime, the Maclaurin
approximation is not sufficient to properly model the very narrow minimum (i.e., the derivatives
change too rapidly in the vicinity of the minimum).
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Integration of Leakage Energy

The analytic framework above ignored leakage energy, because leakage energy typi-

cally has been small relative to the active energy of high-performance systems. How-

ever, there is evidence that this is changing, with gate and sub-threshold leakage

currents growing [127], and so it may be advantageous to include leakage energy in

the above formulation.

To do so, the leakage component in Eq. 5.2 must be included, where Ileaks

KVDDe"VDDi. In general, K and n are process constants that vary from transistor

to transistor. In this analysis, these parameters can be thought of as effective values

for an entire core. Importantly, the averaging that occurs when many transistors

are aggregated reduces the magnitude of variation in total core leakage current, as

shown in Figure 5-12, where the relative variation in core leakage currents is inversely

proportional to the square root of the number of transistors in the core. Consequently,

K and 77 can be thought of as process-determined constants.
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Figure 5-12: Variation in core leakage currents reduces to << 1% with even moderate
core size.

In the two-voltage case, the addition of a leakage energy term results in the fol-

lowing reformulation:

E2 = (CV2 + KVe 'v) F(V) + (CV2 + KV 2 eV2) [F(V2) - F(V)] (5.16)
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Taking the derivative of this reformulated energy to find the optimal V1 results in the

following constraint, analogous to Eq. A.1 found in Appendix A.1:

f(2) 2V1 + (1+ T/ (5.17)

F(VI) (V2 2) + V2envth - VlVth)

These additional terms relative to Eq. A.1 do not change the fact that there remains

only one optimal solution for V1. The reasoning behind this is identical to that

when leakage energy is not considered (Appendix A.1): despite the additional terms,

the right-hand side of the equation still monotonically increases with V1. However,

these additional terms require knowledge of the effective switched capacitance (C),

total number of gates and additional process-dependent terms, in order to compute

K and r. Some of these factors (particularly C) require extensive simulations on a

highly optimized design to be meaningful. Owing to the highly non-optimized netlist

generated by synthesis with a non-optimal library for our multicore case study, further

analysis including leakage energy has not been performed, but should be a subject of

future work.

Temperature

The power dissipation associated with adjusting voltages also impacts the local tem-

perature on the die. Temperature also impacts leakage energy significantly as the

leakage current is exponentially dependent on threshold voltage (VT) and the thermal

voltage (Vth = L), which are both affected by temperature. This can be seen in

Figure 5-13, where the change in leakage current is plotted versus temperature and

VDD, and the exponential dependence on both parameters is visible.

Humenay et al. show that if voltage-scaling alone is used to compensate for the

impacts of variation, increases in both leakage and temperature necessitate either

more expensive cooling solutions or thermal throttling, leading to dynamic perfor-

mance asymmetries [67]. Compared to this worst-case of scaling a single voltage

system, adding voltages significantly reduces active power as demonstrated above,
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Figure 5-13: Leakage current as a function of VDD and temperature (normalized to

VDD = 1.OV and T = 250C)

but also has a more marked impact on leakage power above than when considering

DIBL alone: local temperatures will also decrease due to decreased active power dis-

sipation resulting in lower leakage power as well. To quantify this effect, knowledge

of the thermal characteristics of the cooling solution being utilized is necessary. In

particular, the thermal impedances can be incorporated into leakage models which

fit into the revised energy calculation above, and can be used to better select the

optimal voltages based on temperature as well as duty cycles.

Impact of Memory Subsystems

Up to this point, we have implicitly ignored the impact of memory subsystems, as

many techniques have been applied to reduce their active power, including putting

large portions of the cache into-sleep modes. For example, the Intel Dual Core Xeon

processor features 18MB of L2 and L3 caches, but only 0.08% of the caches are

actively powered for a given cache access. The large caches utilized on this processor

allows the cache to be organized into many smaller arrays and sub-arrays, which can

individually be put into sleep states. This results in 0.75W/MB average power for

the caches, leading to the caches contributing less than 10% of the overall power

budget [128].

However, in massively parallel multicore systems, each core will likely have much
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smaller caches, in which a larger fraction of the cache will be actively powered for a

cache access. More significantly, leakage of the many un-accessed lines in the active

portion of the cache will result in an increase of the fraction of total power associated

with the memory subsystems. In the case that there are additional globally-shared

caches, these memory systems will increase the shared energy component relative to

the total energy (see Eq. 5.1). Though this component must be incorporated, caches

are typically operated on separate power-supplies from the computational cores and

will likely not affect the optimization of the core power-supply voltages. The shared

energy may affect how many and which cores are turned off; some preliminary work

evaluating this has been done in [95], in which a core is turned off if the incremental

power required to operate it is greater than the power of the shared blocks, amortized

over all operating cores, if that core were not turned on.

Frequency Scaling Systems

To conserve energy when application throughput requirements are not maximal, many

digital systems employ frequency scaling, which also allows for scaling the system

supply-voltage to further reduce both active and leakage energy. These systems are

typically referred to as Dynamic Voltage-Frequency Scaling (DVFS) systems. If such

systems are to also use multiple system voltages, an important question is whether

each core retains its relative voltage assignment as the system voltages are scaled. For

example, if a core is assigned to Vi at a high-frequency/voltage setting, will it remain

assigned to Vi at a lower frequency/voltage setting? Or, is it necessary to recompute

the core assignments for every frequency/voltage setting?

Intuitively, though the delay versus voltage curves observed in Figure 4-21 are

roughly linear, the coefficients for each core (adder) vary and moreover, the compu-

tation of optimal voltage is a non-linear operation. As a result, the expectation is

that there are some cores whose Vmin is relatively close to a given Vi and will be

reassigned to either Vi-1 or Vi+l when optimal voltages are recomputed for a differ-

ent frequency/voltage setting. This expectation is born out in simulations of a two

voltage (N = 2) system shown in Figures 5-14 and 5-15, where the upper triangles
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(red) indicate cores that have changed from using V1 to V2, and lower triangles (blue)

indicate cores that have changed from V2 to V, as the frequency and voltage change

from a nominal frequency of 1.25GHz with V = 1.025V and V2 = 1.084V to a new

frequency of 625MHz.

These results indicate that, in addition to recomputation of optimal voltage, many

cores must be reconfigured to use a different power-supply voltage. Practically, this

can be implemented by pre-characterization at distinct frequency/voltage settings

during sort/test and populating a ROM or other look-up table which contains this

configuration information. By making use of the fact that frequency and voltage are

roughly linearly related, this need not be done for every frequency/voltage setting.

Rather, the end-points could be characterized and linear interpolation used (with

some small margin to account for the slight non-linearities present).

Alternatively, it is also possible to use the same relative core-voltage configura-

tions and pay an energy penalty. If LF1 is defined as the original set of cores using

V at frequency F1, and HF1 is the remaining set of cores using V2, then VIj, is set

to max(Vmin(Fi))VLF1 and V2, is picked as before. Note that the Vmin distribution

is a function of the desired frequency setting (i.e., Vmin(Fi)). When this approach is

taken, the reduction in energy overhead is smaller relative to using the appropriate

configuration, as summarized in Table 5.1. When the frequency and voltage are close

to nominal (within 20%), the penalty of using the nominal core-voltage configura-

tion is small. As the magnitude of frequency/voltage scaling increases, the penalty

quickly grows: at Fi = 0.5Fom the penalty is a 15% loss in potential energy overhead

reduction.

Voltage Regulator & DC-DC Converter Efficiencies

In the case where each core is provided with its own power-supply, a single system

voltage is distributed over the entire die and linear voltage regulators are required

to convert from the system voltage to the core-specific voltage, Vi,min. As mentioned

previously, voltage regulators incur not only an area overhead, but an energy overhead

as well due to an efficiency less than 100%: the efficiency of a voltage regulator is v
i n
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Figure 5-14: Core voltage assignment patterns. Dark squares indicate core is using
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EOverhead Reduction
Frequency Ideal Core-Voltage Config. Nominal Core-Voltage Config.

1.250GHz (Nominal) 65.53% 65.53%
1.125GHz 65.56% 64.79%
1.000GHz 65.58% 62.81%
0.875GHz 65.56% 59.59%
0.750GHz 65.48% 55.33%
0.625GHz 65.30% 50.11%

Table 5.1: Energy penalty of adjusting V to match nominal core-voltage configura-
tion.

and V, is always larger than Vot. Vi, in this case will be the maximum core voltage

required, max(Vi,min), and Vot is simply the desired voltage, V. The ideal energy

specified by Eq. 5.12 must now be modified:

Eideal = 2 maxi,min) f (V)dV = max(V,min)E[V] (5.18)

This modification means that Eideal is now greater than when these inefficiencies

were ignored. In Figure 5-16, Eideal is computed according to the new definition

in Eq. 5.18. The energy when using fewer voltages relative to this new definition

is under 100% for N > 1, indicating energy lower than Eideal when accounting for

voltage regulator inefficiency. Thus, having substantially fewer voltages than one

for each core (N << Nore) results in improved energy reduction relative to each

core having its own voltage, especially as the magnitude of variation increases and

max(Vi,min) becomes larger and larger, decreasing efficiency further. In some sense,

the ideal case, when accounting for these inefficiencies, is no longer ideal.

Of course, generation of the N system voltages using DC-DC converters also incurs

a small energy penalty due to sub-100% efficiency. However, DC-DC converters are

typically off-chip 7 and have efficiency curves that are only dependent on load rather

than any relationship between input and output voltages. Since a DC-DC converter

is always used to generate the die voltage (i.e., even when N = 1), splitting a single

7 Recently, there has also been analysis in integrating per-core high-frequency DC-DC converters
on-chip showing energy savings when combined with DVFS [129]. Since the analysis was only
performed for a small number of cores (4), it remains to be seen whether this is scalable to a much
larger number of cores.
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Figure 5-16: Energy using multiple system voltages relative to ideal energy when

voltage regulator efficiencies are taken into account.

DC-DC converter into multiple converters does not, to first order, change the energy

analysis.' There is, however, a board area/component trade-off as multiple converters,

requiring typically large inductors and capacitors, are now required.

Power Transistors & Routing Resources

Lastly, each voltage requires global routing resources for power distribution, but this

can be mitigated in the case of two voltages to a large degree by reducing the width and

density of each voltage's power grid since power will be divided roughly equally over

the voltages. More importantly, power-multiplexing transistors are required. These

transistors are necessarily large to handle the relatively large currents necessary to

power each core. However, they can also be used to power-gate the entire core, as

Intel has done in their most recent Nehalem architecture to eliminate leakage power

when the core is unused [127].

'While the loads do change and DC-DC converter efficiencies are a function of load, the DC-

DC converters can be optimized for the expected loads based on the number of system voltages

implemented.

139



5.4 Summary

This chapter made clear that performance, power/energy, cost and variation are intri-

cately linked to each other. As system architects value core homogeneity in multicore

processors, the burden of finding energy-efficient variation mitigation solutions in-

creases. Balancing other constraints, such as area overhead and design complexity,

must also play into any mitigation technique. Evaluation of some of the more common

mitigation schemes, in the context of these constraints, revealed a need for an energy-

efficient technique capable of guaranteeing both performance and yield constraints,

while introducing minimal overhead.

Introducing additional system voltages (fewer than one per core) provides a com-

promise between excess design/area overhead and energy efficiency while maximizing

performance. An analytic framework capable of optimal voltage selection to mini-

mize energy was developed and analyzed in-depth. Specifically, a simple, efficient

algorithm to select optimal voltages formed the basis of this framework, allowing for

multiple types of analysis. Though the optimization problem was not convex in gen-

eral and simplifying approximations were used, the algorithm is nevertheless able to

find optimal (for N = 2) or near optimal solutions. Furthermore, the behavior of

the algorithm was mathematically bounded and shown to perform according to the

bounds.

Using a custom simulation methodology and the MEVS algorithm, a core de-

signed specifically for multicore contexts was simulated, to observe the magnitude of

performance variation and the impact of introducing additional voltages to a mas-

sively parallel 1K-core processor. Analysis showed that a single additional power-

supply voltage provides the greatest incremental impact, with 59-75% reduction in

the "variation-induced energy overhead" and 6-16% total energy reduction. The

desired yield constraint also has a significant impact on energy reduction: though

counterintuitive, turning off a small fraction of the thousand cores can provide a pos-

itive trade-off between performance and energy, with multiple system voltages further

improving this trade-off. Lastly, when voltage regulator efficiencies are properly ac-
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counted for, using only a few system voltages (2 < N < 10) provides greater energy

reduction than supplying each core with its own voltage.
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Chapter 6

Thesis Summary & Future Work

This thesis has shown that process variation plays a significant role in area, power,

performance, design complexity and cost of VLSI devices, circuits and systems. Be-

ginning at the device level and moving upwards to circuits, we demonstrated that

appropriate characterization and decomposition of process variation is critical to ro-

bust design as well as effective mitigation of the negative impacts of variation. This

concluding chapter summarizes this thesis and presents ideas for follow-on work, since

despite the many advances in understanding and mitigation of process variation, there

is still much room for improvement.

6.1 Thesis Summary

With continued scaling of transistor dimensions, the magnitude of process variation

has, for the most part, increased. Though the absolute variation has been kept under

control (i.e., a reduces from one technology generation to the next), the relative mag-

nitude (Z) has tended to grow. The sources of this variation are themselves varied,

ranging from limited process module controllability as in sub-wavelength lithography,

to fundamental sources of variation like random dopant fluctuation. Each variation

source has its own unique signature, and thus characterization and modeling of these

variation sources is most accurate when performed at the level of fundamental pa-

rameters. A key aspect determining the signature is the spatial decomposition of
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the particular variation source. Since the spatial component of variation can influ-

ence both process development and product design, characterizing this component

appropriately is increasingly critical.

Using sub-threshold current measurements to isolate threshold voltage variation

from other sources of variation, we found that the magnitude of variation in VTo

is dependent only on the area of a device and, for a given device area a Gaussian

distribution best describes the observed statistics. Due to further analysis showing a

lack of both within-die spatial correlation and any systematic components, we showed

that variation sensing and mitigation are highly dependent on the region of device

operation. Low-power operation requires very different sensing techniques than high-

performance operation, in particular the need to sense and measure within a critical

circuit rather than near it. This potentially increases design complexity, as care

must be taken to ensure that accurate within-circuit performance measurement does

not significantly degrade performance or power, especially if the system must scale

between operating modes.

This is evident again at the circuit level, where relative variation in circuit per-

formance increases substantially as VDD is lowered. However, an all-digital, in-circuit

technique to measure variation between adder bit-slices successfully demonstrates the

capability to capture performance variation with great precision and relative simplic-

ity. The measurements enabled by this circuitry show that decomposition of variation

is often not straight-forward: circuit structure can introduce strong correlations that

should not be associated with parameter variation. Similarly, systematic, position-

dependent variation is separate from distance-dependent spatial correlation, but the

two effects are not mutually exclusive.

When attempting to mitigate the impact of variation, the multi-dimensional na-

ture of goals and constraints makes solutions complex. Performance, power/energy,

area, design-complexity, and yield are all tightly coupled and must often be traded

off amongst each other. Adaptive Voltage Scaling (AVS) and Adaptive Body-Biasing

(ABB) both involve trade-offs of all of these parameters, particularly performance and

power. Again, operating regime dictates the relative weights of each of the impacted
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parameters. In the context of massively-parallel multicore systems, the simple inclu-

sion of an additional power-supply voltage, together with the determination of the

optimal value of that power-supply voltage, significantly reduces energy while guaran-

teeing performance and yield constraints, and minimizing area and design-complexity

overheads.

6.2 Future Work

Though there has been great progress in understanding, characterizing and miti-

gating variation, much work remains as scaling continues. This concluding section

provides some thoughts about specific projects that might be undertaken to improve

understanding of variation and its impacts.

6.2.1 Devices

Recently, Cao et al. have produced a framework to create predictive technology

models (PTM) for circuit designers to use before a new process exists, or if access to

a process is not available [113]. These models typically include process corners, but

do not include variation statistics in any form. Development of predictive variation

models is crucial to the success of any predictive technology model as the relative

magnitude of variation increases. In particular, analytic models based on modeling of

fundamental physical processes or empirical modeling could greatly aid in predictive

variation models for threshold voltage (VT), channel length (L), oxide thickness (t,,o)

and mobility (p).

This type of modeling has been done to some degree for threshold voltage by

Asenov et al. and is shown in Eq. 2.8. Here, the nominal values of channel doping

(Nch), tfo and transistor dimensions provide an estimate of the variation in threshold

voltage. These nominal values can be estimated from predictive technology models.

Similar models should be developed, through fundamental physical modeling or ex-

tensive TCAD simulation, for channel length, oxide thickness and mobility variation.

Ideally, all of these models would contain only process-determined variables. This
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would also aid in process development, as process engineers could quickly identify the

sensitivity of device parameters to variation in certain process parameters.

To achieve increased densities and device performance, processes, materials and

device design continually change. In the near future, the industry is expected to

significantly change the structure of transistors. The most common expectation is

that a vertical channel, undoped device (either a FinFET or similar device) will

replace the lateral channel MOSFET used for the past three to four decades. New

device designs will have different sensitivities to various processing steps and the

variation signatures of these new devices will differ as well. Characterization of the

susceptibility of these new devices to variation as well as their variation signatures is

critical in deciding which device structures to adopt. This has begun to a small extent

in [51] but more work in this area is needed, especially for devices like carbon nanotube

FETs (if manufacturable), carbon nanowires and other such devices, especially for

interconnect applications.

6.2.2 Circuits

The following are specific areas of possible future research that follow from the data

and analysis at the circuit level.

Standard cell libraries for ASIC flows using static timing analysis are often char-

acterized by performing many Spice-level circuit simulations. Foundries that provide

standard cell libraries for their process could make use of the extremely fine-resolution

all-digital delay measurement technique described in Chapter 4 for this purpose. Al-

though this would be limited by the cost of fabricating a test-die for this purpose,

foundries that develop processes and run test-chips during process development could

afford to do this. In addition to giving the foundry real data for both nominal timing

and variation statistics, by characterizing different variants of standard cells, optimal

standard cell libraries could be developed in parallel with the process. The technique

would need modification to be able to measure rise/fall times, and additional cir-

cuitry would be needed to vary the rise/fall times of input signals, but the technique

is otherwise directly applicable to such use.
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To overcome some of the limitations being posed by deep sub-wavelength lithog-

raphy, researchers at Carnegie Mellon University have proposed using "logic bricks"

which are made up of larger blocks of common boolean logic rather than individual

standard cells [130]. The layout of these bricks is highly optimized to achieve layout

regularity and improve the lithographic printability of the layout. Spatial analysis of

the variation in such layouts would be interesting to see if such regularity possibly

introduces longer-range optical phenomena resulting in spatial correlation, or if the

variation remains largely uncorrelated.

At the end of Chapter 4, adaptive body-biasing and voltage-scaling were evaluated

as potential variation mitigation techniques. Although voltage-scaling is generally

more effective, there may be some designs which may benefit from both techniques.

In particular, highly duty-cycled systems which are in standby mode for large peri-

ods of time but require high throughput when active could be ideal candidates for

joint optimization of adaptive body-biasing and voltage-scaling. In such situations,

minimization of leakage is critical during periods of inactivity, but throughput and/or

minimum retention voltages of memory elements may limit the magnitude of dynamic

power-supply voltage scaling. These constraints make development of a framework

that is capable of joint optimization of both techniques valuable.

To better perform any optimization where both leakage and active energy are

involved, understanding the relative contributions and impact of variation on each is

important. This could be achieved with a redesign of the second test-chip to include

power/energy measurement capabilities for both idle and active components. The

addition of simple power-gating circuitry would enable measurement of individual

adder power through off-chip measurement. On-chip measurement circuitry would

involve measuring the voltage drop across the power transistors, but is complicated

by the need to accurately determine the resistance of those transistors. This simple

redesign could be coupled with future work in the section below.
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6.2.3 Architectures & Systems

At the architecture and systems level there is broad scope for future work, as the

research community has only recently begun to address variation at this level. A

few specific opportunities that directly follow from the work presented in Chapter 5

follow.

Instead of re-designing the second test-chip with only the addition of power mea-

surement capabilities, the adders should be replaced with small processor cores (per-

haps ARM or MIPS cores which are sufficiently simple to implement) and multiple

voltage supplies. The larger number of potential critical paths would better represent

variation data from a multi-core processor. The inclusion of multiple voltage supplies

would allow for confirmation of the simulated energy savings presented in Chapter 5.

The custom simulation methodology presented in Section 5.3.2 and Figure 5.3.2

made use of a non-optimized standard cell library based on predictive technology

models. This resulted in a sub-optimal netlist, as well as poor understanding of

leakage versus active energy contributions. The design should be re-synthesized using

transistor models and standard cell libraries from the most advanced commercially

available processes with, ideally, complete implementation of SRAMs as well. The

complete design should then be logically simulated using test vectors to characterize

nodal activity factors for use in a power simulator. Additionally, a simulator such

as HotLeakage [131] should be used to model leakage power, and to identify whether

leakage can be safely ignored in the analytic framework in Section 5.2.1. If it cannot,

the simulation results from HotLeakage and potentially measured data from the last

item should be used as parameters for a formulation which includes leakage (see

Section 5.3.4).

An outstanding issue in the analysis of multiple voltage supplies for energy sav-

ings with the granularity of individual cores is that there are perhaps only a few

critical paths that require a higher voltage. By utilizing only core-level granularity,

the energy savings is likely less than that of finer granularities [96]. However, fine

granularity also potentially increases the amount of overhead, as power multiplexing
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circuitry is now needed for each block (be it a gate, path or larger block). Studies are

required to determine the optimal level of granularity which results in largest energy

savings and smallest overhead. Examples of granularities that could be studied are

individual cores, functional blocks, paths, just expected critical paths based on simu-

lation results, and gates. The results of this investigation may also significantly alter

the analytic formulation in Section 5.2.1.

Recently, architects have begun to develop tools that allow for architecture ex-

ploration, while considering process variation in addition to other metrics. Polaris, a

tool to aid in exploration of on-chip interconnection networks, is one such tool [132].

A most-urgent and necessary addition to this tool is voltage-scaling as a means of

addressing process variation - this will likely dramatically affect active power which

is not currently addressed in the current implementation of the tool. Very simple

models based on the equations found in Section 5.2.1 could be included in the tool.
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Appendix A

Performance of MEVS Algorithm

A.1 Proof of Optimality for N = 2

Theorem A.1.1. There exists only one solution to the N = 2 case and that solution

must lie in 0 < V < V2 .

Proof. We begin by taking the derivative of Eq. 5.8 with respect to V1 and setting it

equal to 0, which gives:
f(v1) 2v1(V) (A.1)
F(Vi) V2 - V2

The LHS of Eq. A.1 is shown to be a positive, strictly decreasing function by Pechtl

in [133]. Furthermore, Pechtl also shows that it is asymptotic to -Vi as V1 - -o

and goes to 0 as V1 -- oc. On the right side of Eq. A.1, the numerator is strictly

increasing and the denominator is strictly decreasing over 0 < V1 < V2, starting at V2

when V, = 0 and reaching 0 at V1 = V2. Thus, the LHS is monotonically decreasing

while the RHS is monotonically increasing, so there is at most one intersection point,

and it must be located within the range of interest since the RHS ranges from 0 (at

V1 = 0) to oo (at V1 = V2 ). 0
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A.2 Bounds on MEVS Algorithm

To show the bounds on the overhead as defined in Section 5.2.2, we begin with the

following. Let the N voltages be distributed with intervals of 6k := g(k). We define

g(x) to be the "continuous" form of g(k) and G(x) = fo g(y)dy. We also define

Vk = VL + E1 Sj. Over any one interval, the energy cost in the discretized case is

given by:
Vk+I

Eint = J Vklf(V)dV (A.2)

Vk

Similarly, in the ideal, continuous case it is Eq. 5.12 over a single interval:

Vk+1

Eint = V2f (V)dV (A.3)
Vk

Subtracting the two and using a change of variables (V = Vk + t, => dv = dt), we

get:
6k

Eoverhead,int = [2Vk(6k - t) t 2 ] f (Vk + t)dt (A.4)
0

However, in the limit of large N and small 6k, 62 - t 2 is small enough to be ignored

(this introduces an error on the order of O(-L) which is smaller than the overall

overhead, see below) and f(Vk + t) , f(Vk). So, Eq. A.4 reduces to:

Eoverhead,int e5Vk f(Vk) (A.5)

The total overhead is then the summation of the individual interval overheads:

N

Eoverhead,TOT E 6Vkf(Vk) (A.6)
k=1

We choose g(k) such that the size of each interval results in the voltage "cost", V 2,

from Eq. 5.12 being balanced across all intervals. As will be seen, choosing g(k) as
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in Eq. A.7 will achieve this.

In the continuous case, this becomes:

dG(x) C
dx VL + G(x)

where C is a normalization constant.
N
E g(k) =
k=1

case.

To be self-consistent, we also require that

|Vu - VL| in the discrete case and G(N) = Vu - VL| in the continuous

Integrating Eq. A.8 we get:

G(x) = + 2Cx-

and using the boundary conditions, C can be computed to be:

1
C = 2N ( - 2)

We can also make the following approximation:

Sk := g(k)

VL + G(k)

which gives C = G'(k) [VL + G(k)].

Since 6 k - G'(k), we can reformulate Eq. A.6 as:

N

Eoverhead,TOT = E G'(k)2 (VL + G(k)) f (VL + G(k))
k=1
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g(k)1

VL + E g(j)
j=1

Vk-1
(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

G(k) - G(k - 1) - G'(k)



and using Eq. A.11 this becomes:

Eoverhead,TOT = C G'(k)f (VL + G(k))] (A. 14)

the latter half of which, in the limit of large N, is a Riemann integral:

Vu

Eoverhead,TOT - C f (V)dV (A.15)

VL

Since the integral in the above equation is simply F(Vu) - F(VL) < 1, we can say:

1
Eoverhead,TOT < C = 2 N(V - VL) (A.16)

1
< -(Vu - VL)(V + VL) (A.17)

2N

Finally, in general VU - VL c a and Vu + VL oc p, SO Eoverhead,TOT < 0(').
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