
Application-Aware Deadlock-Free Oblivious Routing

by

Michel A. Kinsy

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARCHIVES

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

Author
Department of Electrical Engineering and CompL /Science

May 11, 2009

(n
Certified by

Srinivas Devadas
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

...- ? n ,?

Accepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTiTUTE
OF TECHNOLOGY

AUG 07RI ES2009

LIBRARIES

Application-Aware Deadlock-Free Oblivious Routing

by

Michel A. Kinsy

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Systems that can be integrated on a single silicon die have become larger and increasingly
complex, and wire designs as communication mechanisms for these systems on chip (SoC)
have shown to be a limiting factor in their performance.

As an approach to remove the limitation of communication and to overcome wire de-
lays, interconnection networks or Network-on-Chip (NoC) architectures have emerged. NoC
architectures enable faster data communication between components and are more scalable.

In designing NoC systems, there are three key issues; the topology, which directly de-
pends on packaging technology and manufacturing costs, dictates the throughput and la-
tency bounds of the network; the flit control protocol, which establishes how the network
resources are allocated to packets exchanged between components; and finally, the rout-
ing algorithm, which aims at optimizing network performance for some topology and flow
control protocol by selecting appropriate paths for those packets.

Since the routing algorithm sits on top of the other layers of design, it is critical that
routing is done in a matter that makes good usage of the resources of the network. Two
main approaches to routing, oblivious and adaptive, have been followed in creating routing
algorithms for these systems. Each approach has its pros and cons; oblivious routing, as
opposite to adaptive routing, uses no network state information in determining routes at
the cost of lower performance on certain applications, but has been widely used because of
its simpler hardware requirements.

This thesis examines oblivious routing schemes for NoC architectures. It introduces
various non-minimal, oblivious routing algorithms that globally allocate network bandwidth
for a given application when estimated bandwidths for data transfers are provided, while
ensuring deadlock freedom with no significant additional hardware.

The work presents and evaluates these oblivious routing algorithms which attempt to
minimize the maximum channel load (MCL) across all network links in an effort to maximize
application throughput. Simulation results from popular synthetic benchmarks and concrete
applications, such as an H.264 decoder, show that it is possible to achieve better performance
than traditional deterministic and oblivious routing schemes.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

First, I would like to express my deep and sincere gratitude to Professor Srinivas Devadas

for his extraordinary guidance, inexhaustible energy, and remarkable patience throughout

this research. His support, encouragement, sound advice, and good teaching have been a

true source of inspiration for me and I would have been lost without them.

I would like to thank Professor Edward Suh for his detailed and constructive comments,
and for his important support throughout this work.

I am indebted to my many student colleagues for providing a stimulating and supportive

environment in which to learn and conduct this research. I am especially grateful to Myong

Hyon Cho for his participation in many aspects of this work, to Chih-chi Cheng for his help

on the H.264 application, to Marten van Dijk for his valuable input and to Keun Sup Shim

and Tina Wen for their help in generating simulation results.

I want to express my heartfelt gratitude to Myron King for his friendship in and out

of the lab, to Charles O'Donnell for all his help on the formatting of the text, Mieszko Lis

for his help with editing, and to Nirav Dave for his mentorship. I also thank Joel Emer,
David Wentzlaff, Michael Pellauer, Bill Thies, and Vijay Ganesh for helpful comments on

this research.

I am grateful to the Keller and Storace families for providing me a loving environment

and to Dr. Sarma Vrudhula for his support and guidance.

Lastly, and most importantly, I wish to thank my parents and sister for their uncondi-

tional and ever lasting love.

Contents

1 Introduction 13
1.1 Topology of Networks-on-chip 15
1.2 Message Flow Control in Networks-on-chip 15
1.3 Network Resource Interface 16
1.4 Routing in Networks-on-chip 17
1.5 Contributions 17
1.6 Organization 18

2 Background and Related Work 19
2.1 Oblivious Routing Algorithms 19

2.1.1 Deterministic Routing Algorithms 19
2.1.2 Non-Deterministic Routing Algorithms 20

2.2 Application-Specific Routing Algorithms 21
2.3 Buffer Space and Bandwidth Allocation 22

2.3.1 Buffer Space Allocation 23
2.3.2 Bandwidth Allocation 24

2.4 Adaptive Routing Algorithms 25

3 Oblivious Routing with Bandwidth Sensitivity 27
3.1 Definitions. 27
3.2 BSOR Framework 28
3.3 Creating Acyclic Channel Dependence Graphs 29
3.4 Deriving a Flow Graph from an Acyclic CDG 31
3.5 Mixed Integer-Linear Programming Selector 32
3.6 Dijkstra Weighted Shortest Path Selector 34
3.7 Multiple Virtual Channels 35

4 Router Architecture 39
4.1 Typical Virtual Channel Router 39
4.2 Router Architecture for Bandwidth-Sensitive Oblivious Routing (BSOR) . . 40

4.2.1 Programmable Routing 41
4.2.2 Static Virtual-Channel Allocation 43

5 Applications 45
5.1 Synthetic Benchmarks 45

5.1.1 Bit-Complement 45
5.1.2 Transpose 45
5.1.3 Shuffle 46

5.2 Applications. 46
5.2.1 H.264 Decoder 46
5.2.2 Performance Modeling 47
5.2.3 IEEE 802.11a/g Wireless LAN Transmitter 48

5.3 Bandwidth Variations 49

6 Performance Evaluation 51
6.1 Simulation Methodology 51
6.2 Simulation Results 52

6.2.1 Transpose Performance Comparisons 54
6.2.2 Bit-Complement Performance Comparisons 54
6.2.3 Shuffle Performance Comparisons 55
6.2.4 H.264 Decoder Performance Comparisons 55
6.2.5 Performance Modeling Performance Comparisons 56
6.2.6 802.11a/g Transmitter Performance Comparisons 56
6.2.7 Multiple Virtual Channels Performance 56
6.2.8 Bandwidth Variation Performance Comparisons 57

6.3 Discussion 58
6.4 Summary of Results 59

7 Conclusions 63
7.1 Summary 63
7.2 Limitations 64
7.3 Future Work 64
7.4 Final Comments 64

List of Figures

1-1 Resources and Switches Representation of 3 x 3 Mesh Network 14
1-2 Node Representation of 3 x 3 Mesh Network 14
1-3 Three Examples of Orthogonal Network Topology. 15
1-4 Two Resource Interface Approaches. (a) External to the resource. (b) Inter-

nal to the resource 16

2-1 Example of Dimension Order Routing on 3 x 3 Mesh Network 21
2-2 Example of ROMM and Valiant on 3 x 3 Mesh Network 21
2-3 Virtual Channels: (a) packet B is blocked behind packet A. (b) Virtual Chan-

nels allow packet B to bypass blocked packet A. 24

3-1 Channel Dependence Graph for the Mesh Network of Figure 1-2 28
3-2 Two Turns Prohibited by the turn model. (a) North-Last turn. (b) West-

First turn....................... 30
3-3 Acyclic CDG Based of North-Last and West-First Prohibited Turns 30
3-4 (a) Acyclic CDG: 12 edges removed (b) Acyclic CDG: 12 edges removed . 31
3-5 Flow network from acyclic CDG of Figure 3-4 with source-destination pair

A, L and example weights. 33
3-6 (a) CDG for 2 x 2 sub-mesh FEAB with 2 virtual channels (b) Acyclic CDG

using the turn model. (c) Ad hoc Acyclic CDG. 36
3-7 Acyclic Virtual Networks for Multiple Virtual Channels 38

4-1 Typical virtual-channel router architecture. The dark blue indicates that the
modules and pipeline stages may be modified for our approach. 39

4-2 The table-based routing architecture. (a) Source routing. (b) Node-table
routing. 42

5-1 High-level Data flow description of H.264 decoder. 47
5-2 Processor Performance Modeling Data Flow. 49
5-3 Wireless LAN Transmitter Data Flow. 50
5-4 Transpose Node 52 Injection Rates when modeling burstiness 50

6-1 Network Throughput and Average Latency graphs for Transpose Benchmark 54
6-2 Network Throughput and Average Latency graphs for Bit-Complement Bench-

mark 55
6-3 Network Throughput and Average Latency graphs for Shuffle Benchmark 56
6-4 Network Throughput and Average Latency graphs for H.264 Decoder Bench-

mark 57

6-5 Network Throughput and Average Latency graphs for Performance Modeling
Benchmark 58

6-6 Network Throughput and Average Latency graphs for Transmitter Benchmark 59
6-7 Varying the number of VCs for transpose and H.264 Decoder. Results for

other examples show the same trend. 60
6-8 The performance of various algorithms with 10% bandwidth variations . (a)

Transpose (b) H.264 60
6-9 The performance of various algorithms with 25% bandwidth variations . (a)

Transpose (b) H.264 61
6-10 The performance of various algorithms with 50% bandwidth variations . (a)

Transpose (b) H.264 61

List of Tables

4.1 Router architecture designs for routing algorithms. 40

5.1 H.264 profiling results for a standard input stream. 48
5.2 Estimates Data Rates for the IEEE 802.11a/g Wireless LAN Transmitter. . 48

6.1 Finding the routes with the minimum MCL (in MB/second) by exploring
different acyclic CDGs using BSORMILP. 52

6.2 Finding the routes with the minimum MCL (in MB/second) by exploring
different acyclic CDGs using BSORDijkstra 53

6.3 Comparison of Maximum Channel Load (MCL) in MB/second presented by
various routing algorithms. 53

12

Chapter 1

Introduction

System-on-chip (SoC) designs typically contain a large number of heterogeneous digital

components, such as processors, dedicated hardware engines, and memories, integrated onto

a single chip. Traditionally, buses have been used in establishing communications between

these different components, but because of the increasing complexity of these designs and

the lack of scalability of wired connections between components, network-on-chip (NoC)

architectures have been introduced as an effective data communication infrastructure [2, 44].

NoC architectures are characterized by an on-chip packet-switched micro-network of

interconnects; they allow the digital components or resources in an SoC to communicate by

sending packets to one another over that network. These architectures have resources or

processing elements (PEs) attached to switches or routers, forming nodes that are linked

together. Figure 1-1 illustrates such an architecture.

An NoC architecture is defined by its topology (the physical organization of nodes in the

network), its flow control mechanism (which establishes the data formating, the switching

protocol and the buffer allocation), and its routing algorithm (which determines the path

selected by a packet to reach its destination under a given application). Figure 1-2 shows a

two-dimensional 3 x 3 mesh network topology.

It has been shown that the overall performance of these systems is dominated not by the

individual computation power of its resources, but by their communication limits in terms

of bandwidth, speed and concurrency [23, 25, 30], in other words, the router architecture

and the routing algorithm that are employed.

Because of the importance of the routing algorithm in affecting the overall performance,
intensive research efforts have been put in developing algorithms that deliver high perfor-

mance; unfortunately the vast majority of these algorithms have never been implemented

because of the complexity of the router hardware that they require. Therefore, still relevant

today is the challenge of designing routing algorithms which achieve good network load

balancing, relatively short paths for packets, and simple router architecture.

Resource
L

Resource
F

Resource
Hrc

Figure 1-1: Resources and Switches Representation of 3 x 3 Mesh Network

Figure 1-2: Node Representation of 3 x 3 Mesh Network

1.1 Topology of Networks-on-chip

The topology of an NoC is defined in terms of the theoretical shape formed by its nodes.

Over the years, there have been a number of proposed topologies, but very few of them have

ever been implemented in a real SoC. In today's Systems-on-chip, the most popular network

topologies encountered are of the orthogonal shape; this means that the nodes are arranged

in an orthogonal n-dimensional space, where each link between two nodes represents a

displacement in a single dimension [15]. Figure 1-3 shows several of these topologies.

The popularity of these structures can be directly attributed to the simplicity of the

router hardware needed to efficiently support them, because each node in the network can

be assigned coordinates in the n-dimensional space and the router can use this underlying

property of the topology to make forwarding decision with no overhead. To illustrate this

work, the two-dimensional mesh topology has been adopted as shown in Figure 1-1, but the

routing techniques presented are effectively topology independent.

1.2 Message Flow Control in Networks-on-chip

Flow control in NOCs architectures defines the unit of data in a given network, and deals

with the mechanism for synchronizing the transmission and reception of these data units.

Various techniques are used in allocating resources, namely channel bandwidth and buffers,

needed by the data traversing the network.

With circuit switching, the network is first probed and physical channels are reserved

from source to destination before packets are injected into the network. On the other hand

in packet switching, when using store-and-forward or virtual cut-through, network resources

are allocated on a per-hop basis. In the case of store-and-forward, a packet is forwarded to

its next hop only when all its subparts are received, where cut-through starts the forwarding

(a) 3-ary 2-cube (b) three-dimensional mesh (c) hypercube

Figure 1-3: Three Examples of Orthogonal Network Topology.

as soon as the packet's header is received. Another flow control mechanism frequently used

is wormhole, where packets are further divided into flits, and resource allocation is done on a

flit basis rather than on a packet basis. Intel's 80-core processor [561 uses a two-dimentional

mesh network that routes packets using wormhole routing.

Each of these approaches has its advantages and disadvantages; in this work we adopt

the wormhole flow control technique, because of its efficient use of buffer space. The first

flit of a packet is called the header flit. It holds the routing information about the packet,

and sets up virtual channels for subsequent flits in the packet.

1.3 Network Resource Interface

Another important aspect of NoC design is the interface through which the network re-

sources are integrated into the system. This aspect of the design deals with the conversion

of data traffic, such as bus transactions, coming from the resources into packets or flits that

can be routed inside the Network-on-chip, and the reconstruction of packets or flits into data

traffic at the opposite side when exiting the NoC. Figure 1-4 (a) shows a typical approach

used by designers when dealing with the processing element interface to the network.

Since the focus of this work is on routing techniques, the resource interface consideration

has been put into the resource side of the overall system design [Figure 1-4 (b)].

Network
Interface
Logic

(a) External to resource (b) Internal to resource

Figure 1-4: Two Resource Interface Approaches. (a) External to the resource. (b) Internal

to the resource.

1.4 Routing in Networks-on-chip

Routing algorithms for NoC architectures can be generally classified into oblivious and

adaptive [3]. With oblivious routing, which includes deterministic routing algorithms as

a subset, the path followed by a packet is statically determined. This allows each node

in the network to make its routing decisions independently from the others. Due to this

distributed aspect, oblivious routing, such as dimension order routing [1], enables simple

and fast router designs, and is widely adopted in today's on-chip interconnection networks.

But the drawback with oblivious algorithms is their poor performance when dealing with

applications which contain certain communication patterns, e.g., bursty data transfers,

because generally no application or network state information is used in computing routes.

An adaptive routing algorithm, on the other hand, adjusts to the state of the network,

using this state information, for example network congestion, in making routing decisions.

With its dynamic load balancing, adaptive routing should theoretically outperform oblivious

routing. However, adaptive routing schemes typically face the difficult challenge of balancing

adaptiveness with router complexity. To achieve the best performance through adaptivity,

a router ideally needs global knowledge of the current network status. However, due to

router speed and complexity, dynamically obtaining a global and instantaneous view of the

network is often impractical. As a result, adaptive routing in practice relies primarily on

local knowledge, which limits its effectiveness.

These routing algorithms can be further classified as minimal and non-minimal. Minimal

routing schemes only select paths that are the shortest possible routes between source and

destination pairs. In Figure 1-2, for example, a packet traveling from node L to node B

has three minimal path choices (L, H, E, B); (L, F, A, B) and (L, F, E, B). Although

for applications for which latency is critical and should be minimized, minimal routing is

desirable, it may exhibit poor load balancing over a range of applications.

Non-minimal routing sacrifices locality for better load balancing. Since it is less con-

strained in its path selection, it generally leads to lower network congestion and overall

better network throughput [32]. For a given flow, latency may increase.

1.5 Contributions

In this work, a bandwidth-sensitive oblivious routing (BSOR) scheme that statically deter-

mines routes considering an application's communication characteristics is developed and

evaluated. The main challenge with any oblivious routing is a fair and an effective trade-

off between load balancing and communication latency minimization. Here the proposed

oblivious routing scheme uses a function corresponding to minimizing the maximum chan-

nel load (MCL) across all network links, while providing a mechanism for controlling the

average path length. The core premise of this approach is to efficiently balance network

load while having shortest possible path lengths and keeping the router architecture simple

and practical. To that end, the algorithm exploits knowledge of estimated bandwidths for

all or a subset of data transfers in a given application, and focuses on optimizing satisfac-

tion of bandwidth demand and latency of individual data transfers. This scheme is livelock

and deadlock free and produces routes that can be minimal or non-minimal in an effort to

globally optimize application throughput.

This scheme will be particularly suitable for long-running applications with predictable

communication patterns. For example, the approach is suitable for co-processing platforms

such as reconfigurable hardware, where processing elements and their interconnection net-

work can be configured much like an FPGA to speed up a computationally-intensive task

such as video compression, processor simulation, or rendering. In reconfigurable comput-

ing, a computation is spatially partitioned into processing elements (PEs) and the network

traffic pattern remains relatively static as each PE performs a fixed task. Evaluations on

synthetic traffic with various patterns and applications such as H.264 decoding and pro-

cessor performance modeling even when the network traffic varies at run-time due to data

dependent behaviors show throughput improvements over traditional oblivious routing.

1.6 Organization

The rest of this thesis is structured as follows. Chapter 2 begins with a review of widely

used oblivious routing algorithms followed by a short descriptive summary of previously

proposed application-specific routing algorithms.

Chapter 3 formally presents our bandwidth-sensitive oblivious routing algorithm, and its

synthesis flow for both small and large size problems to ensure scalability of the algorithm.

Chapter 4 explores the router architecture needed to support the proposed bandwidth

sensitive approach by taking a typical virtual-channel router architecture, and showing

the modifications required.

Chapter 5 presents the illustrating applications followed by Chapter 6 where the exper-

imental results are evaluated.

We conclude in Chapter 7 and explain briefly our future research efforts on this topic.

Chapter 2

Background and Related Work

Routing algorithms for on-chip networks have been a subject of research in both academia

and industry for decades because they are aimed at solving a problem with many conflicting

aspects [48], such as minimizing the router logic while efficiently balancing the network data

traffic load. Oblivious routing algorithms generally lead to simpler hardware, and are very

popular in systems being currently deployed, but for the most part they suffer from lack of

good load balancing. Application-specific routing algorithms in their attempt to solve this

problem, have been done largely using adaptive routing frameworks which essentially leads

to larger and more complex hardware. For a recent survey on network-on-chip in general

see [49].

2.1 Oblivious Routing Algorithms

Oblivious routing algorithms are broadly classified into two main categories, deterministic

and non-deterministic routing schemes. With deterministic routing, the same route is always

taken for any given pair of nodes. Non-deterministic routing uses randomness to archive

better path diversity.

2.1.1 Deterministic Routing Algorithms

The two widely used deterministic routing algorithms are dimension order routing and

destination-tag routing.

Dimension order routing (DOR) algorithms [7] are vastly popular and have many de-

sirable properties, for example they generate deadlock-free routes in mesh or hypercube

topologies [1, 45]. Either using XY-ordered or YX-ordered routing, each packet is routed

along one dimension in its first phase followed by the other dimension. Figure 2-1 shows

examples of these routing schemes. The strength of these algorithms is their high com-

patibility with orthogonal topologies and the low level of hardware complexity needed to

support their implementations. DOR algorithms, even with their lack of path diversity and

network load balancing, which lead to poor network bandwidth utilization and low perfor-

mance throughput, are frequently used by designers to avoid additional hardware overhead.

They are in fact used in many commercial and research products: Intel Paragon, Cray T3D,

MIT J-machine and Stanford DASH all use some version of DOR as their routing algorithm

[15, 27].

Destination-tag routing was initially designed by Lawrie [6] to allow concurrent, collision-

free access to various data banks of a primary memory system by an array of processors.

It later became very useful for routing packets in butterfly networks, where the digits

representing the destination address are used by hops to determine the proper output port

to which to forward a given packet [27]. Many research prototype and commercial computers

use this routing scheme; BBN Butterfly, IBM RP3, NYU Ultracomputer, and NEC Cenju-3

all use some version of destination-tag routing.

2.1.2 Non-Deterministic Routing Algorithms

Valiant [8] and ROMM [17] have generally served as the representatives of this class of

routing algorithms.

Valiant et al propose two different versions of an algorithm which routes a packet from

its source to its destination in multi-phase fashion [8]. The routing algorithm selects at

random an intermediate node and in the first stage of the routing the packet is sent from

the source to the intermediate node, then in the second stage from the intermediate node

to its official destination. Figure 2-2 shows an example of this Valiant algorithm. Although

an arbitrary routing algorithm can be used for each of the phases, generally a simple DOR

algorithm is used. It is shown to provide a good network load balance but can also lead

to considerably longer path lengths. Towles et al further refine the Valiant algorithm to

eliminate loops in the routes, and reduce the average path length by 20% [33].

ROMM routing which stands for randomized, oblivious, multiphase, minimal routing,

was design by Nesson and Johnsson as an alternative to Valiant. In an effort to retain

locality in routing of packets in the network, the intermediate node random selection is

confined to a minimal quadrant [17] as illustrated in Figure 2-2. This approach essentially

translates into randomly selecting between the various minimal paths from the source to

the destination.

In Orthogonal one-turn routing (O1TURN routing) [46], which can be described as a

restricted version of ROMM routing where the intermediate node is one of four corners of

the minimum rectangle, Seo et al show that simply balancing traffic between XY and YX

routing can guarantee provable worst-case throughput while reserving the same degree of

router complexity.

2.2 Application-Specific Routing Algorithms

In this section we briefly survey several proposed routing algorithms that use targeted appli-

cation information to provide higher performance in NoC architectures; see [49] for a recent

more detailed survey. Application-specific routing schemes have generally approached the

load balancing problem in two ways; either by designing algorithms to optimize performance

for some subset of applications with little or no change to the targeted router architecture

or by proposing algorithms that require their own router architecture and/or topology.

Palesi et al [52, 59] provide a framework and algorithms for application-specific bandwidth-

aware deadlock-free adaptive routing. Given the communication graph of an application,
cycles are eliminated from the channel dependency graph (CDG) to minimize the impact

L H C L H G

F E D F E D

(a) XY-ordered Routing (b) YX-ordered Routing

Figure 2-1: Example of Dimension Order Routing on 3 x 3 Mesh Network

L H G

yt
(a) ROMM Routing

with E as intermediate node
(b) VALIANT Routing

with H as intermediate node

Figure 2-2: Example of ROMM and Valiant on 3 x 3 Mesh Network

on the average degree of adaptiveness. Bandwidth requirements are taken into account

to spread traffic uniformly through the network. Their Application Specific Routing Algo-

rithms (APSRAs) rely on the fact that the network router architecture is adaptive, and the

designer's willingness to further increase the router area of the system.

Hansson et al [43) propose a unified approach to mapping and routing to minimize the

network required to satisfy the constraints of the application. They show that overhead

for this unified approach is only 20% higher than that of path selection alone in terms of

run-time. The comparison is done against another approach [42] which generates network

topology and mapping based on application specifications.

Many works on mapping of applications onto NoC architectures have also considered

the routing problem during the NoC design phase (e.g., [31], [41], [50]).

Cho et al describe bandwidth-aware routing for diastolic arrays [57] and avoid deadlock

by assuming that each flow has its own private virtual channel. Although this assumption

simplifies deadlock avoidance in the routing algorithm, it may not be practical in cases where

the number of flows traversing a router exceeds the number of allowed virtual channels.

Murali et al [40] present a tool for automatically selecting the best topology for a given

application and producing a mapping of cores onto that topology. Although their SUNMAP

algorithm supports different routing functions and takes into account bandwidth and area

constraints, the direct impact of the routing functions on the overall performance of the

network was not explored.

Srinivasan et al [47] using application specifications propose a slicing tree based floor-

planner for the topology design. This technique does not insure deadlock-free routes which

is crucial in packet-based NoC architectures.

Designing a network topology based of a application, though it has its advantages,

presents the system designer with the choice of supporting only a small subset of applications

that are part of the application class for which the topology is designed; or having different

topologies for different classes of applications. The manufacturing cost of both of these

choices, have made application-specific topologies highly unattractive in the larger domain

of NoC architectures.

2.3 Buffer Space and Bandwidth Allocation

Several approaches to allocate buffer space and bandwidth in on-chip networks have been

proposed. Most routing strategies group packets that need to be in-order at the receiver

into a flow, and packets of a flow follow a single path (e.g., [12], [21]). Flows are then routed

based on the routing algorithm adopted by the designer and this routing algorithm dictates

the bandwidth and the buffer space allocation in the network.

2.3.1 Buffer Space Allocation

Buffers in NoC architectures generally occupy most of the physical area allocated to the

router [29, 36]. So designers are forced to keep the number of buffers fairly small and make

judicious use of that limited amount of buffering space. Dally's virtual channels [9] allocate

buffer space for virtual channels in a way that is decoupled from bandwidth allocation. In

his approach, each physical channel is associated with several small buffers, virtual channels,

which compete with each other for the physical channel. This decoupling allows active flows

to use network bandwidth more efficiently.

iWarp [64], is a system architecture for high-speed signal, image, and scientific comput-

ing, which implements virtual channels across single links. Its processing elements use these

logical (virtual) channels to guarantee bandwidth to virtual circuits.

Hu and Marculescu, in their application-specific buffer allocation scheme, perform buffer

allocation based on arrival rates [36]. More precisely, given the communication character-

istics of an application and buffer space available in the network, their algorithm auto-

matically assigns the buffer depth for each input channel, in different routers across the

network.

Many other designs of virtual channel routers have been proposed. Nicopoulos et al have

designed a dynamic virtual channel regulator called ViChaR, which dynamically allocates

buffering resources depending on the network state [51]. Their approach aims at maximizing

throughput by allocating virtual channels on demand. Mullin et al propose in [39] a router

design for which the arbitration logic is removed from the the critical path in oder to im-

prove the cycle-time. Bjerregaard and Sparso present two different non-blocking schemes in

implementing virtual channels with minimal hardware overhead [35]. Kavaldjiev et al have

proposed a 5-port virtual channel router architecture with simplified dynamic arbitration

which allows fair and deterministic arbitration [38]. They claim that such an architecture

reduces the area allocated to routing by 23% over an ASIC implementation and produces

a speed improvement of 1.4X when compared to a conventional router.

Recently, express virtual channels have been proposed which skip routers along multiple-

hop static paths to enhance performance in a dynamic routing scheme [28]. Support for

multicast channels has also been proposed [58].

The partition of the router buffer space into virtual channels, either in a linked-list or

disjoint forms, like those shown above, helps mitigate the head-of-line blocking issue that

arises in NoC routing. Figure 2-3 shows how active flows can bypass blocked flows to use

network bandwidth that would otherwise remain idle.

Our virtual channel router design is fairly standard and is described in Chapter 4. Our

algorithms for static allocation assign flows to channels/lanes on a per-link basis, rather

than assigning packets to a particular lane through the entire route.

2.3.2 Bandwidth Allocation

Bandwidth allocation to data flows in a given application is at the heart of the routing

problem. An effective routing algorithm allocates bandwidth to flows in a way that balances

the traffic loads across channels and provides application with a throughput close to the

network ideal throughput. One approach is to formulate the bandwidth allocation problem

as a linear programming problem.

Towles et al [34] give a multicommodity flow linear programming formulation for router

algorithm design. When the linear program is optimized, deterministic algorithms that are

worst case or average case optimal come out as solutions.

Racke uses concurrent multicommodity flow (CMCF) formulation to present his frame-

work for solving on-line problems that aim to minimize the congestion in different networks

[261. Routing paths are selected according to the solution of the CMCF problem. His obliv-

- Destination of A

Destination of B

(a)

Destination of A

Destination of B

(b)

Figure 2-3: Virtual Channels: (a) packet B is blocked behind packet A. (b) Virtual Channels

allow packet B to bypass blocked packet A.

ious path selection algorithm has a polylogarithmic competitive ratio in general networks.

Our goal is to find routes with maximal throughput for a specific application.

2.4 Adaptive Routing Algorithms

Classic adaptive routing schemes include the turn model routing methods [11] and odd

even routing [22]. In [37] a hybrid scheme that switches between deterministic and adaptive

modes depending on the application is presented, where local FIFO information is used to

adapt routes. Duato (e.g., [4, 14]) gives necessary and sufficient conditions for adaptive

routing in wormhole networks. Our algorithm is not adaptive; however, as described in

chapter 3, we use the turn model to derive an acyclic channel dependence graph that drives

our oblivious routing scheme. Our scheme can use cycle-breaking strategies other than

using the turn model in the derivation of acyclic dependence graphs.

To summarize our framework is significantly different from previous work in its use of

application specifications to efficiently balance network load while retaining an oblivious

nature and an applicability to standard router architectures.

26

Chapter 3

Oblivious Routing with Bandwidth

Sensitivity

The proposed Bandwidth-Sensitive Oblivious Routing (BSOR) algorithm exploits knowledge

of estimated bandwidths for all or a subset of data transfers between modules for a given ap-

plication in producing routes that globally optimize the application throughput. Although

a two-dimensional mesh network topology is adopted in illustrating BSOR in this work, the

algorithm is independent of both network topology and number of virtual channels per link.

To present BSOR, the routing problem is formulated as a multicommodity-flow problem and

the following standard definitions of flow networks and channel dependence graphs are used.

3.1 Definitions

Definition 1. Given a flow graph G(V, E), where an edge (u, v) E E has capacity c(u, v).

The capacities c(u, v) are the available bandwidths on the edge. There is a set of k data

transfers or flows K = {K 1 , K 2 ,..., Kk}. Ki - (si, ti, di), where si and ti are the source

and sink, respectively, for connection i, and di is the demand. We assume si 0 ti. We may

have multiple flows with the same source and destination. The flow variable i along edge

(u, v) is fi(u, v). A route is a path pi from si to ti for a flow i. Edges along this path will

have fi(u, v) > 0, other edges will have fi(u, v) = 0.

If fi (u, v) > 0, then route pi will use both bandwidth and buffer space on the edge (u, v).

The value of fi(u, v) indicates the amount of bandwidth allocated to flow i on the edge. In

the case of single path flows fi(u, v) is equal to di. The buffer resource may be a packet

buffer in the case of packet-buffer flow control, or a virtual channel in the case of flit-buffer

flow control. We will assume flit-buffer flow control in this work, although our framework

can be applied to other flow control schemes as well.

Definition 2. A channel dependence graph (CDG) D(V', E') is derived from the flow net-

work G as follows. Each vertex in V' is an edge in G. There is an edge from vl E V' to

v2 E V' if a packet can flow from the edge in G associated with vl into the edge associated

with v2, without traversing any other edges. That is, the edges are consecutive in G. We

are disallowing 180-degree turns in routing and will later remove these edges.

Figure 3-1 shows the CDG associated with the 3 x 3 mesh network in Figure 1-2

BC and CB are edges in opposite directions from B to C and C to B, respectively. They

correspond to separate vertices in the CDG and are not connected when 180-degree turns

are not allowed. Note that the CDG has cycles, for example, there are edges connecting

DG to DH, DH to HE, HE to ED and ED to DG.

Definition 3. The maximum channel load (MCL) U in a network is defined as

k

U = max f (uv) (3.1)
(u,v)EE

i=1

It denotes the channel with the highest load which is the bottleneck channel in the entire

network and determines the saturation throughput of the system.

Definition 4. For a given set of k data transfers or flows K = {K1, K 2 ,..., Kk}, let

SF be the selector function that chooses the path pi taken by packets of flow i from si to ti

through the network.

We define load balancing to be the degree to which resources in term of bandwidth and

buffer space are uniformly utilized across the different links of the network; and latency as

the required time or number of hops to router a packet from its source to the destination.

3.2 BSOR Framework

The BSOR algorithm uses the estimated bandwidths of an application and the targeted net-

work topology and resource information to make advance plans to provide load balancing

Figure 3-1: Channel Dependence Graph for the Mesh Network of Figure 1-2

during run-time of the application. It follows the framework outlined below; and many dif-

ferent bandwidth-sentive algorithms can be constructed based on the framework depending

on the selector function SF. For this work, we detail two instantiations of the framework,

one using Mixed Integer Linear Programming (MILP) for small and medium size problems

and the other using Dijkstra's weighted shortest path algorithm, for large size problems.

FRAMEWORK(Data Transfers K)

1. Create an acyclic channel dependence graph (CDG) by deleting edges from D;

call it DA.

2. Transform DA into a flow network GA.

3. Choose routes pi for each flow i in GA, taking into account bandwidth availability

using an SF.

4. If desired, go to Step 1 to create a different acyclic CDG and repeat.

5. Select the best set of routes found.

Offline Bandwidth-Sensitive Oblivious Routing Framework

This framework assumes that the underlying network has been made deadlock free.

Deadlock in NoCs occurs when two or more flows are each waiting for the other to release

link or buffer space in effort to finish routing a packet to its destination. Although there

are techniques for recovering from a deadlock in these systems, performance can suffer a

great deal and hardware complexity increases drastically. The usage of the acyclic chan-

nel dependence graph in step one ensures the deadlock freedom property of the routing

algorithm.

Lemma 1. A routing algorithm R is deadlock-free if and only if the set of routes it

produces forms an acyclic channel dependence graph (CDGA) [1].

Dally and Aoki in [10] give the formal proof for Lemma 1.

3.3 Creating Acyclic Channel Dependence Graphs

According to Lemma 1, if packets follow routes that conform to an acyclic channel depen-

dence graph, then deadlock will not occur. This is also a necessary condition provided false

resource dependences do not exist [20].

Therefore, routing of packets is systematically restricted by breaking all the cycles in

the CDG D associated with the network. There are many ways to remove these cycles; the

turn model [11] provides a few systematic approaches. Figure 3-2 illustrates some of these

approaches where the dotted segments represent the prohibited turns. 1

For the 3 x 3 mesh network from Figure 1-2, the two acyclic CDGs derived from D

'Note that the turn model was developed to enable adaptive routing; here we are concerned with choosing
routes in an offline fashion for oblivious routing.

using the north-last and west-first turn models shown in Figure 3-2 to break cycles are

exhibited by Figure 3-3.

Cycles can also be broken in an ad hoc or random fashion as shown in Figure 3-4.

Typically, a larger number of dependences need to be removed to obtain an acyclic CDG

but after route selection under this type of CDG, we may obtain a better result (cf. Section

(a) North-Last prohibited turns (b) West-First prohibited turns

Figure 3-2: Two Turns Prohibited by the turn model. (a) North-Last turn. (b) West-First
turn.

(a) North-Last based acyclic CDG (b) West-First based acyclic CDG

Figure 3-3: Acyclic CDG Based of North-Last and West-First Prohibited Turns.

6). In both of the cases presented in Figure 3-4, 12 edges needed to be removed from the

original CDG with no 180-degree turns, as opposed to 8 in the turn model. We can use

any acyclic CDG to drive our bandwidth-sensitive oblivious routing algorithm. Given that

different CDG's may result in different qualities of routes, we can perform route selection

under many different CDG's and select the best result. We next show how to derive a flow

network from an acyclic CDG so the routes generated are guaranteed to be deadlock-free.

3.4 Deriving a Flow Graph from an Acyclic CDG

Given source and destination network nodes si and ti respectively, for each flow i, we will

derive a flow graph or network GA from an acyclic CDG DA. We will then run our route

selection algorithm on GA, to find the "best" routes for the flows. This will have the effect of

running route selection on the given flow network G (corresponding to the interconnection

network) but with the route conforming to DA. If the routes for all flows conform to DA,

deadlock freedom is assured.

Note that G corresponds to the original on-chip network, whereas GA corresponds to

a flow network where the vertices are links of the original network, and the edges are

DC FA
LF AF AB CB

CB (b)B

FL ic BC FE BE

ED CD EH ILH LH CD ED EH

DG HG

DG HG

GH GD

GH OD
HL DE HE

LF AF F) HE DE DC HL

FE FL

EF EB

FA BA
BA BC

(a) (b)

Figure 3-4: (a) Acyclic CDG: 12 edges removed (b) Acyclic CDG: 12 edges removed

dependences. We next focus on the route selection step.

GA is derived from DA as follows. DA is copied over to GA. Add vertices to GA

corresponding to si and ti, for each i. Add edges from si to all vertices in GA that have si

as the source node of the corresponding link. For example, if si is network node A in the

3 x 3 mesh network shown in Figure 1-2, then add edges from si to AB and AF. For each

vertex in GA that has ti as the destination node of the corresponding link, add an edge

from the vertex to ti. For example, if ti is network node I in the 3 x 3 mesh mesh shown

in Figure 1-2, then add edges from FL to ti and from HL to ti.

Figure 3-5 shows a flow network derived from the acyclic CDG of Figure 3-4(a), given

the source-destination pair A, L. The weights on the edges are assigned randomly for

illustration; their generation and utility will be described at a later stage. Other source-

destination pairs can be added to GA in a similar fashion. Each link in GA will have an

initial capacity and its residual capacity will change through the course of route selection.

Both the MILP and the Dijkstra-based algorithm we use assume weights/capacities on

edges. Each edge in G' has a capacity or residual capacity associated with the link vertex

that it is incident on.

In this thesis we present two route selection schemes; an optimal route selector for some

cost functions using mixed integer-linear programming. Solvers such as CPLEX are able

to find optimal routes within a reasonable amount of time for moderate-sized examples,

but not for large examples since the convergence time may be very long. To address this,

we will also propose a heuristic algorithm for route selection based on Dijkstra's weighted

shortest path algorithm [63].

3.5 Mixed Integer-Linear Programming Selector

Bandwidth allocation given the rate demands for each of the connections can be viewed as

a multicommodity flow problem which can be optimally solved in polynomial time using

linear programming (LP) [63]. The routes produced, using linear programming, are not by

default deadlock free and can lead to splitting of flows. The mixed integer-linear program-

ming (MILP) formulation below can produce an optimal result either minimizing maximum

channel load, or maximizing throughput, therefore providing a way of selecting best routes

for moderate-sized problems.

MILP: Find an assignment of flow in GA, i.e., Vi, V(u, v) E E fi(u, v) > 0, which

satisfies the constraints:

Capacity constraints :
k

V(u, v) EE Zfi(u,v) < c(u,v)
i= l

Figure 3-5: Flow network from acyclic CDG of Figure 3-4 with source-destination pair A, L
and example weights.

Flow conservation:

Sfi(, u) =
(w,u)EE

(u,w)EE(
(u,w)eE

Vi E f(si, w) =
(si,w)EE

Sfi (w, ti) = gi
(w,ti)EE

Unsplittable flow :

fi(u, v) < bi(u, v) -di

Vi, Vu E bi(u, v) <
(u,v)EE

Vi, Vu si , ti

Vi , V(u, v) E E

Hop Count:

Vi b(u, v) < hopi

(u,v)EE

and minimizes the maximum channel load:

k

minimize U = max f (u, v) (3.2)
(u,v)EE

or maximizes the total throughput, given as

k

maximize S = gi (3.3)
i=1

or maximizes the minimal fraction of the flow of each commodity to its demand:

maximize T = min i (3.4)
1<i<k di

The variables bi(u, v) are Boolean variables, i.e., they can take on values of 0 or 1 only.

They enforce the restriction that a flow i can only take a single path from source si to

destination ti. They also enforce path length restrictions. hopi is a specified constant that

can be set to be equal to the minimal path length between si and ti. This will imply that

only minimal paths will be considered. hopi should be incremented by 2 or more to allow

for non-minimal routing. The fi(u, v) variables can take on any positive value less than or

equal to the demand di. Thus, we have a mixed integer-linear program, which if solved,

finds the "best" set of routes, while ensuring unsplittable flows that conform to DA and are

therefore deadlock-free.

3.6 Dijkstra Weighted Shortest Path Selector

Since the unsplittable flow problem is NP-hard even for single sources [19], MILP which is

an approximation algorithm may not converge quickly enough to explore a good range of

cycle breaking schemes and weight functions for large size problems. Therefore we present

a heuristic for dealing with such cases, it consists of running Dijkstra on a weighted version

of GA, deriving weights from the residual capacities of each link/vertex. Consider a link e

in the original network G (e.g., AB) which is a vertex in GA. This link has a capacity c(e).

We have a variable for each link e, called a(e), which is the current residual capacity of link

e. Initially, it is equal to the capacity c(e). If a flow i is routed through this link e, we will

subtract the demand di from the residual capacity a(e).

We have experimented with various metrics, and have selected the reciprocal of link

residual capacity which is similar to the CSPF metric described by Walkowiak [54]. The

weight function we use is w(e) = a(e)-dj+M . c(e) is the current residual capacity that is

decremented by di if the flow goes through e. c(e) may become negative when demands are

higher than link bandwidths. M is a constant comparable to the maximum link bandwidth,

large enough to ensure that the weights w(e) remain positive.

Dijkstra assumes weights on edges in GA; however, the links are vertices in GA. The

weight of an edge in GA is merely the weight of the link/vertex that the edge is incident

on. For example, the edge from si to AB will be assigned the weight of link/vertex AB.

An edge from AB to BC will be assigned the weight associated with link/vertex BC. The

edges incident on ti are always assigned a weight of 0. Figure 3-5 shows a flow network

derived from the acyclic CDG of Figure 3-4(a), assuming the source is network node A and

the destination is network node L, with weights assigned to edges. We run Dijkstra on the

weighted GA to find a minimum weight path from A to L, or in general from an si to a ti.

Then, the weights are updated, and a new source-destination pair is selected to be routed.

This continues until all the flows have been routed.

This Dijkstra weighted shortest path based heuristic can be run on thousands of nodes

within seconds. The underlying Dijkstra algorithm has polynomial-time complexity of

O(flows * (E + VlogV)).

This strategy results in a bandwidth allocation that tries to distribute traffic uniformly

through the network, minimizing the maximum channel load. The length of the paths are

minimized in a secondary fashion, since the weight of a path is the sum of the weights

of the links. Increasing M gives more weight to minimizing the number of hops in each

path, therefore providing a mechanism, like in the MILP based approach, to generate only

minimal length routes for some applications where latency in terms of number of hops

should be minimized.

3.7 Multiple Virtual Channels

Channel dependence graph representations of networks are expandable to networks with

multiple virtual channels (VCs) per physical channel. Having multiple VCs per link does

affect the deadlock properties of the network. Since resources in the network are no longer

physical links but buffer spaces.

If there are z virtual channels per link in the network , then we expand the CDG D to

include z vertices for each link, with each vertex corresponding to a virtual channel. There

are edges between vertices if the corresponding links can be consecutively traversed by a

packet. Since a packet can switch virtual channels, we will have z2 edges between the sets

of vertices that correspond to consecutive links.

The CDG D for the 2 x 2 sub-mesh (with nodes F, E, A and B in the 3 x 3 mesh of

Figure 1-2) for z = 2 is shown in Figure 3-6 (a).

As before, we can break cycles in D by removing edges using a strategy based on a turn

model, or using ad hoc or random strategies. Figure 3-6(b) shows an acyclic CDG that was

derived using a turn model.

We have additional flexibility with multiple virtual channels; all turns are allowed pro-

vided the route switches virtual channels as shown in the acyclic CDG DA of Figure 3-6(c).

Either (or both) of these acyclic CDGs can be used to generate the flow network GA by

adding source and destination nodes as before. When a path pi is selected in GA, it implies

a static allocation of virtual channels along the route. A best set of routes, i.e., the set with

smaller maximum channel load, can be chosen across different acyclic CDGs. Therefore,

static allocation of virtual channels gives additional flexibility in route selection. Shim et

al show in [53] that this type of static allocation can match or exceed the performance of

dynamic allocation schemes.

To evenly distribute flows across virtual channels, we modify the weight function slightly

to include the number of flows that use a virtual channel. The weights of edges in G'A

incident on ABO or AB1 will be different if ABO has been assigned to a flow, and AB1 has

not.

Another approach, when we have a network with multiple VCs per physical channel, is

to represent the network as multiple virtual networks. Each virtual network contains one

or more virtual channels from the original network and it is represented by its own CDG

(VCDG). Cycles in a VCDG are eliminated using either a turn or ad hoc model independently

of other VCDGS. Given source and destination network nodes si and ti respectively, for

each flow i, we will connect si and ti to all the acyclic VCDGS. Figure 3-7 shows a flow

network derived from the 3 x 3 mesh network in Figure 1-2 with two virtual channels per

link. Each virtual network has one virtual channel and the two virtual networks are shown

BA 0 BA 1 CDO 0 CDI

CB0 ABO CBI BC I

ADO ADI DA 0 DA 1

DC 0 DC 1 AB 0 AB 1

CB0 CB 1 BC 0 BCI ADO DAB

(a) (b) (c)

Figure 3-6: (a) CDG for 2 x 2 sub-mesh FEAB with 2 virtual channels (b) Acyclic CDG
using the turn model. (c) Ad hoc Acyclic CDG.

in Figures 3-3(a) and 3-4(a). For illustration purposes, we have the source-destination pairs

sl = G, di = L.

Our routing scheme, by exploring virtual channel allocation based on application static

information, helps prevent performance degradation associated with a single flow consum-

ing multiple virtual channels and blocking other flows, essentially eliminating the resource

coupling created by the addition of buffers to the router architecture.

Both minimal and non-minimal paths can be selected in a bandwidth-sensitive manner

. .-: -----------......... -----------.........

LH 0 GH_0 DC1 FA 1

VD~ NelrVC 0 ViFA NeGH_1 rVGD 1

E C0 AHE1 DE1 B HL 1

A 0 ELF 1 AF_1 EF_1

EF 0 H 0- ED 0 FEG1 FL 1---- ---- -- ----- ------ _ _
FL 0 DG 0 EB 1

BA 1 BC 1

Figure 3-7: Acyclic Virtual Networks for Multiple Virtual Channels

in our framework, while ensuring that deadlock does not occur. Hardware restrictions such

as limiting the number of flows through a link can be enforced when searching for a new

route. Many different acyclic CDGs and cost functions can be used in an effort to obtain

the best performance as determined by a simulator or router hardware. Packet routes

can be determined in different orders. Finally, other route selectors can be plugged into

the framework rather than using MILP or Dijkstra as long as required deadlock-avoidance

checks on the set of routes are made.

Chapter 4

Router Architecture

This chapter discusses the impact of our oblivious routing technique on the router archi-

tecture, and compares the modified architecture with standard routers for other oblivious

routing algorithms. The following discussion assumes a typical virtual-channel router on a

two-dimentional mesh network as a baseline. However, as previously noted the proposed

routing technique is largely independent of network topology and flow control mechanisms.

Therefore, the same approach to routing can be applied to other network topologies and

either packet-buffer or flit-buffer flow control.

4.1 Typical Virtual Channel Router

VC state
nput Output

• .Switch Allocation
• (SA)

Input VCstate Output
SPortSwitch Traversal

(a) Router architecture (b) Router pipeline

Figure 4-1: Typical virtual-channel router architecture. The dark blue indicates that the

modules and pipeline stages may be modified for our approach.

Routing algorithm Routing mechanics VC allocation

DOR, ROMM, etc. Algorithmic: fixed logic Dynamic
BSOR / No Cycle (NC) Table-based: source or node-table routing Dynamic or Static

Table 4.1: Router architecture designs for routing algorithms.

Figure 4-1 illustrates a typical virtual-channel router architecture and its operation

[24, 27, 39]. As shown in the figure, the datapath of the router consists of buffers and a

switch. The input buffers store flits while they are waiting to be forwarded to the next hop.

There are often multiple input buffers for each physical channel so that flits can flow as if

there are multiple "virtual" channels. When a flit is ready to move, the switch connects

an input buffer to an appropriate output channel. To control the datapath, the router also

contains three major control modules: a router, a virtual-channel (VC) allocator, and a

switch allocator. These control modules determine the next hop, the next virtual channel,

and when a switch is available for each packet/flit.

The routing operation takes four steps, namely routing (RC), virtual-channel allocation

(VA), switch allocation (SA), and switch traversal (ST), which often represent four pipeline

stages in modern virtual-channel routers. When a head flit (the first flit of a packet) arrives

at an input channel, the router stores the flit in the buffer for the allocated virtual channel

and determines the next hop for the packet (RC stage). Given the next hop, the router

then allocates a virtual channel in the next hop (VA stage). Finally, the flit competes for

a switch (SA stage) if the next hop can accept the flit, and moves to the output port (ST

stage).

For existing oblivious routing algorithms such as Dimension Ordered Routing (DOR) [1],
ROMM [16], Valiant [8], and olturn [46], the next hop of a packet can be easily computed

at each router node based on the packet's destination. Moreover, these algorithms are fixed

and commonly used for all types of applications and traffic patterns. As a result, traditional

oblivious routing algorithms are implemented as dedicated logic in the RC stage of each

router. For these routing algorithms, the RC stage is quite simple and the router frequency

is typically dominated by the VA stage [24].

4.2 Router Architecture for Bandwidth-Sensitive Oblivious

Routing (BSOR)

The router architecture for the proposed oblivious routing scheme is almost identical to

the typical virtual-channel router architecture. The router uses the exact datapath that

is described above. The only change in our routing architecture is in its routing module,
which is summarized in Table 4.1.

For simple oblivious routing algorithms such as DOR, the baseline architecture imple-

ments the algorithm with fixed logic and dynamically allocates virtual channels to a packet.

To support our routing scheme with any algorithm variant, our routing module needs table-

based routing so that routes can be configured for each application. This single change is

sufficient because our routing algorithm ensures that there is no cyclic dependence in routes

(MILP-NC).

We next discuss the details of this modification. The routing algorithm is described in

Chapter 3.

4.2.1 Programmable Routing

Our routing technique determines the routes for each flow based on an application's band-

width requirements as well as its source and destination nodes. Additionally, to maximize

the throughput, our routing algorithm can utilize any path from the source to the des-

tination; routes may be either minimal or non-minimal. Therefore, the router must be

programmable so that the routes for each flow can be configured depending on the applica-

tion, and be flexible enough to support arbitrary routing paths.

In order to provide programmability and the flexibility, our router uses table-based rout-

ing where the path between a pair of nodes is stored in a routing table. Unlike cases where

a simple routing algorithm is hardwired with fixed logic (algorithmic routing), the routing

table can be simply re-programmed with new routes before an execution of a new appli-

cation in order to update the routing. The table-based approach also allows our routing

algorithm to select almost any path from a source to a destination as long as the route can

fit into the table.

Table-based routing can be realized in two different ways: source routing and node-table

routing, and our routing technique can also be implemented in both styles. In the source

routing approach, each node has a routing table that contains a route from itself to each

destination node in the network. The routes are pre-computed by our routing algorithm

and programmed into the tables before the execution of an application. When sending

a packet, the node prepends this routing information to the packet. Routers along the

path can determine the output port simply by looking up the routing flits. Figure 4-2 (a)

illustrates source routing where a packet is routed through node A, B, and C. The route

corresponds to East, North, and North, which is reflected in the routing flits in the packet.

The source routing approach simplifies the router design because the routing stage (RC

stage) in the router pipeline now only needs to read the output port from the flit without

any computation. Effectively, source routing eliminates the routing step in the router and

can potentially reduce the number of pipeline stages. In fact, thanks to its speed and

simplicity, source routing has been widely used in many router designs including the IBM

SP1 [13] and SP2 [12] and the Avici TSR [21]. On the other hand, source routing results in

r---- r --- " r

: out ind
I I I

I I I I I IIE 5I I

,, B A BI,- , ,, , :_. -.J.

I out index out index

I I I

(a) Source routing (b) Node-table routing

Figure 4-2: The table-based routing architecture. (a) Source routing. (b) Node-table
routing.

longer packets containing routing flits as compared to the case where the route is computed

for each hop.

Instead of carrying the entire route with every packet, the nodes along the path can

be programmed with routing information for relevant flows. In this node-table routing

approach, the routing module of a node contains a routing table that has the output port

for each flow that is routed through the node. To determine which table entry corresponds

to each packet, the packet carries an index field for the current node and the routing

table provides the new index for the next hop. To set up the route, our routing algorithm

computes a route for each flow and configures the routing tables accordingly. Upon receiving

a packet, a router reads its routing table to determine the proper output port and forwards

the packet with the new index field from the table.

Figure 4-2 (b) shows an example of the node-table routing when a packet is routed

through the same path with the source routing example. As shown in the figure, the

incoming packet to node A contains the table index of 1. To route this packet to B (East),
the entry (1) in A's routing table is set as (East, 2), indicating that the packet should be

routed to East with the new index of 2. In the same way, the packet looks up the second

entry in node B for routing.

The router architecture for node-table routing essentially replaces the fixed logic in the

RC stage of the baseline router with a table look-up. While the table look-up can take

longer than evaluating the routing logic for simple deterministic routing such as DOR, it

will not change how fast a router can operate because the router's clock frequency is most

often determined by other routing stages or external factors such as a processor's frequency.

A previous study shows that the latency of a pipelined virtual-channel router is dominated

by virtual channel allocation, which takes 15-20 F04 [24]. Even if we conservatively assume

that each routing table has 256 entries (256 flows), the table only takes a couple of KB; an

entry needs 2 bits to represent the output port in a 2-D mesh and 8 bits for the next table

index (256 entries). Therefore, a routing table will be easily accessible within a single cycle

without impacting the clock frequency.

In practice, both table-based routing techniques place a restriction on the maximum

number of flows that can be supported depending on the size of a routing table. In source

routing, flows with an identical source-destination pair will have to share the same route

unless the routing table has multiple entries for each destination. Similarly, in node-table

routing, the size of each routing table limits the number of flows that can be routed through

a node. Our routing algorithm can include restrictions enforced by the router hardware.

We have described two routing module designs, namely source routing and node-table

routing, that can support bandwidth-sensitive oblivious routing. Both routing methods are

widely known and have been implemented in multiple routers [12, 13, 18, 21]. In other

words, the proposed routing approach can be realized with standard routing hardware

without new specialized mechanisms. Also, our routing approach will not have noticeable

impact on the latency or the organization of the router pipeline. The only overhead of our

routing technique compared to other oblivious routing schemes is the addition of routing

flits when source routing is chosen.

4.2.2 Static Virtual-Channel Allocation

Our bandwidth sensitive routing framework supports multiple virtual channels. It allows

virtual channels to be statically allocated by the routing algorithm. The static allocation

of virtual channels allows the algorithm to choose more diverse routes compared to the

dynamic allocation case by enabling finer deadlock analysis, and also simplifies the VC

allocation stage of a router, which is the highest latency step [24]. On the other hand,

static allocation may result in worse utilization of available virtual channels because it does

not consider dynamic behavior.

44

Chapter 5

Applications

To test the efficiency our oblivious deadlock-free routing algorithm, we explore both syn-

thetic benchmarks and flows from real applications. The synthetic benchmarks are useful

for evaluating specific communication patterns, while real applications allow us to test for

more general and less well-behaved traffic patterns.

5.1 Synthetic Benchmarks

The term synthetic simply implies a level of abstraction where, based on well known com-

putation tasks graphs, a systematic approach for deriving flows, in this case source and

destination pairs, has been established for a given topology.

5.1.1 Bit-Complement

The Bit-complement traffic pattern arises when performing operations such as vector re-

versals or distributed matrix multiplications. Faster matrix multiplication provides more

efficient algorithms for many standard linear algebra problems. Matrix multiplication in

distributed fashion are particularly important, since known methods for performing such

multiplication in a non-distributed manner require O(ne) run-time where e > 2. Bit-

complement has a very symmetric communication behavior and the source and destination

pair is simply given by: di = -si.

Where si denotes the ith bit of the source address and di denotes the ith bit of the

destination address.

5.1.2 Transpose

The transpose traffic pattern is directly related to matrix transpose and corner-turn opera-

tions. Corner-turn operations, for example, are very useful in preserving a certain amount

of data locality when dealing with signal and image processing applications which operate

on multi-dimensional data. The ideal computational platform for these types of applica-

tions has been System-on-chips, since they can be easily distributed across the multiple

processing elements to exploit data parallelism.

The source and destination pair in transpose is generated by: di = Si+b/2 mod b"

The bit length of an address is b = log 2 N, where N is the number of nodes in the

network.

5.1.3 Shuffle

The shuffle benchmark is derived from sorting algorithms, or Fast Fourier Transform (FFT)

based applications. There have been substantial efforts invested into optimizing sorting

algorithms using a large number of processing elements.

Source and destination pair in shuffle is generated by: di = si-1 mod b-

The fact that all these synthetic benchmarks are geared toward scientific computations

is primarily due to historical research efforts. These benchmarks are selected to validate

our scheme primarily because they are considered to be conventional testing traffic patterns

in NoC architectures.

5.2 Applications

5.2.1 H.264 Decoder

H.264 is widely used for video compression. Figure 5-1 shows a specification of the H.264

decoder, which receives a compressed bitstream and subsequently entropy decodes the data

elements into a set of quantized coefficients.

The entropy decoder module in the H.264 decoder performs context-adaptive variable

length decoding (CAVLD) that uses 20 different code tables. Each image block from the

input stream requires access to different code tables; the number of table lookups varies

significantly across inputs. Because the table lookup and the resulting computations take

up the majority of time in entropy decoding, we can assume that the latency of the entropy

decoder module is proportional to the number of table lookups for each input (image block).

In the inter-prediction module, the latency is dominated by the number of pixels it reads

from reference frames, which depends on the input block's offset from the reference block

(motion vector). Therefore, the latency of the inter-prediction module is again highly

dependent on the input block and can be different for each input. Table 5.1 shows the

profiling results of both modules for the input stream 'toys and calendar', which illustrates

the large difference between the worst-case latency and the average-case latency.

H2.64 is a particularly interesting application, because it has very high data communi-

cations between the modules and it is also latency sensitive.

Entropy Decoding Module Inverse Transform/
Quantization Module

Video bitstream flow fl (39.7 MB/s)
M1 M2

flow f15 (0.473 MB s

flow f2 (3.27 MB/s) flo f9 (39.7 MB/s)

flow f3 (20.4 ow 10 1.3

Reference Pixel
Loading Modul flow f4 (20.47 MB flow fll (1.63 MB/s)

Intra-Prediction/
flow f8 (30.1 MB/sM Deblocking

flow 3.97 MB/s) Reconstruction

M8 flow fl2 (0.824 MB/s Model
ow (13.97 MB/

M7 flow f14 (41.47 MB/

flow f13 (0.824 MBs)
flo 7 (120.4 MB s)

M9 (Off-Chip Memory Controller)

s)

* M3, M5, M7 and M8 are the Interpolation Modules

Figure 5-1: High-level Data flow description of H.264 decoder.

5.2.2 Performance Modeling

Performance modeling is a structured and repeatable approach to estimate the performance

of a hardware design so that architects can evaluate various alternatives at an early stage of

the design. Fast performance modeling is important because it enables the system designer

to explore more design choices for more complex designs. Traditionally, performance model-

ing has been done purely in software. However, to further speed up performance modeling,

recent work such as HAsim [60, 61] and FAST [55] uses FPGAs to implement performance

modeling in hardware.

The goal of performance modeling is simply to obtain timing information of a target

system, not to faithfully emulate the target system cycle by cycle. Therefore, a performance

model may take multiple substrate clocks (FPGA or array processor clocks) to perform a

single-cycle operation on the target machine. For example, an associative cache look-up

can be implemented with a single-ported SRAM in multiple cycles by checking one cache

line in each cycle as long as the model counts one model cycle for all these look-ups. The

latency of such a cache module varies dramatically depending on the input: one cycle if

there is a hit in the first line to check, or many cycles to check every line in the set if an

Table 5.1: H.264 profiling results for a standard input stream.

Entropy Decoder Inter-prediction

#lookups Occurrence Data read (bytes) Occurrence

0-5 43.5 0~239 0.01

6~11 38.6 240~399 9.3

12~17 14.4 400-559 19.6

18~23 3.0 560~719 67.5

24~ 0.4 720 ~ 0.4

Average 7.56 lookups Average 589.3 bytes

Maximum 32 lookups Maximum 954 bytes

Table 5.2: Estimates Data Rates for the IEEE 802.11a/g Wireless LAN Transmitter.

Flow Source Destination Bandwidth Flow Source Destination Bandwidth

fl M4 M1 0.7 fll M15 - 36

f2 M1 M2 36.2 f12 M7 M11 18

f3 M2 M5 36.2 f13 M7 M10 18

f4 M3 M5 48 f14 M7 M9 18

f5 M13 M6 36.8 f15 M7 M8 18

f6 M5 M6 38.9 f16 M8 M12 9

f7 M6 M7 37 f17 M9 M12 9

f8 M12 M13 36.7 f18 M10 M12 9

f9 M13 M14 58.72 f19 M11 M12 9

f10 M14 M15 36.8 Data bits - M1 18.1

access eventually incurs a cache miss. Therefore, the performance modeling application has

a significant difference between the average-case latency and the worst-case latency; which

makes it a great candidate for testing our routing algorithm.

Figure 5-2 shows the three stages pipeline of a microprocessor where the register file,

instruction cache and data cache are presented are independent modules.

5.2.3 IEEE 802.11a/g Wireless LAN Transmitter

SoCs platforms have generally attracted digital signal processing (DPS) applications, be-

cause such applications can be easily partitioned and mapped onto a distributed compu-

tational environment where task-level parallelism can be exploited. For this reason, we

also decompose the IEEE 802.11a/g Wi-Fi baseband transmitter block diagram into several

functional modules, based on the IEEE standard guidelines [65].

Figure 5-3 shows the structural decomposition of the transmitter for Orthogonal Fre-

quency Division Multiplexing (OFDM). It performs forward error correction (FEC) coding,

interleaving, symbol mapping, inverse fast fourier transform (IFFT), and guard interval (GI)

Fetch

flow fl (41.82 MB/s

flow f5 (41.82 MB/s flow f10 (41.82 MB/s)

Imem Modul Decode Mo Execute Modu flow fli (41.82 MB/s Dmem Module
M2 M3 M5 M6

flow f (41.82 MB/S flow f6 (41.82 MB/s)

flow f4 (62.73 MB/ flow f7 (7.1 /s)

flo (7.1 MB/s)

Register File Modul M4

flow f9 (4.3 MB/s)

Figure 5-2: Processor Performance Modeling Data Flow.

insertion. The IFFT module, being the most computation intensive, is partitioned over four

different processing elements, or nodes. In the profiled example there are 10 OFDM symbols

per frame, and the convolutional code rate is 1/2 with 64 32-bit fixed-width complex num-

bers. Table 5.2 has the rough estimates of data traffics between the modules. Bandwidth

is measured in MBits per second.

5.3 Bandwidth Variations

Applications rarely maintain the same input and output data rates for their internal sub-

modules from start to finish. For example, in the H.264 application, data rates between

modules vary depending on the frame sequences that are being decoded. The scene of an

after-hours office lobby, with little or no change from one frame to the other, has different

data rates compared to a scene of a moving camera recording the movements of people

at a busy shopping mall. Therefore, to best model the run-time data variations seen in

applications, we vary the bandwidth demands for the H.264 and the transpose benchmark

by 10%, 25% and 50% in some of the experiments. Using the same routes generated from

the initial data rate estimates, we increment or decrement these data rates by some random

amount within the percent range. We use a two-stage Markov modulated process to decide

IFFT2 Module

to digital to analog converter

flow fll (36 MBits/s)

Module

interleave Module Load FFT Interleave Module IFFT Merger Module

Figure 5-3: Wireless LAN Transmitter Data Flow.

when to increment or decrement, and each rate is kept constant for a random number of

cycles. Figure 5-4 shows, as an example, the injection rates of node 52 for transpose during

a 25% bandwidth variation test run.

Injection Rate

5 cycles/flit
r? 1 FmLP

w..
r

Simulation cycles

Figure 5-4: Transpose Node 52 Injection Rates when modeling burstiness

Exploring bandwidth variations helps verify the strength of our routing framework when

run-time bandwidth demands differ from estimated data rates by some factor.

These various workloads impose a wide range of data communication patterns on the

network, which will test the performance, load balancing and latency reduction of our

oblivious deadlock-free scheme.

Window Module

!, - __'_ X-II~-- L II-I

Chapter 6

Performance Evaluation

This section discusses settings for the testing environment where the different workloads,

presented in Chapter 5, are simulated. It presents the results from these simulations and

the performance analysis of our routing algorithm compared to other oblivious routing

algorithms.

6.1 Simulation Methodology

As discussed in the previous chapter, we use a set of standard synthetic traffic patterns,

namely, transpose, bit-complement, and shuffle, and a set of real application data communi-

cation patterns, H.264 decoder, performance modeling, and 802.11a/g wireless transmitter,

in our experiments. The synthetic patterns provide basic comparisons between our rout-

ing scheme and other oblivious algorithms, as they are widely used to evaluate routing

algorithms. For these synthetic benchmarks, flows have the same average bandwidth de-

mands in all the test cases; except when testing the effect of bandwidth variations on the

transpose benchmark. In the case of H.264, performance modeling, and 802.11 transmitter

applications, flow bandwidths are derived from profiling results. In effort to obtain a fair

representation of the general traffic patterns in these applications, multiple profiling results

are taken into account. For the H.264 decoder, several video streams are run and profiled in

deriving the flow demands. In these applications, bandwidth varies from flow to flow; perfor-

mance modeling, for example, has flow demands ranging from 4.3 Mbytes/second to 41.82

Mbytes/second. The H.264 decoder application has flow rates from 0.824Mbytes/second up

to 120.4 Mbytes/second.

A cycle-accurate network simulator is used to estimate the throughput and the average

latency of flows for each application under the various routing algorithms. The simula-

tor models the router microarchitecture described in Chapter 4. As discussed in router

architecture chapter, our routing scheme only requires minor changes in the router microar-

chitecture. Therefore, we assume an identical clock frequency and pipeline stages for all

Example [North-Last West-First Negative-First Ad Hoc 1 Ad Hoc 2

transpose 175 175 75 175 75

bit-complement 100 100 150 100 150

shuffle 75 100 75 100 100

H.264 140.87 184.94 120.4 174.07 140.87

perf. modeling 62.73 83.65 62.73 95.04 83.65

transmitter 7.34 7.34 9.46 10.52 9.0

Table 6.1: Finding the routes with the minimum MCL (in MB/second) by exploring different

acyclic CDGs using BSORMILP.

routing algorithms. We use an 8 x 8 two-dimentional mesh network with 1, 2, 4 or 8 virtual

channels per port. The simulator is configured to have a per-hop latency of 1 cycle, and

the flit buffer size per VC of 16 flits.

For each simulation, the network is warmed up for 20,000 cycles before being simulated

for 100,000 cycles to collect statistics. Increasing the simulation time beyond 100,000 cycles

did not change the results.

The link bandwidth from resource to switch is set to be 4 times the link bandwidth

between adjacent switches in the network. For synthetic benchmarks, this setting has no

impact on the results. For the other applications, where multiple flows can leave a source

and multiple flows can have the same sink node, this allows for more accurate measurement

of the switch network performance.

In these experiments, we define the latency of a packet as the total amount of cycles

spent in the network, from the injection of its header flit into the network at the source, to

the reception of its tail flit at its destinations. The latency of a flow is simply the average

latency of its packets. Our throughput is defined as the amount of information (packets)

delivered per simulation cycle on average when in steady state; we call it average delivery

rate .

6.2 Simulation Results

Using our MILP and Dijkstra's weighted shortest path based BSOR, termed BSORMILP

and BSORDijkstra, we find the minimum MCL over flow networks GA'S corresponding to

15 different acyclic CDGs DA's; 12 of these correspond to the DA's derived from D using

the turn model, and 3 correspond to removing edges from D in an ad hoc manner. Tables

6.1 and 6.2 summarize some of the results for BSORMILP and BSORDijkstra, respectively.

The routes corresponding to the minimum MCL are chosen and simulated. Note that in

our experiments describing BSORMILP and BSORDijkstra, we only consider a single set

of routes for each benchmark.

Example North-Last I West-First Negative-First Ad Hoc 1 Ad Hoc 2

transpose 200 200 75 250 75

bit-complement 150 100 150 200 150

shuffle 100 100 75 100 100

H.264 238.44 240.8 188.06 268.74 242.85

perf. modeling 104.55 83.65 83.65 146.38 83.65

transmitter 9.1 10.5 9.1 10.52 10.6

Table 6.2: Finding the routes with the minimum MCL (in

acyclic CDGs using BSORDijkstra.

MB/second) by exploring different

Traffic XY YX ROMM 1 Valiant BSORMILP BSORDijkstra

transpose 175 175 150 175 75 75

bit-complement 100 100 300 200 100 100

shuffle 100 100 100 175 75 75

H.264 253.97 364.73 283.56 254.31 120.4 188.06

perf. modeling 95.04 146.38 104.55 132.57 62.73 83.65

transmitter 10.52 10.6 9.46 22.36 7.34 9.1

Table 6.3: Comparison of
various routing algorithms.

Maximum Channel Load (MCL) in MB/second presented by

For problems of small or medium sizes, such as the benchmarks considered in this work,

MILP converges and produces solutions fairly quickly. MILP solutions, when available,

always have MCLs that are equal or smaller than MCLs produced under Dijkstra's weighted

shortest path for the same average hop counts.

The minimum MCL results from other oblivious routing algorithms, namely, XY-ordered,

YX-ordered, ROMM, and Valiant, are presented in Table 6.3. These algorithms do not take

into account the bandwidth requirements. MCLs are determined across all links in the mesh

network after all routings are done. For ROMM and Valiant, in the experiments, routing

is done by selecting intermediate nodes per-flow basis rather than per-packet basis.

BSORMILP and BSORDijkstra have the lowest MCLs; they also have longer average

path lengths than the DOR algorithms and ROMM. It is also worth noting that shorter

path length does not necessarily lead to a shorter network latency. Among these algorithms,

Valiant produces the longest routes; when the network communication is not sparse, having

longer paths creates extra congestion which leads to a higher MCL. Sparsity, in this context,

means that for a given topology and a small number of flows, large parts of the network

remain unused.

Transpose Workload

250
2.55

>, 200
02

BSORM, MBSORMILP
O 1 BSORDijksta 100 BSORDijkstra

ROMM > ROMM
Valiant < Valiant

O-. 9- XY-ordered XY-orered

I I YX-ordered YX-ordered

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-1: Network Throughput and Average Latency graphs for Transpose Benchmark

6.2.1 Transpose Performance Comparisons

Figure 6-1 shows the throughput and the average latency under the transpose synthetic

traffic pattern. Total throughput, in packets per cycle, for each routing algorithm is plotted

as a function of the injected rate also in packets per cycle. Latencies (average number of

cycles per packet) are plotted as a function of the injected rate. In this simulation test case,

the number of virtual channels is set to to 2, to guarantee deadlock freedom to the ROMM

and Valiant algorithms. Our BSOR scheme, for the transpose traffic pattern, produces

routes that archive a network throughput of approximately 70% greater than other routing

algorithms, at a comparable average packet latency.

6.2.2 Bit-Complement Performance Comparisons

Figure 6-2 presents the throughput and the average latency under the bit complement

synthetic traffic pattern with 2 virtual channels. In this graph, XY-ordered, YX-ordered

and BSORMILP all have the same data points due to the symmetric nature of the flows in

the bit-complement application. BSORDijkstra, ROMM, and Valiant curves exhibit some

instability under this application. A routing algorithm is stable if its throughput remains

constant even as the traffic load is increased beyond the network saturation point. In

general, the throughput curves in this test case, in cross-reference with Table 6.3, convey

that minimizing MCL generally leads to higher network throughput, when head-of-line

blocking and routing instability are not prevalent factors.

Transpose Workload

Bit-Complement Workload Bit-Complement Workload

1.8C,

(1.

O 1.4

mark:3o.1o o.!- 0
0.

Figure
mark

6.2.3 Shuffle Performance Comparisons

Figure 6-3 shows the load-throughput and the latency graphs for the shuffle synthetic traffic

pattern. In this test case, BSORDijkstra outperforms BSORMILP at high injection rates,

although they both have the same MCL. BSORMILP, in its attempt to minimize path

lengths, losses some of its load balancing effects; its routes are shorter than the routes

generated under BSORDijkstra. But, longer routes do not systematically lead to better load

balancing, in fact they may lead to longer packet latencies, which can cause performance

degradation if not well leverage, Valiant is a perfect example.

6.2.4 H.264 Decoder Performance Comparisons

Figure 6-4 shows the throughput and latency curves for H.264 decoder traffic patterns

for the various routing algorithms. This application is particularly interesting because it is

highly throughput and latency sensitive. BSOR algorithms, by minimizing MCL, effectively

lower the network congestion and the average latency per packets. But DOR algorithms

outperform the BSOR schemes at very high injection rates because congestion hot spots

are more isolated. In fact when all 15 acyclic CDGs are run through the simulation, the

CDGs with good balance between MCL minimization and locality outperform the DOR

algorithm. Locality describes the degree to which the path assigned to a flow goes outside

the minimum quadrant formed by the source and destination pair.

-ROMM >ROMM
ROMM Valiant< 100 Valiant
Valiant XY-ordered
-XY-ordered YX-ordered

-- YX-ordered

10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

6-2: Network Throughput and Average Latency graphs for Bit-Complement Bench-

Shuffle Workload Shuffle Workload

200

o 1.B 100+ BSOR,

SBSORDiksa BSORDkst

" ROMM " ROMM

Valiant 50 Valiant

8. - XY-ordered 8- XY-ordered
H YX-ordered YX-ordered

0 10 20 30 40 50 60 10 20 30 40 50 60
Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-3: Network Throughput and Average Latency graphs for Shuffle Benchmark

6.2.5 Performance Modeling Performance Comparisons

Figure 6-5 illustrates the performance of the network, in terms of throughput and latency,

under the performance modeling traffic pattern for the different algorithms. Unlike the

H.264 decoder, the performance modeling application is less latency sensitive. The perfor-

mance gap between BSOR and the other oblivious routing algorithms is most noticeable

at higher injection rates. BSOR average latency is similar to the average latency recorded

for the DOR algorithms, but with higher network throughput because of BSOR's ability

to load balance in a more intelligent way than the random load balancing of ROMM and

Valiant. BSORMILP produces routes that achieve a network throughput approximately

33% greater than other routing algorithms, at a comparable average packet latency.

6.2.6 802.11a/g Transmitter Performance Comparisons

Figure 6-6 shows the throughput and latency graphs for IEEE 802.11a/g Wi-Fi baseband

transmitter traffic patterns. The general trends are the same as seen in previous communi-

cation patterns. At low traffic loads where there is enough bandwidth for all flows, latency

is more relevant. Our BSOR algorithms can balance more efficiently between the need of

taking longer paths, when bandwidth constraints require, and short paths due to latency.

6.2.7 Multiple Virtual Channels Performance

In this stage of testing, we run each application with 1, 2, 4 and 8 virtual channels. For the

1 virtual channel case, only DOR algorithms are compared against our BSOR algorithms,

because of the deadlock conditions in ROMM and Valiant. Here, we only present the 2,

H.264 Decoder Workload H.264 Decoder Workload
0300

>1 250

S-BSORP 00 BSORLPa0 1.5 ROMM ant

MValiant < D 1XY-ordee

0 10 20 30 40 50 60 O 0 10 20 30 40 50 60 70Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-4: Network Throughput and Average Latency graphs for H.264 Decoder Bench-

mark

4, and 8 virtual channels for the transpose and the H.264 decoder benchmarks. The same

general behavior is shown in other applications.

Figure 6-7 illustrates the effect of the number of virtual channels on the network perfor-

mance under synthetic and real applications. The simulation results show that increasing

the number of virtual channels from two to four improves performance, in terms of through-

put, by almost 40%. In this case having additional virtual channels per link helps mitigate

head-of-line blocking and allows greater bandwidth utilization. In contrast, increasing the

number of virtual channels from four to eight does not have the same impact on the through-

put; in these applications, link bandwidth seems to be the limiting factor. Both the MILP

and Dijkstra-based routes continue to outperform the other oblivious routing schemes.

6.2.8 Bandwidth Variation Performance Comparisons

Figure 6-8 shows the effect of 10% bandwidth variations on transpose and H.264. In the

transpose case, this variation has little or no effect on the network throughout, all the

routing algorithms maintain relatively the same output. With the H.264 decoder, the

variation helps BSOR outperform other routing algorithms. BSOR, by minimizing MCL,

leaves more bandwidth available which can be appropriated during high demand periods.

Figure 6-9 presents the effect on the performance when the bandwidth variations are

within 25% of the estimated data rates. Overall, the trends remain the same as in the 10%

bandwidth variation case. BSOR algorithms show the least performance degradation in

presence of run-time bandwidth variations at low injection rates.

Not surprisingly, 50% bandwidth variations, Figure 6-10, have the most effect on the

Performance Modeling Workload

MILP a,

0L_ 0.4-..4 B Dijkstra 60

-&-ROMM >
V -Valiant

< 40

0.2 -B- XY-ordered 2

" I .. YX-ordered

0 5 10 15 0 5 10 15

Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-5: Network Throughput and Average Latency graphs for Performance Modeling

Benchmark

performance of these benchmarks under the different routing algorithms. However, with

transpose our routing algorithms absorb these variations and preserve their higher through-

puts over other routing algorithms. In H.264, minimum routing algorithms (XY-ordered,

YX-ordered and ROMM) outperform the non-minimal schemes. Therefore, in the presence

of considerable data rate estimation inaccuracy, the effectiveness of our routing algorithm

can no longer be guaranteed, unless routing is done targeting an alternative objective value,

such as minimizing the number of flows sharing a link.

6.3 Discussion

Our bandwidth-sensitive scheme is able to achieve better performance than DOR, ROMM

and Valiant for benchmarks where it is able to find a lower MCL. For benchmarks with the

same MCL (bit-complement), it produces routes of similar quality to DOR.

Maximum channel load is a convenient cost function to optimize, but it may not reflect

average channel load, or the complexity of the routes. It is possible that there are many

links with load very close to MCL in one routing scheme versus another, which can cause

performance to suffer more in one scheme than the other. Typically, the routes produced

by our algorithm have more turns than DOR routes. Further, care should be taken to not

ignore latency. Non-minimal routes are at an inherent disadvantage when the network is

congested, even if they correspond to a lower MCL. For these reasons, improvements in

MCL do not translate to equivalent improvements in throughput. Tuning the cost function

to better estimate network performance is a subject of ongoing experimentation.

Performance Modeling Workload

IEEE 802.11alag Wi-Fi Transmitter Workload IEEE 802.1 la/g Wi-Fi Transmitter Workload

1.4 300

01.2 50E-BSORMILP

o, 200 --20 9 BSORDijkstra
0.8 o ROMM

S150 Valiant

.c 0.6 BSORMILP XY-ordered

BSORjkstra 0 YX-ordered

I- oYX-ordered

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-6: Network Throughput and Average Latency graphs for Transmitter Benchmark

6.4 Summary of Results

These results provide evidence that our oblivious deadlock-free algorithm, in its attempt to

globally minimize the MCL, does the proper load balancing needed to improve performance.

With light network traffic loads, all the algorithms seem to perform about the same, with

the exception of Valiant that can suffer from lack of locality. With multiple virtual channels,

as expected, head-of-line blocking is mitigated to a certain degree. This is reflected in the

performance gain observed when moving from two to four virtual channels. BSOR has a

higher path diversity than ROMM, because it is not confined to the minimal quadrant;

while it avoids the pitfalls encountered with Valiant, where paths can become excessively

long, which ultimately leads to longer latency and poor performance.

H.264 Decoder Workload
5

2-

. BSORILP VC= 1

1B R j BSOR VC = 1

BrBSORMILP VC = 4

BSORoiiks VC = 4

.5 BSORMILP VC = 8

BSORDijkstra VC = 8

Transpose Workload

" 10 20 30 40 50 60 70 '0 10 20 30 40 50 60
Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-7: Varying the number of VCs for transpose and H.264 Decoder. Results for other

examples show the same trend.

Transpose Workload H.264 Decoder Workload

U)
C,
0

0.0

0

0L.I-0

I-

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-8: The performance of various algorithms with 10% bandwidth variations .

Transpose (b) H.264 .

Transpose Workload H.264 Decoder Workload

20
.5 01.5

M BSOR- 1 -BSORMILP

2 BSOR

0. Valiant 0.5 ValiantO0 -- XY-ordered --- Vahant
o XY-ordered ; XY-ordered

YX-ordered -YX-ordered

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-9: The performance of various algorithms with 25% bandwidth variations . (a)

Transpose (b) H.264 .

Transpose Workload H.264 Decoder Workload

S--4 BSORMILP M 1- BSORMILP

SBSORDijkstra- BSORDijkstra

-- ROMM -9 ROMM

0.5 Valiant 0.5 Valiant

0 -2- XY-ordered XY-ordered
-- YX-ordered - YX-ordered

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70

Offered Injected Rate (packets/cycle) Offered Injected Rate (packets/cycle)

Figure 6-10: The performance of various algorithms with 50% bandwidth variations . (a)

Transpose (b) H.264 .

62

Chapter 7

Conclusions

In conclusion, we present a brief summary of this work, review a number of important

research topics that are not covered in this thesis, and part with some final thoughts on the

problem of routing data in network-on-chip.

7.1 Summary

The topology of a network on-chip bounds the performance of the network. The routing

algorithm used in the network plays a significant role towards achieving these performance

bounds. Central to this work is the idea of better load balancing network channels, using ap-

plication communication characteristics, leading to improved throughput while maintaining

a simple router implementation.

We have proposed an offline strategy to compute routes, based on knowledge of the

application's data transfers, to arrive at a bandwidth-sensitive oblivious routing scheme

that does not require significant modification to standard routers. We have shown that

applying estimates of the bandwidth demands of an application's data transfers to routing

decisions can help improve application performance through better load balancing.

Chapter 3 presents our bandwidth-sensitive oblivious routing (BSOR) algorithm, and

its optimization for small and medium size problems using mixed integer-linear program-

ming (MILP) formulation. Using the Dijkstra's weighted shortest path algorithm, as a

route selection scheme for large problem sizes, demonstrates the scalability of the algo-

rithm. Chapter 4 briefly explores the table-based router architecture needed to support the

proposed bandwidth sensitive approach by taking a typical virtual channel router archi-

tecture, and showing the modifications required. In chapter 5, illustrating applications are

described followed by the experimental results.

7.2 Limitations

The primary feature of our approach is also its limitation; we need knowledge of the ap-

plication communication characteristics. This does not necessarily have to be bandwidth

demands, although we have focused on bandwidth in this thesis. It could be knowledge of

data transfers whose latency is critical to performance. These transfers can be forced to

have minimal routes. Alternately, we can simply minimize the maximum number of flows

sharing a link without knowing bandwidths. For scenarios such as reconfigurable com-

puting or coprocessing, we believe that an offline compilation and network configuration

methodology is viable, and is in fact the norm, for example, in FPGAs.

In this work, fault-tolerance issues, such as packet loss, link failures or node failures, are

not considered. In our assumptions and simulation environment, there is no packet loss.

Also, buffer utilization by the various algorithms are not investigated. The expansion of

the proposed algorithm, to multicast communication routing, is not considered.

7.3 Future Work

There are many avenues for future work. Different instantiations of the framework we have

proposed may result in better routes for benchmarks. For example, a more systematic way

of exploring acyclic CDGs may lead to improved results. Given the speed of our Dijkstra-

based algorithm, a very large space of acyclic CDGs can be explored, and the framework

can be applied to larger problems. We note that the ILP solver can be used as a heuristic

approach by limiting the number of iterations for large examples. We are conducting a

comparative study of static virtual channel allocation versus dynamic allocation. We aim

to find methods to statically allocate virtual channels which can lead to reductions in router

complexity without loss of performance.

To handle bursty flows, we have proposed bandwidth-adaptive networks that contain

adaptive bidirectional links and can improve the performance of conventional oblivious rout-

ing methods [62]. Ongoing work includes evaluating BSOR and BSORM on a bandwidth-

adaptive network. We note that most routers only distinguish between source-destination

pairs, not individual flows or data transfers. Distinguishing between flows with the same

source-destination pair can improve network performance through better (static) load bal-

ancing.

7.4 Final Comments

NoC architectures are still growing and design methodologies are being perfected. With

the current intensive push toward more parallelized computation, the need for good and

relatively simple hardware for routing algorithms is even more pressing. Our hope, in

presenting this work, is to renew interest in oblivious routing algorithms in networks on

chip, since they remain the most widely used in today's systems.

66

Bibliography

[1] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multipro-
cessor Interconnection Networks. IEEE Trans. Computers, 36(5):547-553, 1987.

[2] William J. Dally and Brian Towles. Route Packets, Not Wires: On-Chip Intercon-
nection Networks. In Proc. of the 38th Design Automation Conference (DAC), June
2001.

[3] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in
direct networks. Computer, 26(2):62-76, 1993.

[4] Jose Duato. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Parallel Distrib. Syst., 4(12):1320-1331, 1993.

[5] A. Ivanov and G. De Micheli. The Network-on-Chip Paradigm in Practice and Re-
search. Design & Test of Computers, 22(5):399-403, 2005.

[6] D. H. Lawrie. Access and alignment of data in an array processor. IEEE Trans.
Comput., 24(12):1145-1155, 1975.

[7] Herbert Sullivan and T R Bashkow. A large scale, homogeneous, fully distributed
parallel machine, i. SIGARCH Comput. Archit. News, 5(7):105-117, 1977.

[8] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
STOC '81: Proceedings of the thirteenth annual ACM symposium on Theory of com-
puting, pages 263-277, New York, NY, USA, 1981. ACM.

[9] W.J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Dis-
tributed Systems, 03(2):194-205, 1992.

[10] W.J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks us-
ing virtual channels. IEEE Transactions on Parallel and Distributed Systems, 4(4):466-
475, 1993.

[11] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing. J. ACM,
41(5):874-902, 1994.

[12] Craig B. Stunkel and Peter H. Hochschild. SP2 high-performance switch architecture.
In Proceedings of the Symposium on Hot Interconnects, pages 115-121, August 1994.

[13] Craig B. Stunkel, Dennis G. Shea, Don G. Grice, Peter H. Hochschild, and Michael
Tsao. The SPI high-performance switch. In Proceedings of the Scalable High Perfor-
mance Computing Conference, pages 150-157, May 1994.

[14] Jose Duato. A necessary and sufficient condition for deadlock-free adaptive routing in
wormhole networks. IEEE Trans. Parallel Distrib. Syst., 6(10):1055-1067, 1995.

[15] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[16] Ted Nesson and S. Lennart Johnsson. ROMM routing on mesh and torus networks. In
Proc. 7th Annual A CM Symposium on Parallel Algorithms and Architectures SPAA '95,
pages 275-287, 1995.

[17] Ted Nesson, Ted Nesson, S. Lennart Johnsson, and S. Lennart Johnsson. routing
on mesh and torus networks. In in Proc. 7th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 275-287. ACM Press, 1995.

[18] Mike Galles. Scalable pipelined interconnect for distributed endpoint routing: The SGI
SPIDER chip. In Proceedings of the Symposium on Hot Interconnects, pages 141-146,
August 1996.

[19] Jon Michael Kleinberg. Approximation algorithms for disjoint paths problems. PhD
thesis, Massachusetts Institute of Technology, 1996. Supervisor-Michel X. Goemans.

[20] Loren Schwiebert. Deadlock-free oblivious wormhole routing with cyclic dependencies.
In SPAA '97: Proceedings of the ninth annual ACM symposium on Parallel algorithms
and architectures, pages 149-158, 1997.

[21] William J. Dally, P. P. Carvey, and L. R. Dennison. The Avici terabit switch/router.
In Proceedings of the Symposium on Hot Interconnects, pages 41-50, August 1998.

[22] Ge-Ming Chiu. The odd-even turn model for adaptive routing. IEEE Trans. Parallel
Distrib. Syst., 11(7):729-738, 2000.

[23] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the traffic-performance charac-
teristics of system-on-chip communication architectures. pages 29-35, 2001.

[24] Li-Shiuan Peh and William J. Dally. A Delay Model and Speculative Architecture for
Pipelined Routers. In Proc. International Symposium on High-Performance Computer
Architecture (HPCA), pages 255-266, January 2001.

[25] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,
35(1):70-78, Jan 2002.

[26] Harald Rcke. Minimizing congestion in general networks. Foundations of Computer
Science, Annual IEEE Symposium on, 0:43, 2002.

[27] William J. Dally and Brian Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann, 2003.

[28] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Toward ideal on-chip
communication using express virtual channels. IEEE Micro, 28(1):80-90, 2008.

[29] Girish Varatkar and Radu Marculescu. Traffic analysis for on-chip networks design of
multimedia applications. In DAC '02: Proceedings of the 39th conference on Design
automation, pages 795-800, New York, NY, USA, 2002. ACM.

[30] Cesar A. Zeferino, Marcio E. Kreutz, Luigi Carro, and Altamiro A. Susin. A study
on communication issues for systems-on-chip. In SBCCI '02: Proceedings of the 15th

symposium on Integrated circuits and systems design, page 121, Washington, DC, USA,
2002. IEEE Computer Society.

[31] J. Hu and R. Marculescu. Exploiting the Routing Flexibility for Energy/Performance

Aware Mapping of Regular NoC Architectures. In Proc. Design, Automation and Test

in Europe Conference, 2003.

[32] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. Goal: a load-

balanced adaptive routing algorithm for torus networks. In ISCA '03: Proceedings of

the 30th annual international symposium on Computer architecture, pages 194-205,
New York, NY, USA, 2003. ACM.

[33] Brian Towles, William J. Dally, and Stephen Boyd. Throughput-centric routing al-

gorithm design. In SPAA '03: Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 200-209, New York, NY, USA, 2003.

ACM.

[34] Brian Towles, William J. Dally, and Stephen Boyd. Throughput-centric routing algo-

rithm design. In SPAA '03: Proceedings of the fifteenth annual ACM symposium on

Parallel algorithms and architectures, pages 200-209, 2003.

[35] Tobias Bjerregaard and Jens Sparse. Virtual channel designs for guaranteeing band-

width in asynchronous network-on-chip. In Proceedings of the IEEE Norchip Confer-

ence (NORCHIP 2004). IEEE, 2004.

[36] Jingcao Hu and Radu Marculescu. Application Specific Buffer Space Allocation for

NetworksonChip Router Design. In Proc. IEEE/ACM Intl. Conf. on Computer Aided

Design, San Jose, CA, November 2004.

[37] Jingcao Hu and Radu Marculescu. DyAD smart routing for networks-on-chip. In

Design Automation Conference, June 2004.

[38] N. K. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A virtual channel router for on-

chip networks. In IEEE Int. SOC Conf., Santa Clara, California, pages 289-293. IEEE

Computer Society Press, September 2004.

[39] Robert D. Mullins, Andrew F. West, and Simon W. Moore. Low-latency virtual-channel

routers for on-chip networks. In Proc. of the 31st Annual Intl. Symp. on Computer

Architecture (ISCA), pages 188-197, 2004.

[40] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for automatic topology se-

lection and generation for nocs. In DAC '04: Proceedings of the 41st annual conference

on Design automation, pages 914-919, New York, NY, USA, 2004. ACM.

[41] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for automatic topology se-
lection and generation for nocs. In DAC '04: Proceedings of the 41st annual conference
on Design automation, pages 914-919, 2004.

[42] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago Gonzalez Pestana,
Andrei Radulescu, and Edwin Rijpkema. A design flow for application-specific networks

on chip with guaranteed performance to accelerate soc design and verification. In DATE

'05: Proceedings of the conference on Design, Automation and Test in Europe, pages

1182-1187, Washington, DC, USA, 2005. IEEE Computer Society.

[43] Andreas Hansson, Kees Goossens, and Andrei Rddulescu. A unified approach to con-

strained mapping and routing on network-on-chip architectures. In CODES+ISSS

'05: Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hard-

ware/software codesign and system synthesis, pages 75-80, New York, NY, USA, 2005.

ACM.

[44] A. Ivanov and G. De Micheli. The Network-on-Chip Paradigm in Practice and Re-

search. Design & Test of Computers, 22(5):399-403, 2005.

[45] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and Mithuna Thottethodi.

Near-optimal worst-case throughput routing for two-dimensional mesh networks. In

Proc. of the 32nd Annual International Symposium on Computer Architecture (ISCA),
pages 432-443, 2005.

[46] Daeho Seo, Akif All, Won-Taek Lim, Nauman Rafique, and Mithuna Thottethodi.

Near-optimal worst-case throughput routing for two-dimensional mesh networks. In

Proceedings of the 32nd Annual International Symposium on Computer Architecture

(ISCA 2005), pages 432-443, 2005.

[47] K. Srinivasan, K. S. Chatha, and G. Konjevod. An automated technique for topology

and route generation of application specific on-chip interconnection networks. In IC-

CAD '05: Proceedings of the 2005 IEEE/ACM International conference on Computer-

aided design, pages 231-237, Washington, DC, USA, 2005. IEEE Computer Society.

[48] James Balfour and William J. Dally. Design tradeoffs for tiled CMP on-chip networks.

In Proceedings of the 20th ACM International Conference on Supercomputing (ICS),
June 2006.

[49] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of

network-on-chip. ACM Computing Surveys, 38(1), 2006.

[50] Zvika Guz, Isask'har Walter, Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam

Kolodny. Efficient link capacity and qos design for network-on-chip. In DATE '06:

Proceedings of the conference on Design, automation and test in Europe, pages 9-14,
2006.

[51] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, Narayanan Vijaykrish-

nan, Mazin S. Yousif, and Chita R. Das. ViChaR: A dynamic virtual channel regulator

for network-on-chip routers. In Proc. of the 39th Annual Intl. Symp. on Microarchitec-

ture (MICRO), 2006.

[52] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. A methodology for design of
application specific deadlock-free routing algorithms for NoC systems. In Proc. Intl.

Conf. on Hardware-Software Codesign and System Synthesis, Seoul, Korea, October
2006.

[53] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, G. E. Suh, and S. Devadas. A Comparison of
Static and Dynamic Virtual Channel Allocation in Oblivious Routing. In Proceedings

of the 3 rd ACM/IEEE International Symposium on Networks-on-Chip, May 2009.

[54] Krzysztof Walkowiak. New algorithms for the unsplittable flow problem. In ICCSA

(2), volume 3981 of Lecture Notes in Computer Science, pages 1101-1110, 2006.

[55] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William H. Reinhart, D. Eric
Johnson, and Zheng Xu. FAST Methodology for High-Speed SoC/Computer Simula-
tion. In International Conference on Computer-Aided Design, November 2007.

[56] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh Interconnect
for a Teraflops Processor. IEEE Micro, 27(5):51-61, Sept/Oct 2007.

[57] M. H. Cho, C-C. Cheng, M. Kinsy, G. E. Suh, and S. Devadas. Diastolic Arrays:
Throughput-Driven Reconfigurable Computing. In Proceedings of the Int'l Conference
on Computer-Aided Design, November 2008.

[58] Natalie Enright Jerger, Li-Shiuan Peh, and Mikko Lipasti. Virtual circuit tree multi-
casting: A case for on-chip hardware multicast support. In ISCA '08: Proceedings of
the 35th annual international symposium on Computer architecture, 2008.

[59] Maurizio Palesi, Giuseppe Longo, Salvatore Signorino, Rickard Holsmark, Shashi Ku-
mar, and Vincenzo Catania. Design of bandwidth aware and congestion avoiding effi-
cient routing algorithms for networks-on-chip platforms. Proc. of the ACM/IEEE Int.
Symp. on Networks-on-Chip (NOCS), pages 97-106, 2008.

[60] M. Pellauer, M. Vijayaraghavan, M. Adler, J. Emer, and Arvind. Quick Performance
Models Quickly: Timing-Directed Simulation on FPGAs. In International Symposium
on Performance Analysis of Systems and Software (ISPASS 2008), April 2008.

[61] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel Emer.
A-ports: an efficient abstraction for cycle-accurate performance models on fpgas. In
Proceedings of FPGA '08, pages 87-96, 2008.

[62] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. Devadas. Oblivious rout-
ing in on-chip bandwidth-adaptive networks. Technical Report CSAIL-TR-2009-011
(http://hdl.handle.net/1721.1/44958), Massachusetts Institute of Technology, March
2009.

[63] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press/McGraw-Hill, 2001.

[64] Thomas Gross and David R. O'Hallaron. iWarp: anatomy of a parallel computing
system. MIT Press, Cambridge, MA, USA, 1998.

[65] IEEE. IEEE standard 802.11a supplement. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specications, 1999.

