
Afghan": Z~~~~~~~ ;i :::- -I~-- ~_ :~- ~l~~'~_~

i;~~:~~i:~ r ,:wTqwor1 -n g er -:~~~

-":~~:: - : ! l 1m'; ,, ,, :- i: ::-·: ::-·
o t>;t{f V0:t ::I ::00 tELf;i0Xf}0 0f 0 0 s i 000d 000 J ; : ::: 00L ' :--::-: Ent$ V00 ';U iX' ;0 ; '.:'00 ::: :'or:ng0-ae0--0;0i -; ''X:'<'V :-

L:: 0 ; . ffS > , L: :i 1: : 0 rJ ; ,,.> 

j;!0'V~ 00g000S,''L,009t' 0ffffE ff'DSX 0 ,,,: '-fi;''E'Rn ' 0;0 ff

-i~~M;E0 CHUSTTS IN ST ITUEMASS A TE.

... :OFi ._: , :l.; .:_ .. ..... ... .CHN.L OG.Y.. , .:: ....... .- ·il~::~;i :; . .. ... 

~:: ': I--':'-: ''l'-'A:''i i:-:-ri-:-.'I:'·:-::: ' - 0 :I1:: 1iL
__ I _ � Is I_ I�__ - - --, - ------- I__Y _ -IWII�W-L-·I� ·̂ ··�·-L-·-Lssllll^l���.·--. -^1^1_

r·i� .- - . · -·. -�·.· ·2. . . . ··.-- 1.· '·::;-··:-�

··:.··..

:.:·li-`-i· .. -·· - 1 : - .;..i i

'·i�··:

::
1

i:

·
; ·:·

-·· -..; -i· .-.· .1.-

:i ·
ii i

i
i I:·t

''.'. .
: ·

:: :I ·-
:'''';- -··.--··

·;·; · · �1--·



Risk Independence and
Multiattributed Utility Functions*

by

Ralph L. Keeney

OR 001-71

June 1971

*This research was supported in part by the U. S. Army
Research Office (Durham) under Contract No. DAHCO4-
70-C-0058.



Risk Independence and Multiattributed Utility Functions *-

Ralph L. Keeney-'
Massachusetts Institute of Technology

Abstract

The concepts of conditional risk aversion, the conditional risk premium,

and risk independence pertaining to multiattributed utility functions are defined.

The latter notion is then generalized to what is called utility independence. A

number of theorems useful for simplifying the assessment of multiattributed

utility functions given certain risk independence and utility independence assump-

tions are stated.
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1. Introduction and Summary

In assessing cardinal utility functions for assets or-any other single

attribute, it has proven to be useful to begin by specifying certain qualitative

characteristics to which the decision-maker subscribes. Aside from

monotonicity the important characteristics are those concerning the decision-

maker's attitude toward risk, in particular, risk aversion and decreasing

risk aversion. Given one's risk characteristics, his utility function can often

be restricted to one or a few functional forms. The problem is then reduced

to finding a member of these families of utility functions appropriate to the

particular decision-maker. This is usually done by assessing certainty

equivalents for a few simple lotteries and using this information to fix the

parameters of the family of utility functions.

In this paper, we attempt to extend this idea. More specifically, a

measure of risk relevant to multiattribute cardinal utility functions is de-

fined. Restrictions on the functional form of the utility functions are indicated

provided this measure satisfies certain conditions. In related work,

Fishburn [1, 2, 3 and Pollak [7] have looked at the functional forms of multi-

attribute utility functions implied by assumptions about the decision maker's

preferences for various lotteries. Stiglitz [9] recently investigated restric-

tions on the indifference map implied by assumptions about the multiattribute

cardinal utility function, and restrictions on that utility function implied by as-

sumptions about the indifference map.

The concepts of a conditional utility function and risk independence and

the notation to be used are defined in the next section, followed by a proof of

our main result for two-attribute utility functions in section 3. In section 4,
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the conditional risk premium is introduced. The notion of risk independence

is then considered in a different context which permits extensions and general-

izations of the results. These are presented in the final section as represen-

tation theorems which simplify the assessment of multiattribute utility functions.

2. Definition of Risk Independence

Pratt [8] defines the local risk aversion r(x) by

r. (x) = - u(x) (1)-i) u'(x) '

where u(x) is a utility functionI for the continuous scalar attribute X and

u'(x) and u"(x) are respectively the first and second derivatives of u(x). By

integrating (1), exponentiating, and integrating again, he showed

u(x) = kl e (x)dxdx + k 2 , (2)

where kl and k 2 are constants of integration. One can observe that the risk

aversion function r(x) contains all the essential information about u(x) while

eliminating the arbitrariness introduced by positive linear transformations.

For multiattributed utility functions, it seems natural to develop con-

ditional risk aversion functions on the same basis as r(x). More specifically,

consider the utility function u(x 1,xZ . .,xn ) for attributes X 1, i = 1, 2,..., n

and for notational convenience, let us designate X 1 x X 2 x... x X as X and
1 2 n
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X x ... x X x X x ... x X as X-. Then the conditional risk aversion for
1 i-i i+1 n 1

X., which we denote by ri(x), will be defined by
1 1

u'(x)
r(x) = - (3)
1 -) u' (x)

1-

where ul(x) and u!' (x) are the first and second partial derivatives of u(x)
1- 1 - -

with respect to x.

We will say that X. is risk independent of X- if r.(x) does not depend on
1 1 1-

x-. In other words, X. is risk independent of the other attributes if the
1 1

riskiness (as measured by r.) of lotteries involving only uncertain amounts of
1

X. does not depend on the fixed amounts of the other attributes. This may be
1

a reasonable assumption in many situations. That is, if all of the risk is

associated with only one attribute and the other attribtes are all fixed, the

decision-maker's attitudes toward risk will depend only on that attribute in-

volving the risk.

o
Let x- represent any amount of X- and let x- be a specific amount.

o
Then we can define the conditional utility function for X. given x- x- to

1 1 1

0
mean any positive linear transformation of u(x, x-).

1 1

Given this notation, we can efficiently prove an important

LEMMA. If X. is risk independent of X-, then
1 1

o
u(x.,x-) = f(x-) u(x., x-) + g(x-) , (4)1 1 1 1 1 1

where f(x-)> 0.
1
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Proof. Given r.(x.,x-.) = r.(x., x-), it follows from (3) that
1 1 1 1 1 1

a a hog '
ax [log u(x.,x )= [log (xi, X)]X. 1 1 i ax. I '

i 1

so by partial integration and exponentiation,

a (x-) o b
ui(X x-) e =u (x.,x-) e

11 1 1 1 1

where a(x-) and b are integration constants. Integrating again,

a (x-) o b
u(x.,x-) e i +c(x-) u(x.,x-) e + d

b-a(x-)
which becomes (4) when rearranged and f(x-) e i and g(x-) =

1 1

[d- c(xT-)] [e-a(xi )].

The lemma becomes almost obvious when we consider that r.(x)
1

m

specifies the conditional utility function for X. uniquely up to positive trans-

formations and that r.(x) does not depend on x- .

This result is useful in a number of situations. For example, suppose

X. is risk independent of X- and suppose ri(xi,xT) = c. > 0. That is, the de-

cision maker is constantly risk averse over X.' for some x- in X-, Given these
1 1 i

- , -f 
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conditions, it follows directly from Pratt[8] that u(x., x:) must be a positive
1 1

-c.x.. Then from the lemma, we know
linear transformation of -e 1 1

u(xi, x-) for all x- in X- can be expressed by

-Cx.
u(x.,x-) -f(x-) e 1ii + g(x-), f(x-) > 0.

Stiglitz[9] considers a utility function of this form in the context of consumer

behavior under uncertainty.

3. Utility Functions and Risk Independence

In this section, we derive the functional form of a utility function with

two attributes given each attribute is risk independent of the other. As before,

if u(x, y) represents the utility function for attributes X and Y, it must be

assumed u is increasing and twice continuously differentiable in each attribute.

In section 5, the concept of risk independence is viewed in a slightly different

context which allows us to eliminate these restrictions.

An important result is

THEOREM 1. Given X is risk independent of Y and Y is risk independent of

X, then u(x, y) can be expressed by

u(x, y) = U(X (x, y ) + u(x, y) + k u(x, y ) u(x, y), (5)

where k is an empirically evaluated constant and u(x, yo) and

u(x , y) are consistently scaled conditional utility functions.

Proof. For reference, let us define the origin of u(x, y) by

u(x ,yo ) = 0. (6)
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Since X is risk independent of Y, from (4) we know

u(x, y) = f() U(x y) + gl(y)' (7)

Similarly, Y is risk independent of X so

u(x, Y) = f2 (X) u(xo, Y) + g( (8)

Then by evaluating (7) at x = x , we have
o

u(x, y) = fl(y) U(X, Yo) + gl( Y ) =gl(y) (9)

and likewise, evaluating (8) at y = y yields

U(X, o) = g2() . (10)

Now substituting (9) into (7) and (10) into (8) and equating the resulting

equations,

fl(y) u(x, yo) = f() U(X') + (x y) y) + ((11)

which, after rearranging, is

f 1 (Y) - 1 f 2 (X) - 1

u(x ,y) ) u(x,Xyo' YY (12)

In (12), a function of x is equal to a function of y, therefore, they both must

equal a constant. Call this constant k, and we have

f2(x) - 1
= k, xx, (13)

u(x,yo) o

or

(14)f2(x) = k u(x, y) + 1 .



The restriction x x of (13) is not necessary in (14) since f(Xo) = 1 as can
0 Zo'

be verified by evaluating (11) at x = x . Substituting (10) and (14) into (8) we

conclude

u(x, y) = [k u(x, Yo ) + 1] u(xO, y) + u(X, Y)
0

u(x, yo ) +u(x, y) + k u(x, y) u(x, y).
00 0 0

By evaluating u(xl, Y1) for arbitrary xl and Y1, we find k can be evaluated

from

u(xl Y1) - U(Xo' Y1) - U(X 1 ' Y)

u(Xo, Y1) U(x1, Yo)

The converse of theorem 1 is also true and easily proven working

directly with the definition of conditional risk aversion in (3). That is,

given a utility function for two continuous scalar attributes is of the form

(5), then X is risk independent of Y and Y is risk independent of X.

The usefulness of theorem 1 is that it simplifies the assessment of

u(x, y) provided the requisite risk independent assumptions hold. The

assessment of the two-attribute utility function is reduced to assessing two

one-attribute conditional utility functions and the utilities of two additional

consequences. The latter are necessary to consistently scale the conditional

utility functions and to evaluate k.

4. Conditional Risk Premiums

One of the important results of Pratt's work was his relating the local

risk aversion to the intuitively appealing concept of a risk premium. These

ideas are also valid in the current context concerning conditional utility

functions.
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Consider the lottery represented by (x.,x-), where the "-" repre-
1 1

sents a random outcome, and let Pi(Xi ) represent the probability density

function describing this outcome. Then the conditional certainty equivalent

A
for x. given x- is defined as the amount of X., call it x., such that the de-

1 1 1 1

A
cision maker is indifferent between (x., x-) and (x., x-). The conditional

risk premium for this lottery 7ri is defined as the amount such that the de-

cision maker is indifferent between (x.-.,x-. ) and (x.,x-), where x. is the

- A

expected value of x.. It should be clear that ir = x. - x.
1 1 1 1

In general, there is no reason why the conditional certainty equivalent and

conditional risk premium for x. would not depend on x- . However, it follows
1 1

from (4) that when X. is risk independent of X-, the conditional risk premium
1 1

and conditional certainty equivalent for x. will not in fact depend on the con-
1

dition x- . This is useful in that it allows us in some situations to assess the

expected utility of lotteries in terms of conditional certainty equivalents.

To be specific, consider the lottery (x, y), where we have verified

X and Y are risk independent of each other. We can now calculate the ex-

pected utility of (x, y) using (5) to find
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E[u(x Y)] = S S(x, YO+ ux o, y) + k u(x, y,) u(xO, y)1 p(x, y) dxdy

x y

E[u(x, yo)] + E[u(x[u(x, yo u(x ,7)], (15)

where E denotes expectation and p(x, y) is the joint probability density func.-

tion for (x, y). When X and Y are probabilistically independent, (15) becomes

E[u(x, y)] = E[u(x, yo)] + E[u(x, y)] + k E[u(x, y)] E[u(xo , y)1 (16)

But since X and Y are risk independent, we can reduce (16) to

[u(x, y) = u(x, y) + u(x, y) + k u(x, yo) u(x o , y), (17)

A A
where x and y are respectively the conditional certainty equivalents for x

and y . It immediately follows from (17) that

E[u(x, y)] =u(, ) = u(x , -T),
x Y

where 7T and r7 are the conditional risk premiums.
x y

5. Generalization of Risk Independence

Results analogous to theorem 1 could be derived for n-attribute utility

functions provided each attribute X. was risk idependent of all the other

attributes. However, there would be some unnecessary limitations of such

results. First of all, u(x) would have to be increasing and twice continuously

differentiable in each attribute for each ri(x) to be defined. Also, since the

risk aversion function is only defined for scalar attributes, there is no

corresponding risk aversion function for vector attributes. 3Thus, an
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expression like (5) would not be valid if for instance, y = ( Y2). Risk

independence can be considered in a slightly different context such that the

results are not limited by such restrictions.

In the notation of section 2, recall that the lemma states provided

X. is risk independent of X-, the conditional utility function for X. given
1 1 1

any fixed x_ is a positive linear transformation of the conditional utility

0
function for X. given x- = x-. The converse is easily shown to be true, so

1 i 1

this condition is equivalent to risk independence for increasing and twice

continuously differentiable scalar attributes. However, one can see from

(4) that such a condition by itself does not require restrictions on the

attributes, and that it may hold for non-increasing, non-continuous, vector

attributes. Thus, by stating our assumptions in terms of conditional utility

functions rather than in terms of the conditional risk aversions, the results

can be extended to include many additional situations.

6. Additional Results

Rather than repeat derivations that are found elsewhere [4], we will state

only one important result which simplifies the assessment of a multidimensional

utility function provided the requisite assumptions hold.

Let u(x 1, x 2 , .. ., x ) be a utility function over consequence space
n

X X1 x X x ... x X . Then define vector attributes Y and Z such that
here y = ( n

X = Y x Z, where y = (x 1, x 2, ... ) and z = (x m+ 1 x m + 2 ... ,x ) represent
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specific amounts of Y and Z respectively. Given u(y, z), Y is said to be

utility independent of Z if the decision-maker's relative preferences over

lotteries on Y, when Z is held fixed at z , are the same regardless of the
0

amount z . Given this condition, since utility functions are unique up to posi-
0

tive linear transformations, the conditional utility function for Y, given any

amount of Z, is a positive linear transformation of the conditional utility

function for Y given any other amount of Z. Mathematically stated, if Y is

utility independent of Z, then for any z.

u(y, z) = f(z) + g(z) u(y, z ), all z.
0

If Y and Z are utility independent of each other, they are said to be mutually

utility independent. Similarily, if each of the Xi's is utility independent of all
1

the others, they are mutually utility independent.

In the n-dimensional case, if the conditional utility function for X. is
1

denoted by u.(x., x-), where x- represents a fixed amount of all the other
i1 1 1

attributes, and if xi* and *x. are arbitrarily chosen such that u. (xY, x.) > u.i(*., x -),
1 i 11 1 1 1 1

then one can prove

THEOREM 2. Given X X X X X X X and the X. are mutually utility
THOEM2 1 X2 n 1

independent, u(x 1 , x 2 , . . x ) is completely specified by

(a) u.(xi, x-) for arbitrary x-, for each X., and
1 1 1 1

(b) u(x', x' .. .,x ) for all x! = x' or *x .
1' 2 n 1 1 1
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When X is partitioned into Y x Z,there is the generalization of Theorem 1 which

we state as a

COROLLARY. If Y and Z are mutually utility independent, u(y, z) can be

evaluated from

u(y (yz ) = + u(y o, z ) + k u(y,z ) u(y o z )

where y and z are arbitrarily chosen and k is an empirically evaluated

constant.

Other related results using the concept of utility independence are found

in Meyer [6] and Keeney [5].

7. Conclusions

We have used the concept of risk aversion developed by Pratt [81 which

has proven to be important in assessing single-attribute utility functions in

defining a conditional risk aversion function relevant to multiattribute utility

functions. The functional form of the two-attribute utility function satisfying

certain reasonable assumptions concerning one's conditional risk aversion

attitudes was derived. The notion of risk independence was then generalized

and renamed utility independence. Finally, two representation theorems were

stated which simplify the assessment of a multidimensional utility function pro-

vided specified utility independence assumptions hold.
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Note s

1. It is assumed u(x) is increasing and twice continuously differentiable.

2. It is assumed u(x) is increasing in each X. and the first and second

partial derivatives exist and are continuous.

3. We define a scalar attribute as a single-valued attribute and a vector

attribute as a many-valued attribute. For instance, if the set of

consequences X X x X2 x X3, where the Xi are scalar attributes, then

Y X X X 2 would be a vector attribute.


