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A. THE THERMODYNAMIC THEORY OF LINE SINGULARITIES IN ONE-COMPONENT
SYSTEMS

According to the theory of thermodynamic stability, the experimentally observed
X -anomalies are manifestations of singularities in the thermodynamic formalism (1).
Thus for a one-component system the second derivatives of the Gibbs function
G = G(p, T) tend to infinity, as the \-line is approached in the pressure-temperature
plane,

The phenomenological theory does not allow us to calculate the nature of the above-
mentioned singularity. However, it is possible to develop a scheme for the analysis and
correlation of the experimental data.

We shall tentatively assume that the Gibbs function can be represented as
G(p, T) = £(p) + h(T-T, ) (1)

where f(p) is a slowly varying function representing the Gibbs function along the \-line,

and h(t) is a singular function with the properties that
h(0) = 0, h'(0) = finite, h"(0) = -0 (2)
We confine ourselves to a region in the p,T-plane that is small enough to ensure
that the slope of the \-line is constant. We denote this slope by

-1
dp dT)\

t=l— | =733 (3)
ar/, \ %P

The idea of separating the regular and singular parts of the thermodynamic functions,
which was first advanced by Pippard (2), has been discussed in an earlier progress
report (3). Pippard's point of departure was the entropy S = S(p,T). However, it is
advantageous to start instead from the Gibbs function, since this constitutes a funda-
mental equation and contains implicitly the answer to every thermostatic question.

The special form of Eq. 1 is the simplest that is consistent with the broad features
of the experimental facts. An increased precision and an extended range of the experi-

ments will presumably call for a more elaborate functional form.
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We note that general thermodynamic principles bring about further restrictions for
the functions f(p) and h(t):

f'>0, h'<o0, f"<0, h"<O0 (4)

where the primes denote differentiation.

We shall show that the significant thermostatic functions can be obtained from Eq. 1
through direct computation.

First we obtain the entropy and the volume:

G . .
S=‘<ﬁ>p=‘“‘h *

_(8G\ _ o _ L
V—<ap>T f hg (6)

The specific heat Cp’ expansion coefficient e, and the isothermal compressibility
Ko are given by

p
<%%‘> =—=-tf - he (7
o} T
as av\ Cemy _wn L
() (), e e
oV ) _ T
—<8—p~>T—VKT— f h"g?_ (9)

After eliminating the singular function h" from Egs. 7, 8, and 9 we obtain the ana-
logs of Ehrenfest's relations:

Cp )

Va { =—+ 2f" ¢ (10)
T

VKTL=Va—2f"§. (11)

Eliminating f", we have

CP

2

" =— (12)

VTKT

From Eqgs. 7, 8, and 9 we obtain by standard thermodynamic methods the specific
heat at constant volume, the ratio of the specific heats, and the adiabatic compressibility:
CV 4fll h"
T = 1
f" + h"—2
g

(13)
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It is apparent that y = 0, and CV and Kg remain finite as h" - -«». This is in accord-
ance with the general theory of stability.

The foregoing relations can be used to express the derivatives of the functions f and
h in terms of measurable quantities. This can be achieved in a number of ways, and the
resulting identities serve as checks for the consistency of the theory.

We shall now enumerate the formulas corresponding to the choiceof V, S, ¢, C_,

p
and Kg as measurable quantities:

P:%V—iﬁ (16)
ht=-2v-28 (17)
) cp VTKSQZ 1/2
-frg"=—11- ]__——._——_C (18)
2T p
C 2\1/2
VT
_h..z_p_[u 1_7& } (19)
2T o)

In the vicinity of the \-line, with

VTKSZ_,Z
_“6—-‘« 1 (20)

Egs. 18 and 19 reduce to

\%
- 1 = KS
4 (21)
<, szgz
cht e ST (22)

4

Finally, we note that, for certain substances, such as liquid helium, a < 0 close to
the \-line. In such cases, there is a line in the p,T-diagram where a = 0, and hence

according to Eq. 8
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2

dp
h"
o) -
aT /, a=0

Equations 10-12 and 21-23 offer numerous possibilities for experimental verification,
although the existing data are usually not accurate enough for an extensive check.

Pippard (2) has shown that the linear relation between a and Cp (Eq. 10) is in agree-
ment with experiment. C. E. Chase and E. Maxwell, of Lincoln Laboratory, came to

the same conclusion for helium (4).

It would be desirable to perform experiments that are designed to check the finer
features of the theory.
L. Tisza
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B. DISTRIBUTION FUNCTIONS IN STATISTICAL THERMODYNAMICS

Certain questions left open in the author's thesis (1) were solved, and the material
of the thesis has been revised for future publication.
P. M. Quay
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